1
|
Mariani Y, Covelo A, Rodrigues RS, Julio-Kalajzić F, Pagano Zottola AC, Lavanco G, Fabrizio M, Gisquet D, Drago F, Cannich A, Baufreton J, Marsicano G, Bellocchio L. Striatopallidal cannabinoid type-1 receptors mediate amphetamine-induced sensitization. Curr Biol 2023; 33:5011-5022.e6. [PMID: 37879332 DOI: 10.1016/j.cub.2023.09.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/24/2023] [Accepted: 09/29/2023] [Indexed: 10/27/2023]
Abstract
Repeated exposure to psychostimulants, such as amphetamine, causes a long-lasting enhancement in the behavioral responses to the drug, called behavioral sensitization.1 This phenomenon involves several neuronal systems and brain areas, among which the dorsal striatum plays a key role.2 The endocannabinoid system (ECS) has been proposed to participate in this effect, but the neuronal basis of this interaction has not been investigated.3 In the CNS, the ECS exerts its functions mainly acting through the cannabinoid type-1 (CB1) receptor, which is highly expressed at terminals of striatal medium spiny neurons (MSNs) belonging to both the direct and indirect pathways.4 In this study, we show that, although striatal CB1 receptors are not involved in the acute response to amphetamine, the behavioral sensitization and related synaptic changes require the activation of CB1 receptors specifically located at striatopallidal MSNs (indirect pathway). These results highlight a new mechanism of psychostimulant sensitization, a phenomenon that plays a key role in the health-threatening effects of these drugs.
Collapse
Affiliation(s)
- Yamuna Mariani
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France
| | - Ana Covelo
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France
| | - Rui S Rodrigues
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France
| | | | - Antonio C Pagano Zottola
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Institut de Biochimie et Génétique Cellulaires, UMR 5095, 33077 Bordeaux, France
| | - Gianluca Lavanco
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; University of Palermo, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro," 90127 Palermo, Italy
| | - Michela Fabrizio
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, 5 Université PSL, 75231 Paris, France
| | - Doriane Gisquet
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95124, Italy
| | - Astrid Cannich
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France
| | | | - Giovanni Marsicano
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France.
| | - Luigi Bellocchio
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France.
| |
Collapse
|
2
|
Fois GR, Bosque-Cordero KY, Vazquez-Torres R, Miliano C, Nogues X, Jimenez-Rivera CA, Caille S, Georges F. Locus coeruleus activation during environmental novelty gates cocaine-induced long-term hyperactivity of dopamine neurons. iScience 2022; 25:104154. [PMID: 35434548 PMCID: PMC9010629 DOI: 10.1016/j.isci.2022.104154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/04/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
A key feature of the brain is the ability to handle novelty. Anything that is new will stimulate curiosity and trigger exploration. Novelty preference has been proposed to predict increased sensitivity to cocaine. Different brain circuits are activated by novelty, but three specific brain regions are critical for exploring a novel environment: the noradrenergic neurons originating from the locus coeruleus (LC), the dopaminergic neurons from the ventral tegmental area (VTA), and the hippocampus. However, how exploring a novel environment can interfere with the reward system and control cocaine impact on VTA dopamine neuron plasticity is unclear. Here, we first investigated the effects of exposure to a novel environment on the tonic electrophysiological properties of VTA dopamine neurons. Then, we explored how exposure to a novel environment controls cocaine-evoked plasticity in dopamine neurons. Our findings indicate that LC controls VTA dopamine neurons under physiological conditions but also after cocaine.
Collapse
Affiliation(s)
- Giulia R. Fois
- CNRS, IMN, UMR5293, Université de Bordeaux, 33000 Bordeaux, France
| | | | - Rafael Vazquez-Torres
- Physiology Department, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Cristina Miliano
- Department of Biomedical Sciences, Division of Neuropsychopharmacology, University of Cagliari, Cagliari, Italy
| | | | | | - Stéphanie Caille
- CNRS, EPHE, INCIA, UMR5287, Université de Bordeaux, 33000 Bordeaux, France
| | - François Georges
- CNRS, IMN, UMR5293, Université de Bordeaux, 33000 Bordeaux, France
| |
Collapse
|
3
|
Hurley SW, Beltz TG, Guo F, Xue B, Johnson AK. Amphetamine-induced sensitization of hypertension and lamina terminalis neuroinflammation. Am J Physiol Regul Integr Comp Physiol 2020; 318:R649-R656. [PMID: 32048863 DOI: 10.1152/ajpregu.00233.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Psychomotor stimulants are prescribed for many medical conditions, including obesity, sleep disorders, and attention-deficit/hyperactivity disorder. However, despite their acknowledged therapeutic utility, these stimulants are frequently abused, and their use can have both short- and long-term negative consequences. Although stimulants such as amphetamines acutely elevate blood pressure, it is unclear whether they cause any long-term effects on cardiovascular function after use has been discontinued. Previous work in our laboratory has demonstrated that physiological and psychosocial stressors will produce sensitization of the hypertensive response, a heightened pressor response to a hypertensinogenic stimulus delivered after stressor exposure. Here, we tested whether pretreatment with amphetamine for 1 wk can sensitize the hypertensive response in rats. We found that repeated amphetamine administration induced and maintained sensitization of the pressor response to angiotensin II following a 7-day delay after amphetamine injections were terminated. We also found that amphetamine pretreatment altered mRNA expression for molecular markers associated with neuroinflammation and renin-angiotensin-aldosterone system (RAAS) activation in the lamina terminalis, a brain region implicated in the control of sympathetic nervous system tone and blood pressure. The results indicated amphetamine upregulated mRNA expression underlying neuroinflammation and, to a lesser degree, message for components of the RAAS in the lamina terminalis. However, we found no changes in mRNA expression in the paraventricular nucleus. These results suggest that a history of stimulant use may predispose individuals to developing hypertension by promoting neuroinflammation and upregulating activity of the RAAS in the lamina terminalis.
Collapse
Affiliation(s)
- Seth W Hurley
- Department of Psychology and Neuroscience, The University of North Carolina, Chapel Hill, North Carolina
| | - Terry G Beltz
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa
| | - Fang Guo
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa
| | - Baojian Xue
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa
| | - Alan Kim Johnson
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa.,Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa.,Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa.,The François M. Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa
| |
Collapse
|
4
|
Carboni L, Romoli B, Romualdi P, Zoli M. Repeated nicotine exposure modulates prodynorphin and pronociceptin levels in the reward pathway. Drug Alcohol Depend 2016; 166:150-8. [PMID: 27430399 DOI: 10.1016/j.drugalcdep.2016.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND Nicotine dependence is maintained by neurobiological adaptations in the dopaminergic brain reward pathway with the contribution of opioidergic circuits. This study assessed the role of opioid peptides and receptors on the molecular changes associated with nicotine dependence. To this aim we analysed nicotine effects on opioid gene and receptor expression in the reward pathway in a nicotine sensitization model. METHODS Sprague-Dawley rats received nicotine administrations for five days and locomotor activity assessment showed the development of sensitization. The mRNA expression of prodynorphin (pdyn), pronociceptin (pnoc) and the respective receptors was measured by quantitative PCR in the ventral midbrain (VM), the nucleus accumbens (NAc), the caudate-putamen (CPu), the pre-frontal cortex (PFCx), and the hippocampus. RESULTS A significant positive effect of sensitization on pdyn mRNA levels was detected in the CPu. This effect was supported by a significant and selective correlation between the two parameters in this region. Moreover, chronic but not acute nicotine treatment significantly decreased pdyn mRNA levels in the NAc and increased expression in the PFCx. Pnoc mRNA was significantly increased in the VM and the PFCx after sub-chronic administration of nicotine, whereas no alterations were observed after acute treatment. No treatment associated changes were detected in κ-opioid receptor or nociceptin receptor mRNAs. CONCLUSIONS This experiment revealed an effect of nicotine administration that was distinguishable from the effect of nicotine sensitization. While several pnoc and pdyn changes were associated to nicotine administration, the only significant effect of sensitization was a significant increase in pdyn in the CPu.
Collapse
Affiliation(s)
- Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy.
| | - Benedetto Romoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
5
|
Striatal phosphodiesterase 10A availability is altered secondary to chronic changes in dopamine neurotransmission. EJNMMI Radiopharm Chem 2016; 1:3. [PMID: 29564380 PMCID: PMC5843803 DOI: 10.1186/s41181-016-0005-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/11/2016] [Indexed: 01/25/2023] Open
Abstract
Background Phosphodiesterase 10A (PDE10A) is an important regulator of
nigrostriatal dopamine (DA) neurotransmission. However, little is known on the
effect of alterations in DA neurotransmission on PDE10A availability. Here, we
used [18F]JNJ42259152 PET to measure changes in PDE10A
availability, secondary to pharmacological alterations in DA release and to
investigate whether these are D1- or
D2-receptor driven. Results Acute treatment of rats using D-amphetamine (5 mg, s.c. and 1 mg/kg
i.v.) did not result in a significant change in PDE10A BPND
compared to baseline conditions. 5-day D-amphetamine treatment (5 mg/kg, s.c.)
increased striatal PDE10A BPND compared to the baseline
(+24 %, p = 0.03). Treatment with the selective
D2 antagonist SCH23390 (1 mg/kg) and D-amphetamine decreased PDE10A binding
(-22 %, p = 0.03). Treatment with only SCH23390
further decreased PDE10A binding (-26 %, p = 0.03). No significant alterations in PDE10A mRNA levels were
observed. Conclusions Repeated D-amphetamine treatment significantly increased PDE10A
binding, which is not observed upon selective D1 receptor
blocking. This study suggests a potential pharmacological interaction between
PDE10A enzymes and drugs modifying DA neurotransmission. Therefore, PDE10A binding
in patients with neuropsychiatric disorders might be modulated by chronic
DA-related treatment. Electronic supplementary material The online version of this article (doi:10.1186/s41181-016-0005-5) contains supplementary material, which is available to authorized
users.
Collapse
|
6
|
Cruz FC, Javier Rubio F, Hope BT. Using c-fos to study neuronal ensembles in corticostriatal circuitry of addiction. Brain Res 2014; 1628:157-73. [PMID: 25446457 DOI: 10.1016/j.brainres.2014.11.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/27/2014] [Accepted: 11/01/2014] [Indexed: 01/02/2023]
Abstract
Learned associations between drugs and environment play an important role in addiction and are thought to be encoded within specific patterns of sparsely distributed neurons called neuronal ensembles. This hypothesis is supported by correlational data from in vivo electrophysiology and cellular imaging studies in relapse models in rodents. In particular, cellular imaging with the immediate early gene c-fos and its protein product Fos has been used to identify sparsely distributed neurons that were strongly activated during conditioned drug behaviors such as drug self-administration and context- and cue-induced reinstatement of drug seeking. Here we review how Fos and the c-fos promoter have been employed to demonstrate causal roles for Fos-expressing neuronal ensembles in prefrontal cortex and nucleus accumbens in conditioned drug behaviors. This work has allowed identification of unique molecular and electrophysiological alterations within Fos-expressing neuronal ensembles that may contribute to the development and expression of learned associations in addiction.
