1
|
Ethanol enhanced MDPV- and cocaine-induced aggressive behavior in mice: Forensic implications. Drug Alcohol Depend 2021; 229:109125. [PMID: 34763230 DOI: 10.1016/j.drugalcdep.2021.109125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/10/2021] [Accepted: 09/30/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Reports concerning the causal link between aggressive behavior and use and abuse of different substances (i.e., alcohol, MDPV) can be found in the literature. Nonetheless, the topic concerning the effects of acute ethanol administration on MDPV and cocaine induced aggressive behavior has yet to be thoroughly investigated. The aim of this study was to investigate such synergistic effects. MATERIALS AND METHODS A total of 360 male mice were employed in the study. Ethanol was diluted with saline solution and administered 10 min before MDPV or cocaine injection via oral gavage needles. Similarly, MDPV and cocaine were dissolved in saline solution and administered by intraperitoneal injection. Different associations of specific drug doses were then tested. To investigate the acute effects of MDPV and cocaine and their interaction with ethanol on aggression in mice, a resident-intruder test was used. RESULTS Ethanol alone was ineffective at dosages of 0.05 g/kg and 0.25 g/kg but increased the aggressiveness of the mice at 0.125 g/kg. Similarly, the injection of both cocaine alone and MDPV alone did not significantly increase the aggressiveness of the mice; conversely, the combination of ethanol and cocaine and ethanol and MDPV enhanced aggression at specific ethanol dosages (0.05 g/kg and 0.125 g/kg). CONCLUSION This study demonstrated that acute ethanol administration enhances MDPV- and cocaine-induced aggressive behavior in mice. This aggressive response is particularly enhanced when MDVP and cocaine are coupled with specific ethanol dosages, proving that psychostimulant drugs may act synergistically under certain conditions.
Collapse
|
2
|
Krakowski M, Tural U, Czobor P. The Importance of Conduct Disorder in the Treatment of Violence in Schizophrenia: Efficacy of Clozapine Compared With Olanzapine and Haloperidol. Am J Psychiatry 2021; 178:266-274. [PMID: 33472389 DOI: 10.1176/appi.ajp.2020.20010052] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Treatment of violence in schizophrenia remains a challenging problem, especially in patients with conduct disorder. Previous clinical studies did not select patients on the basis of violence and did not focus on conduct disorder. This study is a head-to-head comparison of clozapine, olanzapine, and haloperidol in the treatment of violent schizophrenia patients with and without conduct disorder. METHODS Physically assaultive schizophrenia patients (N=99) were randomly assigned to receive clozapine, olanzapine, or haloperidol in a 12-week double-blind trial. They were characterized on the basis of the presence or absence of conduct disorder before age 15. Assaults were recorded; their frequency and severity were scored on the Modified Overt Aggression Scale. Psychiatric symptoms were evaluated through the Positive and Negative Syndrome Scale. RESULTS Patients with a history of conduct disorder had more frequent and severe assaults than those without conduct disorder during the 12-week trial. Clozapine was superior to haloperidol and olanzapine in reducing assaults; olanzapine was superior to haloperidol. Clozapine's greater antiaggressive efficacy over haloperidol was substantially more pronounced in patients with conduct disorder than in patients without conduct disorder. In patients with conduct disorder, clozapine was four times more likely than haloperidol to result in lower violence; in patients without conduct disorder, it was three times more likely to do so. Olanzapine's superiority over haloperidol was also more pronounced in patients with conduct disorder. CONCLUSIONS This study is the first to examine the effect of clozapine in violent schizophrenia patients with conduct disorder. When conduct disorder is present, clozapine is the optimal treatment.
Collapse
Affiliation(s)
- Menahem Krakowski
- Department of Psychiatry, Nathan Kline Institute for Psychiatric Research, Orangeburg, N.Y. (Krakowski, Tural); Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest (Czobor)
| | - Umit Tural
- Department of Psychiatry, Nathan Kline Institute for Psychiatric Research, Orangeburg, N.Y. (Krakowski, Tural); Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest (Czobor)
| | - Pál Czobor
- Department of Psychiatry, Nathan Kline Institute for Psychiatric Research, Orangeburg, N.Y. (Krakowski, Tural); Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest (Czobor)
| |
Collapse
|
3
|
Glutamic acid decarboxylase 67 haplodeficiency in mice: consequences of postweaning social isolation on behavior and changes in brain neurochemical systems. Brain Struct Funct 2020; 225:1719-1742. [PMID: 32514634 PMCID: PMC7321906 DOI: 10.1007/s00429-020-02087-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/09/2020] [Indexed: 01/22/2023]
Abstract
Reductions of glutamate acid decarboxylase (GAD67) and subsequent GABA levels have been consistently observed in neuropsychiatric disorders like schizophrenia and depression, but it has remained unclear how GABAergic dysfunction contributes to different symptoms of the diseases. To address this issue, we investigated male mice haplodeficient for GAD67 (GAD67+/GFP mice), which showed a reduced social interaction, social dominance and increased immobility in the forced swim test. No differences were found in rotarod performance and sensorimotor gating. We also addressed potential effects of social deprivation, which is known, during early life, to affect GABAergic function and induces behavioral abnormalities similar to the symptoms found in psychiatric disorders. Indeed, social isolation of GAD67+/GFP mice provoked increased rearing activity in the social interaction test and hyperlocomotion on elevated plus maze. Since GABA closely interacts with the dopaminergic, serotonergic and cholinergic neurotransmitter systems, we investigated GAD67+/GFP and GAD67+/+ mice for morphological markers of the latter systems and found increased tyrosine hydroxylase (TH)-IR fiber densities in CA1 of dorsal hippocampus. By contrast, no differences in numbers and densities of TH-positive neurons of the midbrain dopamine regions, serotonin (5-HT) neurons of the raphe nuclei, or choline acetyltransferase (ChAT)-expressing neurons of basal forebrain and their respective terminal fields were observed. Our results indicate that GAD67 haplodeficiency impairs sociability and increases vulnerability to social stress, provokes depressive-like behavior and alters the catecholaminergic innervation in brain areas associated with schizophrenia. GAD67+/GFP mice may provide a useful model for studying the impact of GABAergic dysfunction as related to neuropsychiatric disorders.
Collapse
|
4
|
Bacqué-Cazenave J, Bharatiya R, Barrière G, Delbecque JP, Bouguiyoud N, Di Giovanni G, Cattaert D, De Deurwaerdère P. Serotonin in Animal Cognition and Behavior. Int J Mol Sci 2020; 21:ijms21051649. [PMID: 32121267 PMCID: PMC7084567 DOI: 10.3390/ijms21051649] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/20/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is acknowledged as a major neuromodulator of nervous systems in both invertebrates and vertebrates. It has been proposed for several decades that it impacts animal cognition and behavior. In spite of a completely distinct organization of the 5-HT systems across the animal kingdom, several lines of evidence suggest that the influences of 5-HT on behavior and cognition are evolutionary conserved. In this review, we have selected some behaviors classically evoked when addressing the roles of 5-HT on nervous system functions. In particular, we focus on the motor activity, arousal, sleep and circadian rhythm, feeding, social interactions and aggressiveness, anxiety, mood, learning and memory, or impulsive/compulsive dimension and behavioral flexibility. The roles of 5-HT, illustrated in both invertebrates and vertebrates, show that it is more able to potentiate or mitigate the neuronal responses necessary for the fine-tuning of most behaviors, rather than to trigger or halt a specific behavior. 5-HT is, therefore, the prototypical neuromodulator fundamentally involved in the adaptation of all organisms across the animal kingdom.
Collapse
Affiliation(s)
- Julien Bacqué-Cazenave
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
| | - Rahul Bharatiya
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09100 Cagliari, Italy
| | - Grégory Barrière
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
| | - Jean-Paul Delbecque
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
| | - Nouhaila Bouguiyoud
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- School of Biosciences, Neuroscience Division, Cardiff University, Cardiff CF24 4HQ, UK
| | - Daniel Cattaert
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
- Correspondence: (D.C.); (P.D.D.)
| | - Philippe De Deurwaerdère
- INCIA, UMR5287, Centre National de la Recherche Scientifique, 33076 Bordeaux, France; (J.B.-C.); (R.B.); (G.B.); (J.-P.D.); (N.B.)
- Correspondence: (D.C.); (P.D.D.)
| |
Collapse
|
5
|
Mechanisms of aggression and production in chickens: genetic variations in the functions of serotonin, catecholamine, and corticosterone. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933907001432] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Freudenberg F, Carreño Gutierrez H, Post AM, Reif A, Norton WHJ. Aggression in non-human vertebrates: Genetic mechanisms and molecular pathways. Am J Med Genet B Neuropsychiatr Genet 2016; 171:603-40. [PMID: 26284957 DOI: 10.1002/ajmg.b.32358] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/28/2015] [Indexed: 11/07/2022]
Abstract
Aggression is an adaptive behavioral trait that is important for the establishment of social hierarchies and competition for mating partners, food, and territories. While a certain level of aggression can be beneficial for the survival of an individual or species, abnormal aggression levels can be detrimental. Abnormal aggression is commonly found in human patients with psychiatric disorders. The predisposition to aggression is influenced by a combination of environmental and genetic factors and a large number of genes have been associated with aggression in both human and animal studies. In this review, we compare and contrast aggression studies in zebrafish and mouse. We present gene ontology and pathway analyses of genes linked to aggression and discuss the molecular pathways that underpin agonistic behavior in these species. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Florian Freudenberg
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt am Main, Germany
| | | | - Antonia M Post
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt am Main, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt am Main, Germany
| | - William H J Norton
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| |
Collapse
|
7
|
Been LE, Moore KM, Kennedy BC, Meisel RL. Metabotropic Glutamate Receptor and Fragile X Signaling in a Female Model of Escalated Aggression. Biol Psychiatry 2016; 79:685-92. [PMID: 26342498 PMCID: PMC4744802 DOI: 10.1016/j.biopsych.2015.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/14/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Escalated aggression is a behavioral sign of numerous psychiatric disorders characterized by a loss of control. The neurobiology underlying escalated aggression is unknown and is particularly understudied in females. Research in our laboratory demonstrated that repeated aggressive experience in female hamsters resulted in an escalated response to future aggressive encounters and an increase in dendritic spine density on nucleus accumbens (NAc) neurons. We hypothesized that the activation of group I metabotropic glutamate receptor signaling though the fragile X mental retardation protein (FMRP) pathway may underlie synaptic plasticity associated with aggression escalation. METHODS Female hamsters were given five daily aggression tests with or without prior treatment with the metabotropic glutamate receptor 5 (mGluR5) antagonist 2-methyl-6-(phenylethynyl)-pyridine. Following aggression testing, messenger RNA expression and protein levels were measured in the nucleus accumbens for postsynaptic density protein 95 (PSD-95) and SAP90/PSD-95-associated protein 3, as well as the levels of phosphorylated FMRP. RESULTS Experience-dependent escalation of aggression in female hamsters depends on activation of mGluR5 receptors. Furthermore, aggressive experience decreases phosphorylation of FMRP in the NAc, which is coupled to a long-term increase in the expression of the synaptic scaffolding proteins PSD-95 and SAP90/PSD-95-associated protein 3. Finally, the experience-dependent increase in PSD-95 is prevented by antagonism of the mGluR5 receptor. CONCLUSIONS Activation of the FMRP pathway by group I metabotropic glutamate receptors is involved in regulating synaptic plasticity following aggressive experience. The NAc is a novel target for preclinical studies of the treatment of escalated aggression, with the added benefit that emerging therapeutic approaches are likely to be effective in treating pathologic aggression in both female and male subjects.
Collapse
Affiliation(s)
| | | | | | - Robert L. Meisel
- Corresponding Author: 6-145 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55419, Phone: 612-625-6766, Fax: 612-626-9201,
| |
Collapse
|
8
|
Alekseyenko OV, Kravitz EA. Serotonin and the search for the anatomical substrate of aggression. Fly (Austin) 2015; 8:200-5. [PMID: 25923771 DOI: 10.1080/19336934.2015.1045171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
All species of animals display aggression in order to obtain resources such as territories, mates, or food. Appropriate displays of aggression rely on the correct identification of a potential competitor, an evaluation of the environmental signals, and the physiological state of the animal. With a hard-wired circuitry involving fixed numbers of neurons, neuromodulators like serotonin offer adaptive flexibility in behavioral responses without changing the "hard-wiring". In a recent report, we combined intersectional genetics, quantitative behavioral assays and morphological analyses to identify single serotonergic neurons that modulate the escalation of aggression. We found anatomical target areas within the brain where these neurons appear to form synaptic contacts with 5HT1A receptor-expressing neurons, and then confirmed the likelihood of those connections on a functional level. In this Extra View article, we offer an extended discussion of these recent findings and elaborate on how they can link a cellular and functional mapping of an aggression-regulating circuit at a single-cell resolution level.
Collapse
|
9
|
Thörnqvist PO, Höglund E, Winberg S. Natural selection constrains personality and brain gene expression differences in Atlantic salmon (Salmo salar). J Exp Biol 2015; 218:1077-83. [DOI: 10.1242/jeb.114314] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/05/2015] [Indexed: 01/10/2023]
Abstract
ABSTRACT
In stream-spawning salmonid fishes there is a considerable variation in the timing of when fry leave the spawning nests and establish a feeding territory. The timing of emergence from spawning nests appears to be related to behavioural and physiological traits, e.g. early emerging fish are bolder and more aggressive. In the present study, emerging Atlantic salmon (Salmo salar L.) alevins were sorted into three fractions: early, intermediate and late emerging. At the parr stage, behaviour, stress responses, hindbrain monoaminergic activity and forebrain gene expression were explored in fish from the early and late emerging fractions (first and last 25%). The results show that when subjected to confinement stress, fish from the late emerging fraction respond with a larger activation of the brain serotonergic system than fish from the early fraction. Similarly, in late emerging fish, stress resulted in elevated expression of mRNA coding for serotonin 1A receptors (5-HT1A), GABA-A receptor-associated protein and ependymin, effects not observed in fish from the early emerging fraction. Moreover, fish from the early emerging fraction displayed bolder behaviour than their late emerging littermates. Taken together, these results suggest that time of emergence, boldness and aggression are linked to each other, forming a behavioural syndrome in juvenile salmon. Differences in brain gene expression between early and late emerging salmon add further support to a relationship between stress coping style and timing of emergence. However, early and late emerging salmon do not appear to differ in hypothalamus–pituitary–interrenal (HPI) axis reactivity, another characteristic of divergent stress coping styles.
Collapse
Affiliation(s)
- Per-Ove Thörnqvist
- Department of Neuroscience, Physiology Unit, Biomedical Centre (BMC), Uppsala University, Box 593, Uppsala SE-75124, Sweden
| | - Erik Höglund
- National Institute of Aquatic Resources, Section for Aquaculture, Technical University of Denmark, PO Box 101, Hirtshals DK-9850, Denmark
- Research secretariat, University of Agder, 4630 Kristiansand, Norway
| | - Svante Winberg
- Department of Neuroscience, Physiology Unit, Biomedical Centre (BMC), Uppsala University, Box 593, Uppsala SE-75124, Sweden
| |
Collapse
|
10
|
Sandhu KV, Lang D, Müller B, Nullmeier S, Yanagawa Y, Schwegler H, Stork O. Glutamic acid decarboxylase 67 haplodeficiency impairs social behavior in mice. GENES BRAIN AND BEHAVIOR 2014; 13:439-50. [DOI: 10.1111/gbb.12131] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 01/06/2014] [Accepted: 03/05/2014] [Indexed: 12/31/2022]
Affiliation(s)
- K. V. Sandhu
- Department of Genetics & Molecular Neurobiology; Institute of Biology; Magdeburg Germany
| | - D. Lang
- Department of Genetics & Molecular Neurobiology; Institute of Biology; Magdeburg Germany
| | - B. Müller
- Department of Genetics & Molecular Neurobiology; Institute of Biology; Magdeburg Germany
| | - S. Nullmeier
- Institute of Anatomy; Otto-von-Guericke University Magdeburg; Magdeburg Germany
| | - Y. Yanagawa
- Department of Genetic and Behavioral Neuroscience; Gunma University Graduate School of Medicine and JST, CREST; Maebashi Japan
| | - H. Schwegler
- Institute of Anatomy; Otto-von-Guericke University Magdeburg; Magdeburg Germany
- Center for Behavioral Brain Sciences; Magdeburg Germany
| | - O. Stork
- Department of Genetics & Molecular Neurobiology; Institute of Biology; Magdeburg Germany
- Center for Behavioral Brain Sciences; Magdeburg Germany
| |
Collapse
|
11
|
Vindas MA, Sørensen C, Johansen IB, Folkedal O, Höglund E, Khan UW, Stien LH, Kristiansen TS, Braastad BO, Øverli Ø. Coping with unpredictability: dopaminergic and neurotrophic responses to omission of expected reward in Atlantic salmon (Salmo salar L.). PLoS One 2014; 9:e85543. [PMID: 24465595 PMCID: PMC3894970 DOI: 10.1371/journal.pone.0085543] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/04/2013] [Indexed: 01/13/2023] Open
Abstract
Comparative studies are imperative for understanding the evolution of adaptive neurobiological processes such as neural plasticity, cognition, and emotion. Previously we have reported that prolonged omission of expected rewards (OER, or 'frustrative nonreward') causes increased aggression in Atlantic salmon (Salmo salar). Here we report changes in brain monoaminergic activity and relative abundance of brain derived neurotrophic factor (BDNF) and dopamine receptor mRNA transcripts in the same paradigm. Groups of fish were initially conditioned to associate a flashing light with feeding. Subsequently, the expected food reward was delayed for 30 minutes during two out of three meals per day in the OER treatment, while the previously established routine was maintained in control groups. After 8 days there was no effect of OER on baseline brain stem serotonin (5-HT) or dopamine (DA) activity. Subsequent exposure to acute confinement stress led to increased plasma cortisol and elevated turnover of brain stem DA and 5-HT in all animals. The DA response was potentiated and DA receptor 1 (D1) mRNA abundance was reduced in the OER-exposed fish, indicating a sensitization of the DA system. In addition OER suppressed abundance of BDNF in the telencephalon of non-stressed fish. Regardless of OER treatment, a strong positive correlation between BDNF and D1 mRNA abundance was seen in non-stressed fish. This correlation was disrupted by acute stress, and replaced by a negative correlation between BDNF abundance and plasma cortisol concentration. These observations indicate a conserved link between DA, neurotrophin regulation, and corticosteroid-signaling pathways. The results also emphasize how fish models can be important tools in the study of neural plasticity and responsiveness to environmental unpredictability.
Collapse
MESH Headings
- Adaptation, Psychological
- Analysis of Variance
- Animals
- Behavior, Animal
- Biogenic Monoamines/metabolism
- Brain/metabolism
- Brain-Derived Neurotrophic Factor/genetics
- Brain-Derived Neurotrophic Factor/metabolism
- Conditioning, Psychological
- Dopaminergic Neurons/metabolism
- Gene Expression Regulation
- Hydrocortisone/blood
- Nerve Growth Factors/metabolism
- Proliferating Cell Nuclear Antigen/genetics
- Proliferating Cell Nuclear Antigen/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Reward
- Salmo salar/blood
- Salmo salar/genetics
- Salmo salar/growth & development
- Salmo salar/metabolism
- Stress, Physiological/genetics
Collapse
Affiliation(s)
- Marco A. Vindas
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
- * E-mail:
| | | | | | - Ole Folkedal
- Department of Animal Welfare, Institute of Marine Research, Matredal, Norway
| | - Erik Höglund
- Department of Marine Ecology and Aquaculture, Danish Institute for Fisheries Research, Hirtshals, Denmark
| | - Uniza W. Khan
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Lars H. Stien
- Department of Animal Welfare, Institute of Marine Research, Matredal, Norway
| | - Tore S. Kristiansen
- Department of Animal Welfare, Institute of Marine Research, Matredal, Norway
| | - Bjarne O. Braastad
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Øyvind Øverli
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
12
|
Umukoro S, Eduviere AT, Aladeokin AC. Anti-aggressive activity of methyl jasmonate and the probable mechanism of its action in mice. Pharmacol Biochem Behav 2012; 101:271-7. [DOI: 10.1016/j.pbb.2011.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 11/24/2022]
|
13
|
Translational and reverse translational research on the role of stress in drug craving and relapse. Psychopharmacology (Berl) 2011; 218:69-82. [PMID: 21494792 PMCID: PMC3192289 DOI: 10.1007/s00213-011-2263-y] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Accepted: 03/13/2011] [Indexed: 12/14/2022]
Abstract
RATIONALE AND BACKGROUND High relapse rates during abstinence are a pervasive problem in drug addiction treatment. Relapse is often associated with stress exposure, which can provoke a subjective state of drug craving that can also be demonstrated under controlled laboratory conditions. Stress-induced relapse and craving in humans can be modeled in mice, rats, and monkeys using a reinstatement model in which drug-taking behaviors are extinguished and then reinstated by acute exposure to certain stressors. Studies using the reinstatement model in rats have identified the role of several neurotransmitters and brain sites in stress-induced reinstatement of drug seeking, but the degree to which these preclinical findings are relevant to the human condition is largely unknown. OBJECTIVES AND HIGHLIGHTS Here, we address this topic by discussing recent results on the effect of alpha-2 adrenoceptors and substance P-NK1 receptor antagonists on stress-induced reinstatement in mice and rats and stress-induced craving and potentially stress-induced relapse in humans. We also discuss brain sites and circuits involved in stress-induced reinstatement of drug seeking in rats and those activated during stress-induced craving in humans. CONCLUSIONS There is evidence that alpha-2 adrenoceptor agonists and NK1 receptor antagonists decrease stress-induced drug seeking in rats and stress-induced craving in humans. Whether these drugs would also prevent stress-induced drug relapse in humans and whether similar or different brain mechanisms are involved in stress-induced reinstatement in non-humans and stress-induced drug craving and relapse in humans are subjects for future research.
Collapse
|
14
|
Childs E, O'Connor S, de Wit H. Bidirectional interactions between acute psychosocial stress and acute intravenous alcohol in healthy men. Alcohol Clin Exp Res 2011; 35:1794-803. [PMID: 21762177 DOI: 10.1111/j.1530-0277.2011.01522.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The biological mechanisms by which acute stress increases alcohol consumption are unclear. One potential mechanism is that stress acts by altering the pharmacological and subjective effects of alcohol. Acute stress produces a cascade of physiological and psychological effects, each with a distinctive time course. In this study, we investigated whether different phases of response to an acute stress alter the subjective effects of intravenous alcohol, by administering the drug at 2 different times after the stress. METHODS Healthy men (n = 25) participated in 2 sessions: 1 with the Trier Social Stress Test and the other with a nonstressful control task, each followed by infusions of intravenous alcohol (targeting 40 mg% in 5 minutes) and placebo. One group of participants received alcohol within 1 minute of completing the tasks (Alc0, n = 11), followed by placebo 30 minutes later. In the other group (Alc30, n = 14), the order of alcohol and placebo infusions was reversed. Subjective effects (i.e., anxiety, stimulation, want more) and physiological measures (heart rate, blood pressure, salivary cortisol) were measured before and at repeated intervals after the tasks and infusions. RESULTS Stress did not change the subjective effects of alcohol in either group. However, when individual differences in alcohol responses were considered, stress differentially altered the stimulant-like and sedative effects of alcohol. Among individuals who exhibited predominantly stimulant responses to alcohol in the nonstressful condition, stress decreased the stimulant-like effects of alcohol and "wanting more." By contrast, among participants who did not report stimulation after alcohol in the control session, stress decreased the sedative effects and increased "want more." In addition, alcohol administered immediately after the Trier Social Stress Test dampened cortisol responses yet prolonged negative subjective responses to the stress. CONCLUSIONS These findings demonstrate that there are bidirectional relationships between alcohol and stress. Alcohol influences responses to stress, and stress changes reactions to alcohol, depending on an individual's pattern of response to alcohol. This study highlights the fact that stress-alcohol interactions vary among individual drinkers, suggesting that the effects of stress on motivation to drink alcohol may also differ between individuals.
Collapse
Affiliation(s)
- Emma Childs
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
15
|
Differential effects of dopamine receptor D1-type and D2-type antagonists and phase of the estrous cycle on social learning of food preferences, feeding, and social interactions in mice. Neuropsychopharmacology 2011; 36:1689-702. [PMID: 21525863 PMCID: PMC3138658 DOI: 10.1038/npp.2011.50] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The neurobiological bases of social learning, by which an animal can 'exploit the expertise of others' and avoid the disadvantages of individual learning, are only partially understood. We examined the involvement of the dopaminergic system in social learning by administering a dopamine D1-type receptor antagonist, SCH23390 (0.01, 0.05, and 0.1 mg/kg), or a D2-type receptor antagonist, raclopride (0.1, 0.3, and 0.6 mg/kg), to adult female mice prior to socially learning a food preference. We found that while SCH23390 dose-dependently inhibited social learning without affecting feeding behavior or the ability of mice to discriminate between differently flavored diets, raclopride had the opposite effects, inhibiting feeding but leaving social learning unaffected. We showed that food odor, alone or in a social context, was insufficient to induce a food preference, proving the specifically social nature of this paradigm. The estrous cycle also affected social learning, with mice in proestrus expressing the socially acquired food preference longer than estrous and diestrous mice. This suggests gonadal hormone involvement, which is consistent with known estrogenic regulation of female social behavior and estrogen receptor involvement in social learning. Furthermore, a detailed ethological analysis of the social interactions during which social learning occurs showed raclopride- and estrous phase-induced changes in agonistic behavior, which were not directly related to effects on social learning. Overall, these results suggest a differential involvement of the D1-type and D2-type receptors in the regulation of social learning, feeding, and agonistic behaviors that are likely mediated by different underlying states.
Collapse
|
16
|
Ginsberg SD, Che S, Hashim A, Zavadil J, Cancro R, Lee SH, Petkova E, Sershen HW, Volavka J. Differential regulation of catechol-O-methyltransferase expression in a mouse model of aggression. Brain Struct Funct 2011; 216:347-56. [PMID: 21512897 DOI: 10.1007/s00429-011-0315-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 03/24/2011] [Indexed: 12/22/2022]
Abstract
This study was designed to understand molecular and cellular mechanisms underlying aggressive behaviors in mice exposed to repeated interactions in their homecage with conspecifics. A resident-intruder procedure was employed whereby two males were allowed to interact for 10 min trials, and aggressive and/or submissive behaviors (e.g., degree of attacking, biting, chasing, grooming, rearing, or upright posture) were assessed. Following 10 days of behavioral trials, brains were removed and dissected into specific regions including the cerebellum, frontal cortex, hippocampus, midbrain, pons, and striatum. Gene expression analysis was performed using real-time quantitative polymerase-chain reaction (qPCR) for catechol-O-methyltransferase (COMT) and tyrosine hydroxylase (TH). Compared to naive control mice, significant up regulation of COMT expression of residents was observed in the cerebellum, frontal cortex, hippocampus, midbrain, and striatum; in all of these brain regions the COMT expression of residents was also significantly higher than that of intruders. The intruders also had a significant down regulation (compared to naive control mice) within the hippocampus, indicating a selective decrease in COMT expression in the hippocampus of submissive subjects. Immunoblot analysis confirmed COMT up regulation in the midbrain and hippocampus of residents and down regulation in intruders. qPCR analysis of TH expression indicated significant up regulation in the midbrain of residents and concomitant down regulation in intruders. These findings implicate regionally- and behaviorally-specific regulation of COMT and TH expression in aggressive and submissive behaviors. Additional molecular and cellular characterization of COMT, TH, and other potential targets is warranted within this animal model of aggression.
Collapse
Affiliation(s)
- Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, New York University Langone Medical Center, New York, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Poletto R, Cheng HW, Meisel RL, Richert BT, Marchant JN. Gene expression of serotonin and dopamine receptors and monoamine oxidase-A in the brain of dominant and subordinate pubertal domestic pigs (Sus scrofa) fed a β-adrenoreceptor agonist. Brain Res 2011; 1381:11-20. [PMID: 21094150 DOI: 10.1016/j.brainres.2010.11.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 10/25/2010] [Accepted: 11/08/2010] [Indexed: 11/30/2022]
Abstract
Aggression is a major source of social stress with negative effects on health and well-being, yet limited information is known about the molecular mechanisms mediating aggressive behavior in swine. Ractopamine (RAC) is a β-adrenoreceptor agonist that enhances growth but increases aggressive behaviors in female pigs. Thus, the effects of RAC, sex, and social rank on the mRNA abundance of genes encoding serotonin and dopamine receptors, and monoamine oxidase (MAO)-A in brains of sub-adult pigs were evaluated. Top dominant and bottom subordinate pigs (16/sex) in pens of 4 pigs were determined, and fed either the control or RAC diets. At day 31, their raphe nuclei (RN), amygdala (AMY), frontal cortex (FC), and hypothalamus (HYP) were dissected; relative mRNA abundance for 5-HT₁(B), 5-HT₂(A), 5-HT₂(B), and D₁ receptors, and MAO-A was determined by Q-RT-PCR and data subjected to multivariate linear mixed model analysis and Tukey post-hoc test. Expression of 5-HT₁(B) and MAO-A was suppressed in the AMY of female pigs; 5-HT₂(B) expression was also suppressed in the RN, FC and HYP of females and RN of dominant pigs (P < 0.05). Expression of 5-HT₂(A) was more up-regulated in RN of females compared to males (P < 0.05). Expression of D₁ varied in RN and FC mostly as a function of RAC feeding and its interaction with sex and social rank (P < 0.05). While RAC feeding is related to changes in expression of the D1 receptor mRNA, suppression in expression of serotonergic genes detected in the brain of pigs, especially in females independent of social rank, may be mediating the inter-individual offensive aggression.
Collapse
Affiliation(s)
- Rosangela Poletto
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
18
|
Schwartzer JJ, Melloni RH. Dopamine activity in the lateral anterior hypothalamus modulates AAS-induced aggression through D2 but not D5 receptors. Behav Neurosci 2010; 124:645-55. [PMID: 20939664 PMCID: PMC3131052 DOI: 10.1037/a0020899] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Treatment with anabolic-androgenic steroids (AAS) throughout adolescence facilitates offensive aggression in Syrian hamsters. In the anterior hypothalamus (AH), the dopaminergic neural system undergoes alterations after repeated exposure to AAS, producing elevated aggression. Previously, systemic administration of selective dopamine receptor antagonists has been shown to reduce aggression in various species and animal models. However, these reductions in aggression occur with concomitant alterations in general arousal and mobility. Therefore, to control for these systemic effects, the current studies utilized microinjection techniques to determine the effects of local antagonism of D2 and D5 receptors in the AH on adolescent AAS-induced aggression. Male Syrian hamsters were treated with AAS throughout adolescence and tested for aggression after local infusion of the D2 antagonist eticlopride, or the D5 antagonist SCH-23390, into the AH. Treatment with eticlopride showed dose-dependent suppression of aggressive behavior in the absence of changes in mobility. Conversely, while injection of SCH-23390 suppressed aggressive behavior, these reductions were met with alterations in social interest and locomotor behavior. To elucidate a plausible mechanism for the observed D5 receptor mediation of AAS-induced aggression, brains of AAS and sesame oil-treated animals were processed for double-label immunofluorescence of GAD₆₇ (a marker for GABA production) and D5 receptors in the lateral subdivision of the AH (LAH). Results indicate a sparse distribution of GAD₆₇ neurons colocalized with D5 receptors in the LAH. Together, these results indicate that D5 receptors in the LAH modulate non-GABAergic pathways that indirectly influence aggression control, while D2 receptors have a direct influence on AAS-induced aggression.
Collapse
Affiliation(s)
- Jared J. Schwartzer
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| | - Richard H. Melloni
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| |
Collapse
|
19
|
Alekseyenko OV, Lee C, Kravitz EA. Targeted manipulation of serotonergic neurotransmission affects the escalation of aggression in adult male Drosophila melanogaster. PLoS One 2010; 5:e10806. [PMID: 20520823 PMCID: PMC2875409 DOI: 10.1371/journal.pone.0010806] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 05/02/2010] [Indexed: 11/23/2022] Open
Abstract
Dopamine (DA) and serotonin (5HT) are reported to serve important roles in aggression in a wide variety of animals. Previous investigations of 5HT function in adult Drosophila behavior have relied on pharmacological manipulations, or on combinations of genetic tools that simultaneously target both DA and 5HT neurons. Here, we generated a transgenic line that allows selective, direct manipulation of serotonergic neurons and asked whether DA and 5HT have separable effects on aggression. Quantitative morphological examination demonstrated that our newly generated tryptophan hydroxylase (TRH)-Gal4 driver line was highly selective for 5HT-containing neurons. This line was used in conjunction with already available Gal4 driver lines that target DA or both DA and 5HT neurons to acutely alter the function of aminergic systems. First, we showed that acute impairment of DA and 5HT neurotransmission using expression of a temperature sensitive form of dynamin completely abolished mid- and high-level aggression. These flies did not escalate fights beyond brief low-intensity interactions and therefore did not yield dominance relationships. We showed next that manipulation of either 5HT or DA neurotransmission failed to duplicate this phenotype. Selective disruption of 5HT neurotransmission yielded flies that fought, but with reduced ability to escalate fights, leading to fewer dominance relationships. Acute activation of 5HT neurons using temperature sensitive dTrpA1 channel expression, in contrast, resulted in flies that escalated fights faster and that fought at higher intensities. Finally, acute disruption of DA neurotransmission produced hyperactive flies that moved faster than controls, and rarely engaged in any social interactions. By separately manipulating 5HT- and DA- neuron systems, we collected evidence demonstrating a direct role for 5HT in the escalation of aggression in Drosophila.
Collapse
Affiliation(s)
- Olga V Alekseyenko
- Neurobiology Department, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
20
|
Saxon L, Borg S, Hiltunen AJ. Reduction of aggression during benzodiazepine withdrawal: effects of flumazenil. Pharmacol Biochem Behav 2010; 96:148-51. [PMID: 20451546 DOI: 10.1016/j.pbb.2010.04.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 04/14/2010] [Accepted: 04/28/2010] [Indexed: 11/30/2022]
Abstract
Benzodiazepine withdrawal has been associated with hostile and aggressive behavior. The benzodiazepine antagonist flumazenil has reduced, increased or not affected hostility and aggression in animal and human studies. In the present study we analyzed data collected in a placebo-controlled study of the effects of the benzodiazepine antagonist flumazenil in patients previously treated for benzodiazepine dependency, and healthy controls. The aim was to analyze the effects of flumazenil on hostility and aggression. Ten patients and 10 controls received, on two separate occasions, cumulative doses of flumazenil (0.05, 0.1, 0.25, 0.5 and 1mg at 15min intervals) or placebo. Withdrawal symptoms were rated after each injection. Patients had been free from benzodiazepines for 47 (4-266) weeks on the first occasion. A three-way interaction (groupxtreatmentxdose) was found, and was explained by: 1) patients rating aggression and hostility higher than controls at all times during placebo, while 2) during the flumazenil provocation i) the initial significant difference between patients and controls was no longer significant above the 0.5mg dose, and ii) patients rated aggression and hostility significantly lower above the 0.5mg dose compared to base-line. The results suggest that self-rated aggression and hostility in patients treated for benzodiazepine dependency was reduced by the partial benzodiazepine agonist flumazenil.
Collapse
Affiliation(s)
- L Saxon
- Department of Clinical Neuroscience, Section of Dependency Research, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
21
|
|
22
|
Natarajan D, de Vries H, Saaltink DJ, de Boer SF, Koolhaas JM. Delineation of violence from functional aggression in mice: an ethological approach. Behav Genet 2009; 39:73-90. [PMID: 18972199 PMCID: PMC9823070 DOI: 10.1007/s10519-008-9230-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 09/08/2008] [Indexed: 01/11/2023]
Abstract
The present study aims at delineating violence from aggression, using genetically selected high (SAL, TA, NC900) and low (LAL, TNA NC100) aggressive mouse strains. Unlike aggression, violence lacks intrinsic control, environmental constraints as well as functional endpoints. Conventional measures namely latency, frequency and duration were used initially to accomplish the objective of delineation using the above strains. However, these quantitative measures fail to reveal further details beyond the magnitude of differential aggression, especially within the high aggressive mouse strains. Hence, it was necessary to analyze further, the behavioral sequences that make up the agonistic encounter. Novel measures such as threat/(attack + chase) (T/AC) and offense/withdrawal (O/W) ratios, context dependency and first-order Markov chain analysis were used for the above purpose. Our present analyses reveal clear qualitative behavioral differences between the three high aggressive selection strains based on the following facets namely structure and context in an agonistic interaction. Structure refers to a detailed study of the agonistic interaction components (ritualistic display, offense and sensitivity to the opponent submission cues) between any two subjects (inter-male interaction for the present study). Context refers to the capacity to identify an opponent by nature of its state (free moving/anesthetized), sex and the environment (home/neutral territory). NC900 displayed context dependency and structurally a rich repertoire of agonistic interaction components with an opponent. SAL failed to show discrimination and its inter-male agonistic behavior is restricted to a repetitive and an opponent-insensitive pattern of attack and chase. TA was comparable to SAL in terms of the structure but sensitive to context variables. Thus, SAL seems to display a violent form of aggressive behavior, while NC900 display 'functional' hyperaggression against a docile opponent in an inter-male agonistic interaction.
Collapse
Affiliation(s)
- Deepa Natarajan
- grid.4830.f0000000404071981Department of Behavior Physiology, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | - Han de Vries
- grid.5477.10000000120346234Department of Behavioral Biology, University of Utrecht, P.O. Box 80.086, 3508 TB Utrecht, The Netherlands
| | - Dirk-Jan Saaltink
- grid.5132.50000000123121970Department of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research (LACDR), Leiden University Medical Center, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Sietse F. de Boer
- grid.4830.f0000000404071981Department of Behavior Physiology, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | - Jaap M. Koolhaas
- grid.4830.f0000000404071981Department of Behavior Physiology, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| |
Collapse
|
23
|
Hung GCL, Chen YY. Combined low-dose clozapine with low-dose aripiprazole in a schizophrenic patient. J Psychopharmacol 2009; 23:106-8. [PMID: 18308778 DOI: 10.1177/0269881107083998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aripiprazole, a partial dopaminergic agonist, represents a well-tolerated and effective addition to the antipsychotic armamentarium. However, accumulated data indicates that aripiprazole may still induce extrapyramidal side effects (EPS) in susceptible patients. Guidelines for treating schizophrenia have consistently recommended antipsychotic monotherapy. Nevertheless, in certain clinical situations, a thorough evaluation of the benefit/risk ratio suggests that combinations of antipsychotic agents may improve treatment efficacy and tolerability. We report a schizophrenic patient for whom sequential administration of aripiprazole and risperidone induced severe EPS, and subsequent combination therapy with of clozapine and aripiprazole achieved adequate symptom control and markedly reduced EPS.
Collapse
Affiliation(s)
- G C-L Hung
- Taipei City Psychiatric Center, Taipei City Hospital, and Department of Social Medicine, National Yang Ming University, Taipei, Taiwan
| | | |
Collapse
|
24
|
Seo D, Patrick CJ, Kennealy PJ. Role of Serotonin and Dopamine System Interactions in the Neurobiology of Impulsive Aggression and its Comorbidity with other Clinical Disorders. AGGRESSION AND VIOLENT BEHAVIOR 2008; 13:383-395. [PMID: 19802333 PMCID: PMC2612120 DOI: 10.1016/j.avb.2008.06.003] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Impulsive aggression is characterized by an inability to regulate affect as well as aggressive impulses, and is highly comorbid with other mental disorders including depression, suicidal behavior, and substance abuse. In an effort to elucidate the neurobiological underpinnings of impulsive aggression and to help account for its connections with these other disorders, this paper reviews relevant biochemical, brain imaging, and genetic studies. The review suggests that dysfunctional interactions between serotonin and dopamine systems in the prefrontal cortex may be an important mechanism underlying the link between impulsive aggression and its comorbid disorders. Specifically, serotonin hypofunction may represent a biochemical trait that predisposes individuals to impulsive aggression, with dopamine hyperfunction contributing in an additive fashion to the serotonergic deficit. The current paper proposes a modified diathesis-stress model of impulsive aggression in which the underlying biological diathesis may be deficient serotonergic function in the ventral prefrontal cortex. This underlying disposition can be manifested behaviorally as impulsive aggression towards oneself and others, and as depression under precipitating life stressors. Substance abuse associated with impulsive aggression is understood in the context of dopamine dysregulation resulting from serotonergic deficiency. Also discussed are future research directions in the neurobiology of impulsive aggression and its comorbid disorders.
Collapse
Affiliation(s)
- Dongju Seo
- Department of Psychology, University of Minnesota, Twin Cities
| | | | | |
Collapse
|
25
|
The comparative distributions of the monoamine transporters in the rodent, monkey, and human amygdala. Brain Struct Funct 2008; 213:73-91. [PMID: 18283492 PMCID: PMC9741847 DOI: 10.1007/s00429-008-0176-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 01/31/2008] [Indexed: 12/14/2022]
Abstract
The monoamines in the amygdala modulate multiple aspects of emotional processing in the mammalian brain, and organic or pharmacological dysregulation of these systems can result in affective pathologies. Knowledge of the normal distribution of these neurotransmitters, therefore, is central to our understanding of both the normal processes regulated by the amygdala and the pathological conditions associated with monoaminergic dysregulation. The monoaminergic transporters have proven to be accurate and reliable markers of the distributions of their substrates. The purpose of this review was twofold: First, to briefly recount the functional relevance of dopamine, serotonin, and norepinephrine transmission in the amygdala, and second, to describe and compare the distributions of the monoamine transporters in the rodent, monkey, and human brain. The transporters were found to be heterogeneously distributed in the amygdala. The dopamine transporter (DAT) is consistently found to be extremely sparsely distributed, however the various accounts of its subregional topography are inconsistent, making any cross-species comparisons difficult. The serotonin transporter (SERT) had the greatest overall degree of labeling of the three markers, and was characterized by substantial inter-species variability in its relative distribution. The norepinephrine transporter (NET) was shown to possess an intermediate level of labeling, and like the SERT, its distribution is not consistent across the three species. The results of these comparisons indicate that caution should be exercised when using animal models to investigate the complex processes modulated by the monoamines in the amygdala, as their relative contributions to these functions may differ across species.
Collapse
|
26
|
Litvin Y, Blanchard DC, Pentkowski NS, Blanchard RJ. A pinch or a lesion: a reconceptualization of biting consequences in mice. Aggress Behav 2007; 33:545-51. [PMID: 17654688 DOI: 10.1002/ab.20222] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Intruder and resident male colony mice exhibit an array of distinct defensive and offensive behaviors. Intruders typically show more boxing, flight, defensive sideways position, on the back position and general locomotion, while residents exhibit higher levels of attack, olfactory investigation, aggressive grooming, and biting, with a preference for dorsal bite locations. Here, analysis of bite locations on the body of the intruder mice showed that the majority of bites produced few lesions (i.e. actual puncturing of the skin) when compared to scrapes or no markings. Most bites were directed to the back of the opponent animal with very few bites directed towards the opponents' vulnerable ventrum. In particular, bites directed at the relatively hairless ventrum produced no lesions. These findings, along with previous work on mice and rats, suggest that intraspecific offense with preferred target sites for biting, facilitates an effective but largely nonwounding interaction between resident and intruder mice. Furthermore, bruise and wound analyses suggest an association between bite targets and tissue damage. The preference for specific bite locations may be complimented by a differential intensity of attack, with the back attracting the strongest bites and the ventrum the weakest. This apparent nonwounding fighting pattern contradicts the current evaluation of rodent wounding severity in this paradigm and can therefore refine the usage of this model and of the protocols associated with it.
Collapse
Affiliation(s)
- Yoav Litvin
- Department of Psychology, University of Hawaii, Manoa, Honolulu 96822, USA.
| | | | | | | |
Collapse
|
27
|
van Erp AMM, Miczek KA. Increased accumbal dopamine during daily alcohol consumption and subsequent aggressive behavior in rats. Psychopharmacology (Berl) 2007; 191:679-88. [PMID: 17136400 DOI: 10.1007/s00213-006-0637-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 10/30/2006] [Indexed: 12/22/2022]
Abstract
BACKGROUND Alcohol drinking may lead to increased aggression in certain individuals, and both fighting and drinking increase levels of dopamine and serotonin in mesocorticolimbic structures. Assessing the dynamic changes in these neurotransmitters during the course of drinking and fighting has remained challenging. OBJECTIVE The objective of the study was to learn about ongoing monoaminergic activity in the nucleus accumbens of rats that engaged in aggressive behavior after having consumed low doses of alcohol. MATERIALS AND METHODS After male members of breeding pairs of Long-Evans rats displayed reliable aggression toward an intruder into their home cage, they were trained to consume a 10% alcohol solution, leading to blood alcohol levels of 20-80 mg/dl. Subsequently, the effect of daily alcohol self-administration on aggression was determined in biweekly confrontations with an intruder. Finally, rats were implanted with a microdialysis probe aimed at the n. accumbens for sample collection before, during, and after a 10-min alcohol drinking session followed by a 10-min aggressive confrontation. RESULTS Accumbal dopamine, but not serotonin, levels tended to increase in anticipation of the daily alcohol session, reaching significance immediately after the alcohol session and remaining significantly elevated (by 40%) during and after the subsequent confrontation. No such changes were seen in residents that confronted an intruder without preceding alcohol consumption. Animals that had a history of becoming more aggressive after consumption of low levels of alcohol showed similar changes in dopamine levels as did animals that had no such history. CONCLUSIONS The rise in accumbal dopamine confirms previous findings and seems to reflect the anticipation of alcohol consumption; it persisted during the aggressive confrontation regardless of the level of aggression. The daily alcohol drinking for several months may have facilitated dopamine release and masked any further changes associated with the aggressive encounter.
Collapse
Affiliation(s)
- Annemoon M M van Erp
- Department of Psychology, Bacon Hall, Tufts University, 530 Boston Avenue, Medford, MA 02155, USA
| | | |
Collapse
|
28
|
Pedraza C, Dávila G, Martín-López M, Navarro JF. Anti-aggressive effects of GHB in OF.1 strain mice: involvement of dopamine D2 receptors. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31:337-42. [PMID: 17050057 DOI: 10.1016/j.pnpbp.2006.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 08/16/2006] [Accepted: 09/11/2006] [Indexed: 11/30/2022]
Abstract
Numerous studies indicate that gamma-hydroxybutyric acid (GHB) influences the endogenous dopamine system. Both GHB and most dopaminergic D(2) receptor antagonists are effective anti-aggressive agents in animal models. The present study aimed to investigate the effects of GHB on agonistic behaviour and to implicate D(2) dopamine receptor on these behaviours. For this purpose, the effects of GHB (80, 120 and 160 mg/kg, IP) and tiapride (60 mg/kg) administered alone or in combination were examined on agonistic behaviour elicited by 'isolation' in male mice. Individually housed mice were exposed to anosmic "standard opponents" 30 min after drug administration, and the encounters were videotaped and evaluated using an ethologically based analysis. The administration of 80 and 120 mg/kg of GHB reduced threat without impairing motor activity, but the administration of 160 mg/kg of GHB or the co-administration of GHB+tiapride (a selective D(2) receptor antagonist) significantly reduced threat and attack but concomitantly increased immobility. The co-administration of GHB+tiapride had different effects to those observed by the administration of these drugs separately. It is concluded that the anti-aggressive effect of GHB appears to be mediated, at least in part, by D(2) dopamine receptors. This anti-dopaminergic activity is an indirect effect, probably induced by the activation of GHB receptors of low affinity, and in this way, this compound would reduce levels of dopamine without blockading of D(2) postsynaptic dopamine receptors.
Collapse
Affiliation(s)
- Carmen Pedraza
- Department of Psychobiology, Faculty of Psychology, Campus de Teatinos, University of Málaga 29071 Málaga, Spain.
| | | | | | | |
Collapse
|
29
|
|
30
|
Watt MJ, Forster GL, Korzan WJ, Renner KJ, Summers CH. Rapid neuroendocrine responses evoked at the onset of social challenge. Physiol Behav 2006; 90:567-75. [PMID: 17187831 PMCID: PMC2698797 DOI: 10.1016/j.physbeh.2006.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 11/11/2006] [Accepted: 11/15/2006] [Indexed: 10/23/2022]
Abstract
At the onset of agonistic social challenge, individuals must assess the degree of threat the opponent represents in order to react appropriately. We aimed to characterize the neuroendocrine changes accompanying this period of initial social assessment using the lizard Anolis carolinensis. Conveyance of aggressive intent by male A. carolinensis is facilitated by rapid postorbital skin darkening (eyespot), whereas eyespot presence inhibits opponent aggression. By manipulating this visual signal, we also investigated whether differing neuroendocrine changes were evoked by initial presentation of varying levels of social threat. Subjects were painted postorbitally either with black paint (high threat level), green paint (low threat level) or water (controls). Painted animals were presented with a mirror and sampled immediately upon exhibiting aggressive intent towards the reflected simulated opponent, but before producing behaviors such as motor pattern-based displays. Control animals (blank surface presented) were sampled at times derived from averaging response times of painted subjects. Brains and plasma were analyzed for monoamine activity and catecholamine levels using electrochemical HPLC. Social threat evoked increases in plasma catecholamine levels indistinguishable from those caused by brief environmental disturbance. However, brief social challenge caused distinct rapid increases in amygdala and nucleus accumbens (NAc) dopamine and serotonin levels. Amygdalar changes were associated with general social threat presence, but NAc monoamines were affected by both threat level and subject motivation to engage in confrontation. This suggests that specific rapid activity changes in key forebrain limbic nuclei differ according to the degree of social threat perceived at the start of the interaction.
Collapse
Affiliation(s)
- Michael J Watt
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.
| | | | | | | | | |
Collapse
|
31
|
Anabolic Steroid Abuse. J Addict Dis 2006. [DOI: 10.1300/j069v25s01_04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Dennis RL, Muir WM, Cheng HW. Effects of raclopride on aggression and stress in diversely selected chicken lines. Behav Brain Res 2006; 175:104-11. [PMID: 16978715 DOI: 10.1016/j.bbr.2006.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 08/04/2006] [Accepted: 08/09/2006] [Indexed: 11/29/2022]
Abstract
Genetic selection for chickens of high (HGPS) and low (LGPS) group productivity and survivability, resulted in two distinct genetic lines characterized by differences in cannibalism, flightiness, and immunocompetence. Additionally, birds exhibited differences in behaviour and social stress coping strategy. HGPS birds have a superior stress coping strategy compared with birds of LGPS or Dekalb XL (DXL), a commercial strain. Line differences in stress response and behaviour could be due to selection-induced differences in expression of the dopaminergic system. The dopamine (D2) receptor, an integral part of the dopaminergic system, was hypothesized to be a key contributory factor of the stress response. We tested this hypothesis by injecting either a D2 antagonist (raclopride) or saline in the dominant individual in pair-housed birds for 10 days and examining stress coping ability. Results showed that dominant birds of all strains showed a reduced frequency of aggressive pecks on subordinates following raclopride injection. In contrast, subordinates paired with raclopride-injected birds increased pecking frequency. Two days after stopping injections, LGPS and DXL birds returned to pre-injection levels of aggressive threats, while HGPS birds maintained depressed frequency of threats. Strain differences in aggressive responsiveness coincided with increased epinephrine levels in raclopride treated LGPS birds relative to control LGPS birds, but not by HGPS and DXL birds. Our findings suggest a functional linkage between the genetic basis of stress coping ability and the dopamine regulation of aggressive responsiveness. The data further indicate that the sympathetic-adreno-medullary axis is directly involved in regulating both stress coping strategy and aggressiveness.
Collapse
Affiliation(s)
- Rachel L Dennis
- Livestock Behaviour Research Unit, USDA-ARS, Purdue University, West Lafayette, IN 47907, USA; Purdue University, Animal Science Department, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
33
|
Driscoll H, Zinkivskay A, Evans K, Campbell A. Gender differences in social representations of aggression: the phenomenological experience of differences in inhibitory control? Br J Psychol 2006; 97:139-53. [PMID: 16613646 DOI: 10.1348/000712605x63073] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Women are more likely than men to experience acts of aggression as expressive (a loss of self-control) than as instrumental (control over others). We propose that this might arise from differences in behavioural restraint. If women have better inhibitory control, aggressive behaviour should occur less frequently yet should be experienced as more emotionally 'out of control' because women can tolerate higher levels of anger before inhibitory control is breached. Participants (N = 606) aged 13-24 completed the Multidimensional Personality Questionnaire (MPQ), the State-Trait Anger Expression Inventory-2 (STAXI-2) and Expagg. A more expressive view of aggression was associated with higher levels of STAXI anger control and higher levels of MPQ constraint. However, it was the harm avoidance component of constraint, rather than control versus impulsivity, that was the stronger predictor. While behavioural inhibition is built on an infrastructure of fear, the latter may be more important in explaining gender differences in social representations of aggression.
Collapse
|
34
|
Schiller L, Donix M, Jähkel M, Oehler J. Serotonin 1A and 2A receptor densities, neurochemical and behavioural characteristics in two closely related mice strains after long-term isolation. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30:492-503. [PMID: 16412547 DOI: 10.1016/j.pnpbp.2005.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2005] [Indexed: 11/18/2022]
Abstract
Knowledge about individual differences in behavioural traits and their neurostructural and neurochemical correlates should improve therapeutic approaches of corresponding psychopathology. The presented investigations are aimed to reveal interrelationships between central nervous serotonergic [5-HT] receptor densities and neurochemical as well as behavioural traits in two mice strains. Male AB-Halle [ABH] and AB-Gatersleben [ABG] mice differing in aggression were investigated after 6 weeks of isolation housing. 5-HT1A and 5-HT2A receptors were analysed in different brain regions by in vitro autoradiography. HPLC determinations of aminergic transmission in the cortex, hippocampus, striatum as well as in the raphe-region and radioimmunoassay determination of serum corticosterone were done before (basal condition) and after behavioural tests (challenge condition). Receptor autoradiography revealed higher 5-HT1A receptor densities, especially in limbic regions, and lower 5-HT2A receptor densities in the basal ganglia of ABH mice. Furthermore, ABH mice characterized as behaviourally more active in the open field and plus maze as well as more reactive and aggressive during the social interaction test showed lower basal 5-hydroxyindolacetic acid [5-HIAA] concentrations in the hippocampus, cortex and raphe-region as well as a different activation pattern in serotonergic, dopaminergic and noradrenergic brain systems after challenge in comparison to ABG mice. Additionally lower corticosterone concentrations were found in ABH mice. Lower basal serotonergic and striatal dopaminergic, but higher basal cortical dopaminergic metabolism in contrast to enhanced challenge-induced central nervous serotonergic and cortical dopaminergic reactivities are discussed to be crucial for an enhanced reactive behavioural trait, which could secondarily result in aggression-related behaviours, where higher 5-HT1A receptor and lower 5-HT2A receptor densities may be essential.
Collapse
Affiliation(s)
- Lydia Schiller
- AG Neurobiologie, Klinik für Psychiatrie, Universitätsklinikum der TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | | | | | | |
Collapse
|
35
|
Miczek KA, Faccidomo S, De Almeida RMM, Bannai M, Fish EW, Debold JF. Escalated Aggressive Behavior: New Pharmacotherapeutic Approaches and Opportunities. Ann N Y Acad Sci 2006; 1036:336-55. [PMID: 15817748 DOI: 10.1196/annals.1330.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Psychopharmacologic studies of aggressive behavior in animals under controlled laboratory conditions have been instrumental in developing and evaluating specific and effective novel drug treatments that reduce aggressive behavior. An initial contribution of this research is to create experimental conditions that enable the display of aggressive and defensive acts and postures in species that engage in either dominance or territorial or maternal aggression. Quantitative ethological analyses allow the precise delineation of the sequential organization of aggressive bursts, providing a benchmark for assessing excessive or pathological forms of aggressive behavior. A second contribution of preclinical research is the development of experimental models of escalated forms of aggressive behavior, such as focusing on genetic predispositions or social provocations and frustrative experiences. A critical role of preclinical research is in the pharmacological and neurochemical analysis of aggressive behavior; for example, a host of undesirable side effects prompted a shift from classic dopaminergic neuroleptic compounds to the more recently developed atypical neuroleptics with effective and more specific anti-aggressive effects. The long-established role of brain serotonin in impulsive and escalated forms of aggressive behavior continues to be a focus of preclinical studies. New evidence differentiates dynamic state changes in corticolimbic serotonergic neurons during the termination of aggressive behavior from the deficient-serotonin trait in violence-prone individuals. It can be anticipated that currently developed tools for targeting the genes that code for specific subtypes of serotonin receptors will offer new therapeutic options for reducing aggressive behavior, and the 5-HT(1B) receptor appears to be a promising target. The modulation of GABA and GABA(A) receptors by 5-HT in corticolimbic neurons promises to be particularly relevant for specific forms of escalated aggressive behavior such as alcohol-heightened aggression.
Collapse
Affiliation(s)
- Klaus A Miczek
- Departments of Psychology, Tufts University, Medford, Massachusetts 02155, USA.
| | | | | | | | | | | |
Collapse
|
36
|
de Boer SF, Koolhaas JM. 5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis. Eur J Pharmacol 2005; 526:125-39. [PMID: 16310183 DOI: 10.1016/j.ejphar.2005.09.065] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 09/01/2005] [Accepted: 09/23/2005] [Indexed: 11/24/2022]
Abstract
More than any other brain neurotransmitter system, the indolamine serotonin (5-HT) has been linked to aggression in a wide and diverse range of species, including humans. The nature of this linkage, however, is not simple and it has proven difficult to unravel the precise role of this amine in the predisposition for and execution of aggressive behavior. The dogmatic view that 5-HT inhibits aggression has dominated both pharmacological research strategies to develop specific and effective novel drug treatments that reduce aggressive behavior and the pharmacological mechanistic interpretation of putative serenic drug effects. Our studies on brain serotonin and aggression in feral wild-type rats using the resident-intruder paradigm have challenged this so-called serotonin deficiency hypothesis of aggressive behavior. The well-known fact that certain 5-HT(1A/1B) receptor agonists potently and specifically reduce aggressive behavior without motor slowing and sedative effects is only consistent with this hypothesis under the assumption that the agonist mainly acts on the postsynaptic 5-HT(1A/1B) receptor sites. However, systemic injections of anti-aggressive doses of 5-HT(1A) and (1B) agonists robustly decrease brain 5-HT release due to their inhibitory actions at somatodendritic and terminal autoreceptors, respectively. The availability of the novel benzodioxopiperazine compound S-15535, which acts in vivo as a preferential agonist of the somatodendritic 5-HT(1A) auto-receptor and as an antagonist (weak partial agonist) at postsynaptic 5-HT(1A) receptors, allows for a pharmacological analysis of the exact site of action of this anti-aggressive effect. It was found that, similar to other prototypical full and partial 5-HT(1A) and/or 5-HT(1B) receptor agonists like repinotan, 8-OHDPAT, ipsapirone, buspirone, alnespirone, eltoprazine, CGS-12066B and CP-93129, also S-15535 very effectively reduced offensive aggressive behavior. Unlike the other ligands, however, a remarkable degree of behavioral specificity was observed after treatment with S-15535, in that the anti-aggressive effects were not accompanied by inhibiting (like other 5-HT(1A) receptor agonist with moderate to high efficacy at postsynaptic 5-HT(1A) receptors) or enhancing (like agonists with activity at 5-HT(1B) receptors and alnespirone) non-aggressive motor behaviors (e.g., social exploration, ambulation, rearing, and grooming) beyond the range of undrugged animals with corresponding levels of aggression. The involvement of 5-HT(1A) and/or 5-HT(1B) receptors in the anti-aggressive actions of these drugs was convincingly confirmed by showing that the selective 5-HT(1A) receptor antagonist WAY-100635 and/or the 5-HT(1B) receptor antagonist GR-127935, while inactive when given alone, effectively attenuated/prevented these actions. Furthermore, combined administration of S-15535 with either alnespirone or CGS-42066B elicited a clear additive effect, indicated by a left-ward shift in their dose-effect curves, providing further support for presynaptic sites of action (i.e., inhibitory somatodendritic 5-HT(1A) and terminal 5-HT(1B) autoreceptors). These findings strongly suggest that the specific anti-aggressive effects of 5-HT(1A) and 5-HT(1B) receptor agonists are predominantly based on reduction rather than enhancement of 5-HT neurotransmission during the combative social interaction. Apparently, normal display of offensive aggressive behavior is positively related to brief spikes in serotonergic activity, whereas an inverse relationship probably exists between tonic 5-HT activity and abnormal forms of aggression only.
Collapse
Affiliation(s)
- Sietse F de Boer
- Department of Behavioral Physiology, Biological Center, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands.
| | | |
Collapse
|
37
|
Summers CH, Watt MJ, Ling TL, Forster GL, Carpenter RE, Korzan WJ, Lukkes JL, Overli O. Glucocorticoid interaction with aggression in non-mammalian vertebrates: reciprocal action. Eur J Pharmacol 2005; 526:21-35. [PMID: 16298361 DOI: 10.1016/j.ejphar.2005.09.059] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2005] [Indexed: 11/29/2022]
Abstract
Socially aggressive interaction is stressful, and as such, glucocorticoids are typically secreted during aggressive interaction in a variety of vertebrates, which may both potentiate and inhibit aggression. The behavioral relationship between corticosterone and/or cortisol in non-mammalian (as well as mammalian) vertebrates is dependent on timing, magnitude, context, and coordination of physiological and behavioral responses. Chronically elevated plasma glucocorticoids reliably inhibit aggressive behavior, consistent with an evolutionarily adaptive behavioral strategy among subordinate and submissive individuals. Acute elevation of plasma glucocorticoids may either promote an actively aggressive response via action in specialized local regions of the brain such as the anterior hypothalamus, or is permissive to escalated aggression and/or activity. Although the permissive effect of glucocorticoids on aggression does not suggest an active role for the hormone, the corticosteroids may be necessary for full expression of aggressive behavior, as in the lizard Anolis carolinensis. These effects suggest that short-term stress may generally be best counteracted by an actively aggressive response, at least for socially dominant proactive individuals. An acute and active response may be evolutionarily maladaptive under chronic, uncontrollable and unpredictable circumstances. It appears that subordinate reactive individuals often produce compulsorily chronic responses that inhibit aggression and promote submissive behavior.
Collapse
Affiliation(s)
- Cliff H Summers
- Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, 57069-2390, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Keele NB. The role of serotonin in impulsive and aggressive behaviors associated with epilepsy-like neuronal hyperexcitability in the amygdala. Epilepsy Behav 2005; 7:325-35. [PMID: 16103019 DOI: 10.1016/j.yebeh.2005.06.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 06/15/2005] [Indexed: 11/30/2022]
Abstract
Neuronal hyperexcitability in limbic areas, especially the amygdala, is a significant underlying mechanism associated with complex partial seizures (CPS). CPS may be comorbid with emotional disturbances, especially major mood disorders, anxiety, and aggression. Anticonvulsant medications such as phenytoin are also mood-stabilizing, and have been used for treatment of behavioral dyscontrol in impulsive aggressive individuals. Because the amygdala has important functional roles in epilepsy, emotion, and behavioral control, there may be common biological mechanisms involving neuronal excitability that contribute to both seizure activity and psychopathology. This review examines physiological mechanisms in the amygdala that regulate neuronal excitability and discusses how this may underlie, in part, disturbances in emotional behavior.
Collapse
Affiliation(s)
- N Bradley Keele
- Department of Psychology and Neuroscience, Baylor University, One Bear Place No. 97334, Waco, TX 76798-7334, USA.
| |
Collapse
|
39
|
Tcheremissine OV, Lane SD, Lieving LM, Rhoades HM, Nouvion S, Cherek DR. Individual differences in aggressive responding to intravenous flumazenil administration in adult male parolees. J Psychopharmacol 2005; 19:640-6. [PMID: 16272187 DOI: 10.1177/0269881105056532] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nonhuman and human studies have shown that benzodiazepine (BZD) receptor agonists can modify aggressive behaviour. However, it is unknown whether flumazenil, a BZD receptor antagonist, enhances or inhibits aggressive behaviour. The present study was designed to investigate the effects of acute administrations of flumazenil on aggressive responding in adult humans. Six adult males with histories of childhood conduct disorder (DSM IV R) participated in experimental sessions. Aggression was measured using the Point Subtraction Aggression Paradigm (PSAP; Cherek 1992), which provided subjects with aggressive and monetary-reinforced response options. Acute doses of flumazenil (2 and 3mg) did not produce statistically significant changes in either monetary-reinforced responding or aggressive responding. The analysis of individual subjects data revealed that aggressive responses varied across subjects. The results are discussed in terms of individual differences based on the previous history of BZD abuse. Additional laboratory research is needed to better clarify the behavioural mechanisms by which BZD receptor antagonists modify human aggressive responding.
Collapse
Affiliation(s)
- Oleg V Tcheremissine
- Human Psychopharmacology Laboratory, Department of Psychiatry and Behavioural Science, University of Texas, Health Science Center, 77030-3497, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Estelles J, Rodríguez-Arias M, Maldonado C, Aguilar MA, Miñarro J. Prenatal cocaine exposure alters spontaneous and cocaine-induced motor and social behaviors. Neurotoxicol Teratol 2005; 27:449-57. [PMID: 15939204 DOI: 10.1016/j.ntt.2005.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 12/22/2004] [Accepted: 01/10/2005] [Indexed: 11/17/2022]
Abstract
The abuse of cocaine in pregnant women could affect emotional behaviors in their descendents. The aim of this work was to evaluate the effects of prenatal cocaine exposure on spontaneous and cocaine-induced motor and social behaviors in mice. Three kinds of prenatal treatment were used: non-treated animals; mice treated daily with physiological saline during the last week of pregnancy; and finally, those treated with cocaine (25 mg/kg) during the same period. Behavioral studies took place on adult males, which were housed in two different conditions: grouped (non-aggressive), or isolated (aggressive). Cocaine-pretreated animals exhibited slight differences in spontaneous motor activity, but alterations in their social relationship with conspecifics were presented, with decreases in isolated but increases in grouped mice. The cocaine challenge increased aggression specifically in grouped prenatally cocaine-treated mice, but increases in motor activity or avoidance and flee behavior were presented in those animals pretreated with either saline or cocaine. Isolated saline-or cocaine-treated animals exhibited greater concentrations of DA and DOPAC than those grouped. A decrease in 5-HIAA concentrations was presented in pretreated animals, irrespective of their housing conditions. In conclusion, cocaine administration during pregnancy induces long lasting effects on the offspring, for both behavioral abnormalities and cocaine response, which last to adult life.
Collapse
Affiliation(s)
- J Estelles
- Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez 21, 46010 Valencia, Spain
| | | | | | | | | |
Collapse
|
41
|
Kurling S, Kankaanpää A, Ellermaa S, Karila T, Seppälä T. The effect of sub-chronic nandrolone decanoate treatment on dopaminergic and serotonergic neuronal systems in the brains of rats. Brain Res 2005; 1044:67-75. [PMID: 15862791 DOI: 10.1016/j.brainres.2005.02.071] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 02/21/2005] [Accepted: 02/24/2005] [Indexed: 10/25/2022]
Abstract
Anabolic-androgenic steroids (AASs) are widely abused by adolescents, although persistent AAS use can cause several adverse physical and mental effects, including drug dependence. The first aim of the present study was to study the action of nandrolone decanoate on dopaminergic and serotonergic activities in the brains of rats. In order to evaluate the anabolic or toxic effects of the dosing regimens used, selected peripheral effects were monitored as well. Male Wistar rats were treated for 2 weeks. Injections containing nandrolone (5 and 20 mg/kg, i.m.) or vehicle were given once daily, 5 days a week. The levels of dopamine (DA), 5-hydroxytryptamine (5-HT) and their metabolites were assayed from dissected brain regions 3 days after the last injection. Blood was collected for chemical assays before, after 1 week treatment and at decapitation. Both doses of nandrolone significantly increased the levels of 3,4-dihydroxyphenylacetic acid (DOPAC), a metabolite of DA in the cerebral cortex, and the higher dose of nandrolone increased the concentrations of 5-HT in the cerebral cortex compared with the vehicle. In addition, after nandrolone treatment, the levels of hemoglobin and erythrocytes increased, and reticulocyte levels decreased. The results suggest that nandrolone at supraphysiological doses, high enough to induce erythropoiesis, induces changes in the dopaminergic and serotonergic neuronal system in the brains of rats. These phenomena may account to some of the observed central stimulatory properties that have been reported following AAS abuse.
Collapse
Affiliation(s)
- Sanna Kurling
- Department of Mental Health and Alcohol Research, National Public Health Institute, Mannerheimintie 166, FIN-00300 Helsinki, Finland.
| | | | | | | | | |
Collapse
|
42
|
Bondar' NP, Kudryavtseva NN. The effects of the D1 receptor antagonist SCH-23390 on individual and aggressive behavior in male mice with different experience of aggression. ACTA ACUST UNITED AC 2005; 35:221-7. [PMID: 15779337 DOI: 10.1007/s11055-005-0017-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The dopaminergic systems of the brain are known to be involved in the mechanisms of aggression. The present report describes studies of the effects of acute administration of the dopamine D1 receptor antagonist SCH-23390 (0.1 mg/kg, i.p., over 30 min) on the individual and aggressive behavior of male mice of the line C57BL/6J with different experience of aggression. A group of animals with no previous experience of aggression responded to administration of this agent with decreases in direct aggression (attacks), though the total time of hostile behavior, i.e., the sum of the durations of attacks, aggressive grooming, and scattering of foreign litter, showed no change. The agent had no effect on the aggressivity of animals with 20 days of experience of agonistic confrontations. The discussion addresses the possible development of pharmacological densensitization of dopamine D1 receptors in aggressive males in response to prolonged activation of the dopaminergic systems in conditions of repeated experience of aggression, as demonstrated previously.
Collapse
Affiliation(s)
- N P Bondar'
- Institute of Cytology and Genetics, Siberian Division, Russian Academy of Sciences, 10 Lavrent'ev Prospekt, 630090 Novosibirsk, Russia
| | | |
Collapse
|
43
|
|
44
|
Navarro JF, Burón E, Martín-López M. Behavioral profile of L-655,708, a selective ligand for the benzodiazepine site of GABA-A receptors which contain the α5 subunit, in social encounters between male mice. Aggress Behav 2004. [DOI: 10.1002/ab.20032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Golomb BA, Criqui MH, White H, Dimsdale JE. Conceptual foundations of the UCSD Statin Study: a randomized controlled trial assessing the impact of statins on cognition, behavior, and biochemistry. ARCHIVES OF INTERNAL MEDICINE 2004; 164:153-62. [PMID: 14744838 PMCID: PMC4714865 DOI: 10.1001/archinte.164.2.153] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Statin cholesterol-lowering drugs are among the most prescribed drugs in the United States. Their cardiac benefits are substantial and well supported. However, there has been persistent controversy regarding possible favorable or adverse effects of statins or of cholesterol reduction on cognition, mood, and behavior (including aggressive or violent behavior). METHODS The literature pertaining to the relationship of cholesterol or statins to several noncardiac domains was reviewed, including the link between statins (or cholesterol) and cognition, aggression, and serotonin. RESULTS There are reasons to think both favorable and adverse effects of statins and low cholesterol on cognition may pertain; the balance of these factors requires further elucidation. A substantial body of literature links low cholesterol level to aggressive behavior; statin randomized trials have not supported a connection, but they have not been designed to address this issue. A limited number of reports suggest a connection between reduced cholesterol level and reduced serotonin level, but more information is needed with serotonin measures that are practical for clinical use. Whether lipophilic and hydrophilic statins differ in their impact should be assessed. CONCLUSION There is a strong need for randomized controlled trial data to more clearly establish the impact of hydrophilic and lipophilic statins on cognition, aggression, and serotonin, as well as on other measures relevant to risks and quality-of-life impact in noncardiac domains.
Collapse
|
46
|
Rodriguiz RM, Chu R, Caron MG, Wetsel WC. Aberrant responses in social interaction of dopamine transporter knockout mice. Behav Brain Res 2004; 148:185-98. [PMID: 14684259 DOI: 10.1016/s0166-4328(03)00187-6] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The dopamine (DA) transporter (DAT) controls the temporal and spatial resolution of dopaminergic neurotransmission. Disruption of the Dat1 gene in mice leads to increased extracellular DA concentrations and reduced expression of D1- and D2-like receptors in striatum. The mutants are hyperactive in the open field and they display deficits in learning and memory. In humans, dopaminergic dysfunction has been associated with a number of different psychiatric disorders and some of these conditions are accompanied by abnormal social responses. To determine whether social responses were also impaired in DAT knockout (KO) mice, behaviors of group- and isolation-housed animals were compared. All group-housed animals readily established hierarchies. However, the social organizations of the mutants were changed over time. Under both group- and isolation-housed conditions, mutants exhibited increased rates of reactivity and aggression following mild social contact. In isolation, exposure to a novel environment exacerbated these abnormal responses. Regardless of housing context, stereotyped and perseverative patterns of social responses were a common feature of the KO repertoire. In fact, many abnormal behaviors were due to the emergence and predominance of these inflexible behaviors. These data suggest that KO mice may serve as a useful animal model for understanding not only how DA dysfunction contributes to social abnormalities, but also how behavioral inflexibility distorts their social responses.
Collapse
Affiliation(s)
- Ramona M Rodriguiz
- Department of Psychiatry, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
47
|
Ricceri L, Markina N, Valanzano A, Fortuna S, Cometa MF, Meneguz A, Calamandrei G. Developmental exposure to chlorpyrifos alters reactivity to environmental and social cues in adolescent mice. Toxicol Appl Pharmacol 2003; 191:189-201. [PMID: 13678652 DOI: 10.1016/s0041-008x(03)00229-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neonatal mice were treated daily on postnatal days (pnds) 1 through 4 or 11 through 14 with the organophosphate pesticide chlorpyrifos (CPF), at doses (1 or 3 mg/kg) that do not evoke systemic toxicity. Brain acetylcholinesterase (AChE) activity was evaluated within 24 h from termination of treatments. Pups treated on pnds 1-4 underwent ultrasonic vocalization tests (pnds 5, 8, and 11) and a homing test (orientation to home nest material, pnd 10). Pups in both treatment schedules were then assessed for locomotor activity (pnd 25), novelty-seeking response (pnd 35), social interactions with an unfamiliar conspecific (pnd 45), and passive avoidance learning (pnd 60). AChE activity was reduced by 25% after CPF 1-4 but not after CPF 11-14 treatment. CPF selectively affected only the G(4) (tetramer) molecular isoform of AChE. Behavioral analysis showed that early CPF treatment failed to affect neonatal behaviors. Locomotor activity on pnd 25 was increased in 11-14 CPF-treated mice at both doses, and CPF-treated animals in both treatment schedules were more active when exposed to environmental novelty in the novelty-seeking test. All CPF-treated mice displayed more agonistic responses, and such effect was more marked in male mice exposed to the low CPF dose on pnds 11-14. Passive avoidance learning was not affected by CPF. These data indicate that developmental exposure to CPF induces long-term behavioral alterations in the mouse species and support the involvement of neural systems in addition to the cholinergic system in the delayed behavioral toxicity of CPF.
Collapse
Affiliation(s)
- Laura Ricceri
- Laboratorio di Fisiopatologia, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
48
|
Ferrari PF, van Erp AMM, Tornatzky W, Miczek KA. Accumbal dopamine and serotonin in anticipation of the next aggressive episode in rats. Eur J Neurosci 2003; 17:371-8. [PMID: 12542674 DOI: 10.1046/j.1460-9568.2003.02447.x] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Autonomic and limbic neural activities are linked to aggressive behavior, and it is hypothesized that activities in the cardiovascular and monoaminergic systems play a role in preparing for an aggressive challenge. The objective was to learn about the emergence of monoamine activity in nucleus accumbens before an aggressive confrontation that was omitted at the regular time of occurrence, dissociating the motoric from the aminergic activity. Dopamine, serotonin, heart rate and behavioral activity were monitored before, during and after a single 10-min confrontation in resident male Long-Evans rats fitted with a microdialysis probe in the n. accumbens and with a telemetry sender (experiment 1). DA, but not 5-HT efflux, was confirmed to increase in n. accumbens during and after a single aggressive episode. In aggressive males that confronted an opponent daily for 10 days (experiment 2) heart rate rose 1 h before the regularly scheduled encounter relative to control rats, as measured on day 11 in the absence of any aggression. Concurrently, DA levels increased by 60-70% over baseline levels and 5-HT levels decreased by 30-35% compared to baseline levels. These changes were sustained over 1 h, and contrasted with no significant changes in DA, 5-HT, heart rate or behavioral activity in control rats. The rise in mesolimbic DA appears to be significant in anticipating the physiological and behavioral demands of an aggressive episode, and the fall in 5-HT in its termination, dissociated from the actual execution of the behavior.
Collapse
Affiliation(s)
- P F Ferrari
- Department of Psychology, Tufts University, Medford, Massachusetts 02155, USA
| | | | | | | |
Collapse
|
49
|
Martín-López M, Navarro JF. Antiaggressive Effects of Zolpidem and Zopiclone in Agonistic Encounters Between Male Mice. Aggress Behav 2002. [DOI: 10.1002/ab.80013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Lindqvist AS, Johansson-Steensland P, Nyberg F, Fahlke C. Anabolic androgenic steroid affects competitive behaviour, behavioural response to ethanol and brain serotonin levels. Behav Brain Res 2002; 133:21-9. [PMID: 12048171 DOI: 10.1016/s0166-4328(01)00408-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study investigated whether anabolic androgenic steroid (AAS) treatment (daily subcutaneous injections during 2 weeks with nandrolone decanoate; 15 mg/kg) affects competitive behaviour, and locomotor activity response to a sedative dose of ethanol (0.5 g ethanol/kg). In addition, levels of brain monoamines were assessed. The results showed that AAS treated animals exhibited enhanced dominant behaviour in the competition test compared to controls. The AAS groups' locomotor activity was not affected by ethanol in contrast to the controls who showed a sedative locomotor activity. AAS animals had significant lower levels of serotonin in basal forebrain and dorsal striatum compared to controls. These findings further strengthen the fact that AAS affects behaviour, as well as biochemical parameters. Based on previous studies and results from the present study, we hypothesize that AAS abuse may constitute a risk factor for disinhibitory behaviour, partly by affecting the serotonergic system.
Collapse
|