1
|
Cano CA, Harel BT, Scammell TE. Impaired cognition in narcolepsy: clinical and neurobiological perspectives. Sleep 2024; 47:zsae150. [PMID: 38943485 DOI: 10.1093/sleep/zsae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/07/2024] [Indexed: 07/01/2024] Open
Abstract
In addition to well-known symptoms such as sleepiness and cataplexy, many people with narcolepsy have impaired cognition, reporting inattention, poor memory, and other concerns. Unfortunately, research on cognition in narcolepsy has been limited. Strong evidence demonstrates difficulties with sustained attention, but evidence for executive dysfunction and impaired memory is mixed. Animal research provides some insights into how loss of the orexin neurons in narcolepsy type 1 may give rise to impaired cognition via dysfunction of the prefrontal cortex, and cholinergic and monoaminergic systems. This paper reviews some of these clinical and preclinical findings, provides a neurobiological framework to understand these deficits, and highlights some of the many key unanswered questions.
Collapse
Affiliation(s)
- Christopher A Cano
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Brian T Harel
- Neuroscience Therapeutic Area Unit, Takeda Development Center Americas Inc., Cambridge, MA, USA
| | - Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
2
|
R R, Devtalla H, Rana K, Panda SP, Agrawal A, Kadyan S, Jindal D, Pancham P, Yadav D, Jha NK, Jha SK, Gupta V, Singh M. A comprehensive update on genetic inheritance, epigenetic factors, associated pathology, and recent therapeutic intervention by gene therapy in schizophrenia. Chem Biol Drug Des 2024; 103:e14374. [PMID: 37994213 DOI: 10.1111/cbdd.14374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 11/24/2023]
Abstract
Schizophrenia is a severe psychological disorder in which reality is interpreted abnormally by the patient. The symptoms of the disease include delusions and hallucinations, associated with extremely disordered behavior and thinking, which may affect the daily lives of the patients. Advancements in technology have led to understanding the dynamics of the disease and the identification of the underlying causes. Multiple investigations prove that it is regulated genetically, and epigenetically, and is affected by environmental factors. The molecular and neural pathways linked to the regulation of schizophrenia have been extensively studied. Over 180 Schizophrenic risk loci have now been recognized due to several genome-wide association studies (GWAS). It has been observed that multiple transcription factors (TF) binding-disrupting single nucleotide polymorphisms (SNPs) have been related to gene expression responsible for the disease in cerebral complexes. Copy number variation, SNP defects, and epigenetic changes in chromosomes may cause overexpression or underexpression of certain genes responsible for the disease. Nowadays, gene therapy is being implemented for its treatment as several of these genetic defects have been identified. Scientists are trying to use viral vectors, miRNA, siRNA, and CRISPR technology. In addition, nanotechnology is also being applied to target such genes. The primary aim of such targeting was to either delete or silence such hyperactive genes or induce certain genes that inhibit the expression of these genes. There are challenges in delivering the gene/DNA to the site of action in the brain, and scientists are working to resolve the same. The present article describes the basics regarding the disease, its causes and factors responsible, and the gene therapy solutions available to treat this disease.
Collapse
Affiliation(s)
- Rachana R
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Harshit Devtalla
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Karishma Rana
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Arushi Agrawal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Shreya Kadyan
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Divya Jindal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
- IIT Bombay Monash Research Academy, IIT - Bombay, Bombay, India
| | - Pranav Pancham
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Deepshikha Yadav
- Bhartiya Nirdeshak Dravya Division, CSIR-National Physical Laboratory, New Delhi, India
- Physico-Mechanical Metrology Division, CSIR-National Physical Laboratory, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology (SSET), Sharda University, Greater Noida, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology (SSET), Sharda University, Greater Noida, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Vivek Gupta
- Macquarie Medical School, Macquarie University (MQU), Sydney, New South Wales, Australia
| | - Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
- Faculty of Health, Graduate School of Public Health, University of Technology Sydney, Sydney, New South Wales, Australia
- Australian Research Consortium in Complementary and Integrative Medicine (ARCCIM), University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Zha C, Sossin WS. The molecular diversity of plasticity mechanisms underlying memory: An evolutionary perspective. J Neurochem 2022; 163:444-460. [PMID: 36326567 DOI: 10.1111/jnc.15717] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/29/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Experience triggers molecular cascades in organisms (learning) that lead to alterations (memory) to allow the organism to change its behavior based on experience. Understanding the molecular mechanisms underlying memory, particularly in the nervous system of animals, has been an exciting scientific challenge for neuroscience. We review what is known about forms of neuronal plasticity that underlie memory highlighting important issues in the field: (1) the importance of being able to measure how neurons are activated during learning to identify the form of plasticity that underlies memory, (2) the many distinct forms of plasticity important for memories that naturally decay both within and between organisms, and (3) unifying principles underlying the formation and maintenance of long-term memories. Overall, the diversity of molecular mechanisms underlying memories that naturally decay contrasts with more unified molecular mechanisms implicated in long-lasting changes. Despite many advances, important questions remain as to which mechanisms of neuronal plasticity underlie memory.
Collapse
Affiliation(s)
- Congyao Zha
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Larsen NY, Vihrs N, Møller J, Sporring J, Tan X, Li X, Ji G, Rajkowska G, Sun F, Nyengaard JR. Layer III pyramidal cells in the prefrontal cortex reveal morphological changes in subjects with depression, schizophrenia, and suicide. Transl Psychiatry 2022; 12:363. [PMID: 36064829 PMCID: PMC9445178 DOI: 10.1038/s41398-022-02128-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/09/2022] Open
Abstract
Brodmann Area 46 (BA46) has long been regarded as a hotspot of disease pathology in individuals with schizophrenia (SCH) and major depressive disorder (MDD). Pyramidal neurons in layer III of the Brodmann Area 46 (BA46) project to other cortical regions and play a fundamental role in corticocortical and thalamocortical circuits. The AutoCUTS-LM pipeline was used to study the 3-dimensional structural morphology and spatial organization of pyramidal cells. Using quantitative light microscopy, we used stereology to calculate the entire volume of layer III in BA46 and the total number and density of pyramidal cells. Volume tensors estimated by the planar rotator quantified the volume, shape, and nucleus displacement of pyramidal cells. All of these assessments were carried out in four groups of subjects: controls (C, n = 10), SCH (n = 10), MDD (n = 8), and suicide subjects with a history of depression (SU, n = 11). SCH subjects had a significantly lower somal volume, total number, and density of pyramidal neurons when compared to C and tended to show a volume reduction in layer III of BA46. When comparing MDD subjects with C, the measured parameters were inclined to follow SCH, although there was only a significant reduction in pyramidal total cell number. While no morphometric differences were observed between SU and MDD, SU had a significantly higher total number of pyramidal cells and nucleus displacement than SCH. Finally, no differences in the spatial organization of pyramidal cells were found among groups. These results suggest that despite significant morphological alterations in layer III of BA46, which may impair prefrontal connections in people with SCH and MDD, the spatial organization of pyramidal cells remains the same across the four groups and suggests no defects in neuronal migration. The increased understanding of pyramidal cell biology may provide the cellular basis for symptoms and neuroimaging observations in SCH and MDD patients.
Collapse
Affiliation(s)
- Nick Y. Larsen
- grid.7048.b0000 0001 1956 2722Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark ,Sino-Danish Center for Education and Research, Aarhus, Denmark ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, China ,grid.5117.20000 0001 0742 471XCentre for Stochastic Geometry and Advanced Bioimaging, Aalborg University, Aarhus University and University of Copenhagen, Aarhus, Denmark
| | - Ninna Vihrs
- grid.5117.20000 0001 0742 471XDepartment of Mathematical Sciences, Aalborg University, Aalborg, Denmark
| | - Jesper Møller
- grid.5117.20000 0001 0742 471XCentre for Stochastic Geometry and Advanced Bioimaging, Aalborg University, Aarhus University and University of Copenhagen, Aarhus, Denmark ,grid.5117.20000 0001 0742 471XDepartment of Mathematical Sciences, Aalborg University, Aalborg, Denmark
| | - Jon Sporring
- grid.5117.20000 0001 0742 471XCentre for Stochastic Geometry and Advanced Bioimaging, Aalborg University, Aarhus University and University of Copenhagen, Aarhus, Denmark ,grid.5254.60000 0001 0674 042XDepartment of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Xueke Tan
- grid.418856.60000 0004 1792 5640National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China ,grid.418856.60000 0004 1792 5640Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xixia Li
- grid.5254.60000 0001 0674 042XDepartment of Computer Science, University of Copenhagen, Copenhagen, Denmark ,grid.418856.60000 0004 1792 5640National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Gang Ji
- grid.5254.60000 0001 0674 042XDepartment of Computer Science, University of Copenhagen, Copenhagen, Denmark ,grid.418856.60000 0004 1792 5640National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Grazyna Rajkowska
- grid.410721.10000 0004 1937 0407Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS USA
| | - Fei Sun
- Sino-Danish Center for Education and Research, Aarhus, Denmark ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, China ,grid.418856.60000 0004 1792 5640National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China ,grid.418856.60000 0004 1792 5640Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jens R. Nyengaard
- grid.7048.b0000 0001 1956 2722Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark ,Sino-Danish Center for Education and Research, Aarhus, Denmark ,grid.5117.20000 0001 0742 471XCentre for Stochastic Geometry and Advanced Bioimaging, Aalborg University, Aarhus University and University of Copenhagen, Aarhus, Denmark ,grid.154185.c0000 0004 0512 597XDepartment of Pathology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
5
|
Relationship of neurite architecture to brain activity during task-based fMRI. Neuroimage 2022; 262:119575. [PMID: 35987489 DOI: 10.1016/j.neuroimage.2022.119575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
Functional MRI (fMRI) has been widely used to examine changes in neuronal activity during cognitive tasks. Commonly used measures of gray matter macrostructure (e.g., cortical thickness, surface area, volume) do not consistently appear to serve as structural correlates of brain function. In contrast, gray matter microstructure, measured using neurite orientation dispersion and density imaging (NODDI), enables the estimation of indices of neurite density (neurite density index; NDI) and organization (orientation dispersion index; ODI) in gray matter. Our study explored the relationship among neurite architecture, BOLD (blood-oxygen-level-dependent) fMRI, and cognition, using a large sample (n = 750) of young adults of the human connectome project (HCP) and two tasks that index more cortical (working memory) and more subcortical (emotion processing) targeting of brain functions. Using NODDI, fMRI, structural MRI and task performance data, hierarchical regression analyses revealed that higher working memory- and emotion processing-evoked BOLD activity was related to lower ODI in the right DLPFC, and lower ODI and NDI values in the right and left amygdala, respectively. Common measures of brain macrostructure (i.e., DLPFC thickness/surface area and amygdala volume) did not explain any additional variance (beyond neurite architecture) in BOLD activity. A moderating effect of neurite architecture on the relationship between emotion processing task-evoked BOLD response and performance was observed. Our findings provide evidence that neuro-/social-affective cognition-related BOLD activity is partially driven by the local neurite organization and density with direct impact on emotion processing. In vivo gray matter microstructure represents a new target of investigation providing strong potential for clinical translation.
Collapse
|
6
|
Hui M, Beier KT. Defining the interconnectivity of the medial prefrontal cortex and ventral midbrain. Front Mol Neurosci 2022; 15:971349. [PMID: 35935333 PMCID: PMC9354837 DOI: 10.3389/fnmol.2022.971349] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022] Open
Abstract
Dysfunction in dopamine (DA) signaling contributes to neurological disorders ranging from drug addiction and schizophrenia to depression and Parkinson’s Disease. How might impairment of one neurotransmitter come to effect these seemingly disparate diseases? One potential explanation is that unique populations of DA-releasing cells project to separate brain regions that contribute to different sets of behaviors. Though dopaminergic cells themselves are spatially restricted to the midbrain and constitute a relatively small proportion of all neurons, their projections influence many brain regions. DA is particularly critical for the activity and function of medial prefrontal cortical (mPFC) ensembles. The midbrain and mPFC exhibit reciprocal connectivity – the former innervates the mPFC, and in turn, the mPFC projects back to the midbrain. Viral mapping studies have helped elucidate the connectivity within and between these regions, which likely have broad implications for DA-dependent behaviors. In this review, we discuss advancements in our understanding of the connectivity between the mPFC and midbrain DA system, focusing primarily on rodent models.