Collapse
Affiliation(s)
- Fabio C Cruz
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, United States
| | - F Javier Rubio
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, United States
| | - Bruce T Hope
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, United States.
| |
Collapse
|
7
|
Quelch DR, Katsouri L, Nutt DJ, Parker CA, Tyacke RJ. Imaging endogenous opioid peptide release with [11C]carfentanil and [3H]diprenorphine: influence of agonist-induced internalization. J Cereb Blood Flow Metab 2014; 34:1604-12. [PMID: 25005876 PMCID: PMC4269718 DOI: 10.1038/jcbfm.2014.117] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/11/2014] [Indexed: 01/23/2023]
Abstract
Understanding the cellular processes underpinning the changes in binding observed during positron emission tomography neurotransmitter release studies may aid translation of these methodologies to other neurotransmitter systems. We compared the sensitivities of opioid receptor radioligands, carfentanil, and diprenorphine, to amphetamine-induced endogenous opioid peptide (EOP) release and methadone administration in the rat. We also investigated whether agonist-induced internalization was involved in reductions in observed binding using subcellular fractionation and confocal microscopy. After radioligand administration, significant reductions in [(11)C]carfentanil, but not [(3)H]diprenorphine, uptake were observed after methadone and amphetamine pretreatment. Subcellular fractionation and in vitro radioligand binding studies showed that amphetamine pretreatment only decreased total [(11)C]carfentanil binding. In vitro saturation binding studies conducted in buffers representative of the internalization pathway suggested that μ-receptors are significantly less able to bind the radioligands in endosomal compared with extracellular compartments. Finally, a significant increase in μ-receptor-early endosome co-localization in the hypothalamus was observed after amphetamine and methadone treatment using double-labeling confocal microscopy, with no changes in δ- or κ-receptor co-localization. These data indicate carfentanil may be superior to diprenorphine when imaging EOP release in vivo, and that alterations in the ability to bind internalized receptors may be a predictor of ligand sensitivity to endogenous neurotransmitter release.
Collapse
Affiliation(s)
- Darren R Quelch
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, London, UK
| | - Loukia Katsouri
- Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - David J Nutt
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, London, UK
| | - Christine A Parker
- 1] Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, London, UK [2] Global Imaging Unit, GlaxoSmithKline, Stevenage, UK
| | - Robin J Tyacke
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
8
|
Addiction-related gene regulation: risks of exposure to cognitive enhancers vs. other psychostimulants. Prog Neurobiol 2012; 100:60-80. [PMID: 23085425 DOI: 10.1016/j.pneurobio.2012.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/02/2012] [Accepted: 10/08/2012] [Indexed: 01/09/2023]
Abstract
The psychostimulants methylphenidate (Ritalin, Concerta), amphetamine (Adderall), and modafinil (Provigil) are widely used in the treatment of medical conditions such as attention-deficit hyperactivity disorder and narcolepsy and, increasingly, as "cognitive enhancers" by healthy people. The long-term neuronal effects of these drugs, however, are poorly understood. A substantial amount of research over the past two decades has investigated the effects of psychostimulants such as cocaine and amphetamines on gene regulation in the brain because these molecular changes are considered critical for psychostimulant addiction. This work has determined in some detail the neurochemical and cellular mechanisms that mediate psychostimulant-induced gene regulation and has also identified the neuronal systems altered by these drugs. Among the most affected brain systems are corticostriatal circuits, which are part of cortico-basal ganglia-cortical loops that mediate motivated behavior. The neurotransmitters critical for such gene regulation are dopamine in interaction with glutamate, while other neurotransmitters (e.g., serotonin) play modulatory roles. This review presents (1) an overview of the main findings on cocaine- and amphetamine-induced gene regulation in corticostriatal circuits in an effort to provide a cellular framework for (2) an assessment of the molecular changes produced by methylphenidate, medical amphetamine (Adderall), and modafinil. The findings lead to the conclusion that protracted exposure to these cognitive enhancers can induce gene regulation effects in corticostriatal circuits that are qualitatively similar to those of cocaine and other amphetamines. These neuronal changes may contribute to the addiction liability of the psychostimulant cognitive enhancers.
Collapse
|
9
|
Cáceda R, Binder EB, Kinkead B, Nemeroff CB. The role of endogenous neurotensin in psychostimulant-induced disruption of prepulse inhibition and locomotion. Schizophr Res 2012; 136:88-95. [PMID: 22104138 PMCID: PMC3595536 DOI: 10.1016/j.schres.2011.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 11/20/2022]
Abstract
The neuropeptide neurotensin (NT) is closely associated with dopaminergic and glutamatergic systems in the rat brain. Central injection of NT into the nucleus accumbens (NAcc) or peripheral administration of NT receptor agonists, reduces many of the behavioral effects of psychostimulants. However, the role of endogenous NT in the behavioral effects of psychostimulants (e.g. DA agonists and NMDA receptor antagonists) remains unclear. Using a NTR antagonist, SR142948A, the current studies were designed to examine the role of endogenous NT in DA receptor agonist- and NMDA receptor antagonist-induced disruption of prepulse inhibition of the acoustic startle response (PPI), locomotor hyperactivity and brain-region specific c-fos mRNA expression. Adult male rats received a single i.p. injection of SR142948A or vehicle followed by D-amphetamine, apomorphine or dizocilpine challenge. SR142948A had no effect on baseline PPI, but dose-dependently attenuated d-amphetamine- and dizocilpine-induced PPI disruption and enhanced apomorphine-induced PPI disruption. SR142948A did not significantly affect either baseline locomotor activity or stimulant-induced hyperlocomotion. Systemic SR142948A administration prevented c-fos mRNA induction in mesolimbic terminal fields (prefrontal cortex, lateral septum, NAcc, ventral subiculum) induced by all three psychostimulants implicating the VTA as the site for NT modulation of stimulant-induced PPI disruption. Further characterization of the NT system may be valuable to find clinical useful compounds for schizophrenia and drug addiction.
Collapse
Affiliation(s)
- Ricardo Cáceda
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Suite 4000 WMB, 101 Woodruff Circle, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
10
|
Cornish J, Hunt G, Robins L, McGregor I. Regional c-Fos and FosB/ΔFosB expression associated with chronic methamphetamine self-administration and methamphetamine-seeking behavior in rats. Neuroscience 2012; 206:100-14. [DOI: 10.1016/j.neuroscience.2012.01.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/08/2011] [Accepted: 01/04/2012] [Indexed: 10/14/2022]
|
11
|
McCoy MT, Jayanthi S, Wulu JA, Beauvais G, Ladenheim B, Martin TA, Krasnova IN, Hodges AB, Cadet JL. Chronic methamphetamine exposure suppresses the striatal expression of members of multiple families of immediate early genes (IEGs) in the rat: normalization by an acute methamphetamine injection. Psychopharmacology (Berl) 2011; 215:353-65. [PMID: 21229349 PMCID: PMC3803141 DOI: 10.1007/s00213-010-2146-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 12/09/2010] [Indexed: 11/28/2022]
Abstract
RATIONALE Repeated injections of cocaine cause blunted responses to acute cocaine challenge-induced increases in the expression of immediate early genes (IEGs). OBJECTIVES The aim of this study was to test if chronic methamphetamine (METH) exposure might cause similar blunting of acute METH-induced increases in IEG expression. RESULTS Repeated saline or METH injections were given to rats over 14 days. After 1 day of withdrawal, they received a single injection of saline or METH (5 mg/kg). Acute injection of METH increased c-fos, fosB, fra2, junB, Egr1-3, Nr4a1 (Nur77), and Nr4a3 (Nor-1) mRNA levels in the striatum of saline-pretreated rats. Chronic METH treatment alone reduced the expression of AP1, Erg1-3, and Nr4a1 transcription factors below control levels. Acute METH challenge normalized these values in METH-pretreated rats. Unexpectedly, acute METH challenge to METH-pretreated animals caused further decreases in Nr4a2 (Nurr1) mRNA levels. In contrast, the METH challenge caused significant but blunted increases in Nr4a3 and Arc expression in METH-pretreated rats. There were also chronic METH-associated decreases in the expression of cAMP responsive element binding protein (CREB) which modulates IEG expression via activation of the cAMP/PKA/CREB signal transduction pathway. Chronic METH exposure also caused significant decreases in preprotachykinin, but not in prodynorphin, mRNA levels. CONCLUSIONS These results support the accumulated evidence that chronic administration of psychostimulants is associated with blunting of their acute stimulatory effects on IEG expression. The METH-induced renormalization of the expression of several IEGs in rats chronically exposed to METH hints to a potential molecular explanation for the recurrent self-administration of the drug by human addicts.
Collapse
Affiliation(s)
- Michael T. McCoy
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, Morgan State University, Baltimore, MD, USA
| | - Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, Morgan State University, Baltimore, MD, USA
| | - Jacqueline A. Wulu
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, Morgan State University, Baltimore, MD, USA
| | - Genevieve Beauvais
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, Morgan State University, Baltimore, MD, USA
| | - Bruce Ladenheim
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, Morgan State University, Baltimore, MD, USA
| | - Tracey A. Martin
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, Morgan State University, Baltimore, MD, USA
| | - Irina N. Krasnova
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, Morgan State University, Baltimore, MD, USA
| | - Amber B. Hodges
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, Morgan State University, Baltimore, MD, USA,Department of Psychology, Morgan State University, Baltimore, MD, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, Morgan State University, Baltimore, MD, USA
| |
Collapse
|
12
|
Guez-Barber D, Fanous S, Golden SA, Schrama R, Koya E, Stern AL, Bossert JM, Harvey BK, Picciotto MR, Hope BT. FACS identifies unique cocaine-induced gene regulation in selectively activated adult striatal neurons. J Neurosci 2011; 31:4251-9. [PMID: 21411666 PMCID: PMC3073079 DOI: 10.1523/jneurosci.6195-10.2011] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 01/18/2011] [Accepted: 01/22/2011] [Indexed: 12/11/2022] Open
Abstract
Numerous studies with the neural activity marker Fos indicate that cocaine activates only a small proportion of sparsely distributed striatal neurons. Until now, efficient methods were not available to assess neuroadaptations induced specifically within these activated neurons. We used fluorescence-activated cell sorting (FACS) to purify striatal neurons activated during cocaine-induced locomotion in naive and cocaine-sensitized cfos-lacZ transgenic rats. Activated neurons were labeled with an antibody against β-galactosidase, the protein product of the lacZ gene. Cocaine induced a unique gene expression profile selectively in the small proportion of activated neurons that was not observed in the nonactivated majority of neurons. These genes included altered levels of the immediate early genes arc, fosB, and nr4a3, as well as genes involved in p38 MAPK signaling and cell-type specificity. We propose that this FACS method can be used to study molecular neuroadaptations in specific neurons encoding the behavioral effects of abused drugs and other learned behaviors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Brandon K. Harvey
- Molecular Neuropsychiatry Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health/Department of Health and Human Services, Baltimore, Maryland 21224, and
| | - Marina R. Picciotto
- Interdepartmental Neuroscience Program and
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06515
| | | |
Collapse
|
13
|
Pitchers KK, Frohmader KS, Vialou V, Mouzon E, Nestler EJ, Lehman MN, Coolen LM. ΔFosB in the nucleus accumbens is critical for reinforcing effects of sexual reward. GENES BRAIN AND BEHAVIOR 2010; 9:831-40. [PMID: 20618447 DOI: 10.1111/j.1601-183x.2010.00621.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sexual behavior in male rats is rewarding and reinforcing. However, little is known about the specific cellular and molecular mechanisms mediating sexual reward or the reinforcing effects of reward on subsequent expression of sexual behavior. This study tests the hypothesis that ΔFosB, the stably expressed truncated form of FosB, plays a critical role in the reinforcement of sexual behavior and experience-induced facilitation of sexual motivation and performance. Sexual experience was shown to cause ΔFosB accumulation in several limbic brain regions including the nucleus accumbens (NAc), medial prefrontal cortex, ventral tegmental area and caudate putamen but not the medial preoptic nucleus. Next, the induction of c-Fos, a downstream (repressed) target of ΔFosB, was measured in sexually experienced and naïve animals. The number of mating-induced c-Fos-immunoreactive cells was significantly decreased in sexually experienced animals compared with sexually naïve controls. Finally, ΔFosB levels and its activity in the NAc were manipulated using viral-mediated gene transfer to study its potential role in mediating sexual experience and experience-induced facilitation of sexual performance. Animals with ΔFosB overexpression displayed enhanced facilitation of sexual performance with sexual experience relative to controls. In contrast, the expression of ΔJunD, a dominant negative binding partner of ΔFosB, attenuated sexual experience-induced facilitation of sexual performance and stunted long-term maintenance of facilitation compared to green fluorescence protein and ΔFosB overexpressing groups. Together, these findings support a critical role for ΔFosB expression in the NAc for the reinforcing effects of sexual behavior and sexual experience-induced facilitation of sexual performance.
