1
|
Gangemi CG, Janovjak H. Optogenetics in Pancreatic Islets: Actuators and Effects. Diabetes 2024; 73:1566-1582. [PMID: 38976779 PMCID: PMC11417442 DOI: 10.2337/db23-1022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
The islets of Langerhans reside within the endocrine pancreas as highly vascularized microorgans that are responsible for the secretion of key hormones, such as insulin and glucagon. Islet function relies on a range of dynamic molecular processes that include Ca2+ waves, hormone pulses, and complex interactions between islet cell types. Dysfunction of these processes results in poor maintenance of blood glucose homeostasis and is a hallmark of diabetes. Recently, the development of optogenetic methods that rely on light-sensitive molecular actuators has allowed perturbation of islet function with near physiological spatiotemporal acuity. These actuators harness natural photoreceptor proteins and their engineered variants to manipulate mouse and human cells that are not normally light-responsive. Until recently, optogenetics in islet biology has primarily focused on controlling hormone production and secretion; however, studies on further aspects of islet function, including paracrine regulation between islet cell types and dynamics within intracellular signaling pathways, are emerging. Here, we discuss the applicability of optogenetics to islets cells and comprehensively review seminal as well as recent work on optogenetic actuators and their effects in islet function and diabetes mellitus. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Christina G. Gangemi
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
- Australian Regenerative Medicine Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- European Molecular Biology Laboratory Australia, Monash University, Clayton, Victoria, Australia
| | - Harald Janovjak
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
2
|
Bredfeldt JE, Oracz J, Kiszka KA, Moosmayer T, Weber M, Sahl SJ, Hell SW. Bleaching protection and axial sectioning in fluorescence nanoscopy through two-photon activation at 515 nm. Nat Commun 2024; 15:7472. [PMID: 39209806 PMCID: PMC11362616 DOI: 10.1038/s41467-024-51160-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Activation of caged fluorophores in microscopy has mostly relied on the absorption of a single ultraviolet (UV) photon of ≲400 nm wavelength or on the simultaneous absorption of two near-infrared (NIR) photons >700 nm. Here, we show that two green photons (515 nm) can substitute for a single photon (~260 nm) to activate popular silicon-rhodamine (Si-R) dyes. Activation in the green range eliminates the chromatic aberrations that plague activation by UV or NIR light. Thus, in confocal fluorescence microscopy, the activation focal volume can be matched with that of confocal detection. Besides, detrimental losses of UV and NIR light in the optical system are avoided. We apply two-photon activation (2PA) of three Si-R dyes in different superresolution approaches. STED microscopy of thick samples is improved through optical sectioning and photobleaching reduced by confining active fluorophores to a thin layer. 2PA of individualized fluorophores enables MINSTED nanoscopy with nanometer-resolution.
Collapse
Affiliation(s)
- Jan-Erik Bredfeldt
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Georg-August University School of Science (GAUSS), University of Göttingen, Göttingen, Germany
| | - Joanna Oracz
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Kamila A Kiszka
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Thea Moosmayer
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Georg-August University School of Science (GAUSS), University of Göttingen, Göttingen, Germany
| | - Michael Weber
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Steffen J Sahl
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany.
| |
Collapse
|
3
|
Luu P, Fraser SE, Schneider F. More than double the fun with two-photon excitation microscopy. Commun Biol 2024; 7:364. [PMID: 38531976 PMCID: PMC10966063 DOI: 10.1038/s42003-024-06057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
For generations researchers have been observing the dynamic processes of life through the lens of a microscope. This has offered tremendous insights into biological phenomena that span multiple orders of time- and length-scales ranging from the pure magic of molecular reorganization at the membrane of immune cells, to cell migration and differentiation during development or wound healing. Standard fluorescence microscopy techniques offer glimpses at such processes in vitro, however, when applied in intact systems, they are challenged by reduced signal strengths and signal-to-noise ratios that result from deeper imaging. As a remedy, two-photon excitation (TPE) microscopy takes a special place, because it allows us to investigate processes in vivo, in their natural environment, even in a living animal. Here, we review the fundamental principles underlying TPE aimed at basic and advanced microscopy users interested in adopting TPE for intravital imaging. We focus on applications in neurobiology, present current trends towards faster, wider and deeper imaging, discuss the combination with photon counting technologies for metabolic imaging and spectroscopy, as well as highlight outstanding issues and drawbacks in development and application of these methodologies.
Collapse
Affiliation(s)
- Peter Luu
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Scott E Fraser
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biological Sciences, Division of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
- Alfred Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Falk Schneider
- Translational Imaging Center, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA.
- Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
4
|
Rader Groves AM, Gallimore CG, Hamm JP. Modern Methods for Unraveling Cell- and Circuit-Level Mechanisms of Neurophysiological Biomarkers in Psychiatry. ADVANCES IN NEUROBIOLOGY 2024; 40:157-188. [PMID: 39562445 DOI: 10.1007/978-3-031-69491-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Methods for studying the mammalian brain in vivo have advanced dramatically in the past two decades. State-of-the-art optical and electrophysiological techniques allow direct recordings of the functional dynamics of thousands of neurons across distributed brain circuits with single-cell resolution. With transgenic tools, specific neuron types, pathways, and/or neurotransmitters can be targeted in user-determined brain areas for precise measurement and manipulation. In this chapter, we catalog these advancements. We emphasize that the impact of this methodological revolution on neuropsychiatry remains uncertain. This stems from the fact that these tools remain mostly limited to research in mice. And while translational paradigms are needed, recapitulations of human psychiatric disease states (e.g., schizophrenia) in animal models are inherently challenging to validate and may have limited utility in heterogeneous disease populations. Here we focus on an alternative strategy aimed at the study of neurophysiological biomarkers-the subject of this volume-translated to animal models, where precision neuroscience tools can be applied to provide molecular, cellular, and circuit-level insights and novel therapeutic targets. We summarize several examples of this approach throughout the chapter and emphasize the importance of careful experimental design and choice of dependent measures.
Collapse
Affiliation(s)
- A M Rader Groves
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA, USA
| | - C G Gallimore
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA, USA
| | - J P Hamm
- Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA, USA.
| |
Collapse
|
5
|
Tong L, Han S, Xue Y, Chen M, Chen F, Ke W, Shu Y, Ding N, Bewersdorf J, Zhou ZJ, Yuan P, Grutzendler J. Single cell in vivo optogenetic stimulation by two-photon excitation fluorescence transfer. iScience 2023; 26:107857. [PMID: 37752954 PMCID: PMC10518705 DOI: 10.1016/j.isci.2023.107857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/01/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
Optogenetic manipulation with single-cell resolution can be achieved by two-photon excitation. However, this frequently requires relatively high laser powers. Here, we developed a novel strategy that can improve the efficiency of current two-photon stimulation technologies by positioning fluorescent proteins or small fluorescent molecules with high two-photon cross-sections in the vicinity of opsins. This generates a highly localized source of endogenous single-photon illumination that can be tailored to match the optimal opsin absorbance. Through neuronal and vascular stimulation in the live mouse brain, we demonstrate the utility of this technique to achieve efficient opsin stimulation, without loss of cellular resolution. We also provide a theoretical framework for understanding the potential advantages and constrains of this methodology, with directions for future improvements. Altogether, this fluorescence transfer illumination method opens new possibilities for experiments difficult to implement in the live brain such as all-optical neural interrogation and control of regional cerebral blood flow.
Collapse
Affiliation(s)
- Lei Tong
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Shanshan Han
- Department of Rehabilitation Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yao Xue
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT 06511, USA
| | - Minggang Chen
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT 06511, USA
| | - Fuyi Chen
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Wei Ke
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yousheng Shu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Ning Ding
- Department of Rehabilitation Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Z. Jimmy Zhou
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06511, USA
| | - Peng Yuan
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Rehabilitation Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Jaime Grutzendler
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
6
|
Piatkevich KD, Boyden ES. Optogenetic control of neural activity: The biophysics of microbial rhodopsins in neuroscience. Q Rev Biophys 2023; 57:e1. [PMID: 37831008 DOI: 10.1017/s0033583523000033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Optogenetics, the use of microbial rhodopsins to make the electrical activity of targeted neurons controllable by light, has swept through neuroscience, enabling thousands of scientists to study how specific neuron types contribute to behaviors and pathologies, and how they might serve as novel therapeutic targets. By activating a set of neurons, one can probe what functions they can initiate or sustain, and by silencing a set of neurons, one can probe the functions they are necessary for. We here review the biophysics of these molecules, asking why they became so useful in neuroscience for the study of brain circuitry. We review the history of the field, including early thinking, early experiments, applications of optogenetics, pre-optogenetics targeted neural control tools, and the history of discovering and characterizing microbial rhodopsins. We then review the biophysical attributes of rhodopsins that make them so useful to neuroscience - their classes and structure, their photocycles, their photocurrent magnitudes and kinetics, their action spectra, and their ion selectivity. Our hope is to convey to the reader how specific biophysical properties of these molecules made them especially useful to neuroscientists for a difficult problem - the control of high-speed electrical activity, with great precision and ease, in the brain.
Collapse
Affiliation(s)
- Kiryl D Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Edward S Boyden
- McGovern Institute and Koch Institute, Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, K. Lisa Yang Center for Bionics and Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| |
Collapse
|
7
|
Afraz A. Behavioral optogenetics in nonhuman primates; a psychological perspective. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100101. [PMID: 38020813 PMCID: PMC10663131 DOI: 10.1016/j.crneur.2023.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 12/01/2023] Open
Abstract
Optogenetics has been a promising and developing technology in systems neuroscience throughout the past decade. It has been difficult though to reliably establish the potential behavioral effects of optogenetic perturbation of the neural activity in nonhuman primates. This poses a challenge on the future of optogenetics in humans as the concepts and technology need to be developed in nonhuman primates first. Here, I briefly summarize the viable approaches taken to improve nonhuman primate behavioral optogenetics, then focus on one approach: improvements in the measurement of behavior. I bring examples from visual behavior and show how the choice of method of measurement might conceal large behavioral effects. I will then discuss the "cortical perturbation detection" task in detail as an example of a sensitive task that can record the behavioral effects of optogenetic cortical stimulation with high fidelity. Finally, encouraged by the rich scientific landscape ahead of behavioral optogenetics, I invite technology developers to improve the chronically implantable devices designed for simultaneous neural recording and optogenetic intervention in nonhuman primates.
