1
|
Halter B, Ildari N, Cline MA, Gilbert ER. Ferulic acid, a phytochemical with transient anorexigenic effects in birds. Comp Biochem Physiol A Mol Integr Physiol 2021; 259:111015. [PMID: 34119636 DOI: 10.1016/j.cbpa.2021.111015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022]
Abstract
Ferulic acid (FA) is a phenolic acid found within the plant cell wall that has physiological benefits as an antioxidant. Although metabolic benefits of FA supplementation are described, lacking are reports of effects on appetite regulation. Thus, our objective was to determine if FA affects food or water intake, using chicks as a model. At 4 days post-hatch, broiler chicks were intraperitoneally injected with 0 (vehicle), 12.5, 25, or 50 mg/kg of FA. Chicks treated with 50 mg/kg of FA consumed 70% less food than controls at 30 min post-injection, and the effect dissipated thereafter. Water intake was not affected at any time. In a behavior analysis, FA-treated chicks defecated fewer times than vehicle-injected chicks, while other behaviors were not affected. There was an increase in c-Fos immunoreactivity within the hypothalamic arcuate nucleus (ARC) of FA-treated chicks, and no differences were detected in other nuclei. mRNA abundance was measured in the whole hypothalamus and the ARC. There was decreased hypothalamic galanin, ghrelin, melanocortin receptor 3, and pro-opiomelanocortin (POMC) mRNA in FA-treated chicks. Within the ARC, there was an increase in c-Fos mRNA and a decrease in POMC mRNA in response to FA. It is likely that the mechanism responsible for mediating FA's transient effects on food intake originates within the ARC, possibly involving POMC. A greater understanding of the short-term, mild appetite-suppressive effects of FA may have applications to treating eating disorders and modulating food intake in animal models of obesity.
Collapse
Affiliation(s)
- Bailey Halter
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA; School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA; School of Neuroscience, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
2
|
Wilsterman K, Ballinger MA, Williams CM. A unifying, eco‐physiological framework for animal dormancy. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13718] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kathryn Wilsterman
- Biological Sciences University of Montana Missoula MT USA
- Integrative Biology University of California Berkeley CA USA
| | | | | |
Collapse
|
3
|
Hadawale KN, Sagarkar S, Bhargava SY. Brain profiling of endogenous Neuropeptide Y (NPY) in distinct reproductive phases of adult male Microhyla ornata. Neurosci Lett 2020; 740:135409. [PMID: 33045276 DOI: 10.1016/j.neulet.2020.135409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/22/2020] [Accepted: 10/05/2020] [Indexed: 11/19/2022]
Abstract
Neuropeptide Y(NPY) is known to play a pivotal role in various physiological functions including appetite and reproduction. While studies in mammals, fishes and reptiles suggest a temporal and evolutionary conserved role of NPY, the information in amphibian is scanty. We have investigated the reproductive phase related variations of NPY in the brain of Microhyla ornata (M. ornata), using immunohistochemistry and reverse transcription quantitative PCR (RT-qPCR). The highest expression of NPY peptide was observed in the preoptic area (Poa), nucleus infundibularis ventralis (NIV) and nucleus reticularis isthmi (NRIS) of M. ornata in breeding season compared to pre-breeding as well as post-breeding season. In parallel, highest mRNA levels of NPY were also observed in the breeding season in the middle region of brain that includes hypothalamus of M. ornata. Variation in the levels of NPY peptide and mRNA levels in the brain of M. ornata point towards seasonal control of appetite and reproduction.
Collapse
Affiliation(s)
- Kavita N Hadawale
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind Road, Pune-411 007, India
| | - Sneha Sagarkar
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind Road, Pune-411 007, India.
| | - Shobha Y Bhargava
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind Road, Pune-411 007, India.
| |
Collapse
|
4
|
Mohr SM, Bagriantsev SN, Gracheva EO. Cellular, Molecular, and Physiological Adaptations of Hibernation: The Solution to Environmental Challenges. Annu Rev Cell Dev Biol 2020; 36:315-338. [PMID: 32897760 DOI: 10.1146/annurev-cellbio-012820-095945] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thriving in times of resource scarcity requires an incredible flexibility of behavioral, physiological, cellular, and molecular functions that must change within a relatively short time. Hibernation is a collection of physiological strategies that allows animals to inhabit inhospitable environments, where they experience extreme thermal challenges and scarcity of food and water. Many different kinds of animals employ hibernation, and there is a spectrum of hibernation phenotypes. Here, we focus on obligatory mammalian hibernators to identify the unique challenges they face and the adaptations that allow hibernators to overcome them. This includes the cellular and molecular strategies used to combat low environmental and body temperatures and lack of food and water. We discuss metabolic, neuronal, and hormonal cues that regulate hibernation and how they are thought to be coordinated by internal clocks. Last, we touch on questions that are left to be addressed in the field of hibernation research. Studies from the last century and more recent work reveal that hibernation is not simply a passive reduction in body temperature and vital parameters but rather an active process seasonally regulated at the molecular, cellular, and organismal levels.
Collapse
Affiliation(s)
- Sarah M Mohr
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA; .,Department of Neuroscience and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06510, USA;
| | - Sviatoslav N Bagriantsev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA;
| | - Elena O Gracheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA; .,Department of Neuroscience and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06510, USA;
| |
Collapse
|
5
|
Florant GL, Healy JE. The regulation of food intake in mammalian hibernators: a review. J Comp Physiol B 2011; 182:451-67. [PMID: 22080368 DOI: 10.1007/s00360-011-0630-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 10/20/2011] [Accepted: 10/29/2011] [Indexed: 12/20/2022]
Abstract
One of the most profound hallmarks of mammalian hibernation is the dramatic reduction in food intake during the winter months. Several species of hibernator completely cease food intake (aphagia) for nearly 7 months regardless of ambient temperature and in many cases, whether or not food is available to them. Food intake regulation has been studied in mammals that hibernate for over 50 years and still little is known about the physiological mechanisms that control this important behavior in hibernators. It is well known from lesion experiments in non-hibernators that the hypothalamus is the main brain region controlling food intake and therefore body mass. In hibernators, the regulation of food intake and body mass is presumably governed by a circannual rhythm since there is a clear seasonal rhythm to food intake: animals increase food intake in the summer and early autumn, food intake declines in autumn and actually ceases in winter in many species, and resumes again in spring as food becomes available in the environment. Changes in circulating hormones (e.g., leptin, insulin, and ghrelin), nutrients (glucose, and free fatty acids), and cellular enzymes such as AMP-activated protein kinase (AMPK) have been shown to determine the activity of neurons involved in the food intake pathway. Thus, it appears likely that the food intake pathway is controlled by a variety of inputs, but is also acted upon by upstream regulators that are presumably rhythmic in nature. Current research examining the molecular mechanisms and integration of environmental signals (e.g., temperature and light) with these molecular mechanisms will hopefully shed light on how animals can turn off food intake and survive without eating for months on end.