Collapse
Affiliation(s)
- May Hui
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Kevin T. Beier
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
- UCI Mind, University of California, Irvine, Irvine, CA, United States
- *Correspondence: Kevin T. Beier,
| |
Collapse
|
7
|
McCarthy DM, Zhang L, Wilkes BJ, Vaillancourt DE, Biederman J, Bhide PG. Nicotine and the developing brain: Insights from preclinical models. Pharmacol Biochem Behav 2022; 214:173355. [PMID: 35176350 PMCID: PMC9063417 DOI: 10.1016/j.pbb.2022.173355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/26/2022]
Abstract
Use of tobacco products during pregnancy is associated with increased risk for neurodevelopmental disorders in the offspring. Preclinical models of developmental nicotine exposure have offered valuable insights into the neurobiology of nicotine's effects on the developing brain and demonstrated lasting effects of developmental nicotine exposure on brain structure, neurotransmitter signaling and behavior. These models have facilitated discovery of novel compounds as candidate treatments for attention deficit hyperactivity disorder, a neurodevelopmental disorder associated with prenatal nicotine exposure. Using these models the significance of heritability of behavioral phenotypes from the nicotine-exposed pregnant female or adult male to multiple generations of descendants has been demonstrated. Finally, research using the preclinical models has demonstrated synergistic interactions between developmental nicotine exposure and repetitive mild traumatic brain injury that contribute to "worse" outcomes from the injury in individuals with attention deficit hyperactivity disorder associated with developmental nicotine exposure.
Collapse
Affiliation(s)
- Deirdre M McCarthy
- Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, FL 32306, United States of America
| | - Lin Zhang
- Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, FL 32306, United States of America
| | - Bradley J Wilkes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32611, United States of America
| | - David E Vaillancourt
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32611, United States of America
| | - Joseph Biederman
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Pradeep G Bhide
- Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, FL 32306, United States of America.
| |
Collapse
|
8
|
Abi-Dargham A, Javitch JA, Slifstein M, Anticevic A, Calkins ME, Cho YT, Fonteneau C, Gil R, Girgis R, Gur RE, Gur RC, Grinband J, Kantrowitz J, Kohler C, Krystal J, Murray J, Ranganathan M, Santamauro N, Van Snellenberg J, Tamayo Z, Wolf D, Gray D, Lieberman J. Dopamine D1R Receptor Stimulation as a Mechanistic Pro-cognitive Target for Schizophrenia. Schizophr Bull 2021; 48:199-210. [PMID: 34423843 PMCID: PMC8781338 DOI: 10.1093/schbul/sbab095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Decades of research have highlighted the importance of optimal stimulation of cortical dopaminergic receptors, particularly the D1R receptor (D1R), for prefrontal-mediated cognition. This mechanism is particularly relevant to the cognitive deficits in schizophrenia, given the abnormalities in cortical dopamine (DA) neurotransmission and in the expression of D1R. Despite the critical need for D1R-based therapeutics, many factors have complicated their development and prevented this important therapeutic target from being adequately interrogated. Challenges include determination of the optimal level of D1R stimulation needed to improve cognitive performance, especially when D1R expression levels, affinity states, DA levels, and the resulting D1R occupancy by DA, are not clearly known in schizophrenia, and may display great interindividual and intraindividual variability related to cognitive states and other physiological variables. These directly affect the selection of the level of stimulation necessary to correct the underlying neurobiology. The optimal mechanism for stimulation is also unknown and could include partial or full agonism, biased agonism, or positive allosteric modulation. Furthermore, the development of D1R targeting drugs has been complicated by complexities in extrapolating from in vitro affinity determinations to in vivo use. Prior D1R-targeted drugs have been unsuccessful due to poor bioavailability, pharmacokinetics, and insufficient target engagement at tolerable doses. Newer drugs have recently become available, and these must be tested in the context of carefully designed paradigms that address methodological challenges. In this paper, we discuss how a better understanding of these challenges has shaped our proposed experimental design for testing a new D1R/D5R partial agonist, PF-06412562, renamed CVL-562.
Collapse
Affiliation(s)
- Anissa Abi-Dargham
- Department of Psychiatry, Stony Brook Renaissance School of Medicine, Stony Brook, NY, USA,Department of Psychiatry, New York State Psychaitric Institute, Columbia University, New York, NY, USA,Department of Psychiatry, Yale University, New Haven, CT, USA,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Cerevel Therapeutics Research and Development, Boston, MA, USA,To whom correspondence should be addressed; Tel: +(631) 885-0814; e-mail:
| | - Jonathan A Javitch
- Department of Psychiatry, New York State Psychaitric Institute, Columbia University, New York, NY, USA
| | - Mark Slifstein
- Department of Psychiatry, Stony Brook Renaissance School of Medicine, Stony Brook, NY, USA
| | - Alan Anticevic
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Monica E Calkins
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Youngsun T Cho
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Clara Fonteneau
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Roberto Gil
- Department of Psychiatry, Stony Brook Renaissance School of Medicine, Stony Brook, NY, USA
| | - Ragy Girgis
- Department of Psychiatry, New York State Psychaitric Institute, Columbia University, New York, NY, USA
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jack Grinband
- Department of Psychiatry, New York State Psychaitric Institute, Columbia University, New York, NY, USA
| | - Joshua Kantrowitz
- Department of Psychiatry, New York State Psychaitric Institute, Columbia University, New York, NY, USA
| | - Christian Kohler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Krystal
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - John Murray
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | | | | | - Jared Van Snellenberg
- Department of Psychiatry, Stony Brook Renaissance School of Medicine, Stony Brook, NY, USA
| | - Zailyn Tamayo
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Daniel Wolf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - David Gray
- Cerevel Therapeutics Research and Development, Boston, MA, USA
| | - Jeffrey Lieberman
- Department of Psychiatry, New York State Psychaitric Institute, Columbia University, New York, NY, USA
| |
Collapse
|
9
|
Cheng YJ, Lin CH, Lane HY. Involvement of Cholinergic, Adrenergic, and Glutamatergic Network Modulation with Cognitive Dysfunction in Alzheimer's Disease. Int J Mol Sci 2021; 22:2283. [PMID: 33668976 PMCID: PMC7956475 DOI: 10.3390/ijms22052283] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 01/21/2023] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia, is a progressive neurodegenerative disease. The number of AD cases has been rapidly growing worldwide. Several the related etiological hypotheses include atypical amyloid β (Aβ) deposition, neurofibrillary tangles of tau proteins inside neurons, disturbed neurotransmission, inflammation, and oxidative stress. During AD progression, aberrations in neurotransmission cause cognitive decline-the main symptom of AD. Here, we review the aberrant neurotransmission systems, including cholinergic, adrenergic, and glutamatergic network, and the interactions among these systems as they pertain to AD. We also discuss the key role of N-methyl-d-aspartate receptor (NMDAR) dysfunction in AD-associated cognitive impairment. Furthermore, we summarize the results of recent studies indicating that increasing glutamatergic neurotransmission through the alteration of NMDARs shows potential for treating cognitive decline in mild cognitive impairment or early stage AD. Future studies on the long-term efficiency of NMDA-enhancing strategies in the treatment of AD are warranted.
Collapse
Affiliation(s)
- Yu-Jung Cheng
- Department of Physical Therapy and Graduate Institute of Rehabilitation Science, China Medical University, Taichung 40402, Taiwan;
- Department of Rehabilitation, China Medical University Hospital, Taichung 40402, Taiwan
| | - Chieh-Hsin Lin
- Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsien-Yuan Lane
- Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung 40402, Taiwan
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
10
|
Using rat operant delayed match-to-sample task to identify neural substrates recruited with increased working memory load. ACTA ACUST UNITED AC 2020; 27:467-476. [PMID: 33060284 PMCID: PMC7571269 DOI: 10.1101/lm.052134.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/17/2020] [Indexed: 11/25/2022]
Abstract
The delayed match-to-sample task (DMS) is used to probe working memory (WM) across species. While the involvement of the PFC in this task has been established, limited information exists regarding the recruitment of broader circuitry, especially under the low- versus high-WM load. We sought to address this question by using a variable-delay operant DMS task. Male Sprague-Dawley rats were trained and tested to determine their baseline WM performance across all (0- to 24-sec) delays. Next, rats were tested in a single DMS test with either 0- or 24-sec fixed delay, to assess low-/high-load WM performance. c-Fos mRNA expression was quantified within cortical and subcortical regions and correlated with WM performance. High WM load up-regulated overall c-Fos mRNA expression within the PrL, as well as within a subset of mGlu5+ cells, with load-dependent, local activation of protein kinase C (PKC) as the proposed underlying molecular mechanism. The PrL activity negatively correlated with choice accuracy during high load WM performance. A broader circuitry, including several subcortical regions, was found to be activated under low and/or high load conditions. These findings highlight the role of mGlu5- and/or PKC-dependent signaling within the PrL, and corresponding recruitment of subcortical regions during high-load WM performance.
Collapse
|
11
|
Hsiao K, Noble C, Pitman W, Yadav N, Kumar S, Keele GR, Terceros A, Kanke M, Conniff T, Cheleuitte-Nieves C, Tolwani R, Sethupathy P, Rajasethupathy P. A Thalamic Orphan Receptor Drives Variability in Short-Term Memory. Cell 2020; 183:522-536.e19. [PMID: 32997977 DOI: 10.1016/j.cell.2020.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/09/2020] [Accepted: 09/01/2020] [Indexed: 12/31/2022]
Abstract
Working memory is a form of short-term memory that involves maintaining and updating task-relevant information toward goal-directed pursuits. Classical models posit persistent activity in prefrontal cortex (PFC) as a primary neural correlate, but emerging views suggest additional mechanisms may exist. We screened ∼200 genetically diverse mice on a working memory task and identified a genetic locus on chromosome 5 that contributes to a substantial proportion (17%) of the phenotypic variance. Within the locus, we identified a gene encoding an orphan G-protein-coupled receptor, Gpr12, which is sufficient to drive substantial and bidirectional changes in working memory. Molecular, cellular, and imaging studies revealed that Gpr12 enables high thalamus-PFC synchrony to support memory maintenance and choice accuracy. These findings identify an orphan receptor as a potent modifier of short-term memory and supplement classical PFC-based models with an emerging thalamus-centric framework for the mechanistic understanding of working memory.
Collapse
Affiliation(s)
- Kuangfu Hsiao
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065, USA
| | - Chelsea Noble
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065, USA
| | - Wendy Pitman
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Nakul Yadav
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065, USA
| | - Suraj Kumar
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065, USA
| | | | - Andrea Terceros
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065, USA
| | - Matt Kanke
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Tara Conniff
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065, USA
| | | | - Ravi Tolwani
- Comparative Bioscience Center, The Rockefeller University, New York, NY 10065, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
12
|
An Indexing Theory for Working Memory Based on Fast Hebbian Plasticity. eNeuro 2020; 7:ENEURO.0374-19.2020. [PMID: 32127347 PMCID: PMC7189483 DOI: 10.1523/eneuro.0374-19.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 12/21/2022] Open
Abstract
Working memory (WM) is a key component of human memory and cognition. Computational models have been used to study the underlying neural mechanisms, but neglected the important role of short-term memory (STM) and long-term memory (LTM) interactions for WM. Here, we investigate these using a novel multiarea spiking neural network model of prefrontal cortex (PFC) and two parietotemporal cortical areas based on macaque data. We propose a WM indexing theory that explains how PFC could associate, maintain, and update multimodal LTM representations. Our simulations demonstrate how simultaneous, brief multimodal memory cues could build a temporary joint memory representation as an “index” in PFC by means of fast Hebbian synaptic plasticity. This index can then reactivate spontaneously and thereby also the associated LTM representations. Cueing one LTM item rapidly pattern completes the associated uncued item via PFC. The PFC–STM network updates flexibly as new stimuli arrive, thereby gradually overwriting older representations.
Collapse
|
13
|
Chen C, Chen C, Xue G, Dong Q, Zhao L, Zhang S. Parental warmth interacts with several genes to affect executive function components: a genome-wide environment interaction study. BMC Genet 2020; 21:11. [PMID: 32019487 PMCID: PMC7001336 DOI: 10.1186/s12863-020-0819-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 01/29/2020] [Indexed: 12/20/2022] Open
Abstract
Background Executive function (EF) is vital to human beings. It has been linked to many genes and family environmental factors in separate studies, but few studies have examined the potential interactions between gene(s) and environmental factor(s). The current study explored the whole genome to identify SNPs, genes, and pathways that interacted with parental warmth (PW) on EF. Results Nine EF tasks were used to measure its three components (common EF, updating, shifting) based on the model proposed by Miyake et al. (2000). We found that rs111605473, LAMP5, SLC4A7, and LRRK1 interacted significantly with PW to affect the updating component of EF, and the GSE43955 pathway interacted significantly with PW to affect the common EF component. Conclusions The current study is the first to identify genes that interacted with PW to affect EF. Further studies are needed to reveal the underlying mechanism.