Collapse
Affiliation(s)
- Arash Afraz
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institute of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Vishniakou I, Seelig JD. Differentiable optimization of the Debye-Wolf integral for light shaping and adaptive optics in two-photon microscopy. OPTICS EXPRESS 2023; 31:9526-9542. [PMID: 37157521 DOI: 10.1364/oe.482387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Control of light through a microscope objective with a high numerical aperture is a common requirement in applications such as optogenetics, adaptive optics, or laser processing. Light propagation, including polarization effects, can be described under these conditions using the Debye-Wolf diffraction integral. Here, we take advantage of differentiable optimization and machine learning for efficiently optimizing the Debye-Wolf integral for such applications. For light shaping we show that this optimization approach is suitable for engineering arbitrary three-dimensional point spread functions in a two-photon microscope. For differentiable model-based adaptive optics (DAO), the developed method can find aberration corrections with intrinsic image features, for example neurons labeled with genetically encoded calcium indicators, without requiring guide stars. Using computational modeling we further discuss the range of spatial frequencies and magnitudes of aberrations which can be corrected with this approach.
Collapse
|
9
|
Guo J, Wu Y, Gong Z, Chen X, Cao F, Kala S, Qiu Z, Zhao X, Chen J, He D, Chen T, Zeng R, Zhu J, Wong KF, Murugappan S, Zhu T, Xian Q, Hou X, Ruan YC, Li B, Li YC, Zhang Y, Sun L. Photonic Nanojet-Mediated Optogenetics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104140. [PMID: 35187865 PMCID: PMC9036029 DOI: 10.1002/advs.202104140] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/04/2022] [Indexed: 05/11/2023]
Abstract
Optogenetics has become a widely used technique in neuroscience research, capable of controlling neuronal activity with high spatiotemporal precision and cell-type specificity. Expressing exogenous opsins in the selected cells can induce neuronal activation upon light irradiation, and the activation depends on the power of incident light. However, high optical power can also lead to off-target neuronal activation or even cell damage. Limiting the incident power, but enhancing power distribution to the targeted neurons, can improve optogenetic efficiency and reduce off-target effects. Here, the use of optical lenses made of polystyrene microspheres is demonstrated to achieve effective focusing of the incident light of relatively low power to neighboring neurons via photonic jets. The presence of microspheres significantly localizes and enhances the power density to the target neurons both in vitro and ex vivo, resulting in increased inward current and evoked action potentials. In vivo results show optogenetic stimulation with microspheres that can evoke significantly more motor behavior and neuronal activation at lowered power density. In all, a proof-of-concept of a strategy is demonstrated to increase the efficacy of optogenetic neuromodulation using pulses of reduced optical power.
Collapse
Affiliation(s)
- Jinghui Guo
- Department of PhysiologySchool of MedicineJinan UniversityGuangzhou510632China
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| | - Yong Wu
- Department of PhysiologySchool of MedicineJinan UniversityGuangzhou510632China
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| | - Zhiyong Gong
- Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Xixi Chen
- Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Fei Cao
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| | - Shashwati Kala
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| | - Zhihai Qiu
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| | - Xinyi Zhao
- Department of PhysiologySchool of MedicineJinan UniversityGuangzhou510632China
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| | - Jun‐jiang Chen
- Department of PhysiologySchool of MedicineJinan UniversityGuangzhou510632China
| | - Dongming He
- Department of PhysiologySchool of MedicineJinan UniversityGuangzhou510632China
| | - Taiheng Chen
- Department of PhysiologySchool of MedicineJinan UniversityGuangzhou510632China
| | - Rui Zeng
- Department of PhysiologySchool of MedicineJinan UniversityGuangzhou510632China
| | - Jiejun Zhu
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| | - Kin Fung Wong
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| | - Suresh Murugappan
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| | - Ting Zhu
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| | - Quanxiang Xian
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| | - Xuandi Hou
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| | - Ye Chun Ruan
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| | - Baojun Li
- Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Yu Chao Li
- Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Yao Zhang
- Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Lei Sun
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong SAR999077China
| |
Collapse
|
10
|
Linghu C, Chen IW, Tanese D, Zampini V, Shemesh OA. Single-Cell Resolution Optogenetics Via Expression of Soma-Targeted Rhodopsins. Methods Mol Biol 2022; 2501:229-257. [PMID: 35857231 DOI: 10.1007/978-1-0716-2329-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Optogenetics allows control of neural activity in genetically targeted neuron populations by light. Optogenetic control of individual neurons in neural circuits would enable powerful, causal investigations of neural connectivity and function at single-cell level and provide insights into how neural circuits operate. Such single-cell resolution optogenetics in neuron populations requires precise sculpting of light and subcellular targeting of optogenetic molecules. Here we describe a group of methods for single-cell resolution optogenetics in neuron cultures, in mouse brain slices, and in mouse cortex in-vivo, via patterned light and soma-targeted optogenetic molecules.
Collapse
Affiliation(s)
| | - I-Wen Chen
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Dimitrii Tanese
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Valeria Zampini
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Or A Shemesh
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA.
- Department of Neurobiology, Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Córdova C, Lozano C, Rodríguez B, Marchant I, Zúñiga R, Ochova P, Olivero P, González-Arriagada WA. Optogenetic control of cancer cell survival in ChR2-transfected HeLa cells. Int J Exp Pathol 2021; 102:242-248. [PMID: 34791724 DOI: 10.1111/iep.12426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/13/2021] [Accepted: 10/28/2021] [Indexed: 11/30/2022] Open
Abstract
Optogenetics is a molecular biological technique involving transfection of cells with photosensitive proteins and the subsequent study of their biological effects. The aim of this study was to evaluate the effect of blue light on the survival of HeLa cells, transfected with channelrhodopsin-2 (ChR2). HeLa wild-type cells were transfected with a plasmid that contained the gene for ChR2. Transfection and channel function were evaluated by real-time polymerase chain reaction (RT-PCR), fluorescence imaging using green fluorescent protein (GFP) and flow cytometry for intracellular calcium changes using a Fura Red probe. We developed a platform for optogenetic stimulation for use within the cell culture incubator. Different stimulation procedures using blue light (467 nm) were applied for up to 24 h. Cell survival was determined by flow cytometry using propidium iodide and rhodamine probes. Change in cell survival showed a statistically significant (p < 0.05) inverse association with the frequency and time of application of the light stimulus. This change seemed to be associated with the ChR2 cis-trans-isomerization cycle. Cell death was associated with high concentrations of calcium in the cytoplasm and stimulation intervals less than the period of isomerization. It is possible to transfect HeLa cells with ChR2 and control their survival under blue light stimulation. We suggest that this practice should be considered in the future development of optogenetic systems in biological or biomedical research.
Collapse
Affiliation(s)
- Claudio Córdova
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Carlo Lozano
- Servicio de Anatomía Patológica, Carlos Van Buren Hospital, Valparaíso, Chile
| | - Belén Rodríguez
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Ivanny Marchant
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Centro de Investigación Interoperativo en Ciencias Odontológicas y Médicas, Escuela de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Rodrigo Zúñiga
- Servicio de Anatomía Patológica, Carlos Van Buren Hospital, Valparaíso, Chile
| | - Paola Ochova
- Servicio de Anatomía Patológica, Carlos Van Buren Hospital, Valparaíso, Chile
| | - Pablo Olivero
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Centro de Investigación Interoperativo en Ciencias Odontológicas y Médicas, Escuela de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Wilfredo Alejandro González-Arriagada
- Oral and Maxillofacial Pathology, Facultad de Odontología, Universidad de Los Andes, Las Condes, Chile.,Centro de Investigación e Innovación Biomédica, Universidad de Los Andes, Las Condes, Chile
| |
Collapse
|
12
|
Jin C, Liu C, Shi R, Kong L. Precise 3D computer-generated holography based on non-convex optimization with spherical aberration compensation (SAC-NOVO) for two-photon optogenetics. OPTICS EXPRESS 2021; 29:20795-20807. [PMID: 34266161 DOI: 10.1364/oe.426578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/23/2021] [Indexed: 06/13/2023]
Abstract
Computer-generated holography (CGH) has been adopted in two-photon optogenetics as a promising technique for selective excitation of neural ensembles. However, 3D CGH by nonconvex optimization, the state of art method, is susceptible to imprecise axial positioning, due to the quadratic phase approximation in 3D target generation. Even though the misplacement of targets in conventional CGH can be solved by pre-calibration, it still suffers from low efficiency and poor axial resolution of two-photon excitation. Here, we propose a novel CGH method based on non-convex optimization with spherical aberration compensation (SAC-NOVO). Through numerical simulations and two-photon excitation experiments, we verify that SAC-NOVO could achieve precise axial positioning for single and multiple expanded disk patterns, while ensuring high two-photon excitation efficiency. Besides, we experimentally show that SAC-NOVO enables the suppression of dark target areas. This work shows the superiority of SAC-NOVO for two-photon optogenetics.
