1
|
Evangelista M, Chirico N, Papa E. In silico models for the screening of human transthyretin disruptors. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136188. [PMID: 39454338 DOI: 10.1016/j.jhazmat.2024.136188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/28/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
The use of New Approach Methodologies (NAMs), such as Quantitative Structure-Activity Relationship (QSAR) models, is highly recommended by international regulations to speed up hazard and risk assessment of Endocrine Disruptors, which are known to be linked to a wide spectrum of severe diseases on humans and wildlife. A very sensitive target for these chemicals is the thyroid hormone system, which plays a key role in regulating metabolic and cognitive functions. Several chemicals have been demonstrated to compete with the thyroid hormone thyroxine (T4) for binding to human thyroid hormone distributor protein transthyretin (hTTR). In this work, we generated three new datasets composed by T4-hTTR competing potencies of more than 200 heterogeneous chemicals measured by three different in vitro assays. These datasets were used for the development of new regression QSAR models. The best models were thoroughly validated by internal and external validation procedures. The mechanistic interpretation of the selected molecular descriptors provided information on structural features which are relevant to characterise hTTR binders, such as the presence of hydroxylated and halogenated aromatic rings. PCA analysis was used to rank the studied chemicals according to their increasing T4-hTTR competing potency. Hydroxylated and halogenated bicyclic aromatic compounds are ranked as the strongest hTTR binders. The new QSARs are useful to screen potential Thyroid Hormone System-Disrupting Chemicals (THSDCs), and to support the identification of sustainable alternatives to hazardous chemicals.
Collapse
Affiliation(s)
- Marco Evangelista
- QSAR Research Unit in Environmental Chemistry and Ecotoxicology, Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Nicola Chirico
- QSAR Research Unit in Environmental Chemistry and Ecotoxicology, Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Ester Papa
- QSAR Research Unit in Environmental Chemistry and Ecotoxicology, Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| |
Collapse
|
2
|
Liang W, Su W, Zhong L, Yang Z, Li T, Liang Y, Ruan T, Jiang G. Comprehensive Characterization of Oxidative Stress-Modulating Chemicals Using GPT-Based Text Mining. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20540-20552. [PMID: 39513989 DOI: 10.1021/acs.est.4c07390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The screening of hazardous environmental pollutants is hindered by the limited availability of toxicological databases. Large language model (LLM)-based text mining holds the potential to automatically extract complex toxicological information from the literature. Due to its relevance to diseases and the challenge of comprehensive characterization, oxidative stress serves as a suitable case for research by texting mining. In this study, a robust workflow utilizing a LLM (i.e., GPT-4) was developed to extract information on oxidative stress tests, including data collection, text preprocessing, prompt engineering, and performance evaluation procedures. A total of 17,780 relevant records were extracted from 7166 articles, covering 2558 unique compounds. A rising interest in oxidative stress was observed over the past two decades. A list of known prooxidants (n = 1416) and antioxidants (n = 1102) was established, with the leading chemical categories being pharmaceuticals, pesticides, and metals for prooxidants and pharmaceuticals and flavonoids for antioxidants. Structural alert analysis identified potential prooxidant (e.g., chlorobenzene, nitrobenzene, and tertiary amines) and antioxidant (e.g., flavonoid and thiol) substructures. These findings illustrate the feasibility of building toxicological databases through LLM-based text mining in a cost-efficient manner, and the information obtained from the technique holds significant promise for future applications in environmental and health research.
Collapse
Affiliation(s)
- Wenqing Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenyuan Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Laijin Zhong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhendong Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingyu Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Nguyen TTT, Vuong XT, Tu MB, Trinh MH, Hoang AQ. Insights into Full-congener Profiles of Chlorinated Benzenes in Fly and Bottom Ash: Case Study in Vietnamese Industrial and Municipal Waste Incinerators. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:46. [PMID: 38459996 DOI: 10.1007/s00128-024-03874-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
Chlorinated benzenes (CBzs) are a group of organic pollutants, which have been industrially or unintentionally produced through various chemical and thermal processes. Studies on full congener profiles of CBzs in waste and environmental samples are relatively limited and not updated. In the present study, concentrations of 12 CBzs were determined in fly ash (FA) and bottom ash (BA) samples collected from one municipal waste incinerator (MWI) and one industrial waste incinerator (IWI) in northern Vietnam. Levels of Σ12CBzs were higher in bottom ash (median 25.3; range 1.59-45.7 ng/g) than in fly ash (median 7.30; range 1.04-30.0 ng/g). The CBz profiles were dominated by di- and tri-chlorinated congeners with the major congeners as 1,2,4-TCB, 1,2,3-TCB, 1,2-DCB, and 1,3-DCB. However, CBz profiles varied greatly between sample types and incinerators, implying differences in input materials, formation pathways, and pollutant behaviors. Incomplete combustion is possibly responsible for high levels of CBzs in industrial bottom ash. The emission factors of Σ12CBzs ranged from 21 to 600 µg/ton for fly ash and from 190 to 4570 µg/ton for bottom ash, resulting in annual emissions of about 6 and 3 g/year for the IWI and MWI, respectively. Our results suggest additional investigations on industrial emission and environmental occurrence of all 12 CBzs rather than solely focusing on regulated congeners like hexachlorobenzene and pentachlorobenzene.
Collapse
Affiliation(s)
- Thuy Thi Thu Nguyen
- Faculty of Chemistry, TNU-University of Sciences, Thai Nguyen University, Tan Thinh Ward, Thai Nguyen City, 24000, Vietnam
| | - Xuan Truong Vuong
- Faculty of Chemistry, TNU-University of Sciences, Thai Nguyen University, Tan Thinh Ward, Thai Nguyen City, 24000, Vietnam
| | - Minh Binh Tu
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 11000, Vietnam
| | - Minh Hai Trinh
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 11000, Vietnam
| | - Anh Quoc Hoang
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 11000, Vietnam.
| |
Collapse
|
4
|
Feng Z, Yang Z, Yang S, Xiong H, Ning Y, Wang C, Li Y. Current status and future challenges of chlorobenzenes pollution in soil and groundwater (CBsPSG) in the twenty-first century: a bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111748-111765. [PMID: 37843707 DOI: 10.1007/s11356-023-29956-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
The global industrial structure had undertaken significant changes since the twenty-first century, making a severe problem of chlorobenzene pollution in soil and groundwater (CBsPSG). CBsPSG receives increasing attention due to the high toxicity, persistence, and bioaccumulation of chlorobenzenes. To date, despite the gravity of this issue, no bibliometric analysis (BA) of CBsPSG does exist. This study fills up the gap by conducting a BA of 395 articles related to CBsPSG from the Web of Science Core Collection database using CiteSpace. Based on a comprehensive analysis of various aspects, including time-related, related disciplines, keywords, journal contribution, author productivity, and institute and country distribution, the status, development, and hotspots of research in the field were shown visually and statistically. Moreover, this study has also delved into the environmental behavior and remediation techniques of CBsPSG. In addition, four challenges (unequal research development, insufficient cooperation, deeply mechanism research, and developing new technologies) have been identified, and corresponding suggestions have been proposed for the future development of research in the field. Afterwards, the limitations of BA were discussed. This work provides a powerful insight into CBsPSG, enabling to quickly identify the hotspot and direction of future studies by relevant researchers.
Collapse
Affiliation(s)
- Zhi Feng
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Zhe Yang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Sen Yang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Hanxiang Xiong
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yu Ning
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Changxiang Wang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yilian Li
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
5
|
March-Vila E, Ferretti G, Terricabras E, Ardao I, Brea JM, Varela MJ, Arana Á, Rubiolo JA, Sanz F, Loza MI, Sánchez L, Alonso H, Pastor M. A continuous in silico learning strategy to identify safety liabilities in compounds used in the leather and textile industry. Arch Toxicol 2023; 97:1091-1111. [PMID: 36781432 PMCID: PMC10025185 DOI: 10.1007/s00204-023-03459-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023]
Abstract
There is a widely recognized need to reduce human activity's impact on the environment. Many industries of the leather and textile sector (LTI), being aware of producing a significant amount of residues (Keßler et al. 2021; Liu et al. 2021), are adopting measures to reduce the impact of their processes on the environment, starting with a more comprehensive characterization of the chemical risk associated with the substances commonly used in LTI. The present work contributes to these efforts by compiling and toxicologically annotating the substances used in LTI, supporting a continuous learning strategy for characterizing their chemical safety. This strategy combines data collection from public sources, experimental methods and in silico predictions for characterizing four different endpoints: CMR, ED, PBT, and vPvB. We present the results of a prospective validation exercise in which we confirm that in silico methods can produce reasonably good hazard estimations and fill knowledge gaps in the LTI chemical space. The proposed protocol can speed the process and optimize the use of resources including the lives of experimental animals, contributing to identifying potentially harmful substances and their possible replacement by safer alternatives, thus reducing the environmental footprint and impact on human health.