Collapse
Affiliation(s)
- K K Pitchers
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
Rotllant D, Márquez C, Nadal R, Armario A. The brain pattern of c-fos induction by two doses of amphetamine suggests different brain processing pathways and minor contribution of behavioural traits. Neuroscience 2010; 168:691-705. [DOI: 10.1016/j.neuroscience.2010.04.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 04/08/2010] [Accepted: 04/11/2010] [Indexed: 11/29/2022]
|
15
|
Knab AM, Lightfoot JT. Does the difference between physically active and couch potato lie in the dopamine system? Int J Biol Sci 2010; 6:133-50. [PMID: 20224735 PMCID: PMC2836544 DOI: 10.7150/ijbs.6.133] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 03/02/2010] [Indexed: 01/04/2023] Open
Abstract
Obesity and other inactivity related diseases are increasing at an alarming rate especially
in Western societies. Because of this, it is important to understand the regulating mechanisms
involved in physical activity behavior. Much research has been done in regard to the
psychological determinants of physical activity behavior; however, little is known about the
underlying genetic and biological factors that may contribute to regulation of this complex
trait. It is true that a significant portion of any trait is regulated by genetic and
biological factors. In the case of voluntary physical activity behavior, these regulating
mechanisms appear to be concentrated in the central nervous system. In particular, the dopamine
system has been shown to regulate motor movement, as well as motivation and reward behavior.
The pattern of regulation of voluntary physical activity by the dopamine system is yet to be
fully elucidated. This review will summarize what is known about the dopamine system and
regulation of physical activity, and will present a hypothesis of how this signaling pathway is
mechanistically involved in regulating voluntary physical activity behavior. Future research in
this area will aid in developing personalized strategies to prevent inactivity related
diseases.
Collapse
Affiliation(s)
- Amy M Knab
- Department of Kinesiology, University of North Carolina, Charlotte, NC, USA.
| | | |
Collapse
|
16
|
McDougall SA, Reichel CM, Farley CM, Flesher MM, Der-Ghazarian T, Cortez AM, Wacan JJ, Martinez CE, Varela FA, Butt AE, Crawford CA. Postnatal manganese exposure alters dopamine transporter function in adult rats: Potential impact on nonassociative and associative processes. Neuroscience 2008; 154:848-60. [PMID: 18485605 PMCID: PMC2517246 DOI: 10.1016/j.neuroscience.2008.03.070] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 03/16/2008] [Accepted: 03/27/2008] [Indexed: 12/25/2022]
Abstract
In the present study, we examined whether exposing rats to a high-dose regimen of manganese chloride (Mn) during the postnatal period would depress presynaptic dopamine functioning and alter nonassociative and associative behaviors. To this end, rats were given oral supplements of Mn (750 microg/day) on postnatal days (PD) 1-21. On PD 90, dopamine transporter (DAT) immunoreactivity and [3H]dopamine uptake were assayed in the striatum and nucleus accumbens, while in vivo microdialysis was used to measure dopamine efflux in the same brain regions. The effects of postnatal Mn exposure on nigrostriatal functioning were evaluated by assessing rotorod performance and amphetamine-induced stereotypy in adulthood. In terms of associative processes, both cocaine-induced conditioned place preference (CPP) and sucrose-reinforced operant responding were examined. Results showed that postnatal Mn exposure caused persistent declines in DAT protein expression and [3H]dopamine uptake in the striatum and nucleus accumbens, as well as long-term reductions in striatal dopamine efflux. Rotorod performance did not differ according to exposure condition, however Mn-exposed rats did exhibit substantially more amphetamine-induced stereotypy than vehicle controls. Mn exposure did not alter performance on any aspect of the CPP task (preference, extinction, or reinstatement testing), nor did Mn affect progressive ratio responding (a measure of motivation). Interestingly, acquisition of a fixed ratio task was impaired in Mn-exposed rats, suggesting a deficit in procedural learning. In sum, these results indicate that postnatal Mn exposure causes persistent declines in various indices of presynaptic dopaminergic functioning. Mn-induced alterations in striatal functioning may have long-term impact on associative and nonassociative behavior.
Collapse
Affiliation(s)
- S A McDougall
- Department of Psychology, California State University, San Bernardino, CA 92407, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Smith DG, Qi H, Svenningsson P, Wade M, Davis RJ, Gehlert DR, Nomikos GG. Behavioral and biochemical responses to d-amphetamine in MCH1 receptor knockout mice. Synapse 2008; 62:128-36. [PMID: 18000809 DOI: 10.1002/syn.20473] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The melanin-concentrating hormone (MCH) system is anatomically and functionally interlaced with the mesocorticolimbic dopamine system. Therefore, we investigated whether MCH(1) receptor knockout (KO) mice are more susceptible than wild-type (WT) mice to psychostimulant-induced locomotor stimulation and sensitization, dopamine receptor-mediated phosphorylation events and c-fos expression within the frontal cortex and ventral striatum. MCH(1) receptor KO mice have 20% higher basal locomotor activity, are hypersensitive to the locomotor activating effects of d-amphetamine (1 mg/kg), and develop behavioral sensitization to a regimen of repeated d-amphetamine administration that does not induce sensitization in WT mice. In addition, d-amphetamine-mediated regulation of p44-mitogen activated protein kinase (MAPK) phosphorylation within the frontal cortex was significantly enhanced in MCH(1) receptor KO mice, when compared with WT mice. No significant genotype difference in the effects of d-amphetamine on MAPK phosphorylation events within the ventral striatum, phosphorylation at Ser(897) of the NR1 subunit of the NMDA receptor or Ca(2+) and cyclic AMP response-element binding-protein (CREB) at Ser(133) in the frontal cortex was detected. d-Amphetamine (3 mg/kg) increased c-fos expression within the frontal cortex in MCH(1) receptor KO mice, but not WT mice. There were no d-amphetamine-induced changes in c-fos expression within the ventromedial striatum in KO or WT mice. Overall, MCH(1) receptor KO mice are hypersensitive to the behavioral and molecular effects of the dopaminergic psychostimulant d-amphetamine. Increased frontal cortical MAPK phosphorylation and c-fos expression in MCH(1) receptor KO mice indicates that the MCH(1) receptor may be an important target for treating neuropsychiatric disorders characterized by frontal cortex dysfunction, including depression, attention deficit hyperactivity disorder (ADHD) and schizophrenia.
Collapse
Affiliation(s)
- Daniel G Smith
- Eli Lilly and Company, Neuroscience Discovery Research, Indianapolis, Indiana 46285, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Mattson BJ, Crombag HS, Mitchell T, Simmons DE, Kreuter JD, Morales M, Hope BT. Repeated amphetamine administration outside the home cage enhances drug-induced Fos expression in rat nucleus accumbens. Behav Brain Res 2007; 185:88-98. [PMID: 17720257 PMCID: PMC2135552 DOI: 10.1016/j.bbr.2007.07.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 07/09/2007] [Accepted: 07/15/2007] [Indexed: 12/28/2022]
Abstract
Induction of the immediate early gene protein product Fos has been used extensively to assess neural activation in the striatum after repeated amphetamine administration to rats in their home cages. However, this technique has not been used to examine striatal activation after repeated administration outside the home cage, an environment where repeated drug administration produces more robust psychomotor sensitization. We determined the dose-response relationship for amphetamine-induced psychomotor activity and Fos expression in nucleus accumbens and caudate-putamen 1 week after repeated administration of amphetamine or saline in locomotor activity chambers. Repeated administration of amphetamine enhanced amphetamine-induced locomotor activity and stereotypy and Fos expression in nucleus accumbens, but not in caudate-putamen. In comparison, levels of Fos expression induced by 1mg/kg amphetamine were not altered in nucleus accumbens or caudate-putamen by repeated amphetamine administration in the home cage. Double-labeling of Fos protein and enkephalin mRNA indicates that Fos is expressed in approximately equal numbers of enkephalin-negative and enkephalin-positive neurons in nucleus accumbens and caudate-putamen following injections outside the home cage. Furthermore, repeated amphetamine administration increased drug-induced Fos expression in enkephalin-positive, but not enkephalin-negative, neurons in nucleus accumbens. We conclude that repeated amphetamine administration outside the home cage recruits the activation of enkephalin-containing nucleus accumbens neurons during sensitized amphetamine-induced psychomotor activity.
Collapse
Affiliation(s)
- Brandi J Mattson
- Behavioral Neuroscience Branch, Intramural Research Program, The National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Guitart-Masip M, Johansson B, Cañete T, Fernández-Teruel A, Tobeña A, Terenius L, Giménez-Llort L. Regional adaptations in PSD-95, NGFI-A and secretogranin gene transcripts related to vulnerability to behavioral sensitization to amphetamine in the Roman rat strains. Neuroscience 2007; 151:195-208. [PMID: 18093743 DOI: 10.1016/j.neuroscience.2007.09.072] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2007] [Revised: 08/17/2007] [Accepted: 10/06/2007] [Indexed: 12/23/2022]
Abstract
Genetically selected for high or low two-way active avoidance, Roman high-avoidance (RHA) and Roman low-avoidance (RLA) rats differ in their central dopaminergic activity, sensation/novelty- and substance-seeking profiles. These animals are, therefore, well suited to identify anatomical and neurochemical concomitants of behavioral sensitization, a phenomenon linked to addictive liability. We submitted inbred RHA (RHA-I), inbred RLA (RLA-I) and Sprague-Dawley-OFA (SD-OFA) rats to a sensitization regimen with amphetamine and studied the behavioral response to an amphetamine challenge after a 2-week withdrawal period. The expression patterns of nerve growth factor inducible clone A (NGFI-A), secretogranin, post-synaptic density protein of 95 Kd (PSD-95), prodynorphin and proenkephalin mRNA were also analyzed using in situ hybridization, after the challenge with amphetamine. RHA-I rats showed stronger sensitization than SD-OFA rats. RLA-I rats did not show sensitization but were hyper-reactive to amphetamine. Expression of behavioral sensitization in RHA-I rats activated secretogranin and PSD-95 mRNA in the nucleus accumbens core. On the other hand, high induction of NGFI-A mRNA in the central amygdala was observed in RLA-I rats when they experienced amphetamine for the first time in the challenge. Our results reveal that 1) the acute locomotor response to amphetamine does not predict vulnerability to behavioral sensitization and 2) differences in vulnerability to sensitization may involve distinctive cellular adaptations at particular brain locations which may be related to addictive vulnerability.