Collapse
Affiliation(s)
- Gregory L Florant
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
6
|
Otis JP, Raybould HE, Carey HV. Cholecystokinin activation of central satiety centers changes seasonally in a mammalian hibernator. Gen Comp Endocrinol 2011; 171:269-74. [PMID: 21362421 PMCID: PMC4441800 DOI: 10.1016/j.ygcen.2011.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/09/2011] [Accepted: 02/22/2011] [Indexed: 12/24/2022]
Abstract
Hibernators that rely on lipids during winter exhibit profound changes in food intake over the annual cycle. The mechanisms that regulate appetite changes in seasonal hibernators remain unclear, but likely consist of complex interactions between gut hormones, adipokines, and central processing centers. We hypothesized that seasonal changes in the sensitivity of neurons in the nucleus tractus solitarius (NTS) to the gut hormone cholecystokinin (CCK) may contribute to appetite regulation in ground squirrels. Spring (SPR), late summer (SUM), and winter euthermic hibernating (HIB) 13-lined ground squirrels (Ictidomys tridecemlineatus) were treated with intraperitoneal CCK (100 μg/kg) or vehicle (CON) for 3h and Fos expression in the NTS was quantified. In CON squirrels, numbers of Fos-positive neurons in HIB were low compared to SPR and SUM. CCK treatment increased Fos-positive neurons in the NTS at the levels of the area postrema (AP) and pre AP during all seasons and at the level of the rostral AP in HIB squirrels. The highest absolute levels of Fos-positive neurons were found in SPR CCK squirrels, but the highest relative increase from CON was found in HIB CCK squirrels. Fold-changes in Fos-positive neurons in SUM were intermediate between SPR and HIB. Thus, CCK sensitivity falls from SPR to SUM suggesting that seasonal changes in sensitivity of NTS neurons to vagally-derived CCK may influence appetite in the active phase of the annual cycle in hibernating squirrels. Enhanced sensitivity to CCK signaling in NTS neurons of hibernators indicates that changes in gut-brain signaling may contribute to seasonal changes in food intake during the annual cycle.
Collapse
Affiliation(s)
- Jessica P. Otis
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Dr., Madison, WI 53706, USA
| | - Helen E. Raybould
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, 1321 Haring Hall, Davis, CA 95616, USA
| | - Hannah V. Carey
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Dr., Madison, WI 53706, USA
- Corresponding author: Fax: +1 608 263 3926. (H.V. Carey)
| |
Collapse
|
7
|
Florant GL, Fenn AM, Healy JE, Wilkerson GK, Handa RJ. To eat or not to eat: the effect of AICAR on food intake regulation in yellow-bellied marmots (Marmota flaviventris). ACTA ACUST UNITED AC 2010; 213:2031-7. [PMID: 20511516 DOI: 10.1242/jeb.039131] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mammals that hibernate (hibernators) exhibit a circannual rhythm of food intake and body mass. In the laboratory during the winter hibernation period, many hibernators enter a series of multi-day torpor bouts, dropping their body temperature to near ambient, and cease to feed even if food is present in their cage. The mechanism(s) that regulates food intake in hibernators is unclear. Recently, AMP-activated protein kinase (AMPK) has been shown to play a key role in the central regulation of food intake in mammals. We hypothesized that infusing an AMPK activator, 5-aminoimidazole-4-carboxamide 1 B-D-ribofuranoside (AICAR), intracerebroventricularly (ICV) into the third ventricle of the hypothalamus would stimulate yellow-bellied marmots (Marmota flaviventris) to feed during their hibernation season. Infusion of AICAR ICV into marmots at an ambient temperature of 22 degrees C caused a significant (P<0.05) increase in food intake. In addition, animals stimulated to feed did not enter torpor during the infusion period. Marmots ICV infused with saline did not increase food intake and these animals continued to undergo torpor at an ambient temperature of 22 degrees C. Our results suggest that AICAR stimulated the food intake pathway, presumably by activating AMPK. These results support the hypothesis that AMPK may be involved in regulating food intake in hibernators and that there may be common neural pathways involved in regulating feeding and eliciting torpor.
Collapse
Affiliation(s)
- Gregory L Florant
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | |
Collapse
|
8
|
Minor RK, Chang JW, de Cabo R. Hungry for life: How the arcuate nucleus and neuropeptide Y may play a critical role in mediating the benefits of calorie restriction. Mol Cell Endocrinol 2009; 299:79-88. [PMID: 19041366 PMCID: PMC2668104 DOI: 10.1016/j.mce.2008.10.044] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 10/14/2008] [Indexed: 11/27/2022]
Abstract
Laboratory studies consistently demonstrate extended lifespan in animals on calorie restriction (CR), where total caloric intake is reduced by 10-40% but adequate nutrition is otherwise maintained. CR has been further shown to delay the onset and severity of chronic diseases associated with aging such as cancer, and to extend the functional health span of important faculties like cognition. Less understood are the underlying mechanisms through which CR might act to induce such alterations. One theory postulates that CR's beneficial effects are intimately tied to the neuroendocrine response to low energy availability, of which the arcuate nucleus in the hypothalamus plays a pivotal role. Neuropeptide Y (NPY), a neurotransmitter in the front line of the arcuate response to low energy availability, is the primary hunger signal affected by CR and therefore may be a critical mechanism for lifespan extension.
