1
|
Schulz JA, Hartz AMS, Bauer B. ABCB1 and ABCG2 Regulation at the Blood-Brain Barrier: Potential New Targets to Improve Brain Drug Delivery. Pharmacol Rev 2023; 75:815-853. [PMID: 36973040 PMCID: PMC10441638 DOI: 10.1124/pharmrev.120.000025] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
The drug efflux transporters ABCB1 and ABCG2 at the blood-brain barrier limit the delivery of drugs into the brain. Strategies to overcome ABCB1/ABCG2 have been largely unsuccessful, which poses a tremendous clinical problem to successfully treat central nervous system (CNS) diseases. Understanding basic transporter biology, including intracellular regulation mechanisms that control these transporters, is critical to solving this clinical problem.In this comprehensive review, we summarize current knowledge on signaling pathways that regulate ABCB1/ABCG2 at the blood-brain barrier. In Section I, we give a historical overview on blood-brain barrier research and introduce the role that ABCB1 and ABCG2 play in this context. In Section II, we summarize the most important strategies that have been tested to overcome the ABCB1/ABCG2 efflux system at the blood-brain barrier. In Section III, the main component of this review, we provide detailed information on the signaling pathways that have been identified to control ABCB1/ABCG2 at the blood-brain barrier and their potential clinical relevance. This is followed by Section IV, where we explain the clinical implications of ABCB1/ABCG2 regulation in the context of CNS disease. Lastly, in Section V, we conclude by highlighting examples of how transporter regulation could be targeted for therapeutic purposes in the clinic. SIGNIFICANCE STATEMENT: The ABCB1/ABCG2 drug efflux system at the blood-brain barrier poses a significant problem to successful drug delivery to the brain. The article reviews signaling pathways that regulate blood-brain barrier ABCB1/ABCG2 and could potentially be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Julia A Schulz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Anika M S Hartz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| |
Collapse
|
2
|
Cornelissen F, Markert G, Deutsch G, Antonara M, Faaij N, Bartelink I, Noske D, Vandertop WP, Bender A, Westerman BA. Explaining Blood-Brain Barrier Permeability of Small Molecules by Integrated Analysis of Different Transport Mechanisms. J Med Chem 2023; 66:7253-7267. [PMID: 37217193 PMCID: PMC10259449 DOI: 10.1021/acs.jmedchem.2c01824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Indexed: 05/24/2023]
Abstract
The blood-brain barrier (BBB) represents a major obstacle to delivering drugs to the central nervous system (CNS), resulting in the lack of effective treatment for many CNS diseases including brain cancer. To accelerate CNS drug development, computational prediction models could save the time and effort needed for experimental evaluation. Here, we studied BBB permeability focusing on active transport (influx and efflux) as well as passive diffusion using previously published and self-curated data sets. We created prediction models based on physicochemical properties, molecular substructures, or their combination to understand which mechanisms contribute to BBB permeability. Our results show that features that predicted passive diffusion over membranes overlap with features that explain endothelial permeation of approved CNS-active drugs. We also identified physical properties and molecular substructures that positively or negatively predicted BBB transport. These findings provide guidance toward identifying BBB-permeable compounds by optimally matching physicochemical and molecular properties to BBB transport mechanisms.
Collapse
Affiliation(s)
- Fleur
M.G. Cornelissen
- Department
of Neurosurgery, Amsterdam UMC, location VUMC, Cancer Center, Amsterdam 1105, AZ, the Netherlands
| | - Greta Markert
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Rd, Cambridge CB2 1EW, U.K.
| | - Ghislaine Deutsch
- Department
of Neurosurgery, Amsterdam UMC, location VUMC, Cancer Center, Amsterdam 1105, AZ, the Netherlands
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Rd, Cambridge CB2 1EW, U.K.
| | - Maria Antonara
- Department
of Neurosurgery, Amsterdam UMC, location VUMC, Cancer Center, Amsterdam 1105, AZ, the Netherlands
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Rd, Cambridge CB2 1EW, U.K.
| | - Noa Faaij
- Department
of Neurosurgery, Amsterdam UMC, location VUMC, Cancer Center, Amsterdam 1105, AZ, the Netherlands
| | - Imke Bartelink
- Department
of Pharmacy, Amsterdam UMC, location VUMC, Cancer Center, Amsterdam 1105, AZ, the Netherlands
| | - David Noske
- Department
of Neurosurgery, Amsterdam UMC, location VUMC, Cancer Center, Amsterdam 1105, AZ, the Netherlands
| | - W. Peter Vandertop
- Department
of Neurosurgery, Amsterdam UMC, location VUMC, Cancer Center, Amsterdam 1105, AZ, the Netherlands
| | - Andreas Bender
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Rd, Cambridge CB2 1EW, U.K.
| | - Bart A. Westerman
- Department
of Neurosurgery, Amsterdam UMC, location VUMC, Cancer Center, Amsterdam 1105, AZ, the Netherlands
- Window
Consortium (www.window-consortium.org)
| |
Collapse
|
3
|
Paz AA, González-Candia A. Potential pharmacological target of tight junctions to improve the BBB permeability in neonatal Hypoxic-Ischemic encephalopathy Diseases. Biochem Pharmacol 2023; 207:115356. [PMID: 36455671 DOI: 10.1016/j.bcp.2022.115356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Neonatal encephalopathy (NE) is a pathological condition that describes a neurocognitive malfunction in the newborn that arises from fetal, peripartum, or intrapartum events of multifactorial nature, having a poor prognosis and accounting for an incidence of 5-8 per 1000 live births. Neonatal hypoxic-ischemic encephalopathy (HIE) is one of the most studied paradigms of NE, caused by a scarce cerebral perfusion and oxygen supply during perinatal life. The cerebral hypoxic-ischemic insult promotes a loss of permeability of the blood-brain barrier (BBB), an essential structural intermediary of blood-brain communication. This permeability disruption is associated with an increase in inflammatory cytokines, an increase of adhesion molecules, and oxidative stress which disturb the tight junction (TJ) performance and enable transcytosis and paracellular leakage, ultimately leading to death from brain cells. In this context, TJs proteins are essential to preserving the barrier mechanical stability and signaling that modulates the brain-blood vessel multicellular domains, known as neurovascular units (NVU). Recent studies have proposed different strategies with neuroprotective effects that allow for maintaining or restoring the integrity and permeability of the BBB. This review identifies and discusses regulator mechanisms and novel aspects of TJs in the BBB disruption induced by cerebral hypoxic insults during the perinatal period, evaluating potential pharmacological strategies to safeguard BBB integrity.
Collapse
Affiliation(s)
- Adolfo A Paz
- Institute of Health Sciences, University O'Higgins, Rancagua, Chile
| | | |
Collapse
|
4
|
Abstract
Traditional in vitro models can replicate many essential features of drug transport/permeability across the blood-brain barrier (BBB) but are not entirely projecting in vivo central nervous system (CNS) uptake. Species differences fail to translate experimental therapeutics from the research laboratory to the clinic. Improved in vitro modeling of human BBB is vital for both CNS drug discovery and delivery. High-end human BBB models fabricated by microfluidic technologies offer some solutions to this problem. BBB's complex physiological microenvironment has been established by increasing device complexity in terms of multiple cells, dynamic conditions, and 3D designs. It is now possible to predict the therapeutic effects of a candidate drug and identify new druggable targets by studying multicellular interactions using the advanced in vitro BBB models. This chapter reviews the current as well as an ideal in vitro model of the BBB.
Collapse
Affiliation(s)
- Snehal Raut
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Aditya Bhalerao
- Department of Biological and Biomedical Sciences, Oakland University, Rochester, MI, USA
| | - Behnam Noorani
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, USA.
| |
Collapse
|
5
|
Walter FR, Santa-Maria AR, Mészáros M, Veszelka S, Dér A, Deli MA. Surface charge, glycocalyx, and blood-brain barrier function. Tissue Barriers 2021; 9:1904773. [PMID: 34003072 DOI: 10.1080/21688370.2021.1904773] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The negative surface charge of brain microvessel endothelial cells is derived from the special composition of their membrane lipids and the thick endothelial surface glycocalyx. They are important elements of the unique defense systems of the blood-brain barrier. The tissue-specific properties, components, function and charge of the brain endothelial glycocalyx have only been studied in detail in the past 15 years. This review highlights the importance of the negative surface charge in the permeability of macromolecules and nanoparticles as well as in drug interactions. We discuss surface charge and glycoxalyx changes in pathologies related to the brain microvasculature and protective measures against glycocalyx shedding and damage. We present biophysical techniques, including a microfluidic chip device, to measure surface charge of living brain endothelial cells and imaging methods for visualization of surface charge and glycocalyx.