Collapse
Affiliation(s)
- M Guitart-Masip
- Department of Psychiatry and Forensic Medicine, Institute of Neuroscience, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Cotterly L, Beverley JA, Yano M, Steiner H. Dysregulation of gene induction in corticostriatal circuits after repeated methylphenidate treatment in adolescent rats: differential effects on zif 268 and homer 1a. Eur J Neurosci 2007; 25:3617-28. [PMID: 17610581 DOI: 10.1111/j.1460-9568.2007.05570.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Psychostimulants and other dopamine agonists produce molecular changes in neurons of cortico-basal ganglia-cortical circuits, and such neuronal changes are implicated in behavioural disorders. Methylphenidate, a psychostimulant that causes dopamine overflow (among other effects), alters gene regulation in neurons of the striatum. The present study compared the effects of acute and repeated methylphenidate treatment on cortical and striatal gene regulation in adolescent rats. Changes in the expression of the immediate-early genes zif 268 and homer 1a were mapped in 23 striatal sectors and 22 cortical areas that provide input to these striatal sectors, in order to determine whether specific corticostriatal circuits were affected by these treatments. Acute administration of methylphenidate (5 mg/kg, i.p.) produced modest zif 268 induction in cortical areas. These cortical zif 268 responses were correlated in magnitude with zif 268 induction in functionally related striatal sectors. In contrast, after repeated methylphenidate treatment (10 mg/kg, 7 days), cortical and striatal gene induction were dissociated. In these animals, the methylphenidate challenge (5 mg/kg) produced significantly greater gene induction (zif 268 and homer 1a) in the cortex. This enhanced response was widespread but regionally selective, as it occurred predominantly in premotor, motor and somatosensory cortical areas. At the same time, striatal gene induction was partly suppressed (zif 268) or unchanged (homer 1a). Thus, repeated methylphenidate treatment disrupted the normally coordinated gene activation patterns in cortical and striatal nodes of corticostriatal circuits. This drug-induced dissociation in cortical and striatal functioning was associated with enhanced levels of behavioural stereotypies, suggesting disrupted motor switching function.
Collapse
Affiliation(s)
- Lindsay Cotterly
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science/The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | | | | | |
Collapse
|
21
|
Papaleo F, Kitchener P, Contarino A. Disruption of the CRF/CRF1 Receptor Stress System Exacerbates the Somatic Signs of Opiate Withdrawal. Neuron 2007; 53:577-89. [PMID: 17296558 DOI: 10.1016/j.neuron.2007.01.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 12/08/2006] [Accepted: 01/18/2007] [Indexed: 11/24/2022]
Abstract
Escape from the extremely stressful opiate withdrawal syndrome may motivate opiate seeking and taking. The corticotropin-releasing factor receptor-1 (CRF1) pathway mediates behavioral and endocrine responses to stress. Here, we report that genetic inactivation (CRF1-/-) as well as pharmacological antagonism of the CRF/CRF1 receptor pathway increased and prolonged the somatic expression of opiate withdrawal. Opiate-withdrawn CRF1-/- mice also showed aberrant CRF and dynorphin expression in the paraventricular nucleus of the hypothalamus (PVN) and the striatum, indicating profound impairments in stress-responsive brain circuitry. Intake of nonstressful amounts of corticosterone effectively reduced the exaggerated somatic reactions of CRF1-/- mice to opiate withdrawal. Exogenous corticosterone also restored "wild-type-like" patterns of CRF and dynorphin gene expression in the PVN and the striatum of opiate-withdrawn CRF1-/- mice, respectively. The present findings unravel a key role for the hypothalamus-pituitary-adrenal (HPA) system and brain extra-hypothalamic CRF/CRF1 receptor circuitry in somatic, molecular, and endocrine alterations induced by opiate withdrawal.
Collapse
Affiliation(s)
- Francesco Papaleo
- Laboratoire Homéostasie-Allostasie-Pathologie, EA 3666, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux, France
| | | | | |
Collapse
|
22
|
Son GH, Chung S, Geum D, Kang SS, Choi WS, Kim K, Choi S. Hyperactivity and alteration of the midbrain dopaminergic system in maternally stressed male mice offspring. Biochem Biophys Res Commun 2006; 352:823-9. [PMID: 17150178 DOI: 10.1016/j.bbrc.2006.11.104] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 11/20/2006] [Indexed: 10/23/2022]
Abstract
We recently demonstrated that prolonged maternal stress produces profound and long-lasting deficits in brain functions by programming a subset of target genes. We have now examined the possible effects of prenatal stress on the motility of adult offspring and dopamine (DA)-related gene expression in their midbrains, one of the target brain regions of stress hormones. Maternally stressed adult male mice showed impaired response habituation to novelty, and increased wheel-running activity associated with altered responses to DA receptor and DA transporter (DAT) blockers. Along with the behavioral changes, the expression profiles of several genes of the midbrain DAergic system appeared to be altered. Expression of DAT was reduced and expression of DA receptors and striatal DA-regulated neuropeptide genes was also affected. Taken together, the present findings indicate that maternal stress can cause hyperactivity in adult offspring associated with alterations in the midbrain DAergic system suggestive of a functional hyperdopaminergic state.
Collapse
Affiliation(s)
- Gi Hoon Son
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
Giordano TP, Satpute SS, Striessnig J, Kosofsky BE, Rajadhyaksha AM. Up-regulation of dopamine D(2)L mRNA levels in the ventral tegmental area and dorsal striatum of amphetamine-sensitized C57BL/6 mice: role of Ca(v)1.3 L-type Ca(2+) channels. J Neurochem 2006; 99:1197-206. [PMID: 17026527 DOI: 10.1111/j.1471-4159.2006.04186.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dopamine D(2) long (D(2)L) and D(2) short (D(2)S) isoforms of the D(2) receptor play an important role in psychostimulant-induced neuronal adaptations. In this study, we used quantitative real-time PCR to specifically amplify these two splice variants to examine their mRNA expression in the dorsal striatum (dStr), nucleus accumbens (NAc) and the ventral tegmental area (VTA) of amphetamine-sensitized C57BL/6 mice. We found a significant increase in D(2)L mRNA in the VTA and dStr of amphetamine-treated mice that positively correlated with the sensitized locomotor response. We also found a significant increase in D(2)S mRNA in the VTA. We further examined the role of the Ca(v)1.3 subtype of L-type Ca(2+) channels in up-regulation of D(2)L and D(2)S mRNA in the VTA. Amphetamine-pretreated Ca(v)1.3 wild-type (Ca(v)1.3(+/+)) mice exhibited sensitized behavior and a significant increase in D(2)L and D(2)S mRNA compared with saline-pretreated mice Amphetamine-pretreated homozygous Ca(v)1.3 knockout (Ca(v)1.3(-/-)) mice did not exhibit sensitized behavior. There was a significant increase in D(2)S mRNA, but not D(2)L mRNA. In conclusion, our results find that amphetamine increases D(2)L mRNA expression in the dStr and the VTA, an adaptation that correlates with expression of sensitized behavior and dependence on Ca(v)1.3 Ca(2+) channels.
Collapse
Affiliation(s)
- T P Giordano
- Laboratory of Molecular and Developmental Neuroscience, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | | | | | | | | |
Collapse
|
24
|
Hope BT, Simmons DE, Mitchell TB, Kreuter JD, Mattson BJ. Cocaine‐induced locomotor activity and Fos expression in nucleus accumbens are sensitized for 6 months after repeated cocaine administration outside the home cage. Eur J Neurosci 2006; 24:867-75. [PMID: 16930414 DOI: 10.1111/j.1460-9568.2006.04969.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Induction of the immediate early gene protein product Fos has been used extensively to assess neural activation in the striatum after repeated cocaine administration to rats in their home cages but rarely after repeated administration outside the home cage, which produces more robust locomotor sensitization. In the present study, we found cocaine-induced Fos expression in nucleus accumbens, but not caudate-putamen, was enhanced 1 and 6 months after repeated drug administration in locomotor activity chambers. Double-labelling of Fos protein and enkephalin mRNA indicated that Fos expression in nucleus accumbens was enhanced in enkephalin-positive, but not enkephalin-negative, medium spiny neurons. In contrast, cocaine-induced Fos expression was absent altogether in nucleus accumbens and unaltered in caudate-putamen 1 month after repeated cocaine administration in the home cage. As cocaine-induced locomotor activity was also enhanced 1 and 6 months after repeated cocaine administration in locomotor activity chambers, we wanted to confirm that neuronal activity in nucleus accumbens mediates cocaine-induced locomotor activity using our particular treatment regimen. Bilateral infusions of the GABA agonists baclofen and muscimol (1 microg/side) into nucleus accumbens of sensitized rats blocked cocaine-induced Fos expression and locomotor activity. Thus, while neuronal activity in both D1- and D2-type neurons in nucleus accumbens can mediate acute cocaine-induced locomotor activity, the enhanced activation of enkephalinergic D2-type neurons suggests that these latter neurons mediate the enhancement of cocaine-induced locomotor activity for up to 6 months after repeated drug administration outside the home cage.
Collapse
Affiliation(s)
- Bruce T Hope
- Behavioural Neuroscience Branch, Intramural Research Program, The National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
25
|
Milanovic D, Pesic V, Rakic L, Kanazir S, Ruzdijic S. Enhancement of AP-1 DNA-binding activity during amphetamine- and phencyclidine-mediated behaviour in rats. Neuropharmacology 2006; 50:924-33. [PMID: 16678866 DOI: 10.1016/j.neuropharm.2006.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 12/22/2005] [Accepted: 01/04/2006] [Indexed: 10/24/2022]
Abstract
Amphetamine (AMPH) and phencyclidine (PCP) induce a variety of behavioural and synaptic changes in the brain, many of which are believed to involve the regulation of gene expression. In this study, we examined the effects of AMPH (5mg/kg), PCP (5mg/kg) and their combination (5mg/kg each) on rat motor activity as well as on the activation of the AP-1 transcription factor in rat brains. AMPH administration, followed by PCP, led to a statistically significant elevation of locomotor activity. It was found that the behavioural response of rats was more pronounced when the two drugs were administered together. The electrophoretic mobility shift assay (EMSA) revealed a significant increase in AP-1-binding activity after treatments with AMPH, PCP or their combination. Super shift/shift inhibition analysis demonstrated the presence of c-Fos and c-Jun protein families in the transcriptional complex bound to AP-1 sequences. Further, our results suggest that the enhanced behavioural changes after AMPH and PCP administration were associated with increased expression of AP-1 proteins (Fos and Jun) in the cortex, striatum and hippocampus and that their binding to AP-1 sites on the DNA contributes to long-term changes in rat brain.