Collapse
|
13
|
Liu YZ, Renteria C, Courtney CD, Ibrahim B, You S, Chaney EJ, Barkalifa R, Iyer RR, Zurauskas M, Tu H, Llano DA, Christian-Hinman CA, Boppart SA. Simultaneous two-photon activation and imaging of neural activity based on spectral-temporal modulation of supercontinuum light. NEUROPHOTONICS 2020; 7:045007. [PMID: 33163545 PMCID: PMC7607614 DOI: 10.1117/1.nph.7.4.045007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/14/2020] [Indexed: 05/03/2023]
Abstract
SIGNIFICANCE Recent advances in nonlinear optics in neuroscience have focused on using two ultrafast lasers for activity imaging and optogenetic stimulation. Broadband femtosecond light sources can obviate the need for multiple lasers by spectral separation for chromatically targeted excitation. AIM We present a photonic crystal fiber (PCF)-based supercontinuum source for spectrally resolved two-photon (2P) imaging and excitation of GCaMP6s and C1V1-mCherry, respectively. APPROACH A PCF is pumped using a 20-MHz repetition rate femtosecond laser to generate a supercontinuum of light, which is spectrally separated, compressed, and recombined to image GCaMP6s (930 nm excitation) and stimulate the optogenetic protein, C1V1-mCherry (1060 nm excitation). Galvanometric spiral scanning is employed on a single-cell level for multiphoton excitation and high-speed resonant scanning is employed for imaging of calcium activity. RESULTS Continuous wave lasers were used to verify functionality of optogenetic activation followed by directed 2P excitation. Results from these experiments demonstrate the utility of a supercontinuum light source for simultaneous, single-cell excitation and calcium imaging. CONCLUSIONS A PCF-based supercontinuum light source was employed for simultaneous imaging and excitation of calcium dynamics in brain tissue. Pumped PCFs can serve as powerful light sources for imaging and activation of neural activity, and overcome the limited spectra and space associated with multilaser approaches.
Collapse
Affiliation(s)
- Yuan-Zhi Liu
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| | - Carlos Renteria
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Bioengineering, Urbana, Illinois, United States
| | - Connor D. Courtney
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Neuroscience Program, Urbana, Illinois, United States
| | - Baher Ibrahim
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Sixian You
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Computational Science and Engineering, Urbana, Illinois, United States
| | - Eric J. Chaney
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Ronit Barkalifa
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Rishyashring R. Iyer
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| | - Mantas Zurauskas
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Haohua Tu
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Daniel A. Llano
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Neuroscience Program, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Molecular and Integrative Physiology, Urbana, Illinois, United States
| | - Catherine A. Christian-Hinman
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Neuroscience Program, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Molecular and Integrative Physiology, Urbana, Illinois, United States
| | - Stephen A. Boppart
- University of Illinois at Urbana–Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Neuroscience Program, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Computational Science and Engineering, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Carle Illinois College of Medicine, Urbana, Illinois, United States
| |
Collapse
|
14
|
Nguyen NT, Ma G, Zhou Y, Jing J. Optogenetic approaches to control Ca 2+-modulated physiological processes. CURRENT OPINION IN PHYSIOLOGY 2020; 17:187-196. [PMID: 33184610 DOI: 10.1016/j.cophys.2020.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
As a versatile intracellular second messenger, calcium ion (Ca2+) regulates a plethora of physiological processes. To achieve precise control over Ca2+ signals in living cells and organisms, a set of optogenetic tools have recently been crafted by engineering photosensitive domains into intracellular signaling proteins, G-protein coupled receptors (GPCRs), receptor tyrosine kinases (RTKs), and Ca2+ channels. We highlight herein the optogenetic engineering strategies, kinetic properties, advantages and limitations of these genetically-encoded Ca2+ channel actuators (GECAs) and modulators. In parallel, we present exemplary applications in both excitable and non-excitable cells and tissues. Furthermore, we briefly discuss potential solutions for wireless optogenetics to accelerate the in vivo applications of GECAs under physiological conditions, with an emphasis on integrating near-infrared (NIR) light-excitable upconversion nanoparticles (UCNPs) and bioluminescence with optogenetics.
Collapse
Affiliation(s)
- Nhung T Nguyen
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Ji Jing
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|
15
|
Papagiakoumou E, Ronzitti E, Emiliani V. Scanless two-photon excitation with temporal focusing. Nat Methods 2020; 17:571-581. [PMID: 32284609 DOI: 10.1038/s41592-020-0795-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 02/28/2020] [Indexed: 11/09/2022]
Abstract
Temporal focusing, with its ability to focus light in time, enables scanless illumination of large surface areas at the sample with micrometer axial confinement and robust propagation through scattering tissue. In conventional two-photon microscopy, widely used for the investigation of intact tissue in live animals, images are formed by point scanning of a spatially focused pulsed laser beam, resulting in limited temporal resolution of the excitation. Replacing point scanning with temporally focused widefield illumination removes this limitation and represents an important milestone in two-photon microscopy. Temporal focusing uses a diffusive or dispersive optical element placed in a plane conjugate to the objective focal plane to generate position-dependent temporal pulse broadening that enables axially confined multiphoton absorption, without the need for tight spatial focusing. Many techniques have benefitted from temporal focusing, including scanless imaging, super-resolution imaging, photolithography, uncaging of caged neurotransmitters and control of neuronal activity via optogenetics.
Collapse
Affiliation(s)
- Eirini Papagiakoumou
- Wavefront-Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne University, Inserm S968, CNRS UMR7210, Fondation Voir et Entendre, Paris, France
| | - Emiliano Ronzitti
- Wavefront-Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne University, Inserm S968, CNRS UMR7210, Fondation Voir et Entendre, Paris, France
| | - Valentina Emiliani
- Wavefront-Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne University, Inserm S968, CNRS UMR7210, Fondation Voir et Entendre, Paris, France.
| |
Collapse
|
16
|
Renteria C, Liu YZ, Chaney EJ, Barkalifa R, Sengupta P, Boppart SA. Dynamic Tracking Algorithm for Time-Varying Neuronal Network Connectivity using Wide-Field Optical Image Video Sequences. Sci Rep 2020; 10:2540. [PMID: 32054882 PMCID: PMC7018813 DOI: 10.1038/s41598-020-59227-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/27/2020] [Indexed: 12/18/2022] Open
Abstract
Propagation of signals between neurons and brain regions provides information about the functional properties of neural networks, and thus information transfer. Advances in optical imaging and statistical analyses of acquired optical signals have yielded various metrics for inferring neural connectivity, and hence for mapping signal intercorrelation. However, a single coefficient is traditionally derived to classify the connection strength between two cells, ignoring the fact that neural systems are inherently time-variant systems. To overcome these limitations, we utilized a time-varying Pearson's correlation coefficient, spike-sorting, wavelet transform, and wavelet coherence of calcium transients from DIV 12-15 hippocampal neurons from GCaMP6s mice after applying various concentrations of glutamate. Results provide a comprehensive overview of resulting firing patterns, network connectivity, signal directionality, and network properties. Together, these metrics provide a more comprehensive and robust method of analyzing transient neural signals, and enable future investigations for tracking the effects of different stimuli on network properties.
Collapse
Affiliation(s)
- Carlos Renteria
- Beckman Institute for Advanced Science and Technology, Urbana, USA
- Department of Bioengineering, Urbana, USA
| | - Yuan-Zhi Liu
- Beckman Institute for Advanced Science and Technology, Urbana, USA
| | - Eric J Chaney
- Beckman Institute for Advanced Science and Technology, Urbana, USA
| | - Ronit Barkalifa
- Beckman Institute for Advanced Science and Technology, Urbana, USA
| | - Parijat Sengupta
- Beckman Institute for Advanced Science and Technology, Urbana, USA
| | - Stephen A Boppart
- Beckman Institute for Advanced Science and Technology, Urbana, USA.
- Department of Bioengineering, Urbana, USA.
- Department of Electrical and Computer Engineering, Urbana, USA.
- Neuroscience Program, Urbana, USA.
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, USA.
| |
Collapse
|
17
|
Two-Photon Excitation of Azobenzene Photoswitches for Synthetic Optogenetics. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030805] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synthetic optogenetics is an emerging optical technique that enables users to photocontrol molecules, proteins, and cells in vitro and in vivo. This is achieved by use of synthetic chromophores—denoted photoswitches—that undergo light-dependent changes (e.g., isomerization), which are meticulously designed to interact with unique cellular targets, notably proteins. Following light illumination, the changes adopted by photoswitches are harnessed to affect the function of nearby proteins. In most instances, photoswitches absorb visible light, wavelengths of poor tissue penetration, and excessive scatter. These shortcomings impede their use in vivo. To overcome these challenges, photoswitches of red-shifted absorbance have been developed. Notably, this shift in absorbance also increases their compatibility with two-photon excitation (2PE) methods. Here, we provide an overview of recent efforts devoted towards optimizing azobenzene-based photoswitches for 2PE and their current applications.
