1
|
Li YY, Chen YJ, Abdalbage Mohammed Abdalsadeg S, Xu KX, Ma LL, Moosavi-Movahedi AA, Hong J, Xiao BL. Biosensor Based on ZIF-67-HRP and MWCNTs Nanocomposite Modified Glass Carbon Electrode for the Detection of Luteolin in Vegetables. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20495-20504. [PMID: 39287927 DOI: 10.1021/acs.langmuir.4c02037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Luteolin has various pharmacological properties, including anti-inflammatory, antioxidant, and antitumor characteristics. Due to its potential value in drugs and functional foods, it is important to develop an efficient method for detecting luteolin. In this work, the poor selectivity of existing luteolin nonenzymatic sensors was solved by translating the enzyme-catalyzed reaction from bulk solution to the surface of a horseradish peroxidase (HRP) modified electrode through an electrocatalytic oxidation process. Here, we modified the surface of a glassy carbon electrode (GCE) with metal-organic frameworks (MOFs; ZIF-67 here, abbreviated as ZIF), functional nanomaterials, and HRP and finally covered it with Nafion (NF). In this case, luteolin acts as a hydrogen donor, and the electrode acts as a hydrogen acceptor; the oxidation reaction occurs on the electrode surface. The use of ZIF-67 ensured the conformational stability of HRP to ensure the selectivity and anti-interference property, and SDS-dispersed multiwalled carbon nanotubes (MWCNTs) enhanced the electrode conductivity. The use of NF avoids shedding of the electrode material during the testing process. A UV-vis spectrophotometer was used to study the selectivity of luteolin by HRP and the compatibility between HRP and ZIF. The materials were characterized and analyzed by scanning electron microscopy and transmission electron microscopy. Due to the synergistic effect of these nanomaterials, the linear range of NF/ZIF-HRP/MWCNTs-SDS/GCE was 1.0 × 10-2 to 6.0 μM, with detection limits of 25.3 nM (S/N = 3). The biosensor showed long-term stability and reproducibility, with a relative standard deviation of 4.2% for the peak current (n = 5). Finally, the biosensor was successfully used to detect luteolin in carrots, celery, and cauliflower.
Collapse
Affiliation(s)
- Yu-Ying Li
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Yu-Jie Chen
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | | | - Ke-Xin Xu
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Lin-Lin Ma
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | | | - Jun Hong
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Bao-Lin Xiao
- School of Life Sciences, Henan University, Kaifeng 475000, China
| |
Collapse
|
2
|
Wu B, Ga L, Wang Y, Ai J. Recent Advances in the Application of Bionanosensors for the Analysis of Heavy Metals in Aquatic Environments. Molecules 2023; 29:34. [PMID: 38202619 PMCID: PMC10780001 DOI: 10.3390/molecules29010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024] Open
Abstract
Heavy-metal ions (HMIs) as a pollutant, if not properly processed, used, and disposed of, will not only have an influence on the ecological environment but also pose significant health hazards to humans, making them a primary factor that endangers human health and harms the environment. Heavy metals come from a variety of sources, the most common of which are agriculture, industry, and sewerage. As a result, there is an urgent demand for portable, low-cost, and effective analytical tools. Bionanosensors have been rapidly developed in recent years due to their advantages of speed, mobility, and high sensitivity. To accomplish effective HMI pollution control, it is important not only to precisely pinpoint the source and content of pollution but also to perform real-time and speedy in situ detection of its composition. This study summarizes heavy-metal-ion (HMI) sensing research advances over the last five years (2019-2023), describing and analyzing major examples of electrochemical and optical bionanosensors for Hg2+, Cu2+, Pb2+, Cd2+, Cr6+, and Zn2+.
Collapse
Affiliation(s)
- Bin Wu
- College of Chemistry and Enviromental Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 zhaowudalu, Hohhot 010022, China;
| | - Lu Ga
- College of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot 010110, China;
| | - Yong Wang
- College of Geographical Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China
| | - Jun Ai
- College of Chemistry and Enviromental Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 zhaowudalu, Hohhot 010022, China;
| |
Collapse
|
3
|
Aslam J, Zehra S, Mobin M, Quraishi MA, Verma C, Aslam R. Metal/metal oxide-carbohydrate polymers framework for industrial and biological applications: Current advancements and future directions. Carbohydr Polym 2023; 314:120936. [PMID: 37173012 DOI: 10.1016/j.carbpol.2023.120936] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
Recently, the development and consumption of metal/metal oxide carbohydrate polymer nanocomposites (M/MOCPNs) are withdrawing significant attention because of their numerous salient features. Metal/metal oxide carbohydrate polymer nanocomposites are being used as environmentally friendly alternatives for traditional metal/metal oxide carbohydrate polymer nanocomposites exhibit variable properties that make them excellent prospects for a variety of biological and industrial uses. In metal/metal oxide carbohydrate polymer nanocomposites, carbohydrate polymers bind with metallic atoms and ions using coordination bonding in which heteroatoms of polar functional groups behave as adsorption centers. Metal/metal oxide carbohydrate polymer nanocomposites are widely used in woundhealing, additional biological uses and drug delivery, heavy ions removal or metal decontamination, and dye removal. The present review article features the collection of some major biological and industrial applications of metal/metal oxide carbohydrate polymer nanocomposites. The binding affinity of carbohydrate polymers with metal atoms and ions in metal/metal oxide carbohydrate polymer nanocomposites has also been described.
Collapse
Affiliation(s)
- Jeenat Aslam
- Department of Chemistry, College of Science, Taibah University, Yanbu 30799, Al-Madina, Saudi Arabia.
| | - Saman Zehra
- Corrosion Research Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Mobin
- Corrosion Research Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - M A Quraishi
- Interdisciplinary Research Centre for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Chandrabhan Verma
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 2533, Abu Dhabi, United Arab Emirates.
| | - Ruby Aslam
- Corrosion Research Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
4
|
Chmayssem A, Nadolska M, Tubbs E, Sadowska K, Vadgma P, Shitanda I, Tsujimura S, Lattach Y, Peacock M, Tingry S, Marinesco S, Mailley P, Lablanche S, Benhamou PY, Zebda A. Insight into continuous glucose monitoring: from medical basics to commercialized devices. Mikrochim Acta 2023; 190:177. [PMID: 37022500 DOI: 10.1007/s00604-023-05743-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/08/2023] [Indexed: 04/07/2023]
Abstract
According to the latest statistics, more than 537 million people around the world struggle with diabetes and its adverse consequences. As well as acute risks of hypo- or hyper- glycemia, long-term vascular complications may occur, including coronary heart disease or stroke, as well as diabetic nephropathy leading to end-stage disease, neuropathy or retinopathy. Therefore, there is an urgent need to improve diabetes management to reduce the risk of complications but also to improve patient's quality life. The impact of continuous glucose monitoring (CGM) is well recognized, in this regard. The current review aims at introducing the basic principles of glucose sensing, including electrochemical and optical detection, summarizing CGM technology, its requirements, advantages, and disadvantages. The role of CGM systems in the clinical diagnostics/personal testing, difficulties in their utilization, and recommendations are also discussed. In the end, challenges and prospects in future CGM systems are discussed and non-invasive, wearable glucose biosensors are introduced. Though the scope of this review is CGMs and provides information about medical issues and analytical principles, consideration of broader use will be critical in future if the right systems are to be selected for effective diabetes management.
Collapse
Affiliation(s)
- Ayman Chmayssem
- UMR 5525, Univ. Grenoble Alpes, CNRS, Grenoble INP, INSERM, TIMC, VetAgro Sup, 38000, Grenoble, France
| | - Małgorzata Nadolska
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, 80-233, Gdansk, Poland
| | - Emily Tubbs
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, 38000, Grenoble, Biomics, France
- Univ. Grenoble Alpes, LBFA and BEeSy, INSERM, U1055, F-38000, Grenoble, France
| | - Kamila Sadowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Pankaj Vadgma
- School of Engineering and Materials Science, Queen Mary University of London, Mile End, London, E1 4NS, UK
| | - Isao Shitanda
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Seiya Tsujimura
- Japanese-French lAaboratory for Semiconductor physics and Technology (J-F AST)-CNRS-Université Grenoble Alpes-Grenoble, INP-University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8573, Japan
- Division of Material Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1, Tennodai, Ibaraki, Tsukuba, 305-5358, Japan
| | | | - Martin Peacock
- Zimmer and Peacock, Nedre Vei 8, Bldg 24, 3187, Horten, Norway
| | - Sophie Tingry
- Institut Européen Des Membranes, UMR 5635, IEM, Université Montpellier, ENSCM, CNRS, Montpellier, France
| | - Stéphane Marinesco
- Plate-Forme Technologique BELIV, Lyon Neuroscience Research Center, UMR5292, Inserm U1028, CNRS, Univ. Claude-Bernard-Lyon I, 69675, Lyon 08, France
| | - Pascal Mailley
- Univ. Grenoble Alpes, CEA, LETI, 38000, Grenoble, DTBS, France
| | - Sandrine Lablanche
- Univ. Grenoble Alpes, LBFA and BEeSy, INSERM, U1055, F-38000, Grenoble, France
- Department of Endocrinology, Grenoble University Hospital, Univ. Grenoble Alpes, Pôle DigiDune, Grenoble, France
| | - Pierre Yves Benhamou
- Department of Endocrinology, Grenoble University Hospital, Univ. Grenoble Alpes, Pôle DigiDune, Grenoble, France
| | - Abdelkader Zebda
- UMR 5525, Univ. Grenoble Alpes, CNRS, Grenoble INP, INSERM, TIMC, VetAgro Sup, 38000, Grenoble, France.
- Japanese-French lAaboratory for Semiconductor physics and Technology (J-F AST)-CNRS-Université Grenoble Alpes-Grenoble, INP-University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8573, Japan.
| |
Collapse
|
5
|
Murugan P, Annamalai J, Atchudan R, Govindasamy M, Nallaswamy D, Ganapathy D, Reshetilov A, Sundramoorthy AK. Electrochemical Sensing of Glucose Using Glucose Oxidase/PEDOT:4-Sulfocalix [4]arene/MXene Composite Modified Electrode. MICROMACHINES 2022; 13:mi13020304. [PMID: 35208428 PMCID: PMC8877456 DOI: 10.3390/mi13020304] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 12/12/2022]
Abstract
Glucose is one of the most important monosaccharides found in the food, as a part of more complex structures, which is a primary energy source for the brain and body. Thus, the monitoring of glucose concentration is more important in food and biological samples in order to maintain a healthy lifestyle. Herein, an electrochemical glucose biosensor was fabricated by immobilization of glucose oxidase (GOX) onto poly(3,4-ethylenedioxythiophene):4-sulfocalix [4]arene (PEDOT:SCX)/MXene modified electrode. For this purpose, firstly, PEDOT was synthesized in the presence of SCX (counterion) by the chemical oxidative method. Secondly, MXene (a 2D layered material) was synthesized by using a high-temperature furnace under a nitrogen atmosphere. After that, PEDOT:SCX/MXene (1:1) dispersion was prepared by ultrasonication which was later utilized to prepare PEDOT:SCX/MXene hybrid film. A successful formation of PEDOT:SCX/MXene film was confirmed by HR-SEM, Fourier transform infrared (FT-IR), and Raman spectroscopies. Due to the biocompatibility nature, successful immobilization of GOX was carried out onto chitosan modified PEDOT:SCX/MXene/GCE. Moreover, the electrochemical properties of PEDOT:SCX/MXene/GOX/GCE was studied through cyclic voltammetry and amperometry methods. Interestingly, a stable redox peak of FAD-GOX was observed at a formal potential of –0.435 V on PEDOT:SCX/MXene/GOX/GCE which indicated a direct electron transfer between the enzyme and the electrode surface. PEDOT:SCX/MXene/GOX/GCE also exhibited a linear response against glucose concentrations in the linear range from 0.5 to 8 mM. The effect of pH, sensors reproducibility, and repeatability of the PEDOT:SCX/MXene/GOX/GCE sensor were studied. Finally, this new biosensor was successfully applied to detect glucose in commercial fruit juice sample with satisfactory recovery.
Collapse
Affiliation(s)
- Preethika Murugan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India;
| | - Jayshree Annamalai
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India;
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Mani Govindasamy
- Department of Materials Engineering, Ming-Chi University of Technology, New Taipei City 243, Taiwan;
| | - Deepak Nallaswamy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India; (D.N.); (D.G.)
| | - Dhanraj Ganapathy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India; (D.N.); (D.G.)
| | - Anatoly Reshetilov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Centre for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Ashok K. Sundramoorthy
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India;
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India; (D.N.); (D.G.)
- Correspondence:
| |
Collapse
|
6
|
Fabrication of AuNPs/MWCNTS/Chitosan Nanocomposite for the Electrochemical Aptasensing of Cadmium in Water. SENSORS 2021; 22:s22010105. [PMID: 35009645 PMCID: PMC8747752 DOI: 10.3390/s22010105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/11/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022]
Abstract
Cadmium (Cd2+) is one of the most toxic heavy metals causing serious health problems; thus, designing accurate analytical methods for monitoring such pollutants is highly urgent. Herein, we report a label-free electrochemical aptasensor for cadmium detection in water. For this, a nanocomposite combining the advantages of gold nanoparticles (AuNPs), carbon nanotubes (CNTs) and chitosan (Cs) was constructed and used as immobilization support for the cadmium aptamer. First, the surface of a glassy carbon electrode (GCE) was modified with CNTs-CS. Then, AuNPs were deposited on CNTs-CS/GCE using chrono-amperometry. Finally, the immobilization of the amino-modified Cd-aptamer was achieved via glutaraldehyde cross-linking. The different synthesis steps of the AuNPs/CNTs/CS nano assembly were characterized by cyclic voltammetry (CV). Electrochemical impedance spectroscopy (EIS) was employed for cadmium determination. The proposed biosensor exhibited excellent performances for cadmium detection at a low applied potential (−0.5 V) with a high sensitivity (1.2 KΩ·M−1), a detection limit of 0.02 pM and a wide linear range (10−13–10−4 M). Moreover, the aptasensor showed a good selectivity against the interfering ions: Pb2+; Hg2+ and Zn2+. Our electrochemical biosensor provides a simple and sensitive approach for Cd2+ detection in aqueous solutions, with promising applications in the monitoring of trace amounts of heavy metals in real samples.
Collapse
|
7
|
Chalil Oglou R, Ulusoy Ghobadi TG, Ozbay E, Karadas F. Electrodeposited cobalt hexacyanoferrate electrode as a non-enzymatic glucose sensor under neutral conditions. Anal Chim Acta 2021; 1188:339188. [PMID: 34794574 DOI: 10.1016/j.aca.2021.339188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
A CoFe Prussian blue analogue (CoFe PB) modified FTO electrode, prepared via a facile electrodeposition method, is investigated as a non-enzymatic glucose sensor under neutral conditions. The electrode exhibits a linear detection of glucose in the 0.1-8.2 mmol/L range with a detection limit of 67 μM, a sensitivity of 18.69 μA/mM.cm2, and a fast response time of less than 7 s under neutral conditions. Its stability is confirmed with both electrochemical experiments and characterization studies performed on the pristine and post-mortem electrode. We also conducted a comprehensive electrochemical analysis to elucidate the identity of the active site and the glucose oxidation mechanism on the Prussian blue surface.
Collapse
Affiliation(s)
- Ramadan Chalil Oglou
- UNAM - National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | | | - Ekmel Ozbay
- NANOTAM - Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey; Department of Electrical and Electronics Engineering, Bilkent University, Ankara, 06800, Turkey; Department of Physics, Faculty of Science Bilkent University, 06800, Ankara, Turkey
| | - Ferdi Karadas
- UNAM - National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey; Department of Chemistry, Faculty of Science, Bilkent University, 06800, Ankara, Turkey.
| |
Collapse
|
8
|
Lv C, Yang X, Wang Z, Ying M, Han Q, Li S. Enhanced Performance of Bioelectrodes Made with Amination-Modified Glucose Oxidase Immobilized on Carboxyl-Functionalized Ordered Mesoporous Carbon. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3086. [PMID: 34835850 PMCID: PMC8617758 DOI: 10.3390/nano11113086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022]
Abstract
This research reveals the improved performance of bioelectrodes made with amination-modified glucose oxidase (GOx-NH2) and carboxyl-functionalized mesoporous carbon (OMC-COOH). Results showed that when applied with 10 mM EDC amination, the functional groups of NH2 were successfully added to GOx, according to the analysis of 1H-NMR, elemental composition, and FTIR spectra. Moreover, after the aminated modification, increased enzyme immobilization (124.01 ± 1.49 mg GOx-NH2/g OMC-COOH; 2.77-fold increase) and enzyme activity (1.17-fold increase) were achieved, compared with those of non-modified GOx. Electrochemical analysis showed that aminated modification enhanced the peak current intensity of Nafion/GOx-NH2/OMC-COOH (1.32-fold increase), with increases in the charge transfer coefficient α (0.54), the apparent electron transfer rate constant ks (2.54 s-1), and the surface coverage Γ (2.91 × 10-9 mol·cm-2). Results showed that GOx-NH2/OMC-COOH exhibited impressive electro-activity and a favorable anodic reaction.
Collapse
Affiliation(s)
- Chuhan Lv
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (M.Y.); (Q.H.)
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (M.Y.); (Q.H.)
| | - Zongkang Wang
- Shenzhen Batian Ecological Engineering Co., Ltd., Shenzhen 518055, China;
| | - Ming Ying
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (M.Y.); (Q.H.)
| | - Qingguo Han
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (M.Y.); (Q.H.)
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (M.Y.); (Q.H.)
| |
Collapse
|
9
|
Erden PE, Kaçar Selvi C, Kılıç E. A novel tyramine biosensor based on carbon nanofibers, 1-butyl-3-methylimidazolium tetrafluoroborate and gold nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Meena J, Gupta A, Ahuja R, Singh M, Panda AK. Recent advances in nano-engineered approaches used for enzyme immobilization with enhanced activity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116602] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Artigues M, Gilabert-Porres J, Texidó R, Borrós S, Abellà J, Colominas S. Analytical Parameters of a Novel Glucose Biosensor Based on Grafted PFM as a Covalent Immobilization Technique. SENSORS (BASEL, SWITZERLAND) 2021; 21:4185. [PMID: 34207185 PMCID: PMC8235154 DOI: 10.3390/s21124185] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/31/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022]
Abstract
Bioanalytical methods, in particular electrochemical biosensors, are increasingly used in different industrial sectors due to their simplicity, low cost, and fast response. However, to be able to reliably use this type of device, it is necessary to undertake in-depth evaluation of their fundamental analytical parameters. In this work, analytical parameters of an amperometric biosensor based on covalent immobilization of glucose oxidase (GOx) were evaluated. GOx was immobilized using plasma-grafted pentafluorophenyl methacrylate (pgPFM) as an anchor onto a tailored HEMA-co-EGDA hydrogel that coats a titanium dioxide nanotubes array (TiO2NTAs). Finally, chitosan was used to protect the enzyme molecules. The biosensor offered outstanding analytical parameters: repeatability (RSD = 1.7%), reproducibility (RSD = 1.3%), accuracy (deviation = 4.8%), and robustness (RSD = 2.4%). In addition, the Ti/TiO2NTAs/ppHEMA-co-EGDA/pgPFM/GOx/Chitosan biosensor showed good long-term stability; after 20 days, it retained 89% of its initial sensitivity. Finally, glucose concentrations of different food samples were measured and compared using an official standard method (HPLC). Deviation was lower than 10% in all measured samples. Therefore, the developed biosensor can be considered to be a reliable analytical tool for quantification measurements.
Collapse
Affiliation(s)
- Margalida Artigues
- Electrochemical Methods Laboratory-Analytical and Applied Chemistry Department at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain; (M.A.); (J.A.)
| | - Joan Gilabert-Porres
- Tractivus SL, Via Augusta, 394, 08017 Barcelona, Spain; (J.G.-P.); (R.T.); (S.B.)
- Grup d’Enginyeria de Materials (GEMAT) at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain
| | - Robert Texidó
- Tractivus SL, Via Augusta, 394, 08017 Barcelona, Spain; (J.G.-P.); (R.T.); (S.B.)
- Grup d’Enginyeria de Materials (GEMAT) at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain
| | - Salvador Borrós
- Tractivus SL, Via Augusta, 394, 08017 Barcelona, Spain; (J.G.-P.); (R.T.); (S.B.)
- Grup d’Enginyeria de Materials (GEMAT) at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain
- CIBER-BBN, Networking Center on Bioengineering, Biomaterials and Nanomedicine, 500018 Zaragoza, Spain
| | - Jordi Abellà
- Electrochemical Methods Laboratory-Analytical and Applied Chemistry Department at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain; (M.A.); (J.A.)
| | - Sergi Colominas
- Electrochemical Methods Laboratory-Analytical and Applied Chemistry Department at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain; (M.A.); (J.A.)
| |
Collapse
|
12
|
Boselli L, Pomili T, Donati P, Pompa PP. Nanosensors for Visual Detection of Glucose in Biofluids: Are We Ready for Instrument-Free Home-Testing? MATERIALS 2021; 14:ma14081978. [PMID: 33920934 PMCID: PMC8071272 DOI: 10.3390/ma14081978] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022]
Abstract
Making frequent large-scale screenings for several diseases economically affordable would represent a real breakthrough in healthcare. One of the most promising routes to pursue such an objective is developing rapid, non-invasive, and cost-effective home-testing devices. As a first step toward a diagnostic revolution, glycemia self-monitoring represents a solid base to start exploring new diagnostic strategies. Glucose self-monitoring is improving people's life quality in recent years; however, current approaches still present vast room for improvement. In most cases, they still involve invasive sampling processes (i.e., finger-prick), quite discomforting for frequent measurements, or implantable devices which are costly and commonly dedicated to selected chronic patients, thus precluding large-scale monitoring. Thanks to their unique physicochemical properties, nanoparticles hold great promises for the development of rapid colorimetric devices. Here, we overview and analyze the main instrument-free nanosensing strategies reported so far for glucose detection, highlighting their advantages/disadvantages in view of their implementation as cost-effective rapid home-testing devices, including the potential use of alternative non-invasive biofluids as samples sources.
Collapse
Affiliation(s)
- Luca Boselli
- Nanobiointeractions and Nanodiagnostics, Italian Institute of Technology (IIT), Via Morego 30, 16163 Genova, Italy; (T.P.); (P.D.)
- Correspondence: (L.B.); (P.P.P.); Tel.: +39-010-2896-837 (P.P.P.)
| | - Tania Pomili
- Nanobiointeractions and Nanodiagnostics, Italian Institute of Technology (IIT), Via Morego 30, 16163 Genova, Italy; (T.P.); (P.D.)
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Paolo Donati
- Nanobiointeractions and Nanodiagnostics, Italian Institute of Technology (IIT), Via Morego 30, 16163 Genova, Italy; (T.P.); (P.D.)
| | - Pier P. Pompa
- Nanobiointeractions and Nanodiagnostics, Italian Institute of Technology (IIT), Via Morego 30, 16163 Genova, Italy; (T.P.); (P.D.)
- Correspondence: (L.B.); (P.P.P.); Tel.: +39-010-2896-837 (P.P.P.)
| |
Collapse
|
13
|
Ariffin EY, Zakariah EI, Ruslin F, Kassim M, Yamin BM, Heng LY, Hasbullah SA. Hexaferrocenium tri[hexa(isothiocyanato)iron(III)] trihydroxonium complex as a new DNA intercalator for electrochemical DNA biosensor. Sci Rep 2021; 11:7883. [PMID: 33846405 PMCID: PMC8041802 DOI: 10.1038/s41598-021-86939-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/17/2021] [Indexed: 11/09/2022] Open
Abstract
Ferrocene or ferrocenium has been widely studied in the field of organometallic complexes because of its stable thermodynamic, kinetic and redox properties. Novel hexaferrocenium tri[hexa(isothiocyanato)iron(III)]trihydroxonium (HexaFc) complex was the product from the reaction of ferrocene, maleic acid and ammonium thiocyanate and was confirmed by elemental analysis CHNS, FTIR and single crystal X-ray crystallography. In this study, HexaFc was used for the first time as an electroactive indicator for porcine DNA biosensor. The UV-Vis DNA titrations with this compound showed hypochromism and redshift at 250 nm with increasing DNA concentrations. The binding constant (Kb) for HexaFc complex towards CT-DNA (calf-thymus DNA) was 3.1 × 104 M-1, indicated intercalator behaviour of the complex. To test the usefulness of this complex for DNA biosensor application, a porcine DNA biosensor was constructed. The recognition probes were covalently immobilised onto silica nanospheres (SiNSs) via glutaraldehyde linker on a screen-printed electrode (SPE). After intercalation with the HexaFc complex, the response of the biosensor to the complementary porcine DNA was measured using differential pulse voltammetry. The DNA biosensor demonstrated a linear response range to the complementary porcine DNA from 1 × 10-6 to 1 × 10-3 µM (R2 = 0.9642) with a limit detection of 4.83 × 10-8 µM and the response was stable up to 23 days of storage at 4 °C with 86% of its initial response. The results indicated that HexaFc complex is a feasible indicator for the DNA hybridisation without the use of a chemical label for the detection of porcine DNA.
Collapse
Affiliation(s)
- Eda Yuhana Ariffin
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Emma Izzati Zakariah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Farah Ruslin
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Muhammad Kassim
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Bohari M Yamin
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Lee Yook Heng
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
14
|
Rajeev R, Datta R, Varghese A, Sudhakar Y, George L. Recent advances in bimetallic based nanostructures: Synthesis and electrochemical sensing applications. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105910] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Zhang X, Sucre-Rosales E, Byram A, Hernandez FE, Chen G. Ultrasensitive Visual Detection of Glucose in Urine Based on the Iodide-Promoted Etching of Gold Bipyramids. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49502-49509. [PMID: 33089983 DOI: 10.1021/acsami.0c16369] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Blood glucose monitoring is an essential but painful component of diabetes management, so it is urgent to develop simple, convenient, and noninvasive glucose monitoring methods as alternatives. Because the glucose level in urine is directly related to the blood glucose, urine can be an alternative for blood glucose monitoring. Herein, we report the development of a new and highly sensitive noninvasive colorimetric assay to detect the glucose content in urine samples using gold bipyramids (GBPs). The principle of this method is to utilize hydrogen peroxide (H2O2), the oxidation product of glucose, to etch GBPs, where the urine glucose will be quantified based on the displacement of the absorption peak of GBPs. The unique morphology (sharp tips) and etching mechanism (from tips) of GBPs determine the high sensitivity of this assay. Under optimal conditions, this colorimetric assay shows a dynamic range of 0.5-250 μM and a detection limit of 0.34 μM for artificial urine samples. This detection capability is ideal when sample dilution is necessary. Another advantage is that the color change of the GBP solution in this assay is convenient for the visual readout of the urine glucose semiquantitatively by the naked eye. Furthermore, it has been demonstrated here that the iodide ion has the horseradish peroxidase (HRP) activity and can be used alone to promote the reduction reaction of H2O2, which eliminates the use of HRP enzymes, simplifies the reaction, and reduces costs. The role of iodide ions has been studied and mainly attributed as a catalyst with I2 as the reaction intermediate, which reduced the activation energy for the reduction of H2O2.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Estefanía Sucre-Rosales
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Alexander Byram
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Florencio E Hernandez
- Department of Chemistry and CREOL/The School of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, United States
| | - Gang Chen
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
16
|
Detection of phthalate esters in PET bottled drinks and lake water using esterase/PANI/CNT/CuNP based electrochemical biosensor. Anal Chim Acta 2020; 1135:175-186. [PMID: 33070853 DOI: 10.1016/j.aca.2020.09.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/22/2023]
Abstract
Phthalate esters (PEs) are the most common plasticizers that tends to exhibit endocrine disruption. Since, these PEs are used in the manufacture of PET bottles and PVC products: point of exposure magnifies up on consumption of PET bottle and plastic container stored drinking water and beverages. Apart from human exposure to PEs, bioaccumulation of PEs and toxic effects among wildlife also seems to be divergent. In the present study, an enzyme-based biosensor for the detection of PEs was developed to overcome the tedious extraction procedures involving PE extraction and sophisticated instruments for the detection. Linear Sweep voltammetry analysis of Nafion (NF) surface modified glassy carbon electrode with esterase (EST) and nano-components was carried-out. Peak potential of individual PEs were in the range of -1.72 to -1.82 V at the concentration of 1 × 10-5 mmol L-1. Sensitivity of EST/PANI/CNT/CuNP-NF modified GCE was determined in terms of detection limit and was calibrated to be 0.03-0.08 nmol L-1. Thus, the developed enzyme based electrochemical sensor could be successfully employed in determining PE exposure in humans and bioaccumulation among aquatic flora and fauna via., consumption of PET bottle stored drinks and industrial effluents discharged into the lakes.
Collapse
|
17
|
Bagyalakshmi S, Sivakami A, Balamurugan K. A Zno nanorods based enzymatic glucose biosensor by immobilization of glucose oxidase on a chitosan film. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.obmed.2020.100229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
He W, Huang Y, Wu J. Enzyme-Free Glucose Biosensors Based on MoS 2 Nanocomposites. NANOSCALE RESEARCH LETTERS 2020; 15:60. [PMID: 32166428 PMCID: PMC7067927 DOI: 10.1186/s11671-020-3285-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/18/2020] [Indexed: 05/07/2023]
Abstract
High-performance glucose biosensors are highly desired for healthcare. To meet these demands, glucose biosensors, particularly enzyme-free glucose biosensors, have received much attention. Two-dimensional materials, e.g., graphene, with high surface area, excellent electrical properties, and good biocompatibility, have been the main focus of biosensor research in the last decade. This review presents the recent progress made in enzyme-free glucose biosensors based on MoS2 nanocomposites. Two different techniques for glucose detections are introduced, with an emphasis on electrochemical glucose biosensors. Challenges and future perspectives of MoS2 nanocomposite glucose biosensors are also discussed.
Collapse
Affiliation(s)
- Weijie He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Yixuan Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Jiang Wu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
| |
Collapse
|
19
|
Bagal-Kestwal DR, Chiang BH. Exploration of Chitinous Scaffold-Based Interfaces for Glucose Sensing Assemblies. Polymers (Basel) 2019; 11:E1958. [PMID: 31795230 PMCID: PMC6960682 DOI: 10.3390/polym11121958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 01/09/2023] Open
Abstract
: The nanomaterial-integrated chitinous polymers have promoted the technological advancements in personal health care apparatus, particularly for enzyme-based devices like the glucometer. Chitin and chitosan, being natural biopolymers, have attracted great attention in the field of biocatalysts engineering. Their remarkable tunable properties have been explored for enhancing enzyme performance and biosensor advancements. Currently, incorporation of nanomaterials in chitin and chitosan-based biosensors are also widely exploited for enzyme stability and interference-free detection. Therefore, in this review, we focus on various innovative multi-faceted strategies used for the fabrication of biological assemblies using chitinous biomaterial interface. We aim to summarize the current development on chitin/chitosan and their nano-architecture scaffolds for interdisciplinary biosensor research, especially for analytes like glucose. This review article will be useful for understanding the overall multifunctional aspects and progress of chitin and chitosan-based polysaccharides in the food, biomedical, pharmaceutical, environmental, and other diverse applications.
Collapse
Affiliation(s)
- Dipali R. Bagal-Kestwal
- Institute of Food Science and Technology, National Taiwan University, No.1, Roosevelt Road, Section 4, Taipei 10617, Taiwan
| | - Been-Huang Chiang
- Institute of Food Science and Technology, National Taiwan University, No.1, Roosevelt Road, Section 4, Taipei 10617, Taiwan
| |
Collapse
|
20
|
A biomass-derived porous carbon-based nanocomposite for voltammetric determination of quercetin. Mikrochim Acta 2019; 186:783. [PMID: 31732804 DOI: 10.1007/s00604-019-3953-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/17/2019] [Indexed: 01/08/2023]
Abstract
Porous carbon was prepared from wheat flour by alkali treatment and carbonization. The resulting biomass-derived porous carbon (BPC) was employed to prepare a Pt-Au-BPC nanocomposite by a hydrothermal method. The material was then placed on the surface of a carbon ionic liquid electrode (CILE). The Pt-Au-BPC was characterized by SEM, XPS, and the modified CILE by electrochemical methods. They revealed a porous structure, a large specific surface with high conductivity. Pt-Au-BPC/CILE was applied to the sensitive determination of quercetin. Electrochemical response was studied by cyclic voltammetry and differential pulse voltammetry (DPV). Under optimized experimental conditions, the oxidation peak current (measured at 0.48 V vs. Ag/AgCl by DPV) increases linearly in the 0.15 to 6.0 μM and in the 10.0 to 25.0 μM quercetin concentration range. The detection limit is 50.0 nM (at 3σ). The Pt-Au-BPC/CILE was applied to the direct determination of quercetin in ginkgo tablets sample and gave satisfactory results. Graphical abstract A Pt-Au-BPC nanocomposite modified carbon ionic liquid electrode was applied to differential pulse voltammetric determination of quercetin. BPC: biomass-derived porous carbon.
Collapse
|
21
|
Amor-Gutiérrez O, Costa-Rama E, Fernández-Abedul M. Sampling and multiplexing in lab-on-paper bioelectroanalytical devices for glucose determination. Biosens Bioelectron 2019; 135:64-70. [DOI: 10.1016/j.bios.2019.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 01/27/2023]
|
22
|
Monitoring of five benzodiazepines using a novel polymeric interface prepared by layer by layer strategy. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Choi YB, Kim HS, Jeon WY, Lee BH, Shin US, Kim HH. The electrochemical glucose sensing based on the chitosan-carbon nanotube hybrid. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.10.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Non-enzymatic flexible glucose sensing platform based on nanostructured TiO2 – Au composite. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.02.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Khadka R, Aydemir N, Carraher C, Hamiaux C, Baek P, Cheema J, Kralicek A, Travas‐Sejdic J. Investigating Electrochemical Stability and Reliability of Gold Electrode‐electrolyte Systems to Develop Bioelectronic Nose Using Insect Olfactory Receptor. ELECTROANAL 2019. [DOI: 10.1002/elan.201800733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Roshan Khadka
- Polymer Electronic Research Centre, School of Chemical SciencesUniversity of Auckland Auckland New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Kelburn Parade Wellington 6140 New Zealand
| | - Nihan Aydemir
- Polymer Electronic Research Centre, School of Chemical SciencesUniversity of Auckland Auckland New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Kelburn Parade Wellington 6140 New Zealand
| | - Colm Carraher
- The New Zealand Institute for Plant & Food Research Limited Private Bag 92169 Auckland 1142 New Zealand
| | - Cyril Hamiaux
- The New Zealand Institute for Plant & Food Research Limited Private Bag 92169 Auckland 1142 New Zealand
| | - Paul Baek
- Polymer Electronic Research Centre, School of Chemical SciencesUniversity of Auckland Auckland New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Kelburn Parade Wellington 6140 New Zealand
| | - Jamal Cheema
- Polymer Electronic Research Centre, School of Chemical SciencesUniversity of Auckland Auckland New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Kelburn Parade Wellington 6140 New Zealand
| | - Andrew Kralicek
- The New Zealand Institute for Plant & Food Research Limited Private Bag 92169 Auckland 1142 New Zealand
| | - Jadranka Travas‐Sejdic
- Polymer Electronic Research Centre, School of Chemical SciencesUniversity of Auckland Auckland New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology Kelburn Parade Wellington 6140 New Zealand
| |
Collapse
|
26
|
Yarahmadi S, Azadbakht A, Derikvand RM. Hybrid synthetic receptor composed of molecularly imprinted polydopamine and aptamers for impedimetric biosensing of urea. Mikrochim Acta 2019; 186:71. [PMID: 30627876 DOI: 10.1007/s00604-018-3180-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022]
Abstract
An electrochemical aptamer-based method is described for highly specific sensing of urea. Urea-imprinted polydopamine was obtained by electropolymerization of dopamine (DA). The molecularly imprinted polymer (MIP) also contains DNA aptamers on gold nanoparticles decorated with a carbon nanotube network (AuNP/CNT). The material was placed on a glassy carbon electrode (GCE). After removal of urea from the MIP cavities, the GCE display double recognition capability which makes it superior to conventional MIP-only or aptamer-only based assays. On exposure of the modified electrode to urea, the interfacial charge transfer of the redox probe hexacyanoferrate is traced, typically measured at a peak voltage of 0.22 V vs. Ag/AgCl. The change in charge transfer resistance depends on the urea concentration. The assay has a 900 fM detection limit, and response is the linear up to 500 nM urea concentrations. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Saeed Yarahmadi
- Department of Chemistry, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Azadeh Azadbakht
- Department of Chemistry, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran.
| | - Reza Mir Derikvand
- Department of Plant Breeding, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| |
Collapse
|
27
|
Electrochemical Study of Enzymatic Glucose Sensors Biocatalyst: Thermal Degradation after Long-Term Storage. CHEMOSENSORS 2018. [DOI: 10.3390/chemosensors6040053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The thermal degradation related to stability in long-term storage of a carbon nanotube-based biosensor has been investigated. The effect of storage temperature on detachment and denaturation of glucose oxidase (GOx) biocatalyst has been proved. The carbon nanotubes (CNTs) coated with polyethyleneimine (PEI) as entrapping polymer to attract more GOx to form a durable and layered CNT/PEI/GOx structure is used for long-term storage to minimize GOx detachment from the structure and minimize the possibility of enzyme and protein denaturation. After 120 days, the glucose response of the CNT/PEI/GOx biosensor stored under 4°C is preserved up to 66.7% of its initial value, while under a 25 °C storage the response is maintained up to 41.7%. The enzyme coverage activity of CNT/PEI/GOx stored at 4 °C and 25 °C has decreased by 31.1% and 51.4%, respectively. Denaturation and detachment of GOx are the common causes of thermal degradation in biosensors under improper storage temperatures, but the presence of PEI in the structure can slow-down these phenomena. Moreover, the electrons transfer constant of CNT/PEI/GOx biocatalyst stored at 4 °C and 25 °C were 7.5 ± 0.5 s−1 and 6.6 ± 0.3 s−1, respectively, indicating that also electrons mobility is damaged by detachment and denaturation of enzyme protein and the detection of glucose from the glucose oxidation reaction (GOR) is compromised.
Collapse
|
28
|
PAIK ES, KIM YR, HONG HG. Amperometric Glucose Biosensor Utilizing Zinc Oxide-chitosan-glucose Oxidase Hybrid Composite Films on Electrodeposited Pt-Fe(III). ANAL SCI 2018; 34:1271-1276. [DOI: 10.2116/analsci.18p054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Eun-Sook PAIK
- Department of Chemistry Education, Seoul National University
| | | | - Hun-Gi HONG
- Department of Chemistry Education, Seoul National University
| |
Collapse
|
29
|
Mandal R, Baranwal A, Srivastava A, Chandra P. Evolving trends in bio/chemical sensor fabrication incorporating bimetallic nanoparticles. Biosens Bioelectron 2018; 117:546-561. [DOI: 10.1016/j.bios.2018.06.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/16/2018] [Accepted: 06/20/2018] [Indexed: 01/28/2023]
|
30
|
Farzin L, Shamsipur M, Samandari L, Sheibani S. Recent advances in designing nanomaterial based biointerfaces for electrochemical biosensing cardiovascular biomarkers. J Pharm Biomed Anal 2018; 161:344-376. [PMID: 30205301 DOI: 10.1016/j.jpba.2018.08.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023]
Abstract
Early diagnosis of cardiovascular disease (CVD) is critically important for successful treatment and recovery of patients. At present, detection of CVD at early stages of its progression becomes a major issue for world health. The nanoscale electrochemical biosensors exhibit diverse outstanding properties, rendering them extremely suitable for the determination of CVD biomarkers at very low concentrations in biological fluids. The unique advantages offered by electrochemical biosensors in terms of sensitivity and stability imparted by nanostructuring the electrode surface together with high affinity and selectivity of bioreceptors have led to the development of new electrochemical biosensing strategies that have introduced as interesting alternatives to conventional methodologies for clinical diagnostics of CVD. This review provides an updated overview of selected examples during the period 2005-2018 involving electrochemical biosensing approaches and signal amplification strategies based on nanomaterials, which have been applied for determination of CVD biomarkers. The studied CVD biomarkers include AXL receptor tyrosine kinase, apolipoproteins, cholesterol, C-reactive protein (CRP), D-dimer, fibrinogen (Fib), glucose, insulin, interleukins, lipoproteins, myoglobin, N-terminal pro-B-type natriuretic peptide (BNP), tumor necrosis factor alpha (TNF-α) and troponins (Tns) on electrochemical transduction format. Identification of new specific CVD biomarkers, multiplex bioassay for the simultaneous determination of biomarkers, emergence of microfluidic biosensors, real-time analysis of biomarkers and point of care validation with high sensitivity and selectivity are the major challenges for future research.
Collapse
Affiliation(s)
- Leila Farzin
- Radiation Application Research School, Nuclear Science and Technology Research Institute, 11365-3486, Tehran, Iran.
| | - Mojtaba Shamsipur
- Department of Chemistry, Razi University, 67149-67346, Kermanshah, Iran.
| | - Leila Samandari
- Department of Chemistry, Razi University, 67149-67346, Kermanshah, Iran
| | - Shahab Sheibani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, 11365-3486, Tehran, Iran
| |
Collapse
|
31
|
Xu J, Qiao X, Arsalan M, Cheng N, Cao W, Yue T, Sheng Q, Zheng J. Preparation of one dimensional silver nanowire/nickel-cobalt layered double hydroxide and its electrocatalysis of glucose. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.06.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Said MI, Rageh AH, Abdel-Aal FAM. Fabrication of novel electrochemical sensors based on modification with different polymorphs of MnO 2 nanoparticles. Application to furosemide analysis in pharmaceutical and urine samples. RSC Adv 2018; 8:18698-18713. [PMID: 35541151 PMCID: PMC9080553 DOI: 10.1039/c8ra02978d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 05/03/2018] [Indexed: 11/21/2022] Open
Abstract
A novel MnO2 nanoparticles/chitosan-modified pencil graphite electrode (MnO2 NPs/CS/PGE) was constructed using two different MnO2 polymorphs (γ-MnO2 and ε-MnO2 nanoparticles). X-ray single phases of these two polymorphs were obtained by the comproportionation reaction between MnCl2 and KMnO4 (molar ratio of 5 : 1). The temperature of this reaction is the key factor governing the formation of the two polymorphs. Their structures were confirmed by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) and energy dispersive X-ray (EDX) analysis. Scanning electron microscopy (SEM) was employed to investigate the morphological shape of MnO2 NPs and the surface of the bare and modified electrodes. Moreover, cyclic voltammetry and electrochemical impedance spectroscopy (EIS) were used for surface analysis of the modified electrodes. Compared to bare PGE, MnO2 NPs/CS/PGE shows higher effective surface area and excellent electrocatalytic activity towards the oxidation of the standard K3[Fe(CN)6]. The influence of different suspending solvents on the electrocatalytic activity of MnO2 was studied in detail. It was found that tetrahydrofuran (THF) is the optimum suspending solvent regarding the peak current signal and electrode kinetics. The results reveal that the modified γ-MnO2/CS/PGE is the most sensitive one compared to the other modified electrodes under investigation. The modified γ-MnO2/CS/PGE was applied for selective and sensitive determination of FUR. Under the optimized experimental conditions, γ-MnO2/CS/PGE provides a linear response over the concentration range of 0.05 to 4.20 μmol L-1 FUR with a low limit of detection, which was found to be 4.44 nmol L-1 (1.47 ng mL-1) for the 1st peak and 3.88 nmol L-1 (1.28 ng mL-1) for the 2nd one. The fabricated sensor exhibits a good reproducibility and selectivity and was applied successfully for the determination of FUR in its dosage forms and in spiked urine samples with good accuracy and precision.
Collapse
Affiliation(s)
- Mohamed I Said
- Department of Chemistry, Faculty of Science, Assiut University Assiut 71516 Egypt
| | - Azza H Rageh
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt +20 882 080774 +20 882 411009
| | - Fatma A M Abdel-Aal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt +20 882 080774 +20 882 411009
| |
Collapse
|
33
|
Pedone D, Moglianetti M, De Luca E, Bardi G, Pompa PP. Platinum nanoparticles in nanobiomedicine. Chem Soc Rev 2018; 46:4951-4975. [PMID: 28696452 DOI: 10.1039/c7cs00152e] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxidative stress-dependent inflammatory diseases represent a major concern for the population's health worldwide. Biocompatible nanomaterials with enzymatic properties could play a crucial role in the treatment of such pathologies. In this respect, platinum nanoparticles (PtNPs) are promising candidates, showing remarkable catalytic activity, able to reduce the intracellular reactive oxygen species (ROS) levels and impair the downstream pathways leading to inflammation. This review reports a critical overview of the growing evidence revealing the anti-inflammatory ability of PtNPs and their potential applications in nanomedicine. It provides a detailed description of the wide variety of synthetic methods recently developed, with particular attention to the aspects influencing biocompatibility. Special attention has been paid to the studies describing the toxicological profile of PtNPs with an attempt to draw critical conclusions. The emerging picture suggests that the material per se is not causing cytotoxicity, while other physicochemical features related to the synthesis and surface functionalization may play a crucial role in determining the observed impairment of cellular functions. The enzymatic activity of PtNPs is also summarized, analyzing their action against ROS produced by pathological conditions within the cells. In particular, we extensively discuss the potential of these properties in nanomedicine to down-regulate inflammatory pathways or to be employed as diagnostic tools with colorimetric readout. A brief overview of other biomedical applications of nanoplatinum is also presented.
Collapse
Affiliation(s)
- Deborah Pedone
- Istituto Italiano di Tecnologia, Nanobiointeractions & Nanodiagnostics, Via Morego 30, 16163 Genova, Italy.
| | | | | | | | | |
Collapse
|
34
|
Cho A, Byun S, Kim BM. AuPd−Fe3
O4
Nanoparticle Catalysts for Highly Selective, One-Pot Cascade Nitro-Reduction and Reductive Amination. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701462] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ahra Cho
- Department of Chemistry, College of Natural Sciences; Seoul National University; 1 Gwanak-ro Gwanak-gu, Seoul 08826 Republic of Korea
| | - Sangmoon Byun
- Department of Chemistry, College of Natural Sciences; Seoul National University; 1 Gwanak-ro Gwanak-gu, Seoul 08826 Republic of Korea
- The Research Institute of Basic Sciences; Seoul National University; 1 Gwanak-ro Gwanak-gu, Seoul 08826 Republic of Korea
| | - B. Moon Kim
- Department of Chemistry, College of Natural Sciences; Seoul National University; 1 Gwanak-ro Gwanak-gu, Seoul 08826 Republic of Korea
| |
Collapse
|
35
|
Baveghems CL, Anuganti M, Pattammattel A, Lin Y, Kumar CV. Tuning Enzyme/α-Zr(IV) Phosphate Nanoplate Interactions via Chemical Modification of Glucose Oxidase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:480-491. [PMID: 29228779 PMCID: PMC5860641 DOI: 10.1021/acs.langmuir.7b02919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Using glucose oxidase (GOx) and α-Zr(IV) phosphate nanoplates (α-ZrP) as a model system, a generally applicable approach to control enzyme-solid interactions via chemical modification of amino acid side chains of the enzyme is demonstrated. Net charge on GOx was systematically tuned by appending different amounts of polyamine to the protein surface to produce chemically modified GOx(n), where n is the net charge on the enzyme after the modification and ranged from -62 to +95 electrostatic units in the system. The binding of GOx(n) with α-ZrP nanosheets was studied by isothermal titration calorimetry (ITC) as well as by surface plasmon resonance (SPR) spectroscopy. Pristine GOx showed no affinity for the α-ZrP nanosheets, but GOx(n) where n ≥ -20 showed binding affinities exceeding (2.1 ± 0.6) × 106 M-1, resulting from the charge modification of the enzyme. A plot of GOx(n) charge vs Gibbs free energy of binding (ΔG) for n = +20 to n = +65 indicated an overall increase in favorable interaction between GOx(n) and α-ZrP nanosheets. However, ΔG is less dependent on the net charge for n > +45, as evidenced by the decrease in the slope as charge increased further. All modified enzyme samples and enzyme/α-ZrP complexes retained a significant amount of folding structure (examined by circular dichroism) as well as enzymatic activities. Thus, strong control over enzyme-nanosheet interactions via modulating the net charge of enzymes may find potential applications in biosensing and biocatalysis.
Collapse
Affiliation(s)
- Clive L. Baveghems
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Murali Anuganti
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Ajith Pattammattel
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Yao Lin
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Challa V. Kumar
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3060, United States
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
36
|
Yusan S, Rahman MM, Mohamad N, Arrif TM, Latif AZA, M. A. MA, Wan Nik WSB. Development of an Amperometric Glucose Biosensor Based on the Immobilization of Glucose Oxidase on the Se-MCM-41 Mesoporous Composite. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:2687341. [PMID: 29862120 PMCID: PMC5971259 DOI: 10.1155/2018/2687341] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/21/2018] [Indexed: 05/20/2023]
Abstract
A new bioenzymatic glucose biosensor for selective and sensitive detection of glucose was developed by the immobilization of glucose oxidase (GOD) onto selenium nanoparticle-mesoporous silica composite (MCM-41) matrix and then prepared as a carbon paste electrode (CPE). Cyclic voltammetry was employed to probe the catalytic behavior of the biosensor. A linear calibration plot is obtained over a wide concentration range of glucose from 1 × 10-5 to 2 × 10-3 M. Under optimal conditions, the biosensor exhibits high sensitivity (0.34 µA·mM-1), low detection limit (1 × 10-4 M), high affinity to glucose (Km = 0.02 mM), and also good reproducibility (R.S.D. 2.8%, n=10) and a stability of about ten days when stored dry at +4°C. Besides, the effects of pH value, scan rate, mediator effects on the glucose current, and electroactive interference of the biosensor were also discussed. As a result, the biosensor exhibited an excellent electrocatalytic response to glucose as well as unique stability and reproducibility.
Collapse
Affiliation(s)
- Sabriye Yusan
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
- Institute of Nuclear Science, Ege University, Bornova, 35100 Izmir, Turkey
| | - Mokhlesur M. Rahman
- Institute for Community Development & Quality of Life (i-CODE), Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia
| | - Nasir Mohamad
- Institute for Community Development & Quality of Life (i-CODE), Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia
| | - Tengku M. Arrif
- Institute for Community Development & Quality of Life (i-CODE), Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia
| | - Ahmad Zubaidi A. Latif
- Faculty of Medicine, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia
| | - Mohd Aznan M. A.
- Faculty of Medicine, International Islamic University Malaysia, 25200 Kuantan, Malaysia
| | - Wan Sani B. Wan Nik
- School of Ocean Engineering, Universiti Malaysia Terengganu, 21300 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
37
|
Gołąbiewska A, Lisowski W, Jarek M, Nowaczyk G, Michalska M, Jurga S, Zaleska-Medynska A. The effect of metals content on the photocatalytic activity of TiO2 modified by Pt/Au bimetallic nanoparticles prepared by sol-gel method. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
38
|
Selective binding of Pb2+ with manganese-terephthalic acid MOF/SWCNTs: Theoretical modeling, experimental study and electroanalytical application. Biosens Bioelectron 2017; 98:310-316. [DOI: 10.1016/j.bios.2017.07.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/28/2017] [Accepted: 07/04/2017] [Indexed: 01/28/2023]
|
39
|
Artigues M, Abellà J, Colominas S. Analytical Parameters of an Amperometric Glucose Biosensor for Fast Analysis in Food Samples. SENSORS 2017; 17:s17112620. [PMID: 29135931 PMCID: PMC5713114 DOI: 10.3390/s17112620] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 12/19/2022]
Abstract
Amperometric biosensors based on the use of glucose oxidase (GOx) are able to combine the robustness of electrochemical techniques with the specificity of biological recognition processes. However, very little information can be found in literature about the fundamental analytical parameters of these sensors. In this work, the analytical behavior of an amperometric biosensor based on the immobilization of GOx using a hydrogel (Chitosan) onto highly ordered titanium dioxide nanotube arrays (TiO2NTAs) has been evaluated. The GOx–Chitosan/TiO2NTAs biosensor showed a sensitivity of 5.46 μA·mM−1 with a linear range from 0.3 to 1.5 mM; its fundamental analytical parameters were studied using a commercial soft drink. The obtained results proved sufficient repeatability (RSD = 1.9%), reproducibility (RSD = 2.5%), accuracy (95–105% recovery), and robustness (RSD = 3.3%). Furthermore, no significant interferences from fructose, ascorbic acid and citric acid were obtained. In addition, the storage stability was further examined, after 30 days, the GOx–Chitosan/TiO2NTAs biosensor retained 85% of its initial current response. Finally, the glucose content of different food samples was measured using the biosensor and compared with the respective HPLC value. In the worst scenario, a deviation smaller than 10% was obtained among the 20 samples evaluated.
Collapse
Affiliation(s)
- Margalida Artigues
- Electrochemical Methods Laboratory-Analytical and Applied Chemistry Department, ETS Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain.
| | - Jordi Abellà
- Electrochemical Methods Laboratory-Analytical and Applied Chemistry Department, ETS Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain.
| | - Sergi Colominas
- Electrochemical Methods Laboratory-Analytical and Applied Chemistry Department, ETS Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain.
| |
Collapse
|
40
|
Naderi Asrami P, Saber Tehrani M, Aberoomand Azar P, Mozaffari SA. Impedimetric glucose biosensor based on nanostructure nickel oxide transducer fabricated by reactive RF magnetron sputtering system. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.07.052] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Varmira K, Abdi O, Gholivand MB, Goicoechea HC, Jalalvand AR. Intellectual modifying a bare glassy carbon electrode to fabricate a novel and ultrasensitive electrochemical biosensor: Application to determination of acrylamide in food samples. Talanta 2017; 176:509-517. [PMID: 28917783 DOI: 10.1016/j.talanta.2017.08.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 11/28/2022]
Abstract
Acrylamide (AA) is a neurotoxin and carcinogen which is mainly formed in foods containing large quantities of starch processed at high temperatures and its determination is very important to control the quality of foods. In this work, a novel electrochemical biosensor based on hemoglobin-dimethyldioctadecylammonium bromide (HG-DDAB)/platinum-gold-palladium three metallic alloy nanoparticles (PtAuPd NPs)/chitosan-1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (Ch-IL)/multiwalled carbon nanotubes-IL (MWCNTs-IL)/glassy carbon electrode (GCE) is proposed for ultrasensitive determination of AA in food samples. Development of the biosensor is based on forming an adduct by the reaction of AA with α-NH2 group of N-terminal valine of HG which decreases the peak current of HG-Fe+3 reduction. The modifications were characterized by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), energy dispersive X-ray spectroscopic (EDS) and scanning electron microscopy (SEM). Under optimized conditions, the biosensor detected AA by square wave voltammetry (SWV) in two linear concentration ranges of 0.03-39.0nM and 39.0-150.0nM with a limit of detection (LOD) of 0.01nM. The biosensor was able to selective detection of AA even in the presence of high concentrations of common interferents which confirmed that the biosensor is highly selective. Also, the results obtained from further studies confirmed that the proposed biosensor has a short response time (less than 8s), good sensitivity, long term stability, repeatability, and reproducibility. Finally, the proposed biosensor was successfully applied to determine AA in potato chips and its results were comparable to those obtained by gas chromatography-mass spectrometry (GC-MS) as reference method.
Collapse
Affiliation(s)
- Kambiz Varmira
- Research Center of Oils and Fats (RCOF), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Omid Abdi
- Research Center of Oils and Fats (RCOF), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Hector C Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), C_atedra de Química Analítica I, Universidad Nacional del Litoral, Ciudad Universitaria, CC ,242 (S3000ZAA), Santa Fe, Argentina
| | - Ali R Jalalvand
- Research Center of Oils and Fats (RCOF), Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
42
|
A nonenzymatic electrochemical nitrite sensor based on Pt nanoparticles loaded Ni(OH) 2 /multi-walled carbon nanotubes nanocomposites. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.04.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Sanzò G, Taurino I, Puppo F, Antiochia R, Gorton L, Favero G, Mazzei F, Carrara S, De Micheli G. A bimetallic nanocoral Au decorated with Pt nanoflowers (bio)sensor for H 2O 2 detection at low potential. Methods 2017; 129:89-95. [PMID: 28600228 DOI: 10.1016/j.ymeth.2017.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/13/2017] [Accepted: 06/03/2017] [Indexed: 10/19/2022] Open
Abstract
In this work, we have developed for the first time a method to make novel gold and platinum hybrid bimetallic nanostructures differing in shape and size. Au-Pt nanostructures were prepared by electrodeposition in two simple steps. The first step consists of the electrodeposition of nanocoral Au onto a gold substrate using hydrogen as a dynamic template in an ammonium chloride solution. After that, the Pt nanostructures were deposited onto the nanocoral Au organized in pores. Using Pt (II) and Pt (IV), we realized nanocoral Au decorated with Pt nanospheres and nanocoral Au decorated with Pt nanoflowers, respectively. The bimetallic nanostructures showed better capability to electrochemically oxidize hydrogen peroxide compared with nanocoral Au. Moreover, Au-Pt nanostructures were able to lower the potential of detection and a higher performance was obtained at a low applied potential. Then, glucose oxidase was immobilized onto the bimetallic Au-Pt nanostructure using cross-linking with glutaraldehyde. The biosensor was characterized by chronoamperometry at +0.15V vs. Ag pseudo-reference electrode (PRE) and showed good analytical performances with a linear range from 0.01 to 2.00mM and a sensitivity of 33.66µA/mMcm2. The good value of Kmapp (2.28mM) demonstrates that the hybrid nanostructure is a favorable environment for the enzyme. Moreover, the low working potential can minimize the interference from ascorbic acid and uric acid as well as reducing power consumption to effect sensing. The simple procedure to realize this nanostructure and to immobilize enzymes, as well as the analytical performances of the resulting devices, encourage the use of this technology for the development of biosensors for clinical analysis.
Collapse
Affiliation(s)
- Gabriella Sanzò
- Laboratory of Integrated Systems, EPFL - École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Biosensors Laboratory, Department of Chemistry Drug Technologies, Sapienza University of Rome, P.le Aldo Moro, 5-00185 Roma, Italy
| | - Irene Taurino
- Laboratory of Integrated Systems, EPFL - École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Francesca Puppo
- Laboratory of Integrated Systems, EPFL - École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Riccarda Antiochia
- Biosensors Laboratory, Department of Chemistry Drug Technologies, Sapienza University of Rome, P.le Aldo Moro, 5-00185 Roma, Italy
| | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry, P.O. Box 124, 221 00 Lund, Sweden
| | - Gabriele Favero
- Biosensors Laboratory, Department of Chemistry Drug Technologies, Sapienza University of Rome, P.le Aldo Moro, 5-00185 Roma, Italy
| | - Franco Mazzei
- Biosensors Laboratory, Department of Chemistry Drug Technologies, Sapienza University of Rome, P.le Aldo Moro, 5-00185 Roma, Italy
| | - Sandro Carrara
- Laboratory of Integrated Systems, EPFL - École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Giovanni De Micheli
- Laboratory of Integrated Systems, EPFL - École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
44
|
Azadbakht A, Beirnvand S. Voltammetric aptamer-based switch probes for sensing diclofenac using a glassy carbon electrode modified with a composite prepared from gold nanoparticles, carbon nanotubes and amino-functionalized Fe3O4 nanoparticles. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2285-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Screen-printed enzymatic glucose biosensor based on a composite made from multiwalled carbon nanotubes and palladium containing particles. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2188-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Hossain MF, Park JY. Fabrication of sensitive enzymatic biosensor based on multi-layered reduced graphene oxide added PtAu nanoparticles-modified hybrid electrode. PLoS One 2017; 12:e0173553. [PMID: 28333943 PMCID: PMC5363929 DOI: 10.1371/journal.pone.0173553] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/23/2017] [Indexed: 12/19/2022] Open
Abstract
A highly sensitive amperometric glucose sensor was developed by immobilization of glucose oxidase (GOx) onto multi-layer reduced graphene oxide (MRGO) sheets decorated with platinum and gold flower-like nanoparticles (PtAuNPs) modified Au substrate electrode. The fabricated MRGO/PtAuNPs modified hybrid electrode demonstrated high electrocatalytic activities toward oxidation of H2O2, to which it had a wide linear response that ranged from 0.5 to 8 mM (R2 = 0.997), and high sensitivity of 506.25 μA/mMcm2. Furthermore, glucose oxidase-chitosan composite and cationic polydiallyldimethylammonium chloride (PDDA) were assembled by a casting method on the surface of MRGO/PtAuNPs modified electrode. This as-fabricated hybrid biosensor electrode exhibited high electrocatalytic activity for the detection of glucose in PBS. It demonstrated good analytical properties in terms of a low detection limit of 1 μM (signal-to-noise ratio of 3), short response time (3 s), high sensitivity (17.85 μA/mMcm2), and a wide linear range (0.01–8 mM) for glucose sensing. These results reveal that the newly developed sensing electrode offers great promise for new type enzymatic biosensor applications.
Collapse
Affiliation(s)
- Md Faruk Hossain
- Department of Electronic Engineering, Kwangwoon University, Nowon Gu, Seoul, Korea
| | - Jae Y Park
- Department of Electronic Engineering, Kwangwoon University, Nowon Gu, Seoul, Korea
| |
Collapse
|
47
|
Impedimetric biosensor based on bimetallic AgPt nanoparticle-decorated carbon nanotubes as highly conductive film surface. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3532-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
A novel electrochemical biosensor based on Fe 3 O 4 nanoparticles-polyvinyl alcohol composite for sensitive detection of glucose. Anal Biochem 2017; 519:19-26. [DOI: 10.1016/j.ab.2016.12.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 12/15/2022]
|
49
|
Kuretake T, Kawahara S, Motooka M, Uno S. An Electrochemical Gas Biosensor Based on Enzymes Immobilized on Chromatography Paper for Ethanol Vapor Detection. SENSORS 2017; 17:s17020281. [PMID: 28157154 PMCID: PMC5336011 DOI: 10.3390/s17020281] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/25/2017] [Indexed: 11/18/2022]
Abstract
This paper presents a novel method of fabricating an enzymatic biosensor for breath analysis using chromatography paper as enzyme supporting layer and a liquid phase layer on top of screen printed carbon electrodes. We evaluated the performance with ethanol vapor being one of the breathing ingredients. The experimental results show that our sensor is able to measure the concentration of ethanol vapor within the range of 50 to 500 ppm. These results suggest the ability of detecting breath ethanol, and it can possibly be applied as a generic vapor biosensor to a wide range of diseases.
Collapse
Affiliation(s)
- Tatsumi Kuretake
- Department of Electrical and Electronic Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| | - Shogo Kawahara
- Department of Electrical and Electronic Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| | - Masanobu Motooka
- Department of Electrical and Electronic Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| | - Shigeyasu Uno
- Department of Electrical and Electronic Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
50
|
Raymundo-Pereira PA, Shimizu FM, Coelho D, Piazzeta MH, Gobbi AL, Machado SA, Oliveira ON. A Nanostructured Bifunctional platform for Sensing of Glucose Biomarker in Artificial Saliva: Synergy in hybrid Pt/Au surfaces. Biosens Bioelectron 2016; 86:369-376. [DOI: 10.1016/j.bios.2016.06.053] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/10/2016] [Accepted: 06/18/2016] [Indexed: 12/17/2022]
|