Collapse
Affiliation(s)
- Desanka Milanovic
- Institute for Biological Research, Department of Neurobiology and Immunology, Laboratory of Molecular Neurobiology, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia and Montenegro
| | | | | | | | | |
Collapse
|
26
|
Izawa R, Jaber M, Deroche-Gamonet V, Sillaber I, Kellendonk C, Le Moal M, Tronche F, Piazza PV. Gene expression regulation following behavioral sensitization to cocaine in transgenic mice lacking the glucocorticoid receptor in the brain. Neuroscience 2006; 137:915-24. [PMID: 16326019 DOI: 10.1016/j.neuroscience.2005.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 09/20/2005] [Accepted: 10/06/2005] [Indexed: 10/25/2022]
Abstract
Several findings suggest that glucocorticoid hormones influence the propensity of an individual to develop cocaine abuse. These hormones activate two related transcription factors, the glucocorticoid receptor and the mineralocorticoid receptor. We have shown previously that mice carrying a mutation of the glucocorticoid receptor gene specifically in neural cells, glucocorticoid receptor knock-out in the brain, show a dramatic decrease in cocaine-induced self-administration and no behavioral sensitization to this drug, two experimental procedures considered relevant models of addiction. Here, we investigated in glucocorticoid receptor knock-out in the brain mice the consequences of this mutation at the level of the expression of neuropeptide, dopamine receptor and glutamate receptor subunit mRNAs. We quantified mRNA levels in the cortex, striatum and accumbens under basal conditions and following acute or repeated cocaine treatments. Our results show that, under basal conditions, neuropeptide (substance P, dynorphin) and dopamine receptor (D1, D2) mRNAs were decreased in glucocorticoid receptor knock-out in the brain mice in the dorsal striatum but not in the accumbens. However, cocaine-induced changes in the levels of these mRNAs were not modified in glucocorticoid receptor knock-out in the brain mice. In contrast, mutant mice showed altered response in mRNA levels of N-methyl-D-aspartate, GLUR5 and GLUR6 glutamate receptor subunits as well as of enkephalin following cocaine administration. These modifications may be associated to decrease of behavioral effects of cocaine observed in glucocorticoid receptor knock-out in the brain mice.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Brain Chemistry/drug effects
- Brain Chemistry/genetics
- Cocaine/pharmacology
- Dopamine Uptake Inhibitors/pharmacology
- Dynorphins/biosynthesis
- Enkephalins/biosynthesis
- Gene Expression Regulation
- In Situ Hybridization
- Kainic Acid/metabolism
- Male
- Mice
- Mice, Transgenic
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D2/drug effects
- Receptors, Glucocorticoid/drug effects
- Receptors, Glucocorticoid/metabolism
- Receptors, Kainic Acid/biosynthesis
- Receptors, Kainic Acid/genetics
- Receptors, N-Methyl-D-Aspartate/biosynthesis
- Receptors, N-Methyl-D-Aspartate/genetics
- Substance P/biosynthesis
- Synaptic Transmission/drug effects
- GluK2 Kainate Receptor
Collapse
Affiliation(s)
- R Izawa
- Institut National de la Santé et de la Recherche Scientifique U588, Laboratoire de Psychobiologie des Comportements Adaptatifs, Domaine de Carreire, rue Camille St Saëns, 33077 Bordeaux Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ross JD, Herin DV, Frankel PS, Thomas ML, Cunningham KA. Chronic treatment with a serotonin(2) receptor (5-HT(2)R) agonist modulates the behavioral and cellular response to (+)-3,4-methylenedioxymethamphetamine [(+)-MDMA]. Drug Alcohol Depend 2006; 81:117-27. [PMID: 16054778 DOI: 10.1016/j.drugalcdep.2005.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 06/09/2005] [Accepted: 06/13/2005] [Indexed: 11/17/2022]
Abstract
3,4-Methylenedioxymethamphetamine [MDMA; ecstasy] evokes a multifaceted subjective experience in human users which includes stimulation, feelings of well-being, mood elevation, empathy towards others as well as distortions in time, sensation and perception. Aspects of this unique psychopharmacology of MDMA are thought to be related to its potent actions to release serotonin (5-HT) and indirectly stimulate the 5-HT(2A) receptor (5-HT(2A)R). In the present studies, we examined the interrelationship between down-regulation of 5-HT(2A)R expression and the behaviorally stimulatory effects generated by acute administration of (+)-MDMA, the most potent enantiomer of (+/-)-MDMA. Male Sprague-Dawley rats were chronically treated with the preferential 5-HT(2A)R agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) which has been shown to down-regulate expression of the 5-HT(2A)R, but not the closely related 5-HT(2C)R. While chronic DOI treatment did not alter the functional sensitivity of either the 5-HT(2A)R or 5-HT(2C)R, this regimen enhanced (+)-MDMA-evoked hyperactivity. Subsequent analysis of c-Fos and 5-HT(2A)R immunoreactivity in brain sections demonstrated that DOI treatment decreased the number of (+)-MDMA-induced c-Fos immunopositive nuclei and 5-HT(2A)R immunostaining in select cortical and striatal areas. These results indicate that chronic DOI exposure results in an enhanced behavioral response to (+)-MDMA and in a pattern of neuronal activation which resembles that seen in psychostimulant sensitization. These data also suggest that expression of the 5-HT(2A)R in the NAc and PFC may play a role in the sensitivity to the locomotor-stimulating effects of (+)-MDMA and in the processes of neural regulation upon repeated psychostimulant administration.
Collapse
Affiliation(s)
- Julie D Ross
- Center for Addiction Research, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston TX 77555-1031, USA
| | | | | | | | | |
Collapse
|
28
|
Chase TD, Carrey N, Brown RE, Wilkinson M. Methylphenidate differentially regulates c-fos and fosB expression in the developing rat striatum. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 157:181-91. [PMID: 15916815 DOI: 10.1016/j.devbrainres.2005.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 04/25/2005] [Accepted: 04/25/2005] [Indexed: 01/06/2023]
Abstract
Methylphenidate (MPH, Ritalin) is a psychostimulant drug used in very young children with attention deficit hyperactivity disorder (ADHD). To explore the central effects of MPH, we compared repeated MPH treatments on c-fos and fosB expression in the striatum of immature and adult rats. Prepubertal (PD25-38) or adult (PD53-66) male rats were treated once daily for: (a) 14 days with either saline or MPH (2 or 10 mg/kg) or (b) 13 days with saline followed by a single dose of MPH (2 or 10 mg/kg) on day 14. To determine long-term effects of MPH, another group of prepubertal rats was allowed a drug-free period of 4 weeks following the initial 14 days of treatment, and received a challenge dose of MPH at adulthood. All rats were sacrificed 2 h post-injection on the final day. Expression of c-fos and fosB was quantified by densitometric analysis of cFOS and FOSB-immunoreactivity (-ir). We demonstrated that FOSB-ir was increased by a single dose of MPH in the prepubertal and adult striatum, and this effect was further elevated by chronic MPH in prepubertal rats, in contrast to the inhibitory effect of MPH (2 and 10 mg/kg) on cFOS-ir. In adult rats, repeated MPH down-regulated cFOS-ir only at the higher dose (10 mg/kg), while fosB expression remained at levels comparable to acute MPH. The reduction in cFOS-ir observed in prepubertal rats given repeated MPH (10 mg/kg) persisted in the adult striatum following MPH challenge at adulthood. Our results suggest that (1) repeated MPH treatment differentially regulates c-fos and fosB expression in the immature and adult brain; (2) MPH-induced changes in gene expression may be enduring, and (3) the immature brain is more sensitive to the stimulant effects of MPH than the adult. Thus, our findings have implications for the long-term use of MPH in ADHD.
Collapse
Affiliation(s)
- T D Chase
- Department of Physiology and Biophysics, Dalhousie University, Canada
| | | | | | | |
Collapse
|
29
|
Malaplate-Armand C, Becuwe P, Ferrari L, Masson C, Dauça M, Visvikis S, Lambert H, Batt AM. Effect of acute and chronic psychostimulant drugs on redox status, AP-1 activation and pro-enkephalin mRNA in the human astrocyte-like U373 MG cells. Neuropharmacology 2005; 48:673-84. [PMID: 15814102 DOI: 10.1016/j.neuropharm.2004.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2004] [Revised: 12/09/2004] [Accepted: 12/17/2004] [Indexed: 11/24/2022]
Abstract
In order to approach the astroglial implication of addictive and neurotoxic processes associated with psychostimulant drug abuse, the effects of amphetamine or cocaine (1-100 microM) on redox status, AP-1 transcription factor and pro-enkephalin, an AP-1 target gene, were investigated in the human astrocyte-like U373 MG cells. We demonstrated an early increase in the generation of radical oxygen species and in the formation of 4-hydroxynonenal-adducts reflecting the pro-oxidant action of both substances. After 1 h or 96 h of treatment, Fos and Jun protein levels were altered and the DNA-binding activity of AP-1 was increased in response to both substances. Using supershift experiments, we observed that the composition of AP-1 dimer differed according to the substance and the duration of treatment. FRA-2 protein represented the main component of the chronic amphetamine- or cocaine-activated complexes, which suggests its relevance in the long-term effects of psychostimulant drugs. Concomitantly, the pro-enkephalin gene was differently regulated by either 6 h or 96 h of treatment. Because astrocytes interact extensively with the neurons in the brain, our data led us to conclude that oxidation-regulated AP-1 target genes may represent one of the molecular mechanisms underlying neuronal adaptation associated with psychostimulant dependence.
Collapse
|
30
|
Ferguson SM, Thomas MJ, Robinson TE. Morphine-induced c-fos mRNA expression in striatofugal circuits: modulation by dose, environmental context, and drug history. Neuropsychopharmacology 2004; 29:1664-74. [PMID: 15138436 DOI: 10.1038/sj.npp.1300465] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Opiates and psychostimulants produce many shared behavioral and neurobiological adaptations, such as behavioral sensitization and the induction of immediate early genes in the caudate-putamen (CPu). Previous studies indicate that factors such as dose, the environmental context surrounding drug administration and drug history can influence both morphine- and psychostimulant-induced behavioral sensitization. In addition, these factors can modulate the ability of psychostimulants to engage striatofugal circuits in the CPu. The present study, therefore, sought to examine whether these factors have similar influences over the ability of morphine to engage cortico-striatofugal circuits. We report that, when given in the home cage, morphine produced a small, but significant increase in the number of c-fos+ striatonigral cells and c-fos+ cells in cingulate cortex, but had no effect on the number of c-fos+ striatopallidal cells. When given in a novel test environment, however, morphine dramatically increased the number of c-fos+ striatonigral cells in a dose-dependent fashion, and this effect was maintained following repeated treatment. Unexpectedly, morphine treatment in a novel environment produced a dose-dependent reduction in the number of c-fos+ striatopallidal cells and c-fos+ cells in cingulate cortex, relative to exposure to novelty alone-effects that were reversed by repeated morphine treatment. We suggest that alterations in c-fos expression patterns in striatofugal circuits following morphine administration may be involved in drug-experience-dependent plasticity.
Collapse
Affiliation(s)
- Susan M Ferguson
- Neuroscience Program, University of Michigan, Ann Arbor, MI 48109-1109, USA
| | | | | |
Collapse
|
31
|
Enriched environment confers resistance to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and cocaine: involvement of dopamine transporter and trophic factors. J Neurosci 2003. [PMID: 14657156 DOI: 10.1523/jneurosci.23-35-10999.2003] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We investigated, in mice, the influence of life experience on the vulnerability to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a major neurotoxin that induces a Parkinson's disease-like syndrome in humans, and to cocaine, a potent psychostimulant that promotes drug addiction. Our findings show that adult C57BL/6 mice raised in an enriched environment (EE) for only 2 months are significantly more resistant to both drugs compared with mice raised in a standard environment (SE). Indeed, EE mice showed decreased locomotor activity in response to cocaine (10 and 20 mg/kg) as well as a different pattern of c-fos expression in the striatum compared with SE mice. After MPTP treatment, SE mice showed a 75% loss of dopamine neurons, whereas EE mice showed only a 40% loss. The dopamine transporter plays a key role in mediating the effects of both drugs. We thus investigated the regulation of its expression. EE mice showed less dopamine transporter binding in the striatum and less dopamine transporter mRNA per dopamine neuron at the cellular level as demonstrated by in situ hybridization. In addition, enriched environment promoted an increase in the expression of brain-derived neurotrophic factor in the striatum. These data provide a direct demonstration of the beneficial consequences that a positive environment has in preventing neurodegeneration and in decreasing responsiveness to cocaine. Furthermore, they suggest that the probability of developing neurological disorders such as Parkinson's disease or vulnerability to psychostimulants may be related to life experience.