Collapse
Affiliation(s)
- Eric March-Vila
- Department of Medicine and Life Sciences, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
| | - Giacomo Ferretti
- Department of Medicine and Life Sciences, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
| | - Emma Terricabras
- Department of Medicine and Life Sciences, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
| | - Inés Ardao
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Innopharma Drug Screening and Pharmacogenomics Platform. BioFarma Research Group. Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José Manuel Brea
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Innopharma Drug Screening and Pharmacogenomics Platform. BioFarma Research Group. Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María José Varela
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Innopharma Drug Screening and Pharmacogenomics Platform. BioFarma Research Group. Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Álvaro Arana
- Department of Zoology, Genetics and Physical Anthropology, Universidad de Santiago de Compostela, Campus de Lugo, 27002, Lugo, Spain
| | - Juan Andrés Rubiolo
- Department of Zoology, Genetics and Physical Anthropology, Universidad de Santiago de Compostela, Campus de Lugo, 27002, Lugo, Spain
| | - Ferran Sanz
- Department of Medicine and Life Sciences, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
| | - María Isabel Loza
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Innopharma Drug Screening and Pharmacogenomics Platform. BioFarma Research Group. Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Universidad de Santiago de Compostela, Campus de Lugo, 27002, Lugo, Spain
- Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), 15782, Santiago de Compostela, Spain
| | - Héctor Alonso
- Department of Sustainability, INDITEX, Av. da Deputación, 15412, Arteixo, Spain
| | - Manuel Pastor
- Department of Medicine and Life Sciences, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
6
|
Liu W, Cao S, Ma J, Shi D, Yu L, Ye Z, Yang M, Wang B, Chen W. Exposures to volatile organic compounds, serum vitamin D, and kidney function: association and interaction assessment in the US adult population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7605-7616. [PMID: 36044140 DOI: 10.1007/s11356-022-22637-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The relationships of exposures to volatile organic compounds (VOCs) with vitamin D and kidney function remain unclear. Our analyses included 6070 adults from 2003 to 2010 survey cycles of the National Health and Nutrition Examination Survey to explore associations of six VOCs with serum vitamin D, albumin-to-creatinine ratio (ACR), and estimated glomerular filtration rate (eGFR). The results suggested that dibromochloromethane was positively associated with ACR, and chloroform was inversely associated with ACR. U-shaped associations of toluene, m-/p-xylene, bromodichloromethane, and 1,4-dichlorobenzene with ACR were observed. Toluene, m-/p-xylene, and 1,4-dichlorobenzene were associated with eGFR in U-shaped manners, while bromodichloromethane and chloroform were inversely associated with eGFR. Elevation in 1,4-dichlorobenzene was associated with decrease in vitamin D, while chloroform and m-/p-xylene were in U-shaped associations with vitamin D. VOCs mixture was U-shaped associated with ACR, inversely associated with eGFR, and inversely associated with vitamin D. Vitamin D was in a U-shaped association with ACR. Vitamin D significantly interacted with VOCs on the two kidney parameters. In the US adult population, exposures to VOCs were associated with kidney function and serum vitamin D level decline, and the serum vitamin D may have interaction effects with VOCs exposures on kidney function.
Collapse
Affiliation(s)
- Wei Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shuting Cao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Da Shi
- Food and Human Nutritional Science, Faculty of Agriculture and Food Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zi Ye
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Meng Yang
- Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, Hubei, China.
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
7
|
4-oxoquinoline-3-carboxamide acyclonucleoside phosphonates hybrids: human MCF-7 breast cancer cell death induction by oxidative stress-promoting and in silico ADMET studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Seralini GE, Jungers G. Endocrine disruptors also function as nervous disruptors and can be renamed endocrine and nervous disruptors (ENDs). Toxicol Rep 2021; 8:1538-1557. [PMID: 34430217 PMCID: PMC8365328 DOI: 10.1016/j.toxrep.2021.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 01/14/2023] Open
Abstract
Endocrine disruption (ED) and endocrine disruptors (EDs) emerged as scientific concepts in 1995, after numerous chemical pollutants were found to be responsible for reproductive dysfunction. The World Health Organization established in the United Nations Environment Programme a list of materials, plasticizers, pesticides, and various pollutants synthesized from petrochemistry that impact not only reproduction, but also hormonal functions, directly or indirectly. Cells communicate via either chemical or electrical signals transmitted within the endocrine or nervous systems. To investigate whether hormone disruptors may also interfere directly or indirectly with the development or functioning of the nervous system through either a neuroendocrine or a more general mechanism, we examined the scientific literature to ascertain the effects of EDs on the nervous system, specifically in the categories of neurotoxicity, cognition, and behaviour. To date, we demonstrated that all of the 177 EDs identified internationally by WHO are known to have an impact on the nervous system. Furthermore, the precise mechanisms underlying this neurodisruption have also been established. It was previously believed that EDs primarily function via the thyroid. However, this study presents substantial evidence that approximately 80 % of EDs operate via other mechanisms. It thus outlines a novel concept: EDs are also neurodisruptors (NDs) and can be collectively termed endocrine and nervous disruptors (ENDs). Most of ENDs are derived from petroleum residues, and their various mechanisms of action are similar to those of "spam" in electronic communications technologies. Therefore, ENDs can be considered as an instance of spam in a biological context.
Collapse
Affiliation(s)
- Gilles-Eric Seralini
- University of Caen Normandy, Network on Risks, Quality and Sustainable Development, Faculty of Sciences, Esplanade de la Paix, 14032, Caen, France
| | - Gerald Jungers
- University of Caen Normandy, Network on Risks, Quality and Sustainable Development, Faculty of Sciences, Esplanade de la Paix, 14032, Caen, France
| |
Collapse
|
9
|
Liew CSM, Lee HK. Comparison of automated mixer-assisted mini-scale liquid-liquid extraction coupled with full evaporation dynamic headspace extraction with United States Environmental Protection Agency methods for the gas chromatography-mass spectrometric analysis of chlorinated benzenes. J Chromatogr A 2021; 1647:462131. [PMID: 33971520 DOI: 10.1016/j.chroma.2021.462131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/30/2022]
Abstract
Three modes of facilitating mini-scale-liquid-liquid-extraction (msLLE) prior to automated integration with full evaporation dynamic headspace (FEDHS) extraction were evaluated in this work. For msLLE, 1.2 mL of dichloromethane (DCM) was added to a conical-bottomed vial containing 7 mL of aqueous sample. The solution was then subjected to three different mixing modes, namely vortex-assistance (where a "whirlpool" was created in the solution), agitation-assistance (where the vial was rotated in circular motion) and quickMix-assistance (where the vial was shaken at a high speed). Vortex-assistance was performed manually while the other two modes were automated using a commercial autosampler. Following this, the DCM extract was transferred automatically to another vial and was then vaporized and sent through a Tenax TA sorbent tube in the FEDHS step. Due to the stronger π interaction between the sorbent and the analytes of interest, the analytes were selectively concentrated while the DCM vapor passed through unhampered. After FEDHS, the analytes were thoroughly desorbed into a gas chromatography-mass spectrometric system for analysis. The applicability of this procedure was validated in the extraction of six chlorinated benzenes (CBs) (1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,4-trichlorobenzene, 1,2,4,5-tetrachlorobenzne and hexachlorobenzene) from aqueous samples. The quickMix-assisted msLLE-FEDHS approach achieved good absolute extraction recoveries (between 74.2% and 88.7%), low limits of detection (between 0.0006 and 0.0116 µg/L), good linearity (r2≥0.9920), good repeatability (between 1.9% and 8.4%, and good reproducibility (between 9.0% and 13.6%). It was found to be superior to the methods published by the United States Environmental Protection Agency. Five consecutive fully automated quickMix-assisted-msLLE-FEDHS-GC-MS runs spanned only ca. 4 hr.
Collapse
Affiliation(s)
- Christina Shu Min Liew
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, University Hall, Tan Chin Tuan Wing #04-02, 21 Lower Kent Ridge Road, Singapore 119077, Singapore; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Hian Kee Lee
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, University Hall, Tan Chin Tuan Wing #04-02, 21 Lower Kent Ridge Road, Singapore 119077, Singapore; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; National University of Singapore Environmental Research Institute, T-Lab Building #02-01, 5A Engineering Drive 1, Singapore 117411, Singapore.
| |
Collapse
|
10
|
Kharrazian D, Herbert M, Vojdani A. Cross-Reactivity between Chemical Antibodies Formed to Serum Proteins and Thyroid Axis Target Sites. Int J Mol Sci 2020; 21:ijms21197324. [PMID: 33023043 PMCID: PMC7583776 DOI: 10.3390/ijms21197324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
In some instances, when chemicals bind to proteins, they have the potential to induce a conformational change in the macromolecule that may misfold in such a way that makes it similar to the various target sites or act as a neoantigen without conformational change. Cross-reactivity then can occur if epitopes of the protein share surface topology to similar binding sites. Alteration of peptides that share topological equivalence with alternating side chains can lead to the formation of binding surfaces that may mimic the antigenic structure of a variant peptide or protein. We investigated how antibodies made against thyroid target sites may bind to various chemical–albumin compounds where binding of the chemical has induced human serum albumin (HSA) misfolding. We found that specific monoclonal or polyclonal antibodies developed against thyroid-stimulating hormone (TSH) receptor, 5′-deiodinase, thyroid peroxidase, thyroglobulin, thyroxine-binding globulin (TBG), thyroxine (T4), and triiodothyronine (T3) bound to various chemical HSA compounds. Our study identified a new mechanism through which chemicals bound to circulating serum proteins lead to structural protein misfolding that creates neoantigens, resulting in the development of antibodies that bind to key target proteins of the thyroid axis through protein misfolding. For demonstration of specificity of thyroid antibody binding to various haptenic chemicals bound to HSA, both serial dilution and inhibition studies were performed and proportioned to the dilution. A significant decline in these reactions was observed. This laboratory analysis of immune reactivity between thyroid target sites and chemicals bound to HSA antibodies identifies a new mechanism by which chemicals can disrupt thyroid function.