Collapse
Affiliation(s)
- Fruzsina R Walter
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Ana R Santa-Maria
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Mária Mészáros
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Szilvia Veszelka
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - András Dér
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
6
|
Blaauboer BJ, Bayliss MK, Castell JV, Evelo CT, Frazier JM, Groen K, Gülden M, Guillouzo A, Hissink AM, Houston JB, Johanson G, de Jongh J, Kedderis GL, Reinhardt CA, van de Sandt JJ, Semino G. The Use of Biokinetics and in Vitro Methods in Toxicological Risk Evaluation. Altern Lab Anim 2020. [DOI: 10.1177/026119299602400408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Martin K. Bayliss
- Department of Bioanalysis and Drug Metabolism, Glaxo Wellcome, Park Road, Ware, Herts. SG12 ODP, UK
| | - Jose V. Castell
- Unidad de Hepatologia Experimental, Hospital Universitario La Fe, Avda de Campanar 21, 46009 Valencia, Spain
| | - Chris T.A. Evelo
- Department of Pharmacology, Section of Toxicology, University of Limburg, 6200 MD Maastricht, The Netherlands
| | - John M. Frazier
- US Air Force, Armstrong Laboratory, Wright Patterson Air Force Base, OH 45433, USA
| | - Kees Groen
- Department of Clinical Pharmacokinetics, Janssen Research Foundation, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Michael Gülden
- Cell Toxicology Section, Institute of Toxicology, University of Kiel, Weimarer Strasse 8, 24106 Kiel, Germany
| | - André Guillouzo
- INSERM U49, Unité de Recherches Hépatologiques, Hôpital de Pontchaillou, 35033 Rennes Cedex, France
| | - Arendina M. Hissink
- Toxicology Division, TNO Nutrition and Food Research Institute, 3700 AJ Zeist, The Netherlands
| | - J. Brian Houston
- Department of Pharmacy, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Gunnar Johanson
- Department of Toxicology and Chemistry, National Institute for Working Life, 171 84 Solna, Sweden
| | - Joost de Jongh
- RITOX, Utrecht University, 3508 TD Utrecht, The Netherlands
| | - Gregory L. Kedderis
- Chemical Industry Institute of Toxicology CIIT, Research Triangle Park, NC 27709, USA
| | - Christoph A. Reinhardt
- Swiss Alternatives to Animal Testing (SAAT), P.O. Box 14, 8614 Bertschikon-Zurich, Switzerland
| | | | - Giovanna Semino
- Laboratory of Toxicology, Institute of Pharmacological Sciences, Via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
7
|
Leahy DE, Duncan R, Ahr HJ, Bayliss MK, de Boer A(BG, Darvas F, Fentem JH, Fry JR, Hopkins R, Houston JB, Karlsson J, Kedderis GL, Pratten MK, Prieto P, Smith DA, Straughan DW. Pharmacokinetics in Early Drug Research. Altern Lab Anim 2020. [DOI: 10.1177/026119299702500105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- David E. Leahy
- Lead Discovery Department, ZENECA Pharmaceuticals, Alderley Park, Macclesfield SK10 4TG, UK
| | - Ruth Duncan
- Centre for Polymer Therapeutics, The School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, UK
| | - Hans J. Ahr
- PH-PD-T Research Toxicology, Bayer AG, 42096 Wuppertal, Germany
| | - Martin K. Bayliss
- Bioanalysis and Drug Metabolism, Glaxo Wellcome, Park Road, Ware, Herts. SG12 ODP, UK
| | - A. (Bert) G. de Boer
- Division of Pharmacology, LACDR, Sylvius Laboratories, Leiden University, Wassenaarseweg 72, 2300 RA Leiden, The Netherlands
| | | | | | - Jeffrey R. Fry
- Department of Physiology & Pharmacology, University of Nottingham Medical School, Nottingham NG7 2UH, UK
| | - Robert Hopkins
- Corning Hazleton, Otley Road, Harrogate, North Yorkshire HG3 1PY, UK
| | - J. Brian Houston
- Department of Pharmacy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Johan Karlsson
- Elan Corporation Research Institute, Trinity College, Dublin 2, Ireland
| | | | - Margaret K. Pratten
- Department of Human Anatomy and Cell Biology, University of Nottingham Medical School, Nottingham NG7 2UH, UK
| | - Pilar Prieto
- ECVAM, JRC Environment Institute, 21020 Ispra (VA), Italy
| | - Dennis A. Smith
- Department of Drug Metabolism, Pfizer Central Research, Sandwich, Kent CT13 9NJ, UK
| | - Donald W. Straughan
- FRAME, Russell & Burch House, 96–98 North Sherwood Street, Nottingham NG1 4EE, UK
| |
Collapse
|
8
|
Gerhartl A, Pracser N, Vladetic A, Hendrikx S, Friedl HP, Neuhaus W. The pivotal role of micro-environmental cells in a human blood-brain barrier in vitro model of cerebral ischemia: functional and transcriptomic analysis. Fluids Barriers CNS 2020; 17:19. [PMID: 32138745 PMCID: PMC7059670 DOI: 10.1186/s12987-020-00179-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/21/2020] [Indexed: 02/08/2023] Open
Abstract
Background The blood–brain barrier (BBB) is altered in several diseases of the central nervous system. For example, the breakdown of the BBB during cerebral ischemia in stroke or traumatic brain injury is a hallmark of the diseases’ progression. This functional damage is one key event which is attempted to be mimicked in in vitro models. Recent studies showed the pivotal role of micro-environmental cells such as astrocytes for this barrier damage in mouse stroke in vitro models. The aim of this study was to evaluate the role of micro-environmental cells for the functional, paracellular breakdown in a human BBB cerebral ischemia in vitro model accompanied by a transcriptional analysis. Methods Transwell models with human brain endothelial cell line hCMEC/D3 in mono-culture or co-culture with human primary astrocytes and pericytes or rat glioma cell line C6 were subjected to oxygen/glucose deprivation (OGD). Changes of transendothelial electrical resistance (TEER) and FITC-dextran 4000 permeability were recorded as measures for paracellular tightness. In addition, qPCR and high-throughput qPCR Barrier chips were applied to investigate the changes of the mRNA expression of 38 relevant, expressed barrier targets (tight junctions, ABC-transporters) by different treatments. Results In contrast to the mono-culture, the co-cultivation with human primary astrocytes/pericytes or glioma C6 cells resulted in a significantly increased paracellular permeability after 5 h OGD. This indicated the pivotal role of micro-environmental cells for BBB breakdown in the human model. Hierarchical cluster analysis of qPCR data revealed differently, but also commonly regulated clustered targets dependent on medium exchange, serum reduction, hydrocortisone addition and co-cultivations. Conclusions The co-cultivation with micro-environmental cells is necessary to achieve a functional breakdown of the BBB in the cerebral ischemia model within an in vivo relevant time window. Comprehensive studies by qPCR revealed that distinct expression clusters of barrier markers exist and that these are regulated by different treatments (even by growth medium change) indicating that controls for single cell culture manipulation steps are crucial to understand the observed effects properly.
Collapse
Affiliation(s)
- Anna Gerhartl
- Competence Unit Molecular Diagnostics, Center Health and Bioresources, AIT-Austrian Institute of Technology GmbH, Giefinggasse 4, 1210, Vienna, Austria
| | - Nadja Pracser
- Competence Unit Molecular Diagnostics, Center Health and Bioresources, AIT-Austrian Institute of Technology GmbH, Giefinggasse 4, 1210, Vienna, Austria
| | - Alexandra Vladetic
- Competence Unit Molecular Diagnostics, Center Health and Bioresources, AIT-Austrian Institute of Technology GmbH, Giefinggasse 4, 1210, Vienna, Austria
| | - Sabrina Hendrikx
- Competence Unit Molecular Diagnostics, Center Health and Bioresources, AIT-Austrian Institute of Technology GmbH, Giefinggasse 4, 1210, Vienna, Austria
| | - Heinz-Peter Friedl
- Competence Unit Molecular Diagnostics, Center Health and Bioresources, AIT-Austrian Institute of Technology GmbH, Giefinggasse 4, 1210, Vienna, Austria
| | - Winfried Neuhaus
- Competence Unit Molecular Diagnostics, Center Health and Bioresources, AIT-Austrian Institute of Technology GmbH, Giefinggasse 4, 1210, Vienna, Austria.
| |
Collapse
|
9
|
Abstract
Knowledge about the transport of active compounds across the blood-brain barrier is of essential importance for drug development. Systemically applied drugs for the central nervous system (CNS) must be able to cross the blood-brain barrier in order to reach their target sites, whereas drugs that are supposed to act in the periphery should not permeate the blood-brain barrier so that they do not trigger any adverse central adverse effects. A number of approaches have been pursued, and manifold in silico, in vitro, and in vivo animal models were developed in order to be able to make a better prediction for humans about the possible penetration of active substances into the CNS. In this particular case, however, in vitro models play a special role, since the data basis for in silico models is usually in need of improvement, and the predictive power of in vivo animal models has to be checked for possible species differences. The blood-brain barrier is a dynamic, highly selective barrier formed by brain capillary endothelial cells. One of its main tasks is the maintenance of homeostasis in the CNS. The function of the barrier is regulated by cells of the microenvironment and the shear stress mediated by the blood flow, which makes the model development most complex. In general, one could follow the credo "as easy as possible, as complex as necessary" for the usage of in vitro BBB models for drug development. In addition to the description of the classical cell culture models (transwell, hollow fiber) and guidance how to apply them, the latest developments (spheroids, microfluidic models) will be introduced in this chapter, as it is attempted to get more in vivo-like and to be applicable for high-throughput usage with these models. Moreover, details about the development of models based on stem cells derived from different sources with a special focus on human induced pluripotent stem cells are presented.
Collapse
Affiliation(s)
- Winfried Neuhaus
- Competence Unit Molecular Diagnostics, Center Health and Bioresources, AIT - Austrian Institute of Technology GmbH, Vienna, Austria.
| |
Collapse
|
10
|
Jackson S, Meeks C, Vézina A, Robey RW, Tanner K, Gottesman MM. Model systems for studying the blood-brain barrier: Applications and challenges. Biomaterials 2019; 214:119217. [PMID: 31146177 DOI: 10.1016/j.biomaterials.2019.05.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022]
Abstract
The blood-brain barrier (BBB) poses a serious impediment to the delivery of effective therapies to the central nervous system (CNS). Over time, various model systems have been crafted and used to evaluate the complexities of the BBB, which includes an impermeable physical barrier and a series of energy-dependent efflux pumps. Models of the BBB have mainly sought to assess changes in endothelial cell permeability, the role of ATP-dependent efflux transporters in drug disposition, and alterations in communication between BBB cells and the microenvironment. In the context of disease, various animal models have been utilized to examine real time BBB drug permeability, CNS dynamic changes, and overall treatment response. In this review, we outline the use of these in vitro and in vivo blood-brain barrier model systems to study normal physiology and diseased states. These current models each have their own advantages and disadvantages for studying the response of biologic processes to physiological and pathological conditions. Additional models are needed to mimic more closely the dynamic quality of the BBB, with the goal focused on potential clinical applications.
