1
|
Ádori C, Glück L, Barde S, Yoshitake T, Kovacs GG, Mulder J, Maglóczky Z, Havas L, Bölcskei K, Mitsios N, Uhlén M, Szolcsányi J, Kehr J, Rönnbäck A, Schwartz T, Rehfeld JF, Harkany T, Palkovits M, Schulz S, Hökfelt T. Critical role of somatostatin receptor 2 in the vulnerability of the central noradrenergic system: new aspects on Alzheimer's disease. Acta Neuropathol 2015; 129:541-63. [PMID: 25676386 DOI: 10.1007/s00401-015-1394-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/23/2015] [Accepted: 01/23/2015] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease and other age-related neurodegenerative disorders are associated with deterioration of the noradrenergic locus coeruleus (LC), a probable trigger for mood and memory dysfunction. LC noradrenergic neurons exhibit particularly high levels of somatostatin binding sites. This is noteworthy since cortical and hypothalamic somatostatin content is reduced in neurodegenerative pathologies. Yet a possible role of a somatostatin signal deficit in the maintenance of noradrenergic projections remains unknown. Here, we deployed tissue microarrays, immunohistochemistry, quantitative morphometry and mRNA profiling in a cohort of Alzheimer's and age-matched control brains in combination with genetic models of somatostatin receptor deficiency to establish causality between defunct somatostatin signalling and noradrenergic neurodegeneration. In Alzheimer's disease, we found significantly reduced somatostatin protein expression in the temporal cortex, with aberrant clustering and bulging of tyrosine hydroxylase-immunoreactive afferents. As such, somatostatin receptor 2 (SSTR2) mRNA was highly expressed in the human LC, with its levels significantly decreasing from Braak stages III/IV and onwards, i.e., a process preceding advanced Alzheimer's pathology. The loss of SSTR2 transcripts in the LC neurons appeared selective, since tyrosine hydroxylase, dopamine β-hydroxylase, galanin or galanin receptor 3 mRNAs remained unchanged. We modeled these pathogenic changes in Sstr2(-/-) mice and, unlike in Sstr1(-/-) or Sstr4(-/-) genotypes, they showed selective, global and progressive degeneration of their central noradrenergic projections. However, neuronal perikarya in the LC were found intact until late adulthood (<8 months) in Sstr2(-/-) mice. In contrast, the noradrenergic neurons in the superior cervical ganglion lacked SSTR2 and, as expected, the sympathetic innervation of the head region did not show any signs of degeneration. Our results indicate that SSTR2-mediated signaling is integral to the maintenance of central noradrenergic projections at the system level, and that early loss of somatostatin receptor 2 function may be associated with the selective vulnerability of the noradrenergic system in Alzheimer's disease.
Collapse
Affiliation(s)
- Csaba Ádori
- Department of Neuroscience, Retzius Laboratory, Karolinska Institutet, Retzius väg 8, 17177, Stockholm, Sweden,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Jahanshahi A, Le Maitre E, Temel Y, Lanfumey L, Hamon M, Lesch KP, Tordera RM, Del Río J, Aso E, Maldonado R, Hökfelt T, Steinbusch HW. Altered expression of neuronal tryptophan hydroxylase-2 mRNA in the dorsal and median raphe nuclei of three genetically modified mouse models relevant to depression and anxiety. J Chem Neuroanat 2011; 41:227-33. [DOI: 10.1016/j.jchemneu.2011.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 05/22/2011] [Accepted: 05/25/2011] [Indexed: 02/08/2023]
|
3
|
Nilsson IAK, Thams S, Lindfors C, Bergstrand A, Cullheim S, Hökfelt T, Johansen JE. Evidence of hypothalamic degeneration in the anorectic anx/anx mouse. Glia 2010; 59:45-57. [DOI: 10.1002/glia.21075] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 08/08/2010] [Accepted: 08/11/2010] [Indexed: 12/28/2022]
|
4
|
Fu W, Le Maître E, Fabre V, Bernard JF, David Xu ZQ, Hökfelt T. Chemical neuroanatomy of the dorsal raphe nucleus and adjacent structures of the mouse brain. J Comp Neurol 2010; 518:3464-94. [PMID: 20589909 DOI: 10.1002/cne.22407] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Serotonin neurons play a major role in many normal and pathological brain functions. In the rat these neurons have a varying number of cotransmitters, including neuropeptides. Here we studied, with histochemical techniques, the relation between serotonin, some other small-molecule transmitters, and a number of neuropeptides in the dorsal raphe nucleus (DRN) and the adjacent ventral periaqueductal gray (vPAG) of mouse, an important question being to establish possible differences from rat. Even if similarly distributed, the serotonin neurons in mouse lacked the extensive coexpression of nitric oxide synthase and galanin seen in rat. Although partly overlapping in the vPAG, no evidence was obtained for the coexistence of serotonin with dopamine, substance P, cholecystokinin, enkephalin, somatostatin, neurotensin, dynorphin, thyrotropin-releasing hormone, or corticotropin-releasing hormone. However, some serotonin neurons expressed the gamma-aminobutyric acid (GABA)-synthesizing enzyme glutamic acid decarboxylase (GAD). Work in other laboratories suggests that, as in rat, serotonin neurons in the mouse midline DRN express the vesicular glutamate transporter 3, presumably releasing glutamate. Our study also shows that many of the neuropeptides studied (substance P, galanin, neurotensin, dynorphin, and corticotropin-releasing factor) are present in nerve terminal networks of varying densities close to the serotonin neurons, and therefore may directly or indirectly influence these cells. The apparently low numbers of coexisting messengers in mouse serotonin neurons, compared to rat, indicate considerable species differences with regard to the chemical neuronatomy of the DRN. Thus, extrapolation of DRN physiology, and possibly pathology, from rat to mouse, and even human, should be made with caution.
Collapse
Affiliation(s)
- Wenyu Fu
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
5
|
Almgren M, Nyengaard JR, Persson B, Lavebratt C. Carbamazepine protects against neuronal hyperplasia and abnormal gene expression in the megencephaly mouse. Neurobiol Dis 2008; 32:364-76. [PMID: 18773962 DOI: 10.1016/j.nbd.2008.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 07/11/2008] [Accepted: 07/29/2008] [Indexed: 11/18/2022] Open
Abstract
Carbamazepine (CBZ) is an anticonvulsant drug used to treat epilepsy and mood disorders. However, it can cause birth defects like reduced head circumference. It was recently shown to protect against brain overgrowth and seizure-induced abnormal plasticity in the megalencephalic mice Kv1.1(mceph/mceph), (mceph/mceph) despite remaining seizures. The mceph/mceph mouse displays two-fold enlarged hippocampus due to more neurons and astrocytes. Using stereology, we found that CBZ normalized the number of neurons and astrocytes in mceph/mceph hippocampus. To characterize CBZ's protective ability on brain growth we studied the gene expression profile of mceph/mceph and wild type hippocampus, with and without CBZ treatment. Microarray analysis revealed transcripts involved in proliferation, differentiation and apoptosis including; NPY, Penk, Vgf, Mlc1, Sstr4, ApoD, Ndn, Aatk, Rgs2 and Gabra5, where Vgf may be of particular interest. The results also support CBZ's effect on synaptic transmission through GABA A receptors, which could promote apoptotic neurodegeneration, affecting cell number.
Collapse
Affiliation(s)
- Malin Almgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska Hospital L8:00, 171 76 Stockholm, Sweden.
| | | | | | | |
Collapse
|
6
|
Fetissov SO, Bergström U, Johansen JE, Hökfelt T, Schalling M, Ranscht B. Alterations of arcuate nucleus neuropeptidergic development in contactin-deficient mice: comparison with anorexia and food-deprived mice. Eur J Neurosci 2006; 22:3217-28. [PMID: 16367788 DOI: 10.1111/j.1460-9568.2005.04513.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A mutation in the Contactin-1 gene results in an ataxic and anorectic phenotype that is apparent by postnatal day 10 and lethal by postnatal day 19 [Berglund et al. (1999) Neuron 24, 739-750]. The resemblance of this phenotype with the anorexia (anx/anx) mouse mutation prompted us to investigate the hypothalamic neurochemistry of Contactin knock-out (KO) mice. Contactin was expressed in the hypothalamic neuropil of wild-type (WT) but not Contactin KO mice. In the KO condition, neuropeptide Y (NPY) and agouti-related protein (AgRP) immunoreactivity (IR) accumulated in the somata of arcuate nucleus neurons, whereas IR for these neuropeptides as well as for alpha-melanocyte-stimulating hormone (alpha-MSH) decreased in the corresponding axon projections. These changes in the pattern of neuropeptide expression in the Contactin-deficient hypothalamus were similar but more pronounced than those found in anx/anx mice. Increased levels of NPY and AgRP and decreased concentrations of pro-opiomelanocortin mRNA in arcuate neurons accompanied these changes. In relating these alterations a 24-h food deprivation period, we observed in 3-week-old WT mice an elevation of NPY- and AgRP-IR in the perikarya of arcuate neurons without notable reduction of NPY- or AgRP-IR in nerve fibers, suggesting that the decrease of arcuate projections can be associated with postnatal anorectic phenotype. Our data implicate Contactin in the postnatal development of the NPY/AgRP and alpha-MSH arcuate neurons and suggest that similar to anx/anx mutant mice, compromised orexigenic signaling via NPY/AgRP neurons may contribute to reduced food intake by the Contactin-mutant animals.
Collapse
Affiliation(s)
- Sergueï O Fetissov
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
7
|
Yamauchi N, Otagiri A, Nemoto T, Sekino A, Oono H, Kato I, Yanaihara C, Shibasaki T. Distribution of urocortin 2 in various tissues of the rat. J Neuroendocrinol 2005; 17:656-63. [PMID: 16159378 DOI: 10.1111/j.1365-2826.2005.01354.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Urocortin (Ucn) 2 is a new member of the corticotrophin-releasing hormone (CRH) neuropeptide family that is expressed in the central nervous system and peripheral tissues. However, the expression levels of Ucn 2 in various tissues of the rat remains unclear. Thus, the aim of the present study was to characterise the expression of Ucn 2 in the various tissues of the rat. Reverse transcriptase-polymerase chain reaction analysis demonstrated that Ucn 2 mRNA is expressed in the hypothalamus, pituitary, adrenal, stomach, skin, ovary, uterus and skeletal muscle. Histologically, Ucn 2 mRNA and Ucn 2-like immunoreactivity (LI) were demonstrated in both the anterior and intermediate lobes of the pituitary, but not detected in the posterior lobe. Furthermore, all Ucn 2-positive cells in the anterior and intermediate lobes were also positive for beta-endorphin. Ucn 2 mRNA was detected in the adrenal cortex and medulla although Ucn 2-LI was only found in the adrenal medulla. High-performance liquid chromatography analysis of hypothalamic, pituitary, and adrenal extracts showed that the main Ucn 2-LI peak occurred at the same molecular size as that of synthetic Ucn 2. These results suggest that Ucn 2 is synthesised in various tissues, including the anterior and intermediate lobes of the pituitary and the adrenal.
