1
|
Truman JW, Riddiford LM. Drosophila postembryonic nervous system development: a model for the endocrine control of development. Genetics 2023; 223:iyac184. [PMID: 36645270 PMCID: PMC9991519 DOI: 10.1093/genetics/iyac184] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
During postembryonic life, hormones, including ecdysteroids, juvenile hormones, insulin-like peptides, and activin/TGFβ ligands act to transform the larval nervous system into an adult version, which is a fine-grained mosaic of recycled larval neurons and adult-specific neurons. Hormones provide both instructional signals that make cells competent to undergo developmental change and timing cues to evoke these changes across the nervous system. While touching on all the above hormones, our emphasis is on the ecdysteroids, ecdysone and 20-hydroxyecdysone (20E). These are the prime movers of insect molting and metamorphosis and are involved in all phases of nervous system development, including neurogenesis, pruning, arbor outgrowth, and cell death. Ecdysteroids appear as a series of steroid peaks that coordinate the larval molts and the different phases of metamorphosis. Each peak directs a stereotyped cascade of transcription factor expression. The cascade components then direct temporal programs of effector gene expression, but the latter vary markedly according to tissue and life stage. The neurons read the ecdysteroid titer through various isoforms of the ecdysone receptor, a nuclear hormone receptor. For example, at metamorphosis the pruning of larval neurons is mediated through the B isoforms, which have strong activation functions, whereas subsequent outgrowth is mediated through the A isoform through which ecdysteroids play a permissive role to allow local tissue interactions to direct outgrowth. The major circulating ecdysteroid can also change through development. During adult development ecdysone promotes early adult patterning and differentiation while its metabolite, 20E, later evokes terminal adult differentiation.
Collapse
Affiliation(s)
- James W Truman
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| | - Lynn M Riddiford
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| |
Collapse
|
2
|
Abstract
The evolution of insect metamorphosis is one of the most important sagas in animal history, transforming small, obscure soil arthropods into a dominant terrestrial group that has profoundly shaped the evolution of terrestrial life. The evolution of flight initiated the trajectory towards metamorphosis, favoring enhanced differences between juvenile and adult stages. The initial step modified postembryonic development, resulting in the nymph-adult differences characteristic of hemimetabolous species. The second step was to complete metamorphosis, holometaboly, and occurred by profoundly altering embryogenesis to produce a larval stage, the nymph becoming the pupa to accommodate the deferred development needed to make the adult. These changing life history patterns were intimately linked to two hormonal systems, the ecdysteroids and the juvenile hormones (JH), which function in both embryonic and postembryonic domains and control the stage-specifying genes Krüppel homolog 1 (Kr-h1), broad and E93. The ecdysteroids induce and direct molting through the ecdysone receptor (EcR), a nuclear hormone receptor with numerous targets including a conserved transcription factor network, the 'Ashburner cascade', which translates features of the ecdysteroid peak into the different phases of the molt. With the evolution of metamorphosis, ecdysteroids acquired a metamorphic function that exploited the repressor capacity of the unliganded EcR, making it a hormone-controlled gateway for the tissue development preceding metamorphosis. JH directs ecdysteroid action, controlling Kr-h1 expression which in turn regulates the other stage-specifying genes. JH appears in basal insect groups as their embryos shift from growth and patterning to differentiation. As a major portion of embryogenesis was deferred to postembryonic life with the evolution of holometaboly, JH also acquired a potent role in regulating postembryonic growth and development. Details of its involvement in broad expression and E93 suppression have been modified as life cycles became more complex and likely underlie some of the changes seen in the shift from incomplete to complete metamorphosis.
Collapse
Affiliation(s)
- James W Truman
- Department of Biology and Friday Harbor Laboratories, University of Washington, 620 University Road, Friday Harbor, WA 98250, USA.
| |
Collapse
|
3
|
McKinney DA, Strand MR, Brown MR. Evaluation of ecdysteroid antisera for a competitive enzyme immunoassay and extraction procedures for the measurement of mosquito ecdysteroids. Gen Comp Endocrinol 2017; 253:60-69. [PMID: 28866256 PMCID: PMC5646215 DOI: 10.1016/j.ygcen.2017.08.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/08/2017] [Accepted: 08/29/2017] [Indexed: 10/18/2022]
Abstract
Ecdysteroid hormones regulate several aspects of insect development and reproduction. The predominant ecdysteroids produced by insects including mosquitoes are ecdysone (E) and 20-hydroxyecdysone (20E). The ability to measure E and 20E titers is essential for many studies, but few sensitive, low cost options are currently available for doing so. To address this deficiency, we developed a new enzyme-linked immunoassay (EIA). In the first part of the study, we compared the affinity of two new antisera named EAB25 and EAB27 to other available ecdysteroid antisera. EAB25 had a 27-fold higher affinity for 20E than E, while EAB27 had a four-fold higher affinity for 20E. In the second part of the study, EIA protocols were developed for analyzing E and 20E produced by the mosquito Aedes aegypti. Results indicated that pelts from fourth instar larvae and ovaries from blood-fed, adult females produced E and 20E. Methanol extraction in the presence of magnesium from whole body samples altered antibody recognition of E and 20E by EIA. However, extraction with 1-butanol and two organic/water phase separations eliminated this problem and improved assay performance. We conclude the new antisera used in the EIA provide a low-cost, flexible, and sensitive method for measuring E and 20E in insects.
Collapse
Affiliation(s)
- David A McKinney
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Mark R Brown
- Department of Entomology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
4
|
Fujinaga D, Kohmura Y, Okamoto N, Kataoka H, Mizoguchi A. Insulin-like growth factor (IGF)-like peptide and 20-hydroxyecdysone regulate the growth and development of the male genital disk through different mechanisms in the silkmoth, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 87:35-44. [PMID: 28610907 DOI: 10.1016/j.ibmb.2017.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 06/07/2023]
Abstract
It is well established that ecdysteroids play pivotal roles in the regulation of insect molting and metamorphosis. However, the mechanisms by which ecdysteroids regulate the growth and development of adult organs after pupation are poorly understood. Recently, we have identified insulin-like growth factor (IGF)-like peptides (IGFLPs), which are secreted after pupation under the control of 20-hydroxyecdysone (20E). In the silkmoth, Bombyx mori, massive amounts of Bombyx-IGFLP (BIGFLP) are present in the hemolymph during pupal-adult development, suggesting its importance in the regulation of adult tissue growth. Thus, we hypothesized that the growth and development of adult tissues including imaginal disks are regulated by the combined effects of BIGFLP and 20E. In this study, we investigated the growth-promoting effects of BIGFLP and 20E using the male genital disks of B. mori cultured ex vivo, and further analyzed the cell signaling pathways mediating hormone actions. We demonstrate that 20E induces the elongation of genital disks, that both hormones stimulate protein synthesis in an additive manner, and that BIGFLP and 20E exert their effects through the insulin/IGF signaling pathway and mitogen-activated protein kinase pathway, respectively. These results show that the growth and development of the genital disk are coordinately regulated by both BIGFLP and 20E.
Collapse
Affiliation(s)
- Daiki Fujinaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Yusuke Kohmura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Naoki Okamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hiroshi Kataoka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan.
| | - Akira Mizoguchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
| |
Collapse
|
5
|
Hiroyoshi S, Reddy GVP, Mitsuhashi J. Effects of juvenile hormone analogue (methoprene) and 20-hydroxyecdysone on reproduction in Polygonia c-aureum (Lepidoptera: Nymphalidae) in relation to adult diapause. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:635-647. [DOI: 10.1007/s00359-017-1179-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 01/16/2023]
|
6
|
Rowland IJ, Goodman WG. Magnetic Resonance Imaging of Alimentary Tract Development in Manduca sexta. PLoS One 2016; 11:e0157124. [PMID: 27280776 PMCID: PMC4900654 DOI: 10.1371/journal.pone.0157124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 05/25/2016] [Indexed: 11/20/2022] Open
Abstract
Non-invasive 3D magnetic resonance imaging techniques were used to investigate metamorphosis of the alimentary tract of Manduca sexta from the larval to the adult stage. The larval midgut contracts in volume immediately following cessation of feeding and then greatly enlarges during the late pharate pupal period. Magnetic resonance imaging revealed that the foregut and hindgut of the pharate pupa undergo ecdysis considerably earlier than the external exoskeleton. Expansion of air sacs in the early pupa and development of flight muscles several days later appear to orient the midgut into its adult position in the abdomen. The crop, an adult auxiliary storage organ, begins development as a dorsal outgrowth of the foregut. This coincides with a reported increase in pupal ecdysteroid titers. An outgrowth of the hindgut, the rectal sac, appears several days later and continues to expand until it nearly fills the dorsal half of the abdominal cavity. This development correlates with a second rise in pupal ecdysteroid titers. In the pharate pupa, the presence of paramagnetic species renders the silk glands hyperintense.
Collapse
Affiliation(s)
- Ian J. Rowland
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Walter G. Goodman
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
7
|
Brent CS, Wang M, Miao YG, Hull JJ. ECDYSTEROID AND CHITINASE FLUCTUATIONS IN THE WESTERN TARNISHED PLANT BUG (Lygus hesperus) PRIOR TO MOLT INDICATE ROLES IN DEVELOPMENT. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 92:108-126. [PMID: 27192063 DOI: 10.1002/arch.21322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/08/2016] [Accepted: 01/23/2016] [Indexed: 06/05/2023]
Abstract
Vital physiological processes that drive the insect molt represent areas of interest for the development of alternative control strategies. The western tarnished plant bug (Lygus hesperus Knight) is a pest of numerous agronomic and horticultural crops but the development of novel control approaches is impeded by limited knowledge of the mechanisms regulating its molt. To address this deficiency, we examined the fundamental relationship underlying the hormonal and molecular components of ecdysis. At 27°C L. hesperus exhibits a temporally controlled nymph-adult molt that occurs about 4 days after the final nymph-nymph molt with ecdysteroid levels peaking 2 days prior to the final molt. Application of exogenous ecdysteroids when endogenous levels had decreased disrupted the nymphal-adult molt, with treated animals exhibiting an inability to escape the old exoskeleton and resulting in mortality compared to controls. Using accessible transcriptomic data, we identified 10 chitinase-like sequences (LhCht), eight of which had protein motifs consistent with chitinases. Phylogenetic analyses revealed orthologous relationships to chitinases critical to molting in other insects. RT-PCR based transcript profiling revealed that expression changes to four of the LhChts was coordinated with the molt period and ecdysteroid levels. Collectively, our results support a role for ecdysteroid regulation of the L. hesperus molt and suggest that cuticle clearance is mediated by LhCht orthologs of chitinases that are essential to the molt process. These results provide the initial hormonal and molecular basis for future studies to investigate the specific roles of these components in molting.