Collapse
Affiliation(s)
- Sadhana Jackson
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Caitlin Meeks
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Amélie Vézina
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Robert W Robey
- Multidrug Resistance Section, Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Kandice Tanner
- Tissue Morphodynamics Unit, Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Michael M Gottesman
- Multidrug Resistance Section, Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| |
Collapse
|
11
|
Sorby-Adams AJ, Marcoionni AM, Dempsey ER, Woenig JA, Turner RJ. The Role of Neurogenic Inflammation in Blood-Brain Barrier Disruption and Development of Cerebral Oedema Following Acute Central Nervous System (CNS) Injury. Int J Mol Sci 2017; 18:E1788. [PMID: 28817088 PMCID: PMC5578176 DOI: 10.3390/ijms18081788] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/07/2017] [Accepted: 08/15/2017] [Indexed: 12/13/2022] Open
Abstract
Acute central nervous system (CNS) injury, encompassing traumatic brain injury (TBI) and stroke, accounts for a significant burden of morbidity and mortality worldwide, largely attributable to the development of cerebral oedema and elevated intracranial pressure (ICP). Despite this, clinical treatments are limited and new therapies are urgently required to improve patient outcomes and survival. Originally characterised in peripheral tissues, such as the skin and lungs as a neurally-elicited inflammatory process that contributes to increased microvascular permeability and tissue swelling, neurogenic inflammation has now been described in acute injury to the brain where it may play a key role in the secondary injury cascades that evolve following both TBI and stroke. In particular, release of the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) appear to be critically involved. In particular, increased SP expression is observed in perivascular tissue following acute CNS injury, with the magnitude of SP release being related to both the frequency and degree of the insult. SP release is associated with profound blood-brain barrier disruption and the subsequent development of vasogenic oedema, as well as neuronal injury and poor functional outcomes. Inhibition of SP through use of a neurokinin 1 (NK1) antagonist is highly beneficial following both TBI and ischaemic stroke in pre-clinical models. The role of CGRP is more unclear, especially with respect to TBI, with both elevations and reductions in CGRP levels reported following trauma. However, a beneficial role has been delineated in stroke, given its potent vasodilatory effects. Thus, modulating neuropeptides represents a novel therapeutic target in the treatment of cerebral oedema following acute CNS injury.
Collapse
Affiliation(s)
- Annabel J Sorby-Adams
- Adelaide Medical School and Adelaide Centre for Neuroscience Research, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide SA 5005, Australia.
| | - Amanda M Marcoionni
- Adelaide Medical School and Adelaide Centre for Neuroscience Research, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide SA 5005, Australia.
| | - Eden R Dempsey
- Adelaide Medical School and Adelaide Centre for Neuroscience Research, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide SA 5005, Australia.
| | - Joshua A Woenig
- Adelaide Medical School and Adelaide Centre for Neuroscience Research, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide SA 5005, Australia.
| | - Renée J Turner
- Adelaide Medical School and Adelaide Centre for Neuroscience Research, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide SA 5005, Australia.
| |
Collapse
|
12
|
Deracinois B, Lenfant AM, Dehouck MP, Flahaut C. Tissue Non-specific Alkaline Phosphatase (TNAP) in Vessels of the Brain. Subcell Biochem 2016. [PMID: 26219710 DOI: 10.1007/978-94-017-7197-9_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The microvessels of the brain represent around 3-4 % of the brain compartment but constitute the most important length (400 miles) and surface of exchange (20 m(2)) between the blood and the parenchyma of brain. Under influence of surrounding tissues, the brain microvessel endothelium expresses a specific phenotype that regulates and restricts the entry of compounds and cells from blood to brain, and defined the so-called blood-brain barrier (BBB). Evidences that alkaline phosphatase (AP) is a characteristic feature of the BBB phenotype that allows differentiating capillary endothelial cells from brain to those of the periphery have rapidly emerge. Thenceforth, AP has been rapidly used as a biomarker of the blood-brain barrier phenotype. In fact, brain capillary endothelial cells (BCECs) express exclusively tissue non-specific alkaline phosphatase (TNAP). There are several lines of evidence in favour of an important role for TNAP in brain function. TNAP is thought to be responsible for the control of transport of some compounds across the plasma membrane of the BCECs. Here, we report that levamisole-mediated inhibition of TNAP provokes an increase of the permeability to Lucifer Yellow of the endothelial monolayer. Moreover, we illustrate the disruption of the cytoskeleton organization. Interestingly, all observed effects were reversible 24 h after levamisole removal and correlated with the return of a full activity of the TNAP. This reversible effect remains to be studied in details to evaluate the potentiality of a levamisole treatment to enhance the entry of drugs in the brain parenchyma.
Collapse
|
13
|
Garg T, Bhandari S, Rath G, Goyal AK. Current strategies for targeted delivery of bio-active drug molecules in the treatment of brain tumor. J Drug Target 2015; 23:865-87. [PMID: 25835469 DOI: 10.3109/1061186x.2015.1029930] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Brain tumor is one of the most challenging diseases to treat. The major obstacle in the specific drug delivery to brain is blood-brain barrier (BBB). Mostly available anti-cancer drugs are large hydrophobic molecules which have limited permeability via BBB. Therefore, it is clear that the protective barriers confining the passage of the foreign particles into the brain are the main impediment for the brain drug delivery. Hence, the major challenge in drug development and delivery for the neurological diseases is to design non-invasive nanocarrier systems that can assist controlled and targeted drug delivery to the specific regions of the brain. In this review article, our major focus to treat brain tumor by study numerous strategies includes intracerebral implants, BBB disruption, intraventricular infusion, convection-enhanced delivery, intra-arterial drug delivery, intrathecal drug delivery, injection, catheters, pumps, microdialysis, RNA interference, antisense therapy, gene therapy, monoclonal/cationic antibodies conjugate, endogenous transporters, lipophilic analogues, prodrugs, efflux transporters, direct conjugation of antitumor drugs, direct targeting of liposomes, nanoparticles, solid-lipid nanoparticles, polymeric micelles, dendrimers and albumin-based drug carriers.
Collapse
Affiliation(s)
| | - Saurav Bhandari
- b Department of Quality Assurance , ISF College of Pharmacy , Moga , Punjab , India
| | | | | |
Collapse
|
14
|
Activation of adult rat CNS endothelial cells by opioid-induced toll-like receptor 4 (TLR4) signaling induces proinflammatory, biochemical, morphological, and behavioral sequelae. Neuroscience 2014; 280:299-317. [PMID: 25241065 DOI: 10.1016/j.neuroscience.2014.09.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/05/2014] [Accepted: 09/10/2014] [Indexed: 12/21/2022]
Abstract
CNS immune signaling contributes to deleterious opioid effects including hyperalgesia, tolerance, reward, and dependence/withdrawal. Such effects are mediated by opioid signaling at toll-like receptor 4 (TLR4), presumptively of glial origin. Whether CNS endothelial cells express TLR4 is controversial. If so, they would be well positioned for activation by blood-borne opioids, contributing to opioid-induced pro-inflammatory responses. These studies examined adult primary rat CNS endothelial cell responses to (-)-morphine or its mu opioid receptor (MOR)-inactive metabolite morphine-3-glucuronide (M3G), both known TLR4 agonists. We demonstrate that adult rat CNS endothelial cells express functional TLR4. M3G activated nuclear factor kappaB (NF-κB), increased tumor necrosis factor-α (TNFα) and cyclooxygenase-2 (COX2) mRNAs, and released prostaglandin E2 (PGE2) from these cells. (-)-Morphine-induced upregulation of TNFα mRNA and PGE2 release were unmasked by pre-treatment with nalmefene, a MOR antagonist without TLR4 activity (unlike CTAP, shown to have both MOR- and TLR4-activity), suggestive of an interplay between MOR and TLR4 co-activation by (-)-morphine. In support, MOR-dependent Protein Kinase A (PKA) opposed TLR4 signaling, as PKA inhibition (H-89) also unmasked (-)-morphine-induced TNFα and COX2 mRNA upregulation. Intrathecal injection of CNS endothelial cells, stimulated in vitro with M3G, produced TLR4-dependent tactile allodynia. Further, cortical suffusion with M3G in vivo induced TLR4-dependent vasodilation. Finally, endothelial cell TLR4 activation by lipopolysaccharide and/or M3G was blocked by the glial inhibitors AV1013 and propentofylline, demonstrating endothelial cells as a new target of such drugs. These data indicate that (-)-morphine and M3G can activate CNS endothelial cells via TLR4, inducing proinflammatory, biochemical, morphological, and behavioral sequelae. CNS endothelial cells may have previously unanticipated roles in opioid-induced effects, in phenomena blocked by presumptive glial inhibitors, as well as TLR4-mediated phenomena more broadly.
Collapse
|
15
|
Xu G, Mahajan S, Roy I, Yong KT. Theranostic quantum dots for crossing blood-brain barrier in vitro and providing therapy of HIV-associated encephalopathy. Front Pharmacol 2013; 4:140. [PMID: 24298256 PMCID: PMC3828669 DOI: 10.3389/fphar.2013.00140] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/19/2013] [Indexed: 12/12/2022] Open
Abstract
The blood–brain barrier (BBB) is a complex physiological checkpoint that restricts the free diffusion of circulating molecules from the blood into the central nervous system. Delivering of drugs and other active agents across the BBB is one of the major technical challenges faced by scientists and medical practitioners. Therefore, development of novel methodologies to address this challenge holds the key for both the diagnosis and treatment of brain diseases, such as HIV-associated encephalopathy. Bioconjugated quantum dots (QDs) are excellent fluorescent probes and nano-vectors, being designed to transverse across the BBB and visualize drug delivery inside the brain. This paper discusses the use of functionalized QDs for crossing the blood–brain barrier and treating brain disease. We highlight the guidelines for using in vitro BBB models for brain disease studies. The theranostic QDs offers a strategy to significantly improve the effective dosages of drugs to transverse across the BBB and orientate to the targets inside the brain.