Collapse
Affiliation(s)
- Chunhui Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA, USA
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Libo Zhao
- Department of Psychology, BeiHang University, Beijing, 100191, China
| | - Shudong Zhang
- Faculty of Education, Beijing Normal University, Beijing, China.
| |
Collapse
|
14
|
Imbriglio T, Verhaeghe R, Martinello K, Pascarelli MT, Chece G, Bucci D, Notartomaso S, Quattromani M, Mascio G, Scalabrì F, Simeone A, Maccari S, Del Percio C, Wieloch T, Fucile S, Babiloni C, Battaglia G, Limatola C, Nicoletti F, Cannella M. Developmental abnormalities in cortical GABAergic system in mice lacking mGlu3 metabotropic glutamate receptors. FASEB J 2019; 33:14204-14220. [PMID: 31665922 DOI: 10.1096/fj.201901093rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polymorphic variants of the gene encoding for metabotropic glutamate receptor 3 (mGlu3) are linked to schizophrenia. Because abnormalities of cortical GABAergic interneurons lie at the core of the pathophysiology of schizophrenia, we examined whether mGlu3 receptors influence the developmental trajectory of cortical GABAergic transmission in the postnatal life. mGlu3-/- mice showed robust changes in the expression of interneuron-related genes in the prefrontal cortex (PFC), including large reductions in the expression of parvalbumin (PV) and the GluN1 subunit of NMDA receptors. The number of cortical cells enwrapped by perineuronal nets was increased in mGlu3-/- mice, suggesting that mGlu3 receptors shape the temporal window of plasticity of PV+ interneurons. Electrophysiological measurements of GABAA receptor-mediated responses revealed a more depolarized reversal potential of GABA currents in the somata of PFC pyramidal neurons in mGlu3-/- mice at postnatal d 9 associated with a reduced expression of the K+/Cl- symporter. Finally, adult mGlu3-/- mice showed lower power in electroencephalographic rhythms at 1-45 Hz in quiet wakefulness as compared with their wild-type counterparts. These findings suggest that mGlu3 receptors have a strong impact on the development of cortical GABAergic transmission and cortical neural synchronization mechanisms corroborating the concept that genetic variants of mGlu3 receptors may predispose to psychiatric disorders.-Imbriglio, T., Verhaeghe, R., Martinello, K., Pascarelli, M. T., Chece, G., Bucci, D., Notartomaso, S., Quattromani, M., Mascio, G., Scalabrì, F., Simeone, A., Maccari, S., Del Percio, C., Wieloch, T., Fucile, S., Babiloni, C., Battaglia, G., Limatola, C., Nicoletti, F., Cannella, M. Developmental abnormalities in cortical GABAergic system in mice lacking mGlu3 metabotropic glutamate receptors.
Collapse
Affiliation(s)
- Tiziana Imbriglio
- Department of Physiology and Pharmacology "V. Erspamer" University Sapienza of Rome, Rome, Italy
| | - Remy Verhaeghe
- Department of Physiology and Pharmacology "V. Erspamer" University Sapienza of Rome, Rome, Italy
| | - Katiuscia Martinello
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - Maria Teresa Pascarelli
- Department of Physiology and Pharmacology "V. Erspamer" University Sapienza of Rome, Rome, Italy.,Oasi Research Institute - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Troina, Italy
| | - Giuseppina Chece
- Department of Physiology and Pharmacology "V. Erspamer" University Sapienza of Rome, Rome, Italy
| | - Domenico Bucci
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - Serena Notartomaso
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - Miriana Quattromani
- Laboratory for Experimental Brain Research, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Giada Mascio
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - Francesco Scalabrì
- Istituto di Ricerca Biologia Molecolare (IRBM) Science Park S.p.A., Pomezia, Rome, Italy
| | - Antonio Simeone
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", Centro Nazionale Ricerche (CNR), Naples, Italy
| | - Stefania Maccari
- Department of Science and Medical-Surgical Biotechnology, University Sapienza of Rome, Rome, Italy.,University of Lille, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "V. Erspamer" University Sapienza of Rome, Rome, Italy
| | - Tadeusz Wieloch
- Oasi Research Institute - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Troina, Italy
| | - Sergio Fucile
- Department of Physiology and Pharmacology "V. Erspamer" University Sapienza of Rome, Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "V. Erspamer" University Sapienza of Rome, Rome, Italy.,Hospital San Raffaele Cassino, Cassino, Italy
| | - Giuseppe Battaglia
- Department of Physiology and Pharmacology "V. Erspamer" University Sapienza of Rome, Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology "V. Erspamer" University Sapienza of Rome, Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology "V. Erspamer" University Sapienza of Rome, Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - Milena Cannella
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| |
Collapse
|
15
|
Gaillard C, Guillod M, Ernst M, Torrisi S, Federspiel A, Schoebi D, Recabarren RE, Ouyang X, Mueller-Pfeiffer C, Horsch A, Homan P, Wiest R, Hasler G, Martin-Soelch C. Striatal responsiveness to reward under threat-of-shock and working memory load: A preliminary study. Brain Behav 2019; 9:e01397. [PMID: 31557426 PMCID: PMC6790302 DOI: 10.1002/brb3.1397] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/03/2019] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Reward and stress are important determinants of motivated behaviors. Striatal regions play a crucial role in both motivation and hedonic processes. So far, little is known on how cognitive effort interacts with stress to modulate reward processes. This study examines how cognitive effort (load) interacts with an unpredictable acute stressor (threat-of-shock) to modulate motivational and hedonic processes in healthy adults. MATERIALS AND METHODS A reward task, involving stress with unpredictable mild electric shocks, was conducted in 23 healthy adults aged 20-37 (mean age: 24.7 ± 0.9; 14 females) during functional magnetic resonance imaging (fMRI). Manipulation included the use of (a) monetary reward for reinforcement, (b) threat-of-shock as the stressor, and (c) a spatial working memory task with two levels of difficulty (low and high load) for cognitive load. Reward-related activation was investigated in a priori three regions of interest, the nucleus accumbens (NAcc), caudate nucleus, and putamen. RESULTS During anticipation, threat-of-shock or cognitive load did not affect striatal responsiveness to reward. Anticipated reward increased activation in the ventral and dorsal striatum. During feedback delivery, both threat-of-shock and cognitive effort modulated striatal activation. Higher working memory load blunted NAcc responsiveness to reward delivery, while stress strengthened caudate nucleus reactivity regardless reinforcement or load. CONCLUSIONS These findings provide initial evidence that both stress and cognitive load modulate striatal responsiveness during feedback delivery but not during anticipation in healthy adults. Of clinical importance, sustained stress exposure might go along with dysregulated arousal, increasing therefore the risk for the development of maladaptive incentive-triggered motivation. This study brings new insight that might help to build a framework to understand common stress-related disorders, given that these psychiatric disorders involve disturbances of the reward system, cognitive deficits, and abnormal stress reactivity.
Collapse
Affiliation(s)
- Claudie Gaillard
- IReach Lab, Unit of Clinical and Health Psychology, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Matthias Guillod
- IReach Lab, Unit of Clinical and Health Psychology, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Monique Ernst
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD
| | - Salvatore Torrisi
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD
| | - Andrea Federspiel
- Psychiatric Neuroimaging Unit, Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Dominik Schoebi
- Unit of Clinical Family Psychology, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Romina E Recabarren
- IReach Lab, Unit of Clinical and Health Psychology, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Xinyi Ouyang
- iBM Lab, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Christoph Mueller-Pfeiffer
- Department of Consultation-Liaison-Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Antje Horsch
- Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland.,Institute of Higher Education and Research in Healthcare, University of Lausanne, Lausanne, Switzerland
| | - Philipp Homan
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, New York, NY
| | - Roland Wiest
- Department of Diagnostic and Interventional Neuroradiology, University Hospital of Bern, Bern, Switzerland
| | - Gregor Hasler
- Unit of Psychiatry Research, University of Fribourg, Fribourg, Switzerland
| | - Chantal Martin-Soelch
- IReach Lab, Unit of Clinical and Health Psychology, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
16
|
Thiele A, Bellgrove MA. Neuromodulation of Attention. Neuron 2019; 97:769-785. [PMID: 29470969 PMCID: PMC6204752 DOI: 10.1016/j.neuron.2018.01.008] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/26/2017] [Accepted: 01/02/2018] [Indexed: 02/07/2023]
Abstract
Attention is critical to high-level cognition and attention deficits are a hallmark of neurologic and neuropsychiatric disorders. Although years of research indicates that distinct neuromodulators influence attentional control, a mechanistic account that traverses levels of analysis (cells, circuits, behavior) is missing. However, such an account is critical to guide the development of next-generation pharmacotherapies aimed at forestalling or remediating the global burden associated with disorders of attention. Here, we summarize current neuroscientific understanding of how attention affects single neurons and networks of neurons. We then review key results that have informed our understanding of how neuromodulation shapes these neuron and network properties and thereby enables the appropriate allocation of attention to relevant external or internal events. Finally, we highlight areas where we believe hypotheses can be formulated and tackled experimentally in the near future, thereby critically increasing our mechanistic understanding of how attention is implemented at the cellular and network levels.
Collapse
Affiliation(s)
- Alexander Thiele
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.
| | - Mark A Bellgrove
- Monash Institute of Cognitive and Clinical Neurosciences (MICCN) and School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
17
|
Maksymetz J, Joffe ME, Moran SP, Stansley BJ, Li B, Temple K, Engers DW, Lawrence JJ, Lindsley CW, Conn PJ. M 1 Muscarinic Receptors Modulate Fear-Related Inputs to the Prefrontal Cortex: Implications for Novel Treatments of Posttraumatic Stress Disorder. Biol Psychiatry 2019; 85:989-1000. [PMID: 31003787 PMCID: PMC6555658 DOI: 10.1016/j.biopsych.2019.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND The prefrontal cortex (PFC) integrates information from multiple inputs to exert top-down control allowing for appropriate responses in a given context. In psychiatric disorders such as posttraumatic stress disorder, PFC hyperactivity is associated with inappropriate fear in safe situations. We previously reported a form of muscarinic acetylcholine receptor (mAChR)-dependent long-term depression in the PFC that we hypothesize is involved in appropriate fear responding and could serve to reduce cortical hyperactivity following stress. However, it is unknown whether this long-term depression occurs at fear-related inputs. METHODS Using optogenetics with extracellular and whole-cell electrophysiology, we assessed the effect of mAChR activation on the synaptic strength of specific PFC inputs. We used selective pharmacological tools to assess the involvement of M1 mAChRs in conditioned fear extinction in control mice and in the stress-enhanced fear-learning model. RESULTS M1 mAChR activation induced long-term depression at inputs from the ventral hippocampus and basolateral amygdala but not from the mediodorsal nucleus of the thalamus. We found that systemic M1 mAChR antagonism impaired contextual fear extinction. Treatment with an M1 positive allosteric modulator enhanced contextual fear extinction consolidation in stress-enhanced fear learning-conditioned mice. CONCLUSIONS M1 mAChRs dynamically modulate synaptic transmission at two PFC inputs whose activity is necessary for fear extinction, and M1 mAChR function is required for proper contextual fear extinction. Furthermore, an M1 positive allosteric modulator enhanced the consolidation of fear extinction in the stress-enhanced fear-learning model, suggesting that M1 positive allosteric modulators may provide a novel treatment strategy to facilitate exposure therapy in the clinic for the treatment of posttraumatic stress disorder.
Collapse
Affiliation(s)
- James Maksymetz
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| | - Max E Joffe
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| | - Sean P Moran
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| | - Branden J Stansley
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| | - Brianna Li
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Kayla Temple
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| | - Darren W Engers
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| | - J Josh Lawrence
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt University, Nashville, Tennessee
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
18
|
Scott GA, Roebuck AJ, Greba Q, Howland JG. Performance of the trial-unique, delayed non-matching-to-location (TUNL) task depends on AMPA/Kainate, but not NMDA, ionotropic glutamate receptors in the rat posterior parietal cortex. Neurobiol Learn Mem 2019; 159:16-23. [DOI: 10.1016/j.nlm.2019.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/04/2018] [Accepted: 02/03/2019] [Indexed: 02/06/2023]
|
19
|
Kelly SC, McKay EC, Beck JS, Collier TJ, Dorrance AM, Counts SE. Locus Coeruleus Degeneration Induces Forebrain Vascular Pathology in a Transgenic Rat Model of Alzheimer's Disease. J Alzheimers Dis 2019; 70:371-388. [PMID: 31177220 PMCID: PMC6929678 DOI: 10.3233/jad-190090] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Noradrenergic locus coeruleus (LC) neuron loss is a significant feature of mild cognitive impairment and Alzheimer's disease (AD). The LC is the primary source of norepinephrine in the forebrain, where it modulates attention and memory in vulnerable cognitive regions such as prefrontal cortex (PFC) and hippocampus. Furthermore, LC-mediated norepinephrine signaling is thought to play a role in blood-brain barrier (BBB) maintenance and neurovascular coupling, suggesting that LC degeneration may impact the high comorbidity of cerebrovascular disease and AD. However, the extent to which LC projection system degeneration influences vascular pathology is not fully understood. To address this question in vivo, we stereotactically lesioned LC projection neurons innervating the PFC of six-month-old Tg344-19 AD rats using the noradrenergic immunotoxin, dopamine-β-hydroxylase IgG-saporin (DBH-sap), or an untargeted control IgG-saporin (IgG-sap). DBH-sap-lesioned animals performed significantly worse than IgG-sap animals on the Barnes maze task in measures of both spatial and working memory. DBH-sap-lesioned rats also displayed increased amyloid and inflammation pathology compared to IgG-sap controls. However, we also discovered prominent parenchymal albumin extravasation with DBH-sap lesions indicative of BBB breakdown. Moreover, microvessel wall-to-lumen ratios were increased in the PFC of DBH-sap compared to IgG-sap rats, suggesting that LC deafferentation results in vascular remodeling. Finally, we noted an early emergence of amyloid angiopathy in the DBH-sap-lesioned Tg344-19 AD rats. Taken together, these data indicate that LC projection system degeneration is a nexus lesion that compromises both vascular and neuronal function in cognitive brain areas during the prodromal stages of AD.