Collapse
Affiliation(s)
- Colin S Brent
- Arid Land Agricultural Center, USDA-ARS, Maricopa, Arizona, USA
| | - Meixian Wang
- Arid Land Agricultural Center, USDA-ARS, Maricopa, Arizona, USA
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yun-Gen Miao
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - J Joe Hull
- Arid Land Agricultural Center, USDA-ARS, Maricopa, Arizona, USA
| |
Collapse
|
8
|
Developmental ecdysteroid titers and DNA puffs in larvae of two sciarid species, Rhynchosciara americana and Rhynchosciara milleri (Diptera: Sciaridae). Genetica 2015; 143:597-612. [DOI: 10.1007/s10709-015-9859-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 08/01/2015] [Indexed: 01/16/2023]
|
9
|
Candido-Silva JA, Machado MCR, Hartfelder KH, de Almeida JC, Paçó-Larson ML, Monesi N. Amplification and expression of a salivary gland DNA puff gene in the prothoracic gland of Bradysia hygida (Diptera: Sciaridae). JOURNAL OF INSECT PHYSIOLOGY 2015; 74:30-37. [PMID: 25666977 DOI: 10.1016/j.jinsphys.2015.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 06/04/2023]
Abstract
The DNA puff BhC4-1 gene, located in DNA puff C4 of Bradysiahygida, is amplified and expressed in the salivary gland at the end of the fourth larval instar as a late response to the increase in 20-hydroxyecdysone titer that triggers metamorphosis. Functional studies revealed that the mechanisms that regulate BhC4-1 expression in the salivary gland are conserved in transgenic Drosophila. These studies also led to the identification of a cis-regulatory module that drives developmentally regulated expression of BhC4-1-lacZ in the prothoracic gland cells of the ring gland, a compound organ which in Drosophila results from the fusion of the prothoracic glands, the corpus allatum and the corpus cardiacum. Here we have investigated the occurrence of BhC4-1 expression in B. hygida prothoracic glands. We report the identification of the B. hygida prothoracic gland and demonstrate that it releases ecdysone. Using RT-qPCR, western blots and immunolocalization experiments, we demonstrate that the BhC4-1 mRNA and the BhC4-1 protein are both expressed in the B. hygida prothoracic glands at the same time that DNA puff C4 is formed in the salivary gland. We also show that BhC4-1 is concomitantly amplified 4.8-fold in the prothoracic gland and 23-fold in the salivary gland. Our results reveal the occurrence of stage specific expression of a DNA puff gene in the prothoracic glands of B. hygida, and extend previous studies that have shown that DNA puff genes expression is not restricted to the salivary gland. In addition, the description of stage specific gene amplification in the prothoracic glands of B. hygida constitutes the first demonstration that gene amplification in Diptera might occur concomitantly in two different tissues in the same developmental stage.
Collapse
Affiliation(s)
- Juliana Aparecida Candido-Silva
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP CEP 14040-903, Brazil.
| | - Maiaro Cabral Rosa Machado
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP CEP 14049-900, Brazil.
| | - Klaus Hartmann Hartfelder
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP CEP 14049-900, Brazil.
| | - Jorge Cury de Almeida
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP CEP 14049-900, Brazil.
| | - Maria Luisa Paçó-Larson
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP CEP 14049-900, Brazil.
| | - Nadia Monesi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP CEP 14040-903, Brazil.
| |
Collapse
|
10
|
Kelstrup HC, Hartfelder K, Nascimento FS, Riddiford LM. The role of juvenile hormone in dominance behavior, reproduction and cuticular pheromone signaling in the caste-flexible epiponine wasp, Synoeca surinama. Front Zool 2014; 11:78. [PMID: 25371699 PMCID: PMC4219083 DOI: 10.1186/s12983-014-0078-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/15/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The popular view on insect sociality is that of a harmonious division of labor among two morphologically distinct and functionally non-overlapping castes. But this is a highly derived state and not a prerequisite for a functional society. Rather, caste-flexibility is a central feature in many eusocial wasps, where adult females have the potential to become queens or workers, depending on the social environment. In non-swarming paper wasps (e.g., Polistes), prospective queens fight one another to assert their dominance, with losers becoming workers if they remain on the nest. This aggression is fueled by juvenile hormone (JH) and ecdysteroids, major factors involved in caste differentiation in most eusocial insects. We tested whether these hormones have conserved aggression-promoting functions in Synoeca surinama, a caste-flexible swarm-founding wasp (Epiponini) where reproductive competition is high and aggressive displays are common. RESULTS We observed the behavioral interactions of S. surinama females in field nests before and after we had removed the egg-laying queen(s). We measured the ovarian reproductive status, hemolymph JH and ecdysteroid titers, ovarian ecdysteroid content, and analyzed the cuticular hydrocarbon (CHC) composition of females engaged in competitive interactions in both queenright and queenless contexts. These data, in combination with hormone manipulation experiments, revealed that neither JH nor ecdysteroids are necessary for the expression of dominance behaviors in S. surinama. Instead, we show that JH likely functions as a gonadotropin and directly modifies the cuticular hydrocarbon blend of young workers to match that of a reproductive. Hemolymph ecdysteroids, in contrast, are not different between queens and workers despite great differences in ovarian ecdysteroid content. CONCLUSIONS The endocrine profile of S. surinama shows surprising differences from those of other caste-flexible wasps, although a rise in JH titers in replacement queens is a common theme. Extensive remodeling of hormone functions is also evident in the highly eusocial bees, which has been attributed to the evolution of morphologically defined castes. Our results show that hormones which regulate caste-plasticity can lose these roles even while caste-plasticity is preserved.
Collapse
Affiliation(s)
- Hans C Kelstrup
- />Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147 USA
- />Present address: Department of Botany and Zoology, Stellenbosch University, Private Bag XI, Matieland, 7602 South Africa
| | - Klaus Hartfelder
- />Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Universidade de São Paul, Av. Bandeirantes 3900, Ribeirão Preto, 14049-900 SP Brazil
| | - Fabio S Nascimento
- />Departamento de Biologia da Faculdade de Filosofia, Ciȇncias e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, 14040-900 SP Brazil
| | - Lynn M Riddiford
- />Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147 USA
| |
Collapse
|
11
|
Brandão ADS, do Amaral JB, Rezende-Teixeira P, Hartfelder K, Siviero F, Machado-Santelli GM. Cell death and tissue reorganization in Rhynchosciara americana (Sciaridae: Diptera) metamorphosis and their relation to molting hormone titers. ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:511-522. [PMID: 24943875 DOI: 10.1016/j.asd.2014.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/02/2014] [Accepted: 05/12/2014] [Indexed: 06/03/2023]
Abstract
Programmed cell death (PCD) is a focal topic for understanding processes underlying metamorphosis in insects, especially so in holometabolous orders. During adult morphogenesis it allows for the elimination of larva-specific tissues and the reorganization of others for their functionalities in adult life. In Rhynchosciara, this PCD process could be classified as autophagic cell death, yet the expression of apoptosis-related genes and certain morphological aspects suggest that processes, autophagy and apoptosis may be involved. Aiming to reveal the morphological changes that salivary gland and fat body cells undergo during metamorphosis we conducted microscopy analyses to detect chromatin condensation and fragmentation, as well as alterations in the cytoplasm of late pupal tissues of Rhynchosciara americana. Transmission electron microscopy and confocal microscopy revealed cells in variable stages of death. By analyzing the morphological structure of the salivary gland we observed the presence of cells with autophagic vacuoles and apoptotic bodies and DNA fragmentation was confirmed with the TUNEL assay in salivary gland. The reorganization of fat body occurs with discrete detection of cell death by TUNEL assay. However, both salivary gland histolysis and fat body reorganization occur under control of the hormone ecdysone.
Collapse
Affiliation(s)
- Amanda Dos Santos Brandão
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1524, Ed Biomédicas 1, CEP 05508-000 São Paulo, SP, Brazil; Post-Graduate Interunits Program in Biotechnology, Av. Prof. Lineu Prestes, 2415 Edifício ICB - III - Cidade Universitária, CEP 05508-900 São Paulo, SP, Brazil.
| | - Jônatas Bussador do Amaral
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1524, Ed Biomédicas 1, CEP 05508-000 São Paulo, SP, Brazil.
| | - Paula Rezende-Teixeira
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1524, Ed Biomédicas 1, CEP 05508-000 São Paulo, SP, Brazil.
| | - Klaus Hartfelder
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, CEP 14049-900 Ribeirão Preto, SP, Brazil.
| | - Fábio Siviero
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1524, Ed Biomédicas 1, CEP 05508-000 São Paulo, SP, Brazil.
| | - Gláucia Maria Machado-Santelli
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1524, Ed Biomédicas 1, CEP 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
12
|
Callier V, Shingleton AW, Brent CS, Ghosh SM, Kim J, Harrison JF. The role of reduced oxygen in the developmental physiology of growth and metamorphosis initiation in Drosophila melanogaster. ACTA ACUST UNITED AC 2014; 216:4334-40. [PMID: 24259256 DOI: 10.1242/jeb.093120] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rearing oxygen level is known to affect final body size in a variety of insects, but the physiological mechanisms by which oxygen affects size are incompletely understood. In Manduca sexta and Drosophila melanogaster, the larval size at which metamorphosis is initiated largely determines adult size, and metamorphosis is initiated when larvae attain a critical mass. We hypothesized that oxygen effects on final size might be mediated by oxygen effects on the critical weight and the ecdysone titers, which regulate growth rate and the timing of developmental transitions. Our results showed that oxygen affected critical weight, the basal ecdysone titers and the timing of the ecdysone peak, providing clear evidence that oxygen affected growth rate and developmental rate. Hypoxic third instar larvae (10% oxygen) exhibited a reduced critical weight, slower growth rate, delayed pupariation, elevated baseline ecdysone levels and a delayed ecdysone peak that occurred at a lower larval mass. Hyperoxic larvae exhibited increased basal ecdysone levels, but no change in critical weight compared with normoxic larvae and no significant change in timing of pupariation. Previous studies have shown that nutrition is crucial for regulating growth rate and the timing of developmental transitions. Here we show that oxygen level is one of multiple cues that together regulate adult size and the timing and dynamics of growth, developmental rate and ecdysone signaling.