Collapse
Affiliation(s)
- Gaixia Xu
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, Shenzhen University Shenzhen, China
| | | | | | | |
Collapse
|
16
|
Blocking neurogenic inflammation for the treatment of acute disorders of the central nervous system. Int J Inflam 2013; 2013:578480. [PMID: 23819099 PMCID: PMC3681302 DOI: 10.1155/2013/578480] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/08/2013] [Indexed: 01/11/2023] Open
Abstract
Classical inflammation is a well-characterized secondary response to many acute disorders of the central nervous system. However, in recent years, the role of neurogenic inflammation in the pathogenesis of neurological diseases has gained increasing attention, with a particular focus on its effects on modulation of the blood-brain barrier BBB. The neuropeptide substance P has been shown to increase blood-brain barrier permeability following acute injury to the brain and is associated with marked cerebral edema. Its release has also been shown to modulate classical inflammation. Accordingly, blocking substance P NK1 receptors may provide a novel alternative treatment to ameliorate the deleterious effects of neurogenic inflammation in the central nervous system. The purpose of this paper is to provide an overview of the role of substance P and neurogenic inflammation in acute injury to the central nervous system following traumatic brain injury, spinal cord injury, stroke, and meningitis.
Collapse
|
17
|
Walker I, Coleman MD. The blood-brain barrier: In vitro methods and toxicological applications. Toxicol In Vitro 2012; 9:191-204. [PMID: 20650079 DOI: 10.1016/0887-2333(94)00202-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/1994] [Indexed: 12/16/2022]
Abstract
The blood-brain barrier (BBB) is reviewed with reference to in vitro cell culture models and their use and potential use in toxicological studies. The structure, function and in vitro study of brain microvessel endothelial cells (BMEC) is briefly described, as well as the effects of a number of xenobiotics, such as solvents, metals, polycations and herbicides, on the viability and barrier function of the BBB model. The biotransformation of xenobiotics is increasingly thought to be responsible for many toxic reactions seen in living systems. Few studies have addressed the effects of the products of biotransformation on the integrity of the barrier model. Many of the specific human bioactivating enzymes, such as cytochrome P-450s, can now be conveniently studied in eukaryotic in vitro gene expression systems. The combination of such systems with a well characterized porcine BMEC culture model might be useful in the study of reactive metabolites on the BBB, in terms of changes in indices of functional and structural BMEC viability. The potential applications and the value of such an experimental approach are discussed.
Collapse
Affiliation(s)
- I Walker
- Pharmaceutical Sciences Institute, Aston University, Birmingham B4 7ET, UK
| | | |
Collapse
|
18
|
Bonnamain V, Neveu I, Naveilhan P. Neural stem/progenitor cells as a promising candidate for regenerative therapy of the central nervous system. Front Cell Neurosci 2012; 6:17. [PMID: 22514520 PMCID: PMC3323829 DOI: 10.3389/fncel.2012.00017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 03/26/2012] [Indexed: 01/18/2023] Open
Abstract
Neural transplantation is a promising therapeutic strategy for neurodegenerative diseases and other disorders of the central nervous system (CNS) such as Parkinson and Huntington diseases, multiple sclerosis or stroke. Although cell replacement therapy already went through clinical trials for some of these diseases using fetal human neuroblasts, several significant limitations led to the search for alternative cell sources that would be more suitable for intracerebral transplantation.Taking into account logistical and ethical issues linked to the use of tissue derived from human fetuses, and the immunologically special status of the CNS allowing the occurrence of deleterious immune reactions, neural stem/progenitor cells (NSPCs) appear to be an interesting cell source candidate. In addition to their ability for replacing cell populations lost during the pathological events, NSPCs also display surprising therapeutic effects of neuroprotection and immunomodulation. A better knowledge of the mechanisms involved in these specific characteristics will hopefully lead in the future to a successful use of NSPCs in regenerative medicine for CNS disorders.
Collapse
|
19
|
Bartanusz V, Jezova D, Alajajian B, Digicaylioglu M. The blood-spinal cord barrier: morphology and clinical implications. Ann Neurol 2011; 70:194-206. [PMID: 21674586 DOI: 10.1002/ana.22421] [Citation(s) in RCA: 319] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 02/18/2011] [Accepted: 03/04/2011] [Indexed: 12/11/2022]
Abstract
The blood-spinal cord barrier (BSCB) is the functional equivalent of the blood-brain barrier (BBB) in the sense of providing a specialized microenvironment for the cellular constituents of the spinal cord. Even if intuitively the BSCB could be considered as the morphological extension of the BBB into the spinal cord, evidence suggests that this is not so. The BSCB shares the same principal building blocks with the BBB; nevertheless, it seems that morphological and functional differences may exist between them. Dysfunction of the BSCB plays a fundamental role in the etiology or progression of several pathological conditions of the spinal cord, such as spinal cord injury, amyotrophic lateral sclerosis, and radiation-induced myelopathy. This review summarizes current knowledge of the morphology of the BSCB, the methodology of studying the BSCB, and the potential role of BSCB dysfunction in selected disorders of the spinal cord, and finally summarizes therapeutic approaches to the BSCB.
Collapse
Affiliation(s)
- Viktor Bartanusz
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
20
|
|
21
|
Jaeger LB, Dohgu S, Hwang MC, Farr SA, Murphy MP, Fleegal-DeMotta MA, Lynch JL, Robinson SM, Niehoff ML, Johnson SN, Kumar VB, Banks WA. Testing the neurovascular hypothesis of Alzheimer's disease: LRP-1 antisense reduces blood-brain barrier clearance, increases brain levels of amyloid-beta protein, and impairs cognition. J Alzheimers Dis 2009; 17:553-70. [PMID: 19433890 DOI: 10.3233/jad-2009-1074] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Decreased clearance is the main reason amyloid-beta protein (Abeta) is increased in the brains of patients with Alzheimer's disease (AD). The neurovascular hypothesis states that this decreased clearance is caused by impairment of low density lipoprotein receptor related protein-1 (LRP-1), the major brain-to-blood transporter of Abeta at the blood-brain barrier (BBB). As deletion of the LRP-1 gene is a lethal mutation, we tested the neurovascular hypothesis by developing a cocktail of phosphorothioate antisenses directed against LRP-1 mRNA. We found these antisenses in comparison to random antisense selectively decreased LRP-1 expression, reduced BBB clearance of Abeta42, increased brain levels of Abeta42, and impaired learning ability and recognition memory in mice. These results support dysfunction of LRP-1 at the BBB as a mechanism by which brain levels of Abeta could increase and AD would be promoted.
Collapse
Affiliation(s)
- Laura B Jaeger
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Immortalized human brain endothelial cell line HCMEC/D3 as a model of the blood-brain barrier facilitates in vitro studies of central nervous system infection by Cryptococcus neoformans. EUKARYOTIC CELL 2009; 8:1803-7. [PMID: 19767445 DOI: 10.1128/ec.00240-09] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cryptococcus neoformans cells must cross the blood-brain barrier prior to invading the central nervous system. Here we demonstrate that the immortalized human brain endothelial cell line HCMEC/D3 is a useful alternative to primary brain endothelial cells as a model of the blood-brain barrier for studies of central nervous system infection.
Collapse
|
23
|
Juillerat-Jeanneret L, Fioroni P, Leuenberger P. Modulation of Secretion of Interleukin-6 in Brain-Derived Microvascular Endothelial Cells. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10623329509024656] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Verma S, Nakaoke R, Dohgu S, Banks WA. Release of cytokines by brain endothelial cells: A polarized response to lipopolysaccharide. Brain Behav Immun 2006; 20:449-55. [PMID: 16309883 DOI: 10.1016/j.bbi.2005.10.005] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 09/30/2005] [Accepted: 10/13/2005] [Indexed: 12/31/2022] Open
Abstract
Brain endothelial cells (BECs) comprise the blood-brain barrier (BBB) and are an active part of the neuroimmune system, responding to and transporting cytokines. BECs also have the ability to secrete neuroimmune substances, including cytokines. A unique feature of the BEC is its polarization, with its luminal (blood-facing) and abluminal (brain-facing) cell membranes differing in their lipid, receptor, and transporter compositions. This polarization could have functional consequences for neuroimmune communication. We postulated (i) that cytokine secretion from the luminal or abluminal membranes could differ under baseline or stimulated conditions and (ii) that an immune challenge from one side of the BBB could result in cytokine release from the other. We used an in vitro BBB model of mouse BECs cultured as monolayers to investigate cytokine secretion into luminal and abluminal chambers. Our major findings in these studies were: (i) the first demonstration that interleukin (IL)-1alpha, IL-10, and granulocyte-macrophage colony-stimulating factor are secreted from BECs and confirmation of the secretions of IL-6 and tumor necrosis factor-alpha, (ii) that constitutive and lipopolysaccharide (LPS)-stimulated secretion of cytokines is polarized in favor of luminal secretion, and (iii) that response to neuroimmune stimulation is also polarized as exemplified by the finding that abluminal LPS more robustly induced secretion of IL-6 than did luminal LPS. Overall, these findings support the BBB as an important source of cytokines. Furthermore, the BBB can respond to immune challenges received from one side of the neuroimmune axis by releasing cytokines into the other.
Collapse
Affiliation(s)
- Sulekha Verma
- Geriatrics Research Educational and Clinical Center, Veterans Affairs Medical Center, St. Louis, MO, USA
| | | | | | | |
Collapse
|
25
|
Banks WA, Kumar VB, Franko MW, Bess JW, Arthur LO. Evidence that the species barrier of human immunodeficiency virus-1 does not extend to uptake by the blood--brain barrier: comparison of mouse and human brain microvessels. Life Sci 2005; 77:2361-8. [PMID: 15946698 DOI: 10.1016/j.lfs.2004.11.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Accepted: 11/17/2004] [Indexed: 11/15/2022]
Abstract
HIV-1 within the CNS produces a neuroAIDS syndrome and may act as a reservoir for reinfection of the peripheral tissues. Study of how HIV-1 crosses the blood-brain barrier (BBB) has been hampered by the lack of nonprimate animal models. However, BBB transport of HIV-1 does not involve any of the known steps conferring species specificity, including binding to CD4 receptors. In vivo and in vitro studies show that HIV-1 and its glycoprotein coat, gp120, are taken up and transported across the BBB of the mouse. Here, we compared the ability of gp120 and HIV-1 to be taken up by isolated brain microvessels (IBM) freshly isolated from mice, from post-mortem human brain, and from mice that had been treated in a manner analogous to the human material (mouse post-mortem). Freshly isolated mouse IBM took up more gp120 and HIV-1 than the human or mouse post-mortem cells. We found no difference between the ability of mouse post-mortem and human IBM to take up either gp120 or HIV-1. Wheatgerm agglutinin has been previously shown to stimulate gp120 and HIV-1 uptake by the BBB; here, it stimulated the uptake of gp120 and of HIV-1 by both mouse post-mortem and human IBM, although stimulated uptake was greatest for fresh mouse IBM. These results show that the mouse can be used to study the initial phases of HIV-1 uptake by the BBB.