Collapse
Affiliation(s)
- Sarah C. Kelly
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
| | - Erin C. McKay
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - John S. Beck
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Timothy J. Collier
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Anne M. Dorrance
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Scott E. Counts
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Department of Family Medicine, Michigan State University, Grand Rapids, MI, USA
- Hauenstein Neurosciences Center, Mercy Health Saint Mary’s Hospital, Grand Rapids, MI, USA
- Michigan Alzheimer’s Disease Core Center, Ann Arbor, MI, USA
| |
Collapse
|
20
|
Karpati FJ, Giacosa C, Foster NEV, Penhune VB, Hyde KL. Structural Covariance Analysis Reveals Differences Between Dancers and Untrained Controls. Front Hum Neurosci 2018; 12:373. [PMID: 30319377 PMCID: PMC6167617 DOI: 10.3389/fnhum.2018.00373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 08/30/2018] [Indexed: 12/31/2022] Open
Abstract
Dancers and musicians differ in brain structure from untrained individuals. Structural covariance (SC) analysis can provide further insight into training-associated brain plasticity by evaluating interregional relationships in gray matter (GM) structure. The objectives of the present study were to compare SC of cortical thickness (CT) between expert dancers, expert musicians and untrained controls, as well as to examine the relationship between SC and performance on dance- and music-related tasks. A reduced correlation between CT in the left dorsolateral prefrontal cortex (DLPFC) and mean CT across the whole brain was found in the dancers compared to the controls, and a reduced correlation between these two CT measures was associated with higher performance on a dance video game task. This suggests that the left DLPFC is structurally decoupled in dancers and may be more strongly affected by local training-related factors than global factors in this group. This work provides a better understanding of structural brain connectivity and training-induced brain plasticity, as well as their interaction with behavior in dance and music.
Collapse
Affiliation(s)
- Falisha J Karpati
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, QC, Canada.,Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Chiara Giacosa
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, QC, Canada.,Department of Psychology, Concordia University, Montreal, QC, Canada
| | - Nicholas E V Foster
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, QC, Canada.,Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Virginia B Penhune
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, QC, Canada.,Department of Psychology, Concordia University, Montreal, QC, Canada
| | - Krista L Hyde
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, QC, Canada.,Faculty of Medicine, McGill University, Montreal, QC, Canada.,Department of Psychology, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
21
|
Transcriptome alterations of prefrontal cortical parvalbumin neurons in schizophrenia. Mol Psychiatry 2018; 23:1606-1613. [PMID: 29112193 PMCID: PMC5938166 DOI: 10.1038/mp.2017.216] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/14/2017] [Accepted: 08/30/2017] [Indexed: 12/19/2022]
Abstract
Schizophrenia (SZ) is associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction is manifest as cognitive deficits that appear to arise from disturbances in gamma frequency oscillations. These oscillations are generated in DLPFC layer 3 (L3) via reciprocal connections between pyramidal cells (PCs) and parvalbumin (PV)-containing interneurons. The density of cortical PV neurons is not altered in SZ, but expression levels of several transcripts involved in PV cell function, including PV, are lower in the disease. However, the transcriptome of PV cells has not been comprehensively assessed in a large cohort of subjects with SZ. In this study, we combined an immunohistochemical approach, laser microdissection, and microarray profiling to analyze the transcriptome of DLPFC L3 PV cells in 36 matched pairs of SZ and unaffected comparison subjects. Over 800 transcripts in PV neurons were identified as differentially expressed in SZ subjects; most of these alterations have not previously been reported. The altered transcripts were enriched for pathways involved in mitochondrial function and tight junction signaling. Comparison with the transcriptome of L3 PCs from the same subjects revealed both shared and distinct disease-related effects on gene expression between cell types. Furthermore, network structures of gene pathways differed across cell types and subject groups. These findings provide new insights into cell type-specific molecular alterations in SZ which may point toward novel strategies for identifying therapeutic targets.
Collapse
|
22
|
Store depletion-induced h-channel plasticity rescues a channelopathy linked to Alzheimer's disease. Neurobiol Learn Mem 2018; 154:141-157. [PMID: 29906573 DOI: 10.1016/j.nlm.2018.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/25/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022]
Abstract
Voltage-gated ion channels are critical for neuronal integration. Some of these channels, however, are misregulated in several neurological disorders, causing both gain- and loss-of-function channelopathies in neurons. Using several transgenic mouse models of Alzheimer's disease (AD), we find that sub-threshold voltage signals strongly influenced by hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels progressively deteriorate over chronological aging in hippocampal CA1 pyramidal neurons. The degraded signaling via HCN channels in the transgenic mice is accompanied by an age-related global loss of their non-uniform dendritic expression. Both the aberrant signaling via HCN channels and their mislocalization could be restored using a variety of pharmacological agents that target the endoplasmic reticulum (ER). Our rescue of the HCN channelopathy helps provide molecular details into the favorable outcomes of ER-targeting drugs on the pathogenesis and synaptic/cognitive deficits in AD mouse models, and implies that they might have beneficial effects on neurological disorders linked to HCN channelopathies.
Collapse
|
23
|
Lin HC, Wang PW, Wu HC, Ko CH, Yang YH, Yen CF. Altered gray matter volume and disrupted functional connectivity of dorsolateral prefrontal cortex in men with heroin dependence. Psychiatry Clin Neurosci 2018; 72:435-444. [PMID: 29582514 DOI: 10.1111/pcn.12655] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 01/18/2018] [Accepted: 03/21/2018] [Indexed: 12/26/2022]
Abstract
AIM Chronic heroin use can cause various neuropathological characteristics that may compromise brain function. The present study evaluated the alteration of gray matter volume (GMV) and its resting-state functional connectivity (rsFC) over the dorsolateral prefrontal cortex (DLPFC) among male heroin users. METHODS Thirty heroin-dependent men undergoing methadone maintenance therapy and 30 educational-level- and age-matched male controls were recruited for this study. To assess their GMV and rsFC, the participants were evaluated using spoiled gradient echo and gradient-recalled echo planar imaging sequences with a 3-Tesla General Electric MR scanner under resting state. RESULTS The heroin-dependent men showed lower GMV over the right DLPFC in comparison with the controls. Further evaluation of the rsFC of the right DLPFC revealed a marked decrease in interhemispheric DLPFC connectivity among those with heroin dependence under control of head movement and GMV of the right DLPFC. CONCLUSION Although the mechanism remains unclear, the present study shows that chronic heroin use is associated with alteration of morphology as well as rsFC over the right DLPFC. As the DLPFC plays an imperative role in various domains of cognitive function, service providers for heroin users should consider the impacts of possible DLPFC-related cognitive deficits on treatment effectiveness.
Collapse
Affiliation(s)
- Huang-Chi Lin
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Psychiatry, School of Medicine and Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Peng-Wei Wang
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Psychiatry, School of Medicine and Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Chi Wu
- Department of Community Psychiatry, Kai-Suan Psychiatric Hospital, Kaohsiung, Taiwan
| | - Chih-Hung Ko
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Psychiatry, School of Medicine and Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Psychiatry, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hsin Yang
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Medical Statistics and Bioinformatics, Department of Medical Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Fang Yen
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Psychiatry, School of Medicine and Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
24
|
Fazio L, Pergola G, Papalino M, Di Carlo P, Monda A, Gelao B, Amoroso N, Tangaro S, Rampino A, Popolizio T, Bertolino A, Blasi G. Transcriptomic context of DRD1 is associated with prefrontal activity and behavior during working memory. Proc Natl Acad Sci U S A 2018; 115:5582-5587. [PMID: 29735686 PMCID: PMC6003490 DOI: 10.1073/pnas.1717135115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Dopamine D1 receptor (D1R) signaling shapes prefrontal cortex (PFC) activity during working memory (WM). Previous reports found higher WM performance associated with alleles linked to greater expression of the gene coding for D1Rs (DRD1). However, there is no evidence on the relationship between genetic modulation of DRD1 expression in PFC and patterns of prefrontal activity during WM. Furthermore, previous studies have not considered that D1Rs are part of a coregulated molecular environment, which may contribute to D1R-related prefrontal WM processing. Thus, we hypothesized a reciprocal link between a coregulated (i.e., coexpressed) molecular network including DRD1 and PFC activity. To explore this relationship, we used three independent postmortem prefrontal mRNA datasets (total n = 404) to characterize a coexpression network including DRD1 Then, we indexed network coexpression using a measure (polygenic coexpression index-DRD1-PCI) combining the effect of single nucleotide polymorphisms (SNPs) on coexpression. Finally, we associated the DRD1-PCI with WM performance and related brain activity in independent samples of healthy participants (total n = 371). We identified and replicated a coexpression network including DRD1, whose coexpression was correlated with DRD1-PCI. We also found that DRD1-PCI was associated with lower PFC activity and higher WM performance. Behavioral and imaging results were replicated in independent samples. These findings suggest that genetically predicted expression of DRD1 and of its coexpression partners stratifies healthy individuals in terms of WM performance and related prefrontal activity. They also highlight genes and SNPs potentially relevant to pharmacological trials aimed to test cognitive enhancers modulating DRD1 signaling.
Collapse
Affiliation(s)
- Leonardo Fazio
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
- Sezione di Neuroradiologia, Istituto di Ricovero e Cura a Carattere Scientifico "Casa Sollievo della Sofferenza," 71013 San Giovanni Rotondo, Italy
- Contributed Equally
| | - Giulio Pergola
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
- Contributed Equally
| | - Marco Papalino
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Pasquale Di Carlo
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Anna Monda
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Barbara Gelao
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Nicola Amoroso
- Dipartimento Interateneo di Fisica "M. Merlin," Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
- Sezione di Bari, Istituto Nazionale di Fisica Nucleare, 70125 Bari, Italy
| | - Sabina Tangaro
- Sezione di Bari, Istituto Nazionale di Fisica Nucleare, 70125 Bari, Italy
| | - Antonio Rampino
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
- Institute of Psychiatry, Bari University Hospital, 70124 Bari, Italy
| | - Teresa Popolizio
- Sezione di Neuroradiologia, Istituto di Ricovero e Cura a Carattere Scientifico "Casa Sollievo della Sofferenza," 71013 San Giovanni Rotondo, Italy
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
- Institute of Psychiatry, Bari University Hospital, 70124 Bari, Italy
| | - Giuseppe Blasi
- Institute of Psychiatry, Bari University Hospital, 70124 Bari, Italy
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy;
| |
Collapse
|
25
|
Fitzgerald JM, Kinney KL, Phan KL, Klumpp H. Distinct neural engagement during implicit and explicit regulation of negative stimuli. Neuropsychologia 2018; 145:106675. [PMID: 29428771 DOI: 10.1016/j.neuropsychologia.2018.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 01/10/2018] [Accepted: 02/02/2018] [Indexed: 12/19/2022]
Abstract
Neuroimaging research has characterized underlying neural mechanisms of attentional control and cognitive reappraisal, common implicit and explicit forms of emotion regulation, respectively. This research suggests attentional control and reappraisal may engage similar midline and lateral areas in the prefrontal cortex (PFC); however, findings are largely based on separate studies. Therefore, the extent to which mechanisms of implicit versus explicit regulation are independent or overlapping is not clear. In the current study, 49 healthy participants completed well-validated implicit and explicit regulation tasks in the form of attentional control and cognitive reappraisal during functional magnetic resonance imaging. During implicit regulation, participants identified a target letter in a string of letters superimposed on threatening faces. To manipulate attentional control, the letter string either consisted of all targets ('Threat Low' perceptual load), or was embedded among non-target letters ('Threat High' perceptual load). During cognitive reappraisal, participants were shown aversive images and instructed to use a cognitive approach to down-regulate negative affect ('Reappraise') or to naturally experience emotions without altering them ('Look-Negative'). Order of administration of tasks was counterbalanced across participants. Whole-brain results regarding frontal activity showed ventromedial PFC/rostral anterior cingulate cortex was recruited during Threat Low > Threat High. In contrast, Reappraise > Look-Negative resulted in engagement of the dorsolateral PFC, ventrolateral PFC and dorsomedial PFC. In addition, results showed no relationship between accuracy during attentional control and self-reported negative affect during cognitive reappraisal. Results indicate attentional control in the context of threat distractors and the reappraisal of negative images are supported by discrete, non-overlapping neurocircuitries.