Collapse
Affiliation(s)
- Viviane Callier
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | | | |
Collapse
|
13
|
Kelstrup HC, Hartfelder K, Nascimento FS, Riddiford LM. Reproductive status, endocrine physiology and chemical signaling in the Neotropical, swarm-founding eusocial wasp Polybia micans. ACTA ACUST UNITED AC 2014; 217:2399-410. [PMID: 24744417 DOI: 10.1242/jeb.096750] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the evolution of caste-based societies in Hymenoptera, the classical insect hormones juvenile hormone (JH) and ecdysteroids were co-opted into new functions. Social wasps, which show all levels of sociality and lifestyles, are an ideal group in which to study such functional changes. Virtually all studies on the physiological mechanisms underlying reproductive division of labor and caste functions in wasps have been done on independent-founding paper wasps, and the majority of these studies have focused on species specially adapted for overwintering. The relatively little-studied tropical swarm-founding wasps of the Epiponini (Vespidae) are a diverse group of permanently social wasps, with some species maintaining caste flexibility well into the adult phase. We investigated the behavior, reproductive status, JH and ecdysteroid titers in hemolymph, ecdysteroid content of the ovary and cuticular hydrocarbon (CHC) profiles in the caste-monomorphic, epiponine wasp Polybia micans Ducke. We found that the JH titer was not elevated in competing queens from established multiple-queen nests, but increased in lone queens that lack direct competition. In queenless colonies, JH titer rose transiently in young potential reproductives upon challenge by nestmates, suggesting that JH may prime the ovaries for further development. Ovarian ecdysteroids were very low in workers but higher and correlated with the number of vitellogenic oocytes in the queens. Hemolymph ecdysteroid levels were low and variable in both workers and queens. Profiles of P. micans CHCs reflected caste, age and reproductive status, but were not tightly linked to either hormone. These findings show a significant divergence in hormone function in swarm-founding wasps compared with independently founding ones.
Collapse
Affiliation(s)
- Hans C Kelstrup
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Klaus Hartfelder
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, 14049-900 SP, Brazil
| | - Fabio S Nascimento
- Departamento de Biologia da Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, 14040-900 SP, Brazil
| | - Lynn M Riddiford
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| |
Collapse
|
14
|
Sridhara S, Lee VH. Tebufenozide disrupts ovarian development and function in silkmoths. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:1087-1099. [PMID: 24121094 DOI: 10.1016/j.ibmb.2013.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 09/11/2013] [Accepted: 09/16/2013] [Indexed: 06/02/2023]
Abstract
Adult development and production of up to 400 eggs within the pupal case of female silkmoths are both dependent on 20-hydroxyecdysone (20E), the steroid hormone of insects. When adult development was initiated with tebufenozide, the non-steroidal ecdysteroid agonist, instead of 20E, full development of all epidermal tissues like the wing was witnessed, but ovarian growth and egg formation was minimal. Administration of tebufenozide to female pharate adults caused disruption of the follicular epithelium, produced nurse cell damage, and inhibited oogenesis. Reduced ability to synthesize RNA and protein accompanied these tebufenozide induced morphological disturbances of the follicles. In vivo accumulation of vitellogenin (Vg) from the hemolymph was reduced in tebufenozide treated female ovaries as well as their ability to accumulate Vg in vitro. Determination of protein staining intensity and antibody reactivity of Vg pointed out that hemolymph Vg level remained fairly constant all through adult development whether induced by 20E or tebufenozide. Measurement of hemolymph volumes and hemolymph Vg levels of control and experimental animals allowed us to conclude that egg development involves the uptake of all the hemolymph proteins and not Vg alone. The loss of hemolymph that accompanies egg maturation was considerably reduced in tebufenozide initiated female pharate adults. 20E could not overcome ovarian growth inhibitory effects of tebufenozide. Dual mechanisms, one involving ecdysteroid antagonist action at the beginning of development, and the other unrelated to that function during heightened egg formation, are needed explain the biphasic inhibitory actions of tebufenozide on silkmoth ovaries.
Collapse
Affiliation(s)
- S Sridhara
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | | |
Collapse
|
15
|
Hentze JL, Moeller ME, Jørgensen AF, Bengtsson MS, Bordoy AM, Warren JT, Gilbert LI, Andersen O, Rewitz KF. Accessory gland as a site for prothoracicotropic hormone controlled ecdysone synthesis in adult male insects. PLoS One 2013; 8:e55131. [PMID: 23383307 PMCID: PMC3562185 DOI: 10.1371/journal.pone.0055131] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/17/2012] [Indexed: 11/19/2022] Open
Abstract
Insect steroid hormones (ecdysteroids) are important for female reproduction in many insect species and are required for the initiation and coordination of vital developmental processes. Ecdysteroids are also important for adult male physiology and behavior, but their exact function and site of synthesis remains unclear, although previous studies suggest that the reproductive system may be their source. We have examined expression profiles of the ecdysteroidogenic Halloween genes, during development and in adults of the flour beetle Tribolium castaneum. Genes required for the biosynthesis of ecdysone (E), the precursor of the molting hormone 20-hydroxyecdysone (20E), are expressed in the tubular accessory glands (TAGs) of adult males. In contrast, expression of the gene encoding the enzyme mediating 20E synthesis was detected in the ovaries of females. Further, Spookiest (Spot), an enzyme presumably required for endowing tissues with competence to produce ecdysteroids, is male specific and predominantly expressed in the TAGs. We also show that prothoracicotropic hormone (PTTH), a regulator of E synthesis during larval development, regulates ecdysteroid levels in the adult stage in Drosophila melanogaster and the gene for its receptor Torso seems to be expressed specifically in the accessory glands of males. The composite results suggest strongly that the accessory glands of adult male insects are the main source of E, but not 20E. The finding of a possible male-specific source of E raises the possibility that E and 20E have sex-specific roles analogous to the vertebrate sex steroids, where males produce primarily testosterone, the precursor of estradiol. Furthermore this study provides the first evidence that PTTH regulates ecdysteroid synthesis in the adult stage and could explain the original finding that some adult insects are a rich source of PTTH.
Collapse
Affiliation(s)
- Julie L. Hentze
- Department of Science, Systems and Models, Roskilde University, Roskilde, Denmark
| | - Morten E. Moeller
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anne F. Jørgensen
- Department of Science, Systems and Models, Roskilde University, Roskilde, Denmark
| | - Meghan S. Bengtsson
- Department of Science, Systems and Models, Roskilde University, Roskilde, Denmark
| | - Anna M. Bordoy
- Department of Science, Systems and Models, Roskilde University, Roskilde, Denmark
| | - James T. Warren
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lawrence I. Gilbert
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ole Andersen
- Department of Science, Systems and Models, Roskilde University, Roskilde, Denmark
| | - Kim F. Rewitz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
16
|
Kamimura M, Saito H, Niwa R, Niimi T, Toyoda K, Ueno C, Kanamori Y, Shimura S, Kiuchi M. Fungal ecdysteroid-22-oxidase, a new tool for manipulating ecdysteroid signaling and insect development. J Biol Chem 2012; 287:16488-98. [PMID: 22427652 PMCID: PMC3351327 DOI: 10.1074/jbc.m112.341180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/13/2012] [Indexed: 11/06/2022] Open
Abstract
Steroid hormones ecdysteroids regulate varieties of developmental processes in insects. Although the ecdysteroid titer can be increased experimentally with ease, its artificial reduction, although desirable, is very difficult to achieve. Here we characterized the ecdysteroid-inactivating enzyme ecdysteroid-22-oxidase (E22O) from the entomopathogenic fungus Nomuraea rileyi and used it to develop methods for reducing ecdysteroid titer and thereby controlling insect development. K(m) and K(cat) values of the purified E22O for oxidizing ecdysone were 4.4 μM and 8.4/s, respectively, indicating that E22O can inactivate ecdysone more efficiently than other ecdysteroid inactivating enzymes characterized so far. The cloned E22O cDNA encoded a FAD-dependent oxidoreductase. Injection of recombinant E22O into the silkworm Bombyx mori interfered with larval molting and metamorphosis. In the hemolymph of E22O-injected pupae, the titer of hormonally active 20-hydroxyecdysone decreased and concomitantly large amounts of inactive 22-dehydroecdysteroids accumulated. E22O injection also prevented molting of various other insects. In the larvae of the crambid moth Haritalodes basipunctalis, E22O injection induced a diapause-like developmental arrest, which, as in normal diapause, was broken by chilling. Transient expression of the E22O gene by in vivo lipofection effectively decreased the 20-hydroxyecdysone titer and blocked molting in B. mori. Transgenic expression of E22O in Drosophila melanogaster caused embryonic morphological defects, phenotypes of which were very similar to those of the ecdysteroid synthesis deficient mutants. Thus, as the first available simple but versatile tool for reducing the internal ecdysteroid titer, E22O could find use in controlling a broad range of ecdysteroid-associated developmental and physiological phenomena.
Collapse
Affiliation(s)
- Manabu Kamimura
- National Institute of Agrobiological Sciences, Owashi, Tsukuba, Ibaraki 305-8634, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Roma GC, de Souza LP, Brienza PD, Furquim KCS, Bechara GH, Camargo-Mathias MI. Ecdysteroid levels changed by permethrin action in female Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae) ticks. Exp Parasitol 2012; 131:153-6. [PMID: 22483974 DOI: 10.1016/j.exppara.2012.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 03/08/2012] [Accepted: 03/12/2012] [Indexed: 11/16/2022]
Abstract
As recent studies have shown that ecdysteroids may play a major role in the regulation of vitellogenesis in Ixodidae, the present study quantified, by means of a radioimmunoassay, the levels of ecdysteroids present in the hemolymph of semi-engorged females of Rhipicephalus sanguineus ticks obtained from control females (exposed to distilled water) and those exposed to increasing concentrations of permethrin. The levels of ecdysteroids decreased significantly as the concentration of permethrin increased, suggesting that this compound could be an inhibitor of ecdysteroids secretion, and consequently interfering with the reproductive ability of these ticks, since this hormone is responsible for the synthesis and incorporation of vitellogenin by oocytes. This study complements the previous results with R. sanguineus semi-engorged females, showing that permethrin is a potent agent causing major morphological changes in tick oocytes, such as the appearance of large vacuoles in the cytoplasm, reduction in the amount of yolk granules and a decrease in oocyte size, thus culminating in cell death and consequently reducing or preventing reproduction in treated females. The findings that permethrin leads to a decrease in ecdysteroid titers could represent an entry step into this scenario.
