1
|
Dulko D, Kłosowska-Chomiczewska IE, Del Castillo-Santaella T, Cabrerizo-Vílchez MA, Łuczak J, Staroń R, Krupa Ł, Maldonado-Valderrama J, Macierzanka A. Interfacial behaviour of human bile and its substitution for in vitro lipolysis studies. Food Res Int 2024; 197:115203. [PMID: 39593288 DOI: 10.1016/j.foodres.2024.115203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/14/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
This study examined the interfacial evolution of individual bile salts (BSs) and their blends with phosphatidylcholine (BS/PC) to simulate the complex behaviour of human bile (HB) during lipolysis at the triglyceride/water interface. Using adsorption and desorption cycles, mimicking exposure to small intestinal fluids, we demonstrate that the interfacial behaviour of real HB can be replicated using simple mixtures of BSs and PC. Interfacial tension (IFT) measurements after lipolysis and desorption showed no significant differences (P > 0.05) between HB samples and BS/PC mixtures across the total BS concentrations analysed (2.23-7.81 mM). However, individual BSs without PC yielded significantly different IFT results (P < 0.01) compared to HB, highlighting the importance of phospholipids. Dilatation rheology further emphasised the need for accurate phospholipid representation in bile models. Our results suggest that phospholipids in HB and in BS/PC systems enhance resistance to desorption, potentially affecting lipolysis. This is important, as current in vitro digestion models often replicate only intestinal BS concentrations to mimic the behaviour of HB in the intestinal lumen. Furthermore, the specific composition of BSs in HB appears less critical than the overall BS and phospholipid contents, suggesting that the kinetics of triglyceride digestion is influenced by the combined luminal concentrations of these components. These findings have significant implications for understanding the role of bile in digestion and offer insights for designing more accurate in vitro models to study the gastrointestinal behaviour of food emulsions and lipid-based delivery systems.
Collapse
Affiliation(s)
- Dorota Dulko
- Department of Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Ilona E Kłosowska-Chomiczewska
- Department of Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | | | | | - Justyna Łuczak
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Robert Staroń
- Department of Gastroenterology and Hepatology with Internal Disease Unit, Specialist University Hospital Frederic Chopin, Rzeszów, Poland; Medical Department, University of Rzeszów, Rzeszów, Poland
| | - Łukasz Krupa
- Department of Gastroenterology and Hepatology with Internal Disease Unit, Specialist University Hospital Frederic Chopin, Rzeszów, Poland; Medical Department, University of Rzeszów, Rzeszów, Poland
| | | | - Adam Macierzanka
- Department of Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
2
|
Ellegaard AM, Kårhus ML, Krych L, Sonne DP, Forman JL, Hansen SH, Dragsted LO, Nielsen DS, Knop FK. Liraglutide and Colesevelam Change Serum and Fecal Bile Acid Levels in a Randomized Trial With Patients With Bile Acid Diarrhea. Clin Transl Gastroenterol 2024; 15:e00772. [PMID: 39602188 PMCID: PMC11596762 DOI: 10.14309/ctg.0000000000000772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
INTRODUCTION Both liraglutide and colesevelam improve bile acid diarrhea symptoms. Colesevelam binds excess amounts of diarrhea-causing bile acids in the colon, whereas the mode of action for liraglutide remains elusive. In this article, we examined the impact of colesevelam and liraglutide treatment on the concentrations of bile acids in serum and feces and the fecal microbiota composition to better understand the 2 drugs' modes of action. METHODS Bile acid species were analyzed in serum and fecal samples from a randomized, double-blind, double-dummy trial at baseline and after 3 and 6 weeks of orally administered colesevelam (1,875 mg twice daily, n = 26) or subcutaneously administered liraglutide (uptitrated by weekly increments of 0.6 mg from 0.6 to 1.8 mg daily, n = 26) in patients with 75 selenium-homotaurocholic acid test-verified, idiopathic, or postcholecystectomy bile acid diarrhea. Fecal microbiota composition was analyzed by 16S rRNA gene amplicon sequencing at the same time points. RESULTS Colesevelam increased the fecal concentrations of all bile acid species, whereas it decreased serum concentrations of secondary bile acids. Liraglutide induced a small increase in serum unconjugated bile acid concentrations without affecting fecal bile acid concentrations. No changes in fecal microbiota composition were observed with either treatment. DISCUSSION Colesevelam and liraglutide exhibit distinct effects on serum and fecal bile acid concentrations with colesevelam reducing serum concentrations of secondary bile acids and promoting fecal bile acid excretion, whereas liraglutide enhances serum concentrations of unconjugated bile acids, potentially through deceleration of small intestinal transit time allowing more time for passive absorption of bile acids.
Collapse
Affiliation(s)
- Anne-Marie Ellegaard
- Center for Clinical Metabolic Research, Copenhagen University Hospital–Herlev and Gentofte, Hellerup, Denmark
| | - Martin L. Kårhus
- Center for Clinical Metabolic Research, Copenhagen University Hospital–Herlev and Gentofte, Hellerup, Denmark
| | - Lukasz Krych
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - David P. Sonne
- Center for Clinical Metabolic Research, Copenhagen University Hospital–Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julie L. Forman
- Section of Biostatistics, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Svend H. Hansen
- Department of Clinical Biochemistry, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Dennis S. Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Filip K. Knop
- Center for Clinical Metabolic Research, Copenhagen University Hospital–Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark;
- Current affiliation: Novo Nordisk A/S, Søborg, Denmark
| |
Collapse
|
3
|
Ellegaard AM, Kårhus ML, Winther-Jensen M, Knop FK, Kårhus LL. Bile Acid Diarrhea Is Associated With an Increased Incidence of Gastrointestinal Cancers. Am J Gastroenterol 2024; 119:2107-2113. [PMID: 38717021 PMCID: PMC11446519 DOI: 10.14309/ajg.0000000000002859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION Bile acid diarrhea (BAD) is an underrecognized and socially debilitating disease caused by high concentrations of bile acids in the colon. Bile acids directly and indirectly promote carcinogenesis. In this article, we investigated whether individuals with BAD have an increased risk of gastrointestinal (GI) cancers. METHODS By using the Danish health registries, adult individuals with BAD were identified by International Classification of Diseases 10th revision code K90.8 or referral to the diagnostic ⁷⁵selenium-homotaurocholic acid test followed by prescription of a bile acid sequestrant within 365 days (n = 5,245). Age- and sex-matched individuals without BAD were included for comparison (n = 52,450). We analyzed the cumulative incidence of GI cancers after BAD diagnosis and the odds ratios (ORs) of GI cancer 8 and 15 years before BAD diagnosis/matching. RESULTS Cumulative incidence of GI cancer 6 years after BAD diagnosis/matching was 1.6% in the BAD group and 1.1% in controls ( P = 0.01). The ORs of total GI cancer 8 and 15 years before BAD diagnosis were 6.16 (5.08-7.48) and 5.19 (4.28-6.29), respectively. Furthermore, 47 individuals with BAD (0.9%) and 250 (0.5%) controls died of GI cancer. DISCUSSION This nationwide cohort study indicates an association between BAD and GI cancers. We found both a higher incidence of GI cancer after BAD diagnosis compared with controls and increased OR of GI cancer before BAD diagnosis. Bearing in mind the underdiagnosis of BAD, the delay of BAD diagnosis, and the carcinogenic effect of bile acids, these findings warrant further investigations of the risk of GI cancer in individuals with BAD.
Collapse
Affiliation(s)
- Anne-Marie Ellegaard
- Center for Clinical Metabolic Research, Copenhagen University Hospital–Herlev and Gentofte, Hellerup, Denmark
| | - Martin L. Kårhus
- Center for Clinical Metabolic Research, Copenhagen University Hospital–Herlev and Gentofte, Hellerup, Denmark
| | - Matilde Winther-Jensen
- Center for Clinical Research and Prevention, Copenhagen University Hospital – Bispebjerg and Frederiksberg, Frederiksberg, Denmark
| | - Filip K. Knop
- Center for Clinical Metabolic Research, Copenhagen University Hospital–Herlev and Gentofte, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.
- Currently employed at Novo Nordisk A/S, Søborg, Denmark.
| | - Line L. Kårhus
- Center for Clinical Research and Prevention, Copenhagen University Hospital – Bispebjerg and Frederiksberg, Frederiksberg, Denmark
| |
Collapse
|
4
|
Di Cristo L, Keller JG, Leoncino L, Marassi V, Loosli F, Seleci DA, Tsiliki G, Oomen AG, Stone V, Wohlleben W, Sabella S. Critical aspects in dissolution testing of nanomaterials in the oro-gastrointestinal tract: the relevance of juice composition for hazard identification and grouping. NANOSCALE ADVANCES 2024; 6:798-815. [PMID: 38298600 PMCID: PMC10825926 DOI: 10.1039/d3na00588g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/07/2023] [Indexed: 02/02/2024]
Abstract
The dissolution of a nanomaterial (NM) in an in vitro simulant of the oro-gastrointestinal (OGI) tract is an important predictor of its biodurability in vivo. The cascade addition of simulated digestive juices (saliva, stomach and intestine), including inorganic/organic biomacromolecules and digestive enzymes (complete composition, referred to as "Type 1 formulation"), strives for realistic representation of chemical composition of the OGI tract. However, the data robustness requires consideration of analytical feasibility, such as the use of simplified media. Here we present a systematic analysis of the effects exerted by different digestive juice formulations on the dissolution% (or half-life values) of benchmark NMs (e.g., zinc oxide, titanium dioxide, barium sulfate, and silicon dioxide). The digestive juices were progressively simplified by removal of components such as organic molecules, enzymes, and inorganic molecules (Type 2, 3 and 4). The results indicate that the "Type 1 formulation" augments the dissolution via sequestration of ions by measurable factors compared to formulations without enzymes (i.e., Type 3 and 4). Type 1 formulation is thus regarded as a preferable option for predicting NM biodurability for hazard assessment. However, for grouping purposes, the relative similarity among diverse nanoforms (NFs) of a NM is decisive. Two similarity algorithms were applied, and additional case studies comprising NFs and non NFs of the same substance were included. The results support the grouping decision by simplified formulation (Type 3) as a robust method for screening and grouping purposes.