Collapse
Affiliation(s)
- Jacklynn M Fitzgerald
- University of Illinois at Chicago, Department of Psychology, Chicago, IL, USA; University of Illinois at Chicago, Department of Psychiatry, Chicago, IL, USA
| | - Kerry L Kinney
- University of Illinois at Chicago, Department of Psychology, Chicago, IL, USA; University of Illinois at Chicago, Department of Psychiatry, Chicago, IL, USA
| | - K Luan Phan
- University of Illinois at Chicago, Department of Psychology, Chicago, IL, USA; University of Illinois at Chicago, Department of Psychiatry, Chicago, IL, USA; University of Illinois at Chicago, Department of Anatomy and Cell Biology and The Graduate Program in Neuroscience, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Heide Klumpp
- University of Illinois at Chicago, Department of Psychology, Chicago, IL, USA; University of Illinois at Chicago, Department of Psychiatry, Chicago, IL, USA.
| |
Collapse
|
26
|
Wennogle LP, Hoxie H, Peng Y, Hendrick JP. Phosphodiesterase 1: A Unique Drug Target for Degenerative Diseases and Cognitive Dysfunction. ADVANCES IN NEUROBIOLOGY 2018; 17:349-384. [PMID: 28956339 DOI: 10.1007/978-3-319-58811-7_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The focus of this chapter is on the cyclic nucleotide phosphodiesterase 1 (PDE1) family. PDE1 is one member of the 11 PDE families (PDE 1-11). It is the only phosphodiesterase family that is calcium/calmodulin activated. As a result, whereas other families of PDEs 2-11 play a dominant role controlling basal levels of cyclic nucleotides, PDE1 is involved when intra-cellular calcium levels are elevated and, thus, has an "on demand" or activity-dependent involvement in the control of cyclic nucleotides in excitatory cells including neurons, cardiomyocytes and smooth muscle. As a Class 1 phosphodiesterase, PDE1 hydrolyzes the 3' bond of 3'-5'-cyclic nucleotides, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Here, we review evidence for this family of enzymes as drug targets for development of therapies aimed to address disorders of the central nervous system (CNS) and of degenerative diseases. The chapter includes sections on the potential for cognitive enhancement in mental disorders, as well as a review of PDE1 enzyme structure, enzymology, tissue distribution, genomics, inhibitors, pharmacology, clinical trials, and therapeutic indications. Information is taken from public databases. A number of excellent reviews of the phosphodiesterase family have been written as well as reviews of the PDE1 family. References cited here are not comprehensive, rather pointing to major reviews and key publications.
Collapse
Affiliation(s)
- Lawrence P Wennogle
- Alexandria Center for Life Science, Intra-Cellular Therapies, Inc., New York, 10016, NY, USA.
| | - Helen Hoxie
- Alexandria Center for Life Science, Intra-Cellular Therapies, Inc., New York, 10016, NY, USA
| | - Youyi Peng
- Rutgers University, 7 College Ave, New Brunswick, NJ, 08901, USA
| | - Joseph P Hendrick
- Alexandria Center for Life Science, Intra-Cellular Therapies, Inc., New York, 10016, NY, USA
| |
Collapse
|
27
|
Abstract
Posttraumatic stress disorder (PTSD) is a devastating disorder, linked to profound mental, physical, occupational, and functional impairment. In addition, it is a highly complex disorder, characterized by symptom heterogeneity across multiple domains. Nevertheless, emotion dysregulation arising from the exaggerated response to threat or from the inability to regulate negative emotional states plays a defining role in the pathophysiology of PTSD. In order to improve our understanding of how emotion dysregulation manifests in this illness, functional neuroimaging research over the past 20 years provides great insight into underlying neuroanatomy of each component of emotion dysregulation in the context of PTSD. While prior reviews exist on the topic of neuroimaging findings in PTSD, the present review synthesizes that work through the lens of emotion and its regulation. Studies that employed tasks of emotional responding and symptom provocation, implicit regulation (e.g., emotional Stroop and interference), explicit regulation (e.g., cognitive reappraisal), and fear conditioning/extinction were reviewed. Findings demonstrate that emotion dysregulation in PTSD arises from complications within a large neurocircuitry involving the amygdala, insula, hippocampus, anterior cingulate cortex, and prefrontal cortex. Although an exaggerated response in the amygdala and insula to negative emotional triggers is pervasive, PTSD is also marked by deficient appraisal, resolution, and management of negative emotional states subserved by the anterior cingulate cortex and prefrontal cortex during regulation. These findings further support the importance of studying emotion-regulation deficits in tandem with exaggerated symptom provocation in order to better understand the constellation of symptoms present in those with PTSD.
Collapse
|
28
|
Song C, Moyer JR. Layer- and subregion-specific differences in the neurophysiological properties of rat medial prefrontal cortex pyramidal neurons. J Neurophysiol 2018; 119:177-191. [PMID: 28978762 PMCID: PMC5866461 DOI: 10.1152/jn.00146.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 10/02/2017] [Accepted: 10/02/2017] [Indexed: 12/25/2022] Open
Abstract
Medial prefrontal cortex (mPFC) is critical for the expression of long-term conditioned fear. However, the neural circuits involving fear memory acquisition and retrieval are still unclear. Two subregions within mPFC that have received a lot of attention are the prelimbic (PL) and infralimbic (IL) cortices (e.g., Santini E, Quirk GJ, Porter JT. J Neurosci 28: 4028-4036, 2008; Song C, Ehlers VL, Moyer JR Jr J Neurosci 35: 13511-13524, 2015). Interestingly, PL and IL may play distinct roles during fear memory acquisition and retrieval but the underlying mechanism is poorly understood. One possibility is that the intrinsic membrane properties differ between these subregions. Thus, the current study was carried out to characterize the basic membrane properties of mPFC neurons in different layers and subregions. We found that pyramidal neurons in L2/3 were more hyperpolarized and less excitable than in L5. This was observed in both IL and PL and was associated with an enhanced h-current in L5 neurons. Within L2/3, IL neurons were more excitable than those in PL, which may be due to a lower spike threshold and higher input resistance in IL neurons. Within L5, the intrinsic excitability was comparable between neurons obtained in IL and PL. Thus, the heterogeneity in physiological properties of mPFC neurons may underlie the observed subregion-specific contribution of mPFC in cognitive function and emotional control, such as fear memory expression. NEW & NOTEWORTHY This is the first study to demonstrate that medial prefrontal cortical (mPFC) neurons are heterogeneous in both a layer- and a subregion-specific manner. Specifically, L5 neurons are more depolarized and more excitable than those neurons in L2/3, which is likely due to variations in h-current. Also, infralimbic neurons are more excitable than those of prelimbic neurons in layer 2/3, which may be due to differences in certain intrinsic properties, including input resistance and spike threshold.
Collapse
Affiliation(s)
- Chenghui Song
- Department of Psychology, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin
| | - James R Moyer
- Department of Psychology, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin
- Department of Biological Sciences, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin
| |
Collapse
|
29
|
Abstract
Schizophrenia is a complex disorder lacking an effective treatment option for the pervasive and debilitating cognitive impairments experienced by patients. Working memory is a core cognitive function impaired in schizophrenia that depends upon activation of distributed neural network, including the circuitry of the dorsolateral prefrontal cortex (DLPFC). Accordingly, individuals diagnosed with schizophrenia show reduced DLPFC activation while performing working-memory tasks. This lower DLPFC activation appears to be an integral part of the disease pathophysiology, and not simply a reflection of poor performance. Thus, the cellular and circuitry alterations that underlie lower DLPFC neuronal activity in schizophrenia must be determined in order to identify appropriate therapeutic targets. Studies using human postmortem brain tissue provide a robust way to investigate and characterize these cellular and circuitry alterations at multiple levels of resolution, and such studies provide essential information that cannot be obtained either through in vivo studies in humans or through experimental animal models. Studies examining neuronal morphology, protein expression and localization, and transcript levels indicate that a microcircuit composed of excitatory pyramidal cells and inhibitory interneurons containing the calcium-binding protein parvalbumin is altered in the DLPFC of subjects with schizophrenia and likely contributes to DLPFC dysfunction.
Collapse
Affiliation(s)
- Jill R Glausier
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
30
|
Arime Y, Akiyama K. Abnormal neural activation patterns underlying working memory impairment in chronic phencyclidine-treated mice. PLoS One 2017; 12:e0189287. [PMID: 29253020 PMCID: PMC5734723 DOI: 10.1371/journal.pone.0189287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 11/23/2017] [Indexed: 11/18/2022] Open
Abstract
Working memory impairment is a hallmark feature of schizophrenia and is thought be caused by dysfunctions in the prefrontal cortex (PFC) and associated brain regions. However, the neural circuit anomalies underlying this impairment are poorly understood. The aim of this study is to assess working memory performance in the chronic phencyclidine (PCP) mouse model of schizophrenia, and to identify the neural substrates of working memory. To address this issue, we conducted the following experiments for mice after withdrawal from chronic administration (14 days) of either saline or PCP (10 mg/kg): (1) a discrete paired-trial variable-delay task in T-maze to assess working memory, and (2) brain-wide c-Fos mapping to identify activated brain regions relevant to this task performance either 90 min or 0 min after the completion of the task, with each time point examined under working memory effort and basal conditions. Correct responses in the test phase of the task were significantly reduced across delays (5, 15, and 30 s) in chronic PCP-treated mice compared with chronic saline-treated controls, suggesting delay-independent impairments in working memory in the PCP group. In layer 2-3 of the prelimbic cortex, the number of working memory effort-elicited c-Fos+ cells was significantly higher in the chronic PCP group than in the chronic saline group. The main effect of working memory effort relative to basal conditions was to induce significantly increased c-Fos+ cells in the other layers of prelimbic cortex and the anterior cingulate and infralimbic cortex regardless of the different chronic regimens. Conversely, this working memory effort had a negative effect (fewer c-Fos+ cells) in the ventral hippocampus. These results shed light on some putative neural networks relevant to working memory impairments in mice chronically treated with PCP, and emphasize the importance of the layer 2-3 of the prelimbic cortex of the PFC.
Collapse
Affiliation(s)
- Yosefu Arime
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
- * E-mail:
| | - Kazufumi Akiyama
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| |
Collapse
|
31
|
Sartiani L, Mannaioni G, Masi A, Novella Romanelli M, Cerbai E. The Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: from Biophysics to Pharmacology of a Unique Family of Ion Channels. Pharmacol Rev 2017; 69:354-395. [PMID: 28878030 DOI: 10.1124/pr.117.014035] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/07/2017] [Indexed: 12/22/2022] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels are important members of the voltage-gated pore loop channels family. They show unique features: they open at hyperpolarizing potential, carry a mixed Na/K current, and are regulated by cyclic nucleotides. Four different isoforms have been cloned (HCN1-4) that can assemble to form homo- or heterotetramers, characterized by different biophysical properties. These proteins are widely distributed throughout the body and involved in different physiologic processes, the most important being the generation of spontaneous electrical activity in the heart and the regulation of synaptic transmission in the brain. Their role in heart rate, neuronal pacemaking, dendritic integration, learning and memory, and visual and pain perceptions has been extensively studied; these channels have been found also in some peripheral tissues, where their functions still need to be fully elucidated. Genetic defects and altered expression of HCN channels are linked to several pathologies, which makes these proteins attractive targets for translational research; at the moment only one drug (ivabradine), which specifically blocks the hyperpolarization-activated current, is clinically available. This review discusses current knowledge about HCN channels, starting from their biophysical properties, origin, and developmental features, to (patho)physiologic role in different tissues and pharmacological modulation, ending with their present and future relevance as drug targets.