Collapse
Affiliation(s)
- Gislaine Cristina Roma
- Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, UNESP, Rio Claro, SP, Brazil
| | | | | | | | | | | |
Collapse
|
18
|
Sridhara S. Ecdysone receptor and ultraspiracle proteins are tyrosine phosphorylated during adult development of silkmoths. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:91-101. [PMID: 22154755 DOI: 10.1016/j.ibmb.2011.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 10/14/2011] [Accepted: 11/17/2011] [Indexed: 05/31/2023]
Abstract
20-hydroxy ecdysone (20E) is essential to promote adult development in diapausing silkmoth pupae. Increases in protein tyrosine/serine-phosphorylations observed soon after 20E administration supported the initial hypothesis that activation of receptor tyrosine kinase-ras-MAPK pathway could be responsible for the growth promoting effects of 20E. This report pertains to the high levels of protein tyrosine phosphorylations (PTP) that occurred later during the growth to differentiation transition because of its novelty and relevance to 20E dependence of adult development. Further analyses demonstrated that both ecdysone receptor (EcR) and ultraspiracle (USP), the two dimerizing partners of the functional ecdysone receptor, are tyrosine phosphorylated coincidental with high PTP. Enhanced PTP during growth to differentiation transition and concomitant tyrosine phosphorylation of EcR and USP was shown to occur in another silkmoth species pointing to the necessity of similar protein tyrosine phosphorylation pathways for adult development. Properly timed increases in tissue protein tyrosine kinase (PTK) activity could explain the enhancement of PTP in the wing epidermis of both the silkmoths. Thymidine incorporation measurements showed that cessation of DNA synthesis preceded the increase in PTK activity thus emphasizing a role for PTP in aspects of tissue physiology related to differentiative events rather than cell proliferation. Phosphatase and tyrosine kinase inhibitors (Tyrphostins) had minimal effects on adult wing development in vivo. However, the escape of the adult from the pupal case was blocked by a tyrphostin indicating the importance of PTKs in eclosion.
Collapse
Affiliation(s)
- S Sridhara
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601, 4th Street, Lubbock, TX 79430, USA.
| |
Collapse
|
19
|
Reproduction, dominance, and caste: endocrine profiles of queens and workers of the ant Harpegnathos saltator. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2011; 197:1063-71. [PMID: 21773739 DOI: 10.1007/s00359-011-0667-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/24/2011] [Accepted: 06/30/2011] [Indexed: 10/18/2022]
Abstract
The regulation of reproduction within insect societies is a key component of the evolution of eusociality. Differential patterns of hormone levels often underlie the reproductive division of labor observed among colony members, and further task partitioning among workers is also often correlated with differences in juvenile hormone (JH) and ecdysteroid content. We measured JH and ecdysteroid content of workers and queens of the ant Harpegnathos saltator. In this species, new colonies are founded by a single queen, but after she dies workers compete in an elaborate dominance tournament to decide a new group of reproductives termed "gamergates." Our comparisons revealed that queens, gamergates, and inside workers (non-reproductive) did not differ in levels of JH or ecdysteroids. However, increased JH and decreased ecdysteroid content was observed in outside workers exhibiting foraging behavior. Application of a JH analog to virgin queens of H. saltator, although effective at inducing dealation, failed to promote egg production. Together, these results support the hypothesis that JH has lost its reproductive function in H. saltator to regulate foraging among the worker caste.
Collapse
|
20
|
Cahan SH, Graves CJ, Brent CS. Intergenerational effect of juvenile hormone on offspring in Pogonomyrmex harvester ants. J Comp Physiol B 2011; 181:991-9. [PMID: 21618034 DOI: 10.1007/s00360-011-0587-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/05/2011] [Accepted: 05/09/2011] [Indexed: 11/24/2022]
Abstract
Parents can influence the phenotypes of their offspring via a number of mechanisms. In harvester ants, whether female progeny develop into workers or daughter queens is strongly influenced by the age and temperature conditions experienced by their mother, which is associated with variation in maternal ecdysteroid deposition in fertilized eggs. In many insects, juvenile hormone (JH) is antagonistic to ecdysteroid release, suggesting that seasonal and age-based variation in maternal JH titers may explain maternal effects on offspring size and reproductive caste. To test this hypothesis, we artificially increased maternal JH titers with methoprene, a JH analog, in laboratory colonies of two Pogonomyrmex populations exhibiting genetic caste determination. Increasing maternal JH resulted in a 50% increase in worker body size, as well as a sharp reduction in total number of progeny reared, but did not alter the genotype of progeny reared to adulthood. The intergenerational effect of JH manipulation was not mediated by a reduction in ecdysteroid deposition into eggs; instead, changes in egg size, trophic egg availability or brood/worker ratio may have altered the nutritional environment of developing larvae. Egg ecdysteroid content was significantly negatively correlated with natural variation in worker body size, however, suggesting that there are multiple independent routes by which queens can modify offspring phenotypes.
Collapse
Affiliation(s)
- Sara Helms Cahan
- Department of Biology, University of Vermont, Burlington, VT 05405, USA.
| | | | | |
Collapse
|
21
|
Araujo RV, Maciel C, Hartfelder K, Capurro ML. Effects of Plasmodium gallinaceum on hemolymph physiology of Aedes aegypti during parasite development. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:265-273. [PMID: 21112329 DOI: 10.1016/j.jinsphys.2010.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 11/10/2010] [Accepted: 11/19/2010] [Indexed: 05/30/2023]
Abstract
Insect disease vectors show diminished fecundity when infected with Plasmodium. This phenomenon has already been demonstrated in laboratory models such as Aedes aegypti, Anopheles gambiae and Anopheles stephensi. This study demonstrates several changes in physiological processes of A. aegypti occurring upon infection with Plasmodium gallinaceum, such as reduced ecdysteroid levels in hemolymph as well as altered expression patterns for genes involved in vitellogenesis, lipid transport and immune response. Furthermore, we could show that P. gallinaceum infected A. aegypti presented a reduction in reproductive fitness, accompanied by an activated innate immune response and increase in lipophorin expression, with the latter possibly representing a nutritional resource for Plasmodium sporozoites.
Collapse
Affiliation(s)
- Ricardo Vieira Araujo
- Departamento de Clínica Médica, Faculdade de Medicina de São Paulo, Universidade de São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
22
|
Oland LA, Tolbert LP. Roles of glial cells in neural circuit formation: insights from research in insects. Glia 2010; 59:1273-95. [PMID: 21732424 DOI: 10.1002/glia.21096] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 09/22/2010] [Indexed: 11/09/2022]
Abstract
Investigators over the years have noted many striking similarities in the structural organization and function of neural circuits in higher invertebrates and vertebrates. In more recent years, the discovery of similarities in the cellular and molecular mechanisms that guide development of these circuits has driven a revolution in our understanding of neural development. Cellular mechanisms discovered to underlie axon pathfinding in grasshoppers have guided productive studies in mammals. Genes discovered to play key roles in the patterning of the fruitfly's central nervous system have subsequently been found to play key roles in mice. The diversity of invertebrate species offers to investigators numerous opportunities to conduct experiments that are harder or impossible to do in vertebrate species, but that are likely to shed light on mechanisms at play in developing vertebrate nervous systems. These experiments elucidate the broad suite of cellular and molecular interactions that have the potential to influence neural circuit formation across species. Here we focus on what is known about roles for glial cells in some of the important steps in neural circuit formation in experimentally advantageous insect species. These steps include axon pathfinding and matching to targets, dendritic patterning, and the sculpting of synaptic neuropils. A consistent theme is that glial cells interact with neurons in two-way, reciprocal interactions. We emphasize the impact of studies performed in insects and explore how insect nervous systems might best be exploited next as scientists seek to understand in yet deeper detail the full repertory of functions of glia in development.
Collapse
Affiliation(s)
- Lynne A Oland
- Department of Neuroscience, University of Arizona, Tucson, Arizona 85721-0077, USA.
| | | |
Collapse
|
23
|
Hiruma K, Riddiford LM. Developmental expression of mRNAs for epidermal and fat body proteins and hormonally regulated transcription factors in the tobacco hornworm, Manduca sexta. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1390-5. [PMID: 20361974 DOI: 10.1016/j.jinsphys.2010.03.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/09/2010] [Accepted: 03/15/2010] [Indexed: 05/21/2023]
Abstract
This paper provides a compilation of diagrammatic representations of the expression profiles of epidermal and fat body mRNAs during the last two larval instars and metamorphosis of the tobacco hornworm, Manduca sexta. Included are those encoding insecticyanin, three larval cuticular proteins, dopa decarboxylase, moling, and the juvenile hormone-binding protein JP29 produced by the dorsal abdominal epidermis, and arylphorin and the methionine-rich storage proteins made by the fat body. The mRNA profiles of the ecdysteroid-regulated cascade of transcription factors in the epidermis during the larval molt and the onset of metamorphosis and in the pupal wing during the onset of adult development are also shown. These profiles are accompanied by a brief summary of the current knowledge about the regulation of these mRNAs by ecdysteroids and juvenile hormone based on experimental manipulations, both in vivo and in vitro.
Collapse
Affiliation(s)
- Kiyoshi Hiruma
- Faculty of Agriculture and Life Sciences, Hirosaki University, Hirosaki 036-8561, Japan
| | | |
Collapse
|
24
|
Suzuki T, Sakurai S, Iwami M. Physiological requirements for 20-hydroxyecdysone-induced rectal sac distention in the pupa of the silkworm, Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:673-677. [PMID: 20193691 DOI: 10.1016/j.jinsphys.2010.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 02/16/2010] [Accepted: 02/17/2010] [Indexed: 05/28/2023]
Abstract
Successful insect development is achieved via appropriate fluctuation of ecdysteroid levels. When an insect's ecdysteroid level is disrupted, physiological and developmental defects occur. In the pupa of the silkworm, Bombyx mori, the rectal sac is an essential organ that operates as a repository for degraded ecdysteroids, and it can be distended by administration of 20-hydroxyecdysone (20E). Our previous study showed that rectal sac distention appears 4 days after 20E administration. Hemolymph ecdysteroid levels, however, decrease to lower level during this period. Thus, the timing of the rectal sac distention does not match with that of ecdysteroid elevation. Here, we examine how 20E induces rectal sac distention. A ligature experiment and ecdysteroid quantification showed that continuous 20E stimulation induces rectal sac distention. Thorax tissue contributed to the continuous 20E stimulation needed to induce distention. Ecdysteroid released from the thorax tissue may be converted to 20E by ecdysone 20-hydroxylase to produce continuous 20E stimulation. Thus, the ecdysone metabolic pathway plays a critical role in rectal sac distention.
Collapse
Affiliation(s)
- Takumi Suzuki
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | |
Collapse
|
25
|
Elias-Neto M, Soares MPM, Simões ZLP, Hartfelder K, Bitondi MMG. Developmental characterization, function and regulation of a Laccase2 encoding gene in the honey bee, Apis mellifera (Hymenoptera, Apinae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:241-51. [PMID: 20184957 DOI: 10.1016/j.ibmb.2010.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 02/08/2010] [Accepted: 02/15/2010] [Indexed: 05/13/2023]
Abstract
In insects, exoskeleton (cuticle) formation at each molt cycle includes complex biochemical pathways wherein the laccase enzymes (EC 1.10.3.2) may have a key role. We identified an Amlac2 gene that encodes a laccase2 in the honey bee, Apis mellifera, and investigated its function in exoskeleton differentiation. The Amlac2 gene consists of nine exons resulting in an ORF of 2193 nucleotides. The deduced translation product is a 731 amino acid protein of 81.5 kDa and a pI of 6.05. Amlac2 is highly expressed in the integument of pharate adults, and the expression precedes the onset of cuticle pigmentation and the intensification of sclerotization. In accordance with the temporal sequence of exoskeleton differentiation from anterior to posterior direction, the levels of Amlac2 transcript increase earlier in the thoracic than in the abdominal integument. The gene expression lasts even after the bees emerge from brood cells and begin activities in the nest, but declines after the transition to foraging stage, suggesting that maturation of the exoskeleton is completed at this stage. Post-transcriptional knockdown of Amlac2 gene expression resulted in structural abnormalities in the exoskeleton and drastically affected adult eclosion. By setting a ligature between the thorax and abdomen of early pupae we could delay the increase in hemolymph ecdysteroid levels in the abdomen. This severely impaired the increase in Amlac2 transcript levels and also the differentiation of the abdominal exoskeleton. Taken together, these results indicate that Amlac2 expression is controlled by ecdysteroids and has a critical role in the differentiation of the adult exoskeleton of honey bees.