Collapse
Affiliation(s)
- Robin K. Minor
- Laboratory of Experimental Gerontology, Intramural Research Program, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Joy W. Chang
- Laboratory of Experimental Gerontology, Intramural Research Program, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Rafael de Cabo
- Laboratory of Experimental Gerontology, Intramural Research Program, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| |
Collapse
|
9
|
Kuo LE, Kitlinska JB, Tilan JU, Li L, Baker SB, Johnson MD, Lee EW, Burnett MS, Fricke ST, Kvetnansky R, Herzog H, Zukowska Z. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat Med 2007; 13:803-11. [PMID: 17603492 DOI: 10.1038/nm1611] [Citation(s) in RCA: 448] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 05/25/2007] [Indexed: 12/29/2022]
Abstract
The relationship between stress and obesity remains elusive. In response to stress, some people lose weight, whereas others gain. Here we report that stress exaggerates diet-induced obesity through a peripheral mechanism in the abdominal white adipose tissue that is mediated by neuropeptide Y (NPY). Stressors such as exposure to cold or aggression lead to the release of NPY from sympathetic nerves, which in turn upregulates NPY and its Y2 receptors (NPY2R) in a glucocorticoid-dependent manner in the abdominal fat. This positive feedback response by NPY leads to the growth of abdominal fat. Release of NPY and activation of NPY2R stimulates fat angiogenesis, macrophage infiltration, and the proliferation and differentiation of new adipocytes, resulting in abdominal obesity and a metabolic syndrome-like condition. NPY, like stress, stimulates mouse and human fat growth, whereas pharmacological inhibition or fat-targeted knockdown of NPY2R is anti-angiogenic and anti-adipogenic, while reducing abdominal obesity and metabolic abnormalities. Thus, manipulations of NPY2R activity within fat tissue offer new ways to remodel fat and treat obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Lydia E Kuo
- Department of Physiology & Biophysics, Georgetown University Medical Center, 3900 Reservoir Rd. NW, BSB 234, Washington, DC 20057, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Nunes S, Pelz KM, Muecke EM, Holekamp KE, Zucker I. Plasma glucocorticoid concentrations and body mass in ground squirrels: seasonal variation and circannual organization. Gen Comp Endocrinol 2006; 146:136-43. [PMID: 16360155 DOI: 10.1016/j.ygcen.2005.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 10/13/2005] [Accepted: 10/17/2005] [Indexed: 10/24/2022]
Abstract
We examined variation in plasma glucocorticoid concentrations of free-living Belding's ground squirrels (Spermophilus beldingi) and captive golden-mantled ground squirrels (Spermophilus lateralis) housed in constant environmental conditions. Plasma corticosterone concentrations were not significantly correlated with time held captive in traps prior to collection of blood samples in males or non-breeding females, but these variables were significantly correlated in breeding females during the pre-mating, lactation, and post-lactation periods. Among male S. beldingi, plasma corticosterone concentrations increased over the course of the active season, and were significantly higher in non-breeding than breeding individuals. Corticosterone concentrations also increased in non-breeding females throughout the active period. In breeding females, baseline (non-stress) corticosterone concentrations, determined from blood samples collected within 3 min of capture, increased during gestation and declined during lactation, whereas stress values of corticosterone, determined from blood samples collected within 4-11 min of capture, increased during gestation and then again during the period after young emerged from the natal burrow. Changes in plasma corticosterone concentrations of S. beldingi paralleled changes in body mass. Among S. lateralis, plasma concentrations of cortisol were elevated when males and females were in reproductive condition and lower in reproductively quiescent squirrels. The annual peak in plasma cortisol concentrations occurred just prior to increases in body mass associated with pre-hibernation fattening. Collectively, these results suggest that concentrations of circulating glucocorticoids fluctuate with circannual rhythmicity in conjunction with annual cycles of change in body mass and activity; within these circannual cycles glucocorticoid concentrations are influenced by stress and breeding status.
Collapse
Affiliation(s)
- Scott Nunes
- Department of Biology, University of San Francisco, San Francisco, CA 94117, USA.
| | | | | | | | | |
Collapse
|
11
|
Paul MJ, Freeman DA, Park JH, Dark J. Neuropeptide Y induces torpor-like hypothermia in Siberian hamsters. Brain Res 2005; 1055:83-92. [PMID: 16098953 DOI: 10.1016/j.brainres.2005.06.090] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 06/27/2005] [Accepted: 06/29/2005] [Indexed: 01/08/2023]
Abstract
Intracerebroventricular (ICV) injections of neuropeptide Y (NPY) are known to decrease body temperature (Tb) of laboratory rats by 1-3 degrees C. Several NPY pathways in the brain terminate in hypothalamic structures involved in energy balance and thermoregulation. Laboratory rats are homeothermic, maintaining Tb within a narrow range. We examined the effect of ICV injected NPY on Tb in the heterothermic Siberian hamster (Phodopus sungorus), a species that naturally undergoes daily torpor in which Tb decreases by as much as 15-20 degrees C. Minimum effective dose was determined in preliminary testing then various doses of NPY were tested in cold-acclimated Siberian hamsters while food was withheld. NPY markedly reduced Tb in the heterothermic Siberian hamster. In addition, the reduction in Tb in 63% of the observations was sufficient to reach the criterion for daily torpor (Tb < 32 degrees C for at least 30 min). Neither the incidence of torpor nor its depth or duration was related to NPY dose. Both likelihood and magnitude of response varied within animals on different test days. NPY decreased 24-h food intake and this was exaggerated in the animals reaching criterion for torpor; the decrease in food intake was positively correlated with the magnitude of the decrease in Tb. The mild hypothermia seen in homeothermic laboratory rats after NPY injected ICV is exaggerated, often greatly, in the heterothermic Siberian hamster. NPY treatment may be activating hypothalamic systems that normally integrate endogenous torpor-producing signals and initiate torpor.