Collapse
Affiliation(s)
- William A Banks
- GRECC, Veterans Affairs Medical Center--St. Louis and Saint Louis University School of Medicine, Division of Geriatrics, Department of Internal Medicine, St. Louis, MO 63106, USA.
| | | | | | | | | |
Collapse
|
26
|
Weksler BB, Subileau EA, Perrière N, Charneau P, Holloway K, Leveque M, Tricoire-Leignel H, Nicotra A, Bourdoulous S, Turowski P, Male DK, Roux F, Greenwood J, Romero IA, Couraud PO. Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J 2005; 19:1872-4. [PMID: 16141364 DOI: 10.1096/fj.04-3458fje] [Citation(s) in RCA: 1018] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Establishment of a human model of the blood-brain barrier has proven to be a difficult goal. To accomplish this, normal human brain endothelial cells were transduced by lentiviral vectors incorporating human telomerase or SV40 T antigen. Among the many stable immortalized clones obtained by sequential limiting dilution cloning of the transduced cells, one was selected for expression of normal endothelial markers, including CD31, VE cadherin, and von Willebrand factor. This cell line, termed hCMEC/D3, showed a stable normal karyotype, maintained contact-inhibited monolayers in tissue culture, exhibited robust proliferation in response to endothelial growth factors, and formed capillary tubes in matrix but no colonies in soft agar. hCMEC/D3 cells expressed telomerase and grew indefinitely without phenotypic dedifferentiation. These cells expressed chemokine receptors, up-regulated adhesion molecules in response to inflammatory cytokines, and demonstrated blood-brain barrier characteristics, including tight junctional proteins and the capacity to actively exclude drugs. hCMEC/D3 are excellent candidates for studies of blood-brain barrier function, the responses of brain endothelium to inflammatory and infectious stimuli, and the interaction of brain endothelium with lymphocytes or tumor cells. Thus, hCMEC/D3 represents the first stable, fully characterized, well-differentiated human brain endothelial cell line and should serve as a widely usable research tool.
Collapse
MESH Headings
- Agar/chemistry
- Animals
- Antigens, CD
- Antigens, Polyomavirus Transforming/biosynthesis
- Antigens, Polyomavirus Transforming/genetics
- Blood-Brain Barrier/drug effects
- Blotting, Western
- Brain/cytology
- Brain/drug effects
- Brain/metabolism
- Brain/pathology
- Cadherins/biosynthesis
- Capillaries/pathology
- Cattle
- Cell Adhesion
- Cell Culture Techniques/methods
- Cell Line
- Cell Proliferation
- Cells, Cultured
- Cloning, Molecular
- Collagen/pharmacology
- Cytokines/metabolism
- Drug Combinations
- Drug Resistance, Multiple
- Endothelial Cells/cytology
- Endothelial Cells/pathology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/pathology
- Female
- Flow Cytometry
- Humans
- Immunohistochemistry
- Karyotyping
- Laminin/pharmacology
- Lentivirus/genetics
- Lymphocytes/metabolism
- Microscopy, Fluorescence
- Models, Biological
- Perfusion
- Permeability
- Phenotype
- Platelet Endothelial Cell Adhesion Molecule-1/biosynthesis
- Proteoglycans/pharmacology
- RNA/metabolism
- Rats
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Telomerase/genetics
- Telomerase/metabolism
- Time Factors
- Up-Regulation
- von Willebrand Factor/biosynthesis
Collapse
Affiliation(s)
- B B Weksler
- Institut Cochin, CNRS UMR 8104-INSERM U567, Université René Descartes, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The extent to which a substance in the circulation gains access to the CNS needs to be determined for potential neuropharmaceuticals as well as for drug candidates with primary targets in the periphery. Characteristics of the in vivo methods, ranging from classical pharmacokinetic techniques (intravenous administration and tissue sampling) over brain perfusions to microdialysis and imaging techniques, are highlighted. In vivo measurements remain unmatched with respect to sensitivity and for the characterization of carrier-mediated uptake, receptor-mediated transport, and active efflux. Isolated microvessels are valuable tools for molecular characterization of transporters. Endothelial cell culture models of the blood-brain barrier (BBB) are pursued as in vitro systems suitable for screening procedures. Recent applications of conditionally immortalized cell lines indicate that a particular weakness of culture models because of downregulation of BBB-specific transporter systems can be overcome. In silico approaches are being developed with the goal of predicting brain uptake from molecular structure at early stages of drug development. Currently, the predictive capability is limited to passive, diffusional uptake and predominantly relies on few molecular descriptors related to lipophilicity, hydrogen bonding capacity, charge, and molecular weight. A caveat with most present strategies is their reliance on surrogates of BBB transport, like CNS activity/inactivity or brain-to-blood partitioning rather than actual BBB permeability data.
Collapse
Affiliation(s)
- Ulrich Bickel
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, USA.
| |
Collapse
|
28
|
Perrière N, Demeuse P, Garcia E, Regina A, Debray M, Andreux JP, Couvreur P, Scherrmann JM, Temsamani J, Couraud PO, Deli MA, Roux F. Puromycin-based purification of rat brain capillary endothelial cell cultures. Effect on the expression of blood-brain barrier-specific properties. J Neurochem 2005; 93:279-89. [PMID: 15816851 DOI: 10.1111/j.1471-4159.2004.03020.x] [Citation(s) in RCA: 241] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
One of the main difficulties with primary rat brain endothelial cell (RBEC) cultures is obtaining pure cultures. The variation in purity limits the achievement of in vitro models of the rat blood-brain barrier. As P-glycoprotein expression is known to be much higher in RBECs than in any contaminating cells, we have tested the effect of five P-glycoprotein substrates (vincristine, vinblastine, colchicine, puromycin and doxorubicin) on RBEC cultures, assuming that RBECs would resist the treatment with these toxic compounds whereas contaminating cells would not. Treatment with either 4 microg/mL puromycin for the first 2 days of culture or 3 microg/mL puromycin for the first 3 days showed the best results without causing toxicity to the cells. Transendothelial electrical resistance was significantly increased in cell monolayers treated with puromycin compared with untreated cell monolayers. When cocultured with astrocytes in the presence of cAMP, the puromycin-treated RBEC monolayer showed a highly reduced permeability to sodium fluorescein (down to 0.75 x 10(-6) cm/s) and a high electrical resistance (up to 500 Omega x cm(2)). In conclusion, this method of RBEC purification will allow the production of in vitro models of the rat blood-brain barrier for cellular and molecular biology studies as well as pharmacological investigations.
Collapse
Affiliation(s)
- N Perrière
- CNRS UMR 7157, INSERM U705, University Paris 7, University Paris 5, Hôpital Fernand Widal, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sipos H, Törocsik B, Tretter L, Adam-Vizi V. Impaired regulation of pH homeostasis by oxidative stress in rat brain capillary endothelial cells. Cell Mol Neurobiol 2005; 25:141-51. [PMID: 15962511 DOI: 10.1007/s10571-004-1379-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
(1) Endothelial cells are permanently challenged by altering pH in the blood, and oxidative damage could also influence the intracellular pH (pH(i)) of the endothelium. Cerebral microvascular endothelial cells form the blood-brain barrier (BBB) and pH(i) regulation of brain capillary endothelial cells is important for the maintenance of BBB integrity. The aim of this study was to address the pH regulatory mechanisms and the effect of an acute exposure to hydrogen peroxide (H2O2) on the pH regulation in primary rat brain capillary endothelial (RBCE) cells The RBCE monolayers were loaded with the fluorescent pH indicator BCECF and pH(i) was monitored by detecting the fluorescent changes. (2) The steady-state pH(i) of RBCE cells in HEPES-buffer (6.83 +/- 0.1) did not differ significantly from that found in bicarbonate-buffered medium (6.90 +/- 0.08). Cells were exposed to NH4CI to induce intracellular acidification and then the recovery to resting pH was studied. Half-recovery time after NH4Cl prepulse-induced acid load was significantly less in the bicarbonate-buffered medium than in the HEPES-medium, suggesting that in addition to the Na+ / H+ exchanger, HCO3- / Cl- exchange mechanism is also involved in the restoration of pH(i) after an intracellular acid load in primary RBCE cells. We used RT-PCR-reactions to detect the isoforms of Na+ / H+ exchanger gene family (NHE). NHE-1 -2, -3 and -4 were equally present, and there was no significant difference in the relative abundance of the four transcripts in these cells. (3) No pH(i) recovery was detected when the washout after an intracellular acid load occurred in nominally Na+ -free HEPES-buffered medium or in the presence of 10 microM 5-(N-ethyl-N-isopropyl)amiloride (EIPA), a specific inhibitor of Na+ / H+ exchanger. The new steady-state pH(i) were 6.37 +/- 0.02 and 6.60 +/- 0.02, respectively. (4) No detectable change was observed in the steady-state pH(i) in the presence of 100 microM H2O2; however, recovery from NH4Cl prepulse-induced intracellular acid load was inhibited when H2O2 was present in 50 or 100 microM concentration in the HEPES-buffered medium during NH4Cl washout. These data suggest that H2O2 is without effect on the activity of Na+ / H+ exchanger at rest, but could inhibit the function of the exchanger after an intracellular acid load.