Collapse
Affiliation(s)
- N Yamauchi
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Hilke S, Theodorsson A, Fetissov S, Aman K, Holm L, Hökfelt T, Theodorsson E. Estrogen induces a rapid increase in galanin levels in female rat hippocampal formation − possibly a nongenomic/indirect effect. Eur J Neurosci 2005; 21:2089-99. [PMID: 15869505 DOI: 10.1111/j.1460-9568.2005.04050.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Administration of 17beta-estradiol to ovariectomized rats increased the concentrations of galanin-like immunoreactivity (LI) in the hippocampal formation by 215% (P < 0.001) within 1 h. An increase of 125% (P < 0.05) was observed in the same brain region in the proestrous phase of a normal estrous cycle. Tamoxifen did not block the 17beta-estradiol-induced increase in the concentration of galanin-LI but resulted in a 62% decrease in the hypothalamus within 1 h. In vivo microdialysis in the dorsal hippocampal formation showed a decrease of extracellular galanin-LI (P < 0.001) 1-2 h after treatment with 17beta-estradiol, indicating a decreased release of galanin. For comparison, we studied the concentrations of neuropeptide Y, which were not influenced significantly in any of the regions studied. Taken together our results suggest that 17beta-estradiol inhibits galanin release, presumably from noradrenergic nerve terminals, and primarily via a nongenomic/indirect action, not necessarily involving the classical nuclear receptors ER-alpha or ER-beta. These rapid estrogen-induced changes in galanin release could influence transmitter signalling and plasticity in the hippocampal formation.
Collapse
Affiliation(s)
- Susanne Hilke
- Department of Biomedicine and Surgery, Division of Clinical Chemistry, Faculty of Health Sciences, University Hospital, SE-581 82 Linköping, Sweden.
| | | | | | | | | | | | | |
Collapse
|
9
|
Nilsson I, Johansen JE, Schalling M, Hökfelt T, Fetissov SO. Maturation of the hypothalamic arcuate agouti-related protein system during postnatal development in the mouse. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 155:147-54. [PMID: 15804403 DOI: 10.1016/j.devbrainres.2005.01.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 01/25/2005] [Accepted: 01/26/2005] [Indexed: 11/30/2022]
Abstract
The hypothalamic arcuate nucleus (Arc) and its neurons expressing agouti-related protein (AgRP) are key components of the forebrain circuitry involved in long-term regulation of energy homeostasis, including conveying leptin signaling to other hypothalamic and extrahypothalamic regions. In the present work, we investigated the postnatal development (P0, P5, P10, P15, and P21) of this system (AgRP transcript and peptide) in the mouse brain using in situ hybridization and immunohistochemistry. At all stages, AgRP mRNA expression was detected exclusively in the Arc. At P0, AgRP mRNA levels were low, and only a few AgRP-immunoreactive fibers were present reaching, rostrally, the bed nucleus of the stria terminalis and, caudally, the dorsal raphe nucleus. During the following period (P5-P21), the levels of AgRP mRNA gradually increased in the Arc along with a parallel increase in the AgRP fiber density in the hypothalamic regions responsible for control of appetite, including the paraventricular nucleus, as well as in extrahypothalamic regions, including locus coeruleus. These data provide evidence that, in the mouse, the maturation of the AgRP Arc system occurs mainly during the first three postnatal weeks. Together with the existing data on the physiology of appetite and body weight, our data suggest that the first three postnatal weeks in the mouse represents a critical period for the formation of brain mechanisms underlying appetite control via peripheral hormones.
Collapse
Affiliation(s)
- Ida Nilsson
- Department of Neuroscience B3:4, Karolinska Institutet, Retzius väg 8, 171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
10
|
Molero JC, Jensen TE, Withers PC, Couzens M, Herzog H, Thien CBF, Langdon WY, Walder K, Murphy MA, Bowtell DDL, James DE, Cooney GJ. c-Cbl-deficient mice have reduced adiposity, higher energy expenditure, and improved peripheral insulin action. J Clin Invest 2004; 114:1326-33. [PMID: 15520865 PMCID: PMC524227 DOI: 10.1172/jci21480] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Accepted: 09/07/2004] [Indexed: 01/06/2023] Open
Abstract
Casitas b-lineage lymphoma (c-Cbl) is an E3 ubiquitin ligase that has an important role in regulating the degradation of cell surface receptors. In the present study we have examined the role of c-Cbl in whole-body energy homeostasis. c-Cbl-/- mice exhibited a profound increase in whole-body energy expenditure as determined by increased core temperature and whole-body oxygen consumption. As a consequence, these mice displayed a decrease in adiposity, primarily due to a reduction in cell size despite an increase in food intake. These changes were accompanied by a significant increase in activity (2- to 3-fold). In addition, c-Cbl-/- mice displayed a marked improvement in whole-body insulin action, primarily due to changes in muscle metabolism. We observed increased protein levels of the insulin receptor (4-fold) and uncoupling protein-3 (2-fold) in skeletal muscle and a significant increase in the phosphorylation of AMP-activated protein kinase and acetyl-CoA carboxylase. These findings suggest that c-Cbl plays an integral role in whole-body fuel homeostasis by regulating whole-body energy expenditure and insulin action.
Collapse
Affiliation(s)
- Juan C Molero
- Diabetes and Obesity Program, The Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Fetissov SO, Huang P, Zhang Q, Mimura J, Fujii-Kuriyama Y, Rannug A, Hökfelt T, Ceccatelli S. Expression of hypothalamic neuropeptides after acute TCDD treatment and distribution of Ah receptor repressor. ACTA ACUST UNITED AC 2004; 119:113-24. [PMID: 15093705 DOI: 10.1016/j.regpep.2004.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2003] [Revised: 01/20/2004] [Accepted: 01/29/2004] [Indexed: 11/21/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant originating from industrial waste. At sublethal concentrations it induces anorexia and weight loss as part of the so-called wasting syndrome. To gain insight into its possible underlying mechanisms, mRNA expression of some key hypothalamic neuropeptides involved in the regulation of body weight was studied using in situ hybridization histochemistry in adult male Sprague-Dawley rats 6 days after single oral administration of TCDD (15 microg/kg) and in age-paired control rats. In TCDD-treated rats which displayed a decrease in body weight gain vs. controls, arcuate nucleus expression of neuropeptide Y (NPY), proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) mRNA was increased. In the lateral hypothalamic area, melanin-concentrating hormone (MCH) mRNA expression was also increased, while levels of CART and orexin/hypocretin mRNA were not significantly changed. Since TCDD is known to bind to the aryl hydrocarbon receptor (AhR), the distribution of the AhR repressor (AhRR), which is co-expressed with AhR in the same cells, was studied by immunohistochemistry in the mouse hypothalamus using mouse AhRR specific antiserum. AhRR immunoreactivity was present in the nuclei of neurons found in all main hypothalamic groups including NPY, CART, MCH and orexin/hypocretin neurons. Xenobiotic response elements were found in these neuropeptide genes with the exception of MCH. Thus changes in expression of orexigenic and anorexigenic neuropeptides after TCDD treatment may help to explain the occurrence of the TCDD-induced weight loss, which may be either directly or indirectly related to the effects of TCDD on neuropeptide expression.
Collapse
Affiliation(s)
- Sergueï O Fetissov
- Department of Neuroscience B3:4, Karolinska Institutet, Retzius väg. 8, S-171 77 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Fetissov SO, Jacoby AS, Brumovsky PR, Shine J, Iismaa TP, Hökfelt T. Altered hippocampal expression of neuropeptides in seizure-prone GALR1 knockout mice. Epilepsia 2003; 44:1022-33. [PMID: 12887433 DOI: 10.1046/j.1528-1157.2003.51402.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE Mice carrying a deletion of the GALR1 galanin receptor have recently showed spontaneous seizure phenotype with 25% penetrance. To better understand the role of neuropeptides, which are known to undergo complex plasticity changes with development of epileptic seizures, we characterized their expression in the hippocampal formation in GALR1- knockout (-KO) mice with or without seizures and in wild-type (WT) mice. METHODS Immunohistochemistry and in situ hybridization were used to study expression of galanin, neuropeptide Y (NPY), substance P, enkephalin, dynorphin, and cholecystokinin (CCK). RESULTS In GALR1-KO mice that had been displaying seizures, a strong upregulation of galanin immunoreactivity (ir) and messenger RNA (mRNA) was found in the polymorph layer of the dentate gyrus; galanin-ir also appeared in a dense fiber network in the supragranular layer. A strong upregulation of enkephalin was found in the granule cells/mossy fibers, whereas dynorphin mRNA levels were modestly decreased. NPY was strongly expressed in the granule cells/mossy fibers, and an increase of NPY mRNA levels in the polymorph cells was paralleled by an increase of NPY-ir in the molecular layer. An upregulation of substance P-ir was confined to the fibers in the granule and molecular layers, whereas substance P mRNA was increased in the cells of the polymorph layer. Both CCK-ir and mRNA were strongly downregulated in the granule cell/mossy fiber system, but CCK-ir appeared increased in the supragranular and molecular layers. No changes in neuropeptide-ir were found in GALR1-KO mice not displaying seizures. CONCLUSIONS Complex changes in neuropeptide expression in some principal hippocampal neurons and interneurons appear as a characteristic feature of the spontaneous-seizure phenotype in GALR1-KO mice. However, to what extent causal relations exist between this "epilepsia peptidergic profile" and development of seizures requires further clarification.
Collapse
|
13
|
Fetissov SO, Schröder O, Jakobsson PJ, Samuelsson B, Haeggström JZ, Hökfelt T. Expression of microsomal glutathione S-transferase type 3 mRNA in the rat nervous system. Neuroscience 2003; 115:891-7. [PMID: 12435427 DOI: 10.1016/s0306-4522(02)00411-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Microsomal glutathione S-transferase type 3 (MGST3) is a recently identified member of a large superfamily of enzymes involved in biotransformation of xenobiotics and biosynthesis of eicosanoids, including prostaglandins and leukotrienes. Using in situ hybridization histochemistry and reverse transcription polymerase chain reaction, we characterized the expression of MGST3 mRNA in the rat nervous system based on the cloned rat MGST3 gene, under normal conditions and after systemic administration of lipopolysaccharide (LPS). The MGST3 mRNA seemed to be confined to neurons. The broad distribution in the brain was characterized by a strong signal in the hippocampal formation and in the nuclei of the cranial nerves. A moderate signal was found in the cortex, thalamus, amygdala and substantia nigra and a weak signal in the hypothalamus. Motoneurons in the spinal cord and sensory neurons in dorsal root ganglia displayed strong MGST3 mRNA signal. No significant changes in the level of expression of MGST3 mRNA in the brain were found 1, 3 or 6 h after LPS administration. The pattern of distribution of MGST3 mRNA in the rat nervous system and the lack of response to LPS do not support a role for MGST3 in the biosynthesis of proinflammatory eicosanoids but rather suggest other functions, perhaps in metabolic detoxication and neuroprotection.