Collapse
Affiliation(s)
- Luisana Di Cristo
- Istituto Italiano Di Tecnologia, Nanoregulatory Group, D3PharmaChemistry Genova Italy
| | - Johannes G Keller
- Department of Material Physics and Department of Experimental Toxicology and Ecology, BASF SE Ludwigshafen Germany
| | - Luca Leoncino
- Electron Microscopy Facility, Istituto Italiano di Tecnologia Genova Italy
| | | | - Frederic Loosli
- Department of Material Physics and Department of Experimental Toxicology and Ecology, BASF SE Ludwigshafen Germany
- University of Vienna Vienna Austria
| | - Didem Ag Seleci
- Department of Material Physics and Department of Experimental Toxicology and Ecology, BASF SE Ludwigshafen Germany
| | - Georgia Tsiliki
- Institute for the Management of Information Systems, Athena Research Center Marousi Greece
| | - Agnes G Oomen
- National Institute for Public Health and the Environment (RIVM) Bilthoven The Netherlands
- University of Amsterdam Amsterdam The Netherlands
| | - Vicki Stone
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University Edinburgh UK
| | - Wendel Wohlleben
- Department of Material Physics and Department of Experimental Toxicology and Ecology, BASF SE Ludwigshafen Germany
| | - Stefania Sabella
- Istituto Italiano Di Tecnologia, Nanoregulatory Group, D3PharmaChemistry Genova Italy
| |
Collapse
|
5
|
Zhu Q, Iwai R, Okaguchi T, Shirasaka Y, Tamai I. Apple juice relieves loperamide-induced constipation in rats by downregulating the intestinal apical sodium-dependent bile acid transporter ASBT. Food Funct 2023; 14:4836-4846. [PMID: 37129213 DOI: 10.1039/d3fo00510k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Apples are known to exhibit various beneficial effects on human health. In the present study, we investigated the effect of continuous intake of apple juice (AJ) on constipation status. A single dose of loperamide in rats as the constipation model markedly decreased the weight and number of fecal pellets compared to saline-administered rats as a control. After the administration of AJ twice a day for seven days, recovery of defecation close to that of the control was observed in loperamide-treated rats. In addition, the total bile acid content in the feces increased from day 4 after the administration of AJ. Among hepatic and intestinal transporters and enzymes that regulate bile acids, the mRNA expression of the apical sodium-dependent bile acid transporter (Asbt, slc10a2) was decreased by AJ in rats. Furthermore, the Asbt-mediated bile acid transport activity in the rat ileum decreased after AJ administration. Moreover, in human colonic cancer-derived Caco-2 cells, AJ exposure for 24 and 48 h decreased the expressions of ASBT mRNA and protein, and the uptake activity of taurocholic acid in both 7- and 21-d cultures. Several components of AJ, such as procyanidins, decreased the expression of ASBT in Caco-2 cells. In conclusion, ASBT downregulation is a possible mechanism responsible for the constipation-relieving effect of apples, and procyanidins may play a role in downregulating ASBT, which leads to the beneficial effects of apples against constipation. Although it is generally agreed that the common dietary compositions play a role in constipation relief, the novel specific mechanism of apples found in this study would facilitate understanding food functions.
Collapse
Affiliation(s)
- Qiunan Zhu
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan.
| | - Ryusuke Iwai
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan.
| | - Takehiro Okaguchi
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan.
| | - Yoshiyuki Shirasaka
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan.
| | - Ikumi Tamai
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan.
| |
Collapse
|
6
|
Adaption of a commercial lipase kit to measure bile salt-stimulated lipase in human milk. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Režen T, Rozman D, Kovács T, Kovács P, Sipos A, Bai P, Mikó E. The role of bile acids in carcinogenesis. Cell Mol Life Sci 2022; 79:243. [PMID: 35429253 PMCID: PMC9013344 DOI: 10.1007/s00018-022-04278-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
Abstract
AbstractBile acids are soluble derivatives of cholesterol produced in the liver that subsequently undergo bacterial transformation yielding a diverse array of metabolites. The bulk of bile acid synthesis takes place in the liver yielding primary bile acids; however, other tissues have also the capacity to generate bile acids (e.g. ovaries). Hepatic bile acids are then transported to bile and are subsequently released into the intestines. In the large intestine, a fraction of primary bile acids is converted to secondary bile acids by gut bacteria. The majority of the intestinal bile acids undergo reuptake and return to the liver. A small fraction of secondary and primary bile acids remains in the circulation and exert receptor-mediated and pure chemical effects (e.g. acidic bile in oesophageal cancer) on cancer cells. In this review, we assess how changes to bile acid biosynthesis, bile acid flux and local bile acid concentration modulate the behavior of different cancers. Here, we present in-depth the involvement of bile acids in oesophageal, gastric, hepatocellular, pancreatic, colorectal, breast, prostate, ovarian cancer. Previous studies often used bile acids in supraphysiological concentration, sometimes in concentrations 1000 times higher than the highest reported tissue or serum concentrations likely eliciting unspecific effects, a practice that we advocate against in this review. Furthermore, we show that, although bile acids were classically considered as pro-carcinogenic agents (e.g. oesophageal cancer), the dogma that switch, as lower concentrations of bile acids that correspond to their serum or tissue reference concentration possess anticancer activity in a subset of cancers. Differences in the response of cancers to bile acids lie in the differential expression of bile acid receptors between cancers (e.g. FXR vs. TGR5). UDCA, a bile acid that is sold as a generic medication against cholestasis or biliary surge, and its conjugates were identified with almost purely anticancer features suggesting a possibility for drug repurposing. Taken together, bile acids were considered as tumor inducers or tumor promoter molecules; nevertheless, in certain cancers, like breast cancer, bile acids in their reference concentrations may act as tumor suppressors suggesting a Janus-faced nature of bile acids in carcinogenesis.
Collapse
Affiliation(s)
- Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tünde Kovács
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
| | - Patrik Kovács
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
| | - Adrienn Sipos
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
| | - Péter Bai
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Edit Mikó
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary.
| |
Collapse
|
8
|
Agarwal V, Gupta V, Bhardwaj VK, Singh K, Khullar P, Bakshi MS. Hemolytic Response of Iron Oxide Magnetic Nanoparticles at the Interface and in Bulk: Extraction of Blood Cells by Magnetic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6428-6441. [PMID: 35090343 DOI: 10.1021/acsami.1c23496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface-active and water-soluble magnetic nanoparticles (NPs) were synthesized in the presence of a series of amphiphilic molecules of different functional groups to determine the hemolytic response and their ability to extract blood cells across the interface and aqueous bulk while maintaining minimum hemolysis. Amphiphilic molecules such as Gemini surfactants of strong hydrophobicity and low hydrophilic-lipophilic balance produced surface-active magnetic NPs, which were highly cytotoxic even when placed at the blood suspension (aqueous)-air interface. A similar behavior was shown by water-soluble magnetic NPs produced using monomeric ionic and nonionic surfactants and different amino acids. The NPs produced using mild biological surfactants and mono- and oligosaccharides of the same functional group proved to be excellent blood cell extractors with minimum hemolysis. α/β-cyclodextrin and dextrose-stabilized magnetic NPs induced negligible hemolysis and extracted more than 50% of blood cells. The results showed that nontoxic magnetic NPs are excellent blood cell extractors from the blood suspension when tagged with amphiphilic molecules possessing good biocompatibility with cell membranes without inducing hemolysis. The work highlights the biological applicability of nontoxic magnetic NPs at biointerfaces and in blood suspensions.
Collapse
Affiliation(s)
- Vandana Agarwal
- Department of Chemistry, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India
- Department of Chemistry, B.B.K. D.A.V. College for Women, Amritsar 143005, Punjab, India
| | - Vikas Gupta
- Department of Biotechnology, DAV College, Amritsar 143001, Punjab, India
| | - Vimal Kumar Bhardwaj
- Department of Chemistry, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India
| | - Kultar Singh
- Department of Chemistry, Khalsa College, G. T. Road, Amritsar 143002, Punjab, India
| | - Poonam Khullar
- Department of Chemistry, B.B.K. D.A.V. College for Women, Amritsar 143005, Punjab, India
| | - Mandeep Singh Bakshi
- Department of Chemistry, Natural and Applied Sciences, University of Wisconsin─Green Bay, 2420 Nicolet Drive, Green Bay 54311 7001, Wisconsin, United States
| |
Collapse
|
9
|
Rahaman SM, Chowdhury B, Acharjee A, Singh B, Saha B. Surfactant-based therapy against COVID-19: A review. TENSIDE SURFACT DET 2021. [DOI: 10.1515/tsd-2021-2382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
The coronavirus disease 2019 (COVID-19) has led to serious health and economic damage to all over the world, and it still remains unstoppable. The SARS-CoV-2, by using its S-glycoprotein, binds with an angiotensin-converting enzyme 2 receptor, mostly present in alveolar epithelial type II cells. Eventually pulmonary surfactant depletion occurs. The pulmonary surfactant is necessary for maintaining the natural immunity as well as the surface tension reduction within the lung alveoli during the expiration. Its insufficiency results in the reduction of blood oxygenation, poor pulmonary regeneration, lung fibrosis, and finally the respiratory system collapses. Exogenous surfactants have previously shown great promise in the treatment of infant respiratory distress syndrome, and they may also aid in the healing of damaged alveolar cells and the prevention of respiratory failure. Surfactant based therapy has been advised for the prevention of COVID-19, and the trials have begun around the world. Furthermore, greater research on the timing, dose, and the distribution of surfactant to the COVID-19 patients is required before this technique can be implemented in clinical practice.