Collapse
Affiliation(s)
- Datis Kharrazian
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA;
- Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Preventive Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA;
- Correspondence:
| | - Martha Herbert
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA;
- Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Aristo Vojdani
- Department of Preventive Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA;
- Immunosciences Laboratory, Inc., Los Angeles, CA 90035, USA
| |
Collapse
|
11
|
Consistent room temperature electrochemical reduction of gaseous chlorobenzene to value-added intermediates by electroscrubbing. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.05.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Liu CY, Chen XR, Chen HX, Niu Z, Hirao H, Braunstein P, Lang JP. Ultrafast Luminescent Light-Up Guest Detection Based on the Lock of the Host Molecular Vibration. J Am Chem Soc 2020; 142:6690-6697. [DOI: 10.1021/jacs.0c00368] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chun-Yu Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, No. 199 Ren’ai Road, Suzhou 215123, Jiangsu, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xu-Ran Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, No. 199 Ren’ai Road, Suzhou 215123, Jiangsu, China
| | - Hui-Xian Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, No. 199 Ren’ai Road, Suzhou 215123, Jiangsu, China
| | - Zheng Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, No. 199 Ren’ai Road, Suzhou 215123, Jiangsu, China
| | - Hajime Hirao
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Pierre Braunstein
- Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 4 rue Blaise Pascal - CS 90032, 67081 Strasbourg, France
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, No. 199 Ren’ai Road, Suzhou 215123, Jiangsu, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
13
|
Zhu Q, Yan J, Dai Q, Wu Q, Cai Y, Wu J, Wang X, Zhan W. Ethylene glycol assisted synthesis of hierarchical Fe-ZSM-5 nanorods assembled microsphere for adsorption Fenton degradation of chlorobenzene. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121581. [PMID: 31732347 DOI: 10.1016/j.jhazmat.2019.121581] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/22/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
A unique zeolite catalyst, Fe doped ZSM-5 microsphere assembled by uniform nanorod-like crystals with hierarchical pore structure, was successfully synthesized and applied for the adsorption and degradation of trace chlorobenzene (CB) in the presence of H2O2. The organic ferric salts as the precursors, ethylene glycol as a chelating/reducing agent and the dynamic two-stage temperature-varied hydrothermal technique, together made the synthesized hierarchical Fe-ZSM-5 nanorods assembled microspheres (FZ-CA-5EG) to be characterized by abundant highly dispersed and valency-controlled framework Fe3+/2+ species. As a result of these features, the FZ-CA-5EG showed excellent ability of adsorption and degradation efficiency of CB, and enhanced durability due to negligible leaching of framework Fe species. Moreover, the hydroxyl radicals were determined as the main the reactive oxygen species of CB oxidation degradation, and a possible adsorption-oxidation degradation pathway was proposed.
Collapse
Affiliation(s)
- Qin Zhu
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, PR China
| | - Jiaorong Yan
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, PR China
| | - Qiguang Dai
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, PR China.
| | - Qingqing Wu
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, PR China
| | - Yuanpu Cai
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, PR China
| | - Jinyan Wu
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, PR China
| | - Xingyi Wang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, PR China.
| | - Wangcheng Zhan
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, PR China
| |
Collapse
|
14
|
Alabdulhadi A, Ramadan A, Devey P, Boggess M, Guest M. Inhalation exposure to volatile organic compounds in the printing industry. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2019; 69:1142-1169. [PMID: 31184550 DOI: 10.1080/10962247.2019.1629355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 05/25/2023]
Abstract
This study reports on the occupational inhalation exposure to VOCs of workers in the Kuwaiti printing industry. Using the evacuated canister methodology, we targeted 72 VOCs in three printeries and compared the concentrations to previous reports and relevant occupational exposure levels (OELs). We found that recent efforts in the printing industry to reduce VOC usage had been successful, as concentrations of key hazardous VOCs were substantially lower than anticipated. On the other hand, nearly all target VOCs were found. Non-production areas were sampled along with the offset printing areas, another strength of this study, and revealed exposures to hazardous VOCs among administers and digital printer and CTP operators. Exposure to ototoxic VOCs amounted to 1-3% of the OEL, consisting mostly of ethylbenzene, which was likely in use in two of the study printeries. Exposure to carcinogenic or probably carcinogenic VOCs was 15-20% of the OEL at four locations across the three printeries, consisting mostly of vinyl chloride and benzyl chloride. Vinyl chloride VOC was partially sourced from outdoors, but was also likely used inside the study printeries. Interestingly, concentrations of vinyl chloride were similar in most sampling locations to that of CFC-114, a CFC banned by the Montreal Protocol and not commonly used as a refrigerant. This unexpected finding suggests further study is warranted to identify the use of these VOCs in printeries. Exposure to hazardous VOCs up to nearly 50% of the OEL, consisting largely of bromoform and vinyl chloride. Bromoform was found in all the study printeries, sourced partially from outdoor air. The higher concentrations found inside the study printeries likely resulted from the use of the desalinated water for washing. This finding raises of emissions from sources other than blanket washes, and inks, etc. adding to the total VOC load in printery indoor air. Implications: Results from this study indicate that efforts to reduce worker exposure to VOCs particularly dangerous to human health in recent years have been successful, but there is still much to be done to protect workers. Exposures to ototoxic and carcinogenic VOCs were identified, among both production and non-production workers. Unexpected findings included the apparent use in printing activities of the carcinogen vinyl chloride and CFC-114, banned under the Montreal Protocol. Observed lapses in safety procedures included failure to utilize ventilation systems and closing doors between work areas, indicating management and worker education should remain a priority.
Collapse
Affiliation(s)
- Abdullah Alabdulhadi
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle , Callaghan , NSW , Australia
- Public Authority of Applied Education and Training , Shuwaikh , Kuwaitu
| | - Ashraf Ramadan
- Kuwait Institute of Scientific Research , Safat , Kuwait
| | - Peter Devey
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle , Callaghan , NSW , Australia
| | - May Boggess
- School of Mathematical and Statistical Sciences, Arizona State University , Tempe , AZ , USA
| | - Maya Guest
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle , Callaghan , NSW , Australia
| |
Collapse
|
15
|
Abu-Zied BM, Alam M, Asiri AM, Schwieger W, Rahman MM. Fabrication of 1,2-dichlorobenzene sensor based on mesoporous MCM-41 material. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.11.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Sensitive 1,2-dichlorobenzene chemi-sensor development based on solvothermally prepared FeO/CdO nanocubes for environmental safety. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.01.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Sepp K, Laszlo AM, Molnar Z, Serester A, Alapi T, Galfi M, Valkusz Z, Radacs M. The Role of Uron and Chlorobenzene Derivatives, as Potential Endocrine Disrupting Compounds, in the Secretion of ACTH and PRL. Int J Endocrinol 2018; 2018:7493418. [PMID: 30002678 PMCID: PMC5996407 DOI: 10.1155/2018/7493418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/22/2018] [Accepted: 05/03/2018] [Indexed: 12/21/2022] Open
Abstract
Uron herbicides polluting the environment represent a serious concern for environmental health and may be regarded as endocrine-disrupting compounds (EDCs), which influence the regulation of human homeostasis. We aimed to investigate the effect of EDC urons (phenuron: PU, monuron: MU, and diuron: DU) and chlorobenzenes on the basal release of the adrenocorticotropic hormone (ACTH), which is a part of the adenohypophysis-adrenocortical axis. Hormone secretion in the presence of EDC was studied in two cell types: normal adenohypophysis cells (AdH) and cells of prolactinomas (PRLOMA). PRLOMA was induced in female Wistar rats by subcutaneously injecting them with estrone acetate for 6 months. AdH and PRLOMA were separated from treated and untreated experimental animals, dissociated enzymatically and mechanically in order to create monolayer cell cultures, which served as an experimental in vitro model. We investigated the effects of ED agents separately and in combination on ACTH and prolactin (PRL) release through the hypophyseal-adrenal axis. Hormone determination was carried out by the luminescent immunoassay and the radioimmunoassay methods. Our results showed that (1) uron agents separately did not change ACTH and PRL release in AdH culture; (2) ACTH secretion in arginine vasopressin- (AVP-) activated AdH cells was significantly increased by EDC treatment; (3) ED agents increased the basal hormone release (ACTH, PRL) in PRLOMA cells; and (4) EDC exposure increased ACTH release in AVP-activated PRLOMA cells. We conclude that the herbicides PU, MU, and DU carry EDC effects and show human toxicity potential.
Collapse
Affiliation(s)
- Krisztian Sepp
- First Department of Medicine, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Anna M. Laszlo
- Department of Biometrics and Agricultural Informatics, Faculty of Horticultural Science, Szent István University, Budapest, Hungary
| | - Zsolt Molnar
- Department of Environmental Biology and Education, Institute of Environmental and Technological Sciences, Juhász Gyula Faculty of Education, University of Szeged, Szeged, Hungary
| | - Andrea Serester
- Department of Environmental Biology and Education, Institute of Environmental and Technological Sciences, Juhász Gyula Faculty of Education, University of Szeged, Szeged, Hungary
| | - Tunde Alapi
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Marta Galfi
- Department of Environmental Biology and Education, Institute of Environmental and Technological Sciences, Juhász Gyula Faculty of Education, University of Szeged, Szeged, Hungary
| | - Zsuzsanna Valkusz
- First Department of Medicine, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Marianna Radacs
- Department of Environmental Biology and Education, Institute of Environmental and Technological Sciences, Juhász Gyula Faculty of Education, University of Szeged, Szeged, Hungary
| |
Collapse
|
18
|
Martin ET, McGuire CM, Mubarak MS, Peters DG. Electroreductive Remediation of Halogenated Environmental Pollutants. Chem Rev 2016; 116:15198-15234. [DOI: 10.1021/acs.chemrev.6b00531] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Erin T. Martin
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Caitlyn M. McGuire
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | | | - Dennis G. Peters
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
19
|
Wei Y, Zhu J. Para-Dichlorobenzene Exposure Is Associated with Thyroid Dysfunction in US Adolescents. J Pediatr 2016; 177:238-243. [PMID: 27476635 DOI: 10.1016/j.jpeds.2016.06.085] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/24/2016] [Accepted: 06/28/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To examine the association between exposure to para-dichlorobenzene, measured as urinary concentrations of 2,5-dichlorophenol (2,5-DCP), and thyroid function in US adolescents. STUDY DESIGN A nationally representative subsample of 618 adolescents aged 12-19 years in the 2007-2008 and 2011-2012 National Health and Nutrition Examination Survey was analyzed for the association of urinary 2,5-DCP with serum thyroid function measures using multivariate logistic and general linear regression models. RESULTS After adjusting for potential confounders, we found a significantly positive association between urinary concentrations of 2,5-DCP and serum levels of thyroid-stimulating hormone and thyroglobulin in adolescents. Furthermore, urinary 2,5-DCP was associated with an increased prevalence of hypothyroidism in the study population. CONCLUSIONS This study demonstrates a potential relationship between para-dichlorobenzene exposure, measured as urinary 2,5-DCP, and thyroid dysfunction in adolescents; however, further studies are needed to confirm our findings and to elucidate mechanisms of action.