Collapse
Affiliation(s)
- S O Fetissov
- Department of Neuroscience B3:4, Karolinska Institutet, Retzius väg 8, 17177, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
14
|
Matsuda H, Brumovsky PR, Kopp J, Pedrazzini T, Hökfelt T. Distribution of neuropeptide Y Y1 receptors in rodent peripheral tissues. J Comp Neurol 2002; 449:390-404. [PMID: 12115674 DOI: 10.1002/cne.10303] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Using a sensitive immunohistochemical technique, the localization of neuropeptide Y (NPY) Y1-receptor (Y1R)-like immunoreactivity (LI) was studied in various peripheral tissues of rat. Wild-type (WT) and Y1R-knockout (KO) mice were also analyzed. Y1R-LI was found in small arteries and arterioles in many tissues, with particularly high levels in the thyroid and parathyroid glands. In the thyroid gland, Y1R-LI was seen in blood vessel walls lacking alpha-smooth muscle actin, i.e., perhaps in endothelial cells of capillaries. Larger arteries lacked detectable Y1R-LI. A distinct Y1R-immunoreactive (IR) reticulum was seen in the WT mouse spleen, but not in Y1R-KO mouse or rat. In the gastrointestinal tract, Y1R-positive neurons were observed in the myenteric plexus, and a few enteroendocrine cells were Y1R-IR. Some cells in islets of Langerhans in the pancreas were Y1R-positive, and double immunostaining showed coexistence with somatostatin in D-cells. In the urogenital tract, Y1R-LI was observed in the collecting tubule cells of the renal papillae and in some epithelial cells of the seminal vesicle. Some chromaffin cells of adrenal medulla were positive for Y1R. The problem of the specificity of the Y1R-LI is evaluated using adsorption tests as well as comparisons among rat, WT mouse, and mouse with deleted Y1R. Our findings support many earlier studies based on other methodologies, showing that Y1Rs on smooth muscle cells of blood vessels mediate NPY-induced vasoconstriction in various organs. In addition, Y1Rs in other cells in parenchymal tissues of several organs suggest nonvascular effects of NPY via the Y1R.
Collapse
MESH Headings
- Animals
- Cardiovascular System/metabolism
- Cardiovascular System/ultrastructure
- Digestive System/blood supply
- Digestive System/metabolism
- Digestive System/ultrastructure
- Endocrine System/blood supply
- Endocrine System/metabolism
- Endocrine System/ultrastructure
- Female
- Ganglia, Autonomic/blood supply
- Ganglia, Autonomic/metabolism
- Ganglia, Autonomic/ultrastructure
- Lymphatic System/blood supply
- Lymphatic System/metabolism
- Lymphatic System/ultrastructure
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/ultrastructure
- Neurons/chemistry
- Neurons/ultrastructure
- Organ Specificity/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, Neuropeptide Y/deficiency
- Receptors, Neuropeptide Y/genetics
- Receptors, Neuropeptide Y/metabolism
- Receptors, Neuropeptide Y/ultrastructure
- Skin/blood supply
- Skin/metabolism
- Skin/ultrastructure
- Trachea/blood supply
- Trachea/metabolism
- Trachea/ultrastructure
- Urogenital System/blood supply
- Urogenital System/metabolism
- Urogenital System/ultrastructure
Collapse
Affiliation(s)
- Hideki Matsuda
- Department of Neuroscience, Karolinska Institutet, Retzius Laboratory, Retzius Väg 8, S-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
15
|
Sainsbury A, Schwarzer C, Couzens M, Fetissov S, Furtinger S, Jenkins A, Cox HM, Sperk G, Hökfelt T, Herzog H. Important role of hypothalamic Y2 receptors in body weight regulation revealed in conditional knockout mice. Proc Natl Acad Sci U S A 2002; 99:8938-43. [PMID: 12072562 PMCID: PMC124402 DOI: 10.1073/pnas.132043299] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neuropeptide Y is implicated in energy homeostasis, and contributes to obesity when hypothalamic levels remain chronically elevated. To investigate the specific role of hypothalamic Y2 receptors in this process, we used a conditional Y2 knockout model, using the Cre-lox system and adenoviral delivery of Cre-recombinase. Hypothalamus-specific Y2-deleted mice showed a significant decrease in body weight and a significant increase in food intake that was associated with increased mRNA levels for the orexigenic NPY and AgRP, as well as the anorexic proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) in the arcuate nucleus. These hypothalamic changes persisted until at least 34 days after Y2 deletion, yet the effect on body weight and food intake subsided within this time. Plasma concentrations of pancreatic polypeptide and corticosterone were 3- to 5-fold increased in hypothalamus-specific Y2 knockout mice. Germ-line Y2 receptor knockout also produced a significant increase in plasma levels of pancreatic polypeptide. However, these mice differed from conditional knockout mice in that they showed a sustained reduction in body weight and adiposity associated with increased NPY and AgRP but decreased POMC and CART mRNA levels in the arcuate nucleus. The transience of the observed effects on food intake and body weight in the hypothalamus-specific Y2 knockout mice, and the difference of this model from germ-line Y2 knockout mice, underline the importance of conditional models of gene deletion, because developmental, secondary, or extrahypothalamic mechanisms may mask such effects in germ-line knockouts.
Collapse
Affiliation(s)
- Amanda Sainsbury
- Neurobiology Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Petersson S, Lavebratt C, Schalling M, Hökfelt T. Expression of cholecystokinin, enkephalin, galanin and neuropeptide Y is markedly changed in the brain of the megencephaly mouse. Neuroscience 2001; 100:297-317. [PMID: 11008168 DOI: 10.1016/s0306-4522(00)00285-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Megencephaly, enlarged brain, is a major sign in several human neurological diseases. The mouse model for megencephaly (mceph/mceph) has an enlarged brain, presumably due to brain cell hypertrophy, and exhibits neurological and motor disturbances with seizure-like activity, as well as disturbances in the insulin-like growth factor system. Here, we report that expression of the neuropeptides cholecystokinin, enkephalin, galanin and neuropeptide Y is dramatically changed in mceph/mceph brains compared to wild type, as revealed by in situ hybridization and immunohistochemistry. The changes were confined to discrete brain regions and occurred in a parallel fashion for peptides and their transcripts. For cholecystokinin, mceph/mceph brains had region-specific up- and down-regulations in several layers of the hippocampal formation and increased levels in, especially ventral, cortical regions. Enkephalin messenger RNA expression was up-regulated in the dentate gyrus granular layer and in ventral cortices, but down-regulated in the CA1 pyramidal layer. Enkephalin-like immunoreactivity was elevated in mossy fibers of the hippocampus and the ventral cortices. Galanin expression was increased in several layers and interneurons of the hippocampal formation, as well as in ventral cortices. Galanin-like immunoreactivity was reduced in nerve terminals in the forebrain. Neuropeptide Y expression was increased in the hippocampal formation and ventral cortices. Whether the mainly increased peptide levels contribute to the excessive growth of the brain or represent a consequence of this growth and/or of the neurological and motor disturbances remains to be elucidated.
Collapse
Affiliation(s)
- S Petersson
- Neurogenetic Unit, Center for Molecular Medicine, Karolinska Institutet, 171 76, Stockholm, Sweden.
| | | | | | | |
Collapse
|
17
|
Chiba A. Neuropeptide Y immunohistochemistry and ultrastructure of developing chromaffin tissue in the cloudy dogfish, Scyliorhinus torazame (Chondrichthyes, Elasmobranchii). Acta Histochem 2001; 103:67-78. [PMID: 11252629 DOI: 10.1078/0065-1281-00579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ontogenetic changes in neuropeptide Y-like immunoreactivity (NPY-LI) were studied in chromaffin tissue of the cloudy dogfish, Scyliorhinus torazame. In adults and post-hatching juveniles, NPY-LI was demonstrated in chromaffin cells, but not in ganglion cells and supporting cells. Immunoreactive fibers were also found in the axillary body (the major chromaffin tissue) of the adult fish. During the embryonic period, NPY-LI was found at first in chromaffin tissue in the 34-mm stage. In this stage, cells in the periphery of the tissue were positive for NPY. Afterwards, changes were not observed in the topography and relative dominance of labelled cells in the tissue. Transmission electron microscopy of chromaffin tissue of the 26-mm stage showed an early phase of histogenesis in rudimental cell clusters composed of agranular cells and a few granular cells, i.e. pheochromoblasts. In the 43-mm stage, differentiation of the chromaffin tissue enabled ultrastructural classification of adrenalin-producing cells, noradrenalin-producing cells, ganglion cells, supporting cells, and unmyelinated nerve fibers. These results suggest that in the dogfish the appearance of NPY-LI in the developing sympathoadrenal system is related to differentiation of chromaffin cells.
Collapse
Affiliation(s)
- A Chiba
- Department of Biology, Nippon Dental University School of Dentistry at Niigata, Japan.
| |
Collapse
|
18
|
Johansen JE, Broberger C, Lavebratt C, Johansson C, Kuhar MJ, Hökfelt T, Schalling M. Hypothalamic CART and serum leptin levels are reduced in the anorectic (anx/anx) mouse. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 84:97-105. [PMID: 11113536 DOI: 10.1016/s0169-328x(00)00228-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) is expressed in the hypothalamus, and putative peptides encoded by CART potently inhibit feeding when administered centrally. CART is strongly down-regulated in the lateral hypothalamic area and the arcuate nucleus in animal models of obesity with disrupted leptin signaling. Here we have used in situ hybridization and immunohistochemistry to study CART expression in mice homozygous for the anorexia (anx) mutation which are characterized by a much reduced food intake and premature death. anx/anx mice had significantly decreased levels of CART mRNA label and peptide-immunoreactive cell bodies and fibers in the arcuate nucleus and a lower number of detectable CART-expressing cells in the dorsomedial hypothalamic nucleus/lateral hypothalamic area. Moreover, serum leptin levels were significantly lower in anx/anx mice compared to normal littermates, most likely due to the prominent depletion of body fat in these animals. The decrease in the anorexigenic agents leptin and CART, may reflect a compensatory down-regulation in response to the energy-deprived state of anx/anx mice. Alternatively, the reduced arcuate CART expression may be a consequence of a molecular defect in the arcuate nucleus of these animals.