Collapse
Affiliation(s)
- Moysés Elias-Neto
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901 Ribeirão Preto, SP, Brazil.
| | | | | | | | | |
Collapse
|
26
|
Warren JT, O'Connor MB, Gilbert LI. Studies on the Black Box: incorporation of 3-oxo-7-dehydrocholesterol into ecdysteroids by Drosophila melanogaster and Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:677-687. [PMID: 19699302 DOI: 10.1016/j.ibmb.2009.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 08/12/2009] [Indexed: 05/28/2023]
Abstract
It has long been hypothesized that the oxidation of 7-dehydrocholesterol (7dC), made from dietary cholesterol (C), to 3-oxo-7dC (3-oxo-Delta(5,7)C) immediately precedes the unknown "Black Box" oxidations that lead to the formation of the first up-stream intermediate exhibiting the highly characteristic ecdysteroid structure of the steroid molting hormone of insects, crustaceans and some other arthropods. Perhaps rate-limiting and under the control of the prothoracicotropic hormone (PTTH), the biosynthesis of 3-oxo-7dC and its subsequent oxidative modifications have been difficult to study because of their apparent instability, i.e. no intermediates between 7dC and the diketol (3-oxo-25,22,2-trideoxyecdysone) have ever been observed or identified in insect prothoracic gland incubations with radiolabelled precursors. However, we show that 3-oxo-7dC can be converted into lipophilic, photosensitive, ketone-blocked (PSKB) ketal derivatives which will release 3-oxo-7dC when and where desired following brief irradiation with innocuous long-wave (365 nm) UV-light both in vivo and in vitro. In this manner, 3-oxo-7dC is quickly and efficiently incorporated into ecdysteroids by adult male and female Drosophila raised on a diet containing the PSKB ketals and in prothoracic glands of Manduca sexta incubated with the ketals emulsified into media. The instability of 3-oxo-7dC and its spontaneous transformation into extensively electron-delocalized intermediates will be discussed in relation to a possible mechanism of the Black Box oxidations eventually leading to the production of the active molting hormone 20-hydroxyecdysone (20E).
Collapse
Affiliation(s)
- James T Warren
- Department of Biology, Campus Box 3280, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | | | | |
Collapse
|
27
|
Wegener J, Huang ZY, Lorenz MW, Bienefeld K. Regulation of hypopharyngeal gland activity and oogenesis in honey bee (Apis mellifera) workers. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:716-25. [PMID: 19446565 DOI: 10.1016/j.jinsphys.2009.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 05/04/2009] [Accepted: 05/05/2009] [Indexed: 05/20/2023]
Abstract
In the honey bee, vitellogenin has several functions in addition to egg provisioning. Among others, it serves as a precursor to brood food proteins secreted by the hypopharyngeal glands of worker bees. In queenless workers with developing gonads, oogenesis and development of the hypopharyngeal glands are correlated. Here we describe two experiments that explored whether this relationship also exists in non-reproductive workers, and investigated a possible role of ecdysteroid hormones in the regulation of vitellogenin uptake. In the first experiment, the correlation between oocyte length and hypopharyngeal gland development was measured in workers before and after de-queening. In the second experiment, we induced middle-aged bees with resting glands to suddenly initiate brood care behaviour, and measured haemolymph ecdysteroid and vitellogenin titres. A strong positive relationship existed between morphometrical parameters of hypopharyngeal glands and ovaries in both queenless and queenright (functionally sterile) workers. No response of ecdysteroid titres to the addition of brood was detected in experiment 2, but high concentrations were measured in a small group of bees characterised by the possession of oocytes on the brink of yolk incorporation. We conclude that hypopharyngeal glands may belong to a previously described group of reproduction-related traits that are pleiotropically regulated in workers. A possible role for ecdysteroids in honey bee reproduction is discussed.
Collapse
Affiliation(s)
- Jakob Wegener
- Institute for Bee Research, Hohen Neuendorf, Germany.
| | | | | | | |
Collapse
|
28
|
Rewitz KF, Larsen MR, Lobner-Olesen A, Rybczynski R, O'Connor MB, Gilbert LI. A phosphoproteomics approach to elucidate neuropeptide signal transduction controlling insect metamorphosis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:475-483. [PMID: 19422916 DOI: 10.1016/j.ibmb.2009.04.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 04/16/2009] [Accepted: 04/17/2009] [Indexed: 05/27/2023]
Abstract
In insects, the neuropeptide prothoracicotropic hormone (PTTH) stimulates production of ecdysone (E) in the prothoracic glands (PGs). E is the precursor of the principal steroid hormone, 20-hydroxyecdysone (20E), that is responsible for eliciting molting and metamorphosis. In this study, we used quantitative phosphoproteomics to investigate signal transduction events initiated by PTTH. We identified Spook (CYP307A1), a suspected rate-limiting enzyme for E biosynthesis, and components of the mitogen-activated protein kinase (MAPK) pathway, as major phosphorylation targets of PTTH signaling. Further, proteins not previously linked to PTTH and ecdysone biosynthesis were identified as targets of PTTH signaling. These include proteins involved in signal transduction, endosomal trafficking, constituents of the cytoskeleton and regulators of transcription and translation. Our screen shows that PTTH likely stimulates E production by activation of Spook, an integral enzyme in the E biosynthetic pathway. This directly connects PTTH signaling to the pathway that produces E. A new mechanism for regulation of E biosynthesis in insects is proposed.
Collapse
Affiliation(s)
- Kim F Rewitz
- The Department of Science, Systems and Models, Roskilde University, 4000 Roskilde, Denmark.
| | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Korb J, Hoffmann K, Hartfelder K. Endocrine signatures underlying plasticity in postembryonic development of a lower termite,Cryptotermes secundus(Kalotermitidae). Evol Dev 2009; 11:269-77. [DOI: 10.1111/j.1525-142x.2009.00329.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
31
|
Polanska MA, Maksimiuk-Ramirez E, Ciuk MA, Kotwica J, Bebas P. Clock-controlled rhythm of ecdysteroid levels in the haemolymph and testes, and its relation to sperm release in the Egyptian cotton leafworm, Spodoptera littoralis. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:426-34. [PMID: 19233333 DOI: 10.1016/j.jinsphys.2009.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 01/29/2009] [Accepted: 01/30/2009] [Indexed: 05/12/2023]
Abstract
In Spodoptera littoralis, testicular sperm release occurs in a daily rhythm, which is controlled by endogenous circadian oscillator located in the male reproductive system. Although this rhythm is essential for male fertility, factors that initiate and maintain daily sperm release are not understood. In this study, we investigated a modulatory role for ecdysteroids in the sperm release rhythm and identified the source of ecdysteroids in adult males. We found that the onset of sperm release occurs two days pre-eclosion and coincides with a significant decrease in haemolymph ecdysteroids levels. 20-HE injection into the pupae prior to the first sperm release delayed its initiation and disrupted the developing rhythm in a dose dependent manner. 20-HE injection into adults depressed the number of sperm bundles leaving the testes. A day before the initial sperm release, ecdysteroid levels in the haemolymph and testes begin to oscillate in a circadian fashion. Ecdysteroid rhythms continue throughout imaginal life and correlate with the rhythm of sperm release. In each cycle, testicular sperm release coincides with a trough in testicular ecdysteroid concentration. Rhythmic changes in ecdysteroid levels are regulated by an endogenous circadian oscillator that continues to function in decapitated males. The generation of a complete cycle of ecdysteroid release by testes cultured in vitro indicates that this oscillator is located in the gonads. The haemolymph ecdysteroid levels are significantly lower and arrhythmic in males with removed testes, indicating that the testes are an important ecdysteroid source that may contribute to oscillations in haemolymph ecdysteroid levels.
Collapse
Affiliation(s)
- Marta A Polanska
- Department of Animal Physiology, Zoological Institute, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, Warsaw 02-096, Poland
| | | | | | | | | |
Collapse
|
32
|
Rybczynski R, Snyder CA, Hartmann J, Gilbert LI, Sakurai S. Manduca sexta prothoracicotropic hormone: evidence for a role beyond steroidogenesis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2009; 70:217-229. [PMID: 19241458 DOI: 10.1002/arch.20295] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Prothoracicotropic hormone (PTTH) is a homodimeric brain peptide hormone that positively regulates the production of ecdysteroids by the prothoracic gland of Lepidoptera and probably other insects. PTTH was first purified from heads of adult domestic silkworms, Bombyx mori. Prothoracic glands of Bombyx and Manduca sexta undergo apoptosis well before the adult stage is reached, raising the recurring question of PTTH function at these later stages. Because Bombyx has been domesticated for thousands of years, the possibility exists that the presence of PTTH in adult animals is an accidental result of domestication for silk production. In contrast, Manduca has been raised in the laboratory for only five or six decades. The present study found that Manduca brains contain PTTH at all stages examined post-prothoracic gland apoptosis, i.e., pharate adult and adult life, and that PTTH-dependent changes in protein phosphorylation and protein synthesis were observed in several reproductive and reproduction-associated organs. The data indicate that PTTH indeed plays a role in non-steroidogenic tissues and suggest possible future avenues for determining which cellular processes are being so regulated.
Collapse
Affiliation(s)
- Robert Rybczynski
- Department of Biology, CB 3280, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA
| | | | | | | | | |
Collapse
|
33
|
Suzuki T, Sakurai S, Iwami M. Rectal sac distention is induced by 20-hydroxyecdysone in the pupa of Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:250-254. [PMID: 19100743 DOI: 10.1016/j.jinsphys.2008.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 11/25/2008] [Accepted: 11/25/2008] [Indexed: 05/27/2023]
Abstract
Holometabolous insects do not excrete but store metabolic wastes during the pupal period. The waste is called meconium and is purged after adult emergence. Although the contents of meconium are well-studied, the developmental and physiological regulation of meconium accumulation is poorly understood. In Bombyx mori, meconium is accumulated in the rectal sac; thereby, the rectal sac distends at the late pupal stage. Here, we show that rectal sac distention occurs between 4 and 5 days after pupation. The distention is halted by brain-removal just after larval-pupal ecdysis but not by brain-removal 1 day after pupation. In the pupae, brain-removal just after ecdysis kept the hemolymph ecdysteroid titer low during early and mid-pupal stages. An injection of 20-hydroxyecdysone (20E) evoked the distention that was halted by brain-removal in a dose-dependent manner. Therefore, brain-removal caused the lack of ecdysteroid, and rectal sac distention did not appear in the brain-removed pupae because of the lack of ecdysteroid. We conclude that rectal sac distention is one of the developmental events regulated by 20E during the pupal period in B. mori.