Collapse
Affiliation(s)
- Sk Mehebub Rahaman
- Homogeneous Catalysis Laboratory, Department of Chemistry, The University of Burdwan , Burdwan , 713104 , West Bengal , India
| | - Budhadeb Chowdhury
- Homogeneous Catalysis Laboratory, Department of Chemistry, The University of Burdwan , Burdwan , 713104 , West Bengal , India
| | - Animesh Acharjee
- Homogeneous Catalysis Laboratory, Department of Chemistry, The University of Burdwan , Burdwan , 713104 , West Bengal , India
- Department of Chemistry, Hooghly Mohsin College , Chinsurah , West Bengal , India
| | - Bula Singh
- Department of Chemistry, Visva-Bharati University , Bolpur , West Bengal , India
| | - Bidyut Saha
- Homogeneous Catalysis Laboratory, Department of Chemistry, The University of Burdwan , Burdwan , 713104 , West Bengal , India
| |
Collapse
|
10
|
di Gregorio MC, Cautela J, Galantini L. Physiology and Physical Chemistry of Bile Acids. Int J Mol Sci 2021; 22:1780. [PMID: 33579036 PMCID: PMC7916809 DOI: 10.3390/ijms22041780] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
Bile acids (BAs) are facial amphiphiles synthesized in the body of all vertebrates. They undergo the enterohepatic circulation: they are produced in the liver, stored in the gallbladder, released in the intestine, taken into the bloodstream and lastly re-absorbed in the liver. During this pathway, BAs are modified in their molecular structure by the action of enzymes and bacteria. Such transformations allow them to acquire the chemical-physical properties needed for fulling several activities including metabolic regulation, antimicrobial functions and solubilization of lipids in digestion. The versatility of BAs in the physiological functions has inspired their use in many bio-applications, making them important tools for active molecule delivery, metabolic disease treatments and emulsification processes in food and drug industries. Moreover, moving over the borders of the biological field, BAs have been largely investigated as building blocks for the construction of supramolecular aggregates having peculiar structural, mechanical, chemical and optical properties. The review starts with a biological analysis of the BAs functions before progressively switching to a general overview of BAs in pharmacology and medicine applications. Lastly the focus moves to the BAs use in material science.
Collapse
Affiliation(s)
- Maria Chiara di Gregorio
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jacopo Cautela
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy;
| | - Luciano Galantini
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
11
|
Silpe J, Balskus EP. Deciphering Human Microbiota-Host Chemical Interactions. ACS CENTRAL SCIENCE 2021; 7:20-29. [PMID: 33532566 PMCID: PMC7844856 DOI: 10.1021/acscentsci.0c01030] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Indexed: 05/04/2023]
Abstract
Our gut harbors more microbes than any other body site, and accumulating evidence suggests that these organisms have a sizable impact on human health. Though efforts to classify the metabolic activities that define this microbial community have transformed the way we think about health and disease, our knowledge of gut microbially produced small molecules and their effects on host biology remains in its infancy. This Outlook surveys a range of approaches, hurdles, and advances in defining the chemical repertoire of the gut microbiota, drawing on examples with particularly strong links to human health. Progress toward understanding and manipulating this chemical language is being made with diverse chemical and biological expertise and could hold the key for combatting certain human diseases.
Collapse
Affiliation(s)
- Justin
E. Silpe
- Department of Chemistry and
Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Emily P. Balskus
- Department of Chemistry and
Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
12
|
Zhu Q, Komori H, Imamura R, Tamai I. A Novel Fluorescence-Based Method to Evaluate Ileal Apical Sodium-Dependent Bile Acid Transporter ASBT. J Pharm Sci 2020; 110:1392-1400. [PMID: 33278408 DOI: 10.1016/j.xphs.2020.11.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/10/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
This study aimed to demonstrate usefulness of the fluorophore-labeled bile acid derivative, N-(24-[7-(4-N,N-dimethylaminosulfonyl-2,1,3-benzoxadiazole)]amino-3α,7α,12α-trihydroxy-27-nor-5β-cholestan-26-oyl)-2'-aminoethane sulfonate (tauro-nor-THCA-24-DBD) as a substrate of apical sodium-dependent bile acid transporter (ASBT, SLC10A2), which is expressed at distal ileum for reabsorption of bile acids and to find a novel fluorescence-based method to evaluate ASBT activity. In HPLC analysis, chromatogram of tauro-nor-THCA-24-DBD showed double peaks: R- and S-isomers of the compound. When ASBT was expressed in Xenopus laevis oocytes, their uptakes were higher than those by control oocytes, demonstrating both are transported by ASBT. Therefore, results were analyzed separately as peak 1, peak 2 and sum of them. Concentration dependent uptake of tauro-nor-THCA-24-DBD in ASBT-expressing oocytes was saturable with Km 122 μM and Vmax 1.49 pmol/oocyte/30 min for peak 1, 30.7 μM and 1.34 pmol/oocyte/30 min for peak 2, and 40.6 μM and 2.36 pmol/oocyte/30 min for sum, respectively. These uptakes were decreased in the presence of taurocholic acid and in the Na+ free condition. Furthermore, in Caco-2 cells, tauro-nor-THCA-24-DBD uptake was also Na+-dependent and saturable. Additionally, these uptakes were decreased by elobixibat, a selective ASBT inhibitor. Accordingly, it was concluded that tauro-nor-THCA-24-DBD is a substrate of ASBT and useful to evaluate the intestinal ASBT transport activity.
Collapse
Affiliation(s)
- Qiunan Zhu
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| | - Hisakazu Komori
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| | - Rikako Imamura
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| | - Ikumi Tamai
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan.
| |
Collapse
|
13
|
Pabois O, Ziolek RM, Lorenz CD, Prévost S, Mahmoudi N, Skoda MWA, Welbourn RJL, Valero M, Harvey RD, Grundy MML, Wilde PJ, Grillo I, Gerelli Y, Dreiss CA. Morphology of bile salts micelles and mixed micelles with lipolysis products, from scattering techniques and atomistic simulations. J Colloid Interface Sci 2020; 587:522-537. [PMID: 33189321 DOI: 10.1016/j.jcis.2020.10.101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/17/2022]
Abstract
HYPOTHESES Bile salts (BS) are biosurfactants released into the small intestine, which play key and contrasting roles in lipid digestion: they adsorb at interfaces and promote the adsorption of digestive enzymes onto fat droplets, while they also remove lipolysis products from that interface, solubilising them into mixed micelles. Small architectural variations on their chemical structure, specifically their bile acid moiety, are hypothesised to underlie these conflicting functionalities, which should be reflected in different aggregation and solubilisation behaviour. EXPERIMENTS The micellisation of two BS, sodium taurocholate (NaTC) and sodium taurodeoxycholate (NaTDC), which differ by one hydroxyl group on the bile acid moiety, was assessed by pyrene fluorescence spectroscopy, and the morphology of aggregates formed in the absence and presence of fatty acids (FA) and monoacylglycerols (MAG) - typical lipolysis products - was resolved by small-angle X-ray/neutron scattering (SAXS, SANS) and molecular dynamics simulations. The solubilisation by BS of triacylglycerol-incorporating liposomes - mimicking ingested lipids - was studied by neutron reflectometry and SANS. FINDINGS Our results demonstrate that BS micelles exhibit an ellipsoidal shape. NaTDC displays a lower critical micellar concentration and forms larger and more spherical aggregates than NaTC. Similar observations were made for BS micelles mixed with FA and MAG. Structural studies with liposomes show that the addition of BS induces their solubilisation into mixed micelles, with NaTDC displaying a higher solubilising capacity.
Collapse
Affiliation(s)
- Olivia Pabois
- Institut Laue-Langevin, Grenoble 38000, France; Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| | - Robert M Ziolek
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom.
| | - Christian D Lorenz
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom.
| | | | - Najet Mahmoudi
- ISIS Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom.
| | - Maximilian W A Skoda
- ISIS Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom.
| | - Rebecca J L Welbourn
- ISIS Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom.
| | - Margarita Valero
- Department of Physical Chemistry, University of Salamanca, Salamanca 37007, Spain.
| | - Richard D Harvey
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna A-1090, Austria.
| | | | - Peter J Wilde
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom.
| | | | - Yuri Gerelli
- Institut Laue-Langevin, Grenoble 38000, France; Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy.
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| |
Collapse
|
14
|
Du G, Del Giudice A, Alfredsson V, Carnerup AM, Pavel NV, Loh W, Masci G, Nyström B, Galantini L, Schillén K. Effect of temperature on the association behavior in aqueous mixtures of an oppositely charged amphiphilic block copolymer and bile salt. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Zornjak J, Liu J, Esker A, Lin T, Fernández-Fraguas C. Bulk and interfacial interactions between hydroxypropyl-cellulose and bile salts: Impact on the digestion of emulsified lipids. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Pramod K, Kotta S, Jijith US, Aravind A, Abu Tahir M, Manju CS, Gangadharappa HV. Surfactant-based prophylaxis and therapy against COVID-19: A possibility. Med Hypotheses 2020; 143:110081. [PMID: 32653736 PMCID: PMC7340033 DOI: 10.1016/j.mehy.2020.110081] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/06/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022]
Abstract
Hand hygiene by washing with soap and water is recommended for the prevention of COVID-19 spread. Soaps and detergents are explained to act by damaging viral spike glycoproteins (peplomers) or by washing out the virus through entrapment in the micelles. Technically, soaps come under a functional category of molecules known as surfactants. Surfactants are widely used in pharmaceutical formulations as excipients. We wonder why surfactants are still not tried for prophylaxis or therapy against COVID-19? That too when many of them have proven antiviral properties. Moreover, lung surfactants have already shown benefits in respiratory viral infections. Therefore, we postulate that surfactant-based prophylaxis and therapy would be promising. We believe that our hypothesis would stimulate debate or new research exploring the possibility of surfactant-based prophylaxis and therapy against COVID-19. The success of a surfactant-based technique would save the world from any such pandemic in the future too.