Collapse
|
18
|
Huang C, Tai CY, Yang KP, Chang WK, Hsu KJ, Hsiao CC, Wu SC, Lin YY, Chiang AS, Chu SW. All-Optical Volumetric Physiology for Connectomics in Dense Neuronal Structures. iScience 2019; 22:133-146. [PMID: 31765994 PMCID: PMC6883334 DOI: 10.1016/j.isci.2019.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/19/2019] [Accepted: 11/04/2019] [Indexed: 01/04/2023] Open
Abstract
All-optical physiology (AOP) manipulates and reports neuronal activities with light, allowing for interrogation of neuronal functional connections with high spatiotemporal resolution. However, contemporary high-speed AOP platforms are limited to single-depth or discrete multi-plane recordings that are not suitable for studying functional connections among densely packed small neurons, such as neurons in Drosophila brains. Here, we constructed a 3D AOP platform by incorporating single-photon point stimulation and two-photon high-speed volumetric recordings with a tunable acoustic gradient-index (TAG) lens. We demonstrated the platform effectiveness by studying the anterior visual pathway (AVP) of Drosophila. We achieved functional observation of spatiotemporal coding and the strengths of calcium-sensitive connections between anterior optic tubercle (AOTU) sub-compartments and >70 tightly assembled 2-μm bulb (BU) microglomeruli in 3D coordinates with a single trial. Our work aids the establishment of in vivo 3D functional connectomes in neuron-dense brain areas. All-optical volumetric physiology = precise stimulation + fast volumetric recording Precise single-photon point stimulation among genetically defined neurons 3D two-photon imaging by an acoustic gradient-index lens for dense neural structures Observation of 3D functional connectivity in Drosophila anterior visual pathway
Collapse
Affiliation(s)
- Chiao Huang
- Department of Physics, National Taiwan University, 1, Sec 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chu-Yi Tai
- Institute of Biotechnology, National Tsing Hua University, 101, Sec 2, Guangfu Road, Hsinchu 30013, Taiwan
| | - Kai-Ping Yang
- Department of Physics, National Taiwan University, 1, Sec 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Wei-Kun Chang
- Brain Research Center, National Tsing Hua University, 101, Sec 2, Guangfu Road, Hsinchu 30013, Taiwan
| | - Kuo-Jen Hsu
- Department of Physics, National Taiwan University, 1, Sec 4, Roosevelt Road, Taipei 10617, Taiwan; Brain Research Center, National Tsing Hua University, 101, Sec 2, Guangfu Road, Hsinchu 30013, Taiwan
| | - Ching-Chun Hsiao
- Department of Engineering and System Science, National Tsing Hua University, 101, Sec 2, Guangfu Road, Hsinchu 30013, Taiwan
| | - Shun-Chi Wu
- Department of Engineering and System Science, National Tsing Hua University, 101, Sec 2, Guangfu Road, Hsinchu 30013, Taiwan
| | - Yen-Yin Lin
- Brain Research Center, National Tsing Hua University, 101, Sec 2, Guangfu Road, Hsinchu 30013, Taiwan.
| | - Ann-Shyn Chiang
- Institute of Biotechnology, National Tsing Hua University, 101, Sec 2, Guangfu Road, Hsinchu 30013, Taiwan; Brain Research Center, National Tsing Hua University, 101, Sec 2, Guangfu Road, Hsinchu 30013, Taiwan; Institute of Systems Neuroscience, National Tsing Hua University, 101, Sec 2, Guangfu Road, Hsinchu 30013, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80780, Taiwan; Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan; Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; Kavli Institute for Brain and Mind, University of California, San Diego, CA 92161, USA.
| | - Shi-Wei Chu
- Department of Physics, National Taiwan University, 1, Sec 4, Roosevelt Road, Taipei 10617, Taiwan; Molecular Imaging Center, National Taiwan University, 1, Sec 4, Roosevelt Road, Taipei 10617, Taiwan.
| |
Collapse
|
19
|
Lamprecht R. Regulation of signaling proteins in the brain by light. Prog Neurobiol 2019; 180:101638. [DOI: 10.1016/j.pneurobio.2019.101638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022]
|
20
|
Optogenetics in Brain Research: From a Strategy to Investigate Physiological Function to a Therapeutic Tool. PHOTONICS 2019. [DOI: 10.3390/photonics6030092] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dissecting the functional roles of neuronal circuits and their interaction is a crucial step in basic neuroscience and in all the biomedical field. Optogenetics is well-suited to this purpose since it allows us to study the functionality of neuronal networks on multiple scales in living organisms. This tool was recently used in a plethora of studies to investigate physiological neuronal circuit function in addition to dysfunctional or pathological conditions. Moreover, optogenetics is emerging as a crucial technique to develop new rehabilitative and therapeutic strategies for many neurodegenerative diseases in pre-clinical models. In this review, we discuss recent applications of optogenetics, starting from fundamental research to pre-clinical applications. Firstly, we described the fundamental components of optogenetics, from light-activated proteins to light delivery systems. Secondly, we showed its applications to study neuronal circuits in physiological or pathological conditions at the cortical and subcortical level, in vivo. Furthermore, the interesting findings achieved using optogenetics as a therapeutic and rehabilitative tool highlighted the potential of this technique for understanding and treating neurological diseases in pre-clinical models. Finally, we showed encouraging results recently obtained by applying optogenetics in human neuronal cells in-vitro.
Collapse
|
21
|
Pisano F, Pisanello M, De Vittorio M, Pisanello F. Single-cell micro- and nano-photonic technologies. J Neurosci Methods 2019; 325:108355. [PMID: 31319100 DOI: 10.1016/j.jneumeth.2019.108355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022]
Abstract
Since the advent of optogenetics, the technology development has focused on new methods to optically interact with single nerve cells. This gave rise to the field of photonic neural interfaces, intended as the set of technologies that can modify light radiation in either a linear or non-linear fashion to control and/or monitor cellular functions. This set includes the use of plasmonic effects, up-conversion, electron transfer and integrated light steering, with some of them already implemented in vivo. This article will review available approaches in this framework, with a particular emphasis on methods operating at the single-unit level or having the potential to reach single-cell resolution.
Collapse
Affiliation(s)
- Filippo Pisano
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Via Barsanti, 73010 Arnesano (Lecce), Italy
| | - Marco Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Via Barsanti, 73010 Arnesano (Lecce), Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Via Barsanti, 73010 Arnesano (Lecce), Italy; Dipartimento di Ingeneria dell'Innovazione, Università del Salento, via per Monteroni, 73100 Lecce, Italy
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Via Barsanti, 73010 Arnesano (Lecce), Italy.
| |
Collapse
|
22
|
Carmi I, De Battista M, Maddalena L, Carroll EC, Kienzler MA, Berlin S. Holographic two-photon activation for synthetic optogenetics. Nat Protoc 2019; 14:864-900. [PMID: 30804570 DOI: 10.1038/s41596-018-0118-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 12/17/2018] [Indexed: 12/25/2022]
Abstract
Optogenetic tools provide users the ability to photocontrol the activity of cells. Commonly, activation is achieved by expression of proteins from photosynthetic organisms, for example, microbial opsins (e.g., ChR2). Alternatively, a sister approach, synthetic optogenetics, enables photocontrol over proteins of mammalian origin by use of photoswitches, visible light (typically), and genetic modification. Thus, synthetic optogenetics facilitates interrogation of native neuronal signaling mechanisms. However, the poor tissue penetration of visible wavelengths impedes the use of the technique in tissue, as two-photon excitation (2PE) is typically required to access the near-infrared window. Here, we describe an alternative technique that uses 2PE-compatible photoswitches (section 1) for photoactivation of genetically modified glutamate receptors (section 2). Furthermore, for fast, multi-region photoactivation, we describe the use of 2P-digital holography (2P-DH) (section 3). We detail how to combine 2P-DH and synthetic optogenetics with electrophysiology, or with red fluorescence Ca2+ recordings, for all-optical neural interrogation. The time required to complete the methods, aside from obtaining the necessary reagents and illumination equipment, is ~3 weeks.
Collapse
Affiliation(s)
- Ido Carmi
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Marco De Battista
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Laura Maddalena
- Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
| | - Elizabeth C Carroll
- Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
| | | | - Shai Berlin
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
23
|
Cabré G, Garrido-Charles A, Moreno M, Bosch M, Porta-de-la-Riva M, Krieg M, Gascón-Moya M, Camarero N, Gelabert R, Lluch JM, Busqué F, Hernando J, Gorostiza P, Alibés R. Rationally designed azobenzene photoswitches for efficient two-photon neuronal excitation. Nat Commun 2019; 10:907. [PMID: 30796228 PMCID: PMC6385291 DOI: 10.1038/s41467-019-08796-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 01/24/2019] [Indexed: 12/15/2022] Open
Abstract
Manipulation of neuronal activity using two-photon excitation of azobenzene photoswitches with near-infrared light has been recently demonstrated, but their practical use in neuronal tissue to photostimulate individual neurons with three-dimensional precision has been hampered by firstly, the low efficacy and reliability of NIR-induced azobenzene photoisomerization compared to one-photon excitation, and secondly, the short cis state lifetime of the two-photon responsive azo switches. Here we report the rational design based on theoretical calculations and the synthesis of azobenzene photoswitches endowed with both high two-photon absorption cross section and slow thermal back-isomerization. These compounds provide optimized and sustained two-photon neuronal stimulation both in light-scattering brain tissue and in Caenorhabditis elegans nematodes, displaying photoresponse intensities that are comparable to those achieved under one-photon excitation. This finding opens the way to use both genetically targeted and pharmacologically selective azobenzene photoswitches to dissect intact neuronal circuits in three dimensions.