Collapse
Affiliation(s)
- Yudan Wei
- Department of Community Medicine, Mercer University School of Medicine, Macon, GA.
| | - Jianmin Zhu
- Department of Mathematics and Computer Science, Fort Valley State University, Fort Valley, GA
| |
Collapse
|
20
|
Croes K, Den Hond E, Bruckers L, Govarts E, Schoeters G, Covaci A, Loots I, Morrens B, Nelen V, Sioen I, Van Larebeke N, Baeyens W. Endocrine actions of pesticides measured in the Flemish environment and health studies (FLEHS I and II). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:14589-14599. [PMID: 25138556 DOI: 10.1007/s11356-014-3437-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 08/10/2014] [Indexed: 06/03/2023]
Abstract
Within the Flemish Environment and Health studies (FLEHS I, 2002-2006, and FLEHS II, 2007-2012), pesticide exposure, hormone levels and degree of sexual maturation were measured in 14-15-year-old adolescents residing in Flanders (Belgium). In FLEHS II, geometric mean concentrations (with 95 % confidence interval (CI)) of 307 (277-341) and 36.5 ng L(-1) (34.0-39.2) were found for p,p'-dichlorophenyldichloroethylene (p,p'-DDE) and hexachlorobenzene (HCB). These values were respectively 26 and 60 % lower than levels in FLEHS I, 5 years earlier. Metabolites of organophosphorus pesticides (OPPs) and of para-dichlorobenzene were measured for the first time in FLEHS II, yielding concentrations of 11.4, 3.27 and 1.57 μg L(-1) for the sum of dimethyl- and diethyl phosphate metabolites and 2,5-dichlorophenol (2,5-DCP), respectively. Data on internal exposure of HCB showed a positive correlation with sexual maturation, testosterone and the aromatase index for boys and with free thyroxine (fT4) and thyroid stimulating hormone (TSH) (both boys and girls). For both p,p'-DDE and HCB, a negative association with sexual development in girls was found. The OPP metabolites were negatively associated with sex hormone levels in the blood of boys and with sexual maturation (both boys and girls). The pesticide metabolite 2,5-DCP was negatively correlated with free T4, while a positive association with TSH was reported (boys and girls). These results show that even exposure to relatively low concentrations of pesticides can have significant influences on hormone levels and the degree of sexual maturation in 14-15-year-old adolescents.
Collapse
Affiliation(s)
- K Croes
- Department of Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| | - E Den Hond
- Flemish Institute for Technological Research (VITO), Environmental Risk and Health, Boeretang 200, 2400, Mol, Belgium
| | - L Bruckers
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Agoralaan 1, 3590, Diepenbeek, Belgium
| | - E Govarts
- Flemish Institute for Technological Research (VITO), Environmental Risk and Health, Boeretang 200, 2400, Mol, Belgium
| | - G Schoeters
- Flemish Institute for Technological Research (VITO), Environmental Risk and Health, Boeretang 200, 2400, Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - A Covaci
- Toxicological Centre, University of Antwerp (UA), Antwerp, Belgium
| | - I Loots
- Political and Social Sciences, University of Antwerp, Antwerp, Belgium
| | - B Morrens
- Political and Social Sciences, University of Antwerp, Antwerp, Belgium
| | - V Nelen
- Provincial Institute for Hygiene, Antwerp, Belgium
| | - I Sioen
- Department of Public Health, Ghent University, Ghent, Belgium
| | - N Van Larebeke
- Department of Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - W Baeyens
- Department of Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|
21
|
Alshehri B, D'Souza DG, Lee JY, Petratos S, Richardson SJ. The diversity of mechanisms influenced by transthyretin in neurobiology: development, disease and endocrine disruption. J Neuroendocrinol 2015; 27:303-23. [PMID: 25737004 DOI: 10.1111/jne.12271] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 12/12/2022]
Abstract
Transthyretin (TTR) is a protein that binds and distributes thyroid hormones (THs). TTR synthesised in the liver is secreted into the bloodstream and distributes THs around the body, whereas TTR synthesised in the choroid plexus is involved in movement of thyroxine from the blood into the cerebrospinal fluid and the distribution of THs in the brain. This is important because an adequate amount of TH is required for normal development of the brain. Nevertheless, there has been heated debate on the role of TTR synthesised by the choroid plexus during the past 20 years. We present both sides of the debate and how they can be reconciled by the discovery of TH transporters. New roles for TTR have been suggested, including the promotion of neuroregeneration, protection against neurodegeneration, and involvement in schizophrenia, behaviour, memory and learning. Recently, TTR synthesis was revealed in neurones and peripheral Schwann cells. Thus, the synthesis of TTR in the central nervous system (CNS) is more extensive than previously considered and bolsters the hypothesis that TTR may play wide roles in neurobiological function. Given the high conservation of TTR structure, function and tissue specificity and timing of gene expression, this implies that TTR has a fundamental role, during development and in the adult, across vertebrates. An alarming number of 'unnatural' chemicals can bind to TTR, thus potentially interfering with its functions in the brain. One role of TTR is delivery of THs throughout the CNS. Reduced TH availability during brain development results in a reduced IQ. The combination of the newly discovered sites of TTR synthesis in the CNS, the increasing number of neurological diseases being associated with TTR, the newly discovered functions of TTR and the awareness of the chemicals that can interfere with TTR biology render this a timely review on TTR in neurobiology.
Collapse
Affiliation(s)
- B Alshehri
- School of Medical Sciences, RMIT University, Bundoora, VIC, Australia
| | | | | | | | | |
Collapse
|
22
|
Gabrielsen KM, Krokstad JS, Villanger GD, Blair DAD, Obregon MJ, Sonne C, Dietz R, Letcher RJ, Jenssen BM. Thyroid hormones and deiodinase activity in plasma and tissues in relation to high levels of organohalogen contaminants in East Greenland polar bears (Ursus maritimus). ENVIRONMENTAL RESEARCH 2015; 136:413-23. [PMID: 25460663 DOI: 10.1016/j.envres.2014.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 05/03/2023]
Abstract
Previous studies have shown relationships between organohalogen contaminants (OHCs) and circulating levels of thyroid hormones (THs) in arctic wildlife. However, there is a lack of knowledge concerning the possible functional effects of OHCs on TH status in target tissues for TH-dependent activity. The relationships between circulating (plasma) levels of OHCs and various TH variables in plasma as well as in liver, muscle and kidney tissues from East Greenland sub-adult polar bears (Ursus maritimus) sampled in 2011 (n=7) were therefore investigated. The TH variables included 3.3',5.5'-tetraiodothyronine or thyroxine (T4), 3.3',5-triiodothyronine (T3) and type 1 (D1) and type 2 (D2) deiodinase activities. Principal component analysis (PCA) combined with correlation analyses demonstrated negative relationships between individual polychlorinated biphenyls (PCBs) and their hydroxylated (OH-) metabolites and T4 in both plasma and muscle. There were both positive and negative relationships between individual OHCs and D1 and D2 activities in muscle, liver and kidney tissues. In general, PCBs, OH-PCBs and polybrominated dipehenyl ethers (PBDEs) were positively correlated to D1 and D2 activities, whereas organochlorine pesticides and byproducts (OCPs) were negatively associated with D1 and D2 activities. These results support the hypothesis that OHCs can affect TH status and action in the target tissues of polar bears. TH levels and deiodinase activities in target tissues can be sensitive endpoints for exposure of TH-disrupting compounds in arctic wildlife, and thus, tissue-specific responses in target organs should be further considered when assessing TH disruption in wildlife studies.
Collapse
Affiliation(s)
| | - Julie Stene Krokstad
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Gro Dehli Villanger
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; Division of Mental Health, Department of Child Development and Mental Health, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, 0473 Oslo, Norway
| | - David A D Blair
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada K1A 0H3; Department of Chemistry, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Maria-Jesus Obregon
- Instituto de Investigaciones Biomedicas, Centro Mixto from CSIC-UAM, 28029 Madrid, Spain
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre, Aarhus University, Roskilde, P.O. Box 358, DK-4000, Denmark
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre, Aarhus University, Roskilde, P.O. Box 358, DK-4000, Denmark
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada K1A 0H3; Department of Chemistry, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Bjørn Munro Jenssen
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
23
|
Fan YH, Zhang LR, Zhang GL, Xu H, Wang YH, Lu GZ. Catalytic Hydrodechlorination of 1,2,4,5-Tetrachlorobenzene over Various Supports Loaded Palladium Catalysts. J CHIN CHEM SOC-TAIP 2014. [DOI: 10.1002/jccs.201400233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Sakuratani Y, Zhang HQ, Nishikawa S, Yamazaki K, Yamada T, Yamada J, Gerova K, Chankov G, Mekenyan O, Hayashi M. Hazard Evaluation Support System (HESS) for predicting repeated dose toxicity using toxicological categories. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2013; 24:351-363. [PMID: 23548036 DOI: 10.1080/1062936x.2013.773375] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Repeated dose toxicity (RDT) is one of the most important hazard endpoints in the risk assessment of chemicals. However, due to the complexity of the endpoints associated with whole body assessment, it is difficult to build up a mechanistically transparent structure-activity model. The category approach, based on mechanism information, is considered to be an effective approach for data gap filling for RDT by read-across. Therefore, a library of toxicological categories was developed using experimental RDT data for 500 chemicals and mechanistic knowledge of the effects of these chemicals on different organs. As a result, 33 categories were defined for 14 types of toxicity, such as hepatotoxicity, hemolytic anemia, etc. This category library was then incorporated in the Hazard Evaluation Support System (HESS) integrated computational platform to provide mechanistically reasonable predictions of RDT values for untested chemicals. This article describes the establishment of a category library and the associated HESS functions used to facilitate the mechanistically reasonable grouping of chemicals and their subsequent read-across.