Collapse
|
32
|
Ostrander MM, Badiani A, Day HEW, Norton CS, Watson SJ, Akil H, Robinson TE. Environmental context and drug history modulate amphetamine-induced c-fos mRNA expression in the basal ganglia, central extended amygdala, and associated limbic forebrain. Neuroscience 2003; 120:551-71. [PMID: 12890524 DOI: 10.1016/s0306-4522(03)00247-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The context in which amphetamine is administered modulates its ability to induce both behavioral sensitization and immediate early gene expression. When given in a novel test environment amphetamine produces greater levels of c-fos and arc mRNA expression in many brain regions relative to when it is given in the home cage. The purpose of the current study was to determine if environment and drug history interact to influence amphetamine-induced c-fos mRNA expression. Rats with a unilateral 6-hydroxydopamine lesion were treated for 7 days with saline or 0.5 mg/kg of d-amphetamine (i.v.) in a distinct and relatively novel test environment (Novel), or in their home cage (Home). Following a 10-12-day withdrawal period, a challenge injection of either saline or 0.5 mg/kg d-amphetamine was administered. In situ hybridization histochemistry was used to examine c-fos mRNA expression in several regions of the basal ganglia, the central extended amygdala, and limbic forebrain. In most brain regions amphetamine given in the Novel environment produced greater c-fos mRNA expression than when given it was given at Home, and drug history had no effect on amphetamine-induced c-fos mRNA expression. However, within the subthalamic nucleus, substantia nigra reticulata, and central nucleus of the amygdala prior experience with amphetamine in the Novel but not Home environment enhanced the effect of an amphetamine challenge injection on c-fos mRNA expression. In contrast, there was a decrease in c-fos mRNA expression in amphetamine-pretreated animals, regardless of environmental context, in the ventral portion of the far caudal striatum. Reexposure to an environment previously paired with amphetamine produced a conditioned increase in c-fos mRNA expression in portions of the caudate-putamen, the subthalamic nucleus, the nucleus accumbens shell and a conditioned decrease in c-fos mRNA expression in the central nucleus of the amygdala. We conclude that environmental context and drug history interact to alter the basal ganglia and central extended amygdala circuitry engaged by subsequent exposure to amphetamine, or exposure to an environment previously paired with amphetamine.
Collapse
Affiliation(s)
- M M Ostrander
- Biopsychology and Neuroscience Programs, Department of Psychology, The University of Michigan, 525 East University Avenue, Ann Arbor, MI 48109-1109, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Le Moine C. Quantitative In Situ Hybridization for the Study of Gene Expression at the Regional and Cellular Levels. ACTA ACUST UNITED AC 2003; Chapter 1:Unit 1.10. [DOI: 10.1002/0471142301.ns0110s23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
34
|
Ferguson SM, Norton CS, Watson SJ, Akil H, Robinson TE. Amphetamine-evoked c-fos mRNA expression in the caudate-putamen: the effects of DA and NMDA receptor antagonists vary as a function of neuronal phenotype and environmental context. J Neurochem 2003; 86:33-44. [PMID: 12807422 DOI: 10.1046/j.1471-4159.2003.01815.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dopamine (DA) and glutamate neurotransmission is thought to be critical for psychostimulant drugs to induce immediate early genes (IEGs) in the caudate-putamen (CPu). We report here, however, that the ability of DA and glutamate NMDA receptor antagonists to attenuate amphetamine-evoked c-fos mRNA expression in the CPu depends on environmental context. When given in the home cage, amphetamine induced c-fos mRNA expression predominately in preprodynorphin and preprotachykinin mRNA-containing neurons (Dyn-SP+ cells) in the CPu. In this condition, all of the D1R, D2R and NMDAR antagonists tested dose-dependently decreased c-fos expression in Dyn-SP+ cells. When given in a novel environment, amphetamine induced c-fos mRNA in both Dyn-SP+ and preproenkephalin mRNA-containing neurons (Enk+ cells). In this condition, D1R and non-selective NMDAR antagonists dose-dependently decreased c-fos expression in Dyn-SP+ cells, but neither D2R nor NR2B-selective NMDAR antagonists had no effect. Furthermore, amphetamine-evoked c-fos expression in Enk+ cells was most sensitive to DAR and NMDAR antagonism; the lowest dose of every antagonist tested significantly decreased c-fos expression only in these cells. Finally, novelty-stress also induced c-fos expression in both Dyn-SP+ and Enk+ cells, and this was relatively resistant to all but D1R antagonists. We suggest that the mechanism(s) by which amphetamine evokes c-fos expression in the CPu varies depending on the stimulus (amphetamine vs. stress), the striatal cell population engaged (Dyn-SP+ vs. Enk+ cells), and environmental context (home vs. novel cage).
Collapse
Affiliation(s)
- Susan M Ferguson
- Neuroscience Program, University of Michigan, Ann Arbor 48109, USA
| | | | | | | | | |
Collapse
|
35
|
Uslaner JM, Crombag HS, Ferguson SM, Robinson TE. Cocaine-induced psychomotor activity is associated with its ability to induce c-fos mRNA expression in the subthalamic nucleus: effects of dose and repeated treatment. Eur J Neurosci 2003; 17:2180-6. [PMID: 12786985 DOI: 10.1046/j.1460-9568.2003.02638.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Factors that modulate the psychomotor activating effects of amphetamine and cocaine, such as environmental novelty and dose, also regulate the ability of these drugs to induce c-fos mRNA expression in the subthalamic nucleus (STN). We hypothesized therefore that engagement of the STN may be important for stimulant-induced psychomotor activation. To further test this hypothesis we examined whether repeated treatment with cocaine, which enhances its psychomotor activating effects (i.e. produces behavioural sensitization), also enhances its ability to induce c-fos expression in the STN. In addition, given that STN activity is thought to be influenced by preproenkephalin mRNA-containing (ENK+) neurons in the caudate-putamen, we also examined whether repeated cocaine treatment alters c-fos expression in ENK+ cells. We report that: (i) cocaine pretreatment enhances the ability of a cocaine challenge to induce c-fos mRNA expression in the STN, and this effect is most robust at challenge doses where behavioural sensitization is observed; (ii) the ability of cocaine to induce c-fos in the STN is independent of the ability of cocaine to engage ENK+ cells. These results support the idea that the STN is involved in stimulant-induced psychomotor activation and sensitization, but suggest that stimulant-induced engagement of the STN is not dependent on ENK+ cells in the caudate-putamen. These findings may have implications concerning the neurobiological mechanisms underlying the behavioural effects of psychostimulant drugs.
Collapse
Affiliation(s)
- Jason M Uslaner
- Biopsychology Program, Department of Psychology, The University of Michigan, East Hall, 525 E. University St., Ann Arbor, MI 48019-1109, USA
| | | | | | | |
Collapse
|
36
|
Uslaner JM, Norton CS, Watson SJ, Akil H, Robinson TE. Amphetamine-induced c-fos mRNA expression in the caudate-putamen and subthalamic nucleus: interactions between dose, environment, and neuronal phenotype. J Neurochem 2003; 85:105-14. [PMID: 12641732 DOI: 10.1046/j.1471-4159.2003.01646.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When administered in a novel environment relatively low doses of amphetamine induce c-fos mRNA in the subthalamic nucleus (STN) and in preproenkephalin mRNA-containing (ENK+) neurons in the caudate-putamen (CPu). When administered at home, however, low doses of amphetamine do not produce these effects. Environmental novelty also facilitates the behavioral effects of acute and repeated amphetamine, but this is dose-dependent. The purpose of the present experiment therefore was to determine if the effect of context on amphetamine-induced c-fos expression is also dose-dependent. It was found that: (i) No dose of amphetamine tested (1-10 mg/kg) induced c-fos in many ENK+ cells when given at home. (ii) When given in a novel environment low to moderate doses of amphetamine (1-5 mg/kg) induced c-fos in substantial numbers of ENK+ cells, but the highest dose examined (10 mg/kg) did not. (iii) Environmental novelty enhanced the ability of low to moderate doses of amphetamine to induce c-fos in the STN, but the highest dose of amphetamine induced robust c-fos mRNA expression in the STN regardless of context. The results do not support the idea that engaging ENK+ cells, at least as indicated by c-fos mRNA expression, is critical to produce robust behavioral sensitization, but do suggest a possible role for the STN. Furthermore, the results highlight the importance of drug-environment interactions on the neurobiological effects of drugs, and have implications for thinking about the circuits by which context modulates the acute and long-lasting consequences of amphetamine treatment.
Collapse
Affiliation(s)
- Jason M Uslaner
- Biopsychology and Neuroscience Programs, Department of Psychology, The University of Michigan, Ann Arbor, Michigan 48019, USA
| | | | | | | | | |
Collapse
|
37
|
Gross CE, Ravenscroft P, Dovero S, Jaber M, Bioulac B, Bezard E. Pattern of levodopa-induced striatal changes is different in normal and MPTP-lesioned mice. J Neurochem 2003; 84:1246-55. [PMID: 12614325 DOI: 10.1046/j.1471-4159.2003.01600.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
While levodopa-induced neurochemical changes have been studied in animal models of Parkinson's disease, very little is known regarding the effects of levodopa administration in normal animals. The present study investigates the effects normal and MPTP-lesioned mice chronically treated with two different doses of levodopa. We assess changes in striatal dopamine (DA) receptor binding, striatal DA receptor mRNA levels and striatal neuropeptide precursor levels (preproenkephalin-A [PPE-A]; preprotachykinin [PPT]; preproenkephalin-B [PPE-B]). The extent of the lesion was measured by striatal DA transporter binding and stereological estimation of the number of tyrosine hydroxylase immunoreactive neurones in the substantia nigra pars compacta (SNc). In non-lesioned animals, chronic levodopa treatment induced an increase in PPE-A mRNA, whereas both D3R binding and PPE-B mRNA levels were dramatically increased in the lesioned animals in a dose dependent manner. The present results show that chronic levodopa administration may induce pathophysiological changes, even in the absence of a lesion of the nigro-striatal pathway, suggesting that the sensitization process involves predominantly the indirect striatofugal pathway in non-lesioned animals, whereas the direct pathway is primarily involved in lesioned animals.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- Animals
- Antiparkinson Agents/pharmacology
- Binding, Competitive/drug effects
- Chronic Disease
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Corpus Striatum/pathology
- Disease Models, Animal
- Dopamine Plasma Membrane Transport Proteins
- Enkephalins/genetics
- Enkephalins/metabolism
- Levodopa/pharmacology
- Male
- Membrane Glycoproteins
- Membrane Transport Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Nerve Tissue Proteins
- Neural Pathways/drug effects
- Neural Pathways/pathology
- Neurons/metabolism
- Neurons/pathology
- Parkinsonian Disorders/chemically induced
- Parkinsonian Disorders/drug therapy
- Parkinsonian Disorders/pathology
- Protein Precursors/genetics
- Protein Precursors/metabolism
- RNA, Messenger/metabolism
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D3
- Substantia Nigra/metabolism
- Substantia Nigra/pathology
- Tachykinins/genetics
- Tachykinins/metabolism
- Tyrosine 3-Monooxygenase/biosynthesis
Collapse
Affiliation(s)
- Christian E Gross
- Basal Gang, Laboratoire de Neurophysiologie, Universitè Victor Segalen, Bordeaux Cedex, France
| | | | | | | | | | | |
Collapse
|
38
|
Crombag HS, Jedynak JP, Redmond K, Robinson TE, Hope BT. Locomotor sensitization to cocaine is associated with increased Fos expression in the accumbens, but not in the caudate. Behav Brain Res 2002; 136:455-62. [PMID: 12429408 DOI: 10.1016/s0166-4328(02)00196-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Behavioral sensitization following repeated intermittent cocaine administrations is thought to involve alterations in cocaine regulation of neural activity within the accumbens and caudate brain regions. Although Fos immunohistochemistry and c-fos in situ hybridization have frequently been used to assess changes in cocaine-induced neural activity following prior cocaine exposure, these techniques have rarely been used to examine neural activity in the accumbens of behaviorally sensitized animals. In the present experiment, we compared the ability of increasing doses of cocaine to induce Fos in the accumbens and caudate of rats following a treatment procedure (7 once daily injections of 15 mg/kg of cocaine or the saline vehicle) shown to produce robust and persistent (1 week) locomotor sensitization. In sensitized animals, there was a leftward shift in the dose-response curve for cocaine induction of Fos in the accumbens, but not in the caudate. These results provide the first parametric evidence for sensitization of cocaine-induced Fos expression in the accumbens.