Collapse
Affiliation(s)
- Gisela Cabré
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193, Spain
| | - Aida Garrido-Charles
- Institut de Bioenginyeria de Catalunya (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain
| | - Miquel Moreno
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193, Spain
| | - Miquel Bosch
- Institut de Bioenginyeria de Catalunya (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain
| | - Montserrat Porta-de-la-Riva
- Institut de Ciències Fotòniques (ICFO), The Barcelona Institute of Science and Technology (BIST), Castelldefels, Barcelona, 08860, Spain
| | - Michael Krieg
- Institut de Ciències Fotòniques (ICFO), The Barcelona Institute of Science and Technology (BIST), Castelldefels, Barcelona, 08860, Spain
| | - Marta Gascón-Moya
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193, Spain
| | - Núria Camarero
- Institut de Bioenginyeria de Catalunya (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain
| | - Ricard Gelabert
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193, Spain
| | - José M Lluch
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193, Spain
| | - Félix Busqué
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193, Spain
| | - Jordi Hernando
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193, Spain
| | - Pau Gorostiza
- Institut de Bioenginyeria de Catalunya (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, 50018, Spain.
| | - Ramon Alibés
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193, Spain.
| |
Collapse
|
24
|
Fast Calculation of Computer Generated Holograms for 3D Photostimulation through Compressive-Sensing Gerchberg-Saxton Algorithm. Methods Protoc 2018; 2:mps2010002. [PMID: 31164587 PMCID: PMC6481074 DOI: 10.3390/mps2010002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/01/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022] Open
Abstract
The use of spatial light modulators to project computer generated holograms is a common strategy for optogenetic stimulation of multiple structures of interest within a three-dimensional volume. A common requirement when addressing multiple targets sparsely distributed in three dimensions is the generation of a points cloud, focusing excitation light in multiple diffraction-limited locations throughout the sample. Calculation of this type of holograms is most commonly performed with either the high-speed, low-performance random superposition algorithm, or the low-speed, high performance Gerchberg-Saxton algorithm. This paper presents a variation of the Gerchberg-Saxton algorithm that, by only performing iterations on a subset of the data, according to compressive sensing principles, is rendered significantly faster while maintaining high quality outputs. The algorithm is presented in high-efficiency and high-uniformity variants. All source code for the method implementation is available as Supplementary Materials and as open-source software. The method was tested computationally against existing algorithms, and the results were confirmed experimentally on a custom setup for in-vivo multiphoton optogenetics. The results clearly show that the proposed method can achieve computational speed performances close to the random superposition algorithm, while retaining the high performance of the Gerchberg-Saxton algorithm, with a minimal hologram quality loss.
Collapse
|
25
|
Ronzitti E, Emiliani V, Papagiakoumou E. Methods for Three-Dimensional All-Optical Manipulation of Neural Circuits. Front Cell Neurosci 2018; 12:469. [PMID: 30618626 PMCID: PMC6304748 DOI: 10.3389/fncel.2018.00469] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022] Open
Abstract
Optical means for modulating and monitoring neuronal activity, have provided substantial insights to neurophysiology and toward our understanding of how the brain works. Optogenetic actuators, calcium or voltage imaging probes and other molecular tools, combined with advanced microscopies have allowed an "all-optical" readout and modulation of neural circuits. Completion of this remarkable work is evolving toward a three-dimensional (3D) manipulation of neural ensembles at a high spatiotemporal resolution. Recently, original optical methods have been proposed for both activating and monitoring neurons in a 3D space, mainly through optogenetic compounds. Here, we review these methods and anticipate possible combinations among them.
Collapse
Affiliation(s)
| | | | - Eirini Papagiakoumou
- Wavefront Engineering Microscopy Group, Photonics Department, Institut de la Vision, Sorbonne Université, Inserm S968, CNRS UMR7210, Paris, France
| |
Collapse
|
26
|
Leopold AV, Chernov KG, Verkhusha VV. Optogenetically controlled protein kinases for regulation of cellular signaling. Chem Soc Rev 2018; 47:2454-2484. [PMID: 29498733 DOI: 10.1039/c7cs00404d] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein kinases are involved in the regulation of many cellular processes including cell differentiation, survival, migration, axon guidance and neuronal plasticity. A growing set of optogenetic tools, termed opto-kinases, allows activation and inhibition of different protein kinases with light. The optogenetic regulation enables fast, reversible and non-invasive manipulation of protein kinase activities, complementing traditional methods, such as treatment with growth factors, protein kinase inhibitors or chemical dimerizers. In this review, we summarize the properties of the existing optogenetic tools for controlling tyrosine kinases and serine-threonine kinases. We discuss how the opto-kinases can be applied for studies of spatial and temporal aspects of protein kinase signaling in cells and organisms. We compare approaches for chemical and optogenetic regulation of protein kinase activity and present guidelines for selection of opto-kinases and equipment to control them with light. We also describe strategies to engineer novel opto-kinases on the basis of various photoreceptors.
Collapse
Affiliation(s)
- Anna V Leopold
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | | | | |
Collapse
|
27
|
Paul K, Sengupta P, Ark ED, Tu H, Zhao Y, Boppart SA. Coherent control of an opsin in living brain tissue. NATURE PHYSICS 2017; 13:1111-1116. [PMID: 29983725 PMCID: PMC6029863 DOI: 10.1038/nphys4257] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 08/15/2017] [Indexed: 05/20/2023]
Abstract
Retinal-based opsins are light-sensitive proteins. The photoisomerization reaction of these proteins has been studied outside cellular environments using ultrashort tailored light pulses1-5. However, how living cell functions can be modulated via opsins by modifying fundamental nonlinear optical properties of light interacting with the retinal chromophore has remained largely unexplored. We report the use of chirped ultrashort near-infrared pulses to modulate light-evoked ionic current from Channelrhodopsin-2 (ChR2) in brain tissue, and consequently the firing pattern of neurons, by manipulating the phase of the spectral components of the light. These results confirm that quantum coherence of the retinal-based protein system, even in a living neuron, can influence its current output, and open up the possibilities of using designer-tailored pulses for controlling molecular dynamics of opsins in living tissue to selectively enhance or suppress neuronal function for adaptive feedback-loop applications in the future.
Collapse
Affiliation(s)
- Kush Paul
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Parijat Sengupta
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Eugene D Ark
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Haohua Tu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Youbo Zhao
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Stephen A Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
28
|
Rowlands CJ, Park D, Bruns OT, Piatkevich KD, Fukumura D, Jain RK, Bawendi MG, Boyden ES, So PTC. Wide-field three-photon excitation in biological samples. LIGHT, SCIENCE & APPLICATIONS 2017; 6:e16255. [PMID: 29152380 PMCID: PMC5687557 DOI: 10.1038/lsa.2016.255] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 05/11/2023]
Abstract
Three-photon wide-field depth-resolved excitation is used to overcome some of the limitations in conventional point-scanning two- and three-photon microscopy. Excitation of chromophores as diverse as channelrhodopsins and quantum dots is shown, and a penetration depth of more than 700 μm into fixed scattering brain tissue is achieved, approximately twice as deep as that achieved using two-photon wide-field excitation. Compatibility with live animal experiments is confirmed by imaging the cerebral vasculature of an anesthetized mouse; a complete focal stack was obtained without any evidence of photodamage. As an additional validation of the utility of wide-field three-photon excitation, functional excitation is demonstrated by performing three-photon optogenetic stimulation of cultured mouse hippocampal neurons expressing a channelrhodopsin; action potentials could reliably be excited without causing photodamage.
Collapse
Affiliation(s)
- Christopher J Rowlands
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Demian Park
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Oliver T Bruns
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kiryl D Piatkevich
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Moungi G Bawendi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Edward S Boyden
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, McGovern Institute and MIT Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | - Peter TC So
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
29
|
Eleftheriou C, Cesca F, Maragliano L, Benfenati F, Maya-Vetencourt JF. Optogenetic Modulation of Intracellular Signalling and Transcription: Focus on Neuronal Plasticity. J Exp Neurosci 2017; 11:1179069517703354. [PMID: 28579827 PMCID: PMC5415353 DOI: 10.1177/1179069517703354] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/02/2017] [Indexed: 12/17/2022] Open
Abstract
Several fields in neuroscience have been revolutionized by the advent of optogenetics, a technique that offers the possibility to modulate neuronal physiology in response to light stimulation. This innovative and far-reaching tool provided unprecedented spatial and temporal resolution to explore the activity of neural circuits underlying cognition and behaviour. With an exponential growth in the discovery and synthesis of new photosensitive actuators capable of modulating neuronal networks function, other fields in biology are experiencing a similar re-evolution. Here, we review the various optogenetic toolboxes developed to influence cellular physiology as well as the diverse ways in which these can be engineered to precisely modulate intracellular signalling and transcription. We also explore the processes required to successfully express and stimulate these photo-actuators in vivo before discussing how such tools can enlighten our understanding of neuronal plasticity at the systems level.
Collapse
Affiliation(s)
- Cyril Eleftheriou
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Experimental Medicine, University of Genova, Genova, Italy
| | | |
Collapse
|
30
|
dal Maschio M, Donovan JC, Helmbrecht TO, Baier H. Linking Neurons to Network Function and Behavior by Two-Photon Holographic Optogenetics and Volumetric Imaging. Neuron 2017; 94:774-789.e5. [DOI: 10.1016/j.neuron.2017.04.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/29/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
|
31
|
Berlin S, Isacoff EY. Synapses in the spotlight with synthetic optogenetics. EMBO Rep 2017; 18:677-692. [PMID: 28396573 DOI: 10.15252/embr.201744010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 12/15/2022] Open
Abstract
Membrane receptors and ion channels respond to various stimuli and relay that information across the plasma membrane by triggering specific and timed processes. These include activation of second messengers, allowing ion permeation, and changing cellular excitability, to name a few. Gaining control over equivalent processes is essential to understand neuronal physiology and pathophysiology. Recently, new optical techniques have emerged proffering new remote means to control various functions of defined neuronal populations by light, dubbed optogenetics. Still, optogenetic tools do not typically address the activity of receptors and channels native to neurons (or of neuronal origin), nor gain access to their signaling mechanisms. A related method-synthetic optogenetics-bridges this gap by endowing light sensitivity to endogenous neuronal receptors and channels by the appending of synthetic, light-receptive molecules, or photoswitches. This provides the means to photoregulate neuronal receptors and channels and tap into their native signaling mechanisms in select regions of the neurons, such as the synapse. This review discusses the development of synthetic optogenetics as a means to study neuronal receptors and channels remotely, in their natural environment, with unprecedented spatial and temporal precision, and provides an overview of tool design, mode of action, potential clinical applications and insights and achievements gained.
Collapse
Affiliation(s)
- Shai Berlin
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| | - Ehud Y Isacoff
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.,Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
32
|
Esipova TV, Rivera-Jacquez HJ, Weber B, Masunov AE, Vinogradov SA. Two-Photon Absorbing Phosphorescent Metalloporphyrins: Effects of π-Extension and Peripheral Substitution. J Am Chem Soc 2016; 138:15648-15662. [PMID: 27934026 PMCID: PMC8281454 DOI: 10.1021/jacs.6b09157] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ability to form triplet excited states upon two-photon excitation is important for several applications of metalloporphyrins, including two-photon phosphorescence lifetime microscopy (2PLM) and two-photon photodynamic therapy (PDT). Here we analyzed one-photon (1P) and degenerate two-photon (2P) absorption properties of several phosphorescent Pt (II) porphyrins, focusing on the effects of aromatic π-extension and peripheral substitution on triplet emissivity and two-photon absorption (2PA). Our 2PA measurements for the first time made use of direct time-resolved detection of phosphorescence, having the ability to efficiently reject laser background through microsecond time gating. π-Extension of the porphyrin macrocycle by way of syn-fusion with two external aromatic fragments, such as in syn-dibenzo- (DBP) and syn-dinaphthoporphyrins (DNP), lowers the symmetry of the porphyrin skeleton. As a result, DBPs and DNPs exhibit stronger 2PA into the one-photon-allowed B (Soret) and Q states than fully symmetric (D4h) nonextended porphyrins. However, much more 2P-active states lie above the B state and cannot be accessed due to the interfering linear absorption. Alkoxycarbonyl groups (CO2R) in the benzo-rings dramatically enhance 2PA near the B state level. Time-dependent density functional theory (TDDFT) calculations in combinations with the sum-over-states (SOS) formalism revealed that the enhancement is due to the stabilization of higher-lying 2P-active states, which are dominated by the excitations involving orbitals extending onto the carbonyl groups. Furthermore, calculations predicted even stronger stabilization of the 2P-allowed gerade-states in symmetric Pt octaalkoxycarbonyl-tetrabenzoporphyrins. Experiments confirmed that the 2PA cross-section of PtTBP(CO2Bu)8 near 810 nm reaches above 500 GM in spite of its completely centrosymmetric structure. Combined with exceptionally bright phosphorescence (ϕphos = 0.45), strong 2PA makes Pt(II) complexes of π-extended porphyrins a valuable class of chromophores for 2P applications. Another important advantage of these porphyrinoids is their compact size and easily scalable synthesis.
Collapse
Affiliation(s)
| | - Héctor J Rivera-Jacquez
- NanoScience Technology Center, Department of Chemistry and Department of Physics, University of Central Florida , Orlando, Florida 32816, United States
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich , Zurich CH-8057, Switzerland
| | - Artëm E Masunov
- NanoScience Technology Center, Department of Chemistry and Department of Physics, University of Central Florida , Orlando, Florida 32816, United States
- Photochemistry Center, Russian Academy of Sciences , ul. Novatorov 7a, Moscow 119421, Russia
- South Ural State University , Lenin pr. 76, Chelyabinsk 454080, Russia
- National Nuclear Research University MEPhI , Kashirskoye sh. 31, Moscow 115409, Russia
| | | |
Collapse
|
33
|
Conti R, Assayag O, de Sars V, Guillon M, Emiliani V. Computer Generated Holography with Intensity-Graded Patterns. Front Cell Neurosci 2016; 10:236. [PMID: 27799896 PMCID: PMC5065964 DOI: 10.3389/fncel.2016.00236] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/28/2016] [Indexed: 11/16/2022] Open
Abstract
Computer Generated Holography achieves patterned illumination at the sample plane through phase modulation of the laser beam at the objective back aperture. This is obtained by using liquid crystal-based spatial light modulators (LC-SLMs), which modulate the spatial phase of the incident laser beam. A variety of algorithms is employed to calculate the phase modulation masks addressed to the LC-SLM. These algorithms range from simple gratings-and-lenses to generate multiple diffraction-limited spots, to iterative Fourier-transform algorithms capable of generating arbitrary illumination shapes perfectly tailored on the base of the target contour. Applications for holographic light patterning include multi-trap optical tweezers, patterned voltage imaging and optical control of neuronal excitation using uncaging or optogenetics. These past implementations of computer generated holography used binary input profile to generate binary light distribution at the sample plane. Here we demonstrate that using graded input sources, enables generating intensity graded light patterns and extend the range of application of holographic light illumination. At first, we use intensity-graded holograms to compensate for LC-SLM position dependent diffraction efficiency or sample fluorescence inhomogeneity. Finally we show that intensity-graded holography can be used to equalize photo evoked currents from cells expressing different levels of chanelrhodopsin2 (ChR2), one of the most commonly used optogenetics light gated channels, taking into account the non-linear dependence of channel opening on incident light.
Collapse
Affiliation(s)
- Rossella Conti
- Wave Front Engineering Microscopy Group, Neurophotonics Laboratory, Centre National de la Recherche Scientifique, UMR 8250, University Paris Descartes Paris, France
| | - Osnath Assayag
- Wave Front Engineering Microscopy Group, Neurophotonics Laboratory, Centre National de la Recherche Scientifique, UMR 8250, University Paris Descartes Paris, France
| | - Vincent de Sars
- Wave Front Engineering Microscopy Group, Neurophotonics Laboratory, Centre National de la Recherche Scientifique, UMR 8250, University Paris Descartes Paris, France
| | - Marc Guillon
- Wave Front Engineering Microscopy Group, Neurophotonics Laboratory, Centre National de la Recherche Scientifique, UMR 8250, University Paris Descartes Paris, France
| | - Valentina Emiliani
- Wave Front Engineering Microscopy Group, Neurophotonics Laboratory, Centre National de la Recherche Scientifique, UMR 8250, University Paris Descartes Paris, France
| |
Collapse
|
34
|
Lauterbach MA, Guillon M, Desnos C, Khamsing D, Jaffal Z, Darchen F, Emiliani V. Superresolving dendritic spine morphology with STED microscopy under holographic photostimulation. NEUROPHOTONICS 2016; 3:041806. [PMID: 27413766 PMCID: PMC4916265 DOI: 10.1117/1.nph.3.4.041806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/31/2016] [Indexed: 06/06/2023]
Abstract
Emerging all-optical methods provide unique possibilities for noninvasive studies of physiological processes at the cellular and subcellular scale. On the one hand, superresolution microscopy enables observation of living samples with nanometer resolution. On the other hand, light can be used to stimulate cells due to the advent of optogenetics and photolyzable neurotransmitters. To exploit the full potential of optical stimulation, light must be delivered to specific cells or even parts of cells such as dendritic spines. This can be achieved with computer generated holography (CGH), which shapes light to arbitrary patterns by phase-only modulation. We demonstrate here in detail how CGH can be incorporated into a stimulated emission depletion (STED) microscope for photostimulation of neurons and monitoring of nanoscale morphological changes. We implement an original optical system to allow simultaneous holographic photostimulation and superresolution STED imaging. We present how synapses can be clearly visualized in live cells using membrane stains either with lipophilic organic dyes or with fluorescent proteins. We demonstrate the capabilities of this microscope to precisely monitor morphological changes of dendritic spines after stimulation. These all-optical methods for cell stimulation and monitoring are expected to spread to various fields of biological research in neuroscience and beyond.
Collapse
Affiliation(s)
- Marcel Andreas Lauterbach
- University Paris Descartes, Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, CNRS UMR8250, Sorbonne Paris Cité, 45, rue des Saints Pères, Paris 75006, France
| | - Marc Guillon
- University Paris Descartes, Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, CNRS UMR8250, Sorbonne Paris Cité, 45, rue des Saints Pères, Paris 75006, France
| | - Claire Desnos
- University Paris Descartes, Synapic Trafficking Group, Neurophotonics Laboratory, CNRS UMR8250, Sorbonne Paris Cité, 45, rue des Saints Pères, Paris 75006, France
| | - Dany Khamsing
- University Paris Descartes, Synapic Trafficking Group, Neurophotonics Laboratory, CNRS UMR8250, Sorbonne Paris Cité, 45, rue des Saints Pères, Paris 75006, France
| | - Zahra Jaffal
- University Paris Descartes, Synapic Trafficking Group, Neurophotonics Laboratory, CNRS UMR8250, Sorbonne Paris Cité, 45, rue des Saints Pères, Paris 75006, France
| | - François Darchen
- University Paris Descartes, Synapic Trafficking Group, Neurophotonics Laboratory, CNRS UMR8250, Sorbonne Paris Cité, 45, rue des Saints Pères, Paris 75006, France
| | - Valentina Emiliani
- University Paris Descartes, Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, CNRS UMR8250, Sorbonne Paris Cité, 45, rue des Saints Pères, Paris 75006, France
| |
Collapse
|
35
|
Baker CA, Elyada YM, Parra A, Bolton MM. Cellular resolution circuit mapping with temporal-focused excitation of soma-targeted channelrhodopsin. eLife 2016; 5. [PMID: 27525487 PMCID: PMC5001837 DOI: 10.7554/elife.14193] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 08/14/2016] [Indexed: 12/18/2022] Open
Abstract
We describe refinements in optogenetic methods for circuit mapping that enable measurements of functional synaptic connectivity with single-neuron resolution. By expanding a two-photon beam in the imaging plane using the temporal focusing method and restricting channelrhodopsin to the soma and proximal dendrites, we are able to reliably evoke action potentials in individual neurons, verify spike generation with GCaMP6s, and determine the presence or absence of synaptic connections with patch-clamp electrophysiological recording.
Collapse
Affiliation(s)
- Christopher A Baker
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, United States
| | - Yishai M Elyada
- Functional Architecture of the Cerebral Cortex, Max Planck Florida Institute for Neuroscience, Jupiter, United States
| | - Andres Parra
- Functional Architecture of the Cerebral Cortex, Max Planck Florida Institute for Neuroscience, Jupiter, United States
| | - M McLean Bolton
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, United States
| |
Collapse
|
36
|
Antic SD, Empson RM, Knöpfel T. Voltage imaging to understand connections and functions of neuronal circuits. J Neurophysiol 2016; 116:135-52. [PMID: 27075539 DOI: 10.1152/jn.00226.2016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/11/2016] [Indexed: 12/30/2022] Open
Abstract
Understanding of the cellular mechanisms underlying brain functions such as cognition and emotions requires monitoring of membrane voltage at the cellular, circuit, and system levels. Seminal voltage-sensitive dye and calcium-sensitive dye imaging studies have demonstrated parallel detection of electrical activity across populations of interconnected neurons in a variety of preparations. A game-changing advance made in recent years has been the conceptualization and development of optogenetic tools, including genetically encoded indicators of voltage (GEVIs) or calcium (GECIs) and genetically encoded light-gated ion channels (actuators, e.g., channelrhodopsin2). Compared with low-molecular-weight calcium and voltage indicators (dyes), the optogenetic imaging approaches are 1) cell type specific, 2) less invasive, 3) able to relate activity and anatomy, and 4) facilitate long-term recordings of individual cells' activities over weeks, thereby allowing direct monitoring of the emergence of learned behaviors and underlying circuit mechanisms. We highlight the potential of novel approaches based on GEVIs and compare those to calcium imaging approaches. We also discuss how novel approaches based on GEVIs (and GECIs) coupled with genetically encoded actuators will promote progress in our knowledge of brain circuits and systems.
Collapse
Affiliation(s)
- Srdjan D Antic
- Stem Cell Institute, Institute for Systems Genomics, UConn Health, Farmington, Connecticut
| | - Ruth M Empson
- Department of Physiology, Brain Research New Zealand, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand; and
| | - Thomas Knöpfel
- Division of Brain Sciences, Department of Medicine and Centre for Neurotechnology, Institute of Biomedical Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
37
|
Jarvis S, Schultz SR. Prospects for Optogenetic Augmentation of Brain Function. Front Syst Neurosci 2015; 9:157. [PMID: 26635547 PMCID: PMC4655245 DOI: 10.3389/fnsys.2015.00157] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/29/2015] [Indexed: 11/15/2022] Open
Abstract
The ability to optically control neural activity opens up possibilities for the restoration of normal function following neurological disorders. The temporal precision, spatial resolution, and neuronal specificity that optogenetics offers is unequalled by other available methods, so will it be suitable for not only restoring but also extending brain function? As the first demonstrations of optically “implanted” novel memories emerge, we examine the suitability of optogenetics as a technique for extending neural function. While optogenetics is an effective tool for altering neural activity, the largest impediment for optogenetics in neural augmentation is our systems level understanding of brain function. Furthermore, a number of clinical limitations currently remain as substantial hurdles for the applications proposed. While neurotechnologies for treating brain disorders and interfacing with prosthetics have advanced rapidly in the past few years, partially addressing some of these critical problems, optogenetics is not yet suitable for use in humans. Instead we conclude that for the immediate future, optogenetics is the neurological equivalent of the 3D printer: its flexibility providing an ideal tool for testing and prototyping solutions for treating brain disorders and augmenting brain function.
Collapse
Affiliation(s)
- Sarah Jarvis
- Centre for Neurotechnology and Department of Bioengineering, Imperial College London London, UK
| | - Simon R Schultz
- Centre for Neurotechnology and Department of Bioengineering, Imperial College London London, UK
| |
Collapse
|
38
|
Gascón-Moya M, Pejoan A, Izquierdo-Serra M, Pittolo S, Cabré G, Hernando J, Alibés R, Gorostiza P, Busqué F. An Optimized Glutamate Receptor Photoswitch with Sensitized Azobenzene Isomerization. J Org Chem 2015; 80:9915-25. [PMID: 26414427 DOI: 10.1021/acs.joc.5b01402] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new azobenzene-based photoswitch, 2, has been designed to enable optical control of ionotropic glutamate receptors in neurons via sensitized two-photon excitation with NIR light. In order to develop an efficient and versatile synthetic route for this molecule, a modular strategy is described which relies on the use of a new linear fully protected glutamate derivative stable in basic media. The resulting compound undergoes one-photon trans-cis photoisomerization via two different mechanisms: direct excitation of its azoaromatic unit and irradiation of the pyrene sensitizer, a well-known two-photon sensitive chromophore. Moreover, 2 presents large thermal stability of its cis isomer, in contrast to other two-photon responsive switches relying on the intrinsic nonlinear optical properties of push-pull substituted azobenzenes. As a result, the molecular system developed herein is a very promising candidate for evoking large photoinduced biological responses during the multiphoton operation of neuronal glutamate receptors with NIR light, which require accumulation of the protein-bound cis state of the switch upon repeated illumination.
Collapse
Affiliation(s)
- Marta Gascón-Moya
- Departament de Química, Universitat Autònoma de Barcelona , 08193 Bellaterra, Spain
| | - Arnau Pejoan
- Departament de Química, Universitat Autònoma de Barcelona , 08193 Bellaterra, Spain
| | | | - Silvia Pittolo
- Institut de Bioenginyeria de Catalunya (IBEC) , Barcelona, Spain
| | - Gisela Cabré
- Departament de Química, Universitat Autònoma de Barcelona , 08193 Bellaterra, Spain
| | - Jordi Hernando
- Departament de Química, Universitat Autònoma de Barcelona , 08193 Bellaterra, Spain
| | - Ramon Alibés
- Departament de Química, Universitat Autònoma de Barcelona , 08193 Bellaterra, Spain
| | - Pau Gorostiza
- Institut de Bioenginyeria de Catalunya (IBEC) , Barcelona, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Félix Busqué
- Departament de Química, Universitat Autònoma de Barcelona , 08193 Bellaterra, Spain
| |
Collapse
|
39
|
Knafo S, Wyart C. Optogenetic neuromodulation: New tools for monitoring and breaking neural circuits. Ann Phys Rehabil Med 2015; 58:259-264. [DOI: 10.1016/j.rehab.2015.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 05/10/2015] [Accepted: 05/10/2015] [Indexed: 10/23/2022]
|
40
|
Berlin S, Carroll EC, Newman ZL, Okada HO, Quinn CM, Kallman B, Rockwell NC, Martin SS, Lagarias JC, Isacoff EY. Photoactivatable genetically encoded calcium indicators for targeted neuronal imaging. Nat Methods 2015; 12:852-8. [PMID: 26167640 PMCID: PMC4597790 DOI: 10.1038/nmeth.3480] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/01/2015] [Indexed: 12/11/2022]
Abstract
Circuit mapping requires knowledge of both structural and functional connectivity between cells. Although optical tools have been made to assess either the morphology and projections of neurons or their activity and functional connections, few probes integrate this information. We have generated a family of photoactivatable genetically encoded Ca(2+) indicators that combines attributes of high-contrast photolabeling with high-sensitivity Ca(2+) detection in a single-color protein sensor. We demonstrated in cultured neurons and in fruit fly and zebrafish larvae how single cells could be selected out of dense populations for visualization of morphology and high signal-to-noise measurements of activity, synaptic transmission and connectivity. Our design strategy is transferrable to other sensors based on circularly permutated GFP (cpGFP).
Collapse
Affiliation(s)
- Shai Berlin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
| | - Elizabeth C Carroll
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Zachary L Newman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Hitomi O Okada
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Carson M Quinn
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Benjamin Kallman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
| | - Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, USA
| | - Shelley S Martin
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, USA
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, USA
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA.,Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
41
|
Knöpfel T, Gallero-Salas Y, Song C. Genetically encoded voltage indicators for large scale cortical imaging come of age. Curr Opin Chem Biol 2015; 27:75-83. [PMID: 26115448 DOI: 10.1016/j.cbpa.2015.06.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 05/22/2015] [Accepted: 06/05/2015] [Indexed: 11/19/2022]
Abstract
Electrical signals are fundamental to cellular sensing, communication and motility. In the nervous system, information is represented as receptor, synaptic and action potentials. Understanding how brain functions emerge from these electrical signals is one of the ultimate challenges in neuroscience and requires a methodology to monitor membrane voltage transients from large numbers of cells at high spatio-temporal resolution. Optical voltage imaging holds longstanding promises to achieve this, and has gained a fresh powerful momentum with the development of genetically encoded voltage indicators (GEVIs). With a focus on neuroimaging studies on intact mouse brains, we highlight recent advances in this field.
Collapse
Affiliation(s)
- Thomas Knöpfel
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom.
| | - Yasir Gallero-Salas
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Chenchen Song
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|
42
|
Abstract
Advances in optical manipulation and observation of neural activity have set the stage for widespread implementation of closed-loop and activity-guided optical control of neural circuit dynamics. Closing the loop optogenetically (i.e., basing optogenetic stimulation on simultaneously observed dynamics in a principled way) is a powerful strategy for causal investigation of neural circuitry. In particular, observing and feeding back the effects of circuit interventions on physiologically relevant timescales is valuable for directly testing whether inferred models of dynamics, connectivity, and causation are accurate in vivo. Here we highlight technical and theoretical foundations as well as recent advances and opportunities in this area, and we review in detail the known caveats and limitations of optogenetic experimentation in the context of addressing these challenges with closed-loop optogenetic control in behaving animals.
Collapse
Affiliation(s)
- Logan Grosenick
- Department of Bioengineering, Stanford University, Stanford, CA 94305 USA; CNC Program, Stanford University, Stanford, CA 94305 USA; Neurosciences Program, Stanford University, Stanford, CA 94305 USA
| | - James H Marshel
- Department of Bioengineering, Stanford University, Stanford, CA 94305 USA; CNC Program, Stanford University, Stanford, CA 94305 USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305 USA; CNC Program, Stanford University, Stanford, CA 94305 USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305 USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305 USA.
| |
Collapse
|
43
|
Avants BW, Murphy DB, Dapello JA, Robinson JT. NeuroPG: open source software for optical pattern generation and data acquisition. FRONTIERS IN NEUROENGINEERING 2015; 8:1. [PMID: 25784873 PMCID: PMC4345891 DOI: 10.3389/fneng.2015.00001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/09/2015] [Indexed: 11/29/2022]
Abstract
Patterned illumination using a digital micromirror device (DMD) is a powerful tool for optogenetics. Compared to a scanning laser, DMDs are inexpensive and can easily create complex illumination patterns. Combining these complex spatiotemporal illumination patterns with optogenetics allows DMD-equipped microscopes to probe neural circuits by selectively manipulating the activity of many individual cells or many subcellular regions at the same time. To use DMDs to study neural activity, scientists must develop specialized software to coordinate optical stimulation patterns with the acquisition of electrophysiological and fluorescence data. To meet this growing need we have developed an open source optical pattern generation software for neuroscience—NeuroPG—that combines, DMD control, sample visualization, and data acquisition in one application. Built on a MATLAB platform, NeuroPG can also process, analyze, and visualize data. The software is designed specifically for the Mightex Polygon400; however, as an open source package, NeuroPG can be modified to incorporate any data acquisition, imaging, or illumination equipment that is compatible with MATLAB’s Data Acquisition and Image Acquisition toolboxes.
Collapse
Affiliation(s)
- Benjamin W Avants
- Department of Electrical and Computer Engineering, Rice University Houston, TX, USA
| | - Daniel B Murphy
- Department of Electrical and Computer Engineering, Rice University Houston, TX, USA
| | | | - Jacob T Robinson
- Department of Electrical and Computer Engineering, Rice University Houston, TX, USA ; Department of Bioengineering, Rice University Houston, TX, USA ; Department of Neuroscience, Baylor College of Medicine Houston, TX, USA
| |
Collapse
|
44
|
Two-photon brightness of azobenzene photoswitches designed for glutamate receptor optogenetics. Proc Natl Acad Sci U S A 2015; 112:E776-85. [PMID: 25653339 DOI: 10.1073/pnas.1416942112] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mammalian neurotransmitter-gated receptors can be conjugated to photoswitchable tethered ligands (PTLs) to enable photoactivation, or photoantagonism, while preserving normal function at neuronal synapses. "MAG" PTLs for ionotropic and metabotropic glutamate receptors (GluRs) are based on an azobenzene photoswitch that is optimally switched into the liganding state by blue or near-UV light, wavelengths that penetrate poorly into the brain. To facilitate deep-tissue photoactivation with near-infrared light, we measured the efficacy of two-photon (2P) excitation for two MAG molecules using nonlinear spectroscopy. Based on quantitative characterization, we find a recently designed second generation PTL, L-MAG0460, to have a favorable 2P absorbance peak at 850 nm, enabling efficient 2P activation of the GluK2 kainate receptor, LiGluR. We also achieve 2P photoactivation of a metabotropic receptor, LimGluR3, with a new mGluR-specific PTL, D-MAG0460. 2P photoswitching is efficiently achieved using digital holography to shape illumination over single somata of cultured neurons. Simultaneous Ca(2+)-imaging reports on 2P photoswitching in multiple cells with high temporal resolution. The combination of electrophysiology or Ca(2+) imaging with 2P activation by optical wavefront shaping should make second generation PTL-controlled receptors suitable for studies of intact neural circuits.
Collapse
|
45
|
Wyart C, Knafo S. Sensorimotor Integration in the Spinal Cord, from Behaviors to Circuits: New Tools to Close the Loop? BIOLOGICAL AND MEDICAL PHYSICS, BIOMEDICAL ENGINEERING 2015. [DOI: 10.1007/978-3-319-12913-6_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Crocini C, Coppini R, Ferrantini C, Pavone FS, Sacconi L. Functional cardiac imaging by random access microscopy. Front Physiol 2014; 5:403. [PMID: 25368580 PMCID: PMC4202699 DOI: 10.3389/fphys.2014.00403] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/29/2014] [Indexed: 11/22/2022] Open
Abstract
Advances in the development of voltage sensitive dyes and Ca2+ sensors in combination with innovative microscopy techniques allowed researchers to perform functional measurements with an unprecedented spatial and temporal resolution. At the moment, one of the shortcomings of available technologies is their incapability of imaging multiple fast phenomena while controlling the biological determinants involved. In the near future, ultrafast deflectors can be used to rapidly scan laser beams across the sample, performing optical measurements of action potential and Ca2+ release from multiple sites within cardiac cells and tissues. The same scanning modality could also be used to control local Ca2+ release and membrane electrical activity by activation of caged compounds and light-gated ion channels. With this approach, local Ca2+ or voltage perturbations could be induced, simulating arrhythmogenic events, and their impact on physiological cell activity could be explored. The development of this optical methodology will provide fundamental insights in cardiac disease, boosting new therapeutic strategies, and, more generally, it will represent a new approach for the investigation of the physiology of excitable cells.
Collapse
Affiliation(s)
- Claudia Crocini
- European Laboratory for Non-Linear Spectroscopy (LENS) Florence, Italy
| | - Raffaele Coppini
- Division of Pharmacology, Department "NeuroFarBa," University of Florence Florence, Italy
| | - Cecilia Ferrantini
- Division of Physiology, Department of Experimental and Clinical Medicine, University of Florence Florence, Italy
| | - Francesco S Pavone
- European Laboratory for Non-Linear Spectroscopy (LENS) Florence, Italy ; Department of Physics and Astronomy, University of Florence Sesto Fiorentino, Italy ; National Research Council, National Institute of Optics Florence, Italy
| | - Leonardo Sacconi
- European Laboratory for Non-Linear Spectroscopy (LENS) Florence, Italy ; National Research Council, National Institute of Optics Florence, Italy
| |
Collapse
|
47
|
How to control proteins with light in living systems. Nat Chem Biol 2014; 10:533-41. [DOI: 10.1038/nchembio.1534] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/21/2014] [Indexed: 11/08/2022]
|
48
|
Izquierdo-Serra M, Gascón-Moya M, Hirtz JJ, Pittolo S, Poskanzer KE, Ferrer È, Alibés R, Busqué F, Yuste R, Hernando J, Gorostiza P. Two-photon neuronal and astrocytic stimulation with azobenzene-based photoswitches. J Am Chem Soc 2014; 136:8693-701. [PMID: 24857186 PMCID: PMC4096865 DOI: 10.1021/ja5026326] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Synthetic photochromic compounds
can be designed to control a variety
of proteins and their biochemical functions in living cells, but the
high spatiotemporal precision and tissue penetration of two-photon
stimulation have never been investigated in these molecules. Here
we demonstrate two-photon excitation of azobenzene-based protein switches
and versatile strategies to enhance their photochemical responses.
This enables new applications to control the activation of neurons
and astrocytes with cellular and subcellular resolution.
Collapse
|
49
|
Leshem B, Hernandez O, Papagiakoumou E, Emiliani V, Oron D. When can temporally focused excitation be axially shifted by dispersion? OPTICS EXPRESS 2014; 22:7087-7098. [PMID: 24664057 DOI: 10.1364/oe.22.007087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Temporal focusing (TF) allows for axially confined wide-field multi-photon excitation at the temporal focal plane. For temporally focused Gaussian beams, it was shown both theoretically and experimentally that the temporal focus plane can be shifted by applying a quadratic spectral phase to the incident beam. However, the case for more complex wave-fronts is quite different. Here we study the temporal focus plane shift (TFS) for a broader class of excitation profiles, with particular emphasis on the case of temporally focused computer generated holography (CGH) which allows for generation of arbitrary, yet speckled, 2D patterns. We present an analytical, numerical and experimental study of this phenomenon. The TFS is found to depend mainly on the autocorrelation of the CGH pattern in the direction of the beam dispersion after the grating in the TF setup. This provides a pathway for 3D control of multi-photon excitation patterns.
Collapse
|
50
|
Sample V, Mehta S, Zhang J. Genetically encoded molecular probes to visualize and perturb signaling dynamics in living biological systems. J Cell Sci 2014; 127:1151-60. [PMID: 24634506 PMCID: PMC3953811 DOI: 10.1242/jcs.099994] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/22/2013] [Indexed: 01/05/2023] Open
Abstract
In this Commentary, we discuss two sets of genetically encoded molecular tools that have significantly enhanced our ability to observe and manipulate complex biochemical processes in their native context and that have been essential in deepening our molecular understanding of how intracellular signaling networks function. In particular, genetically encoded biosensors are widely used to directly visualize signaling events in living cells, and we highlight several examples of basic biosensor designs that have enabled researchers to capture the spatial and temporal dynamics of numerous signaling molecules, including second messengers and signaling enzymes, with remarkable detail. Similarly, we discuss a number of genetically encoded biochemical perturbation techniques that are being used to manipulate the activity of various signaling molecules with far greater spatial and temporal selectivity than can be achieved using standard pharmacological or genetic techniques, focusing specifically on examples of chemically driven and light-inducible perturbation strategies. We then describe recent efforts to combine these diverse and powerful molecular tools into a unified platform that can be used to elucidate the molecular details of biological processes that may potentially extend well beyond the realm of signal transduction.
Collapse
Affiliation(s)
- Vedangi Sample
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - Sohum Mehta
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| |
Collapse
|