Collapse
Affiliation(s)
- J E Johansen
- Neurogenetics Unit, Department of Molecular Medicine, Karolinska Hospital, S-171 76 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Neuropeptide Y (NPY) is expressed in a special type of glial cell, the olfactory ensheathing cells, that surround the axons of olfactory sensory neurons on their way from the olfactory epithelium to the glomeruli in the olfactory bulb. The expression of NPY in ensheathing cells was examined during prenatal development of the olfactory system by using immunohistochemistry and in situ hybridization. NPY expression was compared with the expression of growth associated protein-43, olfactory marker protein, the low-affinity nerve growth factor receptor (p75) and S-100, factors expressed in the olfactory system at known stages of development. NPY-like immunoreactivity (NPY-LI) and NPY mRNA expression was first detected in the olfactory nerve layer of the olfactory bulb at embryonic day 15. From embryonic day 16 and onward, a clear segregation could be observed in the intensity of both NPY-LI and NPY mRNA expression within the olfactory nerve layer. NPY expression was most intense in the inner part of the olfactory nerve layer. In the outer olfactory nerve layer, a clear decrease in NPY expression was observed. The inner olfactory nerve layer, showing high NPY expression, did not stain for S-100 or p75. However, NPY-LI was found to coexist with S-100-LI from the outer olfactory nerve layer until the olfactory epithelium and with p75-LI in cells surrounding the olfactory nerve. These results show that NPY is expressed in ensheathing cells before olfactory sensory neurons mature and the formation of the glomerular layer starts. NPY might be involved in the guidance, growth, or both, of olfactory sensory axons toward their target glomeruli in the olfactory bulb or have a function in the maturation of the olfactory sensory neurons.
Collapse
Affiliation(s)
- R Ubink
- Department of Neuroscience, Karolinska Institutet, Berzelius v]ag 1, 171 77 Stockholm, Sweden.
| | | |
Collapse
|
20
|
|
21
|
Kopp J, Nanobashvili A, Kokaia Z, Lindvall O, Hökfelt T. Differential regulation of mRNAs for neuropeptide Y and its receptor subtypes in widespread areas of the rat limbic system during kindling epileptogenesis. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 72:17-29. [PMID: 10521595 DOI: 10.1016/s0169-328x(99)00191-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Expression of mRNAs for neuropeptide Y (NPY) and its receptor subtypes Y1 (Y1-R), Y2 (Y2-R) and Y5 (Y5-R) was studied in adult rat brain using in situ hybridization after 40 rapidly recurring seizures induced with 5-min interval by hippocampal kindling stimulations. At 2-4 h post-seizure, NPY mRNA levels were markedly elevated in dentate granule cells, CA1 and CA3 pyramidal layers, amygdala and piriform and entorhinal cortices. Gene expression had returned to control level in the dentate granule cell layer at 48 h but remained high in the other areas, reaching baseline at 1 week. Transient decreases of Y1-R mRNA levels were detected at 2-4 h in hippocampal subregions, amygdala, piriform, entorhinal and somatosensory cortices. The Y2-R mRNA levels were reduced at 2-4 h in the CA3 region and piriform cortex, but exhibited marked increases at 48 h and 1 week post-seizure in the dentate gyrus, amygdala and piriform and entorhinal cortices. At 3 weeks, Y2-R mRNA expression had virtually returned to baseline. Elevated Y5-R mRNA levels were only detected at 2-4 h and confined to dentate granule cell layer and piriform and entorhinal cortices. These results demonstrate a cell- and region-specific, differential regulation of mRNA expression for NPY and Y1-R, Y2-R, and Y5-R in the limbic system following recurring seizures. Because the gene changes were transient, it seems unlikely that the presumed alterations of the corresponding proteins are involved in the maintenance of the epileptic syndrome, which develops up to 4 weeks post-seizure in the present model and is stable thereafter. Our data provide further support for the hypothesis that the changes of NPY and its receptors act to dampen seizure susceptibility, and suggest that the cascade of gene changes is orchestrated to optimize this anticonvulsant effect.
Collapse
Affiliation(s)
- J Kopp
- Department for Neuroscience, Section for Histology, Karolinska Institutet, Doktorsringen 12 S-171 77, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
22
|
Changes in neuropeptide Y receptors and pro-opiomelanocortin in the anorexia (anx/anx) mouse hypothalamus. J Neurosci 1999. [PMID: 10436066 DOI: 10.1523/jneurosci.19-16-07130.1999] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pro-opiomelanocortinergic (POMCergic) system originating in the hypothalamic arcuate nucleus extends projections widely over the brain and has been shown to be intricately linked and parallel to the arcuate neuropeptide Y (NPY) system. Both NPY and POMC-derived peptides (melanocortins) have been strongly implicated in the control of feeding behavior, with the former exerting orexigenic effects and the latter having anorexigenic properties. Mice homozygous for the lethal anorexia (anx) mutation are hypophagic, emaciated, and exhibit anomalous processing of NPY exclusively in the arcuate nucleus, providing an interesting model to study NPY-POMC interactions. In the present study, several morphological markers were used to investigate the histochemistry and morphology of the POMC system in anx/anx mice. In situ hybridization demonstrated decreased numbers of POMC mRNA-expressing neurons in the anx/anx arcuate nucleus. In parallel, mRNA levels for both the NPY Y1 and Y5 receptors, which are expressed in POMC neurons, were decreased. Also, expression of the NPY Y2 autoreceptor was attenuated. Immunohistochemistry using antibodies against adrenocorticotropic hormone to demonstrate POMC cell bodies, against alpha-melanocyte-stimulating hormone to demonstrate axonal projections and against the NPY Y1 receptor to demonstrate dendritic arborizations, showed strikingly decreased immunoreactivities for all these markers. The present data suggest that degeneration of the arcuate POMC system is a feature characteristic of the anx/anx mouse. The possible relationship to the NPYergic phenotype of this animal is discussed.
Collapse
|
23
|
Coome GE, Kawaja MD. Prolonged exposure to elevated levels of endogenous nerve growth factor affects the morphological and neurochemical features of sympathetic neurons of postnatal and adult mice. Neuroscience 1999; 90:941-55. [PMID: 10218794 DOI: 10.1016/s0306-4522(98)00499-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is well documented that acute increases of target-derived nerve growth factor affect the morphological and neurochemical features of post-ganglionic sympathetic neurons. It has yet to be determined, however, whether similar changes are still evident after prolonged exposure to increased levels of endogenous nerve growth factor. Using a transgenic line of mice which overexpresses nerve growth factor in the brain commencing after the first week of postnatal life and continuing into adulthood, we have shown previously that sympathetic axons sprout into the nerve growth factor-rich cerebellum of these animals; no such axons are seen in the cerebellum of age-matched wild type animals. The aim of this study was to examine and characterize the effects of chronically elevated levels of endogenous nerve growth factor on sympathetic neurons of the superior cervical ganglion. In comparison to adult wild type mice, adult transgenic animals possessed hypertrophied ganglia which displayed both an increase in sympathetic somal size and a decrease in their density. At the electron microscope level, sympathetic somata of the adult transgenic animals had numerous electron-dense lysosome-like structures in the cytoplasm, as compared to that seen in the sympathetic somata of adult wild type animals. Immunodetection of nerve growth factor in the sympathetic somata revealed that the staining intensity in postnatal (day 28) transgenic mice was greater than that in age-matched wild type mice. By adulthood, however, such differences in the intensities of nerve growth factor immunostaining were no longer evident. In situ hybridization analyses of trkA receptor messenger RNA revealed that levels of expression among somata of similar sizes were comparable between the transgenic and wild type neuronal populations of both postnatal day 28 and adult animals. A small subpopulation of sympathetic somata in postnatal transgenic mice displayed a marked increase in p75NTR messenger RNA expression in comparison to somata of a similar size in age-matched wild type animals. By adulthood, the proportion of sympathetic somata in the transgenic animals possessing elevated levels of p75NTR messenger RNA expression had increased. These results reveal that chronically elevated levels of endogenous nerve growth factor in the postnatal and adult mouse brain can induce both structural and neurochemical remodelling of sympathetic neurons. The preferential increase in p75NTR messenger RNA expression among sympathetic somata of transgenic mice may be required for their growth of collateral axons into the nerve growth factor-rich cerebellum during postnatal development and may facilitate the increased immunodetection of nerve growth factor on these aberrant sympathetic axons in adult transgenic animals.
Collapse
Affiliation(s)
- G E Coome
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
24
|
Broberger C, Johansen J, Johansson C, Schalling M, Hökfelt T. The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc Natl Acad Sci U S A 1998; 95:15043-8. [PMID: 9844012 PMCID: PMC24572 DOI: 10.1073/pnas.95.25.15043] [Citation(s) in RCA: 575] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuropeptide Y (NPY) and the endogenous melanocortin receptor antagonist, agouti gene-related protein (AGRP), coexist in the arcuate nucleus, and both exert orexigenic effects. The present study aimed primarily at determining the brain distribution of AGRP. AGRP mRNA-expressing cells were limited to the arcuate nucleus, representing a major subpopulation (95%) of the NPY neurons, which also was confirmed with immunohistochemistry. AGRP-immunoreactive (-ir) terminals all contained NPY and were observed in many brain regions extending from the rostral telencephalon to the pons, including the parabrachial nucleus. NPY-positive, AGRP-negative terminals were observed in many areas. AGRP-ir terminals were reduced dramatically in all brain regions of mice treated neonatally with monosodium glutamate as well as of mice homozygous for the anorexia mutation. Terminals immunoreactive for the melanocortin peptide alpha-melanocyte-stimulating hormone formed a population separate from, but parallel to, the AGRP-ir terminals. Our results show that arcuate NPY neurons, identified by the presence of AGRP, project more extensively in the brain than previously known and indicate that the feeding regulatory actions of NPY may extend beyond the hypothalamus.