Collapse
Affiliation(s)
- Hans S Crombag
- Behavioral Neuroscience Branch, The National Institute on Drug Abuse, Intramural Research Program, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
39
|
Abstract
DeltaFosB is a transcription factor that accumulates in a region-specific manner in the brain after chronic perturbations. For example, repeated administration of drugs of abuse increases levels of DeltaFosB in the striatum. In the present study, we analyzed the effect of spontaneous wheel running, as a model for a natural rewarding behavior, on levels of DeltaFosB in striatal regions. Moreover, mice that inducibly overexpress DeltaFosB in specific subpopulations of striatal neurons were used to study the possible role of DeltaFosB on running behavior. Lewis rats given ad libitum access to running wheels for 30 d covered what would correspond to approximately 10 km/d and showed increased levels of DeltaFosB in the nucleus accumbens compared with rats exposed to locked running wheels. Mice that overexpress DeltaFosB selectively in striatal dynorphin-containing neurons increased their daily running compared with control littermates, whereas mice that overexpress DeltaFosB predominantly in striatal enkephalin-containing neurons ran considerably less than controls. Data from the present study demonstrate that like drugs of abuse, voluntary running increases levels of DeltaFosB in brain reward pathways. Furthermore, overexpression of DeltaFosB in a distinct striatal output neuronal population increases running behavior. Because previous work has shown that DeltaFosB overexpression within this same neuronal population increases the rewarding properties of drugs of abuse, results of the present study suggest that DeltaFosB may play a key role in controlling both natural and drug-induced reward.
Collapse
|
40
|
Hédou G, Jongen-Rêlo AL, Murphy CA, Heidbreder CA, Feldon J. Sensitized Fos expression in subterritories of the rat medial prefrontal cortex and nucleus accumbens following amphetamine sensitization as revealed by stereology. Brain Res 2002; 950:165-79. [PMID: 12231241 DOI: 10.1016/s0006-8993(02)03034-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Behavioral sensitization to the locomotor activating effects of amphetamine refers to the progressive, long lasting increase in locomotor activity that occurs with repeated injections. This phenomenon is thought to result from neuroadaptations occurring in the projection fields of mesocorticolimbic dopaminergic neurons. In the present study, we investigated the effects of amphetamine sensitization on Fos immunoreactivity (Fos-IR) in subterritories of the nucleus accumbens (core and shell) and medial prefrontal cortex (mPFC; dorsal and ventral) using stereology. Rats received five daily injections of amphetamine (1.5 mg/kg, i.p.) or saline. Behavioral sensitization was measured 48 h following the last injection, in response to a challenge injection of 1.5 mg/kg amphetamine. Sensitized rats showed a greater enhancement of locomotor activity upon drug challenge compared with their saline counterparts. Densities of Fos-positive nuclei were enhanced more in the dorsal than the ventral mPFC subterritory, whereas in the nucleus accumbens, densities of Fos-positive nuclei were increased more in the core than the shell of amphetamine-sensitized rats compared to controls. These results represent, to our knowledge, the first published report using stereological methods to quantify Fos-IR in the brain and suggest functional specialization of cortical and limbic regions in the expression of behavioral sensitization to amphetamine.
Collapse
Affiliation(s)
- Gaël Hédou
- Behavioral Neurobiology Laboratory, The Swiss Federal Institute of Technology (ETH), Schorenstrasse 16, CH-8603, Schwerzenbach, Switzerland
| | | | | | | | | |
Collapse
|
41
|
Hsieh HC, Li HY, Lin MY, Chiou YF, Lin SY, Wong CH, Chen JC. Spatial and temporal profile of haloperidol-induced immediate-early gene expression and phosphoCREB binding in the dorsal and ventral striatum of amphetamine-sensitized rats. Synapse 2002; 45:230-44. [PMID: 12125044 DOI: 10.1002/syn.10099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To determine if D(2) dopamine receptor-mediated nuclear signaling is altered during the development of amphetamine sensitization, we examined the expression of immediate-early gene (IEG) products, Fos, Jun, and Fos-related antigen (FRA), in both controls and amphetamine-sensitized rats after a challenge with the D(2) antagonist haloperidol. When chronic saline- or amphetamine (5 mg/kg, i.p. for 14 days)-treated rats were challenged with 2 mg/kg haloperidol at withdrawal day 3 (w3), more 35-kDa FRA was induced in the ventral striatum of the control group than in the amphetamine-treated rats. In contrast, more Jun and 35-kDa FRA were expressed in the ventral striatum of the amphetamine-treated group than in the controls when haloperidol was given at w10. Topographical analyses indicate that the decrease in FRA immunoreactive neuronal density in amphetamine-treated rats at w3 were located in the dorsolateral caudate/putamen and the nucleus accumbens shell and core subregions. Conversely, the increase in Jun-immunoreactive neurons in amphetamine-treated rats at w10 was observed in the dorsolateral caudate/putamen; in the case of the FRAs, the increase was observed in the nucleus accumbens shell. In addition, the time-dependent profile of IEG expression paralleled the activation of an upstream regulator, cAMP-response element binding protein, in the ventral striatum after haloperidol treatment. These neurochemical changes may be associated with behavioral plasticity, since amphetamine-treated rats displayed a lower amount of locomotor activity when exposed to a novel environment at w3, but had recovered at w10. Overall, the current study reveals that there is a distinct temporal and spatial profile of haloperidol-induced IEG expression and/or CREB phosphorylation in amphetamine-treated rats, suggesting that there is a critical transition between the early and late withdrawal periods.
Collapse
Affiliation(s)
- Huei-Ching Hsieh
- Department of Pharmacology, School of Medicine, Chang-Gung University, 259 Wen-Hwa 1st Road, Tao-Yuan, Kwei-Shan, Taiwan, R.O.C. 333
| | | | | | | | | | | | | |
Collapse
|
42
|
Kantor L, Park YH, Wang KKW, Gnegy M. Enhanced amphetamine-mediated dopamine release develops in PC12 cells after repeated amphetamine treatment. Eur J Pharmacol 2002; 451:27-35. [PMID: 12223225 DOI: 10.1016/s0014-2999(02)02190-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We previously demonstrated that rats treated with repeated, intermittent amphetamine displayed enhanced amphetamine-mediated dopamine release in the striatum. In this study, we examined whether amphetamine pretreatment would elicit enhanced amphetamine-mediated dopamine release in a cultured cell line in the absence of intact synaptic connections. PC12 cells pretreated with 1 microM amphetamine produced over twofold increase in amphetamine-mediated dopamine release upon challenge with 1 microM amphetamine as compared with vehicle-treated cells. No change in norepinephrine transporter density or [3H]dopamine uptake was detected. A withdrawal time of 6 days was required to observe the enhanced amphetamine-mediated dopamine release. Differentiation of the cells with nerve growth factor did not alter the amphetamine-mediated dopamine release in control cells or the development of enhanced release in amphetamine-treated cells. Our results demonstrate that repeated, intermittent amphetamine leads to a neuroadaptation resulting in enhanced amphetamine-induced dopamine release in catecholaminergic cells without the need of an intact neuroanatomy.
Collapse
Affiliation(s)
- Lana Kantor
- Department of Pharmacology, University of Michigan School of Medicine, 2220 MSRB III, 1150 W Medical Center Dr, Ann Arbor, MI 48109-0632, USA
| | | | | | | |
Collapse
|
43
|
Liste I, Bernard V, Bloch B. Acute and chronic acetylcholinesterase inhibition regulates in vivo the localization and abundance of muscarinic receptors m2 and m4 at the cell surface and in the cytoplasm of striatal neurons. Mol Cell Neurosci 2002; 20:244-56. [PMID: 12093157 DOI: 10.1006/mcne.2001.1083] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acetylcholinesterase inhibitors (AChE-I) of various pharmacological classes have been used to provoke acute and chronic hypercholinergy in brain. Each condition induces a dramatic decrease of the abundance of muscarinic receptors at the membrane of neurons with simultaneous increase of these receptors in the cytoplasm in association with different subcellular organelles with characteristics depending on the duration of the treatment (short-term versus long term treatment). Each condition also induces a dramatic increase of cytoplasmic receptors associated with endosomes and multivesicular bodies. Chronic treatment with MTF induces a general decrease of m4R in the striatum without modification of the mRNA level but with an exaggerated abundance of muscarinic receptors in the cytoplasm at the sites of synthesis and maturation, i.e., endoplasmic reticulum, nuclear membrane and Golgi apparatus. These results suggest that the membrane abundance and intraneuronal distribution of neurotransmitter receptors are modified following drug treatment with specificity depending on the nature and the duration of treatment.
Collapse
Affiliation(s)
- Isabel Liste
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5541, Laboratoire d'Histologie-Embryologie, 146 rue Léo-Saignat, 33076 Bordeaux cedex, France
| | | | | |
Collapse
|
44
|
Bashkatova V, Mathieu-Kia AM, Durand C, Penit-Soria J. Neurochemical changes and neurotoxic effects of an acute treatment with sydnocarb, a novel psychostimulant: comparison with D-amphetamine. Ann N Y Acad Sci 2002; 965:180-92. [PMID: 12105094 DOI: 10.1111/j.1749-6632.2002.tb04160.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sydnocarb [(phenylisopropyl)N-phenylcarbamoylsydnonimine; SYD] was introduced to clinical practice in Russia as a psychostimulant drug used for the treatment of asthenia and apathy, which accompany schizophrenia and manic depression. It has been described as a psychostimulant with addiction liability and toxicity less than amphetamine (AMPH). The precise cellular mechanisms by which sydnocarb elicits its psychostimulant effect are still unclear. At present its neurochemical and neurotoxic effects are compared to those of AMPH in the striatum, the main input structure of the basal ganglia. The expression of c-fos protein in striatal neurons was much more increased after a single injection of D-AMPH (5 mg/kg) than after an equimolar concentration of SYD (23.8 mg/kg) in both the anterior and the posterior part of the striatum. Using in situ hybridization on striatal slices, we observed that AMPH increased the striatal levels of preprodynorphin (PPDYN) mRNAs in both parts of the striatum, while SYD did not affect basal levels of PPDYN mRNAs. Furthermore, AMPH and SYD increased striatal preprotachykinin (PPT-A) and preproenkephalin (PPE) mRNA levels. The effects of AMPH and SYD on PPT-A-mRNA levels were similar. A differential effect of AMPH and SYD was observed only on the PPE-mRNA levels measured in the anterior striatum where SYD increased these levels more than AMPH. The acute neurotoxicity of these two psychostimulants was analyzed by measuring their effects on the parameters of oxidative stress, such as nitric oxide (NO) generation, as well as specific indices of lipid peroxidation (i.e., thiobarbituric acid reactive substances; TBARS), while, on the other hand, the alpha-tocopherol level was taken as an index of antioxidant defense processes. Measuring generation of NO directly by electron paramagnetic resonance, it was observed that AMPH shows a more pronounced increase in comparison to SYD, in the striatum and in cortex. TBARS levels in the striatum and cortex were significantly less enhanced than AMPH after a single injection of SYD. Similarly, the alpha-tocopherol level was decreased only by AMPH in the striatum, and neither AMPH nor SYD had any effect in the cortex. Results show that a single injection of a high dose of AMPH is able to induce several neurotoxic effects. The study also demonstrates that SYD has mild neurochemical effects as well as fewer neurotoxic properties than AMPH.