Collapse
Affiliation(s)
- Matthew J Paul
- Department of Psychology, Box 1650, University of California, Berkeley, CA 94720-1650, USA
| | | | | | | |
Collapse
|
12
|
|
13
|
Lecklin A, Lundell I, Salmela S, Männistö PT, Beck-Sickinger AG, Larhammar D. Agonists for neuropeptide Y receptors Y1 and Y5 stimulate different phases of feeding in guinea pigs. Br J Pharmacol 2003; 139:1433-40. [PMID: 12922930 PMCID: PMC1573983 DOI: 10.1038/sj.bjp.0705389] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
1. The stimulatory effect of neuropeptide Y (NPY) on food intake is well established but the roles of the receptor subtypes Y(1) and Y(5) have been difficult to define. We have studied the effects of two novel Y(1)-preferring and two Y(5)-preferring agonists on feeding in guinea pigs. 2. The Y(1)-preferring receptor agonists [Arg(6),Pro(34)]pNPY and [Phe(7),Pro(34)]pNPY had high affinity for the Y(1) receptor (K(i) values 0.07 and 0.04 nM, respectively) and nanomolar affinity for the Y(5) receptor. Administration of either compound into the third brain ventricle increased food intake equally to NPY. 3. The Y(5) agonist [Ala(31),Aib(32)]pNPY displayed a moderate affinity for the Y(5) receptor (K(i) 7.42 nM) and a low affinity for Y(1) (K(i) 1.7 micro M). This compound had only a modest effect on feeding. 4. The other Y(5)-preferring peptide [cPP(1-7),NPY(19-23),Ala(31),Aib(32),Gln(34)]hPP had a higher affinity at the Y(5) receptor (K(i) 1.32 nM) and also at the Y(1) receptor (K(i) 85 nM). It potently stimulated feeding: the food consumption after administration of this peptide was two-fold compared to NPY. 5. Our results support the view that both the receptor subtypes Y(1) and Y(5) are involved in the stimulation of feeding. As the action profiles of the Y(1) and Y(5) agonists on feeding parameters were different, it seems that they influence different phases of eating.
Collapse
Affiliation(s)
- Anne Lecklin
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, Box 593, S-75124 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
14
|
Lecklin A, Lundell I, Paananen L, Wikberg JES, Männistö PT, Larhammar D. Receptor subtypes Y1 and Y5 mediate neuropeptide Y induced feeding in the guinea-pig. Br J Pharmacol 2002; 135:2029-37. [PMID: 11959807 PMCID: PMC1573328 DOI: 10.1038/sj.bjp.0704667] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Neuropeptide Y (NPY) is one of the most potent stimulants of food intake. It has been debated which receptor subtype mediates this response. Initially Y(1) was proposed, but later Y(5) was announced as a 'feeding' receptor in rats and mice. Very little is known regarding other mammals. The present study attempts to characterize the role of NPY in feeding behaviour in the distantly related guinea-pig. When infused intracerebroventricularly, NPY dose-dependently increased food intake. 2. PYY, (Leu(31),Pro(34))NPY and NPY(2 - 36) stimulated feeding, whereas NPY(13 - 36) had no effect. These data suggest that either Y(1) or Y(5) receptors or both may mediate NPY induced food intake in guinea-pigs. 3. The Y(1) receptor antagonists, BIBO 3304 and H 409/22 displayed nanomolar affinity for the Y(1) receptor (K(i) values 1.1+/-0.2 nM and 5.6+/-0.9 nM, respectively), but low affinity for the Y(2) or Y(5) receptors. When guinea-pigs were pretreated with BIBO 3304 and H 409/22, the response to NPY was inhibited. 4. The Y(5) antagonist, CGP 71683A had high affinity for the Y(5) receptor (K(i) 1.3+/-0.05 nM) without having any significant activities at the Y(1) and Y(2) receptors. When CGP 71683A was infused into brain ventricles, the feeding response to NPY was attenuated. 5. The present study shows that NPY stimulates feeding in guinea-pigs through Y(1) and Y(5) receptors. As the guinea-pig is very distantly related to the rat and mouse, this suggests that both Y(1) and Y(5) receptors may mediate NPY-induced hyperphagia also in other orders of mammals.
Collapse
Affiliation(s)
- Anne Lecklin
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, Box 593, S-75124 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
15
|
Gould KL, Newman SW, Tricomi EM, DeVoogd TJ. The distribution of substance P and neuropeptide Y in four songbird species: a comparison of food-storing and non-storing birds. Brain Res 2001; 918:80-95. [PMID: 11684045 DOI: 10.1016/s0006-8993(01)02961-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The distributions of the neuropeptides substance P (SP) and neuropeptide Y (NPY) were investigated in four songbird species that differ in their food-storing behavior. The food-storing black-capped chickadee (Parus atricapillus) was compared to the non-storing blue tit (Parus caeruleus) and great tit (Parus major) within the avian family Paridae, as well as to the non-storing dark-eyed junco (Junco hyemalis). All four species showed a similar distribution of SP throughout the brain with the exception of two areas, the hippocampal complex (including hippocampus (Hp) and parahippocampus (APH)) and the Wulst (including the hyperstriatum accessorium (HA)). SP-like immunoreactivity was found in cells of the Hp in juncos, but not in the three parid species. Two areas within the APH and HA showed SP-like immunoreactivity in all four species. The more medial of these (designated SPm) is a distinctive field of fibers and terminals found throughout the APH and extending into the HA. A positive relationship between SPm and Hp volume was found for all four species with the chickadee having a significantly larger SPm area relative to telencephalon than the other species. The distribution of SP in this region may be related to differences in food-storing behavior. In contrast to substance P, NPY distribution throughout the brain was similar in all four species. Further, NPY-immunoreactive cells were found in the Hp of all four species and no species differences in the number of NPY cells was observed.
Collapse
Affiliation(s)
- K L Gould
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
16
|
El Ouezzani S, Lafon P, Tramu G, Magoul R. Neuropeptide Y gene expression in the jerboa arcuate nucleus: modulation by food deprivation and relationship with hibernation. Neurosci Lett 2001; 305:21-4. [PMID: 11356298 DOI: 10.1016/s0304-3940(01)01803-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Using in situ hybridization, the mRNA levels encoding neuropeptide Y (NPY) was investigated in the arcuate nucleus (ARC) of jerboas under three different states of energy balance. (1) normally feeding animals, (2) hibernating animals and finally (3) animals food deprived for 5 days. The hibernating and food deprived jerboas exhibited a significant increase (130%; P < 0.05 and 210%; P < 0.01, respectively) of mRNA expression as compared with controls. This elevated NPY mRNA expression supports the hypothesis that NPY may be implicated in abnormal feeding behaviour associated with eating deprivation. The stimulation of NPY gene expression in hibernating jerboas may be related to food deprivation and / or cold exposure since NPY is known to be an hypothermiant factor. It is thus envisaged that NPY within neurons of the ARC plays an integrative role in the control of energy metabolism.