Collapse
Affiliation(s)
- Y Sakuratani
- Chemical Management Centre, National Institute of Technology and Evaluation, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Assessment of the predictive capacity of the 3T3 Neutral Red Uptake cytotoxicity test method to identify substances not classified for acute oral toxicity (LD50>2000mg/kg): Results of an ECVAM validation study. Regul Toxicol Pharmacol 2013; 65:344-65. [DOI: 10.1016/j.yrtph.2012.11.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 09/21/2012] [Accepted: 11/26/2012] [Indexed: 11/24/2022]
|
26
|
Buttke DE, Sircar K, Martin C. Exposures to endocrine-disrupting chemicals and age of menarche in adolescent girls in NHANES (2003-2008). ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1613-8. [PMID: 23124194 PMCID: PMC3556609 DOI: 10.1289/ehp.1104748] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 08/13/2012] [Indexed: 05/22/2023]
Abstract
BACKGROUND The observed age of menarche has fallen, which may have important adverse social and health consequences. Increased exposure to endocrine-disrupting compounds (EDCs) has been associated with adverse reproductive outcomes. OBJECTIVE Our objective was to assess the relationship between EDC exposure and the age of menarche in adolescent girls. METHODS We used data from female participants 12-16 years of age who had completed the reproductive health questionnaire and laboratory examination for the Centers for Disease Control and Prevention's National Health and Nutrition Examination Survey (NHANES) for years 2003-2008 (2005-2008 for analyses of phthalates and parabens). Exposures were assessed based on creatinine-corrected natural log urine concentrations of selected environmental chemicals and metabolites found in at least 75% of samples in our study sample. We used Cox proportional hazards analysis in SAS 9.2 survey procedures to estimate associations after accounting for censored data among participants who had not reached menarche. We evaluated body mass index (BMI; kilograms per meter squared), family income-to-poverty ratio, race/ethnicity, mother's smoking status during pregnancy, and birth weight as potential confounders. RESULTS The weighted mean age of menarche was 12.0 years of age. Among 440 girls with both reproductive health and laboratory data, after accounting for BMI and race/ethnicity, we found that 2,5-dichlorophenol (2,5-DCP) and summed environmental phenols (2,5-DCP and 2,4-DCP) were inversely associated with age of menarche [hazard ratios of 1.10; 95% confidence interval (CI): 1.01, 1.19 and 1.09; 95% CI: 1.01, 1.19, respectively]. Other exposures (total parabens, bisphenol A, triclosan, benzophenone-3, total phthalates, and 2,4-DCP) were not significantly associated with age of menarche. CONCLUSIONS Our findings suggest an association between 2,5-DCP, a potential EDC, and earlier age of menarche in the general U.S. population.
Collapse
Affiliation(s)
- Danielle E Buttke
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
| | | | | |
Collapse
|
27
|
Nagyeri G, Valkusz Z, Radacs M, Ocsko T, Hausinger P, Laszlo M, Laszlo F, Juhasz A, Julesz J, Galfi M. Behavioral and endocrine effects of chronic exposure to low doses of chlorobenzenes in Wistar rats. Neurotoxicol Teratol 2012; 34:9-19. [DOI: 10.1016/j.ntt.2011.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 09/23/2011] [Accepted: 09/26/2011] [Indexed: 10/16/2022]
|
28
|
Valkusz Z, Nagyéri G, Radács M, Ocskó T, Hausinger P, László M, László F, Juhász A, Julesz J, Pálföldi R, Gálfi M. Further analysis of behavioral and endocrine consequences of chronic exposure of male Wistar rats to subtoxic doses of endocrine disruptor chlorobenzenes. Physiol Behav 2011; 103:421-30. [DOI: 10.1016/j.physbeh.2011.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/01/2011] [Accepted: 03/10/2011] [Indexed: 10/18/2022]
|
29
|
Mörbt N, Tomm J, Feltens R, Mögel I, Kalkhof S, Murugesan K, Wirth H, Vogt C, Binder H, Lehmann I, von Bergen M. Chlorinated benzenes cause concomitantly oxidative stress and induction of apoptotic markers in lung epithelial cells (A549) at nonacute toxic concentrations. J Proteome Res 2010; 10:363-78. [PMID: 21171652 DOI: 10.1021/pr1005718] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In industrialized countries, people spend more time indoors and are therefore increasingly exposed to volatile organic compounds that are emitted at working places and from consumer products, paintings, and furniture, with chlorobenzene (CB) and 1,2-dichlorobenzene (DCB) being representatives of the halogenated arenes. To unravel the molecular effects of low concentrations typical for indoor and occupational exposure, we exposed human lung epithelial cells to CB and DCB and analyzed the effects on the proteome level by 2-D DIGE, where 860 protein spots were detected. A set of 25 and 30 proteins were found to be significantly altered due to exposure to environmentally relevant concentrations of 10(-2) g/m(3) of CB or 10(-3) g/m(3) of DCB (2.2 and 0.17 ppm), respectively. The most enriched pathways were cell death signaling, oxidative stress response, protein quality control, and metabolism. The involvement of oxidative stress was validated by ROS measurement. Among the regulated proteins, 28, for example, voltage-dependent anion-selective channel protein 2, PDCD6IP protein, heat shock protein beta-1, proliferating cell nuclear antigen, nucleophosmin, seryl-tRNA synthetase, prohibitin, and protein arginine N-methyltransferase 1, could be correlated with the molecular pathway of cell death signaling. Caspase 3 activation by cleavage was confirmed for both CB and DCB by immunoblotting. Treatment with CB or DCB also caused differential protein phosphorylation, for example, at the proteins HNRNP C1/C2, serine-threonine receptor associated protein, and transaldolase 1. Compared to previous results, where cells were exposed to styrene, for the chlorinated aromatic substances besides oxidative stress, apoptosis was found as the predominant cellular response mechanism.
Collapse
Affiliation(s)
- Nora Mörbt
- Department of Proteomics, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kolo RJ, Lamai SL, Ojutiku RO. Subacute toxicity of Karate to Sarotherodon galilieus (Linne, 1758). J WATER CHEM TECHNO+ 2010. [DOI: 10.3103/s1063455x10020074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Finley SD, Broadbelt LJ, Hatzimanikatis V. In silico feasibility of novel biodegradation pathways for 1,2,4-trichlorobenzene. BMC SYSTEMS BIOLOGY 2010; 4:7. [PMID: 20122273 PMCID: PMC2830930 DOI: 10.1186/1752-0509-4-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 02/02/2010] [Indexed: 11/10/2022]
Abstract
Background Bioremediation offers a promising pollution treatment method in the reduction and elimination of man-made compounds in the environment. Computational tools to predict novel biodegradation pathways for pollutants allow one to explore the capabilities of microorganisms in cleaning up the environment. However, given the wealth of novel pathways obtained using these prediction methods, it is necessary to evaluate their relative feasibility, particularly within the context of the cellular environment. Results We have utilized a computational framework called BNICE to generate novel biodegradation routes for 1,2,4-trichlorobenzene (1,2,4-TCB) and incorporated the pathways into a metabolic model for Pseudomonas putida. We studied the cellular feasibility of the pathways by applying metabolic flux analysis (MFA) and thermodynamic constraints. We found that the novel pathways generated by BNICE enabled the cell to produce more biomass than the known pathway. Evaluation of the flux distribution profiles revealed that several properties influenced biomass production: 1) reducing power required, 2) reactions required to generate biomass precursors, 3) oxygen utilization, and 4) thermodynamic topology of the pathway. Based on pathway analysis, MFA, and thermodynamic properties, we identified several promising pathways that can be engineered into a host organism to accomplish bioremediation. Conclusions This work was aimed at understanding how novel biodegradation pathways influence the existing metabolism of a host organism. We have identified attractive targets for metabolic engineers interested in constructing a microorganism that can be used for bioremediation. Through this work, computational tools are shown to be useful in the design and evaluation of novel xenobiotic biodegradation pathways, identifying cellularly feasible degradation routes.
Collapse
Affiliation(s)
- Stacey D Finley
- Department of Chemical and Biological Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL 60208, USA
| | | | | |
Collapse
|
32
|
Finley SD, Broadbelt LJ, Hatzimanikatis V. Computational framework for predictive biodegradation. Biotechnol Bioeng 2010; 104:1086-97. [PMID: 19650084 DOI: 10.1002/bit.22489] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
As increasing amounts of anthropogenic chemicals are released into the environment, it is vital to human health and the preservation of ecosystems to evaluate the fate of these chemicals in the environment. It is useful to predict whether a particular compound is biodegradable and if alternate routes can be engineered for compounds already known to be biodegradable. In this work, we describe a computational framework (called BNICE) that can be used for the prediction of novel biodegradation pathways of xenobiotics. The framework was applied to 4-chlorobiphenyl, phenanthrene, gamma-hexachlorocyclohexane, and 1,2,4-trichlorobenzene, compounds representing various classes of xenobiotics with known biodegradation routes. BNICE reproduced the proposed biodegradation routes found experimentally, and in addition, it expanded the biodegradation reaction networks through the generation of novel compounds and reactions. The novel reactions involved in the biodegradation of 1,2,4-trichlorobenzene were studied in depth, where pathway and thermodynamic analyses were performed. This work demonstrates that BNICE can be applied to generate novel pathways to degrade xenobiotic compounds that are thermodynamically feasible alternatives to known biodegradation routes and attractive targets for metabolic engineering.
