1
|
Keeney JG, Astling D, Andries V, Vandepoele K, Anderson N, Davis JM, Lopert P, Vandenbussche J, Gevaert K, Staes A, Paukovich N, Vögeli B, Jones KL, van Roy F, Patel M, Sikela JM. Olduvai domain expression downregulates mitochondrial pathways: implications for human brain evolution and neoteny. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619278. [PMID: 39484454 PMCID: PMC11526873 DOI: 10.1101/2024.10.21.619278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Encoded by the NBPF gene family, Olduvai (formerly DUF1220) protein domains have undergone the largest human lineage-specific copy number expansion of any coding region in the genome. Olduvai copy number shows a linear relationship with several brain size-related measures and cortical neuron number among primates and with normal and disease-associated (micro- and macrocephaly) variation in brain size in human populations. While Olduvai domains have been shown to promote proliferation of neural stem cells, the mechanism underlying such effects has remained unclear. Here, we investigate the function of Olduvai by transcriptome and proteome analyses of cells overexpressing NBPF1, a gene encoding 7 Olduvai domains. Our results from both RNAseq and mass spectrometry approaches suggest a potential downregulation of mitochondria. In our proteomics study, a Gene Ontology (GO) enrichment analysis for the downregulated proteins revealed a striking overrepresentation of the biological process related to the mitochondrial electron transport chain (p value: 1.81e-11) and identified deregulation of the NADH dehydrogenase activity (p value: 2.43e-11) as the primary molecular function. We verify the reduction of apparent mitochondria via live-cell imaging experiments. Given these and previous Olduvai findings, we suggest that the Olduvai-mediated, dosage-dependent reduction in available energy via mitochondrial downregulation may have resulted in a developmental slowdown such that the neurogenic window among primates, and most extremely in humans, was expanded over a greater time interval, allowing for production of greater numbers of neurons and a larger brain. We further suggest that such a slowdown may extend to other developmental processes that also exhibit neotenic features.
Collapse
Affiliation(s)
- Jonathon G. Keeney
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David Astling
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vanessa Andries
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Karl Vandepoele
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Nathan Anderson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jonathan M. Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Pamela Lopert
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jonathan Vandenbussche
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
| | - An Staes
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
- VIB Proteomics Core, 9052 Ghent, Belgium
| | - Natasia Paukovich
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth l. Jones
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Frans van Roy
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Manisha Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James M. Sikela
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Human Medical Genetics and Neuroscience Programs, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Pahlevan Kakhki M, Giordano A, Starvaggi Cucuzza C, Venkata S Badam T, Samudyata S, Lemée MV, Stridh P, Gkogka A, Shchetynsky K, Harroud A, Gyllenberg A, Liu Y, Boddul S, James T, Sorosina M, Filippi M, Esposito F, Wermeling F, Gustafsson M, Casaccia P, Hillert J, Olsson T, Kockum I, Sellgren CM, Golzio C, Kular L, Jagodic M. A genetic-epigenetic interplay at 1q21.1 locus underlies CHD1L-mediated vulnerability to primary progressive multiple sclerosis. Nat Commun 2024; 15:6419. [PMID: 39079955 PMCID: PMC11289459 DOI: 10.1038/s41467-024-50794-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/21/2024] [Indexed: 08/02/2024] Open
Abstract
Multiple Sclerosis (MS) is a heterogeneous inflammatory and neurodegenerative disease with an unpredictable course towards progressive disability. Treating progressive MS is challenging due to limited insights into the underlying mechanisms. We examined the molecular changes associated with primary progressive MS (PPMS) using a cross-tissue (blood and post-mortem brain) and multilayered data (genetic, epigenetic, transcriptomic) from independent cohorts. In PPMS, we found hypermethylation of the 1q21.1 locus, controlled by PPMS-specific genetic variations and influencing the expression of proximal genes (CHD1L, PRKAB2) in the brain. Evidence from reporter assay and CRISPR/dCas9 experiments supports a causal link between methylation and expression and correlation network analysis further implicates these genes in PPMS brain processes. Knock-down of CHD1L in human iPSC-derived neurons and knock-out of chd1l in zebrafish led to developmental and functional deficits of neurons. Thus, several lines of evidence suggest a distinct genetic-epigenetic-transcriptional interplay in the 1q21.1 locus potentially contributing to PPMS pathogenesis.
Collapse
Affiliation(s)
- Majid Pahlevan Kakhki
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Antonino Giordano
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Neurology and Neurorehabilitation Units, IRCCS San Raffaele Hospital, Milan, Italy
- Laboratory of Human Genetics of Neurological Disorders, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Chiara Starvaggi Cucuzza
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Center for Neurology, Academic Specialist Center, Stockholm, Sweden
| | - Tejaswi Venkata S Badam
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Bioinformatics, Institute for Physics chemistry and Biology (IFM), Linköping university, Linköping, Sweden
| | - Samudyata Samudyata
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marianne Victoria Lemée
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Pernilla Stridh
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Asimenia Gkogka
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Klementy Shchetynsky
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Adil Harroud
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Alexandra Gyllenberg
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Yun Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
| | - Sanjaykumar Boddul
- Department of Medicine, Solna, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Tojo James
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Melissa Sorosina
- Laboratory of Human Genetics of Neurological Disorders, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neurology and Neurorehabilitation Units, IRCCS San Raffaele Hospital, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- Neurophysiology Unit, IRCCS San Raffaele Hospital, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Federica Esposito
- Neurology and Neurorehabilitation Units, IRCCS San Raffaele Hospital, Milan, Italy
- Laboratory of Human Genetics of Neurological Disorders, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fredrik Wermeling
- Department of Medicine, Solna, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Mika Gustafsson
- Department of Bioinformatics, Institute for Physics chemistry and Biology (IFM), Linköping university, Linköping, Sweden
| | - Patrizia Casaccia
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ingrid Kockum
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Christelle Golzio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Lara Kular
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden.
| | - Maja Jagodic
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
3
|
Alhazmi S, Alharthi M, Alzahrani M, Alrofaidi A, Basingab F, Almuhammadi A, Alkhatabi H, Ashi A, Chaudhary A, Elaimi A. Copy number variations in autistic children. Biomed Rep 2024; 21:107. [PMID: 38868529 PMCID: PMC11168027 DOI: 10.3892/br.2024.1795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/30/2024] [Indexed: 06/14/2024] Open
Abstract
Autism spectrum disorder (ASD) manifests as a neurodevelopmental condition marked by challenges in social communication, interaction and the performing of repetitive behaviors. The prevalence of autism increases markedly on an annual basis; however, the etiology remains incompletely understood. Cytogenetically visible chromosomal abnormalities, including copy number variations (CNVs), have been shown to contribute to the pathogenesis of ASD. More than 1% of ASD conditions can be explained based on a known genetic locus, whereas CNVs account for 5-10% of cases. However, there are no studies on the Saudi Arabian population for the detection of CNVs linked to ASD, to the best of our knowledge. Therefore, the aim of the present study was to explore the prevalence of CNVs in autistic Saudi Arabian children. Genomic DNA was extracted from the peripheral blood of 14 autistic children along with four healthy control children and then array-based comparative genomic hybridization (aCGH) was used to detect CNVs. Bioinformatics analysis of the aCGH results showed the presence of recurrent and non-recurrent deletion/duplication CNVs in several regions of the genome of autistic children. The most frequent CNVs were 1q21.2, 3p26.3, 4q13.2, 6p25.3, 6q24.2, 7p21.1, 7q34, 7q11.1, 8p23.2, 13q32.3, 14q11.1-q11.2 and 15q11.1-q11.2. In the present study, CNVs in autistic Saudi Arabian children were identified to improve the understanding of the etiology of autism and facilitate its diagnosis. Additionally, the present study identified certain possible pathogenic genes in the CNV region associated with several developmental and neurogenetic diseases.
Collapse
Affiliation(s)
- Safiah Alhazmi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Central Laboratory of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maram Alharthi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maryam Alzahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Aisha Alrofaidi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fatemah Basingab
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Asma Almuhammadi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Heba Alkhatabi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Hematology Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Abrar Ashi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Adeel Chaudhary
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Aisha Elaimi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| |
Collapse
|
4
|
Livnat A, Love AC. Mutation and evolution: Conceptual possibilities. Bioessays 2024; 46:e2300025. [PMID: 38254311 DOI: 10.1002/bies.202300025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 01/24/2024]
Abstract
Although random mutation is central to models of evolutionary change, a lack of clarity remains regarding the conceptual possibilities for thinking about the nature and role of mutation in evolution. We distinguish several claims at the intersection of mutation, evolution, and directionality and then characterize a previously unrecognized category: complex conditioned mutation. Empirical evidence in support of this category suggests that the historically famous fluctuation test should be revisited, and new experiments should be undertaken with emerging experimental techniques to facilitate detecting mutation rates within specific loci at an ultra-high, individual base pair resolution.
Collapse
Affiliation(s)
- Adi Livnat
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Alan C Love
- Department of Philosophy and Minnesota Center for Philosophy of Science, University of Minnesota (Twin Cities), Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Glunčić M, Vlahović I, Rosandić M, Paar V. Tandem NBPF 3mer HORs (Olduvai triplets) in Neanderthal and two novel HOR tandem arrays in human chromosome 1 T2T-CHM13 assembly. Sci Rep 2023; 13:14420. [PMID: 37660151 PMCID: PMC10475015 DOI: 10.1038/s41598-023-41517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
It is known that the ~ 1.6 kb Neuroblastoma BreakPoint Family (NBPF) repeats are human specific and contributing to cognitive capabilities, with increasing frequency in higher order repeat 3mer HORs (Olduvai triplets). From chimpanzee to modern human there is a discontinuous jump from 0 to ~ 50 tandemly organized 3mer HORs. Here we investigate the structure of NBPF 3mer HORs in the Neanderthal genome assembly of Pääbo et al., comparing it to the results obtained for human hg38.p14 chromosome 1. Our findings reveal corresponding NBPF 3mer HOR arrays in Neanderthals with slightly different monomer structures and numbers of HOR copies compared to humans. Additionally, we compute the NBPF 3mer HOR pattern for the complete telomere-to-telomere human genome assembly (T2T-CHM13) by Miga et al., identifying two novel tandem arrays of NBPF 3mer HOR repeats with 5 and 9 NBPF 3mer HOR copies. We hypothesize that these arrays correspond to novel NBPF genes (here referred to as NBPFA1 and NBPFA2). Further improving the quality of the Neanderthal genome using T2T-CHM13 as a reference would be of great interest in determining the presence of such distant novel NBPF genes in the Neanderthal genome and enhancing our understanding of human evolution.
Collapse
Affiliation(s)
- Matko Glunčić
- Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia.
| | | | - Marija Rosandić
- University Hospital Centre Zagreb (Ret.), 10000, Zagreb, Croatia
- Croatian Academy of Sciences and Arts, 10000, Zagreb, Croatia
| | - Vladimir Paar
- Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
- Croatian Academy of Sciences and Arts, 10000, Zagreb, Croatia
| |
Collapse
|
6
|
Livnat A, Melamed D. Evolutionary honing in and mutational replacement: how long-term directed mutational responses to specific environmental pressures are possible. Theory Biosci 2023; 142:87-105. [PMID: 36899155 PMCID: PMC10209271 DOI: 10.1007/s12064-023-00387-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/13/2023] [Indexed: 03/12/2023]
Abstract
Recent results have shown that the human malaria-resistant hemoglobin S mutation originates de novo more frequently in the gene and in the population where it is of adaptive significance, namely, in the hemoglobin subunit beta gene compared to the nonresistant but otherwise identical 20A[Formula: see text]T mutation in the hemoglobin subunit delta gene, and in sub-Saharan Africans, who have been subject to intense malarial pressure for many generations, compared to northern Europeans, who have not. This finding raises a fundamental challenge to the traditional notion of accidental mutation. Here, we address this finding with the replacement hypothesis, according to which preexisting genetic interactions can lead directly and mechanistically to mutations that simplify and replace them. Thus, an evolutionary process under selection can gradually hone in on interactions of importance for the currently evolving adaptations, from which large-effect mutations follow that are relevant to these adaptations. We exemplify this hypothesis using multiple types of mutation, including gene fusion mutations, gene duplication mutations, A[Formula: see text]G mutations in RNA-edited sites and transcription-associated mutations, and place it in the broader context of a system-level view of mutation origination called interaction-based evolution. Potential consequences include that similarity of mutation pressures may contribute to parallel evolution in genetically related species, that the evolution of genome organization may be driven by mutational mechanisms, that transposable element movements may also be explained by replacement, and that long-term directed mutational responses to specific environmental pressures are possible. Such mutational phenomena need to be further tested by future studies in natural and artificial settings.
Collapse
Affiliation(s)
- Adi Livnat
- Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel.
- Institute of Evolution, University of Haifa, 3498838, Haifa, Israel.
| | - Daniel Melamed
- Department of Evolutionary and Environmental Biology, University of Haifa, 3498838, Haifa, Israel
- Institute of Evolution, University of Haifa, 3498838, Haifa, Israel
| |
Collapse
|
7
|
Pacheco A, Issaian A, Davis J, Anderson N, Nemkov T, Paukovich N, Henen MA, Vögeli B, Sikela JM, Hansen K. Proteolytic activation of human-specific Olduvai domains by the furin protease. Int J Biol Macromol 2023; 234:123041. [PMID: 36581038 PMCID: PMC10038901 DOI: 10.1016/j.ijbiomac.2022.12.260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Olduvai protein domains (formerly DUF1220) show the greatest human-specific increase in copy number of any coding region in the genome and are highly correlated with human brain evolution and cognitive disease. The majority of human copies are found within four NBPF genes organized in a variable number of a tandemly arranged three-domain blocks called Olduvai triplets. Here we show that these human-specific Olduvai domains are posttranslationally processed by the furin protease, with a cleavage site occurring once at each triplet. These findings suggest that all expanded human-specific NBPF genes encode proproteins consisting of many independent Olduvai triplet proteins which are activated by furin processing. The exceptional correlation of Olduvai copy number and brain size taken together with our new furin data, indicates the ultimate target of selection was a rapid increase in dosage of autonomously functioning Olduvai triplet proteins, and that these proteins are the primary active agent underlying Olduvai's role in human brain expansion.
Collapse
Affiliation(s)
- Ashley Pacheco
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, USA
| | - Aaron Issaian
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, USA
| | - Jonathan Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, USA
| | - Nathan Anderson
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, USA
| | - Natasia Paukovich
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, USA
| | - Morkos A Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, USA
| | - James M Sikela
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, USA.
| | - Kirk Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, USA.
| |
Collapse
|
8
|
Huang TT, Xu HF, Wang SY, Lin WX, Tung YH, Khan KU, Zhang HH, Guo H, Zheng G, Zhang G. Identification of 1q21.1 microduplication in a family: A case report. World J Clin Cases 2023; 11:874-882. [PMID: 36818619 PMCID: PMC9928700 DOI: 10.12998/wjcc.v11.i4.874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/21/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Copy number variation (CNV) has become widely recognized in recent years due to the extensive use of gene screening in developmental disorders and epilepsy research. 1q21.1 microduplication syndrome is a rare CNV disease that can manifest as multiple congenital developmental disorders, autism spectrum disorders, congenital malformations, and congenital heart defects with genetic heterogeneity.
CASE SUMMARY We reported a pediatric patient with 1q21.1 microduplication syndrome, and carried out a literature review to determine the correlation between 1q21.1 microduplication and its phenotypes. We summarized the patient’s medical history and clinical symptoms, and extracted genomic DNA from the patient, her parents, elder brother, and sister. The patient was an 8-mo-old girl who was hospitalized for recurrent convulsions over a 2-mo period. Whole exon sequencing and whole genome low-depth sequencing (CNV-seq) were then performed. Whole exon sequencing detected a 1.58-Mb duplication in the CHR1:145883867-147465312 region, which was located in the 1q21.1 region. Family analysis showed that the pathogenetic duplication fragment, which was also detected in her elder brother’s DNA originated from the mother.
CONCLUSION Whole exon sequencing combined with quantitative polymerase chain reaction can provide an accurate molecular diagnosis in children with 1q21.1 microduplication syndrome, which is of great significance for genetic counseling and early intervention.
Collapse
Affiliation(s)
- Ting-Ting Huang
- Department of Neurology, Children’s Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Hai-Feng Xu
- Department of Neurology, Children’s Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Shang-Yu Wang
- Department of Neurology, Children’s Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Wen-Xin Lin
- Department of Neurology, Children’s Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Yie-Hen Tung
- Department of Neurology, Children’s Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Kaleem Ullah Khan
- Department of Neurology, Children’s Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Hui-Hui Zhang
- Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
- Nanjing Xiaozhuang University Experimental Primary School, Nanjing 210000, Jiangsu Province, China
| | - Hu Guo
- Department of Neurology, Children’s Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Guo Zheng
- Department of Neurology, Children’s Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Gang Zhang
- Department of Neurology, Children’s Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| |
Collapse
|
9
|
Dai J, Bai X, Gao X, Tang L, Chen Y, Sun L, Wei X, Li C, Qi Z, Kong Y, Cui C, Chi Z, Sheng X, Xu Z, Lian B, Li S, Yan X, Tang B, Zhou L, Wang X, Xia X, Guo J, Mao L, Si L. Molecular underpinnings of exceptional response in primary malignant melanoma of the esophagus to anti-PD-1 monotherapy. J Immunother Cancer 2023; 11:jitc-2022-005937. [PMID: 36593066 PMCID: PMC9809322 DOI: 10.1136/jitc-2022-005937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Accumulating data suggest that mucosal melanoma, well known for its poor response to immune checkpoint blockade (ICB) and abysmal prognosis, is a heterogeneous subtype of melanoma with distinct genomic and clinical characteristics between different anatomic locations of the primary lesions. Primary malignant melanoma of the esophagus (PMME) is a rare, highly aggressive disease with a poorer prognosis compared with that of non-esophageal mucosal melanoma (NEMM). In this study, we retrospectively analyzed the efficacy of anti-programmed death (PD)-1 in patients with PMME and explored its molecular basis. METHODS The response and survival of patients with PMME and NEMM under anti-PD-1 monotherapy were retrospectively analyzed. To explore the molecular mechanisms of the difference in therapeutic efficacy between PMME and NEMM, we performed genomic analysis, bulk RNA sequencing, and multiplex immunohistochemistry staining. RESULTS We found that PMME (n=28) responded better to anti-PD-1 treatment than NEMM (n=64), with a significantly higher objective response rate (33.3% (95% CI 14.3% to 52.3%) vs 6.6% (95% CI 0.2% to 12.9%)) and disease control rate (74.1% (95% CI 56.4% to 91.7%) vs 37.7% (95% CI 25.2% to 50.2%)). Genomic sequencing analysis revealed that the genomic aberration landscape of PMME predominated in classical cancer driver genes, with approximately half of PMME cases harboring mutations in BRAF, N/KRAS, and NF1. In contrast, most NEMM cases were triple wild-type. Transcriptome analysis revealed that, compared with NEMM, PMME displayed more significant proliferation and inflammatory features with higher expression of genes related to antigen presentation and differentiation, and a less immunosuppressive signature with lower expression of inhibitory immune checkpoints and dedifferentiation-related genes. The multiplex immunohistochemical analysis also demonstrated higher CD8+ T-cell infiltration in PMME than in NEMM. CONCLUSIONS PMME is an outlier of mucosal melanoma showing a malicious phenotype but a particularly high response rate to ICB because of its distinct molecular characteristics. Patient stratification based on anatomic origin can facilitate clinical decision-making in patients with mucosal melanoma following the verification of our results in future prospective studies.
Collapse
Affiliation(s)
- Jie Dai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xue Bai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xuan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,GenePlus- Shenzhen Clinical Laboratory, Shenzhen, China
| | - Lirui Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yu Chen
- Department of Medical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Linzi Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaoting Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Caili Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhonghui Qi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yan Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Chuanliang Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhihong Chi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xinan Sheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | | | - Bin Lian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Siming Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xieqiao Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Bixia Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Li Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xuan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | | | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Lili Mao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
10
|
Eftekhar M, Panahi Y, Eskandari MR, Pedram M. Association Study between DUF1220 Copy Number and Severity of Social Impairment in Sex-balanced Simplex Cases of Autism. Noro Psikiyatr Ars 2023; 60:43-48. [PMID: 36911566 PMCID: PMC9999218 DOI: 10.29399/npa.28020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/01/2022] [Indexed: 11/07/2022] Open
Abstract
Introduction Copy number variations (CNVs), which are genetic factors responsible for human evolution, have emerged as underlying pathogenic factors for a number of diseases such as autism spectrum disorders (ASD). DUF1220 coding sequences have been shown to be positively associated with the severity of symptoms in familial/multiplex cases of autism. However, this association has not been confirmed in simplex autism, and the potential impact of gender/sex has not been studied. Methods Using saliva samples taken from Iranian children with non-syndromic simplex autism, different ethnicity/race and genetic backgrounds from previous studies, we assessed the association between DUF1220 CNVs and Autism Diagnostic Interview-Revised (ADI-R) domain scores in both males and females. Results In the male and female combined group with autism, in line with previous reports, our findings showed that there were no significant associations between DUF1220 CNVs with either total ADI-R score, social, communication, or repetitive diagnostic scores in simplex autism cases. Interestingly, however, in sex classified groups, despite the insignificant results, our findings in girls with autism showed a negative trend between DUF1220 CNVs and severity of symptoms for the social interaction and communication domains. By contrast, in male children with autism, the results showed a positive trend. Conclusion It seems that association of DUF1220 CNV with the severity of symptoms in simplex children with autism may follow a sexually dimorphic pattern that needs to be re-examined in prospective studies.
Collapse
Affiliation(s)
- Mohammad Eftekhar
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Yasin Panahi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Reza Eskandari
- Department of Psychiatry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehrdad Pedram
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
11
|
Mangan RJ, Alsina FC, Mosti F, Sotelo-Fonseca JE, Snellings DA, Au EH, Carvalho J, Sathyan L, Johnson GD, Reddy TE, Silver DL, Lowe CB. Adaptive sequence divergence forged new neurodevelopmental enhancers in humans. Cell 2022; 185:4587-4603.e23. [PMID: 36423581 PMCID: PMC10013929 DOI: 10.1016/j.cell.2022.10.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/08/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022]
Abstract
Searches for the genetic underpinnings of uniquely human traits have focused on human-specific divergence in conserved genomic regions, which reflects adaptive modifications of existing functional elements. However, the study of conserved regions excludes functional elements that descended from previously neutral regions. Here, we demonstrate that the fastest-evolved regions of the human genome, which we term "human ancestor quickly evolved regions" (HAQERs), rapidly diverged in an episodic burst of directional positive selection prior to the human-Neanderthal split, before transitioning to constraint within hominins. HAQERs are enriched for bivalent chromatin states, particularly in gastrointestinal and neurodevelopmental tissues, and genetic variants linked to neurodevelopmental disease. We developed a multiplex, single-cell in vivo enhancer assay to discover that rapid sequence divergence in HAQERs generated hominin-unique enhancers in the developing cerebral cortex. We propose that a lack of pleiotropic constraints and elevated mutation rates poised HAQERs for rapid adaptation and subsequent susceptibility to disease.
Collapse
Affiliation(s)
- Riley J Mangan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Fernando C Alsina
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Federica Mosti
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Daniel A Snellings
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Eric H Au
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Juliana Carvalho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Laya Sathyan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Graham D Johnson
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27705, USA; Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA
| | - Timothy E Reddy
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27705, USA; Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Duke Institute for Brain Sciences and Duke Regeneration Center, Duke University Medical Center, Durham, NC 27710, USA; Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Craig B Lowe
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University, Durham, NC 27705, USA.
| |
Collapse
|
12
|
Glunčić M, Vlahović I, Rosandić M, Paar V. Tandemly repeated NBPF HOR copies (Olduvai triplets): Possible impact on human brain evolution. Life Sci Alliance 2022; 6:6/1/e202101306. [PMID: 36261226 PMCID: PMC9584774 DOI: 10.26508/lsa.202101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/24/2022] Open
Abstract
Previously it was found that the neuroblastoma breakpoint family (NBPF) gene repeat units of ∼1.6 kb have an important role in human brain evolution and function. The higher order organization of these repeat units has been discovered by both methods, the higher order repeat (HOR)-searching method and the HLS searching method. Using the HOR searching method with global repeat map algorithm, here we identified the tandemly organized NBPF HORs in the human and nonhuman primate NCBI reference genomes. We identified 50 tandemly organized canonical 3mer NBPF HOR copies (Olduvai triplets), but none in nonhuman primates chimpanzee, gorilla, orangutan, and Rhesus macaque. This discontinuous jump in tandemly organized HOR copy number is in sharp contrast to the known gradual increase in the number of Olduvai domains (NBPF monomers) from nonhuman primates to human, especially from ∼138 in chimpanzee to ∼300 in human genome. Using the same global repeat map algorithm method we have also determined the 3mer tandems of canonical 3mer HOR copies in 20 randomly chosen human genomes (10 male and 10 female). In all cases, we found the same 3mer HOR copy numbers as in the case of the reference human genome, with no mutation. On the other hand, some point mutations with respect to reference genome are found for some NBPF monomers which are not tandemly organized in canonical HORs.
Collapse
Affiliation(s)
- Matko Glunčić
- Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | - Marija Rosandić
- University Hospital Centre Zagreb (ret), Zagreb, Croatia,Croatian Academy of Sciences and Arts, Zagreb, Croatia
| | - Vladimir Paar
- Faculty of Science, University of Zagreb, Zagreb, Croatia,Croatian Academy of Sciences and Arts, Zagreb, Croatia
| |
Collapse
|
13
|
Ben-Mahmoud A, Jun KR, Gupta V, Shastri P, de la Fuente A, Park Y, Shin KC, Kim CA, da Cruz AD, Pinto IP, Minasi LB, Silva da Cruz A, Faivre L, Callier P, Racine C, Layman LC, Kong IK, Kim CH, Kim WY, Kim HG. A rigorous in silico genomic interrogation at 1p13.3 reveals 16 autosomal dominant candidate genes in syndromic neurodevelopmental disorders. Front Mol Neurosci 2022; 15:979061. [PMID: 36277487 PMCID: PMC9582330 DOI: 10.3389/fnmol.2022.979061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Genome-wide chromosomal microarray is extensively used to detect copy number variations (CNVs), which can diagnose microdeletion and microduplication syndromes. These small unbalanced chromosomal structural rearrangements ranging from 1 kb to 10 Mb comprise up to 15% of human mutations leading to monogenic or contiguous genomic disorders. Albeit rare, CNVs at 1p13.3 cause a variety of neurodevelopmental disorders (NDDs) including development delay (DD), intellectual disability (ID), autism, epilepsy, and craniofacial anomalies (CFA). Most of the 1p13.3 CNV cases reported in the pre-microarray era encompassed a large number of genes and lacked the demarcating genomic coordinates, hampering the discovery of positional candidate genes within the boundaries. In this study, we present four subjects with 1p13.3 microdeletions displaying DD, ID, autism, epilepsy, and CFA. In silico comparative genomic mapping with three previously reported subjects with CNVs and 22 unreported DECIPHER CNV cases has resulted in the identification of four different sub-genomic loci harboring five positional candidate genes for DD, ID, and CFA at 1p13.3. Most of these genes have pathogenic variants reported, and their interacting genes are involved in NDDs. RT-qPCR in various human tissues revealed a high expression pattern in the brain and fetal brain, supporting their functional roles in NDDs. Interrogation of variant databases and interacting protein partners led to the identification of another set of 11 potential candidate genes, which might have been dysregulated by the position effect of these CNVs at 1p13.3. Our studies define 1p13.3 as a genomic region harboring 16 NDD candidate genes and underscore the critical roles of small CNVs in in silico comparative genomic mapping for disease gene discovery. Our candidate genes will help accelerate the isolation of pathogenic heterozygous variants from exome/genome sequencing (ES/GS) databases.
Collapse
Affiliation(s)
- Afif Ben-Mahmoud
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Kyung Ran Jun
- Department of Laboratory Medicine, Inje University Haeundae Paik Hospital, Busan, South Korea
| | - Vijay Gupta
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Pinang Shastri
- Department of Cardiovascular Medicine, Cape Fear Valley Medical Center, Fayetteville, NC, United States
| | - Alberto de la Fuente
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Yongsoo Park
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Kyung Chul Shin
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Chong Ae Kim
- Faculdade de Medicina, Unidade de Genética do Instituto da Criança – Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Aparecido Divino da Cruz
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Irene Plaza Pinto
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Lysa Bernardes Minasi
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Alex Silva da Cruz
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Laurence Faivre
- Inserm UMR 1231 GAD, Genetics of Developmental Disorders, Université de Bourgogne-Franche Comté, Dijon, France
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d’Enfants, Dijon, France
| | - Patrick Callier
- UMR 1231 GAD, Inserm – Université Bourgogne-Franche Comté, Dijon, France
| | - Caroline Racine
- UMR 1231 GAD, Inserm – Université Bourgogne-Franche Comté, Dijon, France
| | - Lawrence C. Layman
- Section of Reproductive Endocrinology, Infertility and Genetics, Department of Obstetrics and Gynecology, Augusta University, Augusta, GA, United States
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, United States
| | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, South Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, South Korea
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
- *Correspondence: Hyung-Goo Kim,
| |
Collapse
|
14
|
Ahmed MB, Alghamdi AAA, Islam SU, Lee JS, Lee YS. cAMP Signaling in Cancer: A PKA-CREB and EPAC-Centric Approach. Cells 2022; 11:cells11132020. [PMID: 35805104 PMCID: PMC9266045 DOI: 10.3390/cells11132020] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is one of the most common causes of death globally. Despite extensive research and considerable advances in cancer therapy, the fundamentals of the disease remain unclear. Understanding the key signaling mechanisms that cause cancer cell malignancy may help to uncover new pharmaco-targets. Cyclic adenosine monophosphate (cAMP) regulates various biological functions, including those in malignant cells. Understanding intracellular second messenger pathways is crucial for identifying downstream proteins involved in cancer growth and development. cAMP regulates cell signaling and a variety of physiological and pathological activities. There may be an impact on gene transcription from protein kinase A (PKA) as well as its downstream effectors, such as cAMP response element-binding protein (CREB). The position of CREB downstream of numerous growth signaling pathways implies its oncogenic potential in tumor cells. Tumor growth is associated with increased CREB expression and activation. PKA can be used as both an onco-drug target and a biomarker to find, identify, and stage tumors. Exploring cAMP effectors and their downstream pathways in cancer has become easier using exchange protein directly activated by cAMP (EPAC) modulators. This signaling system may inhibit or accelerate tumor growth depending on the tumor and its environment. As cAMP and its effectors are critical for cancer development, targeting them may be a useful cancer treatment strategy. Moreover, by reviewing the material from a distinct viewpoint, this review aims to give a knowledge of the impact of the cAMP signaling pathway and the related effectors on cancer incidence and development. These innovative insights seek to encourage the development of novel treatment techniques and new approaches.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
| | | | - Salman Ul Islam
- Department of Pharmacy, Cecos University, Peshawar, Street 1, Sector F 5 Phase 6 Hayatabad, Peshawar 25000, Pakistan;
| | - Joon-Seok Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
| | - Young-Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
- Correspondence: ; Tel.: +82-53-950-6353; Fax: +82-53-943-2762
| |
Collapse
|
15
|
Lupski JR. Biology in balance: human diploid genome integrity, gene dosage, and genomic medicine. Trends Genet 2022; 38:554-571. [PMID: 35450748 PMCID: PMC9222541 DOI: 10.1016/j.tig.2022.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 01/01/2023]
Abstract
The path to completion of the functional annotation of the haploid human genome reference build, exploration of the clan genomics hypothesis, understanding human gene and genome functional biology, and gene genome and organismal evolution, is in reach.
Collapse
Affiliation(s)
- James R Lupski
- Genetics & Genomics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
16
|
Mani A. PDE4DIP in health and diseases. Cell Signal 2022; 94:110322. [PMID: 35346821 PMCID: PMC9618167 DOI: 10.1016/j.cellsig.2022.110322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/15/2022]
Abstract
Cyclic-AMP (cAMP), the first second messenger to be identified, is synthesized, and is universally utilized as a second messenger, and plays important roles in integrity, and function of organs, including heart. Through its coupling with other intracellular messengers, cAMP facilitates excitation-contraction coupling, increases heart rate and conduction velocity. It is degraded by a class of enzymes called cAMP-dependent phosphodiesterase (PDE), with PDE3 and PDE4 being the predominant isoforms in the heart. This highly diverse class of enzymes degrade cAMP and through anchoring proteins generates dynamic microdomains to target specific proteins and control specific cell functions in response to various stimuli. The impaired function of the anchoring protein either by inherited genetic mutations or acquired injuries results in altered intracellular targeting, and blunted responsiveness to stimulating pathways and contributes to pathological cardiac remodeling, cardiac arrhythmias and reduced cell survival. Recent genetic studies provide compelling evidence for an association between the variants in the anchoring protein PDE4DIP and atrial fibrillation, stroke, and heart failure.
Collapse
Affiliation(s)
- Arya Mani
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
17
|
Paukovich N, Henen MA, Hussain A, Issaian A, Sikela JM, Hansen KC, Vögeli B. Solution NMR backbone assignments of disordered Olduvai protein domain CON1 employing Hα-detected experiments. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:113-119. [PMID: 35098449 PMCID: PMC9202364 DOI: 10.1007/s12104-022-10068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Olduvai protein domains, encoded by the NBPF gene family, are responsible for the largest increase in copy number of any protein-coding region in the human genome. This has spawned various genetics studies which have linked these domains to human brain development and divergence from our primate ancestors, as well as currently relevant cognitive diseases such as schizophrenia and autism spectrum disorder (ASD). There are six separate Olduvai domains which together form the majority of the various protein products of the NBPF genes. The six domains include three conserved domains (CON1-3), and three human-lineage-specific domains (HLS1-3) which occur in triplet. Here, we present the solution nuclear magnetic resonance backbone assignments for the CON1 domain, which has been linked to the severity of ASD. The data confirm that CON1 is an intrinsically disordered protein (IDP). Additionally, we use innovative Hα-detected experiments which allow us to not only assign the Hα atoms and N atoms of proline residues, but also to assign residues where HN-experiments suffered from peak overlap or broadening.
Collapse
Affiliation(s)
- Natasia Paukovich
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Colorado, 12801 E. 17th Avenue, Aurora, CO, 80045, USA
| | - Morkos A Henen
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Colorado, 12801 E. 17th Avenue, Aurora, CO, 80045, USA
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Alya Hussain
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Colorado, 12801 E. 17th Avenue, Aurora, CO, 80045, USA
| | - Aaron Issaian
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Colorado, 12801 E. 17th Avenue, Aurora, CO, 80045, USA
| | - James M Sikela
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Colorado, 12801 E. 17th Avenue, Aurora, CO, 80045, USA
| | - Kirk C Hansen
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Colorado, 12801 E. 17th Avenue, Aurora, CO, 80045, USA
| | - Beat Vögeli
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Colorado, 12801 E. 17th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
18
|
Melamed D, Nov Y, Malik A, Yakass MB, Bolotin E, Shemer R, Hiadzi EK, Skorecki KL, Livnat A. De novo mutation rates at the single-mutation resolution in a human HBB gene-region associated with adaptation and genetic disease. Genome Res 2022; 32:488-498. [PMID: 35031571 PMCID: PMC8896469 DOI: 10.1101/gr.276103.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022]
Abstract
Although it is known that the mutation rate varies across the genome, previous estimates were based on averaging across various numbers of positions. Here, we describe a method to measure the origination rates of target mutations at target base positions and apply it to a 6-bp region in the human hemoglobin subunit beta (HBB) gene and to the identical, paralogous hemoglobin subunit delta (HBD) region in sperm cells from both African and European donors. The HBB region of interest (ROI) includes the site of the hemoglobin S (HbS) mutation, which protects against malaria, is common in Africa, and has served as a classic example of adaptation by random mutation and natural selection. We found a significant correspondence between de novo mutation rates and past observations of alleles in carriers, showing that mutation rates vary substantially in a mutation-specific manner that contributes to the site frequency spectrum. We also found that the overall point mutation rate is significantly higher in Africans than in Europeans in the HBB region studied. Finally, the rate of the 20A→T mutation, called the “HbS mutation” when it appears in HBB, is significantly higher than expected from the genome-wide average for this mutation type. Nine instances were observed in the African HBB ROI, where it is of adaptive significance, representing at least three independent originations; no instances were observed elsewhere. Further studies will be needed to examine mutation rates at the single-mutation resolution across these and other loci and organisms and to uncover the molecular mechanisms responsible.
Collapse
|
19
|
Zhu L, Su X. Case Report: Neuroblastoma Breakpoint Family Genes Associate With 1q21 Copy Number Variation Disorders. Front Genet 2021; 12:728816. [PMID: 34646304 PMCID: PMC8504801 DOI: 10.3389/fgene.2021.728816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022] Open
Abstract
Microduplications and reciprocal microdeletions of chromosome 1q21. 1 and/or 1q21.2 have been linked to variable clinical features, but the underlying pathogenic gene(s) remain unclear. Here we report that distinct microduplications were detected on chromosome 1q21.2 (GRCh37/hg19) in a mother (255 kb in size) and her newborn daughter (443 kb in size), while the same paternal locus was wild-type. Although the two microduplications largely overlap in genomic sequence (183 kb overlapping), the mother showed no clinical phenotype while the daughter presented with several features that are commonly observed on 1q21 microduplication or microdeletion patients, including developmental delay, craniofacial dysmorphism, congenital heart disease and sensorineural hearing loss. NBPF15 and NBPF16, two involved genes that are exclusively duplicated in the proband, may be the cause of the clinical manifestations. This study supports an association between NBPF genes and 1q21 copy number variation disorders.
Collapse
Affiliation(s)
- Lijuan Zhu
- Children's Hospital of Fudan University Anhui Hospital, Hefei, China
| | - Xiaoji Su
- Children's Hospital of Fudan University Anhui Hospital, Hefei, China
| |
Collapse
|
20
|
Global gene expression analysis of systemic sclerosis myofibroblasts demonstrates a marked increase in the expression of multiple NBPF genes. Sci Rep 2021; 11:20435. [PMID: 34650102 PMCID: PMC8516909 DOI: 10.1038/s41598-021-99292-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 09/08/2021] [Indexed: 12/22/2022] Open
Abstract
Myofibroblasts are the key effector cells responsible for the exaggerated tissue fibrosis in Systemic Sclerosis (SSc). Despite their importance to SSc pathogenesis, the specific transcriptome of SSc myofibroblasts has not been described. The purpose of this study was to identify transcriptome differences between SSc myofibroblasts and non-myofibroblastic cells. Alpha smooth muscle actin (α-SMA) expressing myofibroblasts and α-SMA negative cells were isolated employing laser capture microdissection from dermal cell cultures from four patients with diffuse SSc of recent onset. Total mRNA was extracted from both cell populations, amplified and analyzed employing microarrays. Results for specific genes were validated by Western blots and by immunohistochemistry. Transcriptome analysis revealed 97 differentially expressed transcripts in SSc myofibroblasts compared with non-myofibroblasts. Annotation clustering of the SSc myofibroblast-specific transcripts failed to show a TGF-β signature. The most represented transcripts corresponded to several different genes from the Neuroblastoma Breakpoint Family (NBPF) of genes. NBPF genes are highly expanded in humans but are not present in murine or rat genomes. In vitro studies employing cultured SSc dermal fibroblasts and immunohistochemistry of affected SSc skin confirmed increased NBPF expression in SSc. These results indicate that SSc myofibroblasts represent a unique cell lineage expressing a specific transcriptome that includes very high levels of transcripts corresponding to numerous NBPF genes. Elevated expression of NBPF genes in SSc myofibroblasts suggests that NBPF gene products may play a role in SSc pathogenesis and may represent a novel therapeutic target.
Collapse
|
21
|
Vervoort L, Dierckxsens N, Pereboom Z, Capozzi O, Rocchi M, Shaikh TH, Vermeesch JR. 22q11.2 Low Copy Repeats Expanded in the Human Lineage. Front Genet 2021; 12:706641. [PMID: 34335701 PMCID: PMC8320366 DOI: 10.3389/fgene.2021.706641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Segmental duplications or low copy repeats (LCRs) constitute duplicated regions interspersed in the human genome, currently neglected in standard analyses due to their extreme complexity. Recent functional studies have indicated the potential of genes within LCRs in synaptogenesis, neuronal migration, and neocortical expansion in the human lineage. One of the regions with the highest proportion of duplicated sequence is the 22q11.2 locus, carrying eight LCRs (LCR22-A until LCR22-H), and rearrangements between them cause the 22q11.2 deletion syndrome. The LCR22-A block was recently reported to be hypervariable in the human population. It remains unknown whether this variability also exists in non-human primates, since research is strongly hampered by the presence of sequence gaps in the human and non-human primate reference genomes. To chart the LCR22 haplotypes and the associated inter- and intra-species variability, we de novo assembled the region in non-human primates by a combination of optical mapping techniques. A minimal and likely ancient haplotype is present in the chimpanzee, bonobo, and rhesus monkey without intra-species variation. In addition, the optical maps identified assembly errors and closed gaps in the orthologous chromosome 22 reference sequences. These findings indicate the LCR22 expansion to be unique to the human population, which might indicate involvement of the region in human evolution and adaptation. Those maps will enable LCR22-specific functional studies and investigate potential associations with the phenotypic variability in the 22q11.2 deletion syndrome.
Collapse
Affiliation(s)
| | | | - Zjef Pereboom
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
- Evolutionary Ecology Group, Department of Biology, Antwerp University, Antwerp, Belgium
| | | | | | - Tamim H. Shaikh
- Section of Genetics and Metabolism, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | | |
Collapse
|
22
|
Abdullaev ET, Umarova IR, Arndt PF. Modelling segmental duplications in the human genome. BMC Genomics 2021; 22:496. [PMID: 34215180 PMCID: PMC8254307 DOI: 10.1186/s12864-021-07789-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 06/10/2021] [Indexed: 11/22/2022] Open
Abstract
Background Segmental duplications (SDs) are long DNA sequences that are repeated in a genome and have high sequence identity. In contrast to repetitive elements they are often unique and only sometimes have multiple copies in a genome. There are several well-studied mechanisms responsible for segmental duplications: non-allelic homologous recombination, non-homologous end joining and replication slippage. Such duplications play an important role in evolution, however, we do not have a full understanding of the dynamic properties of the duplication process. Results We study segmental duplications through a graph representation where nodes represent genomic regions and edges represent duplications between them. The resulting network (the SD network) is quite complex and has distinct features which allow us to make inference on the evolution of segmantal duplications. We come up with the network growth model that explains features of the SD network thus giving us insights on dynamics of segmental duplications in the human genome. Based on our analysis of genomes of other species the network growth model seems to be applicable for multiple mammalian genomes. Conclusions Our analysis suggests that duplication rates of genomic loci grow linearly with the number of copies of a duplicated region. Several scenarios explaining such a preferential duplication rates were suggested. Supplementary Information The online version contains supplementary material available at (10.1186/s12864-021-07789-7).
Collapse
Affiliation(s)
- Eldar T Abdullaev
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestraße 63/73, Berlin, 14195, Germany.
| | - Iren R Umarova
- Faculty of Computational Mathematics and Cybernetics, Moscow State University, Leninskiye Gory 1-52, Moscow, 119991, Russia
| | - Peter F Arndt
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestraße 63/73, Berlin, 14195, Germany
| |
Collapse
|
23
|
Yoon J, Mao Y. Dissecting Molecular Genetic Mechanisms of 1q21.1 CNV in Neuropsychiatric Disorders. Int J Mol Sci 2021; 22:5811. [PMID: 34071723 PMCID: PMC8197994 DOI: 10.3390/ijms22115811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Pathogenic copy number variations (CNVs) contribute to the etiology of neurodevelopmental/neuropsychiatric disorders (NDs). Increased CNV burden has been found to be critically involved in NDs compared with controls in clinical studies. The 1q21.1 CNVs, rare and large chromosomal microduplications and microdeletions, are detected in many patients with NDs. Phenotypes of duplication and deletion appear at the two ends of the spectrum. Microdeletions are predominant in individuals with schizophrenia (SCZ) and microcephaly, whereas microduplications are predominant in individuals with autism spectrum disorder (ASD) and macrocephaly. However, its complexity hinders the discovery of molecular pathways and phenotypic networks. In this review, we summarize the recent genome-wide association studies (GWASs) that have identified candidate genes positively correlated with 1q21.1 CNVs, which are likely to contribute to abnormal phenotypes in carriers. We discuss the clinical data implicated in the 1q21.1 genetic structure that is strongly associated with neurodevelopmental dysfunctions like cognitive impairment and reduced synaptic plasticity. We further present variations reported in the phenotypic severity, genomic penetrance and inheritance.
Collapse
Affiliation(s)
| | - Yingwei Mao
- Department of Biology, Eberly College of Science, Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
24
|
Egervari G. Chromatin accessibility in neuropsychiatric disorders. Neurobiol Learn Mem 2021; 181:107438. [PMID: 33845131 DOI: 10.1016/j.nlm.2021.107438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Epigenetic mechanisms have recently emerged as critical regulators of brain function in health and disease. By controlling the accessibility and the expression of specific genes, these pathways can mediate transient and long-lasting changes in neuronal function in both physiological and pathological contexts. Due to the extreme complexity of the epigenetic regulatory landscape, emerging methods that directly assay chromatin accessibility are of particular interest. Here, I review recent insights gained on open and closed chromatin states in the brain, with emphasis on neuropsychiatric disorders. These advances generated an invaluable wealth of information that can help us better understand gene regulation in the brain and its impairments that contribute to the development of disease.
Collapse
Affiliation(s)
- Gabor Egervari
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
25
|
Sønderby IE, van der Meer D, Moreau C, Kaufmann T, Walters GB, Ellegaard M, Abdellaoui A, Ames D, Amunts K, Andersson M, Armstrong NJ, Bernard M, Blackburn NB, Blangero J, Boomsma DI, Brodaty H, Brouwer RM, Bülow R, Bøen R, Cahn W, Calhoun VD, Caspers S, Ching CRK, Cichon S, Ciufolini S, Crespo-Facorro B, Curran JE, Dale AM, Dalvie S, Dazzan P, de Geus EJC, de Zubicaray GI, de Zwarte SMC, Desrivieres S, Doherty JL, Donohoe G, Draganski B, Ehrlich S, Eising E, Espeseth T, Fejgin K, Fisher SE, Fladby T, Frei O, Frouin V, Fukunaga M, Gareau T, Ge T, Glahn DC, Grabe HJ, Groenewold NA, Gústafsson Ó, Haavik J, Haberg AK, Hall J, Hashimoto R, Hehir-Kwa JY, Hibar DP, Hillegers MHJ, Hoffmann P, Holleran L, Holmes AJ, Homuth G, Hottenga JJ, Hulshoff Pol HE, Ikeda M, Jahanshad N, Jockwitz C, Johansson S, Jönsson EG, Jørgensen NR, Kikuchi M, Knowles EEM, Kumar K, Le Hellard S, Leu C, Linden DEJ, Liu J, Lundervold A, Lundervold AJ, Maillard AM, Martin NG, Martin-Brevet S, Mather KA, Mathias SR, McMahon KL, McRae AF, Medland SE, Meyer-Lindenberg A, Moberget T, Modenato C, Sánchez JM, Morris DW, Mühleisen TW, Murray RM, Nielsen J, Nordvik JE, Nyberg L, Loohuis LMO, Ophoff RA, Owen MJ, Paus T, Pausova Z, Peralta JM, Pike GB, Prieto C, Quinlan EB, Reinbold CS, Marques TR, Rucker JJH, Sachdev PS, Sando SB, Schofield PR, Schork AJ, Schumann G, Shin J, Shumskaya E, Silva AI, Sisodiya SM, Steen VM, Stein DJ, Strike LT, Suzuki IK, Tamnes CK, Teumer A, Thalamuthu A, Tordesillas-Gutiérrez D, Uhlmann A, Ulfarsson MO, van 't Ent D, van den Bree MBM, Vanderhaeghen P, Vassos E, Wen W, Wittfeld K, Wright MJ, Agartz I, Djurovic S, Westlye LT, Stefansson H, Stefansson K, Jacquemont S, Thompson PM, Andreassen OA. 1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans. Transl Psychiatry 2021; 11:182. [PMID: 33753722 PMCID: PMC7985307 DOI: 10.1038/s41398-021-01213-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/23/2020] [Accepted: 01/08/2021] [Indexed: 01/07/2023] Open
Abstract
Low-frequency 1q21.1 distal deletion and duplication copy number variant (CNV) carriers are predisposed to multiple neurodevelopmental disorders, including schizophrenia, autism and intellectual disability. Human carriers display a high prevalence of micro- and macrocephaly in deletion and duplication carriers, respectively. The underlying brain structural diversity remains largely unknown. We systematically called CNVs in 38 cohorts from the large-scale ENIGMA-CNV collaboration and the UK Biobank and identified 28 1q21.1 distal deletion and 22 duplication carriers and 37,088 non-carriers (48% male) derived from 15 distinct magnetic resonance imaging scanner sites. With standardized methods, we compared subcortical and cortical brain measures (all) and cognitive performance (UK Biobank only) between carrier groups also testing for mediation of brain structure on cognition. We identified positive dosage effects of copy number on intracranial volume (ICV) and total cortical surface area, with the largest effects in frontal and cingulate cortices, and negative dosage effects on caudate and hippocampal volumes. The carriers displayed distinct cognitive deficit profiles in cognitive tasks from the UK Biobank with intermediate decreases in duplication carriers and somewhat larger in deletion carriers-the latter potentially mediated by ICV or cortical surface area. These results shed light on pathobiological mechanisms of neurodevelopmental disorders, by demonstrating gene dose effect on specific brain structures and effect on cognitive function.
Collapse
Affiliation(s)
- Ida E Sønderby
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway.
| | - Dennis van der Meer
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Clara Moreau
- Sainte Justine Hospital Research Center, Montreal, Quebec, Canada
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montreal, Quebec, Canada
| | - Tobias Kaufmann
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - G Bragi Walters
- deCODE Genetics (Amgen), Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Maria Ellegaard
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Abdel Abdellaoui
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
| | - David Ames
- University of Melbourne Academic Unit for Psychiatry of Old Age, Kew, Australia
- National Ageing Research Institute, Parkville, Australia
| | - Katrin Amunts
- Institute of Neuroscience and Medicine, INM-1, Research Centre Jülich, Jülich, Germany
- C. and O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Düsseldorf, Germany
| | - Micael Andersson
- Umeå Centre for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | | - Manon Bernard
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nicholas B Blackburn
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, USA
| | - Dorret I Boomsma
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Dementia Centre for Research Collaboration, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Rachel M Brouwer
- Department of Psychiatry, University Medical Center Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Robin Bülow
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Rune Bøen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Wiepke Cahn
- Department of Psychiatry, University Medical Center Brain Center, Utrecht University, Utrecht, the Netherlands
- Altrecht Science, Utrecht, the Netherlands
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
- The Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, USA
| | - Svenja Caspers
- Institute of Neuroscience and Medicine, INM-1, Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, USA
| | - Sven Cichon
- Institute of Neuroscience and Medicine, INM-1, Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Simone Ciufolini
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Benedicto Crespo-Facorro
- University Hospital Marqués de Valdecilla, IDIVAL, Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM), Santander, Spain
- University Hospital Virgen del Rocío, IBiS, Centre de Investigació Biomédica en Red Salud Mental (CIBERSAM), Sevilla, Spain
| | - Joanne E Curran
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, USA
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California, San Diego, USA
| | - Shareefa Dalvie
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Eco J C de Geus
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | | | - Sonja M C de Zwarte
- Department of Psychiatry, University Medical Center Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Sylvane Desrivieres
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Joanne L Doherty
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- Cardiff University Brain Research Imaging Centre School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Gary Donohoe
- Centre for Neuroimaging and Cognitive Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Bogdan Draganski
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Neurology Department, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Else Eising
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Thomas Espeseth
- Department of Psychology, University of Oslo, Oslo, Norway
- Bjørknes College, Oslo, Norway
| | - Kim Fejgin
- Signal Transduction, H. Lundbeck A/S, Ottiliavej 9, DK-2500, Valby, Denmark
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, 1474, Nordbyhagen, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Oleksandr Frei
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vincent Frouin
- Université Paris-Saclay, CEA, Neurospin, 91191, Gif-sur-Yvette, France
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Life Science, Sokendai, Hayama, Japan
| | - Thomas Gareau
- Université Paris-Saclay, CEA, Neurospin, 91191, Gif-sur-Yvette, France
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David C Glahn
- Boston Children's Hospital, Boston, Massachusetts, USA
- Institute of Living, Hartford, Connecticut, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center of Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Greifswald, Germany
| | - Nynke A Groenewold
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, Western Cape, South Africa
| | | | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Asta K Haberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- St Olav's Hospital, Department of Radiology and Nuclear Medicine, Trondheim, Norway
| | - Jeremy Hall
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
- Osaka University, Osaka, Japan
| | - Jayne Y Hehir-Kwa
- Princess Màxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Manon H J Hillegers
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia, Rotterdam, the Netherlands
| | - Per Hoffmann
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Institute of Human Genetics, University of Bonn Medical School, Bonn, Germany
| | - Laurena Holleran
- Centre for Neuroimaging and Cognitive Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Avram J Holmes
- Psychology Department, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jouke-Jan Hottenga
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | - Hilleke E Hulshoff Pol
- Department of Psychiatry, University Medical Center Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, USA
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine, INM-1, Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan Johansson
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Erik G Jönsson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Niklas R Jørgensen
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Masataka Kikuchi
- Department of Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Emma E M Knowles
- Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Kuldeep Kumar
- Sainte Justine Hospital Research Center, Montreal, Quebec, Canada
| | - Stephanie Le Hellard
- Norwegian Centre for Mental Disorders Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Costin Leu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States
- Chalfont Centre for Epilepsy, Chalfont-St-