Collapse
Affiliation(s)
- S El Ouezzani
- Université Sidi Mohamed Ben Abdellah, Faculté des Sciences Dhar Mehrez -Fès, Laboratoire de Physiologie Animale, B.P.1796, Fès-Atlas, Morocco.
| | | | | | | |
Collapse
|
17
|
El Ouezzani S, Lafon P, Tramu G, Magoul R. Neuropeptide Y gene expression in the jerboa arcuate nucleus: modulation by food deprivation and relationship with hibernation. Neurosci Lett 2001; 305:127-30. [PMID: 11376900 DOI: 10.1016/s0304-3940(01)01825-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Using in situ hybridization, the mRNA levels encoding neuropeptide Y (NPY) was investigated in the arcuate nucleus (ARC) of jerboas under three different states of energy balance. (1) normally feeding animals, (2) hibernating animals and finally (3) animals food deprived for 5 days. The hibernating and food deprived jerboas exhibited a significant increase (130%; P<0.05 and 210%; P<0.01, respectively) of mRNA expression as compared with controls. This elevated NPY mRNA expression supports the hypothesis that NPY may be implicated in abnormal feeding behaviour associated with eating deprivation. The stimulation of NPY gene expression in hibernating jerboas may be related to food deprivation and / or cold exposure since NPY is known to be a hypothermiant factor. It is thus envisaged that NPY within neurons of the ARC plays an integrative role in the control of energy metabolism.
Collapse
Affiliation(s)
- S El Ouezzani
- Université Sidi Mohamed Ben Abdellah, Faculté des Sciences Dhar Mehrez-Fès, Laboratoire de Physiologie Animale, B.P.1796, Fès-Atlas, Morocco
| | | | | | | |
Collapse
|
18
|
Clausen TR, Møller M, Woldbye DP. Inhibitory effect of neuropeptide Y on morphine withdrawal is accompanied by reduced c-fos expression in specific brain regions. J Neurosci Res 2001; 64:410-7. [PMID: 11340648 DOI: 10.1002/jnr.1092] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neuropeptide Y (NPY) was previously shown in our laboratory to attenuate behavioral signs of morphine withdrawal. To further characterize the anti-withdrawal effect of NPY, the present study attempted to identify specific brain regions where NPY inhibits neuronal activity during withdrawal. Morphine dependence was induced in male Wistar rats by two daily subcutaneous injections of morphine at increasing doses, and the withdrawal syndrome was precipitated acutely by intraperitoneal administration of naloxone. Rats were pre-treated with an intracerebroventricular (icv) injection of NPY (12 nmol) or vehicle 30 min before the naloxone challenge. Withdrawal behavior was quantified using a point scoring technique based on motor- and non-motor-related signs. Brain areas involved in the attenuation of morphine withdrawal were delineated by radioactive in situ hybridization for the immediate early gene c-fos, which is a marker for neuronal activity. The present study confirmed the inhibitory effect of NPY on withdrawal behavior. Inhibition of behavioral signs of naloxone-precipitated morphine withdrawal was accompanied by significantly reduced c-fos expression in the locus coeruleus, lateral septal nucleus, ventral part of the periaqueductal grey, cingulate and frontal cortices, and septohippocampal nucleus. Our data suggest that neo- and allo-cortical areas as well as specific brainstem nuclei are involved in the anti-withdrawal effects of NPY.
Collapse
Affiliation(s)
- T R Clausen
- Laboratory of Neuropsychiatry, Department of Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
19
|
Harris MB, Milsom WK. The influence of NMDA receptor-mediated processes on breathing pattern in ground squirrels. RESPIRATION PHYSIOLOGY 2001; 125:181-97. [PMID: 11282386 DOI: 10.1016/s0034-5687(00)00219-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effects of blockade of N-methyl-D-aspartate (NMDA) type glutamate receptors by a non-competitive antagonist (MK-801) on cortical arousal, breathing pattern and ventilatory responses to hypoxia (10% O2 in N2) and hypercapnia (5% CO2 in air) were assessed in anesthetized (urethane) and unanesthetized golden-mantled ground squirrels (Spermophilus lateralis). Intra-cerebroventricular administration of MK-801 did not alter ventilation during wakefulness, although it did alter the pattern (breathing frequency and tidal volume components) of the hypercapnic ventilatory response, and suppressed the ventilatory response to hypoxia. Animals did not sleep following treatment with MK-801, and intravenous administration of MK-801 prevented expression of the sleep-like state normally observed in anesthetized animals. In anesthetized animals MK-801 elevated breathing frequency to levels observed without anesthesia, and suppressed the hypoxic ventilatory response. These data suggest that NMDA-type glutamatergic receptor-mediated processes influence cortical arousal and facilitate depression of breathing frequency during anesthesia and the hypoxic ventilatory response. Such processes are not essential for the hypercapnic ventilatory response.
Collapse
Affiliation(s)
- M B Harris
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | | |
Collapse
|
20
|
Abstract
The NPY system has a multitude of effects and is particularly well known for its role in appetite regulation. We have found that the five presently known receptors in mammals arose very early in vertebrate evolution before the appearance of jawed vertebrates 400 million years ago. The genes Y(1), Y(2) and Y(5) arose by local duplications and are still present on the same chromosome in human and pig. Duplications of this chromosome led to the Y(1)-like genes Y(4) and y(6). We find evidence for two occasions where receptor subtypes probably arose before peptide genes were duplicated. These observations pertain to the discussion whether ligands or receptors tend to appear first in evolution. The roles of Y(1) and Y(5) in feeding may differ between species demonstrating the importance of performing functional studies in additional mammals to mouse and rat.