Collapse
Affiliation(s)
- K Pramod
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, Kerala, India.
| | - Sabna Kotta
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Saudi Arabia
| | - U S Jijith
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, Kerala, India
| | - A Aravind
- College of Pharmaceutical Sciences, Govt. Medical College, Thiruvananthapuram, Kerala, India
| | - M Abu Tahir
- Formulation & Development, Steril-gene Life Sciences, Puducherry, India
| | - C S Manju
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, Kerala, India
| | - H V Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreshwara Nagar, Bannimantap, Mysuru 570015, Karnataka, India
| |
Collapse
|
17
|
Hori S, Abe T, Lee DG, Fukiya S, Yokota A, Aso N, Shirouchi B, Sato M, Ishizuka S. Association between 12α-hydroxylated bile acids and hepatic steatosis in rats fed a high-fat diet. J Nutr Biochem 2020; 83:108412. [PMID: 32534424 DOI: 10.1016/j.jnutbio.2020.108412] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022]
Abstract
High-fat (HF) diet induces hepatic steatosis that is a risk factor for noncommunicable diseases such as obesity, type 2 diabetes and cardiovascular disease. Previously, we found that HF feeding in rats increases the excretion of fecal bile acids (BAs), specifically 12α-hydroxylated (12αOH) BAs. Although the liver is the metabolic center in our body, the association between hepatic steatosis and 12αOH BAs in HF-fed rats is unclear. Thus, we investigated extensively BA composition in HF-fed rats and evaluated the association between hepatic steatosis and 12αOH BAs. Acclimated male inbred WKAH/HkmSlc rats were divided into two groups and fed either control or HF diet for 8 weeks. Feeding HF diet increased hepatic triglyceride and total cholesterol concentrations, which correlated positively with 12αOH BAs concentrations but not with non-12αOH BAs in the feces, portal plasma and liver. Accompanied by the increase in 12αOH BAs, the rats fed HF diet showed increased fat absorption and higher mRNA expression of liver Cidea. The enhancement of 12αOH BA secretion may contribute to hepatic steatosis by the promotion of dietary fat absorption and hepatic Cidea mRNA expression. The increase in 12αOH BAs was associated with enhanced liver cholesterol 7α-hydroxylase (Cyp7a1) and sterol 12α-hydroxylase (Cyp8b1) mRNA expression. There was a significant increase in 7α-hydroxycholesterol, a precursor of BAs, in the liver of HF-fed rats. Altogether, these data suggest that the HF diet increases preferentially 12αOH BAs synthesis by utilizing the accumulated hepatic cholesterol and enhancing mRNA expression of Cyp7a1 and Cyp8b1 in the liver.
Collapse
Affiliation(s)
- Shota Hori
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Takayuki Abe
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Dong Geun Lee
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Satoru Fukiya
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Atsushi Yokota
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Nao Aso
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Bungo Shirouchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Masao Sato
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Satoshi Ishizuka
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| |
Collapse
|
18
|
Pabois O, Antoine-Michard A, Zhao X, Omar J, Ahmed F, Alexis F, Harvey RD, Grillo I, Gerelli Y, Grundy MML, Bajka B, Wilde PJ, Dreiss CA. Interactions of bile salts with a dietary fibre, methylcellulose, and impact on lipolysis. Carbohydr Polym 2020; 231:115741. [PMID: 31888817 DOI: 10.1016/j.carbpol.2019.115741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
Abstract
Methylcellulose (MC) has a demonstrated capacity to reduce fat absorption, hypothetically through bile salt (BS) activity inhibition. We investigated MC cholesterol-lowering mechanism, and compared the influence of two BS, sodium taurocholate (NaTC) and sodium taurodeoxycholate (NaTDC), which differ slightly by their architecture and exhibit contrasting functions during lipolysis. BS/MC bulk interactions were investigated by rheology, and BS behaviour at the MC/water interface studied with surface pressure and ellipsometry measurements. In vitro lipolysis studies were performed to evaluate the effect of BS on MC-stabilised emulsion droplets microstructure, with confocal microscopy, and free fatty acids release, with the pH-stat method. Our results demonstrate that BS structure dictates their interactions with MC, which, in turn, impact lipolysis. Compared to NaTC, NaTDC alters MC viscoelasticity more significantly, which may correlate with its weaker ability to promote lipolysis, and desorbs from the interface at lower concentrations, which may explain its higher propensity to destabilise emulsions.
Collapse
Affiliation(s)
- Olivia Pabois
- Institut Laue-Langevin, Grenoble, 38000, France; Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, United Kingdom.
| | | | - Xi Zhao
- Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, United Kingdom.
| | - Jasmin Omar
- Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, United Kingdom.
| | - Faizah Ahmed
- Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, United Kingdom.
| | | | - Richard D Harvey
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), 06099, Germany.
| | | | - Yuri Gerelli
- Institut Laue-Langevin, Grenoble, 38000, France.
| | - Myriam M-L Grundy
- School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6AR, United Kingdom.
| | - Balazs Bajka
- Department of Nutritional Sciences, King's College London, London, SE1 9NH, United Kingdom.
| | - Peter J Wilde
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA, United Kingdom.
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, United Kingdom.
| |
Collapse
|
19
|
Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Intestinal Absorption of Bile Acids in Health and Disease. Compr Physiol 2019; 10:21-56. [PMID: 31853951 PMCID: PMC7171925 DOI: 10.1002/cphy.c190007] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intestinal reclamation of bile acids is crucial for the maintenance of their enterohepatic circulation. The majority of bile acids are actively absorbed via specific transport proteins that are highly expressed in the distal ileum. The uptake of bile acids by intestinal epithelial cells modulates the activation of cytosolic and membrane receptors such as the farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (GPBAR1), which has a profound effect on hepatic synthesis of bile acids as well as glucose and lipid metabolism. Extensive research has focused on delineating the processes of bile acid absorption and determining the contribution of dysregulated ileal signaling in the development of intestinal and hepatic disorders. For example, a decrease in the levels of the bile acid-induced ileal hormone FGF15/19 is implicated in bile acid-induced diarrhea (BAD). Conversely, the increase in bile acid absorption with subsequent overload of bile acids could be involved in the pathophysiology of liver and metabolic disorders such as fatty liver diseases and type 2 diabetes mellitus. This review article will attempt to provide a comprehensive overview of the mechanisms involved in the intestinal handling of bile acids, the pathological implications of disrupted intestinal bile acid homeostasis, and the potential therapeutic targets for the treatment of bile acid-related disorders. Published 2020. Compr Physiol 10:21-56, 2020.
Collapse
Affiliation(s)
- Alexander L. Ticho
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pooja Malhotra
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pradeep K. Dudeja
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Ravinder K. Gill
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Waddah A. Alrefai
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
20
|
Elkhabaz A, Moseson DE, Brouwers J, Augustijns P, Taylor LS. Interplay of Supersaturation and Solubilization: Lack of Correlation between Concentration-Based Supersaturation Measurements and Membrane Transport Rates in Simulated and Aspirated Human Fluids. Mol Pharm 2019; 16:5042-5053. [PMID: 31638397 DOI: 10.1021/acs.molpharmaceut.9b00956] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Supersaturating formulations are increasingly being used to improve the absorption of orally administered poorly water-soluble drugs. To better predict outcomes in vivo, we must be able to accurately determine the degree of supersaturation in complex media designed to provide a surrogate for the gastrointestinal environment. Herein, we demonstrate that relying on measurements based on consideration of the total dissolved concentration leads to underestimation of supersaturation and consequently membrane transport rates. Crystalline and amorphous solubilities of two compounds, atazanavir and posaconazole, were evaluated in six different media. Concurrently, diffusive flux measurements were performed in a side-by-side diffusion cell to determine the activity-based supersaturation by evaluating membrane transport rates at the crystalline and amorphous solubilities. Solubility values were found to vary in each medium because of different solubilization capacities. Concentration-based supersaturation ratios were also found to vary for the different media. Activity-based measurements, however, were largely independent of the medium, leading to relatively constant values for the estimated supersaturation. These findings have important consequences for modeling and prediction of supersaturation impact on the absorption rate as well as for better defining the thermodynamic driving force for crystallization in complex media.