Collapse
Affiliation(s)
- Stacey D Finley
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | | | | |
Collapse
|
33
|
Kessler D, Roth PJ, Theato P. Reactive surface coatings based on polysilsesquioxanes: controlled functionalization for specific protein immobilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:10068-10076. [PMID: 19572510 DOI: 10.1021/la901878h] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The key designing in reliable biosensors is the preparation of thin films in which biomolecular functions may be immobilized and addressed in a controlled and reproducible manner. This requires the controlled preparation of specific binding sites on planar surfaces. Poly(methylsilsesquioxane)-poly(pentafluorophenyl acrylates) (PMSSQ-PFPA) are promising materials to produce stable and adherent thin reactive coatings on various substrates. Those reactive surface coatings could be applied onto various materials, for example, gold, polycarbonate (PC), poly(tetrafluoroethylene) (PTFE), and glass. By dipping those substrates in a solution of a desired amine, specific binding sites for protein adsorption could be immobilized on the surface. The versatile strategy allowed the attachment of various linkers, for example, biotin, l-thyroxine, and folic acid. The adsorption processes of streptavidin, pre-albumin, and folate-binding protein were monitored using surface plasmon resonance (SPR), Fourier transform infrared (FTIR) spectroscopy, fluorescence spectroscopy, and atomic force microscopy (AFM). The presented protein immobilization strategy, consisting of four steps (a) spin-coating of PMSSQ-PFPA hybrid polymer from tetrahydrofuran (THF) solution, (b) annealing at 130 degrees C for 2 h to induce thermal cross-linking of the PMSSQ part, (c) surface analogues reaction with different amino-functionalized specific binding sites for proteins, and (d) controlled assembly of proteins on the surface, may find various applications in future biosensor design.
Collapse
Affiliation(s)
- Daniel Kessler
- Institute of Organic Chemistry, University of Mainz, 55099 Mainz, Germany
| | | | | |
Collapse
|
34
|
Marchesini GR, Meimaridou A, Haasnoot W, Meulenberg E, Albertus F, Mizuguchi M, Takeuchi M, Irth H, Murk AJ. Biosensor discovery of thyroxine transport disrupting chemicals. Toxicol Appl Pharmacol 2008; 232:150-60. [DOI: 10.1016/j.taap.2008.06.014] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 06/16/2008] [Accepted: 06/25/2008] [Indexed: 11/29/2022]
|
35
|
Isolation and characterization of microbes degrading benzene or chlorinated benzenes from the sludge of a chemical plant. J Biotechnol 2008. [DOI: 10.1016/j.jbiotec.2008.07.1429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Chan K, Jensen NS, Silber PM, O'Brien PJ. Structure–activity relationships for halobenzene induced cytotoxicity in rat and human hepatoctyes. Chem Biol Interact 2007; 165:165-74. [PMID: 17229414 DOI: 10.1016/j.cbi.2006.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 12/04/2006] [Accepted: 12/07/2006] [Indexed: 11/19/2022]
Abstract
Halobenzenes are ubiquitous environmental contaminants, which are hepatotoxic in both rodents and humans. The molecular mechanism of halobenzene hepatotoxicity was investigated using Quantitative structure-activity relationships (QSAR) and accelerated cytotoxicity mechanism screening (ACMS) techniques in rat and human hepatocytes. The usefulness of isolated hepatocytes for prediciting in vivo xenobiotic toxicity was reassessed by correlating the LC(50) of 12 halobenzene congeners in phenobarbital (PB) induced rat hepatocytes in vitro determined by ACMS to the hepatotoxicities reported in vivo in PB-induced male Sprague-Dawely (SD) rats. A high correlation (r(2)=0.90) confirmed the application of hepatocytes as a "gold standard" for toxicity testing in vitro. QSARs were derived to determine the physico-chemcial variables that govern halobenzene toxicity in PB-induced rat, normal rat and human hepatocytes. We found that toxicity in normal rat and normal human hepatocytes both strongly correlate with hydrophobicity (logP), ease of oxidation (E(HOMO), energy of the highest molecular orbital) and on the asymmetric charge distribution according to arrangement of halogen substituents (dipole moment, mu). This suggests that halobenzene interaction with cytochrome P450 for oxidation is the metabolic activating path for toxicity and is similar in both species. In PB-induced rat hepatocytes the QSAR derivation is changed, where halobenzene toxicity strongly correlates to logP and dipole moment, but not E(HOMO). The changed QSAR suggests that oxidation is no longer the rate-limiting step in the cytotoxic mechanism when CYP2B/3A levels are increased, confirming CYP450 oxidation as the metabolic activating step under normal conditions.
Collapse
Affiliation(s)
- Katie Chan
- University of Toronto, Faculty of Pharmacy, Toronto, Ont., Canada M5S 2S2
| | | | | | | |
Collapse
|
37
|
Ali Khan MW, Ahmad M. Detoxification and bioremediation potential of a Pseudomonas fluorescens isolate against the major Indian water pollutants. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2006; 41:659-74. [PMID: 16779939 DOI: 10.1080/10934520600575051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A Pseudomonas fluorescens strain was isolated from the soil of industrial estate of Aligarh, India. This strain was resistant to some of the major Indian water pollutants, namely Cd2+, Cr6+, Cu2+, Ni2+, Pb2+, BHC, 2,4-D, mancozeb and phenols up to the levels occurring in the highly polluted regions. Moreover, the test strain seems to have a great potential for the detoxification of these pollutants. The decrease in toxicity as determined by the Allium cepa test was recorded as 62.5% for the model water containing the mixture of test heavy metals, 71.9% for the pesticides, 73.2% for phenols, and 58.5% for combination of all these toxicants. These values were obtained after 24 hours, exposure to the immobilized cells of the test isolate in the calcium alginate matrix at the concentrations of these polutants supposedly present in the highly polluted water systems in India. The efficiency of bioremediation for certain heavy metals at the same concentrations by means of immobilized cells of the test Pseudomonas fluorescens isolate was estimated to be 75.9% for cadmium, 74.2% for hexavalent chromium and 61.0% for lead during the 24 hours' treatment. In view of the preliminary work, the test isolate seems to be a good candidate for the bioremediation of water pollutants.
Collapse
Affiliation(s)
- Mohd Wajid Ali Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | | |
Collapse
|
38
|
Rapp P. Multiphasic kinetics of transformation of 1,2,4-trichlorobenzene at nano- and micromolar concentrations by Burkholderia sp. strain PS14. Appl Environ Microbiol 2001; 67:3496-500. [PMID: 11472925 PMCID: PMC93049 DOI: 10.1128/aem.67.8.3496-3500.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2001] [Accepted: 05/30/2001] [Indexed: 11/20/2022] Open
Abstract
The transformation of 1,2,4-trichlorobenzene (1,2,4-TCB) at initial concentrations in nano- and micromolar ranges was studied in batch experiments with Burkholderia sp. strain PS14. 1,2,4-TCB was metabolized from nano- and micromolar concentrations to below its detection limit of 0.5 nM. At low initial 1,2,4-TCB concentrations, a first-order relationship between specific transformation rate and substrate concentration was observed with a specific affinity (a(0)(A)) of 0.32 liter. mg (dry weight)(-1). h(-1) followed by a second one at higher concentrations with an a(o)(A) of 0.77 liter. mg (dry weight)(-1). h(-1). This transition from the first-order kinetics at low initial 1,2,4-TCB concentrations to the second first-order kinetics at higher 1,2,4-TCB concentrations was shifted towards higher initial 1,2,4-TCB concentrations with increasing cell mass. At high initial concentrations of 1,2,4-TCB, a maximal transformation rate of approximately 37 nmol. min(-1). mg (dry weight)(-1) was measured, irrespective of the cell concentration.
Collapse
Affiliation(s)
- P Rapp
- Division of Microbiology, GBF-National Research Centre for Biotechnology, Braunschweig, Germany.
| |
Collapse
|
39
|
Thomas RS, Conolly RB, Gustafson DL, Long ME, Benjamin SA, Yang RS. A physiologically based pharmacodynamic analysis of hepatic foci within a medium-term liver bioassay using pentachlorobenzene as a promoter and diethylnitrosamine as an initiator. Toxicol Appl Pharmacol 2000; 166:128-37. [PMID: 10896854 DOI: 10.1006/taap.2000.8959] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A stochastic clonal growth model for describing quantitative changes in size and number of putative preneoplastic lesions was modified to analyze the time-course information of cell proliferation and glutathione S-transferase pi (GST-P) foci within a medium-term bioassay. The study used F344 rats and a single initiating event using diethylnitrosamine (200 mg/kg ip) at Week 0. After a 2-week recovery period, chemical treatment began by gavage administration of pentachlorobenzene (PeCB; 100 micromol/kg/day, 7 days/week) in a corn oil vehicle and continued for 6 weeks. One week after beginning gavage dosing, a two-thirds partial hepatectomy was performed and the animals were serially euthanized at 48, 120, 168, 624, and 840 h postsurgery, which corresponds to 216, 288, 336, 792, and 1008 h following the beginning of PeCB treatment, respectively. For analysis, two types of models were evaluated for describing the time-course changes in GST-P foci. First, a sequential model describing the transformation of normal cells into a homogenous initiated cell population (i.e., one-cell model). Second, a two-cell model that describes a heterogeneous foci population by splitting the initiated cell population into two distinct types. In our study, the one-cell model was unable to adequately represent the time-course data for changes in both size and number of foci. In contrast, the two-cell model, which was parameterized to describe a negative selection mechanism, produced adequate simulations of both the size and number of foci. This model-based analysis suggested that the differences between PeCB-treated and untreated animals were primarily in parameters involving the rates of cell death.
Collapse
Affiliation(s)
- R S Thomas
- Center for Environmental Toxicology and Technology, Colorado State University, Fort Collins, Colorado 80523-1680, USA
| | | | | | | | | | | |
Collapse
|
40
|
Rapp P, Timmis KN. Degradation of chlorobenzenes at nanomolar concentrations by Burkholderia sp. strain PS14 in liquid cultures and in soil. Appl Environ Microbiol 1999; 65:2547-52. [PMID: 10347041 PMCID: PMC91376 DOI: 10.1128/aem.65.6.2547-2552.1999] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/1998] [Accepted: 04/09/1999] [Indexed: 11/20/2022] Open
Abstract
The utilization of 1,2,4,5-tetrachloro-, 1,2,4-trichloro-, the three isomeric dichlorobenzenes and fructose as the sole carbon and energy sources at nanomolar concentrations was studied in batch experiments with Burkholderia sp. strain PS14. In liquid culture, all chlorobenzenes were metabolized within 1 h from their initial concentration of 500 nM to below their detection limits of 0.5 nM for 1,2,4,5-tetrachloro- and 1,2,4-trichlorobenzene and 7.5 nM for the three dichlorobenzene isomers, with 63% mineralization of the tetra- and trichloroisomers. Fructose at the same initial concentration was, in contrast, metabolized over a 4-h incubation period down to a residual concentration of approximately 125 nM with 38% mineralization during this time. In soil microcosms, Burkholderia sp. strain PS14 metabolized tetrachlorobenzene present at 64.8 ppb and trichlorobenzene present at 54.4 ppb over a 72-h incubation period to below the detection limits of 0.108 and 0.09 ppb, respectively, with approximately 80% mineralization. A high sorptive capacity of Burkholderia sp. strain PS14 for 1,2,4, 5-tetrachlorobenzene was found at very low cell density. The results demonstrate that Burkholderia sp. strain PS14 exhibits a very high affinity for chlorobenzenes at nanomolar concentrations.