Collapse
Affiliation(s)
- D Larhammar
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, Box 593, S-75124, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
21
|
de Pedro N, López-Patiño MA, Guijarro AI, Pinillos ML, Delgado MJ, Alonso-Bedate M. NPY receptors and opioidergic system are involved in NPY-induced feeding in goldfish. Peptides 2000; 21:1495-502. [PMID: 11068096 DOI: 10.1016/s0196-9781(00)00303-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present study evaluated the effects of both intraperitoneal (i.p. ) and intracerebroventricular administration of selective Y(1) [(Leu(31), Pro(34))-NPY] and Y(2) [(Pro(13), Tyr(36))-NPY (13-36)] receptor agonists on food intake in satiated goldfish. Food intake (FI) was significantly increased by central administration of the Y(1) agonist (1 microg), but not by the Y(2) agonist, at 2 h postinjection. The feeding increase induced by (Leu(31), Pro(34))-NPY was in a similar magnitude to that obtained after ICV injection of the neuropeptide Y, and both feeding stimulations were reversed by the NPY (27-36), a general NPY antagonist. The i.p. administration of the agonists either did not significantly modify (Y(2) agonist) or decreased (Y(1) agonist) food intake in goldfish. These data indicate that it is the Y(1)-like (similar to Y(1) and/or Y(5)) receptor, and not Y(2), that is involved in the central modulation of the feeding behavior in goldfish. We also investigated the possible involvement of opioid peptides as mediators of the NPY stimulatory action on food intake in goldfish. The ICV administration of naloxone (10 microg), a general opioid antagonist, blocked the NPY-induced feeding in goldfish, suggesting that the opioidergic system is involved in feeding regulation by NPY.
Collapse
Affiliation(s)
- N de Pedro
- Departamento de Biología Animal II, Facultad de Biología, Universidad Complutense, 28040, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Scott MK, Ross TM, Lee DH, Wang HY, Shank RP, Wild KD, Davis CB, Crooke JJ, Potocki AC, Reitz AB. 2,3-Dihydro-dithiin and -dithiepine-1,1,4,4-tetroxides: small molecule non-peptide antagonists of the human galanin hGAL-1 receptor. Bioorg Med Chem 2000; 8:1383-91. [PMID: 10896115 DOI: 10.1016/s0968-0896(00)00062-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The neuropeptide galanin modulates several physiological functions such as cognition, learning, feeding behavior, and depression, probably via the galanin 1 receptor (GAL-R1). Using an HTS assay based on 125I-human galanin binding to the human galanin-1 receptor (hGAL-R1), we discovered a series of 1,4-dithiin and dithiipine-1,1,4,4-tetroxides that exhibited binding affinity IC50's to hGAL-R1 ranging from 190 to 2700 nM. Two of the dithiepin analogues, 7 and 23, behaved pharmacologically as hGAL-R1 antagonists in secondary assays involving adenylate cyclase activity and GTP binding to G-proteins. Analogues 7 and 23 were also active in functional assays involving galanin, reversing the inhibitory effect of galanin on acetylcholine (ACh) release in rat brain hippocampal slices and electrically-stimulated guinea pig ileum twitch.
Collapse
Affiliation(s)
- M K Scott
- Drug Discovery Division, The R. W. Johnson Pharmaceutical Institute, Spring House, PA 19447, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Galanin inhibits food consumption in satiated rats. Discovered relatively recently, galanin is a 29-amino-acid neuropeptide, not homologous with any other known peptide. Three G-protein-linked galanin receptor subtypes have been cloned. This review summarizes the mechanisms by which exogenously administered galanin may stimulate ingestion, discusses pharmacological and genetic investigations of the role of endogenous galanin on feeding and body weight, and speculates on the therapeutic potential of non-peptide galanin receptor antagonists for the treatment of appetite disorders.
Collapse
Affiliation(s)
- J N Crawley
- Section on Behavioral Neuropharmacology, Experimental Therapeutics Branch, National Institute of Mental Health, Bethesda, Maryland, USA.
| |
Collapse
|
24
|
López-Patiño MA, Guijarro AI, Isorna E, Delgado MJ, Alonso-Bedate M, de Pedro N. Neuropeptide Y has a stimulatory action on feeding behavior in goldfish (Carassius auratus). Eur J Pharmacol 1999; 377:147-53. [PMID: 10456424 DOI: 10.1016/s0014-2999(99)00408-2] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The purpose of the present study was to elucidate the possible role of neuropeptide Y (NPY) in the feeding regulation in fish. We examined the effects of intracerebroventricular (i.c.v.) or intraperitoneal (i.p.) neuropeptide Y administration on food intake in satiated goldfish, at different time intervals postinjection (0-2, 2-8 and 0-8 h). Food intake was significantly increased by i.c.v. administered neuropeptide Y (1 microg) at 2 h postinjection, while no significant differences in food intake were observed after i.p. treatment. The neuropeptide Y receptor antagonist, neuropeptide Y-(27-36), totally counteracted the stimulatory action of neuropeptide Y on feeding. The possible involvement of neuropeptide Y in the eating behavior evoked by food deprivation has been investigated. Food deprivation by either 24 or 72 h significantly increased feeding, and the neuropeptide Y receptor antagonist attenuated such feeding stimulation. From our findings, we suggest, first, that neuropeptide Y is involved in feeding central regulation in goldfish, acting via specific neuropeptide Y receptors, and second, that hypothalamic neuropeptide Y would be released in response to food deprivation, contributing to generate the consequent eating behavior stimulation in Carassius auratus.
Collapse
Affiliation(s)
- M A López-Patiño
- Departamento Biología Animal II, Facultad de Biología, Universidad Complutense de Madrid, Spain
| | | | | | | | | | | |
Collapse
|
25
|
Woods SC, Figlewicz DP, Madden L, Porte D, Sipols AJ, Seeley RJ. NPY and food intake: discrepancies in the model. REGULATORY PEPTIDES 1998; 75-76:403-8. [PMID: 9802436 DOI: 10.1016/s0167-0115(98)00095-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The evidence that NPY is an endogenous neurotransmitter that modulates both sides of the energy equation is clear and compelling. While agreeing with this (and indeed contributing to the growing literature supporting the concept), we have found that the interpretation of the increased food intake stimulated by intraventricular (i.v.t.) NPY is more complex than first appears. We discuss evidence suggesting that NPY additionally (and presumably at other receptor populations in the brain) causes sensations that produce aversion or illness. Specifically, the i.v.t. administration of NPY at doses that stimulate eating also cause the formation of a conditioned taste aversion and the animal engages in a form of pica behavior (kaolin consumption). It also suppresses an otherwise robust increase of sodium consumption. We discuss evidence suggesting that whereas NPY activates feeding behavior by stimulating the complex sequence of behaviors beginning with the seeking and finding of food and ending with food ingestion, NPY does not stimulate increased eating in the absence of the anticipatory preliminary behaviors. Finally, we briefly review evidence suggesting that whatever sensation is aroused by i.v.t. NPY, it is not necessarily the same sensation that is aroused when animals are food-deprived. Hence, one must be cautious in interpreting NPY as solely an orexigen.