Collapse
Affiliation(s)
- Ahmed Elkhabaz
- Department of Industrial and Physical Pharmacy, College of Pharmacy , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Dana E Moseson
- Department of Industrial and Physical Pharmacy, College of Pharmacy , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Joachim Brouwers
- Drug Delivery and Disposition , KU Leuven , Leuven 3000 , Belgium
| | | | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
21
|
Pabois O, Lorenz CD, Harvey RD, Grillo I, Grundy MML, Wilde PJ, Gerelli Y, Dreiss CA. Molecular insights into the behaviour of bile salts at interfaces: a key to their role in lipid digestion. J Colloid Interface Sci 2019; 556:266-277. [PMID: 31450021 DOI: 10.1016/j.jcis.2019.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/21/2019] [Accepted: 08/03/2019] [Indexed: 11/19/2022]
Abstract
HYPOTHESES Understanding the mechanisms underlying lipolysis is crucial to address the ongoing obesity crisis and associated cardiometabolic disorders. Bile salts (BS), biosurfactants present in the small intestine, play key roles in lipid digestion and absorption. It is hypothesised that their contrasting functionalities - adsorption at oil/water interfaces and shuttling of lipolysis products away from these interfaces - are linked to their structural diversity. We investigate the interfacial films formed by two BS, sodium taurocholate (NaTC) and sodium taurodeoxycholate (NaTDC), differing by the presence or absence of a hydroxyl group on their steroid skeleton. EXPERIMENTS Their adsorption behaviour at the air/water interface and interaction with a phospholipid monolayer - used to mimic a fat droplet interface - were assessed by surface pressure measurements and ellipsometry, while interfacial morphologies were characterised in the lateral and perpendicular directions by Brewster angle microscopy, X-ray and neutron reflectometry, and molecular dynamics simulations. FINDINGS Our results provide a comprehensive molecular-level understanding of the mechanisms governing BS interfacial behaviour. NaTC shows a higher affinity for the air/water and lipid/water interfaces, and may therefore favour enzyme adsorption, whereas NaTDC exhibits a higher propensity for desorption from these interfaces, and may thus more effectively displace hydrolysis products from the interface, through dynamic exchange.
Collapse
Affiliation(s)
- Olivia Pabois
- Institut Laue-Langevin, Grenoble 38000, France; Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| | - Christian D Lorenz
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom.
| | - Richard D Harvey
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale) 06099, Germany.
| | | | - Myriam M-L Grundy
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6AR, United Kingdom.
| | - Peter J Wilde
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, United Kingdom.
| | | | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| |
Collapse
|
22
|
Schillén K, Galantini L, Du G, Del Giudice A, Alfredsson V, Carnerup AM, Pavel NV, Masci G, Nyström B. Block copolymers as bile salt sequestrants: intriguing structures formed in a mixture of an oppositely charged amphiphilic block copolymer and bile salt. Phys Chem Chem Phys 2019; 21:12518-12529. [PMID: 31145393 DOI: 10.1039/c9cp01744e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To study the formation and characterize the structure of mixed complexes of oppositely charged block copolymers and surfactants are of great significance for practical applications, e.g., in drug carrier formulations that are based on electrostatically assisted assembly. In this context, biocompatible block copolymers and biosurfactants (like bile salts) are particularly interesting. In this work, we report on the co-assembly in dilute aqueous solution between a cationic poly(N-isopropyl acryl amide) (PNIPAM) diblock copolymer and the oppositely charged bile salt surfactant sodium deoxycholate at ambient temperature. The cryogenic transmission electron microscopy (cryo-TEM) experiments revealed the co-existence of two types of co-assembled complexes of radically different morphology and inner structure. They are formed mainly as a result of the electrostatic attraction between the positively charged copolymer blocks and bile salt anions and highlight the potential of using linear amphiphilic block copolymers as bile salt sequestrants in the treatment of bile acid malabsorption and hypercholesterolemia. The first complex of globular morphology has a coacervate core of deoxycholate anions and charged copolymer blocks surrounded by a PNIPAM corona. The second complex has an intriguing tape-like supramolecular morphology of several micrometer in length that is striped in the direction of the long axis. A model is presented in which the stretched cationic blocks of several block copolymers interact electrostatically with the bile salt molecules that are associated to form a zipper-like structure. The tape is covered on both sides by the PNIPAM chains that stabilize the overall complex in solution. In addition to cryo-TEM, the mixed system was investigated in a range of molar charge fractions at a constant copolymer concentration by static light scattering, small angle X-ray scattering, and electrophoretic mobility measurements.
Collapse
Affiliation(s)
- Karin Schillén
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | - Luciano Galantini
- Department of Chemistry, Sapienza University of Rome, P.O. Box 34-Roma 62, Piazzale A. Moro 5, I-00185 Roma, Italy.
| | - Guanqun Du
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | - Alessandra Del Giudice
- Department of Chemistry, Sapienza University of Rome, P.O. Box 34-Roma 62, Piazzale A. Moro 5, I-00185 Roma, Italy.
| | - Viveka Alfredsson
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | - Anna M Carnerup
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | - Nicolae V Pavel
- Department of Chemistry, Sapienza University of Rome, P.O. Box 34-Roma 62, Piazzale A. Moro 5, I-00185 Roma, Italy.
| | - Giancarlo Masci
- Department of Chemistry, Sapienza University of Rome, P.O. Box 34-Roma 62, Piazzale A. Moro 5, I-00185 Roma, Italy.
| | - Bo Nyström
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern N-0315, Oslo, Norway
| |
Collapse
|
23
|
Yücel O, Borgert SR, Poehlein A, Niermann K, Philipp B. The 7α-hydroxysteroid dehydratase Hsh2 is essential for anaerobic degradation of the steroid skeleton of 7α-hydroxyl bile salts in the novel denitrifying bacterium Azoarcus sp. strain Aa7. Environ Microbiol 2019; 21:800-813. [PMID: 30680854 DOI: 10.1111/1462-2920.14508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 12/24/2022]
Abstract
Bile salts are steroid compounds from the digestive tract of vertebrates and enter the environment via defecation. Many aerobic bile-salt degrading bacteria are known but no bacteria that completely degrade bile salts under anoxic conditions have been isolated so far. In this study, the facultatively anaerobic Betaproteobacterium Azoarcus sp. strain Aa7 was isolated that grew with bile salts as sole carbon source under anoxic conditions with nitrate as electron acceptor. Phenotypic and genomic characterization revealed that strain Aa7 used the 2,3-seco pathway for the degradation of bile salts as found in other denitrifying steroid-degrading bacteria such as Sterolibacterium denitrificans. Under oxic conditions strain Aa7 used the 9,10-seco pathway as found in, for example, Pseudomonas stutzeri Chol1. Metabolite analysis during anaerobic growth indicated a reductive dehydroxylation of 7α-hydroxyl bile salts. Deletion of the gene hsh2 Aa7 encoding a 7-hydroxysteroid dehydratase led to strongly impaired growth with cholate and chenodeoxycholate but not with deoxycholate lacking a hydroxyl group at C7. The hsh2 Aa7 deletion mutant degraded cholate and chenodeoxycholate to the corresponding C19 -androstadienediones only while no phenotype change was observed during aerobic degradation of cholate. These results showed that removal of the 7α-hydroxyl group was essential for cleavage of the steroid skeleton under anoxic conditions.
Collapse
Affiliation(s)
- Onur Yücel
- Westfälische Wilhelms-Universität Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstr. 3, 48149Münster, Germany
| | - Sebastian Roman Borgert
- Westfälische Wilhelms-Universität Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstr. 3, 48149Münster, Germany
| | - Anja Poehlein
- Georg-August-University Goettingen, Institute of Microbiology and Genetics, Department of Genomic and Applied Microbiology and Goettingen Genomics Laboratory, Grisebachstr. 8, 37077, Goettingen, Germany
| | - Karin Niermann
- Westfälische Wilhelms-Universität Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstr. 3, 48149Münster, Germany
| | - Bodo Philipp
- Westfälische Wilhelms-Universität Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstr. 3, 48149Münster, Germany
| |
Collapse
|
24
|
Genome Sequence of the Bile Salt-Degrading Bacterium Novosphingobium sp. Strain Chol11, a Model Organism for Bacterial Steroid Catabolism. GENOME ANNOUNCEMENTS 2018; 6:6/1/e01372-17. [PMID: 29301902 PMCID: PMC5754482 DOI: 10.1128/genomea.01372-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Many bacteria from different phylogenetic groups are able to degrade eukaryotic steroid compounds, but the underlying metabolic pathways are still not well understood. Novosphingobium sp. strain Chol11 is a steroid-degrading alphaproteobacterium. Its genome sequence reveals that it lacks several genes for steroid degradation known to exist in other model organisms.
Collapse
|
25
|
Corte-Real J, Desmarchelier C, Borel P, Richling E, Hoffmann L, Bohn T. Magnesium affects spinach carotenoid bioaccessibility in vitro depending on intestinal bile and pancreatic enzyme concentrations. Food Chem 2018; 239:751-759. [DOI: 10.1016/j.foodchem.2017.06.147] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 11/24/2022]
|
26
|
Naso F, Gandaglia A. Different approaches to heart valve decellularization: A comprehensive overview of the past 30 years. Xenotransplantation 2017; 25. [PMID: 29057501 DOI: 10.1111/xen.12354] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 08/28/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022]
Abstract
Xenogeneic decellularized heart valve scaffolds have the potential to overcome the limitations of existing bioprosthetic heart valves that have limited duration due to calcification and tissue degeneration phenomena. This article presents a review of 30 years of decellularization approaches adopted in cardiovascular tissue engineering, with a focus on the use, either individually or in combination, of different detergents. The safety and efficacy of cell-removal procedures are specifically reported and discussed, as well as the structure and biomechanics of the treated extracellular matrix (ECM). Detergent residues within the ECM, production of hyaluronan fragments, safe removal of cellular debris, and the persistence of the alpha-Gal epitope after the decellularization treatments are of particular interest as parameters for the identification of the best tissue for the manufacture of bioprostheses. Special attention has also been given to key factors that should be considered in the manufacture of the next generation of xenogeneic bioprostheses, where tissues must retain the ability to be remodeled and to grow in weight along with body reshaping.