Collapse
Affiliation(s)
- Hdikó Sipos
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | | | | | | |
Collapse
|
30
|
Roux F, Couraud PO. Rat brain endothelial cell lines for the study of blood-brain barrier permeability and transport functions. Cell Mol Neurobiol 2005; 25:41-58. [PMID: 15962508 DOI: 10.1007/s10571-004-1376-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
(1) In vitro models of the BBB have been developed from cocultures between bovine, porcine, rodent or human brain capillary endothelial cells with rodent or human astrocytes. Since most in vivo BBB studies have been performed with small laboratory animals, especially rats, it is important to establish a rat brain endothelial (RBE) cell culture system that will allow correlations between in vitro and in vivo results. The present review will constitute a brief description of the best characterized RBE cell lines (RBE4, GP8/3.9, GPNT, RBEC1, TR-BBBs and rBCEC4 cell lines) and will summarize their recent and important contribution to our current knowledge of the BBB transport functions and permeability to blood-borne solutes, drugs, and cells. (2) In most cases, primary cultures of RBE cells were transduced with an immortalizing gene (SV40 or polyoma virus large T-antigen or adenovirus E1A), either by transfection of plasmid DNA or by infection using retroviral vectors. In one case however, the conditionally immortalized TR-BBB cell line was derived from primary cultures of brain endothelial cells of SV40-T-expressing transgenic rats. (3) All cell lines appear to have an endothelial morphology. The absence of foci formation would mean that the cells are not transformed. The endothelial origin is shown by the expression of Factor VIII-related antigen. Immortalized RBE cells express all the enzymes and transporters that are considered as specific for the blood-brain barrier endothelium, with similar characteristics to those expected from in vivo analyses, but at a significantly lower level. Some RBE cell lines are responsive to astroglial factors, such as RBE4 cells, rBEC4, and TR-BBB cells. None of the immortalized RBE cell lines appear to generate the necessary restrictive paracellular barrier properties that would allow to use them in transendothelial permeability screening. (4) RBE cell lines have been used to demonstrate that transporters such as organic cation transporter/carnitine transporter, serotonin transporter, and the ATA2 system A isoform are expressed in rat brain endothelium. When the transporter is shown to be expressed with the same properties in the immortalized RBE cells as in vivo, regulation studies may be initiated even if the transporter is down-regulated. Pharmacological applications have been proposed with well-characterized transporters such as monocarboxylic acid transporter-1, large neutral amino acid tansporter-1, nucleoside carrier systems, and P-glycoprotein. RBE cell monolayers have also been used to investigate the mechanism of the transendothelial transport of large molecules, such as immunoliposomes or nanoparticles, potentially useful as drug delivery vectors to the brain. (5) RBE4 and GP8 cell lines have been extensively used to demonstrate that intercellular adhesion molecule-1 (ICAM-1) engagement in brain endothelial cells triggers multiple signal transduction pathways. Using functional assays, it was established that ICAM-1 signaling is intimately and actively involved in facilitating lymphocyte infiltration. (6) Several RBE cell lines have been described, which constitute tentative in vitro models of the rat BBB. The major limitation of these models generally appears to be due to their relatively high paracellular permeability to small molecules, thus limiting their use for permeability studies. The strategies developed for the production of these RBE cell lines will enable the characterization of still more efficient permeability models, as well as the immortalization of human brain endothelial cells.
Collapse
|
31
|
Introduction to the Special Issue: In Memoriam Ferenc Joó (1938–1996). Cell Mol Neurobiol 2005. [DOI: 10.1007/s10571-004-1372-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Deli MA, Abrahám CS, Kataoka Y, Niwa M. Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol 2005; 25:59-127. [PMID: 15962509 DOI: 10.1007/s10571-004-1377-8] [Citation(s) in RCA: 474] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
(1) The specifically regulated restrictive permeability barrier to cells and molecules is the most important feature of the blood-brain barrier (BBB). The aim of this review was to summarize permeability data obtained on in vitro BBB models by measurement of transendothelial electrical resistance and by calculation of permeability coefficients for paracellular or transendothelial tracers. (2) Results from primary cultures of cerebral microvascular endothelial cells or immortalized cell lines from bovine, human, porcine, and rodent origin are presented. Effects of coculture with astroglia, neurons, mesenchymal cells, blood cells, and conditioned media, as well as physiological influence of serum components, hormones, growth factors, lipids, and lipoproteins on the barrier function are discussed. (3) BBB permeability results gained on in vitro models of pathological conditions including hypoxia and reoxygenation, neurodegenerative diseases, or bacterial and viral infections have been reviewed. Effects of cytokines, vasoactive mediators, and other pathogenic factors on barrier integrity are also detailed. (4) Pharmacological treatments modulating intracellular cyclic nucleotide or calcium levels, and activity of protein kinases, protein tyrosine phosphatases, phospholipases, cyclooxygenases, or lipoxygenases able to change BBB integrity are outlined. Barrier regulation by drugs involved in the metabolism of nitric oxide and reactive oxygen species, as well as influence of miscellaneous treatments are also listed and evaluated. (5) Though recent advances resulted in development of improved in vitro BBB model systems to investigate disease modeling, drug screening, and testing vectors targeting the brain, there is a need for checking validity of permeability models and cautious interpretation of data.
Collapse
Affiliation(s)
- Máiria A Deli
- Laboratory of Molecular Neurobiology, Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári körút 62, H-6726 Szeged, Hungary.
| | | | | | | |
Collapse
|
33
|
How to measure drug transport across the blood-brain barrier. Neurotherapeutics 2005. [DOI: 10.1007/bf03206639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
34
|
Song L, Pachter JS. Culture of murine brain microvascular endothelial cells that maintain expression and cytoskeletal association of tight junction-associated proteins. In Vitro Cell Dev Biol Anim 2004; 39:313-20. [PMID: 14613336 DOI: 10.1290/1543-706x(2003)039<0313:combme>2.0.co;2] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A readily obtainable in vitro paradigm of the blood-brain barrier (BBB) would offer considerable benefits. Toward this end, in this study, we describe a novel method for purifying murine brain microvascular endothelial cells (BMEC) for culture. The method uses limited collagenase-dispase digestion of enriched brain microvessels, followed by immunoisolation of digested, microvascular fragments by magnetic beads coated with antibody to platelet-endothelial cell adhesion molecule-1. When plated onto collagen IV-coated surfaces, these fragments elaborated confluent monolayers of BMEC that expressed, as judged by immunocytochemistry, the adherens junction-associated proteins, VE-cadherin and beta-catenin, as well as the tight junction (TJ)-associated proteins, claudin-5, occludin, and zonula occludin-1 (ZO-1), in concentrated fashion along intercellular borders. In contrast, cultures of an immortalized and transformed line of murine brain capillary-derived endothelial cells, bEND.3, displayed diffuse cytoplasmic localization of occludin and ZO-1. This difference in occludin and ZO-1 staining between the two endothelial cell types was also reflected in the extent of association of these proteins with the detergent-resistant cytoskeletal framework (CSK). Although both occludin and ZO-1 largely partitioned with the CSK fraction in BMEC, they were found predominantly in the soluble fraction of bEND.3 cells, and claudin-5 was found associated equally with both fractions in BMEC and bEND.3 cells. Moreover, detergent-extracted cultures of the BMEC retained pronounced immunostaining of occludin and ZO-1, but not claudin-5, along intercellular borders. Because both occludin and ZO-1 are thought to be functionally coupled to the detergent-resistant CSK and high expression of TJs is considered a seminal characteristic of the BBB, these results impart that this method of purifying murine BMEC provides a suitable platform to investigate BBB properties in vitro.
Collapse
Affiliation(s)
- Li Song
- Blood-Brain Barrier Laboratory, Department of Pharmacology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | |
Collapse
|
35
|
Ott P, Larsen FS. Blood-brain barrier permeability to ammonia in liver failure: a critical reappraisal. Neurochem Int 2004; 44:185-98. [PMID: 14602081 DOI: 10.1016/s0197-0186(03)00153-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In patients with acute liver failure (ALF), hyperammonemia is related to development of cerebral edema and herniation. The present review discusses the mechanisms for the cerebral uptake of ammonia. A mathematical framework is provided to allow a quantitative examination of whether published studies can be explained by the conventional view that cerebral uptake of ammonia is restricted to diffusion of the unprotonated form (NH(3)) (the diffusion hypothesis). An increase in cerebral blood flow (CBF) enhanced ammonia uptake more than expected, possibly due to recruitment or heterogeneity of brain capillaries. Reported effects of pH on ammonia uptake were in the direction predicted by the diffusion hypothesis, but often less pronounced than expected. The published effects of mannitol, cooling, and indomethacin in experimental animals and patients were difficult to explain by the diffusion hypothesis alone, unless dramatic changes of capillary surface area or permeability for ammonia were induced. Therefore we considered the possible role of membrane protein mediated transport of NH(4)(+) across the blood-brain barrier (BBB). Early tracer studies in Rhesus monkeys suggested that NH(4)(+) is responsible for 20% or even more of the transport of ammonia from plasma to brain. In other locations, such as in the thick ascending limb of Hendle's loop and in isolated astrocytes, transport protein mediated translocation of NH(4)(+) is predominant. Many of the ion-transporters involved in renal NH(4)(+) reabsorbtion are also present in brain capillary membranes and could mediate uptake of NH(4)(+). Astrocytic uptake of NH(4)(+) is associated with increased extracellular K(+), which is a potent cerebral vasodilator. Such interference between transport of NH(4)(+) and other cations could be clinically important because increased cerebral blood flow often precedes cerebral herniation in acute liver failure. We suggest that protein mediated transport of NH(4)(+) through the brain capillary wall is a realistic possibility that should be more intensely studied.