Collapse
Affiliation(s)
- C Broberger
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
25
|
Denef C. Autocrine/Paracrine Intermediates in Hormonal Action and Modulation of Cellular Responses to Hormones. Compr Physiol 1998. [DOI: 10.1002/cphy.cp070118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Broberger C, Johansen J, Schalling M, Hökfelt T. Hypothalamic neurohistochemistry of the murine anorexia (anx/anx) mutation: altered processing of neuropeptide Y in the arcuate nucleus. J Comp Neurol 1997; 387:124-35. [PMID: 9331176 DOI: 10.1002/(sici)1096-9861(19971013)387:1<124::aid-cne10>3.0.co;2-u] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neuropeptide Y is one of the most powerful neurochemical stimulants of food intake known. The neuronal substrate for this action is believed to be the neuropeptide Y-expressing cell population in the hypothalamic arcuate nucleus. In this study, mice homozygous for the anorexia mutation (anx) were investigated histochemically; anx is a recessive mutation that causes decreased food intake and starvation, leading to death 22 days after birth. We were interested to see whether any hypothalamic neurochemical abnormalities could be detected in this genetic model of starvation. By using immunohistochemistry and in situ hybridization, the hypothalamic distributions of neuropeptide Y, cholecystokinin, galanin, and serotonin, all messenger molecules postulated to be involved in the regulation of food intake and energy metabolism, were investigated. Immunoreactivities for somatostatin, the excitatory amino acid aspartate, and acetylcholinesterase were also studied. Neuropeptide Y-like immunoreactivity was increased markedly in arcuate cell bodies and decreased in terminals in the arcuate nucleus and other hypothalamic regions of anx/anx mice compared with normal litter mates. In situ hybridization for neuropeptide Y mRNA, however, showed no significant difference in gene expression in the arcuate nucleus. In addition, immunoreactivities for aspartate, acetylcholinesterase, and somatostatin in the arcuate nucleus were decreased in anx/anx mice. For cholecystokinin, galanin, and serotonin, no certain differences in hypothalamic immunoreactivity could be seen. These data suggest that a defect in neuropeptide Y-ergic signalling in the arcuate neurons may contribute to the failure to thrive in anx/anx mice.
Collapse
Affiliation(s)
- C Broberger
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
27
|
Kopp J, Zhang X, Hökfelt T. Neuropeptide Y1 receptors in the rat genital tract. REGULATORY PEPTIDES 1997; 70:149-60. [PMID: 9272627 DOI: 10.1016/s0167-0115(97)00028-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Using in situ hybridization and immunohistochemistry, the expression of type 1 neuropeptide Y (NPY) receptors (Y1-Rs) has been demonstrated in the rat genital tract. In the male Y1-R mRNA and Y1-R-like immunoreactivity (LI) were found in smooth muscles of predominantly arterioles and small arteries inside testis. Fibers showing NPY-LI could not be detected within testis but only in the tunica albuginea. These Y1-Rs are suggested to mediate vasoconstriction, possibly activated by NPY released from nerves in the tunica albuginea. In the female rat Y1-R mRNA, but not Y1-R-LI was found in vascular smooth muscles of arteries in the ovary and oviduct. In the oviduct Y1-R mRNA was also detected in the non-vascular smooth muscle layer. Fibers showing NPY-LI were found around blood vessels both in the ovary and oviduct. In the female genital tract also Y1-Rs may thus be involved in regulatory mechanisms mediating, for example, vasoconstriction.
Collapse
MESH Headings
- Animals
- Female
- Genitalia, Female/anatomy & histology
- Genitalia, Female/chemistry
- Genitalia, Female/metabolism
- Genitalia, Male/anatomy & histology
- Genitalia, Male/chemistry
- Genitalia, Male/metabolism
- Immunohistochemistry
- In Situ Hybridization
- Male
- Microscopy, Fluorescence
- Ovary/chemistry
- Ovary/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Receptors, Neuropeptide Y/chemistry
- Receptors, Neuropeptide Y/genetics
- Testis/chemistry
- Testis/metabolism
Collapse
Affiliation(s)
- J Kopp
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.
| | | | | |
Collapse
|
28
|
Cracco CM, Bertorello N, Filogamo G, Riederer BM, Vercelli AE. NADPH-diaphorase-positive ganglion cells of the rat adrenal gland: age- and sex-related changes in their number, size, and distribution. J Comp Neurol 1996; 366:181-96. [PMID: 8866853 DOI: 10.1002/(sici)1096-9861(19960226)366:1<181::aid-cne12>3.0.co;2-u] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The rat adrenal gland contains ganglion cells able to synthesize nitric oxide (NO). This messenger molecule controls and modulates adrenal secretory activity and blood flow. The present study analyzed the number, size, and distribution of NO-producing adrenal neurons in adulthood and during postnatal development by means of beta-nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry. This method reliably visualizes the enzyme responsible for NO generation. The reactive neurons per adrenal gland were 350-400 in both male and female adult rats. The positive nerve cell bodies were mostly located in the medulla, few being detected within the cortex and the subcapsular region. Dual labeling with anti-microtubule-associated protein 2 antibody, specific for neuronal elements, confirmed this distribution. Anti-microtubule-associated protein 1b antibody identified a subset of NADPH-d-positive neurons, displaying different degrees of maturation according to their position within the adrenal gland. At birth, there were about 220 NADPH-d-labeled neurons per adrenal gland in both sexes. As confirmed by dual immunocytochemical labeling, their great majority was evenly distributed between the cortex and the subcapsular region, the medulla being practically devoid of stained neurons. After birth, the number of adrenal NADPH-d-positive ganglion cells displayed a strong postnatal increase and reached the adult-like distribution after 1-2 months. During the period of increase, there was a transient difference in the numbers of these cells in the two sexes. Thus we present here evidence of plasticity in the number, size, and distribution of NADPH-d-positive adrenal neurons between birth and adulthood; in addition, we describe transient sex-related differences in their number and distribution during the 2nd postnatal week, which are possibly related to the epigenetic action of gonadal hormones during this period.
Collapse
Affiliation(s)
- C M Cracco
- Department of Human Anatomy and Physiology, University of Turin, Italy
| | | | | | | | | |
Collapse
|
29
|
Kawata M. Roles of steroid hormones and their receptors in structural organization in the nervous system. Neurosci Res 1995; 24:1-46. [PMID: 8848287 DOI: 10.1016/0168-0102(96)81278-8] [Citation(s) in RCA: 225] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Due to their chemical properties, steroid hormones cross the blood-brain barrier where they have profound effects on neuronal development and reorganization both in invertebrates and vertebrates, including humans mediated through their receptors. Steroids play a crucial role in the organizational actions of cellular differentiation representing sexual dimorphism and apoptosis, and in the activational effects of phenotypic changes in association with structural plasticity. Their sites of action are primarily the genes themselves but some are coupled with membrane-bound receptor/ion channels. The effects of steroid hormones on gene transcription are not direct, and other cellular components interfere with their receptors through cross-talk and convergence of the signaling pathways in neurons. These genomic and non-genomic actions account for the divergent effects of steroid hormones on brain function as well as on their structure. This review looks again at and updates the tremendous advances made in recent decades on the study of the role of steroid (gonadal and adrenal) hormones and their receptors on developmental processes and plastic changes in the nervous system.
Collapse
Affiliation(s)
- M Kawata
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Japan
| |
Collapse
|
30
|
Dagerlind A, Pelto-Huikko M, Diez M, Hökfelt T. Adrenal medullary ganglion neurons project into the splanchnic nerve. Neuroscience 1995; 69:1019-1023. [PMID: 8848091 DOI: 10.1016/0306-4522(95)00305-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Retrograde tract-tracing was used to study the projections of adrenal medullary ganglion neurons. The splanchnic nerve was cut close to the suprarenal ganglia and the retrograde tracer FluoroGold was applied at the site of nerve transection. Groups of adrenal medullary ganglion neurons exhibited FlurorGold- or Fast Blue-induced fluorescence restricted to the perikarya. Using immunohistochemistry most retrogradely labelled ganglion neurons showed immunoreactivity for neuropeptide Y. In addition, after splanchnicotomy most ganglion neurons expressed galanin and galanin message-associated peptide immunoreactivities which could not be observed in control adrenals. Taken together, the present results strongly indicate that adrenal medullary ganglion neurons project back into the splanchnic nerve perhaps representing feedback system modulating the preganglionic innervation of the adrenal gland.
Collapse
Affiliation(s)
- A Dagerlind
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
31
|
Kresse A, Pettersson R, Hökfelt T. Distribution of acidic fibroblast growth factor mRNA-expressing neurons in the adult mouse central nervous system. J Comp Neurol 1995; 359:323-39. [PMID: 7499532 DOI: 10.1002/cne.903590210] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The distribution of acidic fibroblast growth factor (aFGF) mRNA-expressing neurons was studied throughout the adult mouse central nervous system (CNS) with in situ hybridization histochemistry using a radiolabelled synthetic oligodeoxynucleotide probe complementary to the mRNA of human aFGF. We report here a widespread distribution of aFGF mRNA in several defined functional systems of the adult mouse brain, whereby the highest levels of aFGF mRNA were found in large somatomotor neurons in the nuclei of the oculomotor, trochlear, abducens, and hypoglossal nerves; in the motoneurons of the ventral spinal cord and the special visceromotor neurons in the motor nucleus of the trigeminal nerve; and in the facial and ambiguus nuclei. Labelled perikarya were also detected in all central structures of the auditory pathway including the level of the inferior colliculus, i.e., the lateral and medial superior nuclei; the trapezoid, cochlear, and lateral lemniscal nuclei; and parts of the anterior colliculus. Furthermore, many aFGF-positive cell bodies were found in the vestibular system and other structures projecting to the cerebellum, in the deep cerebellar nuclei, in somatosensory structures of the medulla (i.e., in the gracile, cuneate, and external cuneate nuclei), as well as in the spinal nucleus of the trigeminal nerve. The findings that aFGF mRNA is expressed in all components of several well-defined systems (i.e., in sensory structures) as well as in central neurons that process sensory information and, finally, in some efferent projections point towards a concept of aFGF expression primarily within certain neuronal circuitries.
Collapse
Affiliation(s)
- A Kresse
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
32
|
Nirenberg MJ, Tate SS, Mosckovitz R, Udenfriend S, Pickel VM. Immunocytochemical localization of the renal neutral and basic amino acid transporter in rat adrenal gland, brainstem, and spinal cord. J Comp Neurol 1995; 356:505-22. [PMID: 7560263 DOI: 10.1002/cne.903560403] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A neutral and basic amino acid transporter (NBAT) cloned from rat kidney was recently localized to enteroendocrine cells and enteric neurons. We used an antibody directed against a synthetic peptide representing a putative extracellular domain of NBAT to determine whether this transporter was also present in other endocrine and neural tissues, including rat adrenal gland, brainstem, and spinal cord. Abundant, highly granular labeling for NBAT was observed in the cytoplasm of chromaffin and ganglion cells in the adrenal medulla. A small population of intensely labeled varicose processes was also seen in both the cortex and the medulla of the adrenal gland. More numerous, intensely labeled varicose processes were detected in brainstem and spinal cord nuclei, including the locus coeruleus, rostral ventrolateral medulla, nuclei of the solitary tract, dorsal motor nucleus of the vagus, and intermediolateral cell column of the thoracic spinal cord. Significant perikaryal labeling for NBAT was only detected in brainstem and spinal cord following intraventricular colchicine treatment, which increased the number, distribution, and intensity of NBAT-immunolabeled cells. These NBAT-immunoreactive perikarya were most numerous in the locus coeruleus, rostral ventrolateral medulla, nuclei of the solitary tract, and raphe nuclei. Ultrastructural examination of the nuclei of the solitary tract of normal rats showed that NBAT was localized predominantly to axon terminals. Within these labeled terminals, NBAT was associated with large dense core vesicles and discrete segments of plasma membrane. The observed localization of NBAT suggests that this renal specific amino acid transporter subserves a role as a vesicular or plasmalemmal transporter in monoamine-containing cells, including chromaffin cells and autonomic neurons.