Collapse
Affiliation(s)
- Laura Sartiani
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Alessio Masi
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| |
Collapse
|
32
|
Hoseth EZ, Ueland T, Dieset I, Birnbaum R, Shin JH, Kleinman JE, Hyde TM, Mørch RH, Hope S, Lekva T, Abraityte AJ, Michelsen AE, Melle I, Westlye LT, Ueland T, Djurovic S, Aukrust P, Weinberger DR, Andreassen OA. A Study of TNF Pathway Activation in Schizophrenia and Bipolar Disorder in Plasma and Brain Tissue. Schizophr Bull 2017; 43:881-890. [PMID: 28049760 PMCID: PMC5515106 DOI: 10.1093/schbul/sbw183] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE A proinflammatory imbalance in the tumor necrosis factor (TNF) system may contribute to the pathogenesis of schizophrenia (SCZ) and bipolar disorders (BDs) and related comorbidities. We investigated the relative distribution of TNF-related molecules in blood and dorsolateral prefrontal cortex (DLPFC) in these disorders. METHOD We measured plasma levels of TNF, soluble TNF receptor 1 (sTNFR1), soluble TNF receptor 2 (sTNFR2), and a disintegrin and metalloprotease-17 (ADAM17) using enzyme immunoassays and calculated the TNF/sTNFRs ratio (TNF/sTNFR1+sTNFR2) in a sample of 816 SCZ and BD spectrum patients and 624 healthy controls (HCs). TNF, TNFRSF1A (TNFR1), TNFRSF1B (TNFR2), and ADAM17 mRNA levels were determined in whole blood, and postmortem DLPFC obtained from an independent cohort (n = 80 SCZ, n = 44 BD, and n = 86 HC). RESULTS In peripheral blood, we show increased TNF-related measures in patients compared to HC, with an increased TNF/sTNFRs ratio (p = 6.00 × 10-5), but decreased TNF mRNA expression (p = 1 × 10-4), with no differences between SCZ and BD. Whole blood ADAM17 mRNA expression was markedly higher in BD vs SCZ patients (p = 1.40 × 10-14) and vs HC (p = 1.22 × 10-8). In postmortem DLPFC, we found no significant differences in mRNA expression of TNF pathway genes between any groups. CONCLUSIONS SCZ and BD patients have increased plasma TNF pathway markers without corresponding increase in blood cell gene expression. ADAM17 expression in leukocytes is markedly different between the two disorders, while alterations in TNF-related gene expression in DLPFC are uncertain. Further studies are necessary to elucidate the aberrant regulation of the TNF pathway in severe mental disorders.
Collapse
Affiliation(s)
- Eva Zsuzsanna Hoseth
- NORMENT, KG Jebsen Centre for Psychosis Research Building 49, Oslo University Hospital, Ullevål Kirkeveien 166, PO Box 4956 Nydalen 0424, Oslo, Norway;,Division of Mental Health and Addiction, Møre and Romsdal Health Trust, Kristiansund, Norway
| | - Thor Ueland
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway;,Institute of Clinical Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway;,K.G. Jensen inflammatory Research Center, University of Oslo, Oslo, Norway
| | - Ingrid Dieset
- NORMENT, KG Jebsen Centre for Psychosis Research Building 49, Oslo University Hospital, Ullevål Kirkeveien 166, PO Box 4956 Nydalen 0424, Oslo, Norway
| | - Rebecca Birnbaum
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD
| | - Joel Edward Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD;,Departments of Psychiatry and Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Thomas Michael Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD;,Departments of Psychiatry and Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ragni Helene Mørch
- NORMENT, KG Jebsen Centre for Psychosis Research Building 49, Oslo University Hospital, Ullevål Kirkeveien 166, PO Box 4956 Nydalen 0424, Oslo, Norway
| | - Sigrun Hope
- NORMENT, KG Jebsen Centre for Psychosis Research Building 49, Oslo University Hospital, Ullevål Kirkeveien 166, PO Box 4956 Nydalen 0424, Oslo, Norway
| | - Tove Lekva
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | - Annika E. Michelsen
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Ingrid Melle
- NORMENT, KG Jebsen Centre for Psychosis Research Building 49, Oslo University Hospital, Ullevål Kirkeveien 166, PO Box 4956 Nydalen 0424, Oslo, Norway
| | - Lars Tjelta Westlye
- NORMENT, KG Jebsen Centre for Psychosis Research Building 49, Oslo University Hospital, Ullevål Kirkeveien 166, PO Box 4956 Nydalen 0424, Oslo, Norway;,Department of Psychology, University of Oslo, Oslo, Norway
| | - Torill Ueland
- NORMENT, KG Jebsen Centre for Psychosis Research Building 49, Oslo University Hospital, Ullevål Kirkeveien 166, PO Box 4956 Nydalen 0424, Oslo, Norway;,Department of Psychology, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway;,NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Pål Aukrust
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway;,Institute of Clinical Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway;,Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD;,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Daniel R. Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD;,Departments of Psychiatry and Neurology, Johns Hopkins University School of Medicine, Baltimore, MD;,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD;,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ole Andreas Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research Building 49, Oslo University Hospital, Ullevål Kirkeveien 166, PO Box 4956 Nydalen 0424, Oslo, Norway
| |
Collapse
|
33
|
Sheth C, McGlade E, Yurgelun-Todd D. Chronic Stress in Adolescents and Its Neurobiological and Psychopathological Consequences: An RDoC Perspective. ACTA ACUST UNITED AC 2017. [PMID: 29527590 PMCID: PMC5841253 DOI: 10.1177/2470547017715645] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Research Domain Criteria (RDoC) initiative provides a strategy for classifying psychopathology based on behavioral dimensions and neurobiological measures. Neurodevelopment is an orthogonal dimension in the current RDoC framework; however, it has not yet been fully incorporated into the RDoC approach. A combination of both a neurodevelopmental and RDoC approach offers a multidimensional perspective for understanding the emergence of psychopathology during development. Environmental influence (e.g., stress) has a profound impact on the risk for development of psychiatric illnesses. It has been shown that chronic stress interacts with the developing brain, producing significant changes in neural circuits that eventually increase the susceptibility for development of psychiatric disorders. This review highlights effects of chronic stress on the adolescent brain, as adolescence is a period characterized by a combination of significant brain alterations, high levels of stress, and emergence of psychopathology. The literature synthesized in this review suggests that chronic stress-induced changes in neurobiology and behavioral constructs underlie the shared vulnerability across a number of disorders in adolescence. The review particularly focuses on depression and substance use disorders; however, a similar argument can also be made for other psychopathologies, including anxiety disorders. The summarized findings underscore the need for a framework to integrate neurobiological findings from disparate psychiatric disorders and to target transdiagnostic mechanisms across disorders.
Collapse
Affiliation(s)
- Chandni Sheth
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA.,Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA
| | - Erin McGlade
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA.,Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA.,George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRREC), Salt Lake City, UT, USA
| | - Deborah Yurgelun-Todd
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA.,Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA.,George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRREC), Salt Lake City, UT, USA
| |
Collapse
|
34
|
Glausier JR, Roberts RC, Lewis DA. Ultrastructural analysis of parvalbumin synapses in human dorsolateral prefrontal cortex. J Comp Neurol 2017; 525:2075-2089. [PMID: 28074478 PMCID: PMC5397325 DOI: 10.1002/cne.24171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 12/11/2022]
Abstract
Coordinated activity of neural circuitry in the primate dorsolateral prefrontal cortex (DLPFC) supports a range of cognitive functions. Altered DLPFC activation is implicated in a number of human psychiatric and neurological illnesses. Proper DLPFC activity is, in part, maintained by two populations of neurons containing the calcium-binding protein parvalbumin (PV): local inhibitory interneurons that form Type II synapses, and long-range glutamatergic inputs from the thalamus that form Type I synapses. Understanding the contributions of each PV neuronal population to human DLPFC function requires a detailed examination of their anatomical properties. Consequently, we performed an electron microscopic analysis of (1) the distribution of PV immunoreactivity within the neuropil, (2) the properties of dendritic shafts of PV-IR interneurons, (3) Type II PV-IR synapses from PV interneurons, and (4) Type I PV-IR synapses from long-range projections, within the superficial and middle laminar zones of the human DLPFC. In both laminar zones, Type II PV-IR synapses from interneurons comprised ∼60% of all PV-IR synapses, and Type I PV-IR synapses from putative thalamocortical terminals comprised the remaining ∼40% of PV-IR synapses. Thus, the present study suggests that innervation from PV-containing thalamic nuclei extends across superficial and middle layers of the human DLPFC. These findings contrast with previous ultrastructural studies in monkey DLPFC where Type I PV-IR synapses were not identified in the superficial laminar zone. The presumptive added modulation of DLPFC circuitry by the thalamus in human may contribute to species-specific, higher-order functions.
Collapse
Affiliation(s)
- Jill R. Glausier
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Rosalinda C. Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Department of Neuroscience, University of Pittsburgh School of Arts and Sciences, Pittsburgh, PA 15213
| |
Collapse
|
35
|
Krystal JH, Anticevic A, Yang GJ, Dragoi G, Driesen NR, Wang XJ, Murray JD. Impaired Tuning of Neural Ensembles and the Pathophysiology of Schizophrenia: A Translational and Computational Neuroscience Perspective. Biol Psychiatry 2017; 81:874-885. [PMID: 28434616 PMCID: PMC5407407 DOI: 10.1016/j.biopsych.2017.01.004] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/14/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
Abstract
The functional optimization of neural ensembles is central to human higher cognitive functions. When the functions through which neural activity is tuned fail to develop or break down, symptoms and cognitive impairments arise. This review considers ways in which disturbances in the balance of excitation and inhibition might develop and be expressed in cortical networks in association with schizophrenia. This presentation is framed within a developmental perspective that begins with disturbances in glutamate synaptic development in utero. It considers developmental correlates and consequences, including compensatory mechanisms that increase intrinsic excitability or reduce inhibitory tone. It also considers the possibility that these homeostatic increases in excitability have potential negative functional and structural consequences. These negative functional consequences of disinhibition may include reduced working memory-related cortical activity associated with the downslope of the "inverted-U" input-output curve, impaired spatial tuning of neural activity and impaired sparse coding of information, and deficits in the temporal tuning of neural activity and its implication for neural codes. The review concludes by considering the functional significance of noisy activity for neural network function. The presentation draws on computational neuroscience and pharmacologic and genetic studies in animals and humans, particularly those involving N-methyl-D-aspartate glutamate receptor antagonists, to illustrate principles of network regulation that give rise to features of neural dysfunction associated with schizophrenia. While this presentation focuses on schizophrenia, the general principles outlined in the review may have broad implications for considering disturbances in the regulation of neural ensembles in psychiatric disorders.
Collapse
Affiliation(s)
- John H. Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT USA,Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT USA
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA,Department of Psychology, Yale University
| | - Genevieve J. Yang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA
| | - George Dragoi
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT USA
| | - Naomi R. Driesen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA,Clinical Neuroscience Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT USA
| | | | - John D. Murray
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
| |
Collapse
|
36
|
Lisdexamfetamine Effects on Executive Activation and Neurochemistry in Menopausal Women with Executive Function Difficulties. Neuropsychopharmacology 2017; 42:437-445. [PMID: 27550732 PMCID: PMC5399233 DOI: 10.1038/npp.2016.162] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 07/15/2016] [Accepted: 08/12/2016] [Indexed: 01/04/2023]
Abstract
Many women with no history of executive dysfunction report difficulties in this domain during the menopause transition. Lisdexamfetamine (LDX) has been suggested to be a safe and effective treatment option for these women. However, the mechanism by which LDX improves executive functioning in these women is not known. Here we investigated the effects of LDX on brain activation and neurochemistry, hypothesizing that LDX would be associated with increased activation and decreased glutamate in executive regions. Fourteen women underwent multimodal neuroimaging at 7T at three time points in this baseline-corrected, double-blind, placebo-controlled, crossover study. Effects of LDX on symptom severity, blood-oxygen-level-dependent (BOLD) signal, and dorsolateral prefrontal cortex (DLPFC) glutamate+glutamine (Glx) were measured using a clinician-administered questionnaire, fMRI during performance of a fractal n-back task, and 1H-MRS, respectively. The effect of treatment (LDX minus baseline vs placebo minus baseline) on these behavioral and neural markers of executive function was examined using repeated measures mixed effects models. LDX treatment was associated with decreased symptom severity, increased activation in the insula and DLPFC, and decreased DLPFC Glx. In addition, the magnitude of LDX-induced improvement in symptom severity predicted both direction and magnitude of LDX-induced change in insular and DLPFC activation. Moreover, symptom severity was positively correlated with Glx concentration in the left DLPFC at baseline. These findings provide novel evidence that the neural mechanisms by which LDX acts to improve self-reported executive functioning in healthy menopausal women with midlife onset of executive difficulties include modulation of insular and DLPFC recruitment as well as decrease in DLPFC Glx concentration.