Collapse
Affiliation(s)
- P Rapp
- Division of Microbiology, GBF-National Research Centre for Biotechnology, Braunschweig, Germany.
| | | |
Collapse
|
41
|
Mizutani T, Miyamoto Y. Modulation of halobenzene-induced hepatotoxicity by DT-diaphorase modulators, butylated hydroxyanisole and dicoumarol: evidence for possible involvement of quinone metabolites in the toxicity of halobenzenes. Toxicol Lett 1999; 105:25-30. [PMID: 10092053 DOI: 10.1016/s0378-4274(98)00376-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent metabolic studies have demonstrated the importance of reactive intermediates like quinones or semiquinone radicals in the covalent binding of halobenzenes to liver protein. The current studies were designed to examine if quinone intermediates are involved in the toxicity of hepatotoxic halobenzenes, bromobenzene (BB) and 1,2,4-trichlorobenzene (1,2,4-TCB). Two-electron reduction of the quinone intermediates by DT-diaphorase is considered to be a detoxication pathway since the resulting hydroquinone may be readily conjugated and excreted. Mice were pretreated with butylated hydroxyanisole (BHA; 0.5% in the diet, for 3 days), an inducer of DT-diaphorase, or dicoumarol (0.3 mmol/kg, p.o.), an inhibitor of this enzyme. The mice were then given BB (2.5 or 3.5 mmol/kg, i.p.) or 1,2,4-TCB (0.75 or 1.5 mmol/kg, i.p.). Dietary BHA markedly suppressed the hepatotoxicity caused by both BB and 1,2,4-TCB while dicoumarol significantly enhanced it, as judged by serum alanine aminotransferase activity. When mice were treated with BB at different times after the end of dietary BHA exposure, the degree of the protection against the hepatotoxicity appears to correlate to the extent of the induction of DT-diaphorase activity by BHA pretreatment. BHA pretreatment failed to protect against carbon tetrachloride-induced hepatotoxicity. These results seem to provide evidence for the involvement of the quinone metabolites in BB- and 1,2,4-TCB-induced hepatotoxicity and for the protective role of DT-diaphorase against the toxicity.
Collapse
Affiliation(s)
- T Mizutani
- Department of Food Sciences and Nutritional Health, Kyoto Prefectural University, Shimogamo, Japan.
| | | |
Collapse
|
42
|
Abstract
Synthetic chemicals are released into the environment by design (pesticides) or as a result of industrial activity. It is well known that natural environmental chemicals can cause goiter or thyroid imbalance. However, the effects of synthetic chemicals on thyroid function have received little attention, and there is much controversy over their potential clinical impact, because few studies have been conducted in humans. This article reviews the literature on possible thyroid disruption in wildlife, humans, and experimental animals and focuses on the most studied chemicals: the pesticides DDT, amitrole, and the thiocarbamate family, including ethylenethiourea, and the industrial chemicals polyhalogenated hydrocarbons, phenol derivatives, and phthalates. Wildlife observations in polluted areas clearly demonstrate a significant incidence of goiter and/or thyroid imbalance in several species. Experimental evidence in rodents, fish, and primates confirms the potentiality for thyroid disruption of several chemicals and illustrates the mechanisms involved. In adult humans, however, exposure to background levels of chemicals does not seem to have a significant negative effect on thyroid function, while exposure at higher levels, occupational or accidental, may produce mild thyroid changes. The impact of transgenerational, background exposure in utero on fetal neurodevelopment and later childhood cognitive function is now under scrutiny. There are several studies linking a lack of optimal neurological function in infants and children with high background levels of exposure to polychlorinated biphenyls (PCBs), dioxins, and/or co-contaminants, but it is unclear if the effects are caused by thyroid disruption in utero or direct neurotoxicity.
Collapse
Affiliation(s)
- F Brucker-Davis
- Wildlife and Contaminants Program, World Wildlife Fund, Washington, DC 20037, USA
| |
Collapse
|
43
|
Brouwer A, Morse DC, Lans MC, Schuur AG, Murk AJ, Klasson-Wehler E, Bergman A, Visser TJ. Interactions of persistent environmental organohalogens with the thyroid hormone system: mechanisms and possible consequences for animal and human health. Toxicol Ind Health 1998; 14:59-84. [PMID: 9460170 DOI: 10.1177/074823379801400107] [Citation(s) in RCA: 350] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Several classes of environmental contaminants have been claimed or suggested to possess endocrine-disrupting potency, which may result in reproductive problems and developmental disorders. In this paper the focus is on the multiple and interactive mechanisms of interference of persistent polyhalogenated aromatic hydrocarbons (PHAHs) and their metabolites with the thyroid hormone system. Evidence suggests that pure congeners or mixtures of PHAHs directly interfere with the thyroid gland; with thyroid hormone metabolizing enzymes, such as uridine-diphosphate-glucuronyl transferases (UGTs), iodothyronine deiodinases (IDs), and sulfotransferases (SULTs) in liver and brain; and with the plasma transport system of thyroid hormones in experimental animals and their offspring. Changes in thyroid hormone levels in conjunction with high PHAH exposure was also observed in captive as well as free ranging wildlife species and in humans. Maternal exposure to PHAHs during pregnancy resulted in a considerable fetal transfer of hydroxylated PHAHs, which are known to compete with thyroxine (T4) for plasma transthyretin (TTR) binding sites, and thus may be transported to the fetus with those carrier proteins that normally mediate the delivery of T4 to the fetus. Concomitant changes in thyroid hormone concentrations in plasma and in brain tissue were observed in fetal and neonatal stages of development, when sufficient thyroid hormone levels are essential for normal brain development. Alterations in structural and functional neurochemical parameters, such as glial fibrillary acidic protein (GFAP), synaptophysin, calcineurin, and serotonergic neurotransmitters, were observed in the same offspring up to postnatal day 90. In addition, some changes in locomotor and cognitive indices of behavior were observed in rat offspring, following in utero and lactational exposure to PHAHs. Alterations in thyroid hormone levels and subtle changes in neurobehavioral performance were also observed in human infants exposed in utero and through lactation to relatively high levels of PHAHs. Overall these studies indicate that persistent PHAHs can disrupt the thyroid hormone system at a multitude of interaction sites, which may have a profound impact on normal brain development in experimental animals, wildlife species, and human infants.
Collapse
Affiliation(s)
- A Brouwer
- Department of Toxicology, Wageningen Agricultural University, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Hissink AM, Van Ommen B, Krüse J, Van Bladeren PJ. A physiologically based pharmacokinetic (PB-PK) model for 1,2-dichlorobenzene linked to two possible parameters of toxicity. Toxicol Appl Pharmacol 1997; 145:301-10. [PMID: 9266803 DOI: 10.1006/taap.1997.8184] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A physiologically based pharmacokinetic (PB-PK) model was developed for 1,2-dichlorobenzene (1,2-DCB) for the rat. This model was adjusted for the human situation, using human in vitro parameters, including a Vmax and Km determined with human microsomes. For comparison, the Vmax and Km values from the rat were scaled allometrically to the human case. The model was used in two ways: (1) Acute hepatotoxicity was related to the amount of reactive metabolites (epoxides) formed in vitro. For rats, the hepatic concentration of epoxide metabolites in vivo after exposure to a toxic dose level (250 mg/kg bw) was predicted using in vitro parameters. For man, the dose level needed to obtain the same toxic liver concentration of reactive metabolites as in rat was predicted, assuming a concentration-effect relationship in the liver. It could be concluded that this concentration is not reached, even after induction of the oxidation step, due to saturation of metabolism and a concomitant accumulation of 1,2-DCB in fat. (2) Hepatotoxicity was related to depletion of glutathione (GSH) in the liver. In the model, the consumption of hepatic GSH by metabolism (based on in vivo and in vitro data) and normal turnover was described. In vivo validation was conducted by comparing the predictions of the model with the results of a GSH depletion study performed at two dose levels (50 and 250 mg/kg bw). Subsequently, the GSH consumption by 1,2-DCB metabolites was estimated for man using human in vitro metabolic data. GSH turnover in human liver was assumed to be the same as that in rat. It appeared that at a dose level of 250 mg/kg, hepatic GSH was completely depleted after 10 hr for man, whereas for the rat a maximum depletion of 75% was predicted, after 15 hr. The presented model provides a quantitative tool for evaluating human risk for two different toxicity scenarios, namely covalent binding of reactive metabolites and depletion of GSH.