Collapse
Affiliation(s)
- M J Nirenberg
- Department of Neurology, Cornell University Medical College, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
33
|
Wolfensberger M, Forssmann WG, Reinecke M. Localization and coexistence of atrial natriuretic peptide (ANP) and neuropeptide Y (NPY) in vertebrate adrenal chromaffin cells immunoreactive to TH, DBH and PNMT. Cell Tissue Res 1995; 280:267-76. [PMID: 7781024 DOI: 10.1007/bf00307798] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Antisera specific for mammalian atrial natriuretic peptide (ANP) and neuropeptide Y (NPY) were applied to examine, in immunofluorescence, the occurrence of cells immunoreactive to ANP and NPY in the adrenal organs of mammals, birds, reptiles, amphibians, and bony fish. Catecholamine-containing cells were identified using antisera against tyrosine-hydroxylase, dopamine-beta-hydroxylase, and phenylethanolamine-N-methyl-transferase. In all vertebrates studied, immunoreactivities to ANP and NPY occurred in adrenal chromaffin cells but were absent from the cortex or its homolog, the interrenal. The majority of immunoreactivities to ANP and NPY was confined to the adrenaline cells. In mammals, the number of ANP-immuno-reactive cells (60%-80% of the total cell population) exceeded that of the NPY-immunoreactive cells (35%-45%). In birds, reptiles, and Amphibia, the numbers of ANP-immunoreactive (35%-40%) and NPY-immunoreactive (30%-35%) cells were in a similar range. The bony fish showed a density of both ANP-immunoreactive (80%-90%) and NPY-immunoreactive (35%-40%) cells. In all species studied, immunoreactivities to ANP and NPY partially coexisted. Generally, 30%-55% of the ANP-immunoreactive cells also contained NPY-immunoreactivity. In rat, coexistence amounted to almost 100% and in quail to 95%. Except for the rat, three subpopulations of chromaffin cells seemed to occur: ANP-immunoreactive non-NPY-immunoreactive, ANP-immunoreactive+NPY-immunoreactive, and NPY-immunoreactive non-ANP-immunoreactive cells. Thus, adrenal ANP and NPY share a conservative history and coexist as early as at the level of bony fish. The endocrine actions of ANP and NPY derived from medullary cells on cortical cells as found in mammals might be based on an ancestoral paracrine system. In submammalians, ANP and NPY may not only act as endocrine hormones, but also influence steroid-producing interrenal cells in a paracrine manner, and act as modulators on chromaffin cells.
Collapse
|
34
|
Tóth IE, Hinson JP. Neuropeptides in the adrenal gland: distribution, localization of receptors, and effects on steroid hormone synthesis. Endocr Res 1995; 21:39-51. [PMID: 7588403 DOI: 10.3109/07435809509030419] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this review we defined and classified the neuropeptides (NPs) related to the adrenal gland, according to Palkovits (Frontiers Neuroendocrinol 10:1 1988). The concentration (RIA) and distribution (immunohistochemistry) of NPs, as well as the localization of the receptors (radioligand studies) were summarized. Direct effects of NPs on aldosterone and corticosterone synthesis obtained by in vivo, in situ perfusion, and in vitro experimental approaches were reviewed. Data (from different rat strains and genders) for 35 NPs are presented.
Collapse
Affiliation(s)
- I E Tóth
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest
| | | |
Collapse
|
35
|
Ortoft E, Bjelfman C, Hedborg F, Grimelius L, Påhlman S. The expression profile of alternatively spliced neuronal c-src RNA distinguishes between human tumours of the sympatho-adrenal lineage. Int J Cancer 1995; 60:38-44. [PMID: 7529211 DOI: 10.1002/ijc.2910600105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Human neuronal and neuroendocrine tumour specimens and cell lines were analysed regarding proteins and transcripts coded by the proto-oncogene c-src. At the protein level, most of the neuroblastomas and phaeochromocytomas expressed the neuronal c-src form, pp60c-srcN. None of the other neuroendocrine tumours, i.e. paragangliomas, neuroendocrine pancreatic tumours, or carcinoid tumours and small-cell lung carcinomas of different types, appeared to express the neuronal form. In the brain, c-src is transcribed into 3 differently spliced mRNA variants, c-src, c-srcNI, and c-srcNI+NII. The expression of these transcripts was analysed by PCR amplification of fragments covering the mini-exons I and NII of the corresponding cDNAs. The PCR products were analysed by Southern hybridization and characterized by determination of their sequences. Neuroblastomas, paragangliomas, retinoblastomas and the phaeochromocytomas expressed neuronal c-src splice variants. However, whereas neuroblastomas and retinoblastomas contained all 3 transcripts, the phaeochromocytomas and paragangliomas expressed, with 2 exceptions, only the c-src and the c-srcNI+NII mRNA species. To assess whether neuroblastomas display adrenal chromaffin characteristics, they were analysed regarding expression of the chromaffin marker enzyme, phenylethanolamine-N-methyl transferase. Whereas phaeochromocytomas were positive, all neuroblastomas were immuno-chemically negative for this enzyme. These results and the c-src expression profile suggest that neuroblastomas, including those with an adrenal location, do not originate from the adrenal chromaffin differentiation lineage. The data further suggest neuronal c-srcNI mRNA as a marker for sympathetic neuronal cells of the sympatho-adrenal lineage.
Collapse
Affiliation(s)
- E Ortoft
- Department of Pathology, University of Uppsala, Sweden
| | | | | | | | | |
Collapse
|
36
|
Holgert H, Dagerlind A, Hökfelt T, Lagercrantz H. Neuronal markers, peptides and enzymes in nerves and chromaffin cells in the rat adrenal medulla during postnatal development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1994; 83:35-52. [PMID: 7535202 DOI: 10.1016/0165-3806(94)90177-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Neuronal markers, peptides and enzymes were analyzed in the rat adrenal medulla during the postnatal period, i.e., when the 'functional' splanchnic innervation is assumed to 'mature'. Nerve fibers were present on day 2 as indicated by neurofilament 10 (NF10)- and growth associated protein 43 (GAP43)-like immunoreactivities (LIs). Acetylcholinesterase (AChE)- and enkephalin (ENK)-immunoreactive (IR) fibers, presumably of preganglionic nature, increased in number and intensity during the postnatal period. In contrast, calcitonin gene-related peptide (CGRP)- and galanin (GAL)-IR fibers were almost fully developed on day 2. Thus, the presumably sensory innervation of the adrenal gland seems to precede the development of the autonomic nerves. The AChE- and ENK-IR fibers may exert a suppressive effect on ENK-, CGRP- and neurotensin (NT)-LIs in chromaffin cells, since the levels of these peptides were high in the early postnatal period and then decreased. On the other hand, GAL-LI in chromaffin cells was low also in young rats, while GAP43-IR cells were observed at all stages. Neuropeptide tyrosine (NPY) was expressed in many chromaffin cells at all stages and its turnover rate seemed to decrease towards the adult stage. The expression of the catecholamine synthezising enzymes changed only marginally during development. These results indicate that the preganglionic fibers, but not the sensory axons, in the splanchnic nerve are involved in the developmental control of expression of some, but not all, peptides in the chromaffin cells and that these changes thus may reflect the maturation of a 'functional' transmission.
Collapse
Affiliation(s)
- H Holgert
- Department of Woman and Child Health (Neonatology and Neuropediatrics), Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
37
|
Weihe E, Schäfer MK, Erickson JD, Eiden LE. Localization of vesicular monoamine transporter isoforms (VMAT1 and VMAT2) to endocrine cells and neurons in rat. J Mol Neurosci 1994; 5:149-64. [PMID: 7654518 DOI: 10.1007/bf02736730] [Citation(s) in RCA: 167] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Polyclonal antipeptide antibodies have been raised against each of the two isoforms of the rat vesicular monoamine transporter, VMAT1 and VMAT2. Antibody specificity was determined by isoform-specific staining of monkey fibroblasts programmed to express either VMAT1 or VMAT2. The expression of VMAT1 and VMAT2 in the diffuse neuroendocrine system of the rat has been examined using these polyclonal antibodies specific for either VMAT1 or VMAT2. VMAT1 is expressed exclusively in endocrine/paracrine cells associated with the intestine, stomach, and sympathetic nervous system. VMAT2 is expressed in neurons of the sympathetic nervous system, and aminergic neurons in the enteric and central nervous systems. VMAT2 is expressed in at least two endocrine cell populations in addition to its expression in neurons. A subpopulation of chromogranin A (CGA)-expressing chromaffin cells of the adrenal medulla also express VMAT2, and the oxyntic mucosa of the stomach contains a prominent population of CGA- and VMAT2-positive endocrine cells. The expression of VMAT2 in neurons, and the mutually exclusive expression of VMAT1 and VMAT2 in endocrine/paracrine cell populations of stomach, intestine, and sympathetic nervous system may provide a marker for, and insight into, the ontogeny and monoamine-secreting capabilities of multiple neuroendocrine sublineages in the diffuse neuroendocrine system.
Collapse
Affiliation(s)
- E Weihe
- Department of Anatomy and Cell Biology, Phillips University, Marburg Germany
| | | | | | | |
Collapse
|
38
|
Laslop A, Mahata SK, Wolkersdorfer M, Mahata M, Srivastava M, Seidah NG, Fischer-Colbrie R, Winkler H. Large dense-core vesicles in rat adrenal after reserpine: levels of mRNAs of soluble and membrane-bound constituents in chromaffin and ganglion cells indicate a biosynthesis of vesicles with higher secretory quanta. J Neurochem 1994; 62:2448-56. [PMID: 8189248 DOI: 10.1046/j.1471-4159.1994.62062448.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rats were injected with a large dose of reserpine known to stimulate the adrenal medulla. Various times after drug treatment the mRNA levels of several constituents of large dense-core vesicles were determined by northern blot analysis and in situ hybridization. The latter method allowed detection of changes in mRNA levels not only in chromaffin cells, but also in the ganglion cells found in adrenal medulla. Levels of the mRNAs of secretory components of large dense-core vesicles (chromogranins A and B, secretogranin II, VGF, and neuropeptide Y) increased in chromaffin cells by 215-857% after 1-3 days of drug treatment. For partly membrane-bound components (dopamine beta-hydroxylase, prohormone convertase 2, carboxypeptidase H, and peptidylglycine alpha-amidating monooxygenase) the changes ranged from 182 to 315%, whereas for glycoprotein III and for intrinsic membrane proteins (cytochrome b561 and vesicle monoamine transporter 2) no change occurred. In ganglion cells the mRNAs that could be detected for VGF, neuropeptide Y, secretogranin II, carboxypeptidase H, and vesicle monoamine transporter 1 showed an analogous pattern of change, with significant increases for the secretory proteins and no change for the membrane components. From these and previous results we suggest the following concept: Long-lasting stimulation of chromaffin cells or neurons does not induce the biosynthesis of a larger number of vesicles but rather leads to the formation of vesicles containing higher secretory quanta of chromogranins and neuropeptides.