Collapse
|
37
|
Dynamic Connectivity between Brain Networks Supports Working Memory: Relationships to Dopamine Release and Schizophrenia. J Neurosci 2016; 36:4377-88. [PMID: 27076432 DOI: 10.1523/jneurosci.3296-15.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 03/04/2016] [Indexed: 01/26/2023] Open
Abstract
UNLABELLED Connectivity between brain networks may adapt flexibly to cognitive demand, a process that could underlie adaptive behaviors and cognitive deficits, such as those observed in neuropsychiatric conditions like schizophrenia. Dopamine signaling is critical for working memory but its influence on internetwork connectivity is relatively unknown. We addressed these questions in healthy humans using functional magnetic resonance imaging (during ann-back working-memory task) and positron emission tomography using the radiotracer [(11)C]FLB457 before and after amphetamine to measure the capacity for dopamine release in extrastriatal brain regions. Brain networks were defined by spatial independent component analysis (ICA) and working-memory-load-dependent connectivity between task-relevant pairs of networks was determined via a modified psychophysiological interaction analysis. For most pairs of task-relevant networks, connectivity significantly changed as a function of working-memory load. Moreover, load-dependent changes in connectivity between left and right frontoparietal networks (Δ connectivity lFPN-rFPN) predicted interindividual differences in task performance more accurately than other fMRI and PET imaging measures. Δ Connectivity lFPN-rFPN was not related to cortical dopamine release capacity. A second study in unmedicated patients with schizophrenia showed no abnormalities in load-dependent connectivity but showed a weaker relationship between Δ connectivity lFPN-rFPN and working memory performance in patients compared with matched healthy individuals. Poor working memory performance in patients was, in contrast, related to deficient cortical dopamine release. Our findings indicate that interactions between brain networks dynamically adapt to fluctuating environmental demands. These dynamic adaptations underlie successful working memory performance in healthy individuals and are not well predicted by amphetamine-induced dopamine release capacity. SIGNIFICANCE STATEMENT It is unclear how communication between brain networks responds to changing environmental demands during complex cognitive processes. Also, unknown in regard to these network dynamics is the role of neuromodulators, such as dopamine, and whether their dysregulation could underlie cognitive deficits in neuropsychiatric illness. We found that connectivity between brain networks changes with working-memory load and greater increases predict better working memory performance; however, it was not related to capacity for dopamine release in the cortex. Patients with schizophrenia did show dynamic internetwork connectivity; however, this was more weakly associated with successful performance in patients compared with healthy individuals. Our findings indicate that dynamic interactions between brain networks may support the type of flexible adaptations essential to goal-directed behavior.
Collapse
|
38
|
Atzori M, Cuevas-Olguin R, Esquivel-Rendon E, Garcia-Oscos F, Salgado-Delgado RC, Saderi N, Miranda-Morales M, Treviño M, Pineda JC, Salgado H. Locus Ceruleus Norepinephrine Release: A Central Regulator of CNS Spatio-Temporal Activation? Front Synaptic Neurosci 2016; 8:25. [PMID: 27616990 PMCID: PMC4999448 DOI: 10.3389/fnsyn.2016.00025] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022] Open
Abstract
Norepinephrine (NE) is synthesized in the Locus Coeruleus (LC) of the brainstem, from where it is released by axonal varicosities throughout the brain via volume transmission. A wealth of data from clinics and from animal models indicates that this catecholamine coordinates the activity of the central nervous system (CNS) and of the whole organism by modulating cell function in a vast number of brain areas in a coordinated manner. The ubiquity of NE receptors, the daunting number of cerebral areas regulated by the catecholamine, as well as the variety of cellular effects and of their timescales have contributed so far to defeat the attempts to integrate central adrenergic function into a unitary and coherent framework. Since three main families of NE receptors are represented-in order of decreasing affinity for the catecholamine-by: α2 adrenoceptors (α2Rs, high affinity), α1 adrenoceptors (α1Rs, intermediate affinity), and β adrenoceptors (βRs, low affinity), on a pharmacological basis, and on the ground of recent studies on cellular and systemic central noradrenergic effects, we propose that an increase in LC tonic activity promotes the emergence of four global states covering the whole spectrum of brain activation: (1) sleep: virtual absence of NE, (2) quiet wake: activation of α2Rs, (3) active wake/physiological stress: activation of α2- and α1-Rs, (4) distress: activation of α2-, α1-, and β-Rs. We postulate that excess intensity and/or duration of states (3) and (4) may lead to maladaptive plasticity, causing-in turn-a variety of neuropsychiatric illnesses including depression, schizophrenic psychoses, anxiety disorders, and attention deficit. The interplay between tonic and phasic LC activity identified in the LC in relationship with behavioral response is of critical importance in defining the short- and long-term biological mechanisms associated with the basic states postulated for the CNS. While the model has the potential to explain a large number of experimental and clinical findings, a major challenge will be to adapt this hypothesis to integrate the role of other neurotransmitters released during stress in a centralized fashion, like serotonin, acetylcholine, and histamine, as well as those released in a non-centralized fashion, like purines and cytokines.
Collapse
Affiliation(s)
- Marco Atzori
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis PotosíSan Luis Potosí, Mexico; School for Behavior and Brain Sciences, University of Texas at DallasRichardson, TX, USA
| | - Roberto Cuevas-Olguin
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Eric Esquivel-Rendon
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | | | - Roberto C Salgado-Delgado
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Nadia Saderi
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Marcela Miranda-Morales
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Mario Treviño
- Laboratory of Cortical Plasticity and Learning, Universidad de Guadalajara Guadalajara, Mexico
| | - Juan C Pineda
- Electrophysiology Laboratory, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán Mérida, Mexico
| | - Humberto Salgado
- Electrophysiology Laboratory, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán Mérida, Mexico
| |
Collapse
|
39
|
Luo P, Chen C, Lu Y, Fu T, Lu Q, Xu X, Li C, He Z, Guo L. Baclofen ameliorates spatial working memory impairments induced by chronic cerebral hypoperfusion via up-regulation of HCN2 expression in the PFC in rats. Behav Brain Res 2016; 308:6-13. [PMID: 27085590 DOI: 10.1016/j.bbr.2016.04.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/19/2016] [Accepted: 04/12/2016] [Indexed: 12/26/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) causes memory deficits and increases the risk of vascular dementia (VD) through several biologically plausible pathways. However, whether CCH causes prefrontal cortex (PFC)-dependent spatial working memory impairments and Baclofen, a GABAB receptor agonist, could ameliorate the impairments is still not clear especially the mechanisms underlying the process. In this study, rats were subjected to permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO) to induce CCH. Two weeks later, rats were treated with 25mg/kg Baclofen (intraperitioneal injection, i.p.) for 3 weeks. Spatial working memory was evaluated in a Morris water maze using a modified delayed matching-to-place (DMP) procedure. Western blotting and immunohistochemistry were used to quantify the protein levels and protein localization. Our results showed that 2VO caused striking spatial working memory impairments, accompanied with a decreased HCN2 expression in PFC, but the protein levels of protein gene product 9.5 (PGP9.5, a neuron specific protein), glial fibrillary acidic protein (GFAP), synaptophysin (SYP), brain-derived neurotrophic factor (BDNF), parvalbumin (PV) and HCN1 were not distinguishably changed as compared with sham-operated rats. Baclofen treatment significantly improved the spatial working memory impairments caused by 2VO, accompanied with a reversion of 2VO-induced down-regulation of HCN2. Furthermore, there was a co-localization of HCN2 subunits and parvalbumin-positive neurons in PFC. Therefore, HCN2 may target inhibitory interneurons that is implicated in working memory processes, which may be a possible mechanism of the up-regulation of HCN2 by Baclofen treatment that reliefs spatial working memory deficits in rats with CCH.
Collapse
Affiliation(s)
- Pan Luo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cheng Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yun Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - TianLi Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xulin Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Changjun Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhi He
- Department of Neuropsychopharmacology, Medical School of China Three Gorges University, Yichang 443002, China.
| | - Lianjun Guo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
40
|
Salgado H, Treviño M, Atzori M. Layer- and area-specific actions of norepinephrine on cortical synaptic transmission. Brain Res 2016; 1641:163-76. [PMID: 26820639 DOI: 10.1016/j.brainres.2016.01.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 01/08/2016] [Accepted: 01/20/2016] [Indexed: 12/20/2022]
Abstract
The cerebral cortex is a critical target of the central noradrenergic system. The importance of norepinephrine (NE) in the regulation of cortical activity is underscored by clinical findings that involve this catecholamine and its receptor subtypes in the regulation of a large number of emotional and cognitive functions and illnesses. In this review, we highlight diverse effects of the LC/NE system in the mammalian cortex. Indeed, electrophysiological, pharmacological, and behavioral studies in the last few decades reveal that NE elicits a mixed repertoire of excitatory, inhibitory, and biphasic effects on the firing activity and transmitter release of cortical neurons. At the intrinsic cellular level, NE can produce a series of effects similar to those elicited by other monoamines or acetylcholine, associated with systemic arousal. At the synaptic level, NE induces numerous acute changes in synaptic function, and ׳gates' the induction of long-term plasticity of glutamatergic synapses, consisting in an enhancement of engaged and relevant cortical synapses and/or depression of unengaged synapses. Equally important in shaping cortical function, in many cortical areas NE promotes a characteristic, most often reversible, increase in the gain of local inhibitory synapses, whose extent and temporal properties vary between different areas and sometimes even between cortical layers of the same area. While we are still a long way from a comprehensive theory of the function of the LC/NE system, its cellular, synaptic, and plastic effects are consistent with the hypothesis that noradrenergic modulation is critical in coordinating the activity of cortical and subcortical circuits for the integration of sensory activity and working memory. This article is part of a Special Issue entitled SI: Noradrenergic System.
Collapse
Affiliation(s)
| | | | - Marco Atzori
- Universidad Autónoma de San Luis Potosí, México.
| |
Collapse
|
41
|
Norepinephrine versus dopamine and their interaction in modulating synaptic function in the prefrontal cortex. Brain Res 2016; 1641:217-33. [PMID: 26790349 DOI: 10.1016/j.brainres.2016.01.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/16/2015] [Accepted: 01/05/2016] [Indexed: 01/11/2023]
Abstract
Among the neuromodulators that regulate prefrontal cortical circuit function, the catecholamine transmitters norepinephrine (NE) and dopamine (DA) stand out as powerful players in working memory and attention. Perturbation of either NE or DA signaling is implicated in the pathogenesis of several neuropsychiatric disorders, including attention deficit hyperactivity disorder (ADHD), post-traumatic stress disorder (PTSD), schizophrenia, and drug addiction. Although the precise mechanisms employed by NE and DA to cooperatively control prefrontal functions are not fully understood, emerging research indicates that both transmitters regulate electrical and biochemical aspects of neuronal function by modulating convergent ionic and synaptic signaling in the prefrontal cortex (PFC). This review summarizes previous studies that investigated the effects of both NE and DA on excitatory and inhibitory transmissions in the prefrontal cortical circuitry. Specifically, we focus on the functional interaction between NE and DA in prefrontal cortical local circuitry, synaptic integration, signaling pathways, and receptor properties. Although it is clear that both NE and DA innervate the PFC extensively and modulate synaptic function by activating distinctly different receptor subtypes and signaling pathways, it remains unclear how these two systems coordinate their actions to optimize PFC function for appropriate behavior. Throughout this review, we provide perspectives and highlight several critical topics for future studies. This article is part of a Special Issue entitled SI: Noradrenergic System.
Collapse
|
42
|
Schippers MC, Schetters D, De Vries TJ, Pattij T. Differential effects of the pharmacological stressor yohimbine on impulsive decision making and response inhibition. Psychopharmacology (Berl) 2016; 233:2775-85. [PMID: 27251129 PMCID: PMC4917594 DOI: 10.1007/s00213-016-4337-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/05/2016] [Indexed: 12/28/2022]
Abstract
RATIONALE High levels of impulsivity have been associated with psychiatric disorders such as attention-deficit/hyperactivity disorder (ADHD) and substance abuse. In addition, acute stress is known to exacerbate many psychiatric symptoms in impulse control disorders. OBJECTIVES The purpose of the current study was to investigate the acute effects of the pharmacological stressor yohimbine on response inhibition and impulsive choice. METHODS A group of male rats (n = 12) was trained in the delayed reward task (DRT) to assess impulsive choice. A separate group (n = 10) was trained in the stop-signal task (SST) to measure response inhibition. Upon stable responding, the effects of yohimbine (0, 1.25, 2.5, and 5 mg/kg i.p.) were tested in a Latin square design. RESULTS Acute yohimbine significantly increased the preference for the large and delayed reinforcer in the DRT, indicating a decrease in impulsive choice. On the contrary, the effect size of 1.25 mg/kg yohimbine on stop-signal reaction times correlated negatively with baseline performance, suggesting a baseline-dependent effect on response inhibition as measured in the SST. CONCLUSIONS The current data suggest that the effects of the pharmacological stressor yohimbine on impulse control strongly depend on the type of impulsive behavior. Pharmacological stress decreased impulsive decision making, an observation that is in line with previously published rodent studies. By contrast, the lowest dose of yohimbine revealed a baseline-dependent effect on response inhibition. As such, the effects of yohimbine are largely comparable to the effects of psychostimulants on impulsivity and may support the notion of cross sensitization of stress and psychostimulants.