Collapse
|
45
|
Mao L, Wang JQ. Differentially altered mGluR1 and mGluR5 mRNA expression in rat caudate nucleus and nucleus accumbens in the development and expression of behavioral sensitization to repeated amphetamine administration. Synapse 2001; 41:230-40. [PMID: 11418936 DOI: 10.1002/syn.1080] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Altered glutamatergic transmission in the striatum may be implicated in behavioral sensitization to repeated amphetamine (AMPH) administration. Quantitative in situ hybridization histochemistry was performed to define the effects of acute and chronic AMPH exposures on mRNA expression of Group I metabotropic glutamate receptors (mGluRs) in the striatum. Behavioral ratings indicated that the motor activity of rats was significantly higher after the final of five daily AMPH injections (4 mg/kg, i.p.) than that after the first of five daily AMPH, indicative of the development of behavioral sensitization. Moreover, the motor activity of rats treated with five daily AMPH was significantly greater than that of rats treated with five daily saline in response to a 2 mg/kg challenge dose of AMPH 7, 14, 28, and 60 days after the discontinuation of drug treatments, indicative of the persistent expression of behavioral sensitization. Three hours after acute administration of AMPH to naive rats, mGluR1 and mGluR5 mRNA expression in the dorsal (caudatoputamen) and ventral (nucleus accumbens) striatum showed no change as compared to acute saline injection. In rats that developed behavioral sensitization to repeated AMPH, mGluR1 levels in the dorsal and ventral striatum were increased by 53% and 43%, respectively, 3 h after the final AMPH treatment. However, this change did not persist during withdrawal since it was not observed 7, 14, and 28 days after the discontinuation of AMPH treatment. Conversely, mGluR5 levels were markedly reduced 3 h after the final of five daily AMPH treatments in the entire striatum of sensitized rats (34% and 77% of controls in the dorsal and ventral striatum, respectively). The reduction persisted at 7, 14, and 28 days of withdrawal. These results reveal a close linkage between striatal Group I mGluR gene expression and behavioral sensitization to AMPH. This may indicate functional implications of the two subtypes of Group I mGluRs in the regulation of behavioral sensitization to the dopamine stimulant.
Collapse
Affiliation(s)
- L Mao
- Division of Pharmacology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri 64108, USA
| | | |
Collapse
|
46
|
Uslaner J, Badiani A, Norton CS, Day HE, Watson SJ, Akil H, Robinson TE. Amphetamine and cocaine induce different patterns of c-fos mRNA expression in the striatum and subthalamic nucleus depending on environmental context. Eur J Neurosci 2001; 13:1977-83. [PMID: 11403691 DOI: 10.1046/j.0953-816x.2001.01574.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the dorsal striatum, there are two major populations of medium spiny projection neurons. One population is positive for dynorphin mRNA (DYN+), and these cells project preferentially to the substantia nigra, forming the so-called 'direct pathway'. A second population is positive for enkephalin mRNA (ENK+), and these cells influence the substantia nigra indirectly, via the globus pallidus and subthalamic nucleus. Psychostimulant drugs, such as amphetamine and cocaine, are reported to induce immediate early genes (IEGs) in only one subpopulation of dorsal striatal projection neurons, DYN+ cells. However, this apparent selectivity appears to be a function of environmental context. We found that when given in the animal's home cage, amphetamine and cocaine increased expression of the IEG, c-fos, almost exclusively in DYN+ cells. However, when given in a novel environment, amphetamine and cocaine increased c-fos mRNA in both DYN+ and ENK+ cells. Furthermore, amphetamine and cocaine increased c-fos mRNA expression in the subthalamic nucleus when administered in the novel environment, but not when given at home. We conclude that the neural circuitry engaged by psychostimulant drugs, and their ability to induce specific patterns of gene expression, are determined by the environmental context in which they are experienced. This may be related to the ability of environmental novelty to facilitate psychostimulant drug-induced neuroplasticity.
Collapse
Affiliation(s)
- J Uslaner
- Biopsychology and Neuroscience Programs, Department of Psychology, The University of Michigan, East Hall, 525 E. University St, Ann Arbor, MI 48019-1109, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Semba J, Tanaka N, Wakuta M, Suhara T. Neonatal phencyclidine treatment selectively attenuates mesolimbic dopamine function in adult rats as revealed by methamphetamine-induced behavior and c-fos mRNA expression in the brain. Synapse 2001; 40:11-8. [PMID: 11170217 DOI: 10.1002/1098-2396(200104)40:1<11::aid-syn1021>3.0.co;2-i] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
One of the major hypotheses regarding the pathogenesis of schizophrenia is the implication of neurodevelopmental abnormality. However, the mechanism of delayed onset of schizophrenic symptoms, in which increased dopaminergic activity in mesolimbic or mesocortical dopamine systems plays a pathological role, is not known. In this study, we investigated whether the chronic blockade of N-methyl-D-aspartate (NMDA) receptor by phencyclidine (PCP), an NMDA channel blocker, during development could disrupt the dopamine system during later life. Neonatal rats were injected with PCP subcutaneously daily from postnatal day (PD) 1 to PD 14 and their dopaminergic function was evaluated on PD 42 by rating the methamphetamine (MAP)-induced behavior. To illustrate the activated brain regions, the expression of c-fos mRNA in response to a MAP challenge was also studied utilizing in situ hybridization. Chronic neonatal PCP treatment attenuated MAP-induced oral stereotypy (licking and gnawing) and reduced MAP-induced expression of c-fos mRNA in the N. accumbens shell region and VTA but not in the N. accumbens core region, medial striatum, or substantia nigra. These results suggest that neonatal blockade of NMDA receptor, which induces a number of effects in the developing nervous system, may cause long-lasting functional changes of the mesolimbic dopamine system.
Collapse
Affiliation(s)
- J Semba
- Division of Health Sciences, University of the Air, Chiba, Japan.
| | | | | | | |
Collapse
|
48
|
Basura GJ, Walker PD. Stimulated serotonin release from hyperinnervated terminals subsequent to neonatal dopamine depletion regulates striatal tachykinin, but not enkephalin gene expression. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 81:80-91. [PMID: 11000480 DOI: 10.1016/s0169-328x(00)00153-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Dopamine (DA) depletion in neonatal rodents results in depressed tachykinin and elevated enkephalin gene expression in the adult striatum (STR). Concurrently, serotonin (5-HT) fibers sprout to hyperinnervate the DA-depleted anterior striatum (A-STR). The present study was designed to determine if increased 5-HT release from sprouted terminals influences dysregulated preprotachykinin (PPT) and preproenkephalin (PPE) mRNA expression in the DA-depleted STR. Three-day-old Sprague-Dawley rat pups received bilateral intracerebroventricular injections of vehicle or the DA neurotoxin 6-hydroxydopamine (6-OHDA, 100 microg). Two months later, rats received a single intraperitoneal injection of vehicle or the acute 5-HT releasing agent p-chloroamphetamine (PCA; 10 mg/kg). Rats were killed 4 h later and striata processed for monoamine content by HPLC-ED and mRNA expression by in situ hybridization within specific subregions of the A-STR and posterior striatum (P-STR). 6-OHDA treatment severely (>98%) reduced striatal DA levels, while 5-HT content in the A-STR was significantly elevated (doubled), indicative of 5-HT hyperinnervation. Following 6-OHDA, PPT mRNA levels were depressed 60-66% across three subregions of the A-STR and 52-59% across two subregions of the P-STR, while PPE mRNA expression was elevated in both the A-STR (50-62%) and P-STR (55-82%). PCA normalized PPT mRNA levels in all regions of the DA-depleted A-STR and P-STR, yet did not alter PPE levels in either dorsal central or medial regions from 6-OHDA alone, but reduced PPE to control levels in the dorsal lateral A-STR. These data indicate that increased 5-HT neurotransmission, following neonatal 6-OHDA treatment, primarily influences PPT-containing neurons of the direct striatal output pathway.
Collapse
Affiliation(s)
- G J Basura
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 9352 Gordon H. Scott Hall, 540 East Canfield Avenue, Detroit, MI 48201, USA
| | | |
Collapse
|
49
|
Michelhaugh SK, Gnegy ME. Differential regulation of calmodulin content and calmodulin messenger RNA levels by acute and repeated, intermittent amphetamine in dopaminergic terminal and midbrain areas. Neuroscience 2000; 98:275-85. [PMID: 10854758 DOI: 10.1016/s0306-4522(00)00142-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Repeated doses of psychoactive drugs often produce adaptive responses that differ from the initial drug application and additional adaptive processes occur following cessation of the drug. The relationship between alterations in calmodulin protein and messenger RNA produced by an initial versus a repeated dose of amphetamine was examined, as well as changes following drug cessation. Calmodulin protein and messenger RNA of the three individual calmodulin genes were measured in rat dopaminergic cell body and terminal areas following acute or repeated amphetamine. Rats were either injected once with 2.5mg/kg amphetamine or saline and decapitated after 3h, or given 10 injections of amphetamine three to four days apart and decapitated 3h after the final injection. Calmodulin messenger RNA and protein were also measured three and seven days after ceasing drug treatment. Acute amphetamine increased calmodulin 1.7-fold in the striatum and threefold in the ventral mesencephalon, with corresponding elevations in calmodulin messenger RNAs. In response to the 10th dose of amphetamine, however, the degree of increase in calmodulin was diminished in the striatum and ablated in the ventral mesencephalon. Correspondingly, select species of calmodulin messenger RNA were decreased from control levels. In the frontal cortex or nucleus accumbens, calmodulin levels were basically unaltered by the first or 10th doses of amphetamine, but both calmodulin and its messenger RNA were altered with time upon cessation of the drug. Three days later, both calmodulin protein and messenger RNA were decreased in select brain areas. By seven days after the 10th injection, calmodulin content was altered compared to saline controls in all areas, but the change in messenger RNA no longer paralleled the change in protein.Our findings demonstrate that both calmodulin protein and select species of calmodulin messenger RNA are altered by acute amphetamine, but this effect is attenuated after repeated, intermittent amphetamine. There are further time-dependent changes after cessation of repeated amphetamine, which may reflect compensatory neuronal responses. The alterations in calmodulin content and synthesis could contribute to changes in patterns or duration of behaviors that occur upon cessation of repeated amphetamine.
Collapse
Affiliation(s)
- S K Michelhaugh
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-0634, USA
| | | |
Collapse
|
50
|
Liste I, Muñoz A, Guerra MJ, Labandeira-Garcia JL. Fenfluramine-induced increase in preproenkephalin mRNA levels in the striatum: interaction between the serotonergic, glutamatergic, and dopaminergic systems. Synapse 2000; 35:182-91. [PMID: 10657025 DOI: 10.1002/(sici)1098-2396(20000301)35:3<182::aid-syn3>3.0.co;2-t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Fenfluramine (FE) is a halogenated amphetamine derivative that has been used in the treatment of obesity. It has been suggested that the effects of FE on the striatum are mediated by serotonergic mechanisms. However, several major afferent systems may be involved, and administration of FE may be useful to study interactions between these systems. In this work, the effects of FE on striatopallidal neurons and the possible involvement of the major striatal afferent systems were studied in rats by determination of FE-induced changes in striatal levels of preproenkephalin (PPE) mRNA using in situ hybridization. Injection of FE induced a significant increase (60%) in striatal levels of PPE mRNA. This increase was blocked by pretreatment with the D(1) dopamine receptor antagonist SCH-23390 or with the NMDA glutamate receptor antagonist MK-801, or by lesion of the serotonergic system with 5,7-dihydroxytryptamine or p-chlorophenylalanine. In 6-hydroxydopamine lesioned rats, the lesion-induced increase in PPE mRNA levels was not affected by injection of FE, but was reduced by simultaneous serotonergic deafferentation. The results suggest that the serotonergic, glutamatergic, and dopaminergic system interact to increase striatal PPE mRNA levels after FE administration.
Collapse
Affiliation(s)
- I Liste
- Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | |
Collapse
|