Collapse
Affiliation(s)
- S C Woods
- Department of Psychology, University of Washington, Seattle 98195, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Mercer JG. Regulation of appetite and body weight in seasonal mammals. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1998; 119:295-303. [PMID: 9827002 DOI: 10.1016/s0742-8413(98)00018-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
As models of physiological regulation of body weight, adiposity and appetite, seasonal mammals offer unique opportunities for manipulating fundamental regulatory processes that may not be available in the more frequently-studied laboratory rodents. Seasonal weight and intake cycles are anticipatory rather than reactive in nature, being manifest despite the availability of adlibitum supplies of food. They are exhibited despite all other environmental variables being held constant, and are reversible. Appropriate body weight appears to be a sliding set point in many seasonal mammals, which can move in either direction, largely independently of age. While few data are available other than from rats and mice, there appears to be a strong commonality of central neuroendocrine and peripheral signalling systems between seasonal and non-seasonal mammals, although the conditions under which endogenous regulatory pathways are activated may differ significantly between species. Peripheral and central signalling systems implicated in the regulation of appetite and body weight may be modulated during seasonal transitions. Discussion will concentrate on hypothalamic neuropeptides, gastrointestinal satiety peptides, the recently-described peptide, leptin, that is secreted by adipose tissue, and the interactions between these regulatory components.
Collapse
Affiliation(s)
- J G Mercer
- Molecular Neuroendocrinology Unit, Rowett Research Institute, Aberdeen, Scotland, UK.
| |
Collapse
|
27
|
Milsom WK, Harris MB, Reid SG. Do descending influences alternate to produce episodic breathing? RESPIRATION PHYSIOLOGY 1997; 110:307-17. [PMID: 9407624 DOI: 10.1016/s0034-5687(97)00096-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study examines the episodic breathing patterns of three disparate groups of vertebrates. In an in vitro bullfrog brainstem-spinal cord preparation, episodic breathing was replaced by uniformly spaced breaths following transection caudal to the optic chiasma. The same effect was produced in hibernating squirrels by inhalation of mild anesthesia. Preliminary data suggest that a similar conversion is also produced in hibernating squirrels by vagotomy, in conjunction with blockade of central NMDA-type glutamate receptors. In all cases, even though overall breathing frequency increased, due to elimination of periods of apnea, instantaneous breathing frequency slowed. Seals breathe episodically in sleep and when these animals awaken after the start of a breathing episode, breathing also immediately slows. The data presented here are consistent with the suggestion that in all vertebrates, higher centres can modulate the central rhythm generator for breathing, in both a positive and a negative fashion. During episodic breathing, in the species studied here, these modulating influences alternate in a fashion that produces periods of apnea alternating with periods of relatively high frequency ventilation.
Collapse
Affiliation(s)
- W K Milsom
- Department of Zoology, University of British Columbia, Vancouver, Canada.
| | | | | |
Collapse
|
28
|
Sipols AJ, Figlewicz DP, Seeley RJ, Chavez M, Woods SC, Porte D. Intraventricular neuropeptide Y does not stimulate food intake in the baboon. Physiol Behav 1996; 60:717-9. [PMID: 8873242 DOI: 10.1016/0031-9384(96)00105-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the present study, we examined the ability of the orexigenic peptide neuropeptide Y (NPY) to stimulate feeding when administered into the lateral ventricle of baboons. No increase of either meal size or total daily food intake was observed over the dose range tested (1-30 micrograms). These results suggest that, in the baboon, NPY may not be an orexigen as it is in other species.
Collapse
Affiliation(s)
- A J Sipols
- Department of Psychology, University of Washington, Seattle 98195, USA
| | | | | | | | | | | |
Collapse
|
29
|
Boss-Williams KA, Bartness TJ. NPY stimulation of food intake in Siberian hamsters is not photoperiod dependent. Physiol Behav 1996; 59:157-64. [PMID: 8848476 DOI: 10.1016/0031-9384(95)02037-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Siberian hamsters (phodopus sungorus sungorus) show naturally occurring seasonal cycles of food intake that are triggered by changes in the photoperiod. In long "summer-like" days (LD) food intake is at its peak, whereas in short "winter-like" days (SD) food intake reaches a nadir. Although the mechanisms underlying these changes in food intake are unknown, results from previous studies suggest that the ability to stimulate or inhibit food intake in Siberian hamsters complements the naturally occurring food intake cycle. Thus, inhibitors of food intake are more effective in SDs, whereas stimulators of food intake are more effective in LDs. A stimulator of food intake in a wide variety of species is neuropeptide Y (NPY). Therefore, we explored the ability of NPY to stimulate food intake in Siberian hamsters. In addition, we tested whether the efficacy of NPY to stimulate food intake was photoperiod dependent. In Experiment 1, LD-housed adult male hamsters were given a series of NPY doses (0.078-10.0 micrograms) intracerebroventricularly (ICV) into the third ventricle and food intake was measured 30 min, 1, 2, and 4 h postinjection. NPY was a potent stimulator of food intake with the 7.5 micrograms dose of NPY producing the greatest increase at 30 min. In Experiment 2, adult male hamsters were housed in LDs or SDs and were given various doses of NPY ranging from 0.039-7.5 micrograms. NPY given ICV stimulated food intake to the same degree in LDs as in SDs with the greatest increases in food intake occurring in the hamsters receiving the 2.5 and 5.0 micrograms dose of NPY. In addition, Siberian hamsters were very sensitive to NPY with the lowest effective dose (0.0585 microgram) that stimulated food intake being six times smaller than in other rodents tested. Collectively, these results showed that Siberian hamsters were more sensitive to the stimulatory effect of NPY on food intake than any other species, but that the ability of NPY to stimulate feeding was not photoperiod dependent.