Collapse
Affiliation(s)
- M. C. Schippers
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - D. Schetters
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - T. J. De Vries
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - T. Pattij
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
43
|
Sara SJ. Locus Coeruleus in time with the making of memories. Curr Opin Neurobiol 2015; 35:87-94. [DOI: 10.1016/j.conb.2015.07.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 12/26/2022]
|
44
|
Bangasser DA, Kawasumi Y. Cognitive disruptions in stress-related psychiatric disorders: A role for corticotropin releasing factor (CRF). Horm Behav 2015; 76:125-35. [PMID: 25888454 PMCID: PMC4605842 DOI: 10.1016/j.yhbeh.2015.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 12/28/2022]
Abstract
This article is part of a Special Issue "SBN 2014". Stress is a potential etiology contributor to both post-traumatic stress disorders (PTSD) and major depression. One stress-related neuropeptide that is hypersecreted in these disorders is corticotropin releasing factor (CRF). Dysregulation of CRF has long been linked to the emotion and mood symptoms that characterize PTSD and depression. However, the idea that CRF also mediates the cognitive disruptions observed in patients with these disorders has received less attention. Here we review literature indicating that CRF can alter cognitive functions. Detailed are anatomical studies revealing that CRF is poised to modulate regions required for learning and memory. We also describe preclinical behavioral studies that demonstrate CRF's ability to alter fear conditioning, impair memory consolidation, and alter a number of executive functions, including attention and cognitive flexibility. The implications of these findings for the etiology and treatment of the cognitive impairments observed in stress-related psychiatric disorders are described.
Collapse
Affiliation(s)
- Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA.
| | - Yushi Kawasumi
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| |
Collapse
|
45
|
Aranovich GJ, McClure SM, Fryer S, Mathalon DH. The effect of cognitive challenge on delay discounting. Neuroimage 2015; 124:733-739. [PMID: 26394377 DOI: 10.1016/j.neuroimage.2015.09.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/14/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022] Open
Abstract
Recent findings suggest that the dorsolateral prefrontal cortex (DLPFC), a region consistently associated with impulse control, is vulnerable to transient suppression of its activity and attendant functions by excessive stress and/or cognitive demand. Using functional magnetic resonance imaging, we show that a capacity-exceeding cognitive challenge induced decreased DLPFC activity and correlated increases in the preference for immediately available rewards. Consistent with growing evidence of a link between working memory capacity and delay discounting, the effect was inversely proportional to baseline performance on a working memory task. Subjects who performed well on the working memory task had unchanged, or even decreased, delay discounting rates, suggesting that working memory ability may protect cognitive control from cognitive challenge.
Collapse
Affiliation(s)
- Gabriel J Aranovich
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | - Samuel M McClure
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - Susanna Fryer
- Department Psychiatry, University of California, San Francisco, San Francisco, CA, USA; San Francisco VA Medical Center, San Francisco, CA, USA
| | - Daniel H Mathalon
- Department Psychiatry, University of California, San Francisco, San Francisco, CA, USA; San Francisco VA Medical Center, San Francisco, CA, USA
| |
Collapse
|
46
|
Monaco SA, Gulchina Y, Gao WJ. NR2B subunit in the prefrontal cortex: A double-edged sword for working memory function and psychiatric disorders. Neurosci Biobehav Rev 2015; 56:127-38. [PMID: 26143512 DOI: 10.1016/j.neubiorev.2015.06.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/27/2015] [Accepted: 06/29/2015] [Indexed: 12/23/2022]
Abstract
The prefrontal cortex (PFC) is a brain region featured with working memory function. The exact mechanism of how working memory operates within the PFC circuitry is unknown, but persistent neuronal firing recorded from prefrontal neurons during a working memory task is proposed to be the neural correlate of this mnemonic encoding. The PFC appears to be specialized for sustaining persistent firing, with N-methyl-D-aspartate (NMDA) receptors, especially slow-decay NR2B subunits, playing an essential role in the maintenance of sustained activity and normal working memory function. However, the NR2B subunit serves as a double-edged sword for PFC function. Because of its slow kinetics, NR2B endows the PFC with not only "neural psychic" properties, but also susceptibilities for neuroexcitotoxicity and psychiatric disorders. This review aims to clarify the interplay among working memory, the PFC, and NMDA receptors; demonstrate the importance of NR2B in the maintenance of persistent activity; understand the risks and vulnerabilities of how NR2B is related to the development of neuropsychiatric disorders; identify gaps that currently exist in our understanding of these processes; and provide insights regarding future directions that may clarify these issues. We conclude that the PFC is a specialized brain region with distinct delayed maturation, unique neuronal circuitry, and characteristic NMDA receptor function. The unique properties and development of NMDA receptors, especially enrichment of NR2B subunits, endow the PFC with not only the capability to generate sustained activity for working memory, but also serves as a major vulnerability to environmental insults and risk factors for psychiatric disorders.
Collapse
Affiliation(s)
- Sarah A Monaco
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Room 243, Philadelphia, PA 19129, United States
| | - Yelena Gulchina
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Room 243, Philadelphia, PA 19129, United States
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Room 243, Philadelphia, PA 19129, United States.
| |
Collapse
|
47
|
Stock AK, Riegler L, Chmielewski WX, Beste C. Paradox effects of binge drinking on response inhibition processes depending on mental workload. Arch Toxicol 2015; 90:1429-36. [DOI: 10.1007/s00204-015-1565-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
|
48
|
Connor DF, Ford JD, Arnsten AFT, Greene CA. An Update on Posttraumatic Stress Disorder in Children and Adolescents. Clin Pediatr (Phila) 2015; 54:517-28. [PMID: 24990362 DOI: 10.1177/0009922814540793] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Daniel F Connor
- University of Connecticut School of Medicine and Health Care Center, Farmington, CT, USA
| | - Julian D Ford
- University of Connecticut School of Medicine and Health Care Center, Farmington, CT, USA
| | | | - Carolyn A Greene
- University of Connecticut School of Medicine and Health Care Center, Farmington, CT, USA
| |
Collapse
|
49
|
Working memory-related neural activity predicts future smoking relapse. Neuropsychopharmacology 2015; 40:1311-20. [PMID: 25469682 PMCID: PMC4397393 DOI: 10.1038/npp.2014.318] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/21/2014] [Accepted: 11/22/2014] [Indexed: 11/09/2022]
Abstract
Brief abstinence from smoking impairs cognition, particularly executive function, and this has a role in relapse to smoking. This study examined whether working memory-related brain activity predicts subsequent smoking relapse above and beyond standard clinical and behavioral measures. Eighty treatment-seeking smokers completed two functional magnetic resonance imaging sessions (smoking satiety vs 24 h abstinence challenge) during performance of a visual N-back task. Brief counseling and a short-term quit attempt followed. Relapse during the first 7 days was biochemically confirmed by the presence of the nicotine metabolite cotinine. Mean percent blood oxygen level-dependent (BOLD) signal change was extracted from a priori regions of interest: bilateral dorsolateral prefrontal cortex (DLPFC), medial frontal/cingulate gyrus, posterior cingulate cortex (PCC), and ventromedial prefrontal cortex. Signal from these brain regions and additional clinical measures were used to model outcome status, which was then validated with resampling techniques. Relapse to smoking was predicted by increased withdrawal symptoms, decreased left DLPFC and increased PCC BOLD percent signal change (abstinence vs smoking satiety). Receiver operating characteristic analysis demonstrated 81% area under the curve using these predictors, a significant improvement over the model with clinical variables only. The combination of abstinence-induced decreases in left DLPFC activation and reduced suppression of PCC may be a prognostic marker for poor outcome, specifically early smoking relapse.
Collapse
|
50
|
Slifstein M, van de Giessen E, Van Snellenberg J, Thompson JL, Narendran R, Gil R, Hackett E, Girgis R, Ojeil N, Moore H, D’Souza D, Malison RT, Huang Y, Lim KP, Nabulsi N, Carson RE, Lieberman JA, Abi-Dargham A. Deficits in prefrontal cortical and extrastriatal dopamine release in schizophrenia: a positron emission tomographic functional magnetic resonance imaging study. JAMA Psychiatry 2015; 72:316-24. [PMID: 25651194 PMCID: PMC4768742 DOI: 10.1001/jamapsychiatry.2014.2414] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Multiple lines of evidence suggest a deficit in dopamine release in the prefrontal cortex (PFC) in schizophrenia. Despite the prevalence of the concept of prefrontal cortical hypodopaminergia in schizophrenia, in vivo imaging of dopamine release in the PFC has not been possible until now, when the validity of using the positron emission tomographic D2/3 radiotracer carbon 11-labeled FLB457 in combination with the amphetamine paradigm was clearly established. OBJECTIVES To (1) test amphetamine-induced dopamine release in the dorsolateral PFC (DLPFC) in drug-free or drug-naive patients with schizophrenia (SCZ) and healthy control (HC) individuals matched for age, sex, race/ethnicity, and familial socioeconomic status;(2) test blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging activation during a working memory task in the same participants; and (3) examine the relationship between positron emission tomographic and functional magnetic resonance imaging outcome measures. DESIGN, SETTING AND PARTICIPANTS Positron emission tomographic imaging with carbon 11-labeled FLB457 before and following 0.5 mg/kg of amphetamine by mouth. Blood oxygenation level-dependent functional magnetic resonance imaging during the self-ordered working memory task. Twenty patients with schizophrenia recruited from the inpatient and outpatient research facilities at New York State Psychiatric Institute and 21 healthy control individuals participated, and data were acquired between June 16, 2011, and February 25, 2014. MAIN OUTCOMES AND MEASURE The percentage change in binding potential (∆BPND) in the DLPFC following amphetamine, BOLD activation during the self-ordered working memory task compared with the control task, and the correlation between these 2 outcome measures. RESULTS We observed significant differences in the effect of amphetamine on DLPFC BPND (mean [SD], ∆BPND in HC: -7.5% [11%]; SCZ: +1.8% [11%]; P = .01); a generalized blunting in dopamine release in SCZ involving most extrastriatal regions and the midbrain; and a significant association between ∆BPND and BOLD activation in the DLPFC in the overall sample including patients with SCZ and HC individuals. CONCLUSIONS AND RELEVANCE To our knowledge, these results provide the first in vivo evidence for a deficit in the capacity for dopamine release in the DLPFC in SCZ and suggest a more widespread deficit extending to many cortical and extrastriatal regions including the midbrain. This contrasts with the well-replicated excess in dopamine release in the associative striatum in SCZ and suggests a differential regulation of striatal dopamine release in associative striatum vs extrastriatal regions. Furthermore, dopamine release in the DLPFC relates to working memory-related activation of this region, suggesting that blunted release may affect frontal cortical function.
Collapse
Affiliation(s)
- Mark Slifstein
- Columbia University, Department of Psychiatry,New York State Psychiatric Institute
| | | | | | - Judy L. Thompson
- Columbia University, Department of Psychiatry,New York State Psychiatric Institute,The State University of New Jersey, Rutgers
| | - Rajesh Narendran
- University of Pittsburgh Medical Center Department of Psychiatry
| | - Roberto Gil
- Columbia University, Department of Psychiatry,New York State Psychiatric Institute
| | | | - Ragy Girgis
- Columbia University, Department of Psychiatry,New York State Psychiatric Institute
| | | | - Holly Moore
- Columbia University, Department of Psychiatry,New York State Psychiatric Institute
| | - Deepak D’Souza
- Yale University School of Medicine Department of Psychiatry
| | | | - Yiyun Huang
- Yale University School of Medicine PET Center,Yale University School of Medicine Department of Diagnostic Radiology
| | - Keun-poong Lim
- Yale University School of Medicine PET Center,Yale University School of Medicine Department of Diagnostic Radiology
| | - Nabeel Nabulsi
- Yale University School of Medicine PET Center,Yale University School of Medicine Department of Diagnostic Radiology
| | - Richard E. Carson
- Yale University School of Medicine PET Center,Yale University School of Medicine Department of Diagnostic Radiology
| | - Jeffery A. Lieberman
- Columbia University, Department of Psychiatry,New York State Psychiatric Institute
| | - Anissa Abi-Dargham
- Columbia University, Department of Psychiatry,Columbia University, Department of Radiology,New York State Psychiatric Institute
| |
Collapse
|