Collapse
Affiliation(s)
- Peter Ott
- Department of Hepatology A-2121, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark.
| | | |
Collapse
|
36
|
Dash AK, Elmquist WF. Separation methods that are capable of revealing blood–brain barrier permeability. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 797:241-54. [PMID: 14630153 DOI: 10.1016/s1570-0232(03)00605-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The objective of this review is to emphasize the application of separation science in evaluating the blood-brain barrier (BBB) permeability to drugs and bioactive agents. Several techniques have been utilized to quantitate the BBB permeability. These methods can be classified into two major categories: in vitro or in vivo. The in vivo methods used include brain homogenization, cerebrospinal fluid (CSF) sampling, voltametry, autoradiography, nuclear magnetic resonance (NMR) spectroscopy, positron emission tomography (PET), intracerebral microdialysis, and brain uptake index (BUI) determination. The in vitro methods include tissue culture and immobilized artificial membrane (IAM) technology. Separation methods have always played an important role as adjunct methods to the methods outlined above for the quantitation of BBB permeability and have been utilized the most with brain homogenization, in situ brain perfusion, CSF sampling, intracerebral microdialysis, in vitro tissue culture and IAM chromatography. However, the literature published to date indicates that the separation method has been used the most in conjunction with intracerebral microdialysis and CSF sampling methods. The major advantages of microdialysis sampling in BBB permeability studies is the possibility of online separation and quantitation as well as the need for only a small sample volume for such an analysis. Separation methods are preferred over non-separation methods in BBB permeability evaluation for two main reasons. First, when the selectivity of a determination method is insufficient, interfering substances must be separated from the analyte of interest prior to determination. Secondly, when large number of analytes is to be detected and quantitated by a single analytical procedure, the mixture must be separated to each individual component prior to determination. Chiral separation in particular can be essential to evaluate the stereo-selective permeation and distribution of agents into the brain. In conclusion, the usefulness of separation methods during BBB permeability evaluation is immense and more application of these methods is foreseen in the future.
Collapse
Affiliation(s)
- Alekha K Dash
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University Medical Center, 2500 California Plaza, Omaha, NE 68178, USA.
| | | |
Collapse
|
37
|
|
38
|
Demeuse P, Kerkhofs A, Struys-Ponsar C, Knoops B, Remacle C, van den Bosch de Aguilar P. Compartmentalized coculture of rat brain endothelial cells and astrocytes: a syngenic model to study the blood-brain barrier. J Neurosci Methods 2002; 121:21-31. [PMID: 12393158 DOI: 10.1016/s0165-0270(02)00225-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The specific structure of the blood-brain barrier (BBB) is based on the partnership of brain endothelial cells and astrocytes. In the last decade, cocultures of these two cell types have been developed as in vitro models. However, these studies did not allow close contacts between both cell types. We report here a syngenic coculture model using rat endothelial cells on one side of a polyethylene terephtalate filter and rat astrocytes on the other. Endothelial cells retain their typical morphology and are factor VIII and OX 26 positive. We optimized the diameter of the membrane pores to establish very close contacts between the cells through the membrane pores without mixing the two cell types. Transmission electron microscopy showed evidence of tight junction formation between the endothelial cells and few pinocytic vesicles. The cocultures reached high electrical resistances up to 1000 Omegacm(2) showing their ability to limit the passage of ions. A 15-fold increase in gamma-glutamyl transpeptidase activity was measured in the endothelial cells in coculture compared to endothelial cell monoculture. Our syngenic coculture represents a useful in vitro model of the rat BBB that may prove to be valuable for studying the passage of substances across the barrier as well as other aspects of the BBB function.
Collapse
Affiliation(s)
- Ph Demeuse
- Université Catholique de Louvain, Laboratoire de Biologie Cellulaire, 5 Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium.
| | | | | | | | | | | |
Collapse
|
39
|
Cardelli P, Scarpa S, Ceci F, Lucarelli M, Tabacco F, Ferraguti G, Brisdelli F, Strom R, Bozzi A. Effects of different oxidizing agents on neutral amino acid transport systems in isolated bovine brain microvessels. Neurochem Int 2002; 41:29-36. [PMID: 11918969 DOI: 10.1016/s0197-0186(01)00139-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Using isolated bovine brain microvessels as an in vitro model of the blood-brain barrier (BBB) we have evaluated the role of free radical generating solutions on some amino acid transport systems operating on the endothelial cell membrane. Fe(2+)/ascorbate, phenylhydrazine and CuSO(4) did not affect any of the transport system tested, while exposure of bovine brain microvessels to tert-butylhydroperoxide (t-BHP) caused a reduced capacity to take up small neutral amino acids via the Na(+)-dependent A-system. The presence of glucose during t-BHP treatment did not prevent this inhibition, which was partially counteracted when the isolated microvessels were incubated with 5mM inosine before the oxidative stress. Incubation of the isolated capillaries with 5mM dithiothreitol, after exposure to t-BHP, resulted in a 50% recovery of the alpha-methylaminoisobutyrate (MeAIB) uptake by the A-system. Treatment with t-BHP, which had no effect on the L-system of neutral amino acid transport, caused a significant decrease of the intracellular levels of ATP, of glutathione (GSH), and of gamma-glutamyltranspeptidase (GGT) activity, while no significant modification of hexokinase (HK) or of alkaline phosphatase (ALKP) activities were observed. Oxidative damage of the BBB appears therefore to impair essentially the metabolic pathways which ensure the energy requirement for the endothelial cells, thus inhibiting the energy-dependent amino acid transport system "A".
Collapse
Affiliation(s)
- Patrizia Cardelli
- Department of Cellular Biotechnology and Hematology, University of Rome, La Sapienza, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
23 Methods for studying the mechanisms of microbial entry into the central nervous system. J Microbiol Methods 2002. [DOI: 10.1016/s0580-9517(02)31024-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Freed AL, Audus KL, Lunte SM. Investigation of the metabolism of substance P at the blood-brain barrier using capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis 2001; 22:3778-84. [PMID: 11699918 DOI: 10.1002/1522-2683(200109)22:17<3778::aid-elps3778>3.0.co;2-e] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Substance P (SP) metabolism was investigated upon exposure to a monolayer of bovine brain microvessel endothelial cells (BBMECs), a cell culture model of the blood-brain barrier. SP was incubated with the BBMECs and its metabolism was followed as a function of time over a 5-h period. The resulting samples were derivatized with naphthalene-2,3-dicarboxaldehyde (NDA)/cyanide, separated, and detected using cyclodextrin-modified electrokinetic chromatography with laser-induced fluorescence detection (CDMEKC-LIF). Upon exposure to the BBMEC monolayer, SP rapidly degraded to produce the N-terminal (1-9), (1-4) and (1-7) and C-terminal (2-11) and (3-11) fragments. These results were compared with those in an earlier report from our laboratory, where SP metabolism was investigated in vivo by microdialysis sampling in rat striatum.
Collapse
Affiliation(s)
- A L Freed
- Department of Pharmaceutical Chemistry and the Center for Bioanalytical Research, University of Kansas, Lawrence, USA
| | | | | |
Collapse
|
42
|
Eisenhauer PB, Chaturvedi P, Fine RE, Ritchie AJ, Pober JS, Cleary TG, Newburg DS. Tumor necrosis factor alpha increases human cerebral endothelial cell Gb3 and sensitivity to Shiga toxin. Infect Immun 2001; 69:1889-94. [PMID: 11179369 PMCID: PMC98098 DOI: 10.1128/iai.69.3.1889-1894.2001] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hemolytic uremic syndrome (HUS) is associated with intestinal infection by enterohemorrhagic Escherichia coli strains that produce Shiga toxins. Globotriaosylceramide (Gb3) is the functional receptor for Shiga toxin, and tumor necrosis factor alpha (TNF-alpha) upregulates Gb3 in both human macrovascular umbilical vein endothelial cells and human microvascular brain endothelial cells. TNF-alpha treatment enhanced Shiga toxin binding and sensitivity to toxin. This upregulation was specific for Gb3 species containing normal fatty acids (NFA). Central nervous system (CNS) pathology in HUS could involve cytokine-stimulated elevation of endothelial NFA-Gb3 levels. Differential expression of Gb3 species may be a critical determinant of Shiga toxin toxicity and of CNS involvement in HUS.
Collapse
Affiliation(s)
- P B Eisenhauer
- Bedford VA Medical Center, Bedford, and Boston University, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Kobayashi H, Minami S, Yamamoto R, Masumoto K, Yanagita T, Uezono Y, Tsuchiya K, Mohri M, Kitamura K, Eto T, Wada A. Adrenomedullin receptors in rat cerebral microvessels. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 81:1-6. [PMID: 11000473 DOI: 10.1016/s0169-328x(00)00148-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To characterize the sites of action of adrenomedullin (AM) in the cerebral microvasculature, we studied the effect of AM on cyclic AMP (cAMP) level as well as expression of AM and its receptor in the rat cerebral microvessels. The microvessels were prepared from rat cerebral cortex by albumin flotation and glass bead filtration technique. AM and calcitonin gene-related peptide (CGRP) increased cAMP level in the microvessels in a concentration-dependent manner. The effect of AM was more than 100 times more potent than that of CGRP. The accumulation of cAMP by AM was inhibited by AM[22-52], an AM receptor antagonist, but not by CGRP[8-37], a CGRP receptor antagonist, suggesting that AM increased cAMP accumulation by acting on receptors specific to AM. [125I]AM binding to the microvessels was displaced by AM and less potently by AM[22-52]. The displacing potencies of CGRP and CGRP[8-37] were very weak. mRNAs for AM as well as calcitonin-receptor-like receptor and receptor-activity-modifying protein 2 which form a receptor specific to AM, were highly expressed in the microvessels. These results provide biochemical and pharmacological evidence that AM is produced in and acts on the cerebral microvessels in an autocrine/paracrine manner and is involved in regulation of cerebral microcirculation.
