1
|
Zewdie W, Alemu G, Hailu T. Prevalence of Schistosoma infection and associated factors among pregnant women attending antenatal care at Shewa Robit Health Center, North-Central Ethiopia: a cross-sectional study. Trop Med Health 2024; 52:102. [PMID: 39726052 DOI: 10.1186/s41182-024-00671-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Schistosoma spp. and other intestinal parasites are common in Ethiopia. During pregnancy, SCH increases the risk of adverse birth outcomes. However, its epidemiology among pregnant women and awareness level about the disease are not well addressed in Ethiopia. This study was conducted to address this gap. METHODS A cross-sectional study was conducted from April to June 2023 among 422 pregnant women who attended Shewa Robit Health Center. Pregnant women who came to the health center for antenatal care services were enrolled in the study following systematic random sampling technique. Questionnaire data was collected on socio-demographic characteristics, KAP towards SCH, and associated factors. Stool samples were processed using the Kato-Katz technique, while urine samples were tested with urine test strips for hematuria, and filtration and centrifugation methods for detection of S. haematobium. Data were entered and analyzed using SPSS software version 25. Descriptive statistics and logistic regression were performed at a 95% confidence level. RESULTS Among 422 pregnant women, 38 (9.0%) were positive for hematuria, but none were infected by S. haematobium. Schistosoma mansoni was detected in 40 (9.5%; 95% confidence interval (CI): 6.6-12.6) participants. Habit of swimming or bathing (adjusted odds ratio (AOR) = 4.896; 95% CI: 2.193-10.933, p < 0.001) and habit of crossing freshwater on barefoot (AOR = 5.113; 95% CI: 1.171-22.324, p = 0.030) were significantly associated with S. mansoni infection. Of the participants, only 74 (17.5%) had previously heard of SCH. Out of 74 aware participants, 49 (66.2%) and 14 (18.9%) were unaware of the causative agent and possibility of a cure for SCH, respectively. Sixty-one (82.4%) were aware that SCH is preventable. Fifty-three (71.6%) and 4 (5.4%) participants believed that SCH is preventable and serious disease, respectively. Eight (10.8%) and 9 (12.2%) participants avoided contact with freshwater and used clean water for drinking and washing, respectively. CONCLUSIONS There is nearly moderate prevalence of S. mansoni infection in the study area. Pregnant women who often had freshwater contact were more likely to contract S. mansoni. Most pregnant women in the study area had low KAP levels towards SCH. Therefore, women of reproductive age groups should be the focus of SCH control programs.
Collapse
Affiliation(s)
- Woubshet Zewdie
- Debre Berhan Hospital, Amhara Regional Health Bureau, Debre Berhan, Ethiopia
| | - Getaneh Alemu
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia.
| | - Tadesse Hailu
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
| |
Collapse
|
2
|
Archer J, Cunningham LJ, Juhász A, Jones S, Reed AL, Yeo SM, Mainga B, Chammudzi P, Kapira DR, Lally D, Namacha G, Makaula P, LaCourse JE, Kayuni SA, Webster BL, Musaya J, Stothard JR. Population genetics and molecular xenomonitoring of Biomphalaria freshwater snails along the southern shoreline of Lake Malawi, Malawi. Parasit Vectors 2024; 17:521. [PMID: 39696654 DOI: 10.1186/s13071-024-06546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/18/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Intestinal schistosomiasis was confirmed endemic in Mangochi District, Malawi, in May of 2018 following an unexpected encounter with discreet populations of Biomphalaria spp. freshwater snails during routine malacological surveillance activities. Since then, only limited malacological surveillance of Biomphalaria has been carried out, and so the distribution of Biomphalaria populations in this area is currently unclear. Additionally, sites of active Schistosoma mansoni transmission in this area are also unknown. In the present study, through extensive malacological surveillance, we aimed to formally document the distribution of Biomphalaria in Mangochi District. We also aimed to identify active intestinal schistosomiasis transmission sites in this area through subjecting all collected Biomphalaria to a recently developed S. mansoni-specific molecular xenomonitoring PCR. METHODS Three malacological surveys were carried out along the southern shoreline of Lake Malawi, Mangochi District, Malawi, in November 2021, July 2022 and October/November 2022. All collected Biomphalaria were subjected to cercarial shedding analysis to identify active Schistosoma infections. Shed cercariae were then genotyped to species level using a standard multi-locus PCR and Sanger sequencing protocol. Following this, a subset of Biomphalaria from each collection site were also genotyped to species level using a standard PCR and Sanger sequencing protocol. All collected Biomphalaria were then subjected to a recently developed S. mansoni-specific molecular xenomonitoring PCR to identify infected, but non-shedding, Biomphalaria. RESULTS A total of 589 Biomphalaria were collected across all three surveys. One single Biomphalaria (0.17%) specimen was found to be actively shedding Schistosoma cercariae, which were molecularly confirmed as S. mansoni. All genotyped Biomphalaria (n = 42) were molecularly identified as B. pfeifferi. A further 19 Biomphalaria specimens, collected from four different surveillance sites, were found to be infected with S. mansoni through molecular xenomonitoring. Intestinal schistosomiasis transmission was therefore identified at four different foci in Mangochi District. CONCLUSIONS Our study highlights the importance of molecular approaches to investigate Biomphalaria populations and monitor Biomphalaria-associated intestinal schistosomiasis transmission in endemic areas. As such, the continued development and use of such approaches, in particular the development and use of molecular xenomonitoring assays that can be carried out in resource-poor schistosomiasis-endemic settings, is encouraged. The revision of ongoing schistosomiasis control programmes in Mangochi District, in line with WHO recommendations, is also encouraged.
Collapse
Affiliation(s)
- John Archer
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
- Wolfson Wellcome Biomedical Laboratories, Department of Zoology, Natural History Museum, Cromwell Road, London, UK.
| | - Lucas J Cunningham
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Alexandra Juhász
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Institute of Medical Microbiology, Semmelweis University, Budapest, 1089, Hungary
| | - Sam Jones
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Amber L Reed
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Shi Min Yeo
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - Bright Mainga
- Laboratory Department, Mangochi District Hospital, P.O. Box 42, Mangochi, Malawi
| | - Priscilla Chammudzi
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences (KUHeS), Blantyre, Malawi
| | - Donales R Kapira
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences (KUHeS), Blantyre, Malawi
| | - David Lally
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences (KUHeS), Blantyre, Malawi
| | - Gladys Namacha
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences (KUHeS), Blantyre, Malawi
| | - Peter Makaula
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - James E LaCourse
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Sekeleghe A Kayuni
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences (KUHeS), Blantyre, Malawi
| | - Bonnie L Webster
- Wolfson Wellcome Biomedical Laboratories, Department of Zoology, Natural History Museum, Cromwell Road, London, UK
| | - Janelisa Musaya
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences (KUHeS), Blantyre, Malawi
| | - J Russell Stothard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| |
Collapse
|
3
|
Dannenhaus TA, Winkelmann F, Reinholdt C, Bischofsberger M, Dvořák J, Grevelding CG, Löbermann M, Reisinger EC, Sombetzki M. Intra-specific variations in Schistosoma mansoni and their possible contribution to inconsistent virulence and diverse clinical outcomes. PLoS Negl Trop Dis 2024; 18:e0012615. [PMID: 39466851 PMCID: PMC11542895 DOI: 10.1371/journal.pntd.0012615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 11/07/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Schistosoma mansoni was introduced from Africa to the Americas during the transatlantic slave trade and remains a major public health problem in parts of South America and the Caribbean. This study presents a comprehensive comparative analysis of three S. mansoni strains with different geographical origins-from Liberia, Belo Horizonte and Puerto Rico. We demonstrated significant variation in virulence and host-parasite interactions. METHODS We investigated the phenotypic characteristics of the parasite and its eggs, as well as the immunopathologic effects on laboratory mouse organ systems. RESULTS Our results show significant differences in worm morphology, worm burden, egg size, and pathologic organ changes between these strains. The Puerto Rican strain showed the highest virulence, as evidenced by marked liver and spleen changes and advanced liver fibrosis indicated by increased collagen content. In contrast, the strains from Liberia and Belo Horizonte had a less pathogenic profile with less liver fibrosis. We found further variations in granuloma formation, cytokine expression and T-cell dynamics, indicating different immune responses. CONCLUSION Our study emphasizes the importance of considering intra-specific variations of S. mansoni for the development of targeted therapies and public health strategies. The different virulence patterns, host immune responses and organ pathologies observed in these strains provide important insights for future research and could inform region-specific interventions for schistosomiasis control.
Collapse
Affiliation(s)
- Tim A. Dannenhaus
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Germany
| | - Franziska Winkelmann
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Germany
| | - Cindy Reinholdt
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Germany
| | - Miriam Bischofsberger
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Germany
| | - Jan Dvořák
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
- Department of Ecology, Center of Infectious Animal Diseases, Faculty of Environmental Sciences, Czech University of Life Sciences, Czechia Institute of Parasitology, Prague, Czechia
| | - Christoph G. Grevelding
- Biomedizinisches Forschungszentrum Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Micha Löbermann
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Germany
| | - Emil C. Reisinger
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Germany
| | - Martina Sombetzki
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Germany
| |
Collapse
|
4
|
Russ L, von Bülow V, Wrobel S, Stettler F, Schramm G, Falcone FH, Grevelding CG, Roderfeld M, Roeb E. Inverse Correlation of Th2-Specific Cytokines with Hepatic Egg Burden in S. mansoni-Infected Hamsters. Cells 2024; 13:1579. [PMID: 39329761 PMCID: PMC11430739 DOI: 10.3390/cells13181579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Schistosomiasis, a parasitic disease caused by Schistosoma spp., affects more than 250 million people worldwide. S. mansoni in particular affects the gastrointestinal tract and, through its eggs, induces a Th2 immune response leading to granuloma formation. The relationship between egg load and immune response is poorly understood. We investigated whether the quantity of parasitic eggs influences the immune response in S. mansoni-infected hamsters. The hepatic and intestinal egg load was assessed, and cytokine expression as well as the expression of three major egg-derived proteins were analyzed in monosex- and bisex-infected animals by qRT-PCR. Statistical correlations between egg load or egg-derived factors Ipse/alpha-1, kappa-5, and omega-1, and the immune response were analyzed in liver and colon tissue. Surprisingly, no correlation of the Th1 cytokines with the hepatic egg load was observed, while the Th2 cytokines Il4, Il5, and Il13 showed an inverse correlation in the liver but not in the colon. A longer embryogenesis of the parasitic eggs in the liver could explain this correlation. This conclusion is supported by the lack of any correlation with immune response in the colon, as the intestinal passage of the eggs is limited to a few days.
Collapse
Affiliation(s)
- Lena Russ
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany
| | - Verena von Bülow
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany
| | - Sarah Wrobel
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany
| | - Frederik Stettler
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany
| | - Gabriele Schramm
- Early Life Origins of Chronic Lung Diseases, Priority Research Area Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Franco H Falcone
- Institute of Parasitology, BFS, Justus Liebig University, 35392 Giessen, Germany
| | | | - Martin Roderfeld
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany
| | - Elke Roeb
- Department of Gastroenterology, Justus Liebig University, 35392 Giessen, Germany
| |
Collapse
|
5
|
Wang Y. Towards environmental performance through responsible environmental intentions and behavior: Does environmental law cognition really matter among Chinese farmers. PLoS One 2024; 19:e0308154. [PMID: 39240821 PMCID: PMC11379271 DOI: 10.1371/journal.pone.0308154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 07/08/2024] [Indexed: 09/08/2024] Open
Abstract
Rapid agricultural expansion, marked by unsustainable practices, has contributed significantly to environmental degradation globally. In response to China's escalating environmental concerns, recent environmental legislation has sought to disseminate information and promote awareness of environmental preservation among residents. This study aims to investigate the influential role of citizen environmental intentions and activist environmental intentions on responsible behavior for achieving environmental performance (EP). Moreover, the moderating influence of these environmental laws on the relationship between environment-protecting intentions and behavior, with a focus on legal cognition. Utilizing a population of 3150 farmers we select 603 farmers using simple random sampling and, this study applies the theory of planned behavior within a structural equation model framework. The findings affirm that farmers' perceived behavior control, personal factors, and attitudes directly impact both citizen and activist intentions, subsequently influencing both types of environmental-oriented behavior. Notably, the study identifies a stronger inward attitude effect compared to the outward attitude in both types of farmers' intentions. Additionally, legal cognition among farmers emerges as a crucial moderator, influencing the link between environmental intentions and behavior. The results suggest that as farmers become more familiar with environmental laws, the direct effect of their intentions on environmentally oriented behavior intensifies. Hence, the legal obligations play an essential role in shaping the farmers' pro-environmental behavior. This study aligns the individual level environmental intentions with farmer's law cognition for offering interesting insights to develop and implement imminent environmental policies. Hence, this study benefits to both practitioners and policy makers' contextualizing Chinese agricultural sector.
Collapse
Affiliation(s)
- Ying Wang
- School of Humanities and Law, Zhengzhou Technology and Business University, Zhengzhou Henan, China
| |
Collapse
|
6
|
van der Deure T, Maes T, Huyse T, Stensgaard AS. Climate change could fuel urinary schistosomiasis transmission in Africa and Europe. GLOBAL CHANGE BIOLOGY 2024; 30:e17434. [PMID: 39105284 DOI: 10.1111/gcb.17434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 08/07/2024]
Abstract
The freshwater snail Bulinus truncatus is an important intermediate host for trematode parasites causing urogenital schistosomiasis, a tropical disease affecting over 150 million people. Despite its medical importance, uncertainty remains about its global distribution and the potential impacts of climate change on its future spread. Here, we investigate the distribution of B. truncatus, combining the outputs of correlative and mechanistic modelling methods to fully capitalize on both experimental and occurrence data of the species and to create a more reliable distribution forecast than ever constructed. We constructed ensemble correlative species distribution models using 273 occurrence points collected from different sources and a combination of climatic and (bio)physical environmental variables. Additionally, a mechanistic thermal suitability model was constructed, parameterized by recent life-history data obtained through extensive lab-based snail-temperature experiments and supplemented with an extensive literature review. Our findings reveal that the current suitable habitat for B. truncatus encompasses the Sahel region, the Middle East, and the Mediterranean segment of Africa, stretching from Southern Europe to Mozambique. Regions identified as suitable by both methods generally coincide with areas exhibiting high urogenital schistosomiasis prevalence. Model projections into the future suggest an overall net increase in suitable area of up to 17%. New suitable habitat is in Southern Europe, the Middle East, and large parts of Central Africa, while suitable habitat will be lost in the Sahel region. The change in snail habitat suitability may substantially increase the risk of urogenital schistosomiasis transmission in parts of Africa and Southern Europe while reducing it in the Sahel region.
Collapse
Affiliation(s)
- Tiem van der Deure
- Section for Parasitology and Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Macroecology, Evolution and Climate, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Tim Maes
- Laboratory for Biodiversity and Evolutionary Genomics, Department of Biology, Faculty of Science, KU Leuven, Leuven, Belgium
| | - Tine Huyse
- Laboratory for Biodiversity and Evolutionary Genomics, Department of Biology, Faculty of Science, KU Leuven, Leuven, Belgium
- Division of Invertebrates, Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
| | - Anna-Sofie Stensgaard
- Section for Parasitology and Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Reed AL, Al-Harbi MH, Makaula P, Condemine C, Hesketh J, Archer J, Jones S, Kayuni SA, Musaya J, Stanton MC, Stothard JR, Fronterre C, Jewell C. A geospatial analysis of local intermediate snail host distributions provides insight into schistosomiasis risk within under-sampled areas of southern Lake Malawi. Parasit Vectors 2024; 17:272. [PMID: 38937778 PMCID: PMC11209974 DOI: 10.1186/s13071-024-06353-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Along the southern shoreline of Lake Malawi, the incidence of schistosomiasis is increasing with snails of the genera Bulinus and Biomphalaria transmitting urogenital and intestinal schistosomiasis, respectively. Since the underlying distribution of snails is partially known, often being focal, developing pragmatic spatial models that interpolate snail information across under-sampled regions is required to understand and assess current and future risk of schistosomiasis. METHODS A secondary geospatial analysis of recently collected malacological and environmental survey data was undertaken. Using a Bayesian Poisson latent Gaussian process model, abundance data were fitted for Bulinus and Biomphalaria. Interpolating the abundance of snails along the shoreline (given their relative distance along the shoreline) was achieved by smoothing, using extracted environmental rainfall, land surface temperature (LST), evapotranspiration, normalised difference vegetation index (NDVI) and soil type covariate data for all predicted locations. Our adopted model used a combination of two-dimensional (2D) and one dimensional (1D) mapping. RESULTS A significant association between normalised difference vegetation index (NDVI) and abundance of Bulinus spp. was detected (log risk ratio - 0.83, 95% CrI - 1.57, - 0.09). A qualitatively similar association was found between NDVI and Biomphalaria sp. but was not statistically significant (log risk ratio - 1.42, 95% CrI - 3.09, 0.10). Analyses of all other environmental data were considered non-significant. CONCLUSIONS The spatial range in which interpolation of snail distributions is possible appears < 10km owing to fine-scale biotic and abiotic heterogeneities. The forthcoming challenge is to refine geospatial sampling frameworks with future opportunities to map schistosomiasis within actual or predicted snail distributions. In so doing, this would better reveal local environmental transmission possibilities.
Collapse
Affiliation(s)
- Amber L Reed
- Lancaster Medical School, Lancaster University, Bailrigg House, Bailrigg, Lancaster, LA1 4YE, UK.
| | - Mohammad H Al-Harbi
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Ministry of Health, 52367, Buraydah, Saudi Arabia
| | - Peter Makaula
- Malawi Liverpool Wellcome Trust Programme of Clinical Tropical Research, Queen Elizabeth Central Hospital, College of Medicine, P. O. Box 30096, Blantyre, Malawi
| | - Charlotte Condemine
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Josie Hesketh
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - John Archer
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Sam Jones
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Sekeleghe A Kayuni
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Malawi Liverpool Wellcome Trust Programme of Clinical Tropical Research, Queen Elizabeth Central Hospital, College of Medicine, P. O. Box 30096, Blantyre, Malawi
| | - Janelisa Musaya
- Malawi Liverpool Wellcome Trust Programme of Clinical Tropical Research, Queen Elizabeth Central Hospital, College of Medicine, P. O. Box 30096, Blantyre, Malawi
| | - Michelle C Stanton
- Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - J Russell Stothard
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Claudio Fronterre
- Lancaster Medical School, Lancaster University, Bailrigg House, Bailrigg, Lancaster, LA1 4YE, UK
| | - Christopher Jewell
- Mathematics and Statistics, Lancaster University, Bailrigg House, Bailrigg, Lancaster, LA1 4YE, UK
| |
Collapse
|
8
|
Aslan IH, Pourtois JD, Chamberlin AJ, Mitchell KR, Mari L, Lwiza KM, Wood CL, Mordecai EA, Yu A, Tuan R, Palasio RGS, Monteiro AMV, Kirk D, Athni TS, Sokolow SH, N’Goran EK, Diakite NR, Ouattara M, Gatto M, Casagrandi R, Little DC, Ozretich RW, Norman R, Allan F, Brierley AS, Liu P, Pereira TA, De Leo GA. Re-assessing thermal response of schistosomiasis transmission risk: Evidence for a higher thermal optimum than previously predicted. PLoS Negl Trop Dis 2024; 18:e0011836. [PMID: 38857289 PMCID: PMC11207148 DOI: 10.1371/journal.pntd.0011836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/26/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024] Open
Abstract
The geographical range of schistosomiasis is affected by the ecology of schistosome parasites and their obligate host snails, including their response to temperature. Previous models predicted schistosomiasis' thermal optimum at 21.7°C, which is not compatible with the temperature in sub-Saharan Africa (SSA) regions where schistosomiasis is hyperendemic. We performed an extensive literature search for empirical data on the effect of temperature on physiological and epidemiological parameters regulating the free-living stages of S. mansoni and S. haematobium and their obligate host snails, i.e., Biomphalaria spp. and Bulinus spp., respectively. We derived nonlinear thermal responses fitted on these data to parameterize a mechanistic, process-based model of schistosomiasis. We then re-cast the basic reproduction number and the prevalence of schistosome infection as functions of temperature. We found that the thermal optima for transmission of S. mansoni and S. haematobium range between 23.1-27.3°C and 23.6-27.9°C (95% CI) respectively. We also found that the thermal optimum shifts toward higher temperatures as the human water contact rate increases with temperature. Our findings align with an extensive dataset of schistosomiasis prevalence in SSA. The refined nonlinear thermal-response model developed here suggests a more suitable current climate and a greater risk of increased transmission with future warming for more than half of the schistosomiasis suitable regions with mean annual temperature below the thermal optimum.
Collapse
Affiliation(s)
- Ibrahim Halil Aslan
- Department of Biology, Stanford University, Stanford, California, United States of America
- Hopkins Marine Station, Stanford University, Pacific Grove, California, United States of America
| | - Julie D. Pourtois
- Department of Biology, Stanford University, Stanford, California, United States of America
- Hopkins Marine Station, Stanford University, Pacific Grove, California, United States of America
| | - Andrew J. Chamberlin
- Hopkins Marine Station, Stanford University, Pacific Grove, California, United States of America
| | - Kaitlyn R. Mitchell
- Department of Biology, Stanford University, Stanford, California, United States of America
- Hopkins Marine Station, Stanford University, Pacific Grove, California, United States of America
| | - Lorenzo Mari
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Kamazima M. Lwiza
- School of Marine and Atmospheric Sciences, Stony Brook University, New York, New York, United States of America
| | - Chelsea L. Wood
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Erin A. Mordecai
- Department of Biology, Stanford University, Stanford, California, United States of America
- Woods Institute for the Environment, Stanford University, Stanford, California, United States of America
| | - Ao Yu
- Department of Earth System Science, Stanford University, Stanford, California, United States of America
| | - Roseli Tuan
- Pasteur Institute, São Paulo Health Public Office, São Paulo, Brazil
| | | | | | - Devin Kirk
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Tejas S. Athni
- Department of Biology, Stanford University, Stanford, California, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Susanne H. Sokolow
- Department of Biology, Stanford University, Stanford, California, United States of America
- Woods Institute for the Environment, Stanford University, Stanford, California, United States of America
| | | | | | | | - Marino Gatto
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Renato Casagrandi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - David C. Little
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Reed W. Ozretich
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Rachel Norman
- Computing Science and Mathematics, University of Stirling, Stirling, United Kingdom
| | - Fiona Allan
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Andrew S. Brierley
- Scottish Oceans Institute, School of Biology, University of St. Andrews, St. Andrews, United Kingdom
| | - Ping Liu
- School of Marine and Atmospheric Sciences, Stony Brook University, New York, New York, United States of America
| | - Thiago A. Pereira
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Giulio A. De Leo
- Department of Biology, Stanford University, Stanford, California, United States of America
- Hopkins Marine Station, Stanford University, Pacific Grove, California, United States of America
| |
Collapse
|
9
|
Aslan IH, Pourtois JD, Chamberlin AJ, Mitchell KR, Mari L, Lwiza KM, Wood CL, Mordecai EA, Yu A, Tuan R, Palasio RGS, Monteiro AM, Kirk D, Athni TS, Sokolow SH, N’Goran EK, Diakite NR, Ouattara M, Gatto M, Casagrandi R, Little DC, Ozretich RW, Norman R, Allan F, Brierley AS, Liu P, Pereira TA, De Leo GA. Re-assessing thermal response of schistosomiasis transmission risk: evidence for a higher thermal optimum than previously predicted. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.04.24300851. [PMID: 38826336 PMCID: PMC11142288 DOI: 10.1101/2024.01.04.24300851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The geographical range of schistosomiasis is affected by the ecology of schistosome parasites and their obligate host snails, including their response to temperature. Previous models predicted schistosomiasis' thermal optimum at 21.7 °C, which is not compatible with the temperature in sub-Saharan Africa (SSA) regions where schistosomiasis is hyperendemic. We performed an extensive literature search for empirical data on the effect of temperature on physiological and epidemiological parameters regulating the free-living stages of S. mansoni and S. haematobium and their obligate host snails, i.e., Biomphalaria spp. and Bulinus spp., respectively. We derived nonlinear thermal responses fitted on these data to parameterize a mechanistic, process-based model of schistosomiasis. We then re-cast the basic reproduction number and the prevalence of schistosome infection as functions of temperature. We found that the thermal optima for transmission of S. mansoni and S. haematobium range between 23.1-27.3 °C and 23.6-27.9 °C (95 % CI) respectively. We also found that the thermal optimum shifts toward higher temperatures as the human water contact rate increases with temperature. Our findings align with an extensive dataset of schistosomiasis prevalence in SSA. The refined nonlinear thermal-response model developed here suggests a more suitable current climate and a greater risk of increased transmission with future warming for more than half of the schistosomiasis suitable regions with mean annual temperature below the thermal optimum.
Collapse
Affiliation(s)
- Ibrahim Halil Aslan
- Department of Biology, Stanford University, Stanford, CA, USA
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Julie D. Pourtois
- Department of Biology, Stanford University, Stanford, CA, USA
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | | | - Kaitlyn R. Mitchell
- Department of Biology, Stanford University, Stanford, CA, USA
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Lorenzo Mari
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Kamazima M. Lwiza
- School of Marine and Atmospheric Sciences Stony Brook University, New York, NY, USA
| | - Chelsea L. Wood
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Erin A. Mordecai
- Department of Biology, Stanford University, Stanford, CA, USA
- Woods Institute for the Environment, Stanford University, Stanford, CA, USA
| | - Ao Yu
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Roseli Tuan
- Pasteur Institute, São Paulo Health Public Office, São Paulo, SP, Brazil
| | | | | | - Devin Kirk
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Tejas S. Athni
- Department of Biology, Stanford University, Stanford, CA, USA
- Harvard Medical School, Boston, MA, USA
| | - Susanne H. Sokolow
- Department of Biology, Stanford University, Stanford, CA, USA
- Woods Institute for the Environment, Stanford University, Stanford, CA, USA
| | | | - Nana R. Diakite
- Université Félix Houphouët-Boigny, 22 BP 770, Abidjan 22, Côte d’Ivoire
| | - Mamadou Ouattara
- Université Félix Houphouët-Boigny, 22 BP 770, Abidjan 22, Côte d’Ivoire
| | - Marino Gatto
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Renato Casagrandi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - David C. Little
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | | | - Rachel Norman
- Computing Science and Mathematics, University of Stirling, Stirling, UK
| | - Fiona Allan
- Department of Life Sciences, Natural History Museum, London, UK
| | - Andrew S. Brierley
- Scottish Oceans Institute, School of Biology, University of St. Andrews, St. Andrews, UK
| | - Ping Liu
- School of Marine and Atmospheric Sciences Stony Brook University, New York, NY, USA
| | - Thiago A. Pereira
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Giulio A. De Leo
- Department of Biology, Stanford University, Stanford, CA, USA
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| |
Collapse
|
10
|
Bispo MT, Calado M, Maurício IL, Ferreira PM, Belo S. Zoonotic Threats: The (Re)emergence of Cercarial Dermatitis, Its Dynamics, and Impact in Europe. Pathogens 2024; 13:282. [PMID: 38668237 PMCID: PMC11053805 DOI: 10.3390/pathogens13040282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/29/2024] Open
Abstract
Cercarial dermatitis (CD), or "Swimmer's itch" as it is also known, is a waterborne illness caused by a blood fluke from the family Schistosomatidae. It occurs when cercariae of trematode species that do not have humans as their definitive host accidentally penetrate human skin (in an aquatic environment) and trigger allergic symptoms at the site of contact. It is an emerging zoonosis that occurs through water and is often overlooked during differential diagnosis. Some of the factors contributing to the emergence of diseases like CD are related to global warming, which brings about climate change, water eutrophication, the colonization of ponds by snails susceptible to the parasite, and sunlight exposure in the summer, associated with migratory bird routes. Therefore, with the increase in tourism, especially at fluvial beaches, it is relevant to analyze the current epidemiological scenario of CD in European countries and the potential regions at risk.
Collapse
Affiliation(s)
- Maria Teresa Bispo
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (M.C.); (I.L.M.); (P.M.F.)
| | | | | | | | - Silvana Belo
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (M.C.); (I.L.M.); (P.M.F.)
| |
Collapse
|
11
|
Perera DJ, Koger-Pease C, Paulini K, Daoudi M, Ndao M. Beyond schistosomiasis: unraveling co-infections and altered immunity. Clin Microbiol Rev 2024; 37:e0009823. [PMID: 38319102 PMCID: PMC10938899 DOI: 10.1128/cmr.00098-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Schistosomiasis is a neglected tropical disease caused by the helminth Schistosoma spp. and has the second highest global impact of all parasites. Schistosoma are transmitted through contact with contaminated fresh water predominantly in Africa, Asia, the Middle East, and South America. Due to the widespread prevalence of Schistosoma, co-infection with other infectious agents is common but often poorly described. Herein, we review recent literature describing the impact of Schistosoma co-infection between species and Schistosoma co-infection with blood-borne protozoa, soil-transmitted helminths, various intestinal protozoa, Mycobacterium, Salmonella, various urinary tract infection-causing agents, and viral pathogens. In each case, disease severity and, of particular interest, the immune landscape, are altered as a consequence of co-infection. Understanding the impact of schistosomiasis co-infections will be important when considering treatment strategies and vaccine development moving forward.
Collapse
Affiliation(s)
- Dilhan J. Perera
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Cal Koger-Pease
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Kayla Paulini
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Mohamed Daoudi
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Momar Ndao
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal, Canada
| |
Collapse
|
12
|
Tabo Z, Breuer L, Fabia C, Samuel G, Albrecht C. A machine learning approach for modeling the occurrence of the major intermediate hosts for schistosomiasis in East Africa. Sci Rep 2024; 14:4274. [PMID: 38383705 PMCID: PMC10881506 DOI: 10.1038/s41598-024-54699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
Schistosomiasis, a prevalent water-borne disease second only to malaria, significantly impacts impoverished rural communities, primarily in Sub-Saharan Africa where over 90% of the severely affected population resides. The disease, majorly caused by Schistosoma mansoni and S. haematobium parasites, relies on freshwater snails, specifically Biomphalaria and Bulinus species, as crucial intermediate host (IH) snails. Targeted snail control is advisable, however, there is still limited knowledge about the community structure of the two genera especially in East Africa. Utilizing a machine learning approach, we employed random forest to identify key features influencing the distribution of both IH snails in this region. Our results reveal geography and climate as primary factors for Biomphalaria, while Bulinus occurrence is additionally influenced by soil clay content and nitrogen concentration. Favorable climate conditions indicate a high prevalence of IHs in East Africa, while the intricate connection with geography might signify either dispersal limitations or environmental filtering. Predicted probabilities demonstrate non-linear patterns, with Bulinus being more likely to occur than Biomphalaria in the region. This study provides foundational framework insights for targeted schistosomiasis prevention and control strategies in the region, assisting health workers and policymakers in their efforts.
Collapse
Affiliation(s)
- Zadoki Tabo
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26 (iFZ), 35392, Giessen, Germany.
- Institute for Landscape Ecology and Resource Management, Justus Liebig University Giessen, Heinrich-Buff-Ring 26 (iFZ), 35392, Giessen, Germany.
| | - Lutz Breuer
- Institute for Landscape Ecology and Resource Management, Justus Liebig University Giessen, Heinrich-Buff-Ring 26 (iFZ), 35392, Giessen, Germany
- Centre for International Development and Environmental Research (ZEU), Justus Liebig University Giessen, Senckenbergstrasse 3, 35390, Giessen, Germany
| | - Codalli Fabia
- Institute for Landscape Ecology and Resource Management, Justus Liebig University Giessen, Heinrich-Buff-Ring 26 (iFZ), 35392, Giessen, Germany
| | - Gorata Samuel
- Institute for Landscape Ecology and Resource Management, Justus Liebig University Giessen, Heinrich-Buff-Ring 26 (iFZ), 35392, Giessen, Germany
- Department of Environmental Science, Faculty of Science, University of Botswana, P/Bag UB00704, Gaborone, Botswana
| | - Christian Albrecht
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26 (iFZ), 35392, Giessen, Germany
| |
Collapse
|
13
|
Ayob N, Burger RP, Belelie MD, Nkosi NC, Havenga H, de Necker L, Cilliers DP. Modelling the historical distribution of schistosomiasis-transmitting snails in South Africa using ecological niche models. PLoS One 2023; 18:e0295149. [PMID: 38033142 PMCID: PMC10688899 DOI: 10.1371/journal.pone.0295149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
Schistosomiasis is a vector-borne disease transmitted by freshwater snails and is prevalent in rural areas with poor sanitation and no access to tap water. Three snail species are known to transmit schistosomiasis in South Africa (SA), namely Biomphalaria pfeifferi, Bulinus globosus and Bulinus africanus. In 2003, a predicted prevalence of 70% was reported in tropical climates in SA. Temperature and rainfall variability can alter schistosomiasis-transmitting snails' development by increasing or decreasing their abundance and geographical distribution. This study aimed to map the historical distribution of schistosomiasis from 1950 to 2006 in SA. The snail sampling data were obtained from the historical National Snail Freshwater Collection (NFSC). Bioclimatic variables were extracted using ERA 5 reanalysis data provided by the Copernicus Climate Change Service. In this study, we used 19 bioclimatic and four soil variables. The temporal aggregation was the mean climatological period pre-calculated over the 40-year reference period with a spatial resolution of 0.5° x 0.5°. Multicollinearity was reduced by calculating the Variance Inflation Factor Core (VIF), and highly correlated variables (> 0.85) were excluded. To obtain an "ensemble" and avoid the integration of weak models, we averaged predictions using the True Skill Statistical (TSS) method. Results showed that the ensemble model achieved the highest Area Under the Curve (AUC) scores (0.99). For B. africanus, precipitation-related variables contributed to determining the suitability for schistosomiasis. Temperature and precipitation-related variables influenced the distribution of B. globosus in all three models. Biomphalaria pfeifferi showed that Temperature Seasonality (bio4) contributed the most (47%) in all three models. According to the models, suitable areas for transmitting schistosomiasis were in the eastern regions of South Africa. Temperature and rainfall can impact the transmission and distribution of schistosomiasis in SA. The results will enable us to develop future projections for Schistosoma in SA based on climate scenarios.
Collapse
Affiliation(s)
- Nisa Ayob
- Unit for Environmental Sciences and Management, North-West University, Mafikeng Campus, Mafikeng, South Africa
| | - Roelof P. Burger
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Potchefstroom, South Africa
| | - Monray D. Belelie
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Potchefstroom, South Africa
| | - Ncobile C. Nkosi
- Unit for Environmental Sciences and Management, North-West University, Mafikeng Campus, Mafikeng, South Africa
| | - Henno Havenga
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Potchefstroom, South Africa
| | - Lizaan de Necker
- South African Institute for Aquatic Biodiversity (NRF-SAIAB), Makhanda, South Africa
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Dirk P. Cilliers
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Potchefstroom, South Africa
| |
Collapse
|
14
|
Liu X, Sun Y, Yin Y, Dai X, Bergquist R, Gao F, Liu R, Liu J, Wang F, Lv X, Zhang Z. Influence of urbanization on schistosomiasis infection risk in Anhui Province based on sixteen year's longitudinal surveillance data: a spatio-temporal modelling study. Infect Dis Poverty 2023; 12:108. [PMID: 38017569 PMCID: PMC10685489 DOI: 10.1186/s40249-023-01163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Urbanization greatly affects the natural and social environment of human existence and may have a multifactoral impact on parasitic diseases. Schistosomiasis, a common parasitic disease transmitted by the snail Oncomelania hupensis, is mainly found in areas with population aggregations along rivers and lakes where snails live. Previous studies have suggested that factors related to urbanization may influence the infection risk of schistosomiasis, but this association remains unclear. This study aimed to analyse the effect of urbanization on schistosomiasis infection risk from a spatial and temporal perspective in the endemic areas along the Yangtze River Basin in China. METHODS County-level schistosomiasis surveillance data and natural environmental factor data covering the whole Anhui Province were collected. The urbanization level was characterized based on night-time light data from the Defense Meteorological Satellite Program Operational Linescan System (DMSP-OLS) and the National Polar-Orbiting Partnership's Visible Infrared Imaging Radiometer Suite (NPP-VIIRS). The geographically and temporally weighted regression model (GTWR) was used to quantify the influence of urbanization on schistosomiasis infection risk with the other potential risk factors controlled. The regression coefficient of urbanization was tested for significance (α = 0.05), and the influence of urbanization on schistosomiasis infection risk was analysed over time and across space based on significant regression coefficients. Variables studied included climate, soil, vegetation, hydrology and topography. RESULTS The mean regression coefficient for urbanization (0.167) is second only to the leached soil area (0.300), which shows that the urbanization is the most important influence factors for schistosomiasis infection risk besides leached soil area. The other important variables are distance to the nearest water source (0.165), mean minimum temperature (0.130), broadleaf forest area (0.105), amount of precipitation (0.073), surface temperature (0.066), soil bulk density (0.037) and grassland area (0.031). The influence of urbanization on schistosomiasis infection risk showed a decreasing trend year by year. During the study period, the significant coefficient of urbanization level increased from - 0.205 to - 0.131. CONCLUSIONS The influence of urbanization on schistosomiasis infection has spatio-temporal heterogeneous. The urbanization does reduce the risk of schistosomiasis infection to some extend, but the strength of this influence decreases with increasing urbanization. Additionally, the effect of urbanization on schistosomiasis infection risk was greater than previous reported natural environmental factors. This study provides scientific basis for understanding the influence of urbanization on schistosomiasis, and also provides the feasible research methods for other similar studies to answer the issue about the impact of urbanization on disease risk.
Collapse
Affiliation(s)
- Xin Liu
- College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao, Shandong, China
| | - Yang Sun
- College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao, Shandong, China
- No. 8 Institute of Geology and Mineral Resources Exploration of Shandong Province, Rizhao, Shandong, China
| | - Yun Yin
- School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Xiaofeng Dai
- College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao, Shandong, China
| | | | - Fenghua Gao
- Anhui Institute of Schistosomiasis Control, Hefei, Anhui, China
| | - Rui Liu
- College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao, Shandong, China
| | - Jie Liu
- College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao, Shandong, China
| | - Fuju Wang
- College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao, Shandong, China
| | - Xiao Lv
- College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao, Shandong, China
| | - Zhijie Zhang
- School of Public Health, Fudan University, Shanghai, China.
- Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China.
| |
Collapse
|
15
|
Kim CL, Agampodi S, Marks F, Kim JH, Excler JL. Mitigating the effects of climate change on human health with vaccines and vaccinations. Front Public Health 2023; 11:1252910. [PMID: 37900033 PMCID: PMC10602790 DOI: 10.3389/fpubh.2023.1252910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/04/2023] [Indexed: 10/31/2023] Open
Abstract
Climate change represents an unprecedented threat to humanity and will be the ultimate challenge of the 21st century. As a public health consequence, the World Health Organization estimates an additional 250,000 deaths annually by 2030, with resource-poor countries being predominantly affected. Although climate change's direct and indirect consequences on human health are manifold and far from fully explored, a growing body of evidence demonstrates its potential to exacerbate the frequency and spread of transmissible infectious diseases. Effective, high-impact mitigation measures are critical in combating this global crisis. While vaccines and vaccination are among the most cost-effective public health interventions, they have yet to be established as a major strategy in climate change-related health effect mitigation. In this narrative review, we synthesize the available evidence on the effect of climate change on vaccine-preventable diseases. This review examines the direct effect of climate change on water-related diseases such as cholera and other enteropathogens, helminthic infections and leptospirosis. It also explores the effects of rising temperatures on vector-borne diseases like dengue, chikungunya, and malaria, as well as the impact of temperature and humidity on airborne diseases like influenza and respiratory syncytial virus infection. Recent advances in global vaccine development facilitate the use of vaccines and vaccination as a mitigation strategy in the agenda against climate change consequences. A focused evaluation of vaccine research and development, funding, and distribution related to climate change is required.
Collapse
Affiliation(s)
- Cara Lynn Kim
- International Vaccine Institute, Seoul, Republic of Korea
| | - Suneth Agampodi
- International Vaccine Institute, Seoul, Republic of Korea
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Florian Marks
- International Vaccine Institute, Seoul, Republic of Korea
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- Madagascar Institute for Vaccine Research, University of Antananarivo, Antananarivo, Madagascar
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
| | - Jerome H. Kim
- International Vaccine Institute, Seoul, Republic of Korea
- College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | | |
Collapse
|
16
|
Faiad SM, Williams MA, Goodman M, Sokolow S, Olden JD, Mitchell K, Andriantsoa R, Gordon Jones JP, Andriamaro L, Ravoniarimbinina P, Rasamy J, Ravelomanana T, Ravelotafita S, Ravo R, Rabinowitz P, De Leo GA, Wood CL. Temperature affects predation of schistosome-competent snails by a novel invader, the marbled crayfish Procambarus virginalis. PLoS One 2023; 18:e0290615. [PMID: 37703262 PMCID: PMC10499222 DOI: 10.1371/journal.pone.0290615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 08/12/2023] [Indexed: 09/15/2023] Open
Abstract
The human burden of environmentally transmitted infectious diseases can depend strongly on ecological factors, including the presence or absence of natural enemies. The marbled crayfish (Procambarus virginalis) is a novel invasive species that can tolerate a wide range of ecological conditions and colonize diverse habitats. Marbled crayfish first appeared in Madagascar in 2005 and quickly spread across the country, overlapping with the distribution of freshwater snails that serve as the intermediate host of schistosomiasis-a parasitic disease of poverty with human prevalence ranging up to 94% in Madagascar. It has been hypothesized that the marbled crayfish may serve as a predator of schistosome-competent snails in areas where native predators cannot and yet no systematic study to date has been conducted to estimate its predation rate on snails. Here, we experimentally assessed marbled crayfish consumption of uninfected and infected schistosome-competent snails (Biomphalaria glabrata and Bulinus truncatus) across a range of temperatures, reflective of the habitat range of the marbled crayfish in Madagascar. We found that the relationship between crayfish consumption and temperature is unimodal with a peak at ~27.5°C. Per-capita consumption increased with body size and was not affected either by snail species or their infectious status. We detected a possible satiation effect, i.e., a small but significant reduction in per-capita consumption rate over the 72-hour duration of the predation experiment. Our results suggest that ecological parameters, such as temperature and crayfish weight, influence rates of consumption and, in turn, the potential impact of the marbled crayfish invasion on snail host populations.
Collapse
Affiliation(s)
- Sara M. Faiad
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States of America
| | - Maureen A. Williams
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States of America
- Department of Biology, McDaniel College, Westminster, MD, United States of America
| | - Maurice Goodman
- Hopkins Marine Station, Dept. of Oceans and of Earth System Science, Doerr School of Sustainability, Stanford University, Stanford, CA, United States of America
| | - Susanne Sokolow
- Hopkins Marine Station, Dept. of Oceans and of Earth System Science, Doerr School of Sustainability, Stanford University, Stanford, CA, United States of America
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States of America
| | - Julian D. Olden
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States of America
| | - Kaitlyn Mitchell
- Hopkins Marine Station, Dept. of Oceans and of Earth System Science, Doerr School of Sustainability, Stanford University, Stanford, CA, United States of America
| | - Ranja Andriantsoa
- Réseau International Schistosomiase Environnement Aménagement et Lutte (RISEAL) Madagascar, Madagascar
| | | | - Luciano Andriamaro
- Réseau International Schistosomiase Environnement Aménagement et Lutte (RISEAL) Madagascar, Madagascar
| | | | - Jeanne Rasamy
- Réseau International Schistosomiase Environnement Aménagement et Lutte (RISEAL) Madagascar, Madagascar
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
| | - Tsilavina Ravelomanana
- Réseau International Schistosomiase Environnement Aménagement et Lutte (RISEAL) Madagascar, Madagascar
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
| | - Salohy Ravelotafita
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
| | - Ranaivosolo Ravo
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
| | - Peter Rabinowitz
- Department of Environmental/Occupational Health Sciences, Global Health, University of Washington, Seattle, WA, United States of America
- Center for One Health Research (COHR), University of Washington, Seattle, WA, United States of America
| | - Giulio A. De Leo
- Hopkins Marine Station, Dept. of Oceans and of Earth System Science, Doerr School of Sustainability, Stanford University, Stanford, CA, United States of America
- Woods Institute for the Environment, Stanford University, Stanford, CA, United States of America
| | - Chelsea L. Wood
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
17
|
Abstract
In 1978, the theory behind helminth parasites having the potential to regulate the abundance of their host populations was formalized based on the understanding that those helminth macroparasites that reduce survival or fecundity of the infected host population would be among the forces limiting unregulated host population growth. Now, 45 years later, a phenomenal breadth of factors that directly or indirectly affect the host-helminth interaction has emerged. Based largely on publications from the past 5 years, this review explores the host-helminth interaction from three lenses: the perspective of the helminth, the host, and the environment. What biotic and abiotic as well as social and intrinsic host factors affect helminths? What are the negative, and positive, implications for host populations and communities? What are the larger-scale implications of the host-helminth dynamic on the environment, and what evidence do we have that human-induced environmental change will modify this dynamic? The overwhelming message is that context is everything. Our understanding of second-, third-, and fourth-level interactions is extremely limited, and we are far from drawing generalizations about the myriad of microbe-helminth-host interactions.Yet the intricate, co-evolved balance and complexity of these interactions may provide a level of resilience in the face of global environmental change. Hopefully, this albeit limited compilation of recent research will spark new interdisciplinary studies, and application of the One Health approach to all helminth systems will generate new and testable conceptual frameworks that encompass our understanding of the host-helminth-environment triad.
Collapse
Affiliation(s)
- M E Scott
- Institute of Parasitology, McGill University (Macdonald Campus), 21,111 Lakeshore Road, Ste-Anne de Bellevue, QuebecH9X 3V9, Canada
| |
Collapse
|
18
|
Reitzug F, Ledien J, Chami GF. Associations of water contact frequency, duration, and activities with schistosome infection risk: A systematic review and meta-analysis. PLoS Negl Trop Dis 2023; 17:e0011377. [PMID: 37315020 DOI: 10.1371/journal.pntd.0011377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/12/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Schistosomiasis is a water-borne parasitic disease which affects over 230 million people globally. The relationship between contact with open freshwater bodies and the likelihood of schistosome infection remains poorly quantified despite its importance for understanding transmission and parametrising transmission models. METHODS We conducted a systematic review to estimate the average effect of water contact duration, frequency, and activities on schistosome infection likelihood. We searched Embase, MEDLINE (including PubMed), Global Health, Global Index Medicus, Web of Science, and the Cochrane Central Register of Controlled Trials from inception until May 13, 2022. Observational and interventional studies reporting odds ratios (OR), hazard ratios (HR), or sufficient information to reconstruct effect sizes on individual-level associations between water contact and infection with any Schistosoma species were eligible for inclusion. Random-effects meta-analysis with inverse variance weighting was used to calculate pooled ORs and 95% confidence intervals (CIs). RESULTS We screened 1,411 studies and included 101 studies which represented 192,691 participants across Africa, Asia, and South America. Included studies mostly reported on water contact activities (69%; 70/101) and having any water contact (33%; 33/101). Ninety-six percent of studies (97/101) used surveys to measure exposure. A meta-analysis of 33 studies showed that individuals with water contact were 3.14 times more likely to be infected (OR 3.14; 95% CI: 2.08-4.75) when compared to individuals with no water contact. Subgroup analyses showed that the positive association of water contact with infection was significantly weaker in children compared to studies which included adults and children (OR 1.67; 95% CI: 1.04-2.69 vs. OR 4.24; 95% CI: 2.59-6.97). An association of water contact with infection was only found in communities with ≥10% schistosome prevalence. Overall heterogeneity was substantial (I2 = 93%) and remained high across all subgroups, except in direct observation studies (I2 range = 44%-98%). We did not find that occupational water contact such as fishing and agriculture (OR 2.57; 95% CI: 1.89-3.51) conferred a significantly higher risk of schistosome infection compared to recreational water contact (OR 2.13; 95% CI: 1.75-2.60) or domestic water contact (OR 1.91; 95% CI: 1.47-2.48). Higher duration or frequency of water contact did not significantly modify infection likelihood. Study quality across analyses was largely moderate or poor. CONCLUSIONS Any current water contact was robustly associated with schistosome infection status, and this relationship held across adults and children, and schistosomiasis-endemic areas with prevalence greater than 10%. Substantial gaps remain in published studies for understanding interactions of water contact with age and gender, and the influence of these interactions for infection likelihood. As such, more empirical studies are needed to accurately parametrise exposure in transmission models. Our results imply the need for population-wide treatment and prevention strategies in endemic settings as exposure within these communities was not confined to currently prioritised high-risk groups such as fishing populations.
Collapse
Affiliation(s)
- Fabian Reitzug
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Julia Ledien
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Goylette F Chami
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Matsumoto-Takahashi ELA, Kumagai T, Oyoshi K, Sasaki Y, Mizukami Y, Hongvanthong B, Brey PT, Kano S, Iwagami M. Impact of precipitation on the prevalence of schistosomiasis mekongi in Lao PDR: Structural equation modelling using Earth observation satellite data. One Health 2023; 16:100563. [PMID: 37363222 PMCID: PMC10288094 DOI: 10.1016/j.onehlt.2023.100563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/28/2023] Open
Abstract
Increasing attention is being given to the effect of climate change on schistosomiasis, but the impact is currently unknown. As the intermediate snail host (Neotricula aperta) of Schistosoma mekongi inhabits the Mekong River, it is thought that environmental factors affecting the area of water will have an impact on the occurrence of schistosomiasis mekongi. The aim of the present study was to assess the impact of precipitation on the prevalence of human schistosomiasis mekongi using epidemiological data and Earth observation satellite data in Khong district, Champasak province, Lao PDR. Structural equation modelling (SEM) using epidemiological data and Earth observation satellite data was conducted to determine the factors associated with the number of schistosomiasis mekongi patients. As a result, SEM identified 3 significant factors independently associated with schistosomiasis mekongi: (1) a negative association with mass drug administration (MDA); (2) negative association with total precipitation per year; and (3) positive association with precipitation during the dry season. Precisely, regardless of MDA, the increase in total yearly precipitation was suggested to decrease the number of schistosomiasis patients, whereas an increase in precipitation in the dry season increased the number of schistosomiasis patients. This is probably because when total precipitation increases, the water level of the Mekong River rises, thus decreasing the density of infected larvae, cercaria, in the water, and the frequency of humans entering the river would also decrease. In contrast, when precipitation in the dry season is higher, the water level of the Mekong River also rises, which expands the snail habitant, and thus water contact between humans and the snails would also increase. The present study results suggest that increasing precipitation would impact the prevalence of schistosomiasis both positively and negatively, and precipitation should also be considered in the policy to eliminate schistosomiasis mekongi in Lao PDR.
Collapse
Affiliation(s)
- Emilie Louise Akiko Matsumoto-Takahashi
- Department of Tropical Medicine and Malaria, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
- Graduate School of Public Health, St. Luke's International University, Tokyo, Japan
| | - Takashi Kumagai
- Department of Parasitology & Tropical Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kei Oyoshi
- Earth Observation Research Center (EORC), Space Technology Directorate I, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
| | - Yoshinobu Sasaki
- Earth Observation Research Center (EORC), Space Technology Directorate I, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
| | - Yousei Mizukami
- Earth Observation Research Center (EORC), Space Technology Directorate I, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
| | - Bouasy Hongvanthong
- Center of Malariology, Parasitology and Entomology (CMPE), Ministry of Health, Vientiane, Lao Democratic People’s Republic
| | - Paul T. Brey
- Institut Pasteur du Laos (IPL), Ministry of Health, Vientiane, Lao Democratic People’s Republic
| | - Shigeyuki Kano
- Department of Tropical Medicine and Malaria, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
- Parasitology Laboratory, Institut Pasteur du Laos (IPL), Ministry of Health, Vientiane, Lao Democratic People’s Republic
| | - Moritoshi Iwagami
- Department of Tropical Medicine and Malaria, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
- Parasitology Laboratory, Institut Pasteur du Laos (IPL), Ministry of Health, Vientiane, Lao Democratic People’s Republic
| |
Collapse
|
20
|
Blin M, Senghor B, Boissier J, Mulero S, Rey O, Portela J. Development of environmental loop-mediated isothermal amplification (eLAMP) diagnostic tool for Bulinus truncatus field detection. Parasit Vectors 2023; 16:78. [PMID: 36855192 PMCID: PMC9972309 DOI: 10.1186/s13071-023-05705-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Global changes are reshaping the distribution of vector-borne diseases by spreading vectors to previously non-endemic areas. Since 2013, urogenital schistosomiasis has emerged in Corsica and threatens European countries. Gastropod vectors release schistosome larvae that can infect humans who come into contact with freshwater bodies. Monitoring schistosomiasis host vectors is a prerequisite to understand and subsequently to control this pathogen transmission. Because malacological surveys are time consuming and require special expertise, the use of a simple molecular method is desirable. METHODS The aim of this study is to develop a ready-to-use protocol using the LAMP (loop-mediated isothermal amplification) method to detect environmental DNA of Bulinus truncatus, vector of Schistosoma haematobium. Interestingly, LAMP method possesses all the characteristics required for adaptability to field conditions particularly in low-income countries: speed, simplicity, lyophilized reagents, low cost and robustness against DNA amplification inhibitors. We have tested this new method on Corsican water samples previously analysed by qPCR and ddPCR. RESULTS We demonstrate that our diagnostic tool B. truncatus eLAMP (Bt-eLAMP) can detect the eDNA of Bulinus truncatus as effectively as the two other methods. Bt-eLAMP can even detect 1/4 of positive samples not detectable by qPCR. Moreover, the complete Bt-eLAMP protocol (sampling, sample pre-process, amplification and revelation) does not require sophisticated equipment and can be done in 1 ½ h. CONCLUSIONS LAMP detection of environmental DNA provides large-scale sensitive surveillance of urogenital schistosomiasis possible by identifying potentially threatened areas. More generally, eLAMP method has great potential in vector-borne diseases and ecology.
Collapse
Affiliation(s)
- Manon Blin
- Hosts Pathogens Environment Interactions, UMR 5244, CNRS, IFREMER, UM, University of Perpignan, Via Domitia, 66860, Perpignan, France. .,SAS ParaDev®, 66860, Perpignan, France.
| | - Bruno Senghor
- VITROME, IRD-UCAD International Campus, 1386 Dakar, Senegal
| | - Jérôme Boissier
- grid.11136.340000 0001 2192 5916Hosts Pathogens Environment Interactions, UMR 5244, CNRS, IFREMER, UM, University of Perpignan, Via Domitia, 66860 Perpignan, France
| | - Stephen Mulero
- grid.11136.340000 0001 2192 5916Hosts Pathogens Environment Interactions, UMR 5244, CNRS, IFREMER, UM, University of Perpignan, Via Domitia, 66860 Perpignan, France ,Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS-LECA, 38000 Grenoble, France
| | - Olivier Rey
- grid.11136.340000 0001 2192 5916Hosts Pathogens Environment Interactions, UMR 5244, CNRS, IFREMER, UM, University of Perpignan, Via Domitia, 66860 Perpignan, France
| | | |
Collapse
|
21
|
Babbitt CR, Laidemitt MR, Mutuku MW, Oraro PO, Brant SV, Mkoji GM, Loker ES. Bulinus snails in the Lake Victoria Basin in Kenya: Systematics and their role as hosts for schistosomes. PLoS Negl Trop Dis 2023; 17:e0010752. [PMID: 36763676 PMCID: PMC9949660 DOI: 10.1371/journal.pntd.0010752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/23/2023] [Accepted: 01/20/2023] [Indexed: 02/12/2023] Open
Abstract
The planorbid gastropod genus Bulinus consists of 38 species that vary in their ability to vector Schistosoma haematobium (the causative agent of human urogenital schistosomiasis), other Schistosoma species, and non-schistosome trematodes. Relying on sequence-based identifications of bulinids (partial cox1 and 16S) and Schistosoma (cox1 and ITS), we examined Bulinus species in the Lake Victoria Basin in Kenya for naturally acquired infections with Schistosoma species. We collected 6,133 bulinids from 11 sites between 2014-2021, 226 (3.7%) of which harbored Schistosoma infections. We found 4 Bulinus taxa from Lake Victoria (B. truncatus, B. tropicus, B. ugandae, and B. cf. transversalis), and an additional 4 from other habitats (B. globosus, B. productus, B. forskalii, and B. scalaris). S. haematobium infections were found in B. globosus and B. productus (with infections in the former predominating) whereas S. bovis infections were identified in B. globosus, B. productus, B. forskalii, and B. ugandae. No nuclear/mitochondrial discordance potentially indicative of S. haematobium/S. bovis hybridization was detected. We highlight the presence of Bulinus ugandae as a distinct lake-dwelling taxon closely related to B. globosus yet, unlike all other members of the B. africanus species group, is likely not a vector for S. haematobium, though it does exhibit susceptibility to S. bovis. Other lake-dwelling bulinids also lacked S. haematobium infections, supporting the possibility that they all lack compatibility with local S. haematobium, thereby preventing widespread transmission of urogenital schistosomiasis in the lake's waters. We support B. productus as a distinct species from B. nasutus, B. scalaris as distinct from B. forskalii, and add further evidence for a B. globosus species complex with three lineages represented in Kenya alone. This study serves as an essential prelude for investigating why these patterns in compatibility exist and whether the underlying biological mechanisms may be exploited for the purpose of limiting schistosome transmission.
Collapse
Affiliation(s)
- Caitlin R. Babbitt
- Center for Evolutionary and Theoretical Immunology, Division of Parasites, Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Martina R. Laidemitt
- Center for Evolutionary and Theoretical Immunology, Division of Parasites, Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Martin W. Mutuku
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Polycup O. Oraro
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Sara V. Brant
- Center for Evolutionary and Theoretical Immunology, Division of Parasites, Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Gerald M. Mkoji
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Eric S. Loker
- Center for Evolutionary and Theoretical Immunology, Division of Parasites, Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
22
|
A retrospective analysis of schistosomiasis related literature from 2011-2020: Focusing on the next decade. Acta Trop 2023; 238:106750. [PMID: 36372254 DOI: 10.1016/j.actatropica.2022.106750] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Schistosomiasis, an ancient and neglected tropical disease, which poses a huge threat to over 200 million people globally. It is necessary to have a general summary of schistosomiasis research after the new roadmap 2021-2030 issued by WHO. This study analyzes the current status of schistosomiasis research from the perspective of the One Health concept by analyzing important research literature published from 2011 to 2020, while further highlighting research priorities, difficulties, and research directions in order to propose suggestions for tropical disease studies research. METHODS Published literature related to schistosomiasis was searched from the Web of Science Core Collection (WoSCC) database. Focusing on a visual analysis of the main research literature in the field of schistosomiasis, CiteSpace software was used to conduct co-occurrence analysis with keywords, countries, institutions, and authors. Moreover, clustering and burst analyses of keywords and co-citation analysis of authors, publications, and journals were performed. RESULTS A total of 6638 schistosomiasis-related articles were published from 2011 to 2020, all of which can be sourced from the WoSCC database. The publication of schistosomiasis research has remained stable over the past 10 years, and contains studies in the area of human epidemiology, animal surveillance and the environment. The top five high-frequency keywords included Schistosoma mansoni, schistosomiasis, infection, praziquantel, and Schistosoma japonicum. The keywords formed nine clusters, including praziquantel, epidemiology, Schistosoma japonicum, helminths, protein, diagnosis, schistosomiasis, response, and haematobium. In recent years, most research studies focused on the mechanism of liver fibrosis, eliminating schistosomiasis, controlling risk factors, and the relationship between schistosomiasis infection and host immunity. The most productive countries include the United States, China, and Brazil, and the most productive institutions are the University of Basel, the Swiss Tropical and Public Health Institute, and the University of São Paulo. Highly productive authors include Jürg Utzinger and Donald P. McManus. At the time of writing, the author with the highest co-citation frequency (993 times) was Peter Hotez, and the journal with the highest co-citation frequency (3,720 times) was PLoS Neglected Tropical Diseases. Human schistosomiasis, published by Colley et al. (2014), was the most frequently co-cited publication (494 times). CONCLUSIONS This study provides a preliminary description of the current status of schistosomiasis research and an initial exploration of future research directions. The One Health concept was applied in the field of schistosomiasis control, as confirmed by this bibliometric analysis. Our study provides guidance for the development of research on schistosomiasis and other neglected tropical diseases.
Collapse
|
23
|
Environmental DNA in human and veterinary parasitology - Current applications and future prospects for monitoring and control. Food Waterborne Parasitol 2022; 29:e00183. [DOI: 10.1016/j.fawpar.2022.e00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022] Open
|
24
|
Urogenital schistosomiasis among pre-school and school aged children in four districts of north western Tanzania after 15 years of mass drug administration: Geographical prevalence, risk factors and performance of haematuria reagent strips. PLoS Negl Trop Dis 2022; 16:e0010834. [PMID: 36223393 PMCID: PMC9591047 DOI: 10.1371/journal.pntd.0010834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/24/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Urogenital schistosomiasis remains as a public health problem in Tanzania and for the past 15 years, mass drug administration (MDA) targeting primary school children has remained as the mainstay for its control. However, after multiple rounds of MDA in highly risk groups, there are no data on the current status of Schistosoma haematobium in known endemic areas. Furthermore, the performance of commonly used diagnostic test, the urine reagent strips is not known after the decline in prevalence and intensities of infection following repeated rounds of treatment. Thus, after 15 of national MDA, there is a need to review the strategy and infection diagnostic tools available to inform the next stage of schistosomiasis control in the country. METHODS/FINDINGS A analytical cross-sectional study was conducted between October and November, 2019 among pre-school (3-5years old) and school aged children (6-17 years old) living in four (4) districts with low (<10%) and moderate (10%-<50%) endemicity for schistosomiasis as per WHO classification at the start of the national control programme in 2005/06, with mean prevalence of 20.7%. A total of 20,389 children from 88 randomly selected primary schools participated in the study. A questionnaire was used to record demographic information. A single urine sample was obtained from each participant and visually examined for macrohaematuria, tested with a dipstick for micro-haematuria, to determine blood in urine; a marker of schistosome related morbidity and a proxy of infection. Infection intensity was determined by parasitological examination of the urine sample for S. haematobium eggs. Overall, mean infection prevalence was 7.4% (95%CI: 7.0-7.7, 1514/20,389) and geometric mean infection intensity was 15.8eggs/10mls. Both infection prevalence (5.9% versus 9%, P<0.001) and intensity (t = -6.9256, P<0.001) were significantly higher in males compared to females respectively. Light and heavy infections were detected in 82.3% and 17.7% of the positive children respectively. The prevalence of macrohaematuria was 0.3% and that of microhaematuria was 9.3% (95%CI:8.9-9.7). The sensitivity and specificity of the urine reagent strip were 78% (95%CI: 76.1-79.9) and 99.8% (95%CI: 99.7-99.9). Having light (P<0.001) and heavy infection intensities (P<0.001) and living in the study districts increased the odd of having microhaematuria. Predictors of S. haematobium infection were being male (P<0.003), microhaematuria (P<0.001), and living in the three study districts (P<0.001) compared to living at Nzega district. CONCLUSION The findings provide an updated geographical prevalence which gives an insight on the planning and implementation of MDA. Comparing with the earlier mapping survey at the start of the national wide mass drug administration, the prevalence of S. haematobium infection have significantly declined. This partly could be attributed to repeated rounds of mass drug administration. The urine reagent strips remain as a useful adjunct diagnostic test for rapid monitoring of urogenital schistosomiasis in areas with low and high prevalence. Based on prevalence levels and with some schools having no detectable infections, review of the current blanket mass drug administration is recommended.
Collapse
|
25
|
Maes T, De Corte Z, Vangestel C, Virgilio M, Smitz N, Djuikwo-Teukeng FF, Papadaki MI, Huyse T. Large-scale and small-scale population genetic structure of the medically important gastropod species Bulinus truncatus (Gastropoda, Heterobranchia). Parasit Vectors 2022; 15:328. [PMID: 36123605 PMCID: PMC9484234 DOI: 10.1186/s13071-022-05445-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/12/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Gastropod snails remain strongly understudied, despite their important role in transmitting parasitic diseases. Knowledge of their distribution and population dynamics increases our understanding of the processes driving disease transmission. We report the first study to use high-throughput sequencing (HTS) to elucidate the population genetic structure of the hermaphroditic snail Bulinus truncatus (Gastropoda, Heterobranchia) on a regional (17-150 km) and inter-regional (1000-5400 km) scale. This snail species acts as an intermediate host of Schistosoma haematobium and Schistosoma bovis, which cause human and animal schistosomiasis respectively. METHODS Bulinus truncatus snails were collected in Senegal, Cameroon, Egypt and France and identified through DNA barcoding. A single-end genotyping-by-sequencing (GBS) library, comprising 87 snail specimens from the respective countries, was built and sequenced on an Illumina HiSeq 2000 platform. Reads were mapped against S. bovis and S. haematobium reference genomes to identify schistosome infections, and single nucleotide polymorphisms (SNPs) were scored using the Stacks pipeline. These SNPs were used to estimate genetic diversity, assess population structure and construct phylogenetic trees of B. truncatus. RESULTS A total of 10,750 SNPs were scored and used in downstream analyses. The phylogenetic analysis identified five clades, each consisting of snails from a single country but with two distinct clades within Senegal. Genetic diversity was low in all populations, reflecting high selfing rates, but varied between locations due to habitat variability. Significant genetic differentiation and isolation by distance patterns were observed at both spatial scales, indicating that gene flow is not strong enough to counteract the effects of population bottlenecks, high selfing rates and genetic drift. Remarkably, the population genetic differentiation on a regional scale (i.e. within Senegal) was as large as that between populations on an inter-regional scale. The blind GBS technique was able to pick up parasite DNA in snail tissue, demonstrating the potential of HTS techniques to further elucidate the role of snail species in parasite transmission. CONCLUSIONS HTS techniques offer a valuable toolbox to further investigate the population genetic patterns of intermediate schistosome host snails and the role of snail species in parasite transmission.
Collapse
Affiliation(s)
- Tim Maes
- Department of Biology, Katholieke Universiteit Leuven, Ch. Deberiotstraat 32, 3000 Leuven, Belgium
- Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium
| | - Zoë De Corte
- Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium
- Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium
| | - Carl Vangestel
- Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium
- Terrestrial Ecology Unit, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | | | - Nathalie Smitz
- Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium
| | | | - Maria Ioanna Papadaki
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Tine Huyse
- Department of Biology, Katholieke Universiteit Leuven, Ch. Deberiotstraat 32, 3000 Leuven, Belgium
- Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium
| |
Collapse
|
26
|
Pizem H, Ben‐Arie‐Weintrob Y, Naaman E. Neuroretinitis with secondary retinal venous stasis in a patient with Schistosomiasis. Am J Ophthalmol Case Rep 2022; 25:101355. [PMID: 35146207 PMCID: PMC8818522 DOI: 10.1016/j.ajoc.2022.101355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/09/2021] [Accepted: 01/22/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Schistosomiasis, one of the most important parasitic diseases in humans, is caused by the trematode parasites. Common manifestations include gastrointestinal and genitourinary symptoms while ophthalmologic involvement is rare. Here we report a case of retinal vein occlusion and neuroretinitis secondary to a schistosomiasisis infection. OBSERVATIONS A healthy 23-year-old man presented with headache and decreased vision in his right eye. Ophthalmic examination revealed a swollen disc, engorged retinal veins with retinal hemorrhages in all quadrants and macular edema with hard exudates ('macular star'). Fluorescein Angiography demonstrated a hot disk and an irregular pattern of filling defects along a major retinal vein. Further questioning revealed that a few months earlier, the patient had returned from an endemic area and was found seropositive for schistosomiasis. CONCLUSION In this case of neuroretinitis and secondary retinal venous stasis, the presumed underlying mechanism is associated with embolization of Schistosoma eggs or deposition of immune complexes. Although ophthalmic manifestations of schistosomiasis are rare, awareness should be maintained especially among world-travelers with unusual ocular findings.
Collapse
Affiliation(s)
- Hadas Pizem
- Department of Ophthalmology, Rambam Health Care Campus, Haifa, Israel
| | | | - Efrat Naaman
- Department of Ophthalmology, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
27
|
Zhong H, Gui X, Hou L, Lv R, Jin Y. From Inflammation to Fibrosis: Novel Insights into the Roles of High Mobility Group Protein Box 1 in Schistosome-Induced Liver Damage. Pathogens 2022; 11:pathogens11030289. [PMID: 35335612 PMCID: PMC8951358 DOI: 10.3390/pathogens11030289] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 12/20/2022] Open
Abstract
Schistosomiasis is a chronic helminthic disease of both humans and animals and the second most prevalent parasitic disease after malaria. Through a complex migration process, schistosome eggs trapped in the liver can lead to the formation of granulomas and subsequent schistosome-induced liver damage, which results in high mortality and morbidity. Although praziquantel can eliminate mature worms and prevent egg deposition, effective drugs to reverse schistosome-induced liver damage are scarce. High mobility group box 1 (HMGB1) is a multifunctional cytokine contributing to liver injury, inflammation, and immune responses in schistosomiasis by binding to cell-surface Toll-like receptors and receptors for advanced glycation end products. HMGB1 is increased in the serum of patients with schistosomiasis and enables hepatic stellate cells to adopt a proliferative myofibroblast-like phenotype, which is crucial to schistosome-induced granuloma formation. Inhibition of HMGB1 was found to generate protective responses against fibrotic diseases in animal models. Clinically, HMGB1 presents a potential target for treatment of the chronic sequelae of schistosomiasis. Here, the pivotal role of HMGB1 in granuloma formation and schistosome-induced liver damage, as well the potential of HMGB1 as a therapeutic target, are discussed.
Collapse
Affiliation(s)
- Haoran Zhong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (X.G.); (L.H.); (R.L.)
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiang Gui
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (X.G.); (L.H.); (R.L.)
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Ling Hou
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (X.G.); (L.H.); (R.L.)
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030031, China
| | - Rongxue Lv
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (X.G.); (L.H.); (R.L.)
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yamei Jin
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (X.G.); (L.H.); (R.L.)
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Correspondence: ; Tel./Fax: +86-021-34293150
| |
Collapse
|
28
|
Deka MA. Predictive Risk Mapping of Schistosomiasis in Madagascar Using Ecological Niche Modeling and Precision Mapping. Trop Med Infect Dis 2022; 7:15. [PMID: 35202211 PMCID: PMC8876685 DOI: 10.3390/tropicalmed7020015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 01/27/2023] Open
Abstract
Schistosomiasis is a neglected tropical disease (NTD) found throughout tropical and subtropical Africa. In Madagascar, the condition is widespread and endemic in 74% of all administrative districts in the country. Despite the significant burden of the disease, high-resolution risk maps have yet to be produced to guide national control programs. This study used an ecological niche modeling (ENM) and precision mapping approach to estimate environmental suitability and disease transmission risk. The results show that suitability for schistosomiasis is widespread and covers 264,781 km2 (102,232 sq miles). Covariates of significance to the model were the accessibility to cities, distance to water, enhanced vegetation index (EVI), annual mean temperature, land surface temperature (LST), clay content, and annual precipitation. Disease transmission risk is greatest in the central highlands, tropical east coast, arid-southwest, and northwest. An estimated 14.9 million people could be at risk of schistosomiasis; 11.4 million reside in rural areas, while 3.5 million are in urban areas. This study provides valuable insight into the geography of schistosomiasis in Madagascar and its potential risk to human populations. Because of the focal nature of the disease, these maps can inform national surveillance programs while improving understanding of areas in need of medical interventions.
Collapse
Affiliation(s)
- Mark A Deka
- Centers for Disease Control and Prevention (CDC), 4770 Buford Hwy NE, Atlanta, GA 30341, USA
| |
Collapse
|
29
|
Santa MA, Musiani M, Ruckstuhl KE, Massolo A. A review on invasions by parasites with complex life cycles: the European strain of Echinococcus multilocularis in North America as a model. Parasitology 2021; 148:1532-1544. [PMID: 35060461 PMCID: PMC8564803 DOI: 10.1017/s0031182021001426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/14/2021] [Accepted: 07/30/2021] [Indexed: 12/28/2022]
Abstract
In a fast-changing and globalized world, parasites are moved across continents at an increasing pace. Co-invasion of parasites and their hosts is leading to the emergence of infectious diseases at a global scale, underlining the need for integration of biological invasions and disease ecology research. In this review, the ecological and evolutionary factors influencing the invasion process of parasites with complex life cycles were analysed, using the invasion of the European strain of Echinococcus multilocularis in North America as a model. The aim was to propose an ecological framework for investigating the invasion of parasites that are trophically transmitted through predator–prey interactions, showing how despite the complexity of the cycles and the interactions among multiple hosts, such parasites can overcome multiple barriers and become invasive. Identifying the key ecological processes affecting the success of parasite invasions is an important step for risk assessment and development of management strategies, particularly for parasites with the potential to infect people (i.e. zoonotic).
Collapse
Affiliation(s)
- Maria A. Santa
- Department of Biology, University of Calgary, AlbertaT2N 1N4, Canada
| | - Marco Musiani
- Department of Biology, University of Calgary, AlbertaT2N 1N4, Canada
| | | | - Alessandro Massolo
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, AlbertaT2N 4Z6, Canada
- Ethology Unit, Department of Biology, University of Pisa, Pisa, 56126, Italy
- UMR CNRS 6249 Chrono-Environnement, Université Bourgogne Franche-Comté, Besançon, 25030, France
| |
Collapse
|
30
|
Williams PC, Bartlett AW, Howard-Jones A, McMullan B, Khatami A, Britton PN, Marais BJ. Impact of climate change and biodiversity collapse on the global emergence and spread of infectious diseases. J Paediatr Child Health 2021; 57:1811-1818. [PMID: 34792238 DOI: 10.1111/jpc.15681] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/29/2022]
Abstract
The reality of climate change and biodiversity collapse is irrefutable in the 21st century, with urgent action required not only to conserve threatened species but also to protect human life and wellbeing. This existential threat forces us to recognise that our existence is completely dependent upon well-functioning ecosystems that sustain the diversity of life on our planet, including that required for human health. By synthesising data on the ecology, epidemiology and evolutionary biology of various pathogens, we are gaining a better understanding of factors that underlie disease emergence and spread. However, our knowledge remains rudimentary with limited insight into the complex feedback loops that underlie ecological stability, which are at risk of rapidly unravelling once certain tipping points are breached. In this paper, we consider the impact of climate change and biodiversity collapse on the ever-present risk of infectious disease emergence and spread. We review historical and contemporaneous infectious diseases that have been influenced by human environmental manipulation, including zoonoses and vector- and water-borne diseases, alongside an evaluation of the impact of migration, urbanisation and human density on transmissible diseases. The current lack of urgency in political commitment to address climate change warrants enhanced understanding and action from paediatricians - to ensure that we safeguard the health and wellbeing of children in our care today, as well as those of future generations.
Collapse
Affiliation(s)
- Phoebe Cm Williams
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia.,Department of Infectious Diseases and Microbiology, Sydney Children's Hospital, Sydney, New South Wales, Australia.,The School of Women's and Children's Health, The University of New South Wales, Sydney, New South Wales, Australia
| | - Adam W Bartlett
- Department of Infectious Diseases and Microbiology, Sydney Children's Hospital, Sydney, New South Wales, Australia.,The School of Women's and Children's Health, The University of New South Wales, Sydney, New South Wales, Australia
| | - Annaleise Howard-Jones
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia.,Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Brendan McMullan
- Department of Infectious Diseases and Microbiology, Sydney Children's Hospital, Sydney, New South Wales, Australia.,The School of Women's and Children's Health, The University of New South Wales, Sydney, New South Wales, Australia
| | - Ameneh Khatami
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia.,Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Philip N Britton
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia.,Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Ben J Marais
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia.,Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| |
Collapse
|
31
|
Bergquist R, Luvall JC, Malone JB. The changing risk of vector-borne diseases: Global satellite remote sensing and geospatial surveillance at the forefront. GEOSPATIAL HEALTH 2021; 16. [PMID: 34726037 DOI: 10.4081/gh.2021.1047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Not available.
Collapse
Affiliation(s)
| | - Jeffrey C Luvall
- National Aeronautics Space Administration (NASA), Huntsville, AL.
| | - John B Malone
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA.
| |
Collapse
|
32
|
Ponpetch K, Erko B, Bekana T, Kebede T, Tian D, Yang Y, Liang S. Environmental Drivers and Potential Distribution of Schistosoma mansoni Endemic Areas in Ethiopia. Microorganisms 2021; 9:2144. [PMID: 34683465 PMCID: PMC8541272 DOI: 10.3390/microorganisms9102144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
In Ethiopia, human schistosomiasis is caused by two species of schistosome, Schistosoma mansoni and S. haematobium, with the former being dominant in the country, causing infections of more than 5 million people and more than 37 million at risk of infection. What is more, new transmission foci for S. mansoni have been reported over the past years in the country, raising concerns over the potential impacts of environmental changes (e.g., climate change) on the disease spread. Knowledge on the distribution of schistosomiasis endemic areas and associated drivers is much needed for surveillance and control programs in the country. Here we report a study that aims to examine environmental determinants underlying the distribution and suitability of S. mansoni endemic areas at the national scale of Ethiopia. The study identified that, among five physical environmental factors examined, soil property, elevation, and climatic factors (e.g., precipitation and temperature) are key factors associated with the distribution of S. mansoni endemic areas. The model predicted that the suitable areas for schistosomiasis transmission are largely distributed in northern, central, and western parts of the country, suggesting a potentially wide distribution of S. mansoni endemic areas. The findings of this study are potentially instrumental to inform public health surveillance, intervention, and future research on schistosomiasis in Ethiopia. The modeling approaches employed in this study may be extended to other schistosomiasis endemic regions and to other vector-borne diseases.
Collapse
Affiliation(s)
- Keerati Ponpetch
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA;
- Praboromarajchanok Institute, Faculty of Public Health and Allied Health Sciences, Sirindhorn College of Public Health Trang, Trang 92110, Thailand
| | - Berhanu Erko
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa 3614, Ethiopia; (B.E.); (T.B.); (T.K.)
| | - Teshome Bekana
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa 3614, Ethiopia; (B.E.); (T.B.); (T.K.)
| | - Tadesse Kebede
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa 3614, Ethiopia; (B.E.); (T.B.); (T.K.)
- Department of Microbiology, Immunology and Parasitology, School of Medicine, Addis Ababa University, Addis Ababa 9086, Ethiopia
| | - Di Tian
- Department of Crop, Soil, and Environmental Science, Auburn University, Auburn, AL 36849, USA;
| | - Yang Yang
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA;
- Department of Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA
| | - Song Liang
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
33
|
Gong YF, Zhu LQ, Li YL, Zhang LJ, Xue JB, Xia S, Lv S, Xu J, Li SZ. Identification of the high-risk area for schistosomiasis transmission in China based on information value and machine learning: a newly data-driven modeling attempt. Infect Dis Poverty 2021; 10:88. [PMID: 34176515 PMCID: PMC8237418 DOI: 10.1186/s40249-021-00874-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/15/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Schistosomiasis control is striving forward to transmission interruption and even elimination, evidence-lead control is of vital importance to eliminate the hidden dangers of schistosomiasis. This study attempts to identify high risk areas of schistosomiasis in China by using information value and machine learning. METHODS The local case distribution from schistosomiasis surveillance data in China between 2005 and 2019 was assessed based on 19 variables including climate, geography, and social economy. Seven models were built in three categories including information value (IV), three machine learning models [logistic regression (LR), random forest (RF), generalized boosted model (GBM)], and three coupled models (IV + LR, IV + RF, IV + GBM). Accuracy, area under the curve (AUC), and F1-score were used to evaluate the prediction performance of the models. The optimal model was selected to predict the risk distribution for schistosomiasis. RESULTS There is a more prone to schistosomiasis epidemic provided that paddy fields, grasslands, less than 2.5 km from the waterway, annual average temperature of 11.5-19.0 °C, annual average rainfall of 1000-1550 mm. IV + GBM had the highest prediction effect (accuracy = 0.878, AUC = 0.902, F1 = 0.920) compared with the other six models. The results of IV + GBM showed that the risk areas are mainly distributed in the coastal regions of the middle and lower reaches of the Yangtze River, the Poyang Lake region, and the Dongting Lake region. High-risk areas are primarily distributed in eastern Changde, western Yueyang, northeastern Yiyang, middle Changsha of Hunan province; southern Jiujiang, northern Nanchang, northeastern Shangrao, eastern Yichun in Jiangxi province; southern Jingzhou, southern Xiantao, middle Wuhan in Hubei province; southern Anqing, northwestern Guichi, eastern Wuhu in Anhui province; middle Meishan, northern Leshan, and the middle of Liangshan in Sichuan province. CONCLUSIONS The risk of schistosomiasis transmission in China still exists, with high-risk areas relatively concentrated in the coastal regions of the middle and lower reaches of the Yangtze River. Coupled models of IV and machine learning provide for effective analysis and prediction, forming a scientific basis for evidence-lead surveillance and control.
Collapse
Affiliation(s)
- Yan-Feng Gong
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; HC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Ling-Qian Zhu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; HC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Yin-Long Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; HC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Li-Juan Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; HC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Jing-Bo Xue
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; HC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Shang Xia
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; HC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai, 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shan Lv
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; HC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai, 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; HC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Shi-Zhu Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; HC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai, 200025, China.
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
34
|
Rocque RJ, Beaudoin C, Ndjaboue R, Cameron L, Poirier-Bergeron L, Poulin-Rheault RA, Fallon C, Tricco AC, Witteman HO. Health effects of climate change: an overview of systematic reviews. BMJ Open 2021; 11:e046333. [PMID: 34108165 PMCID: PMC8191619 DOI: 10.1136/bmjopen-2020-046333] [Citation(s) in RCA: 335] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES We aimed to develop a systematic synthesis of systematic reviews of health impacts of climate change, by synthesising studies' characteristics, climate impacts, health outcomes and key findings. DESIGN We conducted an overview of systematic reviews of health impacts of climate change. We registered our review in PROSPERO (CRD42019145972). No ethical approval was required since we used secondary data. Additional data are not available. DATA SOURCES On 22 June 2019, we searched Medline, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Embase, Cochrane and Web of Science. ELIGIBILITY CRITERIA We included systematic reviews that explored at least one health impact of climate change. DATA EXTRACTION AND SYNTHESIS We organised systematic reviews according to their key characteristics, including geographical regions, year of publication and authors' affiliations. We mapped the climate effects and health outcomes being studied and synthesised major findings. We used a modified version of A MeaSurement Tool to Assess systematic Reviews-2 (AMSTAR-2) to assess the quality of studies. RESULTS We included 94 systematic reviews. Most were published after 2015 and approximately one-fifth contained meta-analyses. Reviews synthesised evidence about five categories of climate impacts; the two most common were meteorological and extreme weather events. Reviews covered 10 health outcome categories; the 3 most common were (1) infectious diseases, (2) mortality and (3) respiratory, cardiovascular or neurological outcomes. Most reviews suggested a deleterious impact of climate change on multiple adverse health outcomes, although the majority also called for more research. CONCLUSIONS Most systematic reviews suggest that climate change is associated with worse human health. This study provides a comprehensive higher order summary of research on health impacts of climate change. Study limitations include possible missed relevant reviews, no meta-meta-analyses, and no assessment of overlap. Future research could explore the potential explanations between these associations to propose adaptation and mitigation strategies and could include broader sociopsychological health impacts of climate change.
Collapse
Affiliation(s)
- Rhea J Rocque
- Prairie Climate Centre, The University of Winnipeg, Winnipeg, Manitoba, Canada
| | | | - Ruth Ndjaboue
- Faculty of Medicine, Université Laval, Quebec, QC, Canada
- VITAM Research Centre for Sustainable Health, Quebec, QC, Canada
| | - Laura Cameron
- Prairie Climate Centre, The University of Winnipeg, Winnipeg, Manitoba, Canada
| | | | | | - Catherine Fallon
- Faculty of Medicine, Université Laval, Quebec, QC, Canada
- CHUQ Research Centre, Quebec, QC, Canada
| | - Andrea C Tricco
- Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Holly O Witteman
- Faculty of Medicine, Université Laval, Quebec, QC, Canada
- VITAM Research Centre for Sustainable Health, Quebec, QC, Canada
| |
Collapse
|
35
|
Vineis P, Huybrechts I, Millett C, Weiderpass E. Climate change and cancer: converging policies. Mol Oncol 2021; 15:764-769. [PMID: 32964631 PMCID: PMC7931120 DOI: 10.1002/1878-0261.12781] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/20/2020] [Accepted: 08/07/2020] [Indexed: 11/28/2022] Open
Abstract
Intervening on risk factors for noncommunicable diseases (including cancer) in industrialized countries could achieve a reduction of between 30% and 40% of premature deaths. In the meantime, the need to intervene against the threat of climate change has become obvious. CO2 emissions must be reduced by 45% by the year 2030 and to zero by 2050 according to recent agreements. We propose an approach in which interventions are designed to prevent diseases and jointly mitigate climate change, the so-called cobenefits. The present article describes some examples of how climate change mitigation and cancer prevention could go hand in hand: tobacco control, food production, and transportation (air pollution). Many others can be identified. The advantage of the proposed approach is that both long-term (climate) and short-term (health) benefits can be accrued with appropriate intersectoral policies.
Collapse
Affiliation(s)
- Paolo Vineis
- Grantham Institute for Climate Change and School of Public HealthImperial CollegeLondonUK
| | | | | | | |
Collapse
|
36
|
Sazmand A. Paleoparasitology and archaeoparasitology in Iran: A retrospective in differential diagnosis. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2021; 32:50-60. [PMID: 33352520 DOI: 10.1016/j.ijpp.2020.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/13/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE This paper reviews paleo- and archaeoparasitology publications to date, from Iran. The primary focus is the importance of differential diagnosis and the crucial role of interdisciplinary collaborations among parasitologists and other specialists. METHODS All relevant articles and theses published in Iran through October 2020 are included and evaluated, with particular emphasis on the diagnostic process. RESULTS Archaeoparasitic studies in Iran have identified a number of parasites that provide insight into the past. Misidentification, however, due to incomplete differential diagnosis, remains an issue, as does incomplete description and problematic images. CONCLUSIONS Identification of paleoparasites to the species level must be supported with accurate morphology and morphometry. Rigorous differential diagnosis is essential. Caution must be exercised when interpreting observations of ova recovered from coprolites. In these instances, precise identification of host animals and aligning parasite ranges with host specificity is critical. The possibility of incidental parasite presence must be evaluated, including non-specificity of parasite tropisms, transport hosting, or contamination. Lastly, differential diagnosis must include consideration of intentional consumption of parasites. Thus, parasitological findings must be placed in geographical, historical, and cultural contexts. SIGNIFICANCE Archaeoparasitological research in Iran has elucidated the presence of faunal and human disease in the past and has, through this reevaluation of the published works, contributed to precise description and diagnosis of ova of roundworms, tapeworms, thorny-headed worms, and recognition of larval stages of tapeworms in recovered remains of mites.
Collapse
Affiliation(s)
- Alireza Sazmand
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, 6517658978, Hamedan, Iran.
| |
Collapse
|
37
|
Habib MR, Lv S, Rollinson D, Zhou XN. Invasion and Dispersal of Biomphalaria Species: Increased Vigilance Needed to Prevent the Introduction and Spread of Schistosomiasis. Front Med (Lausanne) 2021; 8:614797. [PMID: 33644096 PMCID: PMC7902764 DOI: 10.3389/fmed.2021.614797] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/06/2021] [Indexed: 11/13/2022] Open
Abstract
Biological invasion is a matter of great concern from both public health and biodiversity perspectives. Some invasive snail species may trigger disease emergence by acting as intermediate hosts. The geographic distribution of Schistosoma mansoni depends on the presence of susceptible species of Biomphalaria freshwater snails that support the parasite's transformation into infective stages. Biomphalaria spp. have shown strong local and global dispersal capacities that may increase due to the global warming phenomenon and increases in the development of agricultural and water projects. Should intermediate hosts become established in new areas then this will create potential transmission foci. Examples of snail invasions that have had an impact on schistosomiasis transmission include the introduction of Biomphalaria tenagophila to Congo and B. glabrata to Egypt. The current spread of B. straminea in China is causing concern and needs to be monitored closely. An understanding of the mode of invasion and distribution of these snails as well as their experimental susceptibility to S. mansoni will predict the potential spread of schistosomiasis. Here we review the invasion patterns of Biomphalaria snails and factors that control their distribution and the impact that invasion may have on intestinal schistosomiasis transmission. In addition, we propose some possible surveillance responses for optimum control strategies and interventions. Whenever possible, swift action should be taken to contain any new occurrence of these intermediate snail hosts.
Collapse
Affiliation(s)
- Mohamed R. Habib
- Medical Malacology Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Shan Lv
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, China
- WHO Collaborating Center on Tropical Diseases, Shanghai, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - David Rollinson
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, China
- WHO Collaborating Center on Tropical Diseases, Shanghai, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
38
|
Palasio RGS, de Azevedo TS, Tuan R, Chiaravalloti-Neto F. Modelling the present and future distribution of Biomphalaria species along the watershed of the Middle Paranapanema region, São Paulo, Brazil. Acta Trop 2021; 214:105764. [PMID: 33227259 DOI: 10.1016/j.actatropica.2020.105764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 11/29/2022]
Abstract
The Middle Paranapanema region in the state of São Paulo, Brazil, is an area with high diversity for Biomphalaria species, with municipalities historically marked by cases of schistosomiasis transmission. The objectives of the study were to evaluate the current distribuition and predict the future distribution of habitats of Biomphalaria species at a high spatial resolution along 114 freshwater sites in the Middle Paranapanema watershed. The modelling encompassed 55 municipalities of the Middle Paranapanema region, which were analyzed through the maximum entropy algorithm. All geographic coordinates of the Biomphalaria species collected from 2015-2018 and environmental data were obtained through WorldClim, HydroSHEDS, TOPODATA and Secretaria do Meio Ambiente for the 1970-2017 period. For the 2041-2060 period we used the HadGEM2-ES climate model. Due to climate change, MaxEnt showed that there was a high probability for the maintenance of B. glabrata habitats near Ourinhos and Assis, an expansion of scattered spots, and a 50% probability that the species will spread throughout new suitable areas. The results showed that the geographical range of B. straminea will most likely expand in the future along the Middle Paranapanema hydrographic basin, especially in the municipalities near Ourinhos. For B. glabrata and B. straminea, the geographic expansion was related to the predicted increase in the annual temperature range. The habitats suitable for B. tenagophila and B. peregrina seemed to slightly expand around the west border of the Middle Paranapanema region. Biomphalaria occidentalis may have a small reduction in its distribution due to climate change. The variables that contributed the most to the future modelling for these three species were precipitation and temperature. Identifying the sites with intermediate hosts for schistosomiasis may guide public health measures to avoid or reduce future transmissions in this region.
Collapse
Affiliation(s)
- Raquel Gardini Sanches Palasio
- Programa de Pós-Graduação em Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo (FSP/USP), 01246-904, São Paulo, SP, Brasil; Laboratório de Bioquímica e Biologia Molecular (LBBM), Superintendência de Controle de Endemias (SUCEN), 01027-000, Luz, SP, Brasil.
| | | | - Roseli Tuan
- Laboratório de Bioquímica e Biologia Molecular (LBBM), Superintendência de Controle de Endemias (SUCEN), 01027-000, Luz, SP, Brasil.
| | - Francisco Chiaravalloti-Neto
- Laboratório de Análise Espacial em Saúde (LAES), Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo (FSP/USP), 01246-904, São Paulo, SP, Brasil.
| |
Collapse
|
39
|
Impact of environmental changes on infectious diseases: Key findings from an international conference in Trieste, Italy in May 2017. Acta Trop 2021; 213:105165. [PMID: 31518573 DOI: 10.1016/j.actatropica.2019.105165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Elsevier's 2nd conference on "Impact of Environmental Changes on Infectious Diseases" (IECID), convened in May 2017 in Trieste, Italy, brought together some 120 researchers from more than 20 countries. They presented the latest findings and discussed the impact of current and predicted future environmental changes on infectious disease dynamics in humans, livestock and wildlife in different parts of the world. Particular emphasis was placed on food-, vector- and water-borne diseases within the general theme of infectious diseases of poverty and emerging and re-emerging diseases. The potential impact of mobility, travel, population growth, trade and globalization on infectious disease dynamics against the background of a changing climate, land use, air quality and urbanization on individual, population, ecosystem and planetary health were addressed. Speakers at the conference were encouraged to put forth their talks into stand-alone manuscripts, which resulted in a unique collection of 13 articles, now brought together into a thematic issue of Acta Tropica. In this umbrella piece, we synthesize key findings from the published articles and highlight potential actions that might be taken forward to prevent and mitigate the impact of environmental change on infectious diseases. The work presented is salient in the current era of the Sustainable Development Goals.
Collapse
|
40
|
Scharsack JP, Wieczorek B, Schmidt-Drewello A, Büscher J, Franke F, Moore A, Branca A, Witten A, Stoll M, Bornberg-Bauer E, Wicke S, Kurtz J. Climate change facilitates a parasite's host exploitation via temperature-mediated immunometabolic processes. GLOBAL CHANGE BIOLOGY 2021; 27:94-107. [PMID: 33067869 DOI: 10.1111/gcb.15402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 05/09/2023]
Abstract
Global climate change can influence organismic interactions like those between hosts and parasites. Rising temperatures may exacerbate the exploitation of hosts by parasites, especially in ectothermic systems. The metabolic activity of ectotherms is strongly linked to temperature and generally increases when temperatures rise. We hypothesized that temperature change in combination with parasite infection interferes with the host's immunometabolism. We used a parasite, the avian cestode Schistocephalus solidus, which taps most of its resources from the metabolism of an ectothermic intermediate host, the three-spined stickleback. We experimentally exposed sticklebacks to this parasite, and studied liver transcriptomes 50 days after infection at 13°C and 24°C, to assess their immunometabolic responses. Furthermore, we monitored fitness parameters of the parasite and examined immunity and body condition of the sticklebacks at 13°C, 18°C and 24°C after 36, 50 and 64 days of infection. At low temperatures (13°C), S. solidus growth was constrained, presumably also by the more active stickleback's immune system, thus delaying its infectivity for the final host to 64 days. Warmer temperature (18°C and 24°C) enhanced S. solidus growth, and it became infective to the final host already after 36 days. Overall, S. solidus produced many more viable offspring after development at elevated temperatures. In contrast, stickleback hosts had lower body conditions, and their immune system was less active at warm temperature. The stickleback's liver transcriptome revealed that mainly metabolic processes were differentially regulated between temperatures, whereas immune genes were not strongly affected. Temperature effects on gene expression were strongly enhanced in infected sticklebacks, and even in exposed-but-not-infected hosts. These data suggest that the parasite exposure in concert with rising temperature, as to be expected with global climate change, shifted the host's immunometabolism, thus providing nutrients for the enormous growth of the parasite and, at the same time suppressing immune defence.
Collapse
Affiliation(s)
- Jörn P Scharsack
- Institute for Evolution and Biodiversity, Animal Evolutionary Ecology, University of Münster, Münster, Germany
| | - Bartholomäus Wieczorek
- Institute for Evolution and Biodiversity, Animal Evolutionary Ecology, University of Münster, Münster, Germany
| | - Alexander Schmidt-Drewello
- Institute for Evolution and Biodiversity, Animal Evolutionary Ecology, University of Münster, Münster, Germany
- Institute for Evolution and Biodiversity, Limnology, University of Münster, Münster, Germany
| | - Janine Büscher
- Institute for Evolution and Biodiversity, Animal Evolutionary Ecology, University of Münster, Münster, Germany
| | - Frederik Franke
- Institute for Evolution and Biodiversity, Animal Evolutionary Ecology, University of Münster, Münster, Germany
| | - Andrew Moore
- Institute for Evolution and Biodiversity, Molecular Evolution & Bioinformatics, University of Münster, Münster, Germany
| | - Antoine Branca
- Institute for Evolution and Biodiversity, Molecular Evolution & Bioinformatics, University of Münster, Münster, Germany
| | - Anika Witten
- Institute for Human Genetics, Core Facility Genomics, University of Münster, Münster, Germany
| | - Monika Stoll
- Institute for Human Genetics, Core Facility Genomics, University of Münster, Münster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, Molecular Evolution & Bioinformatics, University of Münster, Münster, Germany
| | - Susann Wicke
- Institute for Evolution and Biodiversity, Plant Evolutionary Genomics, University of Münster, Münster, Germany
- Institute for Biology, Humboldt-University Berlin, Berlin, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, Animal Evolutionary Ecology, University of Münster, Münster, Germany
| |
Collapse
|
41
|
|
42
|
de Carvalho Augusto R, Merad N, Rognon A, Gourbal B, Bertrand C, Djabou N, Duval D. Molluscicidal and parasiticidal activities of Eryngium triquetrum essential oil on Schistosoma mansoni and its intermediate snail host Biomphalaria glabrata, a double impact. Parasit Vectors 2020; 13:486. [PMID: 32967724 PMCID: PMC7513307 DOI: 10.1186/s13071-020-04367-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/17/2020] [Indexed: 12/29/2022] Open
Abstract
Background Freshwater snails are the intermediate hosts of a large variety of trematode flukes such as Schistosoma mansoni responsible for one of the most important parasitic diseases caused by helminths, affecting 67 million people worldwide. Recently, the WHO Global Vector Control Response 2017–2030 (GVCR) programme reinforced its message for safer molluscicides as part of required strategies to strengthen vector control worldwide. Here, we present the essential oil from Eryngium triquetrum as a powerful product with molluscicide and parasiticide effect against S. mansoni and the snail intermediate host Biomphalaria glabrata. Methods In the present study, we describe using several experimental approaches, the chemical composition of E. triquetrum essential oil extract and its biological effects against the snail B. glabrata and its parasite S. mansoni. Vector and the free-swimming larval stages of the parasite were exposed to different oil concentrations to determine the lethal concentration required to produce a mortality of 50% (LC50) and 90% (LC90). In addition, toxic activity of this essential oil was analyzed against embryos of B. glabrata snails by monitoring egg hatching and snail development. Also, short-time exposure to sublethal molluscicide concentrations on S. mansoni miracidia was performed to test a potential effect on parasite infectivity on snails. Mortality of miracidia and cercariae of S. mansoni is complete for 5, 1 and 0.5 ppm of oil extract after 1 and 4 h exposure. Results The major chemical component found in E. triquetrum oil determined by GC-FID and GC/MS analyses is an aliphatic polyacetylene molecule, the falcarinol with 86.9–93.1% of the total composition. The LC50 and LC90 values for uninfected snails were 0.61 and 1.02 ppm respectively for 24 h exposure. At 0.5 ppm, the essential oil was two times more toxic to parasitized snails with a mortality rate of 88.8 ± 4.8%. Moderate embryonic lethal effects were observed at the concentration of 1 ppm. Severe surface damage in miracidia was observed with a general loss of cilia that probably cause their immobility. Miracidia exposed 30 min to low concentration of plant extract (0.1 ppm) were less infective with 3.3% of prevalence compare to untreated with a prevalence of 44%. Conclusions Essential oil extracted from E. triquetrum and falcarinol must be considered as a promising product for the development of new interventions for schistosomiasis control and could proceed to be tested on Phase II according to the WHO requirements. ![]()
Collapse
Affiliation(s)
- Ronaldo de Carvalho Augusto
- University Perpignan Via Domitia, IHPE, UMR 5244, CNRS, IFREMER, Perpignan, France.,University Montpellier, IHPE, UMR 5244, CNRS, IFREMER, Montpellier, France
| | - Nadjiya Merad
- Faculté des Sciences, Département de Chimie, Université de Tlemcen, Laboratoire COSNA, Tlemcen, Algeria
| | - Anne Rognon
- University Perpignan Via Domitia, IHPE, UMR 5244, CNRS, IFREMER, Perpignan, France.,University Montpellier, IHPE, UMR 5244, CNRS, IFREMER, Montpellier, France
| | - Benjamin Gourbal
- University Perpignan Via Domitia, IHPE, UMR 5244, CNRS, IFREMER, Perpignan, France.,University Montpellier, IHPE, UMR 5244, CNRS, IFREMER, Montpellier, France
| | - Cédric Bertrand
- EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan, France.,Laboratoire d'Excellence «CORAIL», Université de Perpignan, Perpignan, France.,S.A.S. AkiNaO, Perpignan, France
| | - Nassim Djabou
- Faculté des Sciences, Département de Chimie, Université de Tlemcen, Laboratoire COSNA, Tlemcen, Algeria.
| | - David Duval
- University Perpignan Via Domitia, IHPE, UMR 5244, CNRS, IFREMER, Perpignan, France. .,University Montpellier, IHPE, UMR 5244, CNRS, IFREMER, Montpellier, France.
| |
Collapse
|
43
|
Bergquist NR. Schistosomiasis Consortium for Operational Research and Evaluation: Mission Accomplished. Am J Trop Med Hyg 2020; 103:1-4. [PMID: 32400351 PMCID: PMC7351299 DOI: 10.4269/ajtmh.19-0838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 11/30/2022] Open
Abstract
The Schistosomiasis Consortium for Operational Research and Evaluation (SCORE), a program focusing on schistosomiasis control in sub-Saharan Africa between 2008 and 2019, investigated ways to improve coverage and efficacy of ongoing chemotherapy programs and concluded that because of continued transmission, mass distribution of praziquantel cannot eliminate the disease without complementary control activities. Schistosomiasis Consortium for Operational Research and Evaluation's activities comprised large-scale, multicountry field studies comparing various mass drug administration strategies and some specific research avenues, such as assessment of high-sensitivity diagnostics, identification of hotspots, quantification of the role of the snail host, predictive modeling, and changes in schistosome population genetics under drug pressure. The discoveries made and the insights gained regarding cost-effective strategies for delivering preventive chemotherapy should assist policy makers to develop guidelines for the control and ultimate elimination of schistosomiasis.
Collapse
|
44
|
Allan F, Ame SM, Tian-Bi YNT, Hofkin BV, Webster BL, Diakité NR, N’Goran EK, Kabole F, Khamis IS, Gouvras AN, Emery AM, Pennance T, Rabone M, Kinung’hi S, Hamidou AA, Mkoji GM, McLaughlin JP, Kuris AM, Loker ES, Knopp S, Rollinson D. Snail-Related Contributions from the Schistosomiasis Consortium for Operational Research and Evaluation Program Including Xenomonitoring, Focal Mollusciciding, Biological Control, and Modeling. Am J Trop Med Hyg 2020; 103:66-79. [PMID: 32400353 PMCID: PMC7351297 DOI: 10.4269/ajtmh.19-0831] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/14/2020] [Indexed: 01/05/2023] Open
Abstract
The Schistosomiasis Consortium for Operational Research and Evaluation (SCORE) was created in 2008 to answer questions of importance to program managers working to reduce the burden of schistosomiasis in Africa. In the past, intermediate host snail monitoring and control was an important part of integrated schistosomiasis control. However, in Africa, efforts to control snails have declined dramatically over the last 30 years. A resurgence of interest in the control of snails has been prompted by the realization, backed by a World Health Assembly resolution (WHA65.21), that mass drug administration alone may be insufficient to achieve schistosomiasis elimination. SCORE has supported work on snail identification and mapping and investigated how xenomonitoring techniques can aid in the identification of infected snails and thereby identify potential transmission areas. Focal mollusciciding with niclosamide was undertaken in Zanzibar and Côte d'Ivoire as a part of elimination studies. Two studies involving biological control of snails were conducted: one explored the association of freshwater riverine prawns and snail hosts in Côte d'Ivoire and the other assessed the current distribution of Procambarus clarkii, the invasive Louisiana red swamp crayfish, in Kenya and its association with snail hosts and schistosomiasis transmission. SCORE also supported modeling studies on the importance of snail control in achieving elimination and a meta-analysis of the impact of molluscicide-based snail control programs on human schistosomiasis prevalence and incidence. SCORE's snail control studies contributed to increased investment in building capacity, and specimens collected during SCORE research deposited in the Schistosomiasis Collections at the Natural History Museum (SCAN) will provide a valuable resource for the years to come.
Collapse
Affiliation(s)
- Fiona Allan
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Shaali M. Ame
- Public Health Laboratory - Ivo de Carneri, Pemba, United Republic of Tanzania
| | - Yves-Nathan T. Tian-Bi
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d’Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Bruce V. Hofkin
- Department of Biology, University of New Mexico, Albuquerque, New Mexico
| | - Bonnie L. Webster
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Nana R. Diakité
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d’Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Eliezer K. N’Goran
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d’Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Fatma Kabole
- Neglected Tropical Disease Unit, Unguja, Ministry of Health, Zanzibar, United Republic of Tanzania
| | - Iddi S. Khamis
- Neglected Tropical Disease Unit, Unguja, Ministry of Health, Zanzibar, United Republic of Tanzania
| | - Anouk N. Gouvras
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Aidan M. Emery
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Tom Pennance
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London, United Kingdom
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Muriel Rabone
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Safari Kinung’hi
- National Institute of Medical Research (NIMR) Mwanza Centre, Mwanza, United Republic of Tanzania
| | - Amina Amadou Hamidou
- Réseau International Schistosomoses, Environnement, Aménagement et Lutte (RISEAL-Niger), Niamey, Niger
| | - Gerald M. Mkoji
- Center for Biotechnology Research and Development, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - John P. McLaughlin
- Department of Ecology, Evolution and Marine Biology and Marine Science Institute, University of California, Santa Barbara, California
| | - Armand M. Kuris
- Department of Ecology, Evolution and Marine Biology and Marine Science Institute, University of California, Santa Barbara, California
| | - Eric S. Loker
- Department of Biology, University of New Mexico, Albuquerque, New Mexico
| | - Stefanie Knopp
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London, United Kingdom
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - David Rollinson
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London, United Kingdom
| |
Collapse
|
45
|
Heat shock protein 70 (Hsp70) in Schistosoma mansoni and its role in decreased adult worm sensitivity to praziquantel. Parasitology 2020; 147:634-642. [PMID: 32127065 DOI: 10.1017/s0031182020000347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Schistosoma mansoni is the most common species causing schistosomiasis. It has a complex life cycle involving a vertebrate definitive host and a snail intermediate host of the genus Biomphalaria. Each stage encounters a plethora of environmental stresses specially heat stress. Another sort of stress arises from repeated exposure of the parasite to praziquantel (PZQ), the only drug used for treatment, which leads to the development of resistance in the fields and the labs. Heat shock protein 70 (Hsp70) is found in different developmental stages of S. mansoni. It is immunogenic and regulate cercarial invasion besides its chaperone function. In the Biomphalaria/S. mansoni interaction, epigenetic modulations of the Hsp70 gene underscore the susceptibility phenotype of the snail. Hsp70 is up-regulated in adult S. mansoni with decreased sensitivity to PZQ. This could be due to the induction of oxidative and endoplasmic reticulum stress, induction of apoptosis, exposure to the stressful drug pressure and increase influx of calcium ions. Up-regulation of Hsp70 might help the worm to survive the schistosomicidal effect of the drug mainly by dealing with misfolded proteins, inhibition of apoptosis, induction of autophagy, up-regulation of the P-glycoprotein transporter and attenuation of the signalling from G protein coupled receptors.
Collapse
|
46
|
Araujo Navas AL, Osei F, Soares Magalhães RJ, Leonardo LR, Stein A. Modelling the impact of MAUP on environmental drivers for Schistosoma japonicum prevalence. Parasit Vectors 2020; 13:112. [PMID: 32122402 PMCID: PMC7053105 DOI: 10.1186/s13071-020-3987-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 02/21/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The modifiable areal unit problem (MAUP) arises when the support size of a spatial variable affects the relationship between prevalence and environmental risk factors. Its effect on schistosomiasis modelling studies could lead to unreliable parameter estimates. The present research aims to quantify MAUP effects on environmental drivers of Schistosoma japonicum infection by (i) bringing all covariates to the same spatial support, (ii) estimating individual-level regression parameters at 30 m, 90 m, 250 m, 500 m and 1 km spatial supports, and (iii) quantifying the differences between parameter estimates using five models. METHODS We modelled the prevalence of Schistosoma japonicum using sub-provinces health outcome data and pixel-level environmental data. We estimated and compared regression coefficients from convolution models using Bayesian statistics. RESULTS Increasing the spatial support to 500 m gradually increased the parameter estimates and their associated uncertainties. Abrupt changes in the parameter estimates occur at 1 km spatial support, resulting in loss of significance of almost all the covariates. No significant differences were found between the predicted values and their uncertainties from the five models. We provide suggestions to define an appropriate spatial data structure for modelling that gives more reliable parameter estimates and a clear relationship between risk factors and the disease. CONCLUSIONS Inclusion of quantified MAUP effects was important in this study on schistosomiasis. This will support helminth control programmes by providing reliable parameter estimates at the same spatial support and suggesting the use of an adequate spatial data structure, to generate reliable maps that could guide efficient mass drug administration campaigns.
Collapse
Affiliation(s)
- Andrea L. Araujo Navas
- Faculty of Geo-information Science and Earth Observation (ITC), University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Frank Osei
- Faculty of Geo-information Science and Earth Observation (ITC), University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Ricardo J. Soares Magalhães
- UQ Spatial Epidemiology Laboratory, School of Veterinary Science, The University of Queensland, Gatton, QLD 4343 Australia
- Child Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD 4101 Australia
| | - Lydia R. Leonardo
- Department of Parasitology, College of Public Health, University of the Philippines Manila, 1000 Manila, Philippines
| | - Alfred Stein
- Faculty of Geo-information Science and Earth Observation (ITC), University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
47
|
Castillo MG, Humphries JE, Mourão MM, Marquez J, Gonzalez A, Montelongo CE. Biomphalaria glabrata immunity: Post-genome advances. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103557. [PMID: 31759924 PMCID: PMC8995041 DOI: 10.1016/j.dci.2019.103557] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
The freshwater snail, Biomphalaria glabrata, is an important intermediate host in the life cycle for the human parasite Schistosoma mansoni, the causative agent of schistosomiasis. Current treatment and prevention strategies have not led to a significant decrease in disease transmission. However, the genome of B. glabrata was recently sequenced to provide additional resources to further our understanding of snail biology. This review presents an overview of recently published, post-genome studies related to the topic of snail immunity. Many of these reports expand on findings originated from the genome characterization. These novel studies include a complementary gene linkage map, analysis of the genome of the B. glabrata embryonic (Bge) cell line, as well as transcriptomic and proteomic studies looking at snail-parasite interactions and innate immune memory responses towards schistosomes. Also included are biochemical investigations on snail pheromones, neuropeptides, and attractants, as well as studies investigating the frontiers of molluscan epigenetics and cell signaling were also included. Findings support the current hypotheses on snail-parasite strain compatibility, and that snail host resistance to schistosome infection is dependent not only on genetics and expression, but on the ability to form multimeric molecular complexes in a timely and tissue-specific manner. The relevance of cell immunity is reinforced, while the importance of humoral factors, especially for secondary infections, is supported. Overall, these studies reflect an improved understanding on the diversity, specificity, and complexity of molluscan immune systems.
Collapse
Affiliation(s)
- Maria G Castillo
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.
| | | | - Marina M Mourão
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz Minas, Brazil
| | - Joshua Marquez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Adrian Gonzalez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Cesar E Montelongo
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
48
|
Rabone M, Wiethase JH, Allan F, Gouvras AN, Pennance T, Hamidou AA, Webster BL, Labbo R, Emery AM, Garba AD, Rollinson D. Freshwater snails of biomedical importance in the Niger River Valley: evidence of temporal and spatial patterns in abundance, distribution and infection with Schistosoma spp. Parasit Vectors 2019; 12:498. [PMID: 31640811 PMCID: PMC6805334 DOI: 10.1186/s13071-019-3745-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Sound knowledge of the abundance and distribution of intermediate host snails is key to understanding schistosomiasis transmission and to inform effective interventions in endemic areas. METHODS A longitudinal field survey of freshwater snails of biomedical importance was undertaken in the Niger River Valley (NRV) between July 2011 and January 2016, targeting Bulinus spp. and Biomphalaria pfeifferi (intermediate hosts of Schistosoma spp.), and Radix natalensis (intermediate host of Fasciola spp.). Monthly snail collections were carried out in 92 sites, near 20 localities endemic for S. haematobium. All bulinids and Bi. pfeifferi were inspected for infection with Schistosoma spp., and R. natalensis for infection with Fasciola spp. RESULTS Bulinus truncatus was the most abundant species found, followed by Bulinus forskalii, R. natalensis and Bi. pfeifferi. High abundance was associated with irrigation canals for all species with highest numbers of Bulinus spp. and R. natalensis. Seasonality in abundance was statistically significant in all species, with greater numbers associated with dry season months in the first half of the year. Both B. truncatus and R. natalensis showed a negative association with some wet season months, particularly August. Prevalences of Schistosoma spp. within snails across the entire study were as follows: Bi. pfeifferi: 3.45% (79/2290); B. truncatus: 0.8% (342/42,500); and B. forskalii: 0.2% (24/11,989). No R. natalensis (n = 2530) were infected. Seasonality of infection was evident for B. truncatus, with highest proportions shedding in the middle of the dry season and lowest in the rainy season, and month being a significant predictor of infection. Bulinus spp. and Bi. pfeifferi showed a significant correlation of snail abundance with the number of snails shedding. In B. truncatus, both prevalence of Schistosoma spp. infection, and abundance of shedding snails were significantly higher in pond habitats than in irrigation canals. CONCLUSIONS Evidence of seasonality in both overall snail abundance and infection with Schistosoma spp. in B. truncatus, the main intermediate host in the region, has significant implications for monitoring and interrupting transmission of Schistosoma spp. in the NRV. Monthly longitudinal surveys, representing intensive sampling effort have provided the resolution needed to ascertain both temporal and spatial trends in this study. These data can inform planning of interventions and treatment within the region.
Collapse
Affiliation(s)
- Muriel Rabone
- Department of Life Sciences, Natural History Museum, Cromwell Rd, South Kensington, London, SW7 5BD UK
| | - Joris Hendrik Wiethase
- Department of Life Sciences, Natural History Museum, Cromwell Rd, South Kensington, London, SW7 5BD UK
| | - Fiona Allan
- Department of Life Sciences, Natural History Museum, Cromwell Rd, South Kensington, London, SW7 5BD UK
| | - Anouk Nathalie Gouvras
- Department of Life Sciences, Natural History Museum, Cromwell Rd, South Kensington, London, SW7 5BD UK
| | - Tom Pennance
- Department of Life Sciences, Natural History Museum, Cromwell Rd, South Kensington, London, SW7 5BD UK
- School of Biosciences, Cardiff University, Cardiff, CF10 3AT UK
| | - Amina Amadou Hamidou
- Réseau International Schistosomoses, Environnement Aménagement et Lutte (RISEAL-Niger), 333, Avenue des Zarmakoye, B.P. 13724, Niamey, Niger
| | - Bonnie Lee Webster
- Department of Life Sciences, Natural History Museum, Cromwell Rd, South Kensington, London, SW7 5BD UK
| | - Rabiou Labbo
- Réseau International Schistosomoses, Environnement Aménagement et Lutte (RISEAL-Niger), 333, Avenue des Zarmakoye, B.P. 13724, Niamey, Niger
- Centre de Recherche Médicale et Sanitaire (CERMES), Institut Pasteur International Network, 634 Bd de la Nation, BP 10887, Niamey, Niger
| | - Aidan Mark Emery
- Department of Life Sciences, Natural History Museum, Cromwell Rd, South Kensington, London, SW7 5BD UK
| | - Amadou Djirmay Garba
- Réseau International Schistosomoses, Environnement Aménagement et Lutte (RISEAL-Niger), 333, Avenue des Zarmakoye, B.P. 13724, Niamey, Niger
- World Health Organization, Geneva, Switzerland
| | - David Rollinson
- Department of Life Sciences, Natural History Museum, Cromwell Rd, South Kensington, London, SW7 5BD UK
| |
Collapse
|
49
|
Qiu C, Lu DB, Deng Y, Zou HY, Liang YS, Webster JP. Population genetics of Oncomelania hupensis snails, intermediate hosts of Schistosoma japonium, from emerging, re-emerging or established habitats within China. Acta Trop 2019; 197:105048. [PMID: 31173738 DOI: 10.1016/j.actatropica.2019.105048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/19/2019] [Accepted: 05/30/2019] [Indexed: 12/30/2022]
Abstract
Schistosomiasis remains one of the world's most significant neglected tropical diseases, second only to malaria in terms of socioeconomic impact. In 2014, China proposed the goal of schistosomiasis japonicum elimination by 2025. However, one major challenge is the widely distributed, and in certain cases potentially increasing, habitats of Oncomelania hupensis, the snail intermediate hosts of S. japonicum. Therefore, an understanding of population genetics of O. hupensis in new or re-emerged habitats, together with that of the established habitats with snail persistence, would be valuable in controlling and predicting the future transmission dynamics of schistosomiasis in China. Using nine microsatellite loci, we conducted population genetic analyses of snails sampled from one habitat where snails were detected for the first time, one (previously eliminated) habitat with re-emerged snails, and one habitat with established snail persistence. Results showed lower diversities, in terms of number of observed alleles per locus (Na), number of effective alleles per locus (NeA), observed (Ho) and expected heterozygosity (He), in snails from new or re-emerged snail habitats than from the habitat with snail persistence. The smallest effective population size was inferred in the re-emerged snail habitat, but the largest was in the new habitat rather than in the habitat with snail persistence. No bottleneck effects were detected in new or re-merged habitats. No or low sub-structure was inferred in new and persistent snail habitats. Snails from the three sites were clearly separated and low gene flow was estimated between sites. We propose that snails at the new habitat may have been introduced through immigration, whereas snails at the re-emerged habitat may be the consequence of those few snails remaining subsequently expanding through reproduction. We discuss our results in terms of their theoretical and applied implications.
Collapse
|
50
|
Arruda HS, Pastore GM. Araticum (Annona crassiflora Mart.) as a source of nutrients and bioactive compounds for food and non-food purposes: A comprehensive review. Food Res Int 2019; 123:450-480. [PMID: 31284996 DOI: 10.1016/j.foodres.2019.05.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023]
Abstract
Araticum (Annona crassiflora Mart.) is a fruitful tree native to the Brazilian Cerrado biome that holds high nutritional, functional and economic potential. This plant has been used since ancient times by folk medicine for the treatment of several pathological conditions. There has been increasing interest in the development of pulp-based food products as well as the by-products utilization to obtain value-added ingredients. Understanding the chemical composition and biological activities of different botanical parts of Annona crassiflora Mart. provides a basis to support future researches and applications. In this context, this paper carries out an exhaustive review of the scientific literature, on the main phytochemicals of different botanical parts of Annona crassiflora Mart. (fruit, leaves, stem and root) and their biological activities, assessing their potential uses for several industrial segments. Annona crassiflora Mart. fruits and especially their by-products (peel and seeds) and leaves have been shown a wide range of bioactive compounds such as phenolic compounds, alkaloids, annonaceous acetogenins, tocols, carotenoids, phytosterols, dietary fiber, vitamins, minerals and essential oils. These compounds contribute to various biological activities, including antioxidant, hepatoprotective, anti-inflammatory, antitumoral, analgesic, antidiabetic, skin healing, antidiarrhoeic, antimicrobial, antiparasitic, insecticide and herbicide activities of Annona crassiflora Mart. extracts. Therefore, these findings demonstrate that Annona crassiflora Mart. fruit, by-products and leaves can be excellent candidates to be used as functional foods and/or sources for obtaining bioactive compounds for the food, cosmetics and pharmaceutical applications.
Collapse
Affiliation(s)
- Henrique Silvano Arruda
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| | - Glaucia Maria Pastore
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|