Collapse
Affiliation(s)
- A Laslop
- Department of Pharmacology, University of Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Oomori Y, Okuno S, Fujisawa H, Iuchi H, Ishikawa K, Satoh Y, Ono K. Ganglion cells immunoreactive for catecholamine-synthesizing enzymes, neuropeptide Y and vasoactive intestinal polypeptide in the rat adrenal gland. Cell Tissue Res 1994; 275:201-13. [PMID: 7906614 DOI: 10.1007/bf00319418] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Immunohistochemistry has been used to demonstrate tyrosine hydroxylase (TH), dopamine-beta-hydroxylase (DBH), phenylethanolamine N-methyltransferase (PNMT), neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP) immunoreactivities, and acetylcholinesterase (AChE) activity was demonstrated in rat adrenal glands. The TH, DBH, NPY and VIP immunoreactivities and AChE activity were observed in both the large ganglion cells and the small chromaffin cells whereas PNMT immunoreactivity was found only in chromaffin cells, and not in ganglion cells. Most intra-adrenal ganglion cells showed NPY immunoreactivity and a few were VIP immunoreactive. Numerous NPY-immunoreactive ganglion cells were also immunoreactive for TH and DBH; these cells were localized as single cells or groups of several cells in the adrenal cortex and medulla. Use of serial sections, or double and triple staining techniques, showed that all TH- and DBH-immunoreactive ganglion cells also showed NPY immunoreactivity, whereas some NPY-immunoreactive ganglion cells were TH and DBH immunonegative. NPY-immunoreactive ganglion cells showed no VIP immunoreactivity. AChE activity was seen in VIP-immunopositive and VIP-immunonegative ganglion cells. These results suggest that ganglion cells containing noradrenaline and NPY, or NPY only, or VIP and acetylcholine occur in the rat adrenal gland; they may project within the adrenal gland or to other target organs. TH, DBH, NPY, and VIP were colocalized in numerous immunoreactive nerve fibres, which were distributed in the superficial adrenal cortex, while TH-, DBH- and NPY-immunoreactive ganglion cells and nerve fibres were different from VIP-immunoreactive ganglion cells and nerve fibres in the medulla. This suggests that the immunoreactive nerve fibres in the superficial cortex may be mainly extrinsic in origin and may be different from those in the medulla.
Collapse
Affiliation(s)
- Y Oomori
- Department of Anatomy, Asahikawa Medical College, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Mahata SK, Mahata M, Fischer-Colbrie R, Winkler H. Vesicle monoamine transporters 1 and 2: differential distribution and regulation of their mRNAs in chromaffin and ganglion cells of rat adrenal medulla. Neurosci Lett 1993; 156:70-2. [PMID: 8414192 DOI: 10.1016/0304-3940(93)90442-n] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The expression and synthesis regulation of the vesicle monoamine transporter was investigated in rat adrenal medulla. Previous studies established two genes for monoamine transporters by molecular techniques. In rat adrenal medulla, a differential expression of the corresponding mRNAs was found by in situ hybridization. The mRNA of monoamine transporter 2 was localized in chromaffin cells whereas monoamine transporter 1 mRNA occurred only in ganglion cells of the adrenal medulla. Insulin-induced hypoglycemia, a model for short neurogenic stimulation of the adrenal medulla, did not alter steady-state mRNA levels of both monoamine transporters.
Collapse
Affiliation(s)
- S K Mahata
- Department of Pharmacology, University of Innsbruck, Austria
| | | | | | | |
Collapse
|
41
|
García-Arrarás JE, Lugo-Chinchilla AM, Chévere-Colón I. The expression of neuropeptide Y immunoreactivity in the avian sympathoadrenal system conforms with two models of coexpression development for neurons and chromaffin cells. Development 1992; 115:617-27. [PMID: 1358595 DOI: 10.1242/dev.115.2.617] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have studied the expression and development of neuropeptide Y-like immunoreactivity (NPY-LI) in the sympathoadrenal system of the chicken using single and double immunocytochemical techniques and radioimmunoassay. NPY-LI is expressed by neurons of the paravertebral sympathetic ganglia and by chromaffin cells of the adrenal gland in embryonic and adult chickens. The peptide is coexpressed with catecholaminergic properties in neurons. In chromaffin cells, it is also expressed with immunoreactivity to somatostatin and serotonin. We have used the expression of NPY-LI to analyze how cells that coexpress two or more neuroactive substances arrive at their final phenotype. Our results suggest that the ontogeny of coexpression in neurons of the avian paravertebral sympathetic ganglia occurs in a sequential pattern, where the expression of the peptide follows the initial expression of the “classical neurotransmitter”. In contrast, in chromaffin cells, expression of the peptides occurs concomitantly with expression of catecholaminergic properties or soon after. Initially, coexpression of several neuroactive substances occurs, but this is followed by further specialization where the expression of one peptide prevails over the other. We believe that the two models of coexpression shown by our results can be used to describe the ontogeny of coexpression in other cells of the nervous system.
Collapse
|
42
|
Unsicker K, Stögbauer F. Screening of adrenal medullary neuropeptides for putative neurotrophic effects. Int J Dev Neurosci 1992; 10:171-9. [PMID: 1632276 DOI: 10.1016/0736-5748(92)90044-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Chromaffin granules, the secretory organelles of the neuron-like adrenal medullary chromaffin cells, have previously been shown to store and liberate neurotrophic activities that support in vitro survival of several neuron populations including those innervating the adrenal medulla. Molecules resembling fibroblast growth factor and ciliary neurotrophic factor have been identified among these activities. Since chromaffin granules store a variety of neuropeptides and many neuropeptides can have pleiotropic effects on neuronal growth and maintenance we have tested 24 different neuropeptides for their capacities to promote survival of embryonic chick ciliary, dorsal root and sympathetic ganglionic neurons. Peptides tested included several derivatives of proenkephalin (Leu- and met-enkephalin, fragments BAM 22, B, F and E), somatostatin, substance P, neuropeptide Y, neurotensin, VIP, bombesin, secretin, pancreastatin, dynorphin B, dynorphin 1-13, beta-endorphin, alpha-, beta-, and gamma-MSH. Control cultures received saturating concentrations of ciliary neurotrophic or nerve growth factor (CNTF; NGF), or no trophic supplements. At 1 x 10(-5) M leu- and met-enkephalin as well as somatostatin supported sympathetic neurons to the same extent as NGF. At the same concentrations, leu-enkephalin, the proenkephalin fragments BAM 22 and E, and somatostatin maintained about half of the dorsal root ganglionic neurons supported by NGF, but were not effective on ciliary neurons. VIP promoted the survival of approximately 50% of the ciliary and embryonic day 10 dorsal root ganglionic neurons as compared to saturating amounts of CNTF, but required the presence of non-neuronal cells in the cultures to be effective. Neurotensin (1 x 10(-5) M had a small effect on ciliary neurons.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K Unsicker
- Department of Anatomy and Cell Biology, University of Marburg, Germany
| | | |
Collapse
|
43
|
Hirsch E, Lejeune O, Colliot G, Corkidi G, Tajani M. Computer Methods in Nuclei Cartography. METHODS IN NEUROSCIENCES 1992. [DOI: 10.1016/b978-0-12-185269-6.50010-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
In Situ Hybridization and Immunohistochemical Methods in Study of Regulatory Molecules. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/b978-0-12-185267-2.50021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
45
|
Higuchi H, Yokokawa K, Iwasa A, Yoshida H, Miki N. Age-dependent increase in neuropeptide Y gene expression in rat adrenal gland and specific brain areas. J Neurochem 1991; 57:1840-7. [PMID: 1940903 DOI: 10.1111/j.1471-4159.1991.tb06393.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Age-dependent changes in the expression of neuropeptide Y (NPY) peptides and prepro-NPY mRNA (NPY mRNA) were studied in rat adrenal gland and brain areas by means of radioimmunoassay, immunohistochemistry, and northern blot analysis. In the adrenal gland, NPY immunoreactivity (NPY-I) increased by 80-fold, mainly in the chromaffin cells, during aging (from 7 to 33 weeks old). The increase in NPY-I was accompanied by a concomitant increase in the content of NPY mRNA (800 bases in size, by 16-fold) and putative NPY pre-mRNA, a result suggesting that this increase results from that in NPY gene expression, probably at the level of transcription. In contrast, in some brain areas, such as striatum and medulla oblongata plus pons, NPY-I decreased in an age-dependent manner, whereas NPY mRNA abundances in these areas increased by twofold with age (from 7 to 33 weeks old). The opposite changes between NPY and NPY mRNA content in specific brain areas suggested the accelerated turnover/degradation of NPY peptide in the brain areas. Furthermore, beta-actin mRNA abundance did not change in rat adrenal gland and brain areas during aging. Thus, the characteristic age-related increase in NPY gene expression in rat adrenal gland and some brain areas seems to be important for physiological regulation of some neuronal functions, such as blood pressure, in aged animals.
Collapse
Affiliation(s)
- H Higuchi
- Department of Pharmacology I, Osaka University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
46
|
Cunningham LA, Hansen JT, Short MP, Bohn MC. The use of genetically altered astrocytes to provide nerve growth factor to adrenal chromaffin cells grafted into the striatum. Brain Res 1991; 561:192-202. [PMID: 1686984 DOI: 10.1016/0006-8993(91)91595-r] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transplantation of adrenal chromaffin cells into the striatum of Parkinson's disease patients is unlikely to become a reliable therapy unless techniques are devised to improve cell survival. To address this issue, we investigated the use of genetically altered astrocytes that constitutively secrete beta-nerve growth factor (NGF) to provide trophic support for adrenal chromaffin cells grafted into the dopamine-denervated striatum of the rat. Primary rat astrocytes were altered genetically in vitro by infection with a retroviral vector harboring a mouse beta-NGF transgene under constitutive long terminal repeat transcriptional control. Confluent cultures of these genetically altered astrocytes secrete NGF into their culture medium at a rate of approximately 9 pg/10(5) cells/h. This rate of NGF secretion is at least 10-fold higher than that of confluent sister cultures of uninfected astrocytes. The effects of the NGF-secreting astrocytes on the survival and neuronal transformation of dissociated adrenal chromaffin cells were assessed in vitro and following transplantation into the dopamine-denervated striatum of the adult rat. In vitro experiments demonstrated that neuritic outgrowth is stimulated when postnatal day 12 chromaffin cells are grown on a monolayer of the genetically altered astrocytes. When co-grafted with genetically altered astrocytes, young postnatal chromaffin cells displayed extensive neuritic outgrowth within the host brain 2 weeks postimplantation, whereas chromaffin cells grafted alone or with normal astrocytes retain an endocrine-like morphology. Survival of the chromaffin cells is also enhanced 3-6-fold when co-grafted with the genetically altered astrocytes. In addition, the neuronally transformed chromaffin cells appear to lose adrenergic properties as assessed by diminished immunoreactivity to the adrenergic marker, phenylethanolamine-N-methyltransferase. Although their survival is also enhanced approximately 4-fold relative to controls, adult chromaffin cells do not convert to a neuronal morphology when co-grafted with the genetically altered astrocytes. These studies demonstrate that rat astrocytes carrying a mouse NGF transgene provide trophic support for intrastriatal chromaffin cell grafts.