Collapse
Affiliation(s)
- K A Boss-Williams
- Department of Psychology, Georgia State University, Atlanta, 30303, USA.
| | | |
Collapse
|
30
|
Affiliation(s)
- J N Crawley
- Section on Behavioral Neuropharmacology, Experimental Therapeutics Branch, National Institute of Mental Health, Building 10, Room 4N212, Bethesda 20892-1380, MD 20892, USA
| |
Collapse
|
31
|
Lantos TA, Görcs TJ, Palkovits M. Immunohistochemical mapping of neuropeptides in the premamillary region of the hypothalamus in rats. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1995; 20:209-49. [PMID: 7795657 DOI: 10.1016/0165-0173(94)00013-f] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The topographical distribution of neuropeptide-containing cell bodies, fibers and terminals was studied in the premamillary region of the rat hypothalamus using light microscopic immunohistochemistry. Alternate coronal sections through the posterior third of the hypothalamus of normal and colchicine-treated male rats were immunostained for 19 different neuropeptides and their distributions were mapped throughout the following structures: the ventral and dorsal premamillary, the supramamillary, the tuberomamillary and the posterior hypothalamic nuclei, as well as the premamillary portion of the arcuate nucleus and the postinfundibular median eminence. Seventeen of the investigated neuropeptides were present in neuronal perikarya, nerve fibers and terminals while the gonadotropin associated peptide and vasopressin occurred only in fibers and terminals. Growth hormone-releasing hormone-, somatostatin-, alpha-melanocyte stimulating hormone-, adrenocorticotropin-, beta-endorphin- and neuropeptide Y-immunoreactive neurons were seen exclusively in the premamillary portion of the arcuate nucleus. Thyrotropin-releasing hormone-, dynorphin A- and galanin-containing neurons were distributed mainly in the arcuate and the tuberomamillary nuclei. A high number of methionine- and leucine-enkephalin-immunoreactive cells were detected in the arcuate and dorsal premamillary nuclei, as well as in the area ventrolateral to the fornix. Substance P-immunoreactive perikarya were present in very high number within the entire region, in particular in the ventral and dorsal premamillary nuclei. Cell bodies labelled with cholecystokinin- and calcitonin gene-related peptide antisera were found predominantly in the supramamillary and the terete nuclei, respectively. Corticotropin-releasing hormone-, vasoactive intestinal polypeptide- and neurotensin-immunoreactive neurons were scattered randomly in low number, mostly in the arcuate and the ventral and dorsal premamillary nuclei. Peptidergic fibers were distributed unevenly throughout the whole region, with each peptide showing an individual distribution pattern. The highest density of immunoreactive fibers was presented in the ventral half of the region including the arcuate, the ventral premamillary and the tuberomamillary nuclei. The supramamillary nucleus showed moderately dense fiber networks, while the dorsal premamillary and the posterior hypothalamic nuclei were poor in peptidergic fibers.
Collapse
Affiliation(s)
- T A Lantos
- Laboratory of Neuromorphology, Semmelweis University Medical School, Budapest, Hungary
| | | | | |
Collapse
|
32
|
Affiliation(s)
- P J Morgan
- Molecular Neuroendocrinology Group, Rowett Research Institute, Bucksburn, Aberdeen
| | | |
Collapse
|
33
|
Akabayashi A, Zaia CT, Koenig JI, Gabriel SM, Silva I, Leibowitz SF. Diurnal rhythm of galanin-like immunoreactivity in the paraventricular and suprachiasmatic nuclei and other hypothalamic areas. Peptides 1994; 15:1437-44. [PMID: 7535427 DOI: 10.1016/0196-9781(94)90121-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The peptide galanin (GAL), when injected into the rat hypothalamus, is known to stimulate feeding behavior and affect the secretion of various hormones, including insulin and the adrenal steroid, corticosterone. To determine whether endogenous peptide levels shift in relation to natural rhythms of feeding and circulating hormone levels, rats were sacrificed at different times of the light/dark cycle, and their GAL levels were measured, via radioimmunoassay, in medial hypothalamic dissections and micropunched hypothalamic areas. The results suggest the existence of two distinct diurnal rhythms for hypothalamic GAL. One rhythm, detected exclusively in the area of the SCN, is characterized by bimodal peaks of GAL, threefold higher than basal peptide levels, around the onset of the dark and light periods. The second rhythm shows a single peak of GAL towards the middle of the nocturnal feeding cycle, specifically between the third and sixth hour. This latter rhythm is evident in the dorsal region of the medial hypothalamus, localized specifically to the lateral portion of the PVN. Moreover, it is inversely related to circulating insulin but unrelated to the adrenal steroids, suggesting a possible association between this pancreatic hormone and GAL in the PVN.
Collapse
|
34
|
Abstract
Acute central administration of galanin has been reported to increase fat consumption. These experiments were designed to test the hypothesis that repeated injections of galanin would elicit hyperphagia and weight gain and that this response would depend on the available diet. Male Sprague-Dawley rats were fed high (56% energy) or low (10% energy) fat diets. Galanin (300 pmol) or saline vehicle was injected into the third ventricle twice daily for 7 days and three times daily for another 6 days. On both the high-carbohydrate and high-fat diets, twice daily galanin increased daytime food intake, but there was a compensatory decrease in nighttime intake. The addition of a third, nighttime injection of galanin was ineffective in producing an increase in total 24-h intake. There was no significant increase in body weight during galanin treatment in rats eating either diet although animals eating the high-fat diet gained more weight as reflected by a significant increase in epididymal fat pad weight. Galanin treatment had no effects on serum insulin, glucose or corticosterone concentrations, measured at the end of the experiment. However, animals fed the high-fat diet had significantly higher insulin concentrations at the time of sacrifice. Although repeated central infusions of galanin reliably stimulated daytime intake of both diets, they failed to increase total daily energy intake or body weight.
Collapse
Affiliation(s)
- B K Smith
- Louisiana State University, Pennington Biomedical Research Center, Baton Rouge 70808-4124
| | | | | |
Collapse
|