Collapse
Affiliation(s)
- Takumi Suzuki
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | |
Collapse
|
34
|
Lye CM, Bentley MG, Galloway T. Effects of 4-nonylphenol on the endocrine system of the shore crab, Carcinus maenas. ENVIRONMENTAL TOXICOLOGY 2008; 23:309-318. [PMID: 18214899 DOI: 10.1002/tox.20344] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
There is a considerable body of evidence to suggest that many anthropogenic chemicals, most notably xeno-estrogens, are able to disrupt the endocrine system of vertebrates. There have been few comparable studies on the effects of exposure to these chemicals that may serve as biomarkers of endocrine disruption in aquatic invertebrate species. In addition, the evidence available is complex, conflicting, and far from conclusive. The present study aimed to investigate the impact of the xeno-estrogen 4-nonylphenol (4-NP, nominal concentrations 10-100 microg L(-1)) on the regulation and functioning of the endocrine system of the shore crab Carcinus maenas. It also set out to establish whether 4-NP are causing the effects (i.e., changes of exoskeletons including secondary sexual characteristics, pheromonally mediated behavior and ecdysone levels, and the presence of vt in the male hepatopancreas) found recently in wild shore crabs (Lye et al.,2005). The study utilizes morphological (e.g., gonadosomatic and hepatosomatic indices) and hormonal (ecdysteroid moulting hormone levels and the induction of female specific proteins, vitellins) biomarkers using radioimmunoassay and an indirect enzyme linked immunosorbent assay applied to the soluble protein fraction of adult male hepatopancreatic homogenates. Exposure of C. maenas to an effective concentration as low as 1.5 microg L(-1) 4-NP resulted in a reduced testis weight, increased liver weight, and altered levels of ecdysone equivalents compared to controls. Induction of vitellin-like proteins was absent in all samples tested. The ecological implications and the possible mechanisms for the action of 4-NP on the response of the shore crab to xeno-estrogen exposure are discussed.
Collapse
Affiliation(s)
- Christina M Lye
- School of Marine Science & Technology, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, NE1 7RU, United Kingdom.
| | | | | |
Collapse
|
35
|
Zheng J, Nakatsuji T, Roer RD, Watson RD. Studies of a receptor guanylyl cyclase cloned from Y-organs of the blue crab (Callinectes sapidus), and its possible functional link to ecdysteroidogenesis. Gen Comp Endocrinol 2008; 155:780-8. [PMID: 18093588 DOI: 10.1016/j.ygcen.2007.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 10/10/2007] [Accepted: 10/26/2007] [Indexed: 11/23/2022]
Abstract
Crustacean Y-organs synthesize ecdysteroid molting hormones. Synthesis of ecdysteroids by Y-organs is negatively regulated by a polypeptide neurohormone, molt-inhibiting hormone (MIH). Our laboratory has recently cloned from Y-organs of the blue crab (Callinectes sapidus) a cDNA (CsGC-YO1) encoding a putative receptor guanylyl cyclase (CsGC-YO1). We hypothesize that CsGC-YO1 is an MIH receptor. In studies reported here, antipeptide antibodies (anti-CsGC-YO1) were raised against a fragment of the extracellular domain of CsGC-YO1. Western blots showed affinity purified anti-CsGC-YO1 bound to the heterologously expressed extracellular domain, and to a protein in Y-organs that corresponded in size to the theoretical molecular mass of CsGC-YO1. Immunocytochemical studies with anti-CsGC-YO1 as primary antibody, showed CsGC-YO1 immunoreactivity was restricted to the peripheral margins of cells, and was not present in cytoplasm or nuclei. The results strongly suggest that CsGC-YO1 is a membrane-associated protein. Preincubation of Y-organs with anti-CsCG-YO1 blunted MIH-induced suppression of ecdysteroidogenesis. This finding represents the first demonstration of a link between CsGC-YO1 and MIH action. A real-time PCR assay for quantifying CsCG-YO1 was developed and validated. The assay was used to determine the abundance of the CsCG-YO1 transcript in Y-organs during a molt cycle: the level of CsGC-YO1 in Y-organs was elevated during intermolt (C(4)) and lower during premolt stages D(1)-D(3). The data suggest that the biological action of CsGC-YO1 in Y-organs is likely to be most pronounced during intermolt. The combined results are consistent with the hypothesis that CsGC-YO1 is an MIH receptor.
Collapse
Affiliation(s)
- Junying Zheng
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
36
|
Utz S, Huetteroth W, Vömel M, Schachtner J. Mas-allatotropin in the developing antennal lobe of the sphinx mothManduca sexta: Distribution, time course, developmental regulation, and colocalization with other neuropeptides. Dev Neurobiol 2008; 68:123-42. [DOI: 10.1002/dneu.20579] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Chen HY, Watson RD, Chen JC, Liu HF, Lee CY. Molecular characterization and gene expression pattern of two putative molt-inhibiting hormones from Litopenaeus vannamei. Gen Comp Endocrinol 2007; 151:72-81. [PMID: 17222842 DOI: 10.1016/j.ygcen.2006.11.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 11/27/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
Two cDNA sequences (Liv-MIH1 and Liv-MIH2) were cloned from the eyestalk ganglia of the white shrimp Litopenaeus vannamei. The conceptually translated peptide precursors consist of a mature peptide (77 residues for Liv-MIH1, 75 residues for Liv-MIH2), preceded by a 28-residue signal peptide. Both mature peptides share highest sequence identity with other known MIHs, and contain several conserved residues that have been proposed to be functionally critical for MIH activity. Analysis of genomic sequences reveals that both genes are organized in a 3 exon/2 intron manner, with the same sites of intron insertion. The transcripts of Liv-MIH1 and Liv-MIH2 were detected exclusively in the eyestalk, but not in other neural and non-neural tissues examined. Phylogenetic analysis indicates that Liv-MIH1 and Liv-MIH2 cluster with the type II peptides that are considered as penaeid MIH. In addition, a quantitative real-time polymerase chain reaction (PCR) assay was developed and validated for the quantification of gene expression of Liv-MIH1 and Liv-MIH2. Transcript levels for both genes remained constant through stages A - D(1') (ranges of relative expression levels are 97.9+/-2.9 to 104.5+/-8.9% for Liv-MIH1, and 85.6+/-6.7 to 104.7+/-10.8% for Liv-MIH2), and declined afterwards, reaching a lowest level during stage D(2)D(3) (40.6+/-0.4% for Liv-MIH1, and 48.5+/-3.2% for Liv-MIH2). These significant decreases in the transcript levels correspond to a significant increase in hemolymph ecdysteroid titers at stage D(2)D(3). These results clearly indicate that Liv-MIH1 and Liv-MIH2 are type II peptides of the crustacean hyperglycemic hormone family and most likely function as MIHs in the white shrimp. They are discussed with regard to the presence of multiple MIHs and possible functional divergence of type II peptides in Penaeidae, as well as endocrine regulation of crustacean molting.
Collapse
Affiliation(s)
- Hsiang-Yin Chen
- Department of Biology, National Changhua University of Education, Changhua, 50058, Taiwan, ROC
| | | | | | | | | |
Collapse
|
38
|
Franco MD, Bohbot J, Fernandez K, Hanna J, Poppy J, Vogt R. Sensory cell proliferation within the olfactory epithelium of developing adult Manduca sexta (Lepidoptera). PLoS One 2007; 2:e215. [PMID: 17299595 PMCID: PMC1789077 DOI: 10.1371/journal.pone.0000215] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 01/16/2007] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Insects detect a multitude of odors using a broad array of phenotypically distinct olfactory organs referred to as olfactory sensilla. Each sensillum contains one to several sensory neurons and at least three support cells; these cells arise from mitotic activities from one or a small group of defined precursor cells. Sensilla phenotypes are defined by distinct morphologies, and specificities to specific odors; these are the consequence of developmental programs expressed by associated neurons and support cells, and by selection and expression of subpopulations of olfactory genes encoding such proteins as odor receptors, odorant binding proteins, and odor degrading enzymes. METHODOLOGY/PRINCIPAL FINDINGS We are investigating development of the olfactory epithelium of adult M. sexta, identifying events which might establish sensilla phenotypes. In the present study, antennal tissue was examined during the first three days of an 18 day development, a period when sensory mitotic activity was previously reported to occur. Each antenna develops as a cylinder with an outward facing sensory epithelium divided into approximately 80 repeat units or annuli. Mitotic proliferation of sensory cells initiated about 20-24 hrs after pupation (a.p.), in pre-existing zones of high density cells lining the proximal and distal borders of each annulus. These high density zones were observed as early as two hr. a.p., and expanded with mitotic activity to fill the mid-annular regions by about 72 hrs a.p. Mitotic activity initiated at a low rate, increasing dramatically after 40-48 hrs a.p.; this activity was enhanced by ecdysteroids, but did not occur in animals entering pupal diapause (which is also ecdysteroid sensitive). CONCLUSIONS/SIGNIFICANCE Sensory proliferation initiates in narrow zones along the proximal and distal borders of each annulus; these zones rapidly expand to fill the mid-annular regions. These zones exist prior to any mitotic activity as regions of high density cells which form either at or prior to pupation. Mitotic sensitivity to ecdysteroids may be a regulatory mechanism coordinating olfactory development with the developmental choice of diapause entry.