Collapse
Affiliation(s)
- L A Cunningham
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, NY 14642
| | | | | | | |
Collapse
|
47
|
Higuchi H, Iwasa A, Miki N. Rapid decrease in neuropeptide Y gene expression in rat adrenal gland induced by the alpha 2-adrenoceptor agonist, clonidine. Br J Pharmacol 1991; 103:1136-40. [PMID: 1878751 PMCID: PMC1908071 DOI: 10.1111/j.1476-5381.1991.tb12313.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
1 The mechanism of regulation of the neuropeptide Y (NPY) gene by pharmacological treatment with the alpha 2-adrenenoceptor agonist, clonidine, was investigated by quantitative Northern blot analysis of the effects of this drug on the NPY mRNA levels in rat adrenal gland and medulla oblongata/pons. 2 In the adrenal gland, clonidine-treatment (50 microgram kg-1, s.c., once daily) resulted in decrease in the amount of NPY mRNA to 44 +/- 10% of the control level in 24 h and then its increase to 162 +/- 16% of the control level after 5 days. Concomitant changes in putative NPY pre-mRNA species (7.0 and 3.3 kb) were observed, probably due to changes at the level of NPY gene transcription. 3 The short-term (24 h) effect of clonidine was blocked by yohimbine (5 mg kg-1, i.p., once daily). Yohimbine alone tended to increase the NPY mRNA level after 24h. 4 The recovery/increase in the NPY mRNA level in the adrenal gland after 5 days treatment with clonidine was similar to its increase after treatment with reserpine (0.5 mg kg-1, i.p., once daily). 5 NPY gene expression in the medulla oblongata/pons was not changed by short- or long-term treatment with clonidine. 6 These results suggest that clonidine suppresses NPY gene expression in the adrenal gland, probably at the level of transcription, by activation of the alpha 2-adrenoceptor.
Collapse
Affiliation(s)
- H Higuchi
- Department of Pharmacology I, School of Medicine, Osaka University, Japan
| | | | | |
Collapse
|
48
|
Schalling M, Dagerlind A, Stieg P, Lindquist C, Hökfelt T. Colocalization of neurotransmitters analyzed by in situ hybridization. Eur Neuropsychopharmacol 1991; 1:173-6. [PMID: 1687976 DOI: 10.1016/0924-977x(91)90720-f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In situ hybridization and Northern blot analysis has been used to analyse in some detail the localization and regulation of the messenger molecules adrenaline, noradrenaline and neuropeptide tyrosine (NPY) within cells of the sympathetic nervous system and the adrenal medulla. In the rat adrenal gland, a novel NPY containing population of ganglion cells was found. Synthetic oligonucleotide probes complementary to mRNA coding for the catecholamine synthesizing enzymes phenylethanolamine N-methyltransferase (PNMT), tyrosine hydroxylase (TH) and NPY were used to analyse the regulation of these genes following administration of the catecholamine depleting drug reserpine. Twenty-four hours after a single dose of reserpine, a differential regulation of PNMT, TH and NPY was found. Thus, a dramatic decrease in PNMT mRNA was observed in the adrenal medulla. In contrast, mRNA for both TH and NPY exhibited an increase. Different regulatory mechanisms may thus operate for these three compounds coexisting in chromaffin cells of the adrenal medulla. The regulation of enzymes and peptides was also studied in human sympathetic ganglia. After brief electrical preganglionic stimulation of thoracic ganglia in humans, in situ hybridization was performed with synthetic oligonucleotide probes complementary to TH, dopamine beta-hydroxylase (DBH) and NPY mRNA respectively. A several fold increase in all three mRNAs was found in the principal ganglion cells. The results point to a very rapid regulation of genes involved in signal transmission in the sympathetic nervous system of humans. The results also suggest a novel way to define neuronal projections by visualizing increases in mRNA levels following electrical stimulation.
Collapse
Affiliation(s)
- M Schalling
- Department of Histology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
49
|
Ericsson A, Hemsén A, Lundberg JM, Persson H. Detection of neuropeptide Y-like immunoreactivity and messenger RNA in rat platelets: the effects of vinblastine, reserpine, and dexamethasone on NPY expression in blood cells. Exp Cell Res 1991; 192:604-11. [PMID: 1671012 DOI: 10.1016/0014-4827(91)90082-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rat plasma contains high basal levels (220 pmol/liter) of neuropeptide Y (NPY)-like immunoreactivity (LI) compared to pig (30 pmol/liter) and man (25 pmol/liter). The platelet-enriched fraction (PEF), obtained from rat blood contained 10,061 pmol/g NPY-LI. However, in human and pig blood, the PEF contained very low levels of NPY-LI. Gradient centrifugation of rat blood showed the highest concentration of NPY-LI (10.8 +/- 0.4 pmol/g) in the platelet fraction. The mononuclear cell fraction contained 1.64 +/- 0.16 pmol/g, whereas only 0.56 +/- 0.06 pmol/g of NPY-LI was found in the red blood cell/polymorphonuclear cell fraction. Characterization of NPY-LI in rat plasma and platelets by high-pressure liquid chromatography showed one predominating peak which coeluted with synthetic NPY (1-36) as well as three minor peaks, one of which coeluted with oxidized NPY. Analysis of NPY messenger RNA (mRNA) in bone marrow of the rat revealed a 0.79-kb-long NPY mRNA. This size is intermediate to the 0.82-kb NPY mRNA in brain and the 0.76-kb NPY mRNA in spleen. The highest level of NPY mRNA in rat blood was found in the mononuclear cell fraction but NPY mRNA was also detected in the platelet fraction. No NPY mRNA was detected in bone marrow or blood from pig and rabbit or from human blood or bone marrow. Forty-eight hours after treatment of rats with vinblastine the content of NPY mRNA and NPY-LI in rat blood was decreased, while the level of NPY-LI in bone marrow was markedly enhanced. Reserpine treatment caused an increase in NPY mRNA content in bone marrow and spleen. After administration of dexamethasone the level of NPY mRNA increased in both spleen and peripheral blood cells with increased NPY-LI content in the spleen. It is concluded that in addition to megakaryocytes in spleen and bone marrow, platelets and possibly also lymphocytes/monocytes in peripheral blood of the rat contain NPY mRNA and peptide. The expression of NPY mRNA in bone marrow, spleen, and blood is influenced by vinblastine, reserpine, and dexamethasone.
Collapse
Affiliation(s)
- A Ericsson
- Department of Medical Chemistry, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
50
|
Schalling M, Franco-Cereceda A, Hemsén A, Dagerlind A, Seroogy K, Persson H, Hökfelt T, Lundberg JM. Neuropeptide Y and catecholamine synthesizing enzymes and their mRNAs in rat sympathetic neurons and adrenal glands: studies on expression, synthesis and axonal transport after pharmacological and experimental manipulations using hybridization techniques and radioimmunoassay. Neuroscience 1991; 41:753-66. [PMID: 1714554 DOI: 10.1016/0306-4522(91)90365-u] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effects of reserpine treatment (10 mg/kg, i.p.) on the content of neuropeptide Y-like immunoreactivity and catecholamines were compared with the levels of mRNA coding for neuropeptide Y, tyrosine hydroxylase and phenylethanolamine N-methyltransferase in rat sympathetic neurons and adrenal gland. A reversible depletion of neuropeptide Y-like immunoreactivity was observed in the right atrium of the heart, kidney and masseter muscle, while the immunoreactive neuropeptide Y content in the stellate and lumbar sympathetic ganglia and its axonal transport in the sciatic nerve increased following reserpine. The increase in the stellate ganglion was maximal at 48 h and absent 9 days after reserpine treatment. The expression of neuropeptide Y mRNA and tyrosine hydroxylase mRNA in both the stellate and the superior cervical ganglion increased earlier than the neuropeptide Y content, with a clear cut two-fold elevation at 24 h after reserpine. The increase in both mRNAs in the superior cervical ganglion and the depletion of neuropeptide Y, but not of noradrenaline, in terminal areas was prevented after pretreatment both with a nicotinic receptor antagonist (chlorisondamine) and with surgical preganglionic denervation. A marked (75-90%) depletion of neuropeptide Y-like immunoreactivity and adrenaline in the adrenal gland, concomitant with 3-4-fold increases in neuropeptide Y mRNA and tyrosine hydroxylase mRNA expression, was present at 24 h after reserpine treatment. Also in the adrenal gland, there was a reversal of the reserpine-induced increase in neuropeptide Y mRNA and tyrosine hydroxylase mRNA and depletion of neuropeptide Y and adrenaline following splanchnic denervation. Pharmacological, ganglionic blockade prevented the depletion of neuropeptide Y and the increased expression of neuropeptide Y mRNA, but not fully, the tyrosine hydroxylase mRNA elevation. In addition, a marked decrease in phenylethanolamine N-methyltransferase mRNA levels was noted after reserpine. This decrease was reversed by denervation and by ganglionic blockade. Denervation alone led to a small but significant decrease in all mRNAs examined both in the superior cervical ganglion and the adrenal medulla. The present data suggest that the depletion of neuropeptide Y-like immunoreactivity in sympathetic nerves and in the adrenal gland after reserpine is associated with a compensatory increase in neuropeptide Y synthesis and axonal transport, most likely due to increased nicotinic receptor stimulation. Whereas the reserpine depletion of neuropeptide Y in both sympathetic nerves and adrenal gland is related to neuronal activation, adrenal but not nerve terminal depletion of catecholamines can be prevented by the ganglionic blocker chlorisondamine.4+e difference in effect of pharmacological ganglionic
Collapse
Affiliation(s)
- M Schalling
- Department of Histology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|