1
|
Sarabia-Sánchez MA, Tinajero-Rodríguez JM, Ortiz-Sánchez E, Alvarado-Ortiz E. Cancer Stem Cell markers: Symphonic masters of chemoresistance and immune evasion. Life Sci 2024; 355:123015. [PMID: 39182567 DOI: 10.1016/j.lfs.2024.123015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Cancer Stem Cells (CSCs) are highly tumorigenic, chemoresistant, and immune evasive. They emerge as a central driver that gives rise to the bulk of tumoral mass, modifies the tumor microenvironment (TME), and exploits it, leading to poor clinical outcomes for patients with cancer. The existence of CSCs thus accounts for the failure of conventional therapies and immune surveillance. Identifying CSCs in solid tumors remains a significant challenge in modern oncology, with the use of cell surface markers being the primary strategy for studying, isolating, and enriching these cells. In this review, we explore CSC markers, focusing on the underlying signaling pathways that drive CSC self-renewal, which simultaneously makes them intrinsically chemoresistant and immune system evaders. We comprehensively discuss the autonomous and non-autonomous functions of CSCs, with particular emphasis on their interactions with the tumor microenvironment, especially immune cells. This reciprocal network enhances CSCs malignancy while compromising the surrounding niche, ultimately defining therapeutic vulnerabilities associated with each CSC marker. The most common CSCs surface markers addressed in this review-CD44, CD133, ICAM1/CD54, and LGR5-provide insights into the interplay between chemoresistance and immune evasion, two critically important phenomena in disease eradication. This new perspective on the state-of-the-art of CSCs will undoubtedly open new avenues for therapy.
Collapse
Affiliation(s)
- Miguel Angel Sarabia-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Ciudad de México, México; Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - José Manuel Tinajero-Rodríguez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Ciudad de México, México; Tecnológico Nacional de México, Tecnológico de Estudios Superiores de Huixquilucan, México
| | - Elizabeth Ortiz-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Ciudad de México, México
| | - Eduardo Alvarado-Ortiz
- Programa de Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, México; Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
2
|
Miller MR, Landis HE, Miller RE, Tizabi Y. Intercellular Adhesion Molecule 1 (ICAM-1): An Inflammatory Regulator with Potential Implications in Ferroptosis and Parkinson's Disease. Cells 2024; 13:1554. [PMID: 39329738 PMCID: PMC11430830 DOI: 10.3390/cells13181554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Intercellular adhesion molecule 1 (ICAM-1/CD54), a transmembrane glycoprotein, has been considered as one of the most important adhesion molecules during leukocyte recruitment. It is encoded by the ICAM1 gene and plays a central role in inflammation. Its crucial role in many inflammatory diseases such as ulcerative colitis and rheumatoid arthritis are well established. Given that neuroinflammation, underscored by microglial activation, is a key element in neurodegenerative diseases such as Parkinson's disease (PD), we investigated whether ICAM-1 has a role in this progressive neurological condition and, if so, to elucidate the underpinning mechanisms. Specifically, we were interested in the potential interaction between ICAM-1, glial cells, and ferroptosis, an iron-dependent form of cell death that has recently been implicated in PD. We conclude that there exist direct and indirect (via glial cells and T cells) influences of ICAM-1 on ferroptosis and that further elucidation of these interactions can suggest novel intervention for this devastating disease.
Collapse
Affiliation(s)
| | - Harold E. Landis
- Integrative Medicine Fellow, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | | | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| |
Collapse
|
3
|
Miah M, Davis AM, Hannoun C, Said JS, Fitzek M, Preston M, Smith D, Uwamariya C, Kärmander A, Lundbäck T, Bergström T, Trybala E. Identification of epidermal growth factor receptor-tyrosine kinase inhibitor targeting the VP1 pocket of human rhinovirus. Antimicrob Agents Chemother 2024; 68:e0106423. [PMID: 38349161 PMCID: PMC10916396 DOI: 10.1128/aac.01064-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/10/2024] [Indexed: 03/07/2024] Open
Abstract
Screening a library of 1,200 preselected kinase inhibitors for anti-human rhinovirus 2 (HRV-2) activity in HeLa cells identified a class of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI) as effective virus blockers. These were based on the 4-anilinoquinazoline-7-oxypiperidine scaffold, with the most potent representative AZ5385 inhibiting the virus with EC50 of 0.35 µM. Several structurally related analogs confirmed activity in the low µM range, while interestingly, other TKIs targeting EGFR lacked anti-HRV-2 activity. To further probe this lack of association between antiviral activity and EGFR inhibition, we stained infected cells with antibodies specific for activated EGFR (Y1068) and did not observe a dependency on EGFR-TK activity. Instead, consecutive passages of HRV-2 in HeLa cells in the presence of a compound and subsequent nucleotide sequence analysis of resistant viral variants identified the S181T and T210A alterations in the major capsid VP1 protein, with both residues located in the vicinity of a known hydrophobic pocket on the viral capsid. Further characterization of the antiviral effects of AZ5385 showed a modest virus-inactivating (virucidal) activity, while anti-HRV-2 activity was still evident when the inhibitor was added as late as 10 h post infection. The RNA copy/infectivity ratio of HRV-2 propagated in AZ5385 presence was substantially higher than that of control HRV indicating that the compound preferentially targeted HRV progeny virions during their maturation in infected cells. Besides HRV, the compound showed anti-respiratory syncytial virus activity, which warrants its further studies as a candidate compound against viral respiratory infections.
Collapse
Affiliation(s)
- Masum Miah
- Department of Infectious Disease, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Andrew M. Davis
- Discovery Sciences, BioPharmaceutical R&D, AstraZeneca, Mölndal, Sweden
- Discovery Sciences, BioPharmaceutical R&D, AstraZeneca, Cambridge, United Kingdom
| | - Charles Hannoun
- Department of Infectious Disease, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Joanna S. Said
- Department of Infectious Disease, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Martina Fitzek
- HTS Discovery Sciences, BioPharmaceutical R&D, AstraZeneca, Macclesfield, United Kingdom
| | - Marian Preston
- HTS Discovery Sciences, BioPharmaceutical R&D, AstraZeneca, Macclesfield, United Kingdom
| | - Dave Smith
- Discovery Sciences, BioPharmaceutical R&D, AstraZeneca, Cambridge, United Kingdom
| | - Colores Uwamariya
- Department of Infectious Disease, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Ambjörn Kärmander
- Department of Infectious Disease, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Thomas Lundbäck
- Discovery Sciences, BioPharmaceutical R&D, AstraZeneca, Mölndal, Sweden
| | - Tomas Bergström
- Department of Infectious Disease, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Edward Trybala
- Department of Infectious Disease, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
4
|
Guerra-Espinosa C, Jiménez-Fernández M, Sánchez-Madrid F, Serrador JM. ICAMs in Immunity, Intercellular Adhesion and Communication. Cells 2024; 13:339. [PMID: 38391953 PMCID: PMC10886500 DOI: 10.3390/cells13040339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Interactions among leukocytes and leukocytes with immune-associated auxiliary cells represent an essential feature of the immune response that requires the involvement of cell adhesion molecules (CAMs). In the immune system, CAMs include a wide range of members pertaining to different structural and functional families involved in cell development, activation, differentiation and migration. Among them, β2 integrins (LFA-1, Mac-1, p150,95 and αDβ2) are predominantly involved in homotypic and heterotypic leukocyte adhesion. β2 integrins bind to intercellular (I)CAMs, actin cytoskeleton-linked receptors belonging to immunoglobulin superfamily (IgSF)-CAMs expressed by leukocytes and vascular endothelial cells, enabling leukocyte activation and transendothelial migration. β2 integrins have long been viewed as the most important ICAMs partners, propagating intracellular signalling from β2 integrin-ICAM adhesion receptor interaction. In this review, we present previous evidence from pioneering studies and more recent findings supporting an important role for ICAMs in signal transduction. We also discuss the contribution of immune ICAMs (ICAM-1, -2, and -3) to reciprocal cell signalling and function in processes in which β2 integrins supposedly take the lead, paying particular attention to T cell activation, differentiation and migration.
Collapse
Affiliation(s)
- Claudia Guerra-Espinosa
- Immune System Development and Function Unit, Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - María Jiménez-Fernández
- Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario La Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain; (M.J.-F.); (F.S.-M.)
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 29029 Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario La Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain; (M.J.-F.); (F.S.-M.)
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 29029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan M. Serrador
- Immune System Development and Function Unit, Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
5
|
Volpe S, Irish J, Palumbo S, Lee E, Herbert J, Ramadan I, Chang EH. Viral infections and chronic rhinosinusitis. J Allergy Clin Immunol 2023; 152:819-826. [PMID: 37574080 PMCID: PMC10592176 DOI: 10.1016/j.jaci.2023.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
Viral infections are the most common cause of upper respiratory infections; they frequently infect adults once or twice and children 6 to 8 times annually. In most cases, these infections are self-limiting and resolve. However, many patients with chronic rhinosinusitis (CRS) relay that their initiating event began with an upper respiratory infection that progressed in both symptom severity and duration. Viruses bind to sinonasal epithelia through specific receptors, thereby entering cells and replicating within them. Viral infections stimulate interferon-mediated innate immune responses. Recent studies suggest that viral infections may also induce type 2 immune responses and stimulate the aberrant production of cytokines that can result in loss of barrier function, which is a hallmark in CRS. The main purpose of this review will be to highlight common viruses and their associated binding receptors and highlight pathophysiologic mechanisms associated with alterations in mucociliary clearance, epithelial barrier function, and dysfunctional immune responses that might lead to a further understanding of the pathogenesis of CRS.
Collapse
Affiliation(s)
- Sophia Volpe
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Joseph Irish
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Sunny Palumbo
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Eric Lee
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Jacob Herbert
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Ibrahim Ramadan
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Eugene H Chang
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz.
| |
Collapse
|
6
|
Haydinger CD, Ashander LM, Tan ACR, Smith JR. Intercellular Adhesion Molecule 1: More than a Leukocyte Adhesion Molecule. BIOLOGY 2023; 12:biology12050743. [PMID: 37237555 DOI: 10.3390/biology12050743] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Intercellular adhesion molecule 1 (ICAM-1) is a transmembrane protein in the immunoglobulin superfamily expressed on the surface of multiple cell populations and upregulated by inflammatory stimuli. It mediates cellular adhesive interactions by binding to the β2 integrins macrophage antigen 1 and leukocyte function-associated antigen 1, as well as other ligands. It has important roles in the immune system, including in leukocyte adhesion to the endothelium and transendothelial migration, and at the immunological synapse formed between lymphocytes and antigen-presenting cells. ICAM-1 has also been implicated in the pathophysiology of diverse diseases from cardiovascular diseases to autoimmune disorders, certain infections, and cancer. In this review, we summarize the current understanding of the structure and regulation of the ICAM1 gene and the ICAM-1 protein. We discuss the roles of ICAM-1 in the normal immune system and a selection of diseases to highlight the breadth and often double-edged nature of its functions. Finally, we discuss current therapeutics and opportunities for advancements.
Collapse
Affiliation(s)
- Cameron D Haydinger
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Liam M Ashander
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Alwin Chun Rong Tan
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Justine R Smith
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
7
|
Zimmerman O, Holmes AC, Kafai NM, Adams LJ, Diamond MS. Entry receptors - the gateway to alphavirus infection. J Clin Invest 2023; 133:e165307. [PMID: 36647825 PMCID: PMC9843064 DOI: 10.1172/jci165307] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Alphaviruses are enveloped, insect-transmitted, positive-sense RNA viruses that infect humans and other animals and cause a range of clinical manifestations, including arthritis, musculoskeletal disease, meningitis, encephalitis, and death. Over the past four years, aided by CRISPR/Cas9-based genetic screening approaches, intensive research efforts have focused on identifying entry receptors for alphaviruses to better understand the basis for cellular and species tropism. Herein, we review approaches to alphavirus receptor identification and how these were used for discovery. The identification of new receptors advances our understanding of viral pathogenesis, tropism, and evolution and is expected to contribute to the development of novel strategies for prevention and treatment of alphavirus infection.
Collapse
Affiliation(s)
| | | | | | | | - Michael S. Diamond
- Department of Medicine
- Department of Pathology and Immunology
- Department of Molecular Microbiology, and
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
8
|
van den Braak WJP, Monica B, Limpens D, Rockx-Brouwer D, de Boer M, Oosterhoff D. Construction of a Vero Cell Line Expressing Human ICAM1 for the Development of Rhinovirus Vaccines. Viruses 2022; 14:v14102235. [PMID: 36298792 PMCID: PMC9607643 DOI: 10.3390/v14102235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Human rhinoviruses (HRVs) are small non-enveloped RNA viruses that belong to the Enterovirus genus within the Picornaviridae family and are known for causing the common cold. Though symptoms are generally mild in healthy individuals, the economic burden associated with HRV infection is significant. A vaccine could prevent disease. The Vero-cell-based viral vaccine platform technology was considered for such vaccine development. Unfortunately, most HRV strains are unable to propagate on Vero cells due to a lack of the major receptor of HRV group A and B, intercellular adhesion molecule (ICAM1, also known as CD54). Therefore, stable human ICAM1 expressing Vero cell clones were generated by transfecting the ICAM1 gene in Vero cells and selecting clones that overexpressed ICAM1 on the cell surface. Cell banks were made and expression of ICAM1 was stable for at least 30 passages. The Vero_ICAM1 cells and parental Vero cells were infected with four HRV prototypes, B14, A16, B37 and A57. Replication of all four viruses was detected in Vero_ICAM1, but not in the parental Vero cells. Altogether, Vero cells expressing ICAM1 could efficiently propagate the tested HRV strains. Therefore, ICAM1-expressing cells could be a useful tool for the development and future production of polyvalent HRV vaccines or other viruses that use ICAM1 as a receptor.
Collapse
|
9
|
Ross EC, Hoeve ALT, Saeij JPJ, Barragan A. Toxoplasma effector-induced ICAM-1 expression by infected dendritic cells potentiates transmigration across polarised endothelium. Front Immunol 2022; 13:950914. [PMID: 35990682 PMCID: PMC9381734 DOI: 10.3389/fimmu.2022.950914] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/12/2022] [Indexed: 12/23/2022] Open
Abstract
The obligate intracellular parasite Toxoplasma gondii makes use of infected leukocytes for systemic dissemination. Yet, how infection impacts the processes of leukocyte diapedesis has remained unresolved. Here, we addressed the effects of T. gondii infection on the trans-endothelial migration (TEM) of dendritic cells (DCs) across polarised brain endothelial monolayers. We report that upregulated expression of leukocyte ICAM-1 is a feature of the enhanced TEM of parasitised DCs. The secreted parasite effector GRA15 induced an elevated expression of ICAM-1 in infected DCs that was associated with enhanced cell adhesion and TEM. Consequently, gene silencing of Icam-1 in primary DCs or deletion of parasite GRA15 reduced TEM. Further, the parasite effector TgWIP, which impacts the regulation of host actin dynamics, facilitated TEM across polarised endothelium. The data highlight that the concerted action of the secreted effectors GRA15 and TgWIP modulate the leukocyte-endothelial interactions of TEM in a parasite genotype-related fashion to promote dissemination. In addition to the canonical roles of endothelial ICAM-1, this study identifies a previously unappreciated role for leukocyte ICAM-1 in infection-related TEM.
Collapse
Affiliation(s)
- Emily C. Ross
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Arne L. ten Hoeve
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, Davis, CA, United States
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden,*Correspondence: Antonio Barragan,
| |
Collapse
|
10
|
Zheng M. ACE2 and COVID-19 Susceptibility and Severity. Aging Dis 2022; 13:360-372. [PMID: 35371596 PMCID: PMC8947832 DOI: 10.14336/ad.2021.0805] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/05/2021] [Indexed: 11/11/2022] Open
Abstract
Sick, male, and older populations are more vulnerable to COVID-19. However, it remains unclear whether a common mechanism exists across different demographic characteristics. SARS-CoV-2 infection is initiated by the specific binding of the viral spike protein to angiotensin-converting enzyme 2 (ACE2). This study analyzed the demographics of pulmonary ACE2 expression, Mendelian randomization (MR) of ACE2 and COVID-19, and comparative tropism of SARS-CoV-2. The key features of SARS-CoV-2 tropism, including pulmonary ACE2 expression and ACE2-expressing cell types, showed distinct subphenotypes associated with the demographics of vulnerable COVID-19 populations, suggesting a hypothesis centered on “ACE2” to explain their interplay. Next, by integrating multiple COVID-19 cohorts of genome-wide association studies (GWASs) and cis-expression quantitative trait loci (cis-eQTLs) of ACE2, MR analysis demonstrated that ACE2 played a causal role in COVID-19 susceptibility and severity, suggesting ACE2 as a promising target for early COVID-19 treatment. Next, by analyzing the expression of host cell receptors using single-cell RNA sequencing (scRNA-seq) data of human lung tissues, comparative tropism analysis showed that SARS-CoV-2 and other respiratory viruses, but not non-respiratory viruses, had remarkably overlapping and enriched cellular tropism in alveolar type 2 (AT2) cells. This finding indicates the possibility of coinfection with SARS-CoV-2 and other respiratory viruses, perhaps implying sociovirology at the cellular level. Moreover, the binding of viral entry proteins to the compatible host cell receptors is under strong natural selection pressure. Therefore, comparative tropism might reveal the footprint of natural selection that shapes the virus population, which provides a novel perspective for understanding zoonotic spillover events.
Collapse
Affiliation(s)
- Ming Zheng
- 1Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China.,2Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Targeting intercellular adhesion molecule-1 (ICAM-1) to reduce rhinovirus-induced acute exacerbations in chronic respiratory diseases. Inflammopharmacology 2022; 30:725-735. [PMID: 35316427 PMCID: PMC8938636 DOI: 10.1007/s10787-022-00968-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 02/24/2022] [Indexed: 01/21/2023]
Abstract
The chronic respiratory non-communicable diseases, asthma and chronic obstructive pulmonary disease (COPD) are among the leading causes of global mortality and morbidity. Individuals suffering from these diseases are particularly susceptible to respiratory infections caused by bacterial and/or viral pathogens, which frequently result in exacerbation of symptoms, lung function decline, frequent hospital emergency visits and increased socioeconomic burden. Human rhinoviruses (HRV) remain the major viral pathogen group implicated in exacerbations of both asthma and COPD. The rhinoviral entry into the host lung epithelium is facilitated primarily by the adhesion site (“receptor”) intercellular adhesion molecule-1 (ICAM-1), coincidentally expressed on the respiratory epithelium in these conditions. Multiple observations of increased airway ICAM-1 protein in asthmatics, smokers and smoking-related COPD have been recorded in the literature. However, the lack of robust therapies for COPD in particular has triggered a renewed interest in assessing receptor antagonism-based anti-viral strategies for treatment of intercurrent viral infections in those with pre-existing chronic lung diseases. Given the crucial role ICAM-1 plays in facilitating HRV adhesion and, thus, transmissibility to the host respiratory system, as well as the up-regulation of ICAM-1 by smoking, we summarize the role of HRV in smoking-induced COPD and especially highlight the role of ICAM-1 in epithelial viral adhesion and chronic lung disease progression. Further, the review also sheds light specifically on evolving precision therapeutic strategies in blocking ICAM-1 for preventing viral adhesion and exacerbations of COPD.
Collapse
|
12
|
Swain SK, Gadnayak A, Mohanty JN, Sarangi R, Das J. Does enterovirus 71 urge for effective vaccine control strategies? Challenges and current opinion. Rev Med Virol 2022; 32:e2322. [PMID: 34997684 DOI: 10.1002/rmv.2322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022]
Abstract
Enterovirus 71 (EV71) is an infectious virus affecting all age groups of people around the world. It is one of the major aetiologic agents for HFMD (hand, foot and mouth disease) identified globally. It has led to many outbreaks and epidemics in Asian countries. Infection caused by this virus that can lead to serious psychological problems, heart diseases and respiratory issues in children younger than 10 years of age. Many studies are being carried out on the pathogenesis of the virus, but little is known. The host immune response and other molecular responses against the virus are also not clearly determined. This review deals with the interaction between the host and the EV71 virus. We discuss how the virus makes use of its proteins to affect the host's immunity and how the viral proteins help their replication. Additionally, we describe other useful resources that enable the virus to evade the host's immune responses. The knowledge of the viral structure and its interactions with host cells has led to the discovery of various drug targets for the treatment of the virus. Additionally, this review focusses on the antiviral drugs and vaccines developed by targeting various viral surface molecules during their infectious period. Furthermore, it is asserted that the improvement of prevailing vaccines will be the simplest method to manage EV71 infection swiftly. Therefore, we summarise numerous vaccines candidate for the EV71, such as the use of an inactivated complete virus, recombinant VP1 protein, artificial peptides, VLPs (viral-like particles) and live attenuated vaccines for combating the viral outbreaks promptly.
Collapse
Affiliation(s)
- Subrat Kumar Swain
- Centre for Genomics and Biomedical Informatics, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Ayushman Gadnayak
- Centre for Genomics and Biomedical Informatics, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Jatindra Nath Mohanty
- Centre for Genomics and Biomedical Informatics, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Rachita Sarangi
- Department of Pediatrics, IMS and SUM Hospital, Siksha 'O' Anusandhan University (Deemed to be University), Bhubaneswar, India
| | - Jayashankar Das
- Centre for Genomics and Biomedical Informatics, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
13
|
Mei H, Zha Z, Wang W, Xie Y, Huang Y, Li W, Wei D, Zhang X, Qu J, Liu J. Surfaceome CRISPR screen identifies OLFML3 as a rhinovirus-inducible IFN antagonist. Genome Biol 2021; 22:297. [PMID: 34686207 PMCID: PMC8532573 DOI: 10.1186/s13059-021-02513-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 10/06/2021] [Indexed: 11/29/2022] Open
Abstract
Background Rhinoviruses (RVs) cause more than half of common colds and, in some cases, more severe diseases. Functional genomics analyses of RVs using siRNA or genome-wide CRISPR screen uncovered a limited set of host factors, few of which have proven clinical relevance. Results Herein, we systematically compare genome-wide CRISPR screen and surface protein-focused CRISPR screen, referred to as surfaceome CRISPR screen, for their efficiencies in identifying RV host factors. We find that surfaceome screen outperforms the genome-wide screen in the success rate of hit identification. Importantly, using the surfaceome screen, we identify olfactomedin-like 3 (OLFML3) as a novel host factor of RV serotypes A and B, including a clinical isolate. We find that OLFML3 is a RV-inducible suppressor of the innate immune response and that OLFML3 antagonizes type I interferon (IFN) signaling in a SOCS3-dependent manner. Conclusion Our study suggests that RV-induced OLFML3 expression is an important mechanism for RV to hijack the immune system and underscores surfaceome CRISPR screen in identifying viral host factors. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-021-02513-w.
Collapse
Affiliation(s)
- Hong Mei
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China
| | - Zhao Zha
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China
| | - Yusang Xie
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital and Institutes of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yuege Huang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China.,University of Chinese Academy of Science, 100049, Beijing, People's Republic of China
| | - Wenping Li
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China.,University of Chinese Academy of Science, 100049, Beijing, People's Republic of China
| | - Dong Wei
- Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Xinxin Zhang
- Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Jieming Qu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital and Institutes of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China. .,Shanghai Clinical Research and Trial Center, 201210, Shanghai, People's Republic of China. .,State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510182, Guangdong Province, China. .,Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, People's Republic of China. .,Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou Interntional Bio Island, Guangdong Province, 510005, Guangzhou, China.
| |
Collapse
|
14
|
Zhang YM. Orosomucoid-like protein 3, rhinovirus and asthma. World J Crit Care Med 2021; 10:170-182. [PMID: 34616654 PMCID: PMC8462028 DOI: 10.5492/wjccm.v10.i5.170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/16/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
The genetic variants of orosomucoid-like protein 3 (ORMDL3) gene are associated with highly significant increases in the number of human rhinovirus (HRV)-induced wheezing episodes in children. Recent investigations have been focused on the mechanisms of ORMDL3 in rhinovirus infection for asthma and asthma exacerbations. ORMDL3 not only regulates major human rhinovirus receptor intercellular adhesion molecule 1 expression, but also plays pivotal roles in viral infection through metabolisms of ceramide and sphingosine-1-phosphate, endoplasmic reticulum (ER) stress, ER-Golgi interface and glycolysis. Research on the roles of ORMDL3 in HRV infection will lead us to identify new biomarkers and novel therapeutic targets in childhood asthma and viral induced asthma exacerbations.
Collapse
Affiliation(s)
- You-Ming Zhang
- Section of Genomic and Environmental Medicine, National Heart and Lung Institute, Molecular Genetics Group, Division of Respiratory Sciences, Imperial College London, London SW3 6LY, United Kingdom
| |
Collapse
|
15
|
Zhai X, Kong WG, Cheng GF, Cao JF, Dong F, Han GK, Song YL, Qin CJ, Xu Z. Molecular Characterization and Expression Analysis of Intercellular Adhesion Molecule-1 (ICAM-1) Genes in Rainbow Trout ( Oncorhynchus mykiss) in Response to Viral, Bacterial and Parasitic Challenge. Front Immunol 2021; 12:704224. [PMID: 34489953 PMCID: PMC8417878 DOI: 10.3389/fimmu.2021.704224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/02/2021] [Indexed: 01/10/2023] Open
Abstract
The intercellular adhesion molecule-1 (ICAM-1), known as CD54, is a transmembrane cell surface glycoprotein that interacts with two integrins (i.e., LFA-1 and Mac-l) important for trans-endothelial migration of leukocytes. The level of ICAM-1 expression is upregulated in response to some inflammatory stimulations, including pathogen infection and proinflammatory cytokines. Yet, to date, our knowledge regarding the functional role of ICAM-1 in teleost fish remains largely unknown. In this study, we cloned and characterized the sequence of ICAM-1 in rainbow trout (Oncorhynchus mykiss) for the first time, which exhibited that the molecular features of ICAM-1 in fishes were relatively conserved compared with human ICAM-1. The transcriptional level of ICAM-1 was detected in 12 different tissues, and we found high expression of this gene in the head kidney, spleen, gills, skin, nose, and pharynx. Moreover, upon stimulation with infectious hematopoietic necrosis virus (IHNV), Flavobacterium columnare G4 (F. columnare), and Ichthyophthirius multifiliis (Ich) in rainbow trout, the morphological changes were observed in the skin and gills, and enhanced expression of ICAM-1 mRNA was detected both in the systemic and mucosal tissues. These results indicate that ICAM-1 may be implicated in the mucosal immune responses to viral, bacterial, and parasitic infections in teleost fish, meaning that ICAM-1 emerges as a master regulator of mucosal immune responses against pathogen infections in teleost fish.
Collapse
Affiliation(s)
- Xue Zhai
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wei-Guang Kong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Center for Fish Biology and Fishery Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Gao-Feng Cheng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jia-Feng Cao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Fen Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Guang-Kun Han
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yan-Ling Song
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chuan-Jie Qin
- Department of Life Science, Key Laboratory of Sichuan Province for Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Center for Fish Biology and Fishery Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
16
|
Vaghari-Tabari M, Mohammadzadeh I, Qujeq D, Majidinia M, Alemi F, Younesi S, Mahmoodpoor A, Maleki M, Yousefi B, Asemi Z. Vitamin D in respiratory viral infections: a key immune modulator? Crit Rev Food Sci Nutr 2021; 63:2231-2246. [PMID: 34470511 DOI: 10.1080/10408398.2021.1972407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Respiratory viral infections are common respiratory diseases. Influenza viruses, RSV and SARS-COV2 have the potential to cause severe respiratory infections. Numerous studies have shown that unregulated immune response to these viruses can cause excessive inflammation and tissue damage. Therefore, regulating the antiviral immune response in the respiratory tract is of importance. In this regard, recent years studies have emphasized the importance of vitamin D in respiratory viral infections. Although, the most well-known role of vitamin D is to regulate the metabolism of phosphorus and calcium, it has been shown that this vitamin has other important functions. One of these functions is immune regulation. Vitamin D can regulate the antiviral immune response in the respiratory tract in order to provide an effective defense against respiratory viral infections and prevention from excessive inflammatory response and tissue damage. In addition, this vitamin has preventive effects against respiratory viral infections. Some studies during the COVID-19 pandemic have shown that vitamin D deficiency may be associated with a higher risk of mortality and sever disease in patients with COVID-19. Since, more attention has recently been focused on vitamin D. In this article, after a brief overview of the antiviral immune response in the respiratory system, we will review the role of vitamin D in regulating the antiviral immune response comprehensively. Then we will discuss the importance of this vitamin in influenza, RSV, and COVID-19.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Iraj Mohammadzadeh
- Non-Communicable Pediatric Diseases Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Durdi Qujeq
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Forough Alemi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Younesi
- Schoole of Health and Biomedical Sciences, RMIT University, Melborne, VIC, Australia
| | - Ata Mahmoodpoor
- Department of Anesthesiology and Intensive Care, School of Medicine, Tabriz University of Medical Science and Health Services, Tabriz, Iran
| | - Masomeh Maleki
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
17
|
Rijsbergen LC, van Dijk LLA, Engel MFM, de Vries RD, de Swart RL. In Vitro Modelling of Respiratory Virus Infections in Human Airway Epithelial Cells - A Systematic Review. Front Immunol 2021; 12:683002. [PMID: 34489934 PMCID: PMC8418200 DOI: 10.3389/fimmu.2021.683002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Respiratory tract infections (RTI) are a major cause of morbidity and mortality in humans. A large number of RTIs is caused by viruses, often resulting in more severe disease in infants, elderly and the immunocompromised. Upon viral infection, most individuals experience common cold-like symptoms associated with an upper RTI. However, in some cases a severe and sometimes life-threatening lower RTI may develop. Reproducible and scalable in vitro culture models that accurately reflect the human respiratory tract are needed to study interactions between respiratory viruses and the host, and to test novel therapeutic interventions. Multiple in vitro respiratory cell culture systems have been described, but the majority of these are based on immortalized cell lines. Although useful for studying certain aspects of viral infections, such monomorphic, unicellular systems fall short in creating an understanding of the processes that occur at an integrated tissue level. Novel in vitro models involving primary human airway epithelial cells and, more recently, human airway organoids, are now in use. In this review, we describe the evolution of in vitro cell culture systems and their characteristics in the context of viral RTIs, starting from advances after immortalized cell cultures to more recently developed organoid systems. Furthermore, we describe how these models are used in studying virus-host interactions, e.g. tropism and receptor studies as well as interactions with the innate immune system. Finally, we provide an outlook for future developments in this field, including co-factors that mimic the microenvironment in the respiratory tract.
Collapse
Affiliation(s)
- Laurine C. Rijsbergen
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Laura L. A. van Dijk
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Maarten F. M. Engel
- Medical Library, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Rik L. de Swart
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
18
|
O'Brien B, Goodridge L, Ronholm J, Nasheri N. Exploring the potential of foodborne transmission of respiratory viruses. Food Microbiol 2021; 95:103709. [PMID: 33397626 PMCID: PMC8035669 DOI: 10.1016/j.fm.2020.103709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
The ongoing pandemic involving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has raised the question whether this virus, which is known to be spread primarily though respiratory droplets, could be spread through the fecal-oral route or via contaminated food. In this article, we present a critical review of the literature exploring the potential foodborne transmission of several respiratory viruses including human coronaviruses, avian influenza virus (AVI), parainfluenza viruses, human respiratory syncytial virus, adenoviruses, rhinoviruses, and Nipah virus. Multiple lines of evidence, including documented expression of receptor proteins on gastrointestinal epithelial cells, in vivo viral replication in gastrointestinal epithelial cell lines, extended fecal shedding of respiratory viruses, and the ability to remain infectious in food environments for extended periods of time raises the theoretical ability of some human respiratory viruses, particularly human coronaviruses and AVI, to spread via food. However, to date, neither epidemiological data nor case reports of clear foodborne transmission of either viruses exist. Thus, foodborne transmission of human respiratory viruses remains only a theoretical possibility.
Collapse
Affiliation(s)
- Bridget O'Brien
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Ste Anne de Bellevue, Québec, Canada
| | | | - Jennifer Ronholm
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Neda Nasheri
- Food Virology Laboratory, Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada.
| |
Collapse
|
19
|
The Immunomodulatory CEA Cell Adhesion Molecule 6 (CEACAM6/CD66c) Is a Protein Receptor for the Influenza a Virus. Viruses 2021; 13:v13050726. [PMID: 33919410 PMCID: PMC8143321 DOI: 10.3390/v13050726] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/10/2021] [Indexed: 12/24/2022] Open
Abstract
To establish a productive infection in host cells, viruses often use one or multiple host membrane glycoproteins as their receptors. For Influenza A virus (IAV) such a glycoprotein receptor has not been described, to date. Here we show that IAV is using the host membrane glycoprotein CD66c as a receptor for entry into human epithelial lung cells. Neuraminidase (NA), a viral spike protein, binds to CD66c on the cell surface during IAV entry into the host cells. Lung cells overexpressing CD66c showed an increase in virus binding and subsequent entry into the cell. Upon comparison, CD66c demonstrated higher binding capacity than other membrane glycoproteins (EGFR and DC-SIGN) reported earlier to facilitate IAV entry into host cells. siRNA mediated knockdown of CD66c from lung cells inhibited virus binding on cell surface and entry into cells. Blocking CD66c by antibody on the cell surface resulted in decreased virus entry. We found that CD66c is a specific glycoprotein receptor for influenza A virus that did not affect entry of non-IAV RNA virus (Hepatitis C virus). Finally, IAV pre-incubated with recombinant CD66c protein when administered intranasally in mice showed decreased cytopathic effects in mice lungs. This publication is the first to report CD66c (Carcinoembryonic cell adhesion molecule 6 or CEACAM6) as a glycoprotein receptor for Influenza A virus.
Collapse
|
20
|
Denani CB, Real-Hohn A, de Carvalho CAM, Gomes AMDO, Gonçalves RB. Lactoferrin affects rhinovirus B-14 entry into H1-HeLa cells. Arch Virol 2021; 166:1203-1211. [PMID: 33606112 PMCID: PMC7894240 DOI: 10.1007/s00705-021-04993-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/24/2020] [Indexed: 01/23/2023]
Abstract
Lactoferrin is part of the innate immune system, with antiviral activity against numerous DNA and RNA viruses. Rhinoviruses, the leading cause of the common cold, are associated with exacerbation of respiratory illnesses such as asthma. Here, we explored the effect of bovine lactoferrin (BLf) on RV-B14 infectivity. Using different assays, we show that the effect of BLf is strongest during adhesion of the virus to the cell and entry. Tracking the internalisation of BLf and virus revealed a degree of colocalisation, although their interaction was only confirmed in vitro using empty viral particles, indicating a possible additional influence of BLf on other infection steps.
Collapse
Affiliation(s)
- Caio Bidueira Denani
- Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Antonio Real-Hohn
- Center for Medical Biochemistry, Max Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna, Austria.
| | - Carlos Alberto Marques de Carvalho
- Departamento de Patologia, Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém, PA, Brazil.,Centro Universitário Metropolitano da Amazônia, Instituto Euro-Americano de Educação, Ciência e Tecnologia, Belém, PA, Brazil
| | - Andre Marco de Oliveira Gomes
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Rafael Braga Gonçalves
- Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
21
|
|
22
|
Ingredients Acting as a Physical Barrier for the Prevention and Treatment of the Rhinovirus Infection. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although the common cold, usually caused by human rhinoviruses, is responsible for enormous damage to the economy and health every year, there are hardly any treatment options or prophylaxis for rhinovirus infections. In this work, the potential of a hydrogel complex, based on polymers and an aqueous extract of Icelandic moss in isla® medic lozenges (Engelhard Arzneimittel, Niederdorfelden, Germany), and two other hydrogels (based on solely xanthan gum or sodium hyaluronate) are investigated for the first time in order to prevent and treat rhinovirus infections. By means of rheological investigations, we demonstrate that isla® medic and containing polymers cause artificial saliva to thicken. Additionally, we demonstrate that the thickening results in the formation of a physical diffusion barrier, which leads to a significant reduction in plaques in a preventive plaque assay with rhinovirus 14 (RV-14). Furthermore, it is shown in a curative plaque assay that the hydrogel complex also has a curative effect on rhinovirus infections in that it reduces the spread of the RV-14-infection on H1-HeLa cell monolayers. Overall, polymer-based hydrogels and related products, such as isla® medic, could contribute to the prevention and treatment of rhinovirus infections.
Collapse
|
23
|
Pahar B, Madonna S, Das A, Albanesi C, Girolomoni G. Immunomodulatory Role of the Antimicrobial LL-37 Peptide in Autoimmune Diseases and Viral Infections. Vaccines (Basel) 2020; 8:E517. [PMID: 32927756 PMCID: PMC7565865 DOI: 10.3390/vaccines8030517] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial peptides (AMPs) are produced by neutrophils, monocytes, and macrophages, as well as epithelial cells, and are an essential component of innate immunity system against infection, including several viral infections. AMPs, in particular the cathelicidin LL-37, also exert numerous immunomodulatory activities by inducing cytokine production and attracting and regulating the activity of immune cells. AMPs are scarcely expressed in normal skin, but their expression increases when skin is injured by external factors, such as trauma, inflammation, or infection. LL-37 complexed to self-DNA acts as autoantigen in psoriasis and lupus erythematosus (LE), where it also induces production of interferon by plasmocytoid dendritic cells and thus initiates a cascade of autocrine and paracrine processes, leading to a disease state. In these disorders, epidermal keratinocytes express high amounts of AMPs, which can lead to uncontrolled inflammation. Similarly, LL-37 had several favorable and unfavorable roles in virus replication and disease pathogenesis. Targeting the antiviral and immunomodulatory functions of LL-37 opens a new approach to limit virus dissemination and the progression of disease.
Collapse
Affiliation(s)
- Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70118, USA
| | - Stefania Madonna
- IDI-IRCCS, Dermopathic Institute of the Immaculate IDI, 00167 Rome, Italy; (S.M.); (C.A.)
| | - Arpita Das
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA;
| | - Cristina Albanesi
- IDI-IRCCS, Dermopathic Institute of the Immaculate IDI, 00167 Rome, Italy; (S.M.); (C.A.)
| | - Giampiero Girolomoni
- Section of Dermatology, Department of Medicine, University of Verona, 37126 Verona, Italy;
| |
Collapse
|
24
|
Angiotensin-Converting Enzyme 2 as a Possible Correlation between COVID-19 and Periodontal Disease. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186224] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SARS-CoV-2 propagation in the world has led to rapid growth and an acceleration in the discoveries and publications of various interests. The main focus of a consistent number of studies has been the role of angiotensin-converting enzyme 2 (ACE2) in binding the virus and its role in expression of the inflammatory response after transmission. ACE2 is an enzyme involved in the renin–angiotensin system (RAS), whose key role is to regulate and counter angiotensin-converting enzyme (ACE), reducing the amount of angiotensin II and increasing angiotensin 1–7 (Ang1–7), making it a promising drug target for treating cardiovascular diseases. The classical RAS axis, formed by ACE, angiotensin II (Ang II), and angiotensin receptor type 1 (AT1), activates several cell functions and molecular signalling pathways related to tissue injury and inflammation. In contrast, the RAS axis composed of ACE2, Ang1–7, and Mas receptor (MasR) exerts the opposite effect concerning the inflammatory response and tissue fibrosis. Recent studies have shown the presence of the RAS system in periodontal sites where osteoblasts, fibroblasts, and osteoclasts are involved in bone remodelling, suggesting that the role of ACE2 might have a fundamental function in the under- or overexpression of cytokines such as interleukin-6 (IL-6), interleukin-7 (IL-7), tumour necrosis factor alpha (TNF-α), interleukin-2 (IL-2), interleukin-1 beta (IL-1β), monocyte chemoattractant protein-1 (MCP-1), and transforming growth factor-beta (TGF-β), associated with a periodontal disorder, mainly during coinfection with SARS-CoV-2, where ACE2 is underexpressed and cannot form the ACE2–Ang1–7–MasR axis. This renders the patient unresponsive to an inflammatory process, facilitating periodontal loss.
Collapse
|
25
|
Computational and Transcriptome Analyses Revealed Preferential Induction of Chemotaxis and Lipid Synthesis by SARS-CoV-2. BIOLOGY 2020; 9:biology9090260. [PMID: 32882823 PMCID: PMC7564677 DOI: 10.3390/biology9090260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022]
Abstract
The continuous and rapid emergence of new viral strains calls for a better understanding of the fundamental changes occurring within the host cell upon viral infection. In this study, we analyzed RNA-seq transcriptome data from Calu-3 human lung epithelial cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) compared to five other viruses namely, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East Respiratory Syndrome (SARS-MERS), influenzavirus A (FLUA), influenzavirus B (FLUB), and rhinovirus (RHINO) compared to mock-infected cells and characterized their coding and noncoding RNA transcriptional portraits. The induction of interferon, inflammatory, and immune response was a hallmark of SARS-CoV-2 infection. Comprehensive bioinformatics revealed the activation of immune response and defense response to the virus as a common feature of viral infection. Interestingly however, the degree of functional categories and signaling pathways activation varied among different viruses. Ingenuity pathways analysis highlighted altered conical and casual pathways related to TNF, IL1A, and TLR7, which are seen more predominantly during SARS-CoV-2 infection. Nonetheless, the activation of chemotaxis and lipid synthesis was prominent in SARS-CoV-2-infected cells. Despite the commonality among all viruses, our data revealed the hyperactivation of chemotaxis and immune cell trafficking as well as the enhanced fatty acid synthesis as plausible mechanisms that could explain the inflammatory cytokine storms associated with severe cases of COVID-19 and the rapid spread of the virus, respectively.
Collapse
|
26
|
Amraei R, Rahimi N. COVID-19, Renin-Angiotensin System and Endothelial Dysfunction. Cells 2020; 9:E1652. [PMID: 32660065 PMCID: PMC7407648 DOI: 10.3390/cells9071652] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 01/08/2023] Open
Abstract
The newly emergent novel coronavirus disease 2019 (COVID-19) outbreak, which is caused by SARS-CoV-2 virus, has posed a serious threat to global public health and caused worldwide social and economic breakdown. Angiotensin-converting enzyme 2 (ACE2) is expressed in human vascular endothelium, respiratory epithelium, and other cell types, and is thought to be a primary mechanism of SARS-CoV-2 entry and infection. In physiological condition, ACE2 via its carboxypeptidase activity generates angiotensin fragments (Ang 1-9 and Ang 1-7), and plays an essential role in the renin-angiotensin system (RAS), which is a critical regulator of cardiovascular homeostasis. SARS-CoV-2 via its surface spike glycoprotein interacts with ACE2 and invades the host cells. Once inside the host cells, SARS-CoV-2 induces acute respiratory distress syndrome (ARDS), stimulates immune response (i.e., cytokine storm) and vascular damage. SARS-CoV-2 induced endothelial cell injury could exacerbate endothelial dysfunction, which is a hallmark of aging, hypertension, and obesity, leading to further complications. The pathophysiology of endothelial dysfunction and injury offers insights into COVID-19 associated mortality. Here we reviewed the molecular basis of SARS-CoV-2 infection, the roles of ACE2, RAS signaling, and a possible link between the pre-existing endothelial dysfunction and SARS-CoV-2 induced endothelial injury in COVID-19 associated mortality. We also surveyed the roles of cell adhesion molecules (CAMs), including CD209L/L-SIGN and CD209/DC-SIGN in SARS-CoV-2 infection and other related viruses. Understanding the molecular mechanisms of infection, the vascular damage caused by SARS-CoV-2 and pathways involved in the regulation of endothelial dysfunction could lead to new therapeutic strategies against COVID-19.
Collapse
Affiliation(s)
- Razie Amraei
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA 02118, USA
| | - Nader Rahimi
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA 02118, USA
| |
Collapse
|
27
|
Rana VS, Popli S, Saurav GK, Yadav K, Kumar A, Sunil S, Kumar N, Singh OP, Natarajan K, Rajagopal R. Aedes aegypti lachesin protein binds to the domain III of envelop protein of Dengue virus-2 and inhibits viral replication. Cell Microbiol 2020; 22:e13200. [PMID: 32141690 DOI: 10.1111/cmi.13200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/31/2020] [Accepted: 02/16/2020] [Indexed: 12/21/2022]
Abstract
Dengue virus (DENV) comprises of four serotypes (DENV-1 to -4) and is medically one of the most important arboviruses (arthropod-borne virus). DENV infection is a major human health burden and is transmitted between humans by the insect vector, Aedes aegypti. Ae. aegypti ingests DENV while feeding on infected humans, which traverses through its gut, haemolymph and salivary glands of the mosquito before being injected into a healthy human. During this process of transmission, DENV must interact with many proteins of the insect vector, which are important for its successful transmission. Our study focused on the identification and characterisation of interacting protein partners in Ae. aegypti to DENV. Since domain III (DIII) of envelope protein (E) is exposed on the virion surface and is involved in virus entry into various cells, we performed phage display library screening against domain III of the envelope protein (EDIII) of DENV-2. A peptide sequence showing similarity to lachesin protein was found interacting with EDIII. The lachesin protein was cloned, heterologously expressed, purified and used for in vitro interaction studies. Lachesin protein interacted with EDIII and also with DENV. Further, lachesin protein was localised in neuronal cells of different organs of Ae. aegypti by confocal microscopy. Blocking of lachesin protein in Ae. aegypti with anti-lachesin antibody resulted in a significant reduction in DENV replication.
Collapse
Affiliation(s)
- Vipin S Rana
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi, India.,Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Sonam Popli
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi, India.,Department of Medical Microbiology and Immunology, College of Medicine, University of Toledo, Toledo, Ohio, USA
| | - Gunjan K Saurav
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi, India.,Department of Zoology, Munshi Lal Arya College, Purnea University, Purnia, Bihar, India
| | - Karuna Yadav
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Ankit Kumar
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, Delhi, India
| | - Sujatha Sunil
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, Delhi, India
| | - Narendra Kumar
- Department of Zoology, Shaheed Mangal Pandey Government Girls Post Graduate College, Meerut, Uttar Pradesh, India
| | - Om P Singh
- National Institute of Malaria Research, Delhi, India
| | | | - Raman Rajagopal
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
28
|
Cryo-EM structure of rhinovirus C15a bound to its cadherin-related protein 3 receptor. Proc Natl Acad Sci U S A 2020; 117:6784-6791. [PMID: 32152109 DOI: 10.1073/pnas.1921640117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Infection by Rhinovirus-C (RV-C), a species of Picornaviridae Enterovirus, is strongly associated with childhood asthma exacerbations. Cellular binding and entry by all RV-C, which trigger these episodes, is mediated by the first extracellular domain (EC1) of cadherin-related protein 3 (CDHR3), a surface cadherin-like protein expressed primarily on the apical surfaces of ciliated airway epithelial cells. Although recombinant EC1 is a potent inhibitor of viral infection, there is no molecular description of this protein or its binding site on RV-C. Here we present cryo-electron microscopy (EM) data resolving the EC1 and EC1+2 domains of human CDHR3 complexed with viral isolate C15a. Structure-suggested residues contributing to required interfaces on both EC1 and C15a were probed and identified by mutagenesis studies with four different RV-C genotypes. In contrast to most other rhinoviruses, which bind intercellular adhesion molecule 1 receptors via a capsid protein VP1-specific fivefold canyon feature, the CDHR3 EC1 contacts C15a, and presumably all RV-Cs, in a unique cohesive footprint near the threefold vertex, encompassing residues primarily from viral protein VP3, but also from VP1 and VP2. The EC1+2 footprint on C15a is similar to that of EC1 alone but shows that steric hindrance imposed by EC2 would likely prevent multiprotein binding by the native receptor at any singular threefold vertex. Definition of the molecular interface between the RV-Cs and their receptors provides new avenues that can be explored for potential antiviral therapies.
Collapse
|
29
|
Lamborn IT, Su HC. Genetic determinants of host immunity against human rhinovirus infections. Hum Genet 2020; 139:949-959. [PMID: 32112143 DOI: 10.1007/s00439-020-02137-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/10/2020] [Indexed: 12/24/2022]
Abstract
Human rhinoviruses (RV) are a frequent cause of respiratory tract infections with substantial morbidity and mortality in some patients. Nevertheless, the genetic basis of susceptibility to RV in humans has been relatively understudied. Experimental infections of mice and in vitro infections of human cells have indicated that various pathogen recognition receptors (TLRs, RIG-I, and MDA5) regulate innate immune responses to RV. However, deficiency of MDA5 is the only one among these so far uncovered that confers RV susceptibility in humans. Other work has shown increased RV susceptibility in patients with a polymorphism in CDHR3 that encodes the cellular receptor for RV-C entry. Here, we provide a comprehensive review of the genetic determinants of human RV susceptibility in the context of what is known about RV biology.
Collapse
Affiliation(s)
- Ian T Lamborn
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA.,Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT, USA
| | - Helen C Su
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA.
| |
Collapse
|
30
|
Smart D, Filippi I, Blume C, Smalley B, Davies D, McCormick CJ. Rhinovirus 2A is the key protease responsible for instigating the early block to gene expression in infected cells. J Cell Sci 2020; 133:jcs.232504. [PMID: 31822628 DOI: 10.1242/jcs.232504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 12/02/2019] [Indexed: 11/20/2022] Open
Abstract
Human rhinoviruses (HRVs) express 2 cysteine proteases, 2A and 3C, that are responsible for viral polyprotein processing. Both proteases also suppress host gene expression by inhibiting mRNA transcription, nuclear export and cap-dependent translation. However, the relative contribution that each makes in achieving this goal remains unclear. In this study, we have compared both the combined and individual ability of the two proteases to shut down cellular gene expression using a novel dynamic reporter system. Our findings show that 2A inhibits host gene expression much more rapidly than 3C. By comparing the activities of a representative set of proteases from the three different HRV species, we also find variation in the speed at which host gene expression is suppressed. Our work highlights the key role that 2A plays in early suppression of the infected host cell response and shows that this can be influenced by natural variation in the activity of this enzyme.
Collapse
Affiliation(s)
- David Smart
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, University Hospital Southampton, Southampton SO16 6YD, UK.,Southampton NIHR Respiratory Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Irene Filippi
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, University Hospital Southampton, Southampton SO16 6YD, UK.,Southampton NIHR Respiratory Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Cornelia Blume
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, University Hospital Southampton, Southampton SO16 6YD, UK.,Southampton NIHR Respiratory Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Benjamin Smalley
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Donna Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, University Hospital Southampton, Southampton SO16 6YD, UK.,Southampton NIHR Respiratory Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK.,Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Christopher J McCormick
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, University Hospital Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
31
|
Jubrail J, Africano‐Gomez K, Herit F, Mularski A, Bourdoncle P, Oberg L, Israelsson E, Burgel P, Mayer G, Cunoosamy DM, Kurian N, Niedergang F. Arpin is critical for phagocytosis in macrophages and is targeted by human rhinovirus. EMBO Rep 2020; 21:e47963. [PMID: 31721415 PMCID: PMC6945061 DOI: 10.15252/embr.201947963] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/09/2019] [Accepted: 10/19/2019] [Indexed: 11/09/2022] Open
Abstract
Human rhinovirus is a causative agent of severe exacerbations of chronic obstructive pulmonary disease (COPD). COPD is characterised by an increased number of alveolar macrophages with diminished phagocytic functions, but how rhinovirus infection affects macrophage function is still unknown. Here, we describe that human rhinovirus 16 impairs bacterial uptake and receptor-mediated phagocytosis in macrophages. The stalled phagocytic cups contain accumulated F-actin. Interestingly, we find that human rhinovirus 16 downregulates the expression of Arpin, a negative regulator of the Arp2/3 complex. Importantly, re-expression of the protein rescues defective internalisation in human rhinovirus 16-treated cells, demonstrating that Arpin is a key factor targeted to impair phagocytosis. We further show that Arpin is required for efficient uptake of multiple targets, for F-actin cup formation and for successful phagosome completion in macrophages. Interestingly, Arpin is recruited to sites of membrane extension and phagosome closure. Thus, we identify Arpin as a central actin regulator during phagocytosis that it is targeted by human rhinovirus 16, allowing the virus to perturb bacterial internalisation and phagocytosis in macrophages.
Collapse
Affiliation(s)
- Jamil Jubrail
- Université de ParisInstitut CochinINSERM, U1016, CNRSUMR 8104ParisFrance
| | | | - Floriane Herit
- Université de ParisInstitut CochinINSERM, U1016, CNRSUMR 8104ParisFrance
| | - Anna Mularski
- Université de ParisInstitut CochinINSERM, U1016, CNRSUMR 8104ParisFrance
| | - Pierre Bourdoncle
- Université de ParisInstitut CochinINSERM, U1016, CNRSUMR 8104ParisFrance
| | - Lisa Oberg
- Translational Science and Experimental MedicineResearch and Early DevelopmentRespiratory Inflammation and AutoimmunityBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Elisabeth Israelsson
- Translational Science and Experimental MedicineResearch and Early DevelopmentRespiratory Inflammation and AutoimmunityBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Pierre‐Regis Burgel
- Université de ParisInstitut CochinINSERM, U1016, CNRSUMR 8104ParisFrance
- Department of PneumologyHospital Cochin, AP‐HPParisFrance
| | - Gaell Mayer
- Late‐stage developmentRespiratory, Inflammation and Autoimmunity (RIA)BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Danen M Cunoosamy
- Translational Science and Experimental MedicineResearch and Early DevelopmentRespiratory Inflammation and AutoimmunityBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Nisha Kurian
- Respiratory Inflammation and Autoimmune Precision Medicine UnitPrecision Medicine, Oncology R&DAstraZenecaGothenburgSweden
| | | |
Collapse
|
32
|
Zhang Y, Willis-Owen SAG, Spiegel S, Lloyd CM, Moffatt MF, Cookson WOCM. The ORMDL3 Asthma Gene Regulates ICAM1 and Has Multiple Effects on Cellular Inflammation. Am J Respir Crit Care Med 2020; 199:478-488. [PMID: 30339462 DOI: 10.1164/rccm.201803-0438oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RATIONALE Polymorphisms on chromosome 17q21 confer the major genetic susceptibility to childhood-onset asthma. Risk alleles positively correlate with ORMDL3 (orosomucoid-like 3) expression. The locus influences disease severity and the frequency of human rhinovirus (HRV)-initiated exacerbations. ORMDL3 is known to regulate sphingolipid synthesis by binding serine palmitoyltransferase, but its role in inflammation is incompletely understood. OBJECTIVES To investigate the role of ORMDL3 in cellular inflammation. METHODS We modeled a time series of IL1B-induced inflammation in A549 cells, using cytokine production as outputs and testing effects of ORMDL3 siRNA knockdown, ORMDL3 overexpression, and the serine palmitoyltransferase inhibitor myriocin. We replicated selected findings in normal human bronchial epithelial cells. Cytokine and metabolite levels were analyzed by analysis of variance. Transcript abundances were analyzed by group means parameterization, controlling the false discovery rate below 0.05. MEASUREMENTS AND MAIN RESULTS Silencing ORMDL3 led to steroid-independent reduction of IL6 and IL8 release and reduced endoplasmic reticulum stress after IL1B stimulation. Overexpression and myriocin conversely augmented cytokine release. Knockdown reduced expression of genes regulating host-pathogen interactions, stress responses, and ubiquitination: in particular, ORMDL3 knockdown strongly reduced expression of the HRV receptor ICAM1. Silencing led to changes in levels of transcripts and metabolites integral to glycolysis. Increased levels of ceramides and the immune mediator sphingosine-1-phosphate were also observed. CONCLUSIONS The results show ORMDL3 has pleiotropic effects during cellular inflammation, consistent with its substantial genetic influence on childhood asthma. Actions on ICAM1 provide a mechanism for the locus to confer susceptibility to HRV-induced asthma.
Collapse
Affiliation(s)
- Youming Zhang
- 1 National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | | | - Sarah Spiegel
- 2 Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Clare M Lloyd
- 1 National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Miriam F Moffatt
- 1 National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - William O C M Cookson
- 1 National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| |
Collapse
|
33
|
Zu W, Zhang H, Lan X, Tan X. Genome-wide evolution analysis reveals low CpG contents of fast-evolving genes and identifies antiviral microRNAs. J Genet Genomics 2020; 47:49-60. [DOI: 10.1016/j.jgg.2019.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/11/2019] [Accepted: 12/03/2019] [Indexed: 01/28/2023]
|
34
|
van den Broek MFL, De Boeck I, Kiekens F, Boudewyns A, Vanderveken OM, Lebeer S. Translating Recent Microbiome Insights in Otitis Media into Probiotic Strategies. Clin Microbiol Rev 2019; 32:e00010-18. [PMID: 31270125 PMCID: PMC6750133 DOI: 10.1128/cmr.00010-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The microbiota of the upper respiratory tract (URT) protects the host from bacterial pathogenic colonization by competing for adherence to epithelial cells and by immune response regulation that includes the activation of antimicrobial and (anti-)inflammatory components. However, environmental or host factors can modify the microbiota to an unstable community that predisposes the host to infection or inflammation. One of the URT diseases most often encountered in children is otitis media (OM). The role of pathogenic bacteria like Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in the pathogenesis of OM is well documented. Results from next-generation-sequencing (NGS) studies reveal other bacterial taxa involved in OM, such as Turicella and Alloiococcus Such studies can also identify bacterial taxa that are potentially protective against URT infections, whose beneficial action needs to be substantiated in relevant experimental models and clinical trials. Of note, lactic acid bacteria (LAB) are members of the URT microbiota and associated with a URT ecosystem that is deemed healthy, based on NGS and some experimental and clinical studies. These observations have formed the basis of this review, in which we describe the current knowledge of the molecular and clinical potential of LAB in the URT, which is currently underexplored in microbiome and probiotic research.
Collapse
Affiliation(s)
- Marianne F L van den Broek
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Ilke De Boeck
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Filip Kiekens
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - An Boudewyns
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Olivier M Vanderveken
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
35
|
Simre K, Uibo O, Peet A, Puustinen L, Oikarainen S, Tamminen K, Blazevic V, Tillmann V, Hämäläinen A, Härkönen T, Siljander H, Virtanen SM, Ilonen J, Hyöty H, Knip M, Uibo R. Early-life exposure to common virus infections did not differ between coeliac disease patients and controls. Acta Paediatr 2019; 108:1709-1716. [PMID: 30896051 DOI: 10.1111/apa.14791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 02/24/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Abstract
AIM Our aim was to compare the presence of various common viruses (rhinovirus, enterovirus, adenovirus, Epstein-Barr virus, cytomegalovirus, norovirus, parechovirus) in stool and nasal swab samples as well as virus-specific antibodies in serum samples between children who developed coeliac disease and controls. METHODS A case-control study was established based on the DIABIMMUNE Study cohorts. During the study, eight Estonian children and 21 Finnish children aged 1.5 years to five years developed coeliac disease and each was matched with a disease-free control. Nasal swabs and stool samples were taken at the age of three to six months and the serum samples at the time of diagnosis. RESULTS Rhinovirus ribonucleic acid was detected in the nasal swabs from five coeliac disease children, but none of the control children (p = 0.05). There were no statistically significant differences in the level of viral antibodies between cases and controls. Enterovirus immunoglobulin G class antibodies were found more frequently in the Estonian than in the Finnish children (63% versus 23%, p = 0.02). CONCLUSION This study did not find any marked overall differences in laboratory-confirmed common viral infections between the children who developed coeliac disease and the controls. However, rhinovirus infections were detected slightly more often in those patients who developed coeliac disease.
Collapse
Affiliation(s)
- Kärt Simre
- Department of Immunology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
- Children's Clinic of Tartu University Hospital Tartu Estonia
| | - Oivi Uibo
- Children's Clinic of Tartu University Hospital Tartu Estonia
- Department of Pediatrics University of Tartu Tartu Estonia
| | - Aleksandr Peet
- Children's Clinic of Tartu University Hospital Tartu Estonia
- Department of Pediatrics University of Tartu Tartu Estonia
| | - Leena Puustinen
- Faculty of Medicine and Life Science University of Tampere Tampere Finland
| | - Sami Oikarainen
- Faculty of Medicine and Life Science University of Tampere Tampere Finland
- Fimlab Laboratories Pirkanmaa Hospital District Tampere Finland
| | - Kirsi Tamminen
- Vaccine Research Center Faculty of Medicine and Life Sciences University of Tampere Tampere Finland
| | - Vesna Blazevic
- Vaccine Research Center Faculty of Medicine and Life Sciences University of Tampere Tampere Finland
| | - Vallo Tillmann
- Children's Clinic of Tartu University Hospital Tartu Estonia
- Department of Pediatrics University of Tartu Tartu Estonia
| | | | - Taina Härkönen
- Children's Hospital University of Helsinki and Helsinki University Hospital Helsinki Finland
- Research Programs Unit Diabetes and Obesity University of Helsinki Helsinki Finland
| | - Heli Siljander
- Children's Hospital University of Helsinki and Helsinki University Hospital Helsinki Finland
- Research Programs Unit Diabetes and Obesity University of Helsinki Helsinki Finland
| | - Suvi M. Virtanen
- Department of Public Health Solutions National Institute for Health and Welfare Helsinki Finland
- Faculty of Social Sciences/Health Sciences University of Tampere Tampere Finland
- Center for Child Health Research Tampere University and University Hospital The Science Center of Pirkanmaa Hospital District Tampere Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory Institute of Biomedicine University of Turku and Clinical Microbiology Turku University Hospital Turku Finland
| | - Heikki Hyöty
- Faculty of Medicine and Life Science University of Tampere Tampere Finland
- Fimlab Laboratories Pirkanmaa Hospital District Tampere Finland
| | - Mikael Knip
- Children's Hospital University of Helsinki and Helsinki University Hospital Helsinki Finland
- Research Programs Unit Diabetes and Obesity University of Helsinki Helsinki Finland
- Center for Child Health Research Tampere University and University Hospital The Science Center of Pirkanmaa Hospital District Tampere Finland
- Folkhälsan Research Center Helsinki Finland
| | - Raivo Uibo
- Department of Immunology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | | |
Collapse
|
36
|
Cifuente JO, Moratorio G. Evolutionary and Structural Overview of Human Picornavirus Capsid Antibody Evasion. Front Cell Infect Microbiol 2019; 9:283. [PMID: 31482072 PMCID: PMC6710328 DOI: 10.3389/fcimb.2019.00283] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/24/2019] [Indexed: 11/13/2022] Open
Abstract
Picornaviruses constitute one of the most relevant viral groups according to their impact on human and animal health. Etiologic agents of a broad spectrum of illnesses with a clinical presentation that ranges from asymptomatic to fatal disease, they have been the cause of uncountable epidemics throughout history. Picornaviruses are small naked RNA-positive single-stranded viruses that include some of the most important pillars in the development of virology, comprising poliovirus, rhinovirus, and hepatitis A virus. Picornavirus infectious particles use the fecal-oral or respiratory routes as primary modes of transmission. In this regard, successful viral spread relies on the capability of viral capsids to (i) shelter the viral genome, (ii) display molecular determinants for cell receptor recognition, (iii) facilitate efficient genome delivery, and (iv) escape from the immune system. Importantly, picornaviruses display a substantial amount of genetic variability driven by both mutation and recombination. Therefore, the outcome of their replication results in the emergence of a genetically diverse cloud of individuals presenting phenotypic variance. The host humoral response against the capsid protein represents the most active immune pressure and primary weapon to control the infection. Since the preservation of the capsid function is deeply rooted in the virus evolutionary dynamics, here we review the current structural evidence focused on capsid antibody evasion mechanisms from that perspective.
Collapse
Affiliation(s)
| | - Gonzalo Moratorio
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
37
|
New therapeutic targets for the prevention of infectious acute exacerbations of COPD: role of epithelial adhesion molecules and inflammatory pathways. Clin Sci (Lond) 2019; 133:1663-1703. [PMID: 31346069 DOI: 10.1042/cs20181009] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022]
Abstract
Chronic respiratory diseases are among the leading causes of mortality worldwide, with the major contributor, chronic obstructive pulmonary disease (COPD) accounting for approximately 3 million deaths annually. Frequent acute exacerbations (AEs) of COPD (AECOPD) drive clinical and functional decline in COPD and are associated with accelerated loss of lung function, increased mortality, decreased health-related quality of life and significant economic costs. Infections with a small subgroup of pathogens precipitate the majority of AEs and consequently constitute a significant comorbidity in COPD. However, current pharmacological interventions are ineffective in preventing infectious exacerbations and their treatment is compromised by the rapid development of antibiotic resistance. Thus, alternative preventative therapies need to be considered. Pathogen adherence to the pulmonary epithelium through host receptors is the prerequisite step for invasion and subsequent infection of surrounding structures. Thus, disruption of bacterial-host cell interactions with receptor antagonists or modulation of the ensuing inflammatory profile present attractive avenues for therapeutic development. This review explores key mediators of pathogen-host interactions that may offer new therapeutic targets with the potential to prevent viral/bacterial-mediated AECOPD. There are several conceptual and methodological hurdles hampering the development of new therapies that require further research and resolution.
Collapse
|
38
|
Dennie L. Safety and Efficacy of 0.5% Carbomer 980 Gel for Treatment of Symptoms of Common Cold: Results of 2 Randomized Trials. Drugs R D 2019; 19:191-200. [PMID: 31004286 PMCID: PMC6544708 DOI: 10.1007/s40268-019-0270-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
BACKGROUND Two studies of intranasal 0.5% carbomer 980 gel were conducted evaluating nasal tolerability in healthy volunteers and safety and efficacy in adults with common cold symptoms. METHODS Study 1 randomly assigned healthy adults to 0.5% carbomer 980 gel (n = 20) or placebo (n = 10) administered intranasally four times daily for 7 days. Nasal examinations were conducted at baseline and daily throughout the study. The primary endpoint was local nasal tolerability. Study 2 randomly assigned adults with an investigator-confirmed diagnosis of symptomatic common cold to 0.5% carbomer 980 gel (n = 87) or placebo (n = 81), administered intranasally four times daily for 7 days (except for day 1, where subjects who received their first dose mid-day administered only three doses). The primary efficacy endpoint was the average nasal symptom score over days 1‒4 (ANSS1-4). Secondary efficacy endpoints included ANSS over days 1‒7 and average total symptom score (ATSS). Adverse events (AEs) were recorded throughout the study. RESULTS In study 1, subjects assigned to 0.5% carbomer 980 gel had no mucosal grading higher than grade 1B (superficial nasal mucosal erosion) and low incidences of mucosal bleeding and crusting. In study 2, there were no statistically significant differences between treatments for any efficacy endpoints. Active treatment was well-tolerated; the most commonly reported AEs were headache, myalgia, and cough. CONCLUSION While 0.5% carbomer 980 gel nasal spray demonstrated good local nasal tolerability in healthy volunteers, the spray did not significantly impact the course of infection or resolution of cold symptoms in subjects with common cold.
Collapse
Affiliation(s)
- Lara Dennie
- Clinical Research Innovation, GlaxoSmithKline Consumer Healthcare, 184 Liberty Corner Rd, Warren, NJ, 07059, USA.
| |
Collapse
|
39
|
Nakauchi M, Nagata N, Takayama I, Saito S, Kubo H, Kaida A, Oba K, Odagiri T, Kageyama T. Propagation of Rhinovirus C in Differentiated Immortalized Human Airway HBEC3-KT Epithelial Cells. Viruses 2019; 11:v11030216. [PMID: 30836639 PMCID: PMC6466094 DOI: 10.3390/v11030216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/18/2019] [Accepted: 02/27/2019] [Indexed: 01/13/2023] Open
Abstract
Rhinoviruses (RVs) are classified into three species: RV-A, B, and C. Unlike RV-A and -B, RV-C cannot be propagated using standard cell culture systems. In order to isolate RV-Cs from clinical specimens and gain a better understanding of their biological properties and pathogenesis, we established air–liquid-interface (ALI) culture methods using HBEC3-KT and HSAEC1-KT immortalized human airway epithelial cells. HBEC3- and HSAEC1-ALI cultures morphologically resembled pseudostratified epithelia with cilia and goblet cells. Two fully sequenced clinical RV-C isolates, RV-C9 and -C53, were propagated in HBEC3-ALI cultures, and increases in viral RNA ranging from 1.71 log10 to 7.06 log10 copies were observed. However, this propagation did not occur in HSAEC1-ALI cultures. Using the HBEC3-ALI culture system, 11 clinical strains of RV-C were isolated from 23 clinical specimens, and of them, nine were passaged and re-propagated. The 11 clinical isolates were classified as RV-C2, -C6, -C9, -C12, -C18, -C23, -C40, and -C53 types according to their VP1 sequences. Our stable HBEC3-ALI culture system is the first cultivable cell model that supports the growth of multiple RV-C virus types from clinical specimens. Thus, the HBEC3-ALI culture system provides a cheap and easy-to-use alternative to existing cell models for isolating and investigating RV-Cs.
Collapse
Affiliation(s)
- Mina Nakauchi
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan.
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan.
| | - Ikuyo Takayama
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan.
| | - Shinji Saito
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan.
| | - Hideyuki Kubo
- Division of Microbiology, Osaka Institute of Public Health, 8-34 Tojo-cho, Tennoji-ku, Osaka 543-0026, Japan.
| | - Atsushi Kaida
- Division of Microbiology, Osaka Institute of Public Health, 8-34 Tojo-cho, Tennoji-ku, Osaka 543-0026, Japan.
| | - Kunihiro Oba
- Department of Pediatrics, Showa General Hospital, 8-1-1 Hanakoganei, Kodaira-shi, Tokyo 187-0002, Japan.
| | - Takato Odagiri
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan.
| | - Tsutomu Kageyama
- Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan.
| |
Collapse
|
40
|
Greiller CL, Suri R, Jolliffe DA, Kebadze T, Hirsman AG, Griffiths CJ, Johnston SL, Martineau AR. Vitamin D attenuates rhinovirus-induced expression of intercellular adhesion molecule-1 (ICAM-1) and platelet-activating factor receptor (PAFR) in respiratory epithelial cells. J Steroid Biochem Mol Biol 2019; 187:152-159. [PMID: 30476590 DOI: 10.1016/j.jsbmb.2018.11.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/31/2018] [Accepted: 11/23/2018] [Indexed: 11/30/2022]
Abstract
Human rhinoviruses commonly cause upper respiratory infections, which may be complicated by secondary bacterial infection. Vitamin D replacement reduces risk of acute respiratory infections in vitamin D-deficient individuals, but the mechanisms by which such protection is mediated are incompletely understood. We therefore conducted experiments to characterise the influence of the major circulating metabolite 25-hydroxyvitamin D (25[OH]D) and the active metabolite 1,25-dihydroxyvitamin D (1,25[OH]2D) on responses of a respiratory epithelial cell line (A549 cells) to infection with a major group human rhinovirus (RV-16). Pre-treatment of A549 respiratory epithelial cells with a physiological concentration (10-7M) of 25(OH)D induced transient resistance to infection with RV-16 and attenuated RV-16-induced expression of the genes encoding intercellular adhesion molecule 1 (ICAM-1, a cell surface glycoprotein that acts as the cellular receptor for major group rhinoviruses) and platelet-activating factor receptor (PAFR, a G-protein coupled receptor implicated in adhesion of Streptococcus pneumoniae to respiratory epithelial cells). These effects were associated with enhanced expression of the genes encoding the NF-κB inhibitor IκBα and the antimicrobial peptide cathelicidin LL-37. Our findings suggest possible mechanisms by which vitamin D may enhance resistance to rhinovirus infection and reduce risk of secondary bacterial infection in vitamin D-deficient individuals.
Collapse
Affiliation(s)
- Claire L Greiller
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AB, UK
| | - Reetika Suri
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AB, UK
| | - David A Jolliffe
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AB, UK
| | - Tatiana Kebadze
- Airway Disease Section, National Heart and Lung Institute, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London W2 1PG, UK
| | - Aurica G Hirsman
- Airway Disease Section, National Heart and Lung Institute, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London W2 1PG, UK; Department of Transfusion Medicine and Haemostaseology, Erlangen University Hospital, 91054 Erlangen, Germany
| | - Christopher J Griffiths
- Asthma UK Centre for Applied Research, Barts Institute of Public Health, Queen Mary University of London, London E1 2AB, UK
| | - Sebastian L Johnston
- Airway Disease Section, National Heart and Lung Institute, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London W2 1PG, UK; Asthma UK Centre for Applied Research, Barts Institute of Public Health, Queen Mary University of London, London E1 2AB, UK
| | - Adrian R Martineau
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AB, UK; Asthma UK Centre for Applied Research, Barts Institute of Public Health, Queen Mary University of London, London E1 2AB, UK.
| |
Collapse
|
41
|
Burnie J, Guzzo C. The Incorporation of Host Proteins into the External HIV-1 Envelope. Viruses 2019; 11:v11010085. [PMID: 30669528 PMCID: PMC6356245 DOI: 10.3390/v11010085] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 02/07/2023] Open
Abstract
The incorporation of biologically active host proteins into HIV-1 is a well-established phenomenon, particularly due to the budding mechanism of viral egress in which viruses acquire their external lipid membrane directly from the host cell. While this mechanism might seemingly imply that host protein incorporation is a passive uptake of all cellular antigens associated with the plasma membrane at the site of budding, this is not the case. Herein, we review the evidence indicating that host protein incorporation can be a selective and conserved process. We discuss how HIV-1 virions displaying host proteins on their surface can exhibit a myriad of altered phenotypes, with notable impacts on infectivity, homing, neutralization, and pathogenesis. This review describes the canonical and emerging methods to detect host protein incorporation, highlights the well-established host proteins that have been identified on HIV-1 virions, and reflects on the role of these incorporated proteins in viral pathogenesis and therapeutic targeting. Despite many advances in HIV treatment and prevention, there remains a global effort to develop increasingly effective anti-HIV therapies. Given the broad range of biologically active host proteins acquired on the surface of HIV-1, additional studies on the mechanisms and impacts of these incorporated host proteins may inform the development of novel treatments and vaccine designs.
Collapse
Affiliation(s)
- Jonathan Burnie
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada.
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| | - Christina Guzzo
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada.
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| |
Collapse
|
42
|
Basnet S, Palmenberg AC, Gern JE. Rhinoviruses and Their Receptors. Chest 2019; 155:1018-1025. [PMID: 30659817 DOI: 10.1016/j.chest.2018.12.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/14/2018] [Accepted: 12/28/2018] [Indexed: 01/14/2023] Open
Abstract
Human rhinoviruses (RVs) are picornaviruses that can cause a variety of upper and lower respiratory tract illnesses, including the common cold, bronchitis, pneumonia, and exacerbations of chronic respiratory diseases such as asthma. There are currently > 160 known types of RVs classified into three species (A, B, and C) that use three different cellular membrane glycoproteins expressed in the respiratory epithelium to enter the host cell. These viral receptors are intercellular adhesion molecule 1 (used by the majority of RV-A and all RV-B types), low-density lipoprotein receptor family members (used by 12 RV-A types), and cadherin-related family member 3 (CDHR3; used by RV-C). RV-A and RV-B interactions with intercellular adhesion molecule 1 and low-density lipoprotein receptor glycoproteins are well defined and their cellular functions have been described, whereas the mechanisms of the RV-C interaction with CDHR3 and its cellular functions are being studied. A single nucleotide polymorphism (rs6967330) in CDHR3 increases cell surface expression of this protein and, as a result, also promotes RV-C infections and illnesses. There are currently no approved vaccines or antiviral therapies available to treat or prevent RV infections, which is a major unmet medical need. Understanding interactions between RV and cellular receptors could lead to new insights into the pathogenesis of respiratory illnesses as well as lead to new approaches to control respiratory illnesses caused by RV infections.
Collapse
Affiliation(s)
- Sarmila Basnet
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI.
| | - Ann C Palmenberg
- Institute of Molecular Virology, University of Wisconsin-Madison, Madison, WI
| | - James E Gern
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
43
|
Deciphering Endothelial Dysfunction in the HIV-Infected Population. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1134:193-215. [PMID: 30919339 DOI: 10.1007/978-3-030-12668-1_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cardiovascular disease (CVD), as a possible consequence of endothelial dysfunction, is prevalent among HIV-infected patients despite successful administration of antiretroviral drugs. This warrants the routine clinical assessment of endothelial function in HIV-positive patients to circumvent potential CVD events. Several different non-invasive strategies have been employed to assess endothelial function in clinical research studies yielding inconsistencies among these reports. This review summarises the different techniques used for assessing endothelial function, with a focus on proposed blood-based biomarkers, such as endothelial leukocyte adhesion molecule-1 (E-selectin), soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), von Willebrand factor (vWF), TNF-α, interleukin 6 (IL6) and soluble thrombomodulin (sTM). The identification of suitable blood-based biomarkers, especially those that can be measured using a point-of-care device, would be more applicable in under-resourced countries where the prevalence of HIV is high.
Collapse
|
44
|
Yang L, Fu J, Zhou Y. Circular RNAs and Their Emerging Roles in Immune Regulation. Front Immunol 2018; 9:2977. [PMID: 30619334 PMCID: PMC6305292 DOI: 10.3389/fimmu.2018.02977] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/04/2018] [Indexed: 01/16/2023] Open
Abstract
Circular ribonucleic acid (RNA) molecules (circRNAs) are covalently closed loop RNA molecules with no 5' end caps or 3' poly (A) tails, which are generated by back-splicing. Originally, circRNAs were considered to be byproducts of aberrant splicing. However, in recent years, development of high-throughput sequencing has led to gradual recognition of functional circRNAs, and increasing numbers of studies have elucidated their roles in cancer, neurologic diseases, and cardiovascular disorders. Nevertheless, studies of the functions of circRNAs in the immune system are relatively scarce. In this review, we detail relevant research on the biogenesis and classification of circRNAs, describe their functional mechanisms and approaches to their investigation, and summarize recent studies of circRNA function in the immune system.
Collapse
Affiliation(s)
- Lan Yang
- Children's Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jinrong Fu
- Children's Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yufeng Zhou
- Children's Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Neonatal Diseases, Ministry of Health, Shanghai, China
| |
Collapse
|
45
|
Kc R, Shukla SD, Gautam SS, Hansbro PM, O'Toole RF. The role of environmental exposure to non-cigarette smoke in lung disease. Clin Transl Med 2018; 7:39. [PMID: 30515602 PMCID: PMC6279673 DOI: 10.1186/s40169-018-0217-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/23/2018] [Indexed: 02/03/2023] Open
Abstract
Chronic exposure to household indoor smoke and outdoor air pollution is a major contributor to global morbidity and mortality. The majority of these deaths occur in low and middle-income countries. Children, women, the elderly and people with underlying chronic conditions are most affected. In addition to reduced lung function, children exposed to biomass smoke have an increased risk of developing lower respiratory tract infections and asthma-related symptoms. In adults, chronic exposure to biomass smoke, ambient air pollution, and opportunistic exposure to fumes and dust are associated with an increased risk of developing chronic bronchitis, chronic obstructive pulmonary disease (COPD), lung cancer and respiratory infections, including tuberculosis. Here, we review the evidence of prevalence of COPD in people exposed to non-cigarette smoke. We highlight mechanisms that are likely involved in biomass-smoke exposure-related COPD and other lung diseases. Finally, we summarize the potential preventive and therapeutic strategies for management of COPD induced by non-cigarette smoke exposure.
Collapse
Affiliation(s)
- Rajendra Kc
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Sanjay S Gautam
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Centenary Institute and University of Technology Sydney, Sydney, New South Wales, Australia
| | - Ronan F O'Toole
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia.
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
46
|
Han M, Rajput C, Ishikawa T, Jarman CR, Lee J, Hershenson MB. Small Animal Models of Respiratory Viral Infection Related to Asthma. Viruses 2018; 10:E682. [PMID: 30513770 PMCID: PMC6316391 DOI: 10.3390/v10120682] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/21/2018] [Accepted: 11/29/2018] [Indexed: 12/20/2022] Open
Abstract
Respiratory viral infections are strongly associated with asthma exacerbations. Rhinovirus is most frequently-detected pathogen; followed by respiratory syncytial virus; metapneumovirus; parainfluenza virus; enterovirus and coronavirus. In addition; viral infection; in combination with genetics; allergen exposure; microbiome and other pathogens; may play a role in asthma development. In particular; asthma development has been linked to wheezing-associated respiratory viral infections in early life. To understand underlying mechanisms of viral-induced airways disease; investigators have studied respiratory viral infections in small animals. This report reviews animal models of human respiratory viral infection employing mice; rats; guinea pigs; hamsters and ferrets. Investigators have modeled asthma exacerbations by infecting mice with allergic airways disease. Asthma development has been modeled by administration of virus to immature animals. Small animal models of respiratory viral infection will identify cell and molecular targets for the treatment of asthma.
Collapse
Affiliation(s)
- Mingyuan Han
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Charu Rajput
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Tomoko Ishikawa
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Caitlin R Jarman
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Julie Lee
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Marc B Hershenson
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
47
|
Morgene MF, Maurin C, Pillet S, Berthelot P, Morfin F, Pozzetto B, Botelho-Nevers E, Verhoeven PO. HaCaT epithelial cells as an innovative novel model of rhinovirus infection and impact of clarithromycin treatment on infection kinetics. Virology 2018; 523:27-34. [PMID: 30077071 DOI: 10.1016/j.virol.2018.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 01/28/2023]
Abstract
The in vitro propagation of human rhinoviruses (RVs) is difficult because only few continuous human cell lines are permissive to these agents. We propose an innovative model of epithelial cell infection using a non-transformed continuous keratinocyte line from human origin (HaCaT cells). After infection with RV-A13, RV-A16 or RV-A19, HaCaT cells produced infectious particles without showing any observable cytopathic effect and overexpressed ICAM-1 (intercellular adhesion molecule 1), the major entry receptor of RVs. Furthermore, the treatment of HaCaT cells with 10 µM clarithromycin reduced the viral titer by 93% and 60% during the first and second days following viral infection, respectively, probably by down-regulating ICAM-1 expression. This original model of epithelial cell infection by RV could be useful to study chronic viral infection and bacterium-virus interactions at the cell level. These results also suggest that clarithromycin may be evaluated for treating in vivo infections associating RV to a susceptible bacterium.
Collapse
Affiliation(s)
- M Fedy Morgene
- Group for Mucosal Immunity and Pathogen Agents (GIMAP EA3064), Faculty of Medicine of Saint-Etienne, University of Lyon, France
| | - Corantin Maurin
- Group for Mucosal Immunity and Pathogen Agents (GIMAP EA3064), Faculty of Medicine of Saint-Etienne, University of Lyon, France
| | - Sylvie Pillet
- Group for Mucosal Immunity and Pathogen Agents (GIMAP EA3064), Faculty of Medicine of Saint-Etienne, University of Lyon, France; Laboratory of Infectious Agents and Hygiene, University Hospital of Saint-Etienne, France
| | - Philippe Berthelot
- Group for Mucosal Immunity and Pathogen Agents (GIMAP EA3064), Faculty of Medicine of Saint-Etienne, University of Lyon, France; Department of Infectious Diseases, University Hospital of Saint-Etienne, France
| | - Florence Morfin
- Laboratory of Virology, Institute for Infectious Agents, Hospices Civils de Lyon and National Reference Centre for Respiratory Viruses, Lyon, France
| | - Bruno Pozzetto
- Group for Mucosal Immunity and Pathogen Agents (GIMAP EA3064), Faculty of Medicine of Saint-Etienne, University of Lyon, France; Laboratory of Infectious Agents and Hygiene, University Hospital of Saint-Etienne, France.
| | - Elisabeth Botelho-Nevers
- Group for Mucosal Immunity and Pathogen Agents (GIMAP EA3064), Faculty of Medicine of Saint-Etienne, University of Lyon, France; Department of Infectious Diseases, University Hospital of Saint-Etienne, France
| | - Paul O Verhoeven
- Group for Mucosal Immunity and Pathogen Agents (GIMAP EA3064), Faculty of Medicine of Saint-Etienne, University of Lyon, France; Laboratory of Infectious Agents and Hygiene, University Hospital of Saint-Etienne, France
| |
Collapse
|
48
|
Kim J, Shin JS, Ahn S, Han SB, Jung YS. 3-Aryl-1,2,4-oxadiazole Derivatives Active Against Human Rhinovirus. ACS Med Chem Lett 2018; 9:667-672. [PMID: 30034598 DOI: 10.1021/acsmedchemlett.8b00134] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/13/2018] [Indexed: 12/18/2022] Open
Abstract
The human rhinovirus (hRV) is the causative agent of the common cold that often aggravates respiratory complications in patients with asthma or chronic obstructive pulmonary disease. The high rate of mutations and variety of serotypes are limiting the development of anti-hRV drugs, which emphasizes the need for the discovery of novel lead compounds. Previously, we identified antiviral compound 1 that we used here as the starting material for developing a novel compound series with high efficacy against hRV-A and -B. Improved metabolic stability was achieved by substituting an ester moiety with a 1,2,4-oxadiazole group. Specifically, compound 3k exhibited a high efficacy against hRV-B14, hRV-A21, and hRV-A71, with EC50 values of 66.0, 22.0, and 3.7 nM, respectively, and a relevant hepatic stability (59.6 and 40.7% compound remaining after 30 min in rat and human liver microsomes, respectively). An in vivo study demonstrated that 3k possessed a desirable pharmacokinetic profile with low systemic clearance (0.158 L·h-1·kg-1) and modest oral bioavailability (27.8%). Hence, 3k appears to be an interesting candidate for the development of antiviral lead compounds.
Collapse
Affiliation(s)
- Jinwoo Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 34114, Republic of Korea
| | - Jin Soo Shin
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 34114, Republic of Korea
| | - Sunjoo Ahn
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 34114, Republic of Korea
| | - Soo Bong Han
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, 217 Gajeongro, Yuseong, Daejeon 34113, Republic of Korea
| | - Young-Sik Jung
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, 217 Gajeongro, Yuseong, Daejeon 34113, Republic of Korea
| |
Collapse
|
49
|
Maginnis MS. Virus-Receptor Interactions: The Key to Cellular Invasion. J Mol Biol 2018; 430:2590-2611. [PMID: 29924965 PMCID: PMC6083867 DOI: 10.1016/j.jmb.2018.06.024] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/04/2018] [Accepted: 06/08/2018] [Indexed: 11/05/2022]
Abstract
Virus–receptor interactions play a key regulatory role in viral host range, tissue tropism, and viral pathogenesis. Viruses utilize elegant strategies to attach to one or multiple receptors, overcome the plasma membrane barrier, enter, and access the necessary host cell machinery. The viral attachment protein can be viewed as the “key” that unlocks host cells by interacting with the “lock”—the receptor—on the cell surface, and these lock-and-key interactions are critical for viruses to successfully invade host cells. Many common themes have emerged in virus–receptor utilization within and across virus families demonstrating that viruses often target particular classes of molecules in order to mediate these events. Common viral receptors include sialylated glycans, cell adhesion molecules such as immunoglobulin superfamily members and integrins, and phosphatidylserine receptors. The redundancy in receptor usage suggests that viruses target particular receptors or “common locks” to take advantage of their cellular function and also suggests evolutionary conservation. Due to the importance of initial virus interactions with host cells in viral pathogenesis and the redundancy in viral receptor usage, exploitation of these strategies would be an attractive target for new antiviral therapeutics. Viral receptors are key regulators of host range, tissue tropism, and viral pathogenesis. Many viruses utilize common viral receptors including sialic acid, cell adhesion molecules such as immunoglobulin superfamily members and integrins, and phosphatidylserine receptors. Detailed molecular interactions between viruses and receptors have been defined through elegant biochemical analyses including glycan array screens, structural–functional analyses, and cell-based approaches providing tremendous insights into these initial events in viral infection. Commonalities in virus–receptor interactions present promising targets for the development of broad-spectrum antiviral therapies.
Collapse
Affiliation(s)
- Melissa S Maginnis
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469-5735, USA.
| |
Collapse
|
50
|
Upfold N, Ross C, Bishop ÖT, Luke GA, Knox C. The generation and characterisation of neutralising antibodies against the Theiler’s murine encephalomyelitis virus (TMEV) GDVII capsid reveals the potential binding site of the host cell co-receptor, heparan sulfate. Virus Res 2018; 244:153-163. [DOI: 10.1016/j.virusres.2017.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/09/2017] [Accepted: 11/15/2017] [Indexed: 11/26/2022]
|