Collapse
Affiliation(s)
- A M Hissink
- Toxicology Division, TNO Nutrition and Food Research Institute, Zeist, The Netherlands
| | | | | | | |
Collapse
|
45
|
Hissink AM, Dunnewijk R, van Ommen B, van Bladeren PJ. Kinetics and metabolism of 1,4-dichlorobenzene in male Wistar rats: no evidence for quinone metabolites. Chem Biol Interact 1997; 103:17-33. [PMID: 9051121 DOI: 10.1016/s0009-2797(96)03746-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The biotransformation and kinetics of 1,4-dichlorobenzene (1,4-DCB) were studied in male Wistar rats at three oral dose levels (10, 50 and 250 mg/kg). The effect of induction of CYP2E1 by isoniazid on the kinetics and biotransformation was determined. Excretion was predominantly via the urine (78-85%) and to a small extent via the faeces (2-5%). The relative contributions of these routes were not dose dependent. Excretion via the bile ranged from less than 5% at the low dose level to 30% at the high dose level. The major biliary metabolite was the glucuronide of 2,5-dichlorophenol (2,5-DCP). The time point at which the plasma concentrations of the parent compound and the metabolites were maximal (TCmax) as well as the maximum concentrations (Cmax) increased with higher dose level. Induction by isoniazid resulted in a faster urinary elimination, whereas TCmax and Cmax were lower for induced rats. In addition, the area under the blood curve (AUC) was smaller and total clearance was higher for induced rats. 1,4-DCB was mainly metabolized to 2,5-DCP (ca. 90%), which was detected in the urine as its sulfate (50-60%), glucuronide (20-30%) and the free form (5-10%). Minor metabolites were the N-acetyl-cysteine-S-dihydro-hydroxy-1,4-dichlorobenzene and the corresponding dehydrated N-acetyl-cysteine-S-1,4-dichlorobenzene, which comprised ca. 10% of total metabolites. No hydroquinones were observed for the male Wistar rat, not even under conditions of induced oxidative metabolism.
Collapse
Affiliation(s)
- A M Hissink
- TNO Nutrition and Food Research Institute, Toxicology Division, Zeist, The Netherlands.
| | | | | | | |
Collapse
|
46
|
Hissink AM, Oudshoorn MJ, Van Ommen B, Haenen GR, Van Bladeren PJ. Differences in cytochrome P450-mediated biotransformation of 1,2-dichlorobenzene by rat and man: implications for human risk assessment. Chem Res Toxicol 1996; 9:1249-56. [PMID: 8951226 DOI: 10.1021/tx960058k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The oxidative biotransformation of 1,2-dichlorobenzene (1,2-DCB) was investigated using hepatic microsomes from male Wistar, Fischer-344 and Sprague-Dawley (SD) rats, phenobarbital (PB)- and isoniazid (ISO) pretreated male Wistar rats and from man. In addition, microsomes from cell lines selectively expressing one cytochrome P450 (P4502E1, 1A1, 1A2, 2B6, 2C9, 2D6, /A6 and 3A4) were used. The rate of conversion was 0.09 nmol/min/mg. protein for both Wistar and Fischer-344 rat microsomes, 0.04 for SD-microsomes and 0.14 for human microsomes. Induction of Wistar rats with isoniazid (ISO, a P4502E1 inducer) or phenobarbital (PB, a P4502B1/2 inducer) resulted in an increased conversion rate of 0.20 and 0.42 nmol/min/mg. protein, respectively. Covalent binding of radioactivity to microsomal protein was similar for Wistar, Fischer and ISO-pretreated rats (16-17% of total metabolites), whereas induction with PB resulted in an increased covalent binding of 23% of total metabolites. Covalent binding was 31% for SD-microsomes and only 4.6% for human microsomes. Ascorbic acid notably reduced the amount of covalently bound metabolites for the SD-microsomes only, indicating that for these microsomes quinones were likely to be involved in this part of the covalent binding. Conjugation of epoxides with glutathione (GSH) inhibited most of the covalent binding for all microsomes. In the absence of GSH, the epoxides were hydrolyzed by epoxide hydrolase, resulting in the formation of dihydrodiols. Inhibition of epoxide hydrolase resulted in a decreased conversion and an increased covalent binding for all microsomes tested, indicating a role of epoxides in the covalent binding. Fischer-344 rat liver microsomes showed a lower epoxide hydrolase activity than microsomes from Wistar and Sprague-Dawley rats, which may explain the higher sensitivity to 1,2-DCB induced hepatotoxicity of Fischer rats in vivo. Conjugation of the epoxides with GSH was predominantly non-enzymatic for the rat, whereas for man, conjugation was nearly exclusively catalyzed by glutathione-S-transferases. This difference may be explained by the formation of a 'non-reactive' 3,4-epoxide by P4502E1 in human microsomes: incubations with microsomes selectively expressing human P4502E1 as well as human liver microsomes, resulted in the formation of similar amounts of 2,3- and 3,4-dichlorophenol (DCP), as well as two GSH-epoxide conjugates in equal amounts. For rat microsomes, one major GSH-epoxide conjugate was found, and a much higher covalent binding, particularly for the PB-microsomes. Therefore, we postulate that rat P4502B1/2 preferentially oxidizes the 4,5-site of 1,2-DCB, resulting in a reactive epoxide. Postulating these epoxides to be involved in the mechanism(s) of toxicity, human risk after exposure to 1,2-DCB will be overestimated when risk assessment is solely based on toxicity studies conducted in rat.
Collapse
Affiliation(s)
- A M Hissink
- TNO Nutrition and Food Research Institute, Toxicology Division, Zeist The Netherlands
| | | | | | | | | |
Collapse
|
47
|
den Besten C, Brouwer A, Rietjens IM, van Bladeren PJ. Biotransformation and toxicity of halogenated benzenes. Hum Exp Toxicol 1994; 13:866-75. [PMID: 7718307 DOI: 10.1177/096032719401301209] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
1. Multiple potentially harmful metabolites can be distinguished in the metabolic activation of halogenated benzenes: epoxides, phenols, benzoquinones and benzoquinone-derived glutathione conjugates. 2. The role of these (re-) active metabolites in the toxic effects induced by halogenated benzenes such as hepatotoxicity, nephrotoxicity, porphyria and thyroid toxicity is discussed. 3. Evidence is presented suggesting that the formation of reactive benzoquinone metabolites rather than the traditional epoxides is linked to halogenated benzene-induced hepatotoxicity. 4. A crucial role for the benzoquinone-derived glutathione adducts in halogenated benzene-induced nephrotoxicity is clearly established. 5. Although metabolic activation appears to be involved in porphyria, the nature of the ultimate porphyrinogenic metabolite has not been elucidated yet. 6. Disturbances in thyroid hormone (and retinoid) homeostasis can be (at least partially) explained by the formation of halogenated phenol metabolites. 7. In conclusion, for a relevant prediction of the ultimate fate of a compound in a living organism, one should know the chemical characteristics and reactivity of the parent compound and its metabolites, together with insight into the formation mechanism of each of the suspected metabolites, and an understanding of the interaction between a specific chemical (reactive) structure and its target molecule.
Collapse
Affiliation(s)
- C den Besten
- Department of Toxicology, Solvay Duphar B.V., Weesp, The Netherlands
| | | | | | | |
Collapse
|
48
|
van Raaij JA, Frijters CM, Kong LW, van den Berg KJ, Notten WR. Reduction of thyroxine uptake into cerebrospinal fluid and rat brain by hexachlorobenzene and pentachlorophenol. Toxicology 1994; 94:197-208. [PMID: 7801323 DOI: 10.1016/0300-483x(94)90038-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the present study the effects of hexachlorobenzene (HCB) and the metabolite pentachlorophenol (PCP) were investigated with respect to uptake of thyroxine (T4) into cerebrospinal fluid (CSF) and brain structures of rats. [125I]T4 was taken up into CSF of control rats by a relatively slow process, reaching a steady state after about 3 h. Both repeated dosing of HCB and single doses of PCP caused decreased uptake of [125I]T4 into CSF, total brain tissue as well as specific brain structures, such as occipital cortex, thalamus, and hippocampus. Although HCB-treatment caused a build-up of HCB and PCP levels in serum in brain only HCB was present in significant amounts (16% of the serum level). In CSF, both HCB and PCP concentrations were below detection levels. Separate experiments with PCP showed, however, a dose- and time-dependent uptake of PCP into CSF. The present results indicate that PCP and the parent compound HCB are able to affect brain supply of T4. This may have consequences for an adequate development of the brain or proper brain function in adults. The exact mechanisms of interference of PCP and/or HCB in brain uptake of T4 remain to be established.
Collapse
Affiliation(s)
- J A van Raaij
- Institute of Public Health and Social Medicine, Erasmus University Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
49
|
Appendix F: Chlorinated benzenes. Regul Toxicol Pharmacol 1994. [DOI: 10.1016/s0273-2300(05)80031-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Lans MC, Spiertz C, Brouwer A, Koeman JH. Different competition of thyroxine binding to transthyretin and thyroxine-binding globulin by hydroxy-PCBs, PCDDs and PCDFs. Eur J Pharmacol 1994; 270:129-36. [PMID: 8039542 DOI: 10.1016/0926-6917(94)90054-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In an earlier study several hydroxylated polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) competitively displaced [125I]thyroxine (T4) from transthyretin with different potencies. Transthyretin is the major T4 transport protein in plasma of rodents. In man, however, thyroxine-binding globulin transports most of the T4 in blood. In this study, hydroxylated PCBs, PCDDs and PCDFs were tested in an in vitro competitive binding assay, using purified human thyroxine-binding globulin and [125I]T4 as the displaceable radioligand. None of the tested hydroxylated PCBs, PCDDs and PCDFs inhibited [125I]T4 binding to thyroxine-binding globulin. In addition, some T4 derived compounds, e.g., tyrosine, mono-iodotyrosine, di-iodotyrosine and tri-iodophenol were tested on both transthyretin and thyroxine-binding globulin to investigate possible differences in structural characteristics determining T4 binding to thyroxine-binding globulin and transthyretin. The T4 derived compounds also did not inhibit [125I]T4 binding to thyroxine-binding globulin as tested in the in vitro assay. However, tri-iodophenol and to a lesser extent di-iodotyrosine inhibited [125I]T4-transthyretin binding. These results indicate a marked difference in T4 binding to thyroxine-binding globulin or transthyretin. The hydroxylated PCBs, PCDDs and PCDFs can inhibit T4 binding to transthyretin, but not to thyroxine-binding globulin, and thus may cause different effects in rodents and man.
Collapse
Affiliation(s)
- M C Lans
- Department of Toxicology, Agricultural University Wageningen, Netherlands
| | | | | | | |
Collapse
|