Collapse
Affiliation(s)
- H Kobayashi
- Department of Pharmacology, Miyazaki Medical College, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Juillerat-Jeanneret L, Lohm S, Hamou MF, Pinet F. Regulation of aminopeptidase A in human brain tumor vasculature: evidence for a role of transforming growth factor-beta. J Transl Med 2000; 80:973-80. [PMID: 10879747 DOI: 10.1038/labinvest.3780100] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Angiotensin peptides are potent vasoconstrictors, cell growth factors, and neuromodulators in normal and pathological situations. To assess the potential role of the angiotensins in brain tumor-associated vessels, the expression of the enzymes of the angiotensin cascade were evaluated in these tumors. The production of these bioactive peptides is dependent on the activities of exopeptidases, including several aminopeptidases and carboxypeptidases, producing angiotensin (Ang) I, II, III, IV and Ang 1-7. Human cerebral parenchymal and glioblastoma cells expressed renin, and tumor vasculature, but not glioblastoma cells, expressed angiotensin-converting enzyme. High aminopeptidase A (APA) activity, but no aminopeptidase N/B activity, was observed in human brain tumor vasculature, suggesting a predominant production of Ang III. Grafting of rat glioma cells in rat brains yielded tumors with high APA and low aminopeptidase N/B activities in tumor vessels, confirming human results. Tumor growth and APA activity in tumor vessels were not affected by chronic angiotensin-converting enzyme inhibition. The brain-derived EC219 endothelial cells expressed high APA activity, which was not involved in endothelial cell proliferation, but was down-regulated by exposure of cells to transforming growth factor-beta (TGF beta) or to TGF beta-secreting tumor cells, suggesting a role for this peptide in the control of APA activity in cerebral vasculature. Thus, APA is a potential marker of chronic dysfunction, involving loss of TGF beta function, of the metabolic blood-brain barrier, but not of neovascularization.
Collapse
|
45
|
Pagliara A, Reist M, Geinoz S, Carrupt PA, Testa B. Evaluation and prediction of drug permeation. J Pharm Pharmacol 1999; 51:1339-57. [PMID: 10678488 DOI: 10.1211/0022357991777164] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
A major challenge confronting the pharmaceutical scientist is to optimize the selective and efficient delivery of new active entities and drug candidates. Successful drug development requires not only optimization of specific and potent pharmacodynamic activity, but also efficient delivery to the target site. Following advances in rational drug design, combinatorial chemistry and high-throughput screening techniques, the number of newly discovered and promising active compounds has increased dramatically in recent years, often making delivery problems the rate-limiting step in drug research. To overcome these problems, a good knowledge of the pharmacokinetic barriers encountered by bioactive compounds is required. This review gives an overview of the properties of relevant physiological barriers and presents some important biological models for evaluation of drug permeation and transport. Physicochemical determinants in drug permeation and the relevance of quantitative and qualitative approaches to the prediction and evaluation of passive drug absorption are also discussed.
Collapse
Affiliation(s)
- A Pagliara
- Institut de Chimie Thérapeutique, Université de Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
46
|
Rochat B, Baumann P, Audus KL. Transport mechanisms for the antidepressant citalopram in brain microvessel endothelium. Brain Res 1999; 831:229-36. [PMID: 10412001 DOI: 10.1016/s0006-8993(99)01461-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Blood-brain barrier transport of the selective serotonin reuptake inhibitor and antidepressant, citalopram, was studied using monolayers of bovine brain microvessel endothelial cells (BMECs). This study provides for the first time, evidence of a transport mechanism for a selective serotonin reuptake inhibitor (SSRI). Carrier-mediated transport, efflux mechanisms, as well as inhibition of metabolizing enzymes of citalopram were investigated. Citalopram transport was saturable and temperature-dependent suggesting that passage of the drug across BMECs was mediated by a carrier mechanism. Since the apical to basolateral and basolateral to apical permeability coefficients were similar and cyclosporin A, a P-glycoprotein inhibitor, does not modify the transport of citalopram, it appeared that no active efflux systems were involved in this transport. Citalopram is only available as a racemic drug and its pharmacological effect resides mainly in the S-(+)-enantiomer. However, the passage of citalopram enantiomers across BMEC monolayers was not stereoselective. Finally, inhibition of the metabolizing enzymes of citalopram and monoamine oxidases did not modify the permeation of citalopram across BMECs. Collectively, our results suggested that citalopram crosses the blood-brain barrier via a non-stereoselective, bidirectional and symmetrical carrier-mediated mechanism without influences of active efflux mechanisms or monoamine oxidases.
Collapse
Affiliation(s)
- B Rochat
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA
| | | | | |
Collapse
|
47
|
Johnson MD, Anderson BD. In vitro models of the blood-brain barrier to polar permeants: comparison of transmonolayer flux measurements and cell uptake kinetics using cultured cerebral capillary endothelial cells. J Pharm Sci 1999; 88:620-5. [PMID: 10350498 DOI: 10.1021/js9803149] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Given that the cerebral microvasculature within the brain constitutes the rate-limiting barrier to drug entry, primary cultures of cerebral capillary endothelial cells would appear to offer a potentially useful model system for predicting drug delivery to the central nervous system. In the present study, the predictive capabilities of two potential models of the in vivo blood-brain barrier (BBB) to the passive diffusion of polar permeants were assessed. A comparison of the logarithms of the in vitro transmonolayer permeability coefficients (Pmonolayer) for several polar permeants varying in lipophilicity (from this study and literature data) with the well-established relationship between the logarithms of the in vivo BBB permeability coefficients (log PBBB) and permeant lipophilicity as measured by the logarithm of the octanol/water partition coefficient (log PCoctanol/water) demonstrated that in vitro permeation across these monolayers is largely insensitive to polar permeant lipophilicity as a result of the predominance of the paracellular component in the transmonolayer flux. Conversely, kinetic studies of uptake of the same compounds into monolayers yielded transfer rate constants (kp) reflecting membrane permeability coefficients ranging over several orders of magnitude, similar to the variation in permeant lipophilicity. Furthermore, a linear relationship could be demonstrated between the logarithms of kp and in vivo BBB log P (slope = 1.42 +/- 0.35; r = 0. 92). In conclusion, this preliminary investigation suggests that monitoring the kinetics of cell uptake into cerebral capillary endothelial cell monolayers may be superior to transmonolayer flux measurements for predicting the passive diffusion of polar permeants across the BBB in vivo.
Collapse
Affiliation(s)
- M D Johnson
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
48
|
Wolburg H, Liebner S, Reichenbach A, Gerhardt H. The pecten oculi of the chicken: a model system for vascular differentiation and barrier maturation. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 187:111-59. [PMID: 10212979 DOI: 10.1016/s0074-7696(08)62417-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The pecten oculi is a convolute of blood vessels in the vitreous body of the avian eye. This structure is well known for more than a century, but its functions are still a matter of controversies. One of these functions must be the formation of a blood-retina barrier because there is no diffusion barrier for blood-borne compounds available between the pecten and the retina. Surprisingly, the blood-retina barrier characteristics of this organ have not been studied so far, although the pecten oculi may constitute a fascinating model of vascular differentiation and barrier maturation: Pectinate endothelial cells grow by angiogenesis from the ophthalmotemporal artery into the pecten primordium and consecutively gain barrier properties. The pectinate pigmented cells arise during development from retinal pigment epithelial cells and subsequently lose barrier properties. These inverse transdifferentiation processes may be triggered by the peculiar microenvironment in the vitreous body. In addition, the question is discussed whether the avascularity of the avian retina may be due to the specific metabolic activity of the pecten.
Collapse
Affiliation(s)
- H Wolburg
- Institute of Pathology, University of Tübingen, Germany
| | | | | | | |
Collapse
|
49
|
Jäger M, Weber P, Wolf S. Immunohistochemical localization of 5-oxo-L-prolinase, an enzyme of the gamma-glutamyl cycle, in porcine brain microvessels. FEBS Lett 1999; 445:215-7. [PMID: 10069404 DOI: 10.1016/s0014-5793(99)00050-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The immunohistochemical analysis of the distribution of 5-oxo-L-prolinase in porcine brain at the light microscopic level was performed with an antibody raised against the enzyme purified from pig kidney. The present study reveals the specific expression of 5-oxo-L-prolinase in brain capillaries with an average diameter of 4.1+/-0.9 microm, while larger blood vessels remain unstained. Porcine kidney and skeletal muscle show no endothelial-specific staining with the antibody. In some cases, the asymmetrical staining pattern in cross and longitudinal sections of brain microvessels indicate endothelial- but also pericyte-specific expression.
Collapse
Affiliation(s)
- M Jäger
- Max-Planck-Institut für Immunbiologie, Freiburg, Germany
| | | | | |
Collapse
|
50
|
Duport S, Robert F, Muller D, Grau G, Parisi L, Stoppini L. An in vitro blood-brain barrier model: cocultures between endothelial cells and organotypic brain slice cultures. Proc Natl Acad Sci U S A 1998; 95:1840-5. [PMID: 9465104 PMCID: PMC19200 DOI: 10.1073/pnas.95.4.1840] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/1997] [Accepted: 12/22/1997] [Indexed: 02/06/2023] Open
Abstract
This communication describes a novel in vitro blood-brain barrier (BBB) model: organotypic slice cultures from the central nervous system were overlaid on endothelial cell monolayers grown on permeable membranes. Morphological, electrophysiological, and microdialysis approaches were carried out to characterize and validate this model. After 10 days in coculture, morphological studies reveal the presence of tight junctions. Electrophysiological recordings of neuronal activity performed on organotypic cultures with or without an endothelial cell monolayer show that amplitude of evoked responses were comparable, indicating good viability of cocultures after 2 weeks. Perfusion of known BBB permeable or nonpermeable molecules was used to test the coculture tightness in conjunction with electrophysiological or microdialysis approaches: application of glutamate (Glu), which doesn't easily cross the BBB, triggers off rhythmic activity only in control cultures, whereas epileptogenic activity was observed in both control cultures and cocultures during perfusions with picrotoxin, a molecule that can diffuse through the BBB. Finally, the microdialysis technique was used to determine the permeability of molecules coming from the perfusion chamber: L-dopa, dopamine, and Glu were employed to assess the selective permeability of the coculture model. Thus, these results indicate that the in vitro model described possesses characteristics similar to those of the BBB in situ and that cocultures of organotypic slices and endothelial cell monolayers have potential as a powerful tool for studying biochemical mechanisms regulating BBB function and drug delivery to the central nervous system.
Collapse
Affiliation(s)
- S Duport
- Department of Pharmacology, Centre Médical Universitaire, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|