Collapse
Affiliation(s)
- Filippo Naso
- Biocompatibility Innovation Company, Este, Padova, Italy
| | | |
Collapse
|
27
|
Yang T, Shu T, Liu G, Mei H, Zhu X, Huang X, Zhang L, Jiang Z. Quantitative profiling of 19 bile acids in rat plasma, liver, bile and different intestinal section contents to investigate bile acid homeostasis and the application of temporal variation of endogenous bile acids. J Steroid Biochem Mol Biol 2017; 172:69-78. [PMID: 28583875 DOI: 10.1016/j.jsbmb.2017.05.015] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/23/2017] [Accepted: 05/31/2017] [Indexed: 02/08/2023]
Abstract
Bile acid homeostasis is maintained by liver synthesis, bile duct secretion, microbial metabolism and intestinal reabsorption into the blood. When drug insults result in liver damage, the variances of bile acids (BAs) are related to the physiological status of the liver. Here, we established a method to simultaneously quantify 19 BAs in rat plasma, liver, bile and different intestinal section contents (duodenum, jejunum, ileum, cecum and colon) using high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) to reveal the pattern of bile acid homeostasis in the enterohepatic circulation of bile acids in physiological situations. Dynamic changes in bile acid composition appeared throughout the enterohepatic circulation of the BAs; taurine- and glycine-conjugated BAs and free BAs had different dynamic homeostasis levels in the circulatory system. cholic acid (CA), beta-muricholic acid (beta-MCA), lithocholic acid (LCA), glycocholic acid (GCA) and taurocholic acid (TCA) greatly fluctuated in the bile acid pool under physiological conditions. Taurine- and glycine-conjugated bile acids constituted more than 90% in the bile and liver, whereas GCA and TCA accounted for more than half of the total bile acids and the secretion of bile mainly via conjugating with taurine. While over 80% of BAs in plasma were unconjugated bile acids, CA and HDCA were the most abundant elements. Unconjugated bile acids constituted more than 90% in the intestine, and CA, beta-MCA and HDCA were the top three bile acids in the duodenum, jejunum and ileum content, but LCA and HDCA were highest in the cecum and colon content. As the main secondary bile acid converted by microflora in the intestine, LCA was enriched in the cecum and DCA mostly in the colon. As endogenous substances, the concentrations of plasma BAs were closely related to time rhythm and diet. In conclusion, analyzing detailed BA profiles in the enterohepatic circulation of bile acids in a single run is possible using LC-MS/MS. Based on the physiological characteristics of the metabolic profiling of 19 BAs in the total bile acid pool and the time rhythm variation of the endogenous bile acids, this study provided a new valuable method and theoretical basis for the clinical research of bile acid homeostasis.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China, China
| | - Ting Shu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China, China
| | - Guanlan Liu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China, China
| | - Huifang Mei
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China, China
| | - Xiaoyu Zhu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China, China
| | - Xin Huang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China.
| |
Collapse
|
28
|
Two Inborn Errors of Bile Acid Biosynthesis: The Need for Recognition and Treatment by Primary Bile Acid Replacement. J Pediatr Gastroenterol Nutr 2017; 64:849-850. [PMID: 28333767 DOI: 10.1097/mpg.0000000000001579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Lu J, Ormes JD, Lowinger M, Mann AKP, Xu W, Patel S, Litster JD, Taylor LS. Compositional effect of complex biorelevant media on the crystallization kinetics of an active pharmaceutical ingredient. CrystEngComm 2017. [DOI: 10.1039/c7ce01128h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bile salts impact crystal nucleation and growth of supersaturated solutions of poorly water soluble drugs.
Collapse
Affiliation(s)
- Jennifer Lu
- School of Chemical Engineering
- Purdue University
- Indiana 47907
- USA
| | - James D. Ormes
- Discovery Pharmaceutical Sciences
- MRL, Merck & Co., Inc
- Rahway
- USA
| | | | | | - Wei Xu
- Preformulation
- MRL, Merck & Co., Inc
- West Point
- USA
| | | | - James D. Litster
- School of Chemical Engineering
- Purdue University
- Indiana 47907
- USA
- Department of Chemical and Biological Engineering
| | - Lynne S. Taylor
- Department of Industrial and Physical Pharmacy
- Purdue University
- Indiana 47907
- USA
| |
Collapse
|
30
|
Yücel O, Drees S, Jagmann N, Patschkowski T, Philipp B. An unexplored pathway for degradation of cholate requires a 7α-hydroxysteroid dehydratase and contributes to a broad metabolic repertoire for the utilization of bile salts in N
ovosphingobium
sp. strain Chol11. Environ Microbiol 2016; 18:5187-5203. [DOI: 10.1111/1462-2920.13534] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/15/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Onur Yücel
- Westfälische Wilhelms-Universität Münster Institut für Molekulare Mikrobiologie und Biotechnologie; Münster 48149 Germany
| | - Steffen Drees
- Westfälische Wilhelms-Universität Münster Institut für Molekulare Mikrobiologie und Biotechnologie; Münster 48149 Germany
| | - Nina Jagmann
- Westfälische Wilhelms-Universität Münster Institut für Molekulare Mikrobiologie und Biotechnologie; Münster 48149 Germany
| | - Thomas Patschkowski
- Centrum für Biotechnologie - CeBiTec; Universität Bielefeld; Bielefeld 33501 Germany
| | - Bodo Philipp
- Westfälische Wilhelms-Universität Münster Institut für Molekulare Mikrobiologie und Biotechnologie; Münster 48149 Germany
| |
Collapse
|
31
|
Mayorquín-Torres MC, Arcos-Ramos R, Flores-Álamo M, Iglesias-Arteaga MA. Crystalline arrays of side chain modified bile acids derivatives. Two novel self-assemblies based on π-π and belly-to-belly interactions. Steroids 2016; 115:169-176. [PMID: 27644146 DOI: 10.1016/j.steroids.2016.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/10/2016] [Accepted: 09/13/2016] [Indexed: 11/16/2022]
Abstract
Crystalline derivatives of side chain modified bile acids were efficiently prepared from the naturally occurring steroids by palladium-catalyzed cross coupling reaction as a key step. The solvent-free crystalline bile acids derivatives 2b-e are readily accessed by slow evaporation from selected solvents. A variety of steroidal scaffolds were found and elucidated by SXRD studies. The crystal packing of the title compounds are dominated by hydrogen-bonding interactions established between differently positioned acetyl protecting groups, which in the case of 2b and 2e take advantage of the facial amphiphilicity producing two novel steroidal supramolecular self-assemblies combining π-π and strong facial interactions. Thus, these crystalline arrays of side chain modified bile acids represent promising scaffolds for research and implementation in biomolecular materials or inclusion phenomena.
Collapse
Affiliation(s)
- Martha C Mayorquín-Torres
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Rafael Arcos-Ramos
- Instituto de Ciencias Nucleares, Departamento de Química de Radiaciones y Radioquímica, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Marcos Flores-Álamo
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Martín A Iglesias-Arteaga
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico.
| |
Collapse
|
32
|
Mukherjee K, Barman A, Biswas R. Impact of the aggregation behaviour of sodium cholate and sodium deoxycholate on aqueous solution structure and dynamics: A combined time resolved fluorescence and dielectric relaxation spectroscopic study. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.07.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Maity B, Ahmed SA, Seth D. Interaction of Biologically Active Flavins inside Bile Salt Aggregates: Molecular Level Investigation. J Phys Chem B 2016; 120:9854-66. [PMID: 27557394 DOI: 10.1021/acs.jpcb.6b04870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work we have studied the photophysics of biologically active flavin molecule lumichrome (LCM) in different bile-salt aggregates. With alteration of the functional groups of the bile salts, the photophysics of confined fluorophore is largely affected and shows difference in their spectral behavior. This study also reveals the selective prototropic species of LCM present in bile salt aggregates. In the presence of the bile salt aggregates, LCM molecule shows excitation and emission wavelength-dependent emission properties, indicating switch over of the structural change of different prototropic form of the LCM molecule. The observation of higher rotational relaxation time in NaDC aggregates compared to NaTC aggregates clearly reflects that NaDC aggregates are more rigid due to its greater hydrophobicity and large in size, which is capable to bind the guest molecule more into their nanoconfined medium. Moreover, due to less acidic nature, NaDC aggregates have more ability to accept hydrogen bond from the LCM molecule and show the selective formation of isoalloxazine N10 anion (A1 monoanionic form) of LCM.