Collapse
Affiliation(s)
- Marie-dominique Franco
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Jonathan Bohbot
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Kenny Fernandez
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Jayd Hanna
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - James Poppy
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Richard Vogt
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| |
Collapse
|
39
|
Rewitz KF, Rybczynski R, Warren JT, Gilbert LI. The Halloween genes code for cytochrome P450 enzymes mediating synthesis of the insect moulting hormone. Biochem Soc Trans 2006; 34:1256-60. [PMID: 17073797 DOI: 10.1042/bst0341256] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The developmental events occurring during moulting and metamorphosis of insects are controlled by precisely timed changes in levels of ecdysteroids, the moulting hormones. The final four sequential hydroxylations of steroid precursors into the active ecdysteroid of insects, 20E (20-hydroxyecdysone), are mediated by four cytochrome P450 (P450) enzymes, encoded by genes in the Halloween family. Orthologues of the Drosophila Halloween genes phantom (phm; CYP306A1), disembodied (dib; CYP302A1), shadow (sad; CYP315A1) and shade (shd; CYP314A1) were obtained from the endocrinological model insect, the tobacco hornworm Manduca sexta. Expression of these genes was studied and compared with changes in the ecdysteroid titre that controls transition from the larval to pupal stage. phm, dib and sad, which encode P450s that mediate the final hydroxylations in the biosynthesis of ecdysone, were selectively expressed in the prothoracic gland, the primary source of ecdysone during larval and pupal development. Changes in their expression correlate with the haemolymph ecdysteroid titre during the fifth (final) larval instar. Shd, the 20-hydroxylase, which converts ecdysone into the more active 20E, is expressed in tissues peripheral to the prothoracic glands during the fifth instar. Transcript levels of shd in the fat body and midgut closely parallel the enzyme activity measured in vitro. The results indicate that these Halloween genes are transcriptionally regulated to support the high biosynthetic activity that produces the cyclic ecdysteroid pulses triggering moulting.
Collapse
Affiliation(s)
- K F Rewitz
- Department of Life Sciences and Chemistry, Roskilde University, P.O. Box 260, 4000 Roskilde, Denmark.
| | | | | | | |
Collapse
|
40
|
Ono H, Rewitz KF, Shinoda T, Itoyama K, Petryk A, Rybczynski R, Jarcho M, Warren JT, Marqués G, Shimell MJ, Gilbert LI, O'Connor MB. Spook and Spookier code for stage-specific components of the ecdysone biosynthetic pathway in Diptera. Dev Biol 2006; 298:555-70. [PMID: 16949568 DOI: 10.1016/j.ydbio.2006.07.023] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 07/07/2006] [Accepted: 07/09/2006] [Indexed: 11/30/2022]
Abstract
Ecdysteroids regulate many key developmental events in arthropods including molting and metamorphosis. Recently, members of the Drosophila Halloween group of genes, that are required for embryonic viability and cuticle deposition, have been shown to code for several cytochrome P450 enzymes that catalyze the terminal hydroxylation steps in the conversion of cholesterol to the molting hormone 20-hydroxyecdysone. These P450s are conserved in other insects and each is thought to function throughout development as the sole mediator of a particular biosynthetic step since, where analyzed, each is expressed at all stages of development and shows no closely related homolog in their respective genomes. In contrast, we show here that several dipteran genomes encode two novel, highly related, microsomal P450 enzymes, Cyp307A1 and Cyp307A2, that likely participate as stage-specific components of the ecdysone biosynthetic machinery. This hypothesis comes from the observation that Cyp307A1 is encoded by the Halloween gene spook (spo), but unlike other Halloween class genes, Dmspo is not expressed during the larval stages. In contrast, Cyp307a2, dubbed spookier (spok), is expressed primarily during larval stages within the prothoracic gland cells of the ring gland. RNAi mediated reduction in the expression of this heterochromatin localized gene leads to arrest at the first instar stage which can be rescued by feeding the larva 20E, E or ketodiol but not 7dC. In addition, spok expression is eliminated in larvae carrying mutations in molting defective (mld), a gene encoding a nuclear zinc finger protein that is required for production of ecdysone during Drosophila larval development. Intriguingly, mld is not present in the Bombyx mori genome, and we have identified only one spook homolog in both Bombyx and Manduca that is expressed in both embryos and larva. These studies suggest an evolutionary split between Diptera and Lepidoptera in how the ecdysone biosynthetic pathway is regulated during development.
Collapse
Affiliation(s)
- Hajime Ono
- The Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rybczynski R, Gilbert LI. Protein kinase C modulates ecdysteroidogenesis in the prothoracic gland of the tobacco hornworm, Manduca sexta. Mol Cell Endocrinol 2006; 251:78-87. [PMID: 16621234 DOI: 10.1016/j.mce.2006.02.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 02/20/2006] [Accepted: 02/27/2006] [Indexed: 11/27/2022]
Abstract
The prothoracic gland is the primary source of ecdysteroid hormones in the immature insect. Ecdysteroids coordinate gene expression necessary for growth, molting and metamorphosis. Prothoracicotropic hormone (PTTH), a brain neuropeptide, regulates ecdysteroid synthesis in the prothoracic gland. PTTH stimulates ecdysteroid synthesis through a signal transduction cascade that involves at least four protein kinases: protein kinase A (PKA), p70 S6 kinase, an unidentified tyrosine kinase, and the extracellular signal-regulated kinase (ERK). In this report, the participation of protein kinase C (PKC) in PTTH signalling is demonstrated and characterized. PTTH stimulates PKC activity through a PLC and Ca(2+)-dependent pathway that is not cAMP regulated. Inhibition of PKC inhibits PTTH-stimulated ecdysteroidogenesis as well as PTTH-stimulated phosphorylation of ERK and its upstream regulator, MAP/ERK kinase (MEK). These observations reveal that the acute regulation of prothoracic gland steroidogenesis is dependent on a web of interacting kinase pathways, which probably converge on factors that regulate translation.
Collapse
Affiliation(s)
- Robert Rybczynski
- Department of Biology, University of North Carolina at Chapel Hill, 27599-3280, USA.
| | | |
Collapse
|
42
|
Margam VM, Gelman DB, Palli SR. Ecdysteroid titers and developmental expression of ecdysteroid-regulated genes during metamorphosis of the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae). JOURNAL OF INSECT PHYSIOLOGY 2006; 52:558-68. [PMID: 16580015 DOI: 10.1016/j.jinsphys.2006.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 01/31/2006] [Accepted: 02/06/2006] [Indexed: 05/08/2023]
Abstract
Ecdysteroid titers and expression profiles of ecdysone-regulated genes were determined during the last instar larval and during the pupal stages of Aedes aegypti (Diptera: Culicidae). Three peaks of ecdysteroids occurring at approximately 24, 30-33 and 45-48h after ecdysis to the fourth instar larval stage were detected. In the pupa, a large peak of ecdysteroids occurred between 6 and 12h after ecdysis to the pupal stage. A small rise in ecdysteroids was also detected at the end of the pupal stage. Quantitative reverse transcriptase polymerase chain reaction analyses of the expression of ecdysone receptors and ecdysone-regulated genes showed that the peaks of expression of most of these genes coincided with the rise in ecdysteroid levels during the last larval and pupal stages. In the last larval stage, ecdysteroid titers and mRNA expression profiles of ecdysone-regulated genes are similar to those observed for Drosophila melanogaster. However, in the early pupal stage, both ecdysteroid titers and the expression of ecdysone-regulated genes are somewhat different from those observed in D. melanogaster, probably because the duration of the pupal stage in D. melanogaster is 84h while in Ae. aeqypti the duration is only 48h. These data which describe the relationship between ecdysteroid titers and mRNA levels of Ae. aegypti ecdysteroid-regulated genes lay a solid foundation for future studies on the hormonal regulation of development in mosquitoes.
Collapse
Affiliation(s)
- Venu M Margam
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | | | | |
Collapse
|
43
|
Keshan B, Hiruma K, Riddiford LM. Developmental expression and hormonal regulation of different isoforms of the transcription factor E75 in the tobacco hornworm Manduca sexta. Dev Biol 2006; 295:623-32. [PMID: 16697364 DOI: 10.1016/j.ydbio.2006.03.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 03/12/2006] [Accepted: 03/31/2006] [Indexed: 10/24/2022]
Abstract
E75A and E75B, isoforms of the E75 orphan nuclear receptor, are sequentially up-regulated in the abdominal epidermis of the tobacco hornworm Manduca sexta by 20-hydroxyecdysone (20E) during larval and pupal molts, with E75A also increasing at pupal commitment (Zhou et al., Dev. Biol. 193, 127-138, 1998). We have now cloned E75C and show that little is expressed in the epidermis during larval life with trace amounts seen just before ecdysis. Instead, E75C is found in high amounts during the development of the adult wings as the ecdysteroid titer is rising, and this increase was prevented by juvenile hormone (JH) that prevented adult development. By contrast, E75D is expressed transiently during the larval and pupal molts as the ecdysteroid titer begins to decline and again just before ecdysis, but in the developing adult wings is expressed on the rise of 20E. Removal of the source of JH had little effect on either E75C or E75D mRNA expression during the larval and pupal molts. At the time of pupal commitment, in vitro experiments show that 20E up-regulates E75D and JH prevents this increase. Neither E75A nor E75D mRNA was up-regulated by JH alone. Thus, E75C is primarily involved in adult differentiation whereas E75D has roles both during the molt and pupal commitment.
Collapse
Affiliation(s)
- Bela Keshan
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195-1800, USA
| | | | | |
Collapse
|
44
|
Warren JT, Yerushalmi Y, Shimell MJ, O'Connor MB, Restifo L, Gilbert LI. Discrete pulses of molting hormone, 20-hydroxyecdysone, during late larval development of Drosophila melanogaster: correlations with changes in gene activity. Dev Dyn 2006; 235:315-26. [PMID: 16273522 PMCID: PMC2613944 DOI: 10.1002/dvdy.20626] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Periodic pulses of the insect steroid molting hormone 20-hydroxyecdysone (20E), acting via its nuclear receptor complex (EcR/USP), control gene expression at many stages throughout Drosophila development. However, during the last larval instar of some lepidopteran insects, subtle changes in titers of ecdysteroids have been documented, including the so-called "commitment peak." This small elevation of 20E reprograms the larva for metamorphosis to the pupa. Similar periods of ecdysteroid immunoreactivity have been observed during the last larval instar of Drosophila. However, due to low amplitude and short duration, along with small body size and staging difficulties, their timing and ecdysteroid composition have remained uncertain. Employing a rigorous regimen of Drosophila culture and a salivary gland reporter gene, Sgs3-GFP, we used RP-HPLC and differential ecdysteroid RIA analysis to determine whole body titers of 20E during the last larval instar. Three small peaks of 20E were observed at 8, 20, and 28 hr following ecdysis, prior to the well-characterized large peak around the time of pupariation. The possible regulation of 20E levels by biosynthetic P450 enzymes and the roles of these early peaks in coordinating gene expression and late larval development are discussed.
Collapse
Affiliation(s)
- James T. Warren
- Department of Biology, University of North Carolina, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Yoram Yerushalmi
- ARL Division of Neurobiology, University of Arizona, Tucson, AZ 85721-0077
| | - Mary Jane Shimell
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael B. O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Linda Restifo
- ARL Division of Neurobiology, University of Arizona, Tucson, AZ 85721-0077
| | - Lawrence I. Gilbert
- Department of Biology, University of North Carolina, CB#3280, Chapel Hill, NC 27599-3280, USA
- Corresponding author. Tel.: +1-919-966-2055; fax: +1-919-962-1344. E-mail address: (L.I. Gilbert)
| |
Collapse
|
45
|
Rewitz KF, Rybczynski R, Warren JT, Gilbert LI. Developmental expression of Manduca shade, the P450 mediating the final step in molting hormone synthesis. Mol Cell Endocrinol 2006; 247:166-74. [PMID: 16473459 DOI: 10.1016/j.mce.2005.12.053] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 12/20/2005] [Accepted: 12/28/2005] [Indexed: 11/25/2022]
Abstract
The ecdysone 20-monooxygenase (E20MO; 20-hydroxylase) is the enzyme that mediates the conversion of ecdysone (E) to the active insect molting hormone, 20-hydroxyecdysone (20E), which coordinates developmental progression. We report the identification and developmental expression of the Halloween gene shade (shd; CYP314A1) that encodes the E20MO in the tobacco hornworm, Manduca sexta. Manduca Shd (MsShd) mediates the conversion of E to 20E when expressed in Drosophila S2 cells. In accord with the central dogma, the data show that Msshd is expressed mainly in the midgut, Malpighian tubules, fat body and epidermis with very low expression in the prothoracic gland and nervous system. Developmental variations in E20MO enzymatic activity are almost perfectly correlated with comparable changes in the gene expression of Msshd in the fat body and midgut during the fifth instar and the beginning of pupal-adult development. The results indicate three successive and overlapping peaks of expression in the fat body, midgut and Malpighian tubules, respectively, during the fifth larval instar. The data suggest that precise tissue-specific transcriptional regulation controls the levels, and thereby the activity, of the Manduca E20MO.
Collapse
Affiliation(s)
- Kim F Rewitz
- Department of Life Sciences and Chemistry, Roskilde University, P.O. Box 260, 4000 Roskilde, Denmark
| | | | | | | |
Collapse
|
46
|
Börner J, Puschmann T, Duch C. A steroid hormone affects sodium channel expression in Manduca central neurons. Cell Tissue Res 2006; 325:175-87. [PMID: 16525830 DOI: 10.1007/s00441-006-0175-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Accepted: 01/17/2006] [Indexed: 12/13/2022]
Abstract
Neuronal differentiation is characterized by stereotypical sequences of membrane channel and receptor acquisition. This is regulated by the coordinated interactions of a variety of developmental mechanisms, one of which is the control by steroid hormones. We have used the metamorphosis of the holometabolous insect, Manduca sexta, as a model to study effects of 20-hydroxyecdysone on the maturation of thoracic neuron membrane channel expression. To test for direct hormone action, neurons were dissociated into primary cell culture on the first day of pupal life. In situ hybridization demonstrated that the amount of expression of the acetylcholine receptor alpha subunit, MARA1, was not affected by 20-hydroxyecdysone. Immunocytochemistry with an antibody directed against the SP19 segment of voltage-gated sodium channels revealed no effect of 20-hydroxyecdysone treatment during the first 6 days in culture. SP19 sodium channel protein was evenly distributed along all neurites. In contrast, after 8 days in culture, 20-hydroxyecdysone increased the amount of SP19 protein expression and strongly affected its distribution in differentiating neurons. In the presence of 20-hydroxyecdysone, patches of high densities of SP19 sodium channel protein were found in growth cones close to the base of filopodia. This is a further step toward unraveling the blend of membrane proteins under the control of steroids during the development of the central nervous system of postembryonic Manduca. Our results, taken together with previous studies, indicate that 20-hydroxyecdysone does not affect the expression of potassium membrane current or of the nicotinic acetylcholine receptor but instead regulates the amplitude of the calcium membrane current and the amount and distribution of SP19 sodium channel protein.
Collapse
Affiliation(s)
- J Börner
- Institute of Biology/Neurobiology, Free University of Berlin, Koenigin-Luise Strasse 28-23, 14195 Berlin, Germany
| | | | | |
Collapse
|
47
|
Rewitz KF, Rybczynski R, Warren JT, Gilbert LI. Identification, characterization and developmental expression of Halloween genes encoding P450 enzymes mediating ecdysone biosynthesis in the tobacco hornworm, Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2006; 36:188-99. [PMID: 16503480 DOI: 10.1016/j.ibmb.2005.12.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 12/05/2005] [Accepted: 12/06/2005] [Indexed: 05/06/2023]
Abstract
The insect molting hormone 20-hydroxyecdysone (20E) plays a central role in regulating gene expression during development and metamorphosis. In many Lepidoptera, the pro-hormone 3-dehydroecdysone (3DE), synthesized from cholesterol in the prothoracic gland, is rapidly converted to ecdysone (E) by a hemolymph reductase, and E is subsequently converted to 20E in various peripheral target tissues. Recently, four Drosophila melanogaster P450 enzymes, encoded by specific Halloween genes, were cloned and functionally characterized as mediating the last hydroxylation steps leading to 20E. We extended this work to the tobacco hornworm Manduca sexta, an established model for endocrinological and developmental studies. cDNA clones were obtained for three Manduca orthologs of CYP306A1 (phantom; phm, the 25-hydroxylase), CYP302A1 (disembodied; dib, the 22-hydroxylase) and CYP315A1 (shadow; sad, the 2-hydroxylase), expressed predominantly in the prothoracic gland during the fifth (final) larval instar and during pupal-adult development, with fifth instar mRNA levels closely paralleling the hemolymph ecdysteroid titer. The data indicate that transcriptional regulation of phm, dib and sad plays a role in the developmentally varying steroidogenic capacities of the prothoracic glands during the fifth instar. The consistent expression of the Halloween genes confirms the importance of the prothoracic glands in pupal-adult development. These studies establish Manduca as an excellent model for examining the regulation of the Halloween genes.
Collapse
Affiliation(s)
- Kim F Rewitz
- Department of Life Sciences and Chemistry, Roskilde University, P.O. Box 260, 4000 Roskilde, Denmark
| | | | | | | |
Collapse
|
48
|
Li Y, Warren JT, Boysen G, Gilbert LI, Gold A, Sangaiah R, Ball LM, Swenberg JA. Profiling of ecdysteroids in complex biological samples using liquid chromatography/ion trap mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:185-92. [PMID: 16345130 DOI: 10.1002/rcm.2294] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A sensitive method using high-performance liquid chromatography coupled to a mass spectrometer with electrospray ionization source (HPLC/ESI-MS) was developed for detection of ecdysteroids in biological samples. We report here for the first time that ecdysteroids can be classified into three groups based on ESI full-scan mass spectra: group 1 (ecdysone (E), 2-deoxyecdysone (2dE), 2,22-dideoxyecdysone (3beta5beta-KT), and 3alpha5alpha[H]-dihydroxycholest-7-en-6-one (3alpha5alpha-KD)), in which loss of one molecule of water from the protonated molecular ion ([M+H](+)) represents the dominant ion; group 2 (20-hydroxyecdysone (20E), makisterone A (MakA), 3beta5beta-KD, and 3beta5alpha-KD), in which [M+H](+) is a major ion but some water loss is observed; and group 3 (muristerone A (MurA) and ponasterone A (PonA)), in which [M+H](+) is the dominant ion with no water loss observed. Based on the analytical procedure in combination with structural information from the group classification and with the application of source-induced dissociation, we identified free ecdysteroids in biological samples: 20,26-dihydroxyecdysone and ecdysonic acid in the larval hemolymph, and the progressive metabolism of 26-hydroxyecdysone (26E) to 3alpha-26E from day-1 to day-3 embryos of the tobacco hornworm Manduca sexta.
Collapse
Affiliation(s)
- Yutai Li
- Department of Environmental Sciences and Engineering, School of Public Health, The University of North Carolina at Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Brent C, Peeters C, Dietemann V, Dietmann V, Crewe R, Vargo E. Hormonal correlates of reproductive status in the queenless ponerine ant, Streblognathus peetersi. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005; 192:315-20. [PMID: 16283330 DOI: 10.1007/s00359-005-0065-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 10/04/2005] [Accepted: 10/08/2005] [Indexed: 11/29/2022]
Abstract
In colonies of the queenless ant Streblognathus peetersi, dominance interactions produce a reproductive hierarchy in which one individual, the alpha, is capable of producing offspring while her subordinates remain infertile. Based on differences between behaviour and cuticular hydrocarbon profiles, the subordinates can be further divided into high and low ranking workers. Although it had been shown previously that alphas treated with a juvenile hormone analog lose their reproductive status, little was known of the endocrinological basis of dominance in this species. To elucidate the underlying endocrinology of these three ranks, we measured the individual in vitro rate of juvenile hormone (JH) production of excised corpora allata, and the ecdysteroid titer of pooled hemolymph samples. Production of JH was highest in low-ranking workers, intermediate in high rankers, and almost undetectable in alphas. Ecdysteroid titers were low for low rankers, but were more than twice as high for both high rankers and alphas. The results support the hypothesis that JH suppresses ovarian function in these queenless ants, and suggest that ecdysteroids may be responsible for stimulating vitellogenin production. The possible role of these hormones as behavioural modulators is also discussed.
Collapse
Affiliation(s)
- Colin Brent
- School of Life Sciences, Arizona State University, Box 4501, Tempe, AZ 85287, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Brent CS, Schal C, Vargo EL. Endocrine changes in maturing primary queens of Zootermopsis angusticollis. JOURNAL OF INSECT PHYSIOLOGY 2005; 51:1200-9. [PMID: 16081092 DOI: 10.1016/j.jinsphys.2005.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 06/21/2005] [Accepted: 06/22/2005] [Indexed: 05/03/2023]
Abstract
Termite queens are highly specialized for reproduction, but little is known about the endocrine mechanisms regulating this ability. We studied changes in the endocrinology and ovarian maturation in primary reproductive females of the dampwood termite Zootermopsis angusticollis following their release from inhibitory stimuli produced by mature queens. Winged alates were removed from their natal nest, manually dewinged, then paired in an isolated nest with a reproductive male. Development was tracked by monitoring ovarian development, in vitro rates of juvenile hormone (JH) production by corpora allata, and hemolymph titers of JH and ecdysteroids. The production rate and titer of JH were positively correlated with each other but negatively correlated with ecdysteroid titer. Four days after disinhibition, JH release and titer decreased while ecdysteroid titer increased. The new levels persisted until day 30, after which JH increased and ecdysteroids decreased. Fully mature queens had the highest rates of JH production, the lowest ecdysteroid titers, and the greatest number of functional ovarioles. The results support the hypothesis that JH plays a dual role in termite queens depending on their stage of development; an elevated JH titer in immature alates may maintain reproductive inhibition, but an elevated JH titer in mature queens may stimulate ovarian activity. The decline in JH production and the elevation in ecdysteroid titer correspond to a period of physiological reorganization and activation. The specific function of ecdysteroids is unknown but they may help to modulate the activity of the corpora allata.
Collapse
Affiliation(s)
- Colin S Brent
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.
| | | | | |
Collapse
|