Collapse
Affiliation(s)
- Banibrata Maity
- Department of Chemistry, Indian Institute of Technology Patna , Patna 801103, Bihar, India
| | - Sayeed Ashique Ahmed
- Department of Chemistry, Indian Institute of Technology Patna , Patna 801103, Bihar, India
| | - Debabrata Seth
- Department of Chemistry, Indian Institute of Technology Patna , Patna 801103, Bihar, India
| |
Collapse
|
34
|
Myllymäki TTT, Nonappa, Yang H, Liljeström V, Kostiainen MA, Malho JM, Zhu XX, Ikkala O. Hydrogen bonding asymmetric star-shape derivative of bile acid leads to supramolecular fibrillar aggregates that wrap into micrometer spheres. SOFT MATTER 2016; 12:7159-65. [PMID: 27491728 PMCID: PMC5322467 DOI: 10.1039/c6sm01329e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/27/2016] [Indexed: 06/06/2023]
Abstract
We report that star-shaped molecules with cholic acid cores asymmetrically grafted by low molecular weight polymers with hydrogen bonding end-groups undergo aggregation to nanofibers, which subsequently wrap into micrometer spherical aggregates with low density cores. Therein the facially amphiphilic cholic acid (CA) is functionalized by four flexible allyl glycidyl ether (AGE) side chains, which are terminated with hydrogen bonding 2-ureido-4[1H]pyrimidinone (UPy) end-groups as connected by hexyl spacers, denoted as CA(AGE6-C6H12-UPy)4. This wedge-shaped molecule is expected to allow the formation of a rich variety of solvent-dependent structures due to the complex interplay of interactions, enabled by its polar/nonpolar surface-active structure, the hydrophobicity of the CA in aqueous medium, and the possibility to control hydrogen bonding between UPy molecules by solvent selection. In DMSO, the surfactant-like CA(AGE6-C6H12-UPy)4 self-assembles into nanometer scale micelles, as expected due to its nonpolar CA apexes, solubilized AGE6-C6H12-UPy chains, and suppressed mutual hydrogen bonds between the UPys. Dialysis in water leads to nanofibers with lateral dimensions of 20-50 nm. This is explained by promoted aggregation as the hydrogen bonds between UPy molecules start to become activated, the reduced solvent dispersibility of the AGE-chains, and the hydrophobicity of CA. Finally, in pure water the nanofibers wrap into micrometer spheres having low density cores. In this case, strong complementary hydrogen bonds between UPy molecules of different molecules can form, thus promoting lateral interactions between the nanofibers, as allowed by the hydrophobic hexyl spacers. The wrapping is illustrated by transmission electron microscopy tomographic 3D reconstructions. More generally, we foresee hierarchically structured matter bridging the length scales from molecular to micrometer scale by sequentially triggering supramolecular interactions.
Collapse
Affiliation(s)
- Teemu T. T. Myllymäki
- Department of Applied Physics , Aalto University , P.O. Box 15100 , FI-00076 AALTO , Finland . ;
| | - Nonappa
- Department of Applied Physics , Aalto University , P.O. Box 15100 , FI-00076 AALTO , Finland . ;
| | - Hongjun Yang
- Department of Chemistry , Université de Montréal , C.P. 6128 , Succursale Centre-ville , Montréal , QC H3C 3J7 , Canada
| | - Ville Liljeström
- Department of Applied Physics , Aalto University , P.O. Box 15100 , FI-00076 AALTO , Finland . ;
| | - Mauri A. Kostiainen
- Department of Biotechnology and Chemical Technology , Aalto University , P.O. Box 16100 , FI-00076 AALTO , Finland
| | - Jani-Markus Malho
- Department of Applied Physics , Aalto University , P.O. Box 15100 , FI-00076 AALTO , Finland . ;
| | - X. X. Zhu
- Department of Chemistry , Université de Montréal , C.P. 6128 , Succursale Centre-ville , Montréal , QC H3C 3J7 , Canada
| | - Olli Ikkala
- Department of Applied Physics , Aalto University , P.O. Box 15100 , FI-00076 AALTO , Finland . ;
| |
Collapse
|
35
|
Anderson SL, Rovnyak D, Strein TG. Direct Measurement of the Thermodynamics of Chiral Recognition in Bile Salt Micelles. Chirality 2016; 28:290-8. [DOI: 10.1002/chir.22580] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 12/21/2015] [Accepted: 01/05/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Shauna L. Anderson
- Department of Chemistry; Bucknell University; Lewisburg Pennsylvania USA
| | - David Rovnyak
- Department of Chemistry; Bucknell University; Lewisburg Pennsylvania USA
| | - Timothy G. Strein
- Department of Chemistry; Bucknell University; Lewisburg Pennsylvania USA
| |
Collapse
|
36
|
Holert J, Yücel O, Jagmann N, Prestel A, Möller HM, Philipp B. Identification of bypass reactions leading to the formation of one central steroid degradation intermediate in metabolism of different bile salts inPseudomonassp. strain Chol1. Environ Microbiol 2016; 18:3373-3389. [DOI: 10.1111/1462-2920.13192] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/17/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Johannes Holert
- Institut für Molekulare Mikrobiologie und Biotechnologie; Westfälische Wilhelms-Universität Münster; Corrensstr. 3 Münster 48149 Germany
| | - Onur Yücel
- Institut für Molekulare Mikrobiologie und Biotechnologie; Westfälische Wilhelms-Universität Münster; Corrensstr. 3 Münster 48149 Germany
| | - Nina Jagmann
- Institut für Molekulare Mikrobiologie und Biotechnologie; Westfälische Wilhelms-Universität Münster; Corrensstr. 3 Münster 48149 Germany
| | | | | | - Bodo Philipp
- Institut für Molekulare Mikrobiologie und Biotechnologie; Westfälische Wilhelms-Universität Münster; Corrensstr. 3 Münster 48149 Germany
| |
Collapse
|
37
|
Gomez-Mendoza M, Marin ML, Miranda MA. Photoactive bile salts with critical micellar concentration in the micromolar range. Phys Chem Chem Phys 2016; 18:12976-82. [DOI: 10.1039/c6cp00813e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aggregation behavior of bile salts is strongly dependent on the number of hydroxyl groups.
Collapse
Affiliation(s)
- Miguel Gomez-Mendoza
- Instituto de Tecnología Química
- Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas
- 46022 Valencia
- Spain
| | - M. Luisa Marin
- Instituto de Tecnología Química
- Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas
- 46022 Valencia
- Spain
| | - Miguel A. Miranda
- Instituto de Tecnología Química
- Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas
- 46022 Valencia
- Spain
| |
Collapse
|
38
|
Miro P, Marin ML, Miranda MA. Radical-mediated dehydrogenation of bile acids by means of hydrogen atom transfer to triplet carbonyls. Org Biomol Chem 2016; 14:2679-83. [DOI: 10.1039/c5ob02561c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of the present paper is to explore the potential of radical-mediated dehydrogenation of bile salts (BSs), which is reminiscent of the enzymatic action of hydroxysteroid dehydrogenase enzymes (HSDH).
Collapse
Affiliation(s)
- P. Miro
- Instituto Universitario Mixto de Tecnología Química (UPV-CSIC)
- Departamento de Química. Universitat Politècnica de València
- Valencia
- Spain
| | - M. L. Marin
- Instituto Universitario Mixto de Tecnología Química (UPV-CSIC)
- Departamento de Química. Universitat Politècnica de València
- Valencia
- Spain
| | - M. A. Miranda
- Instituto Universitario Mixto de Tecnología Química (UPV-CSIC)
- Departamento de Química. Universitat Politècnica de València
- Valencia
- Spain
| |
Collapse
|
39
|
Bayati S, Anderberg Haglund C, Pavel NV, Galantini L, Schillén K. Interaction between bile salt sodium glycodeoxycholate and PEO–PPO–PEO triblock copolymers in aqueous solution. RSC Adv 2016. [DOI: 10.1039/c6ra12514j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bile salts can associate to PEO–PPO–PEO block copolymer micelles and disintegrate them depending on the relative block length and molecular weight of the copolymers and bile salt/copolymer molar ratio.
Collapse
Affiliation(s)
- S. Bayati
- Division of Physical Chemistry
- Department of Chemistry
- Lund University
- SE-221 00 Lund
- Sweden
| | - C. Anderberg Haglund
- Division of Physical Chemistry
- Department of Chemistry
- Lund University
- SE-221 00 Lund
- Sweden
| | - N. V. Pavel
- Department of Chemistry
- “Sapienza” University of Rome
- 00185 Rome
- Italy
| | - L. Galantini
- Department of Chemistry
- “Sapienza” University of Rome
- 00185 Rome
- Italy
| | - K. Schillén
- Division of Physical Chemistry
- Department of Chemistry
- Lund University
- SE-221 00 Lund
- Sweden
| |
Collapse
|
40
|
Vinarova L, Vinarov Z, Tcholakova S, Denkov ND, Stoyanov S, Lips A. The mechanism of lowering cholesterol absorption by calcium studied by using an in vitro digestion model. Food Funct 2016; 7:151-63. [DOI: 10.1039/c5fo00856e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ca2+decreases strongly cholesterol and saturated fatty acid bioaccessibility duringin vitrolipid digestion, explaining the lowering of serum cholesterolin vivo.
Collapse
Affiliation(s)
- Liliya Vinarova
- Department of Chemical and Pharmaceutical Engineering
- Faculty of Chemistry and Pharmacy
- Sofia University
- 1164 Sofia
- Bulgaria
| | - Zahari Vinarov
- Department of Chemical and Pharmaceutical Engineering
- Faculty of Chemistry and Pharmacy
- Sofia University
- 1164 Sofia
- Bulgaria
| | - Slavka Tcholakova
- Department of Chemical and Pharmaceutical Engineering
- Faculty of Chemistry and Pharmacy
- Sofia University
- 1164 Sofia
- Bulgaria
| | - Nikolai D. Denkov
- Department of Chemical and Pharmaceutical Engineering
- Faculty of Chemistry and Pharmacy
- Sofia University
- 1164 Sofia
- Bulgaria
| | | | - Alex Lips
- University of Edinburgh
- School of Physics and Astronomy
- Edinburgh
- UK
- Unilever Discover
| |
Collapse
|
41
|
Bayati S, Galantini L, Knudsen KD, Schillén K. Effects of Bile Salt Sodium Glycodeoxycholate on the Self-Assembly of PEO-PPO-PEO Triblock Copolymer P123 in Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:13519-13527. [PMID: 26616587 DOI: 10.1021/acs.langmuir.5b03828] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A comprehensive experimental study on the interaction between the PEO-PPO-PEO block copolymer P123 (EO20PO68EO20) and the anionic bile salt sodium glycodeoxycholate (NaGDC) in water has been performed. The work was aimed at investigating the suitability of using P123 as bile salt sequestrant beside the fundamental aspects of PEO-PPO-PEO block copolymer-bile salt interactions. Various experimental techniques including dynamic and static light scattering, small-angle X-ray scattering, and differential scanning calorimetry (DSC) were employed in combination with electrophoretic mobility measurements. The system was investigated at a constant P123 concentration of 1.74 mM and with varying bile salt concentrations up to approximately 250 mM NaGDC (or a molar ratio n(NaGDC)/n(P123) = 144). In the mixed P123-NaGDC solutions, the endothermic process related to the self-assembly of P123 was observed to gradually decrease in enthalpy and shift to higher temperatures upon progressive addition of NaGDC. To explain this effect, the formation of NaGDC micelles carrying partly dehydrated P123 unimers was proposed and translated into a stoichiometric model, which was able to fit the experimental DSC data. In the mixtures at low molar ratios, NaGDC monomers associated with the P123 micelle forming a charged "P123 micelle-NaGDC" complex with a dehydrated PPO core. These complexes disintegrated upon increasing NaGDC concentration to form small "NaGDC-P123" complexes visualized as bile salt micelles including one or a few P123 copolymer chains.
Collapse
Affiliation(s)
- Solmaz Bayati
- Division of Physical Chemistry, Department of Chemistry, Lund University , P.O. Box 124, SE-221 00 Lund, Sweden
| | - Luciano Galantini
- Department of Chemistry, Sapienza University of Rome , P. le A. Moro 5, 00185 Rome, Italy
| | - Kenneth D Knudsen
- Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller, Norway
| | - Karin Schillén
- Division of Physical Chemistry, Department of Chemistry, Lund University , P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
42
|
Jeon OC, Seo DH, Kim HS, Byun Y, Park JW. Oral delivery of zoledronic acid by non-covalent conjugation with lysine-deoxycholic acid: In vitro characterization and in vivo anti-osteoporotic efficacy in ovariectomized rats. Eur J Pharm Sci 2015; 82:1-10. [PMID: 26542347 DOI: 10.1016/j.ejps.2015.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/02/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
We assessed the possibility of changing the route of administration of zoledronic acid to an oral dosage form and its therapeutic efficacy in an estrogen-deficient osteoporosis rat model. To enhance oral bioavailability, we formed an ionic complex by electrostatic conjugation of zoledronic acid with lysine-linked deoxycholic acid (Lys-DOCA, an oral absorption enhancer). After forming the complex, the characteristic crystalline features of pure zoledronic acid disappeared completely in the powder X-ray diffractogram and differential scanning calorimetry thermogram, indicating that zoledronic acid existed in an amorphous form in the complex. In vitro permeabilities of zoledronic acid/Lys-DOCA (1:1) (ZD1) and zoledronic acid/Lys-DOCA (1:2) (ZD2) complex across Caco-2 cell monolayers were 2.47- and 4.74-fold higher than that of zoledronic acid, respectively. Upon intra-jejunal administration to rats, the intestinal absorption of zoledronic acid was increased significantly and the resulting oral bioavailability of the ZD2 complex was determined to be 6.76±2.59% (0.548±0.161% for zoledronic acid). Ovariectomized (OVX) rats showed 122% increased bone mineral density versus the OVX control at 12weeks after treatment with once weekly oral administration of ZD2 complex (16μg/kg of zoledronic acid). Furthermore, rats treated with ZD2 complex orally showed significant improvement in the parameters of trabecular microarchitecture and bone strength: 149% higher bone volume fraction (BV/TV), 115% higher trabecular number (Tb.N), and 56% higher mean maximum load (Fmax) than in the OVX group. The trabecular microstructure and bone mechanical properties in the oral zoledronic acid group were not significantly changed compared with the OVX control. Thus, the oral ZD2 complex inhibited osteoporosis progression effectively by promoting osteogenesis and trabecular connectivity. The oral ZD2 complex would be expected to improve patient compliance by replacing the conventional injectable form and expand the indications, to include prophylaxis for osteoporosis and bone metastases.
Collapse
Affiliation(s)
- Ok-Cheol Jeon
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Dong-Hyun Seo
- Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju, Gangwon, Republic of Korea; Yonsei-Fraunhofer IZFP Medical Device Lab., Wonju, Gangwon, Republic of Korea
| | - Han-Sung Kim
- Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju, Gangwon, Republic of Korea; Yonsei-Fraunhofer IZFP Medical Device Lab., Wonju, Gangwon, Republic of Korea
| | - Youngro Byun
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| | - Jin Woo Park
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam, Republic of Korea.
| |
Collapse
|
43
|
Hwang SR, Kim IJ, Park JW. Formulations of deoxycholic for therapy: a patent review (2011 – 2014). Expert Opin Ther Pat 2015; 25:1423-40. [DOI: 10.1517/13543776.2016.1102888] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
44
|
Moghimipour E, Ameri A, Handali S. Absorption-Enhancing Effects of Bile Salts. Molecules 2015; 20:14451-73. [PMID: 26266402 PMCID: PMC6332414 DOI: 10.3390/molecules200814451] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 12/16/2022] Open
Abstract
Bile salts are ionic amphiphilic compounds with a steroid skeleton. Among the most important physiological properties of bile salts are lipid transport by solubilization and transport of some drugs through hydrophobic barriers. Bile salts have been extensively studied to enhance transepithelial permeability for different marker molecules and drugs. They readily agglomerate at concentrations above their critical micelle concentration (CMC). The mechanism of absorption enhancement by bile salts appears to be complex. The aim of the present article was to review bile salt structure and their application as absorption enhancers and the probable mechanism for increasing permeation based on previous studies.
Collapse
Affiliation(s)
- Eskandar Moghimipour
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-33184, Iran.
| | - Abdulghani Ameri
- Department of Drug and Food Control, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-33184, Iran.
| | - Somayeh Handali
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-33184, Iran.
| |
Collapse
|
45
|
Li K, Buchinger TJ, Bussy U, Fissette SD, Johnson NS, Li W. Quantification of 15 bile acids in lake charr feces by ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1001:27-34. [PMID: 26253808 DOI: 10.1016/j.jchromb.2015.07.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/08/2015] [Accepted: 07/11/2015] [Indexed: 12/11/2022]
Abstract
Many fishes are hypothesized to use bile acids (BAs) as chemical cues, yet quantification of BAs in biological samples and the required methods remain limited. Here, we present an UHPLC-MS/MS method for simultaneous, sensitive, and rapid quantification of 15 BAs, including free, taurine, and glycine conjugated BAs, and application of the method to fecal samples from lake charr (Salvelinus namaycush). The analytes were separated on a C18 column with acetonitrile-water (containing 7.5mM ammonium acetate and 0.1% formic acid) as mobile phase at a flow rate of 0.25mL/min for 12min. BAs were monitored with a negative electrospray triple quadrupole mass spectrometer (Xevo TQ-S™). Calibration curves of 15 BAs were linear over the concentration range of 1.00-5,000ng/mL. Validation revealed that the method was specific, accurate, and precise. The method was applied to quantitative analysis of feces extract of fry lake charr and the food they were eating. The concentrations of analytes CA, TCDCA, TCA, and CDCA were 242.3, 81.2, 60.7, and 36.2ng/mg, respectively. However, other taurine conjugated BAs, TUDCA, TDCA, and THDCA, were not detected in feces of lake charr. Interestingly, TCA and TCDCA were detected at high concentrations in food pellets, at 71.9 and 38.2ng/mg, respectively. Application of the method to feces samples from lake charr supported a role of BAs as chemical cues, and will enhance further investigation of BAs as chemical cues in other fish species.
Collapse
Affiliation(s)
- Ke Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Tyler J Buchinger
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Ugo Bussy
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Skye D Fissette
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Nicholas S Johnson
- U.S. Geological Survey, Great Lakes Science Center, Hammond Bay Biological Station, 11188 Ray Road, Millersburg, MI 49759, USA
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA; U.S. Geological Survey, Great Lakes Science Center, Hammond Bay Biological Station, 11188 Ray Road, Millersburg, MI 49759, USA.
| |
Collapse
|
46
|
Ionic liquid as separation enhancer in thin-layer chromatography of biosurfactants: mutual separation of sodium cholate, sodium deoxycholate and sodium taurocholate. J Anal Sci Technol 2015. [DOI: 10.1186/s40543-015-0058-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
47
|
Ganguly A, Ghosh S, Guchhait N. Modulated photophysics of an anthracene-based fluorophore within bile-salt aggregates: the effect of the ionic strength of the medium on the aggregation behavior. Photochem Photobiol Sci 2015; 14:2168-78. [DOI: 10.1039/c5pp00280j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Binding interactions of an anthracene-based fluorescent probe with a series of bile-salt aggregates of varying hydrophobicity, as well as salt induced alterations of the binding behavior have been thoroughly demonstrated.
Collapse
Affiliation(s)
| | - Soumen Ghosh
- Department of Chemistry
- University of Calcutta
- Calcutta-700009
- India
| | - Nikhil Guchhait
- Department of Chemistry
- University of Calcutta
- Calcutta-700009
- India
| |
Collapse
|
48
|
Dilli G, Unsal H, Uslu B, Aydogan N. Restoration of the interfacial properties of lung surfactant with a newly designed hydrocarbon/fluorocarbon lipid. Colloids Surf B Biointerfaces 2014; 122:566-575. [DOI: 10.1016/j.colsurfb.2014.07.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/16/2014] [Accepted: 07/21/2014] [Indexed: 11/30/2022]
|
49
|
|
50
|
Maldonado-Valderrama J, Muros-Cobos J, Holgado-Terriza J, Cabrerizo-Vílchez M. Bile salts at the air–water interface: Adsorption and desorption. Colloids Surf B Biointerfaces 2014; 120:176-83. [DOI: 10.1016/j.colsurfb.2014.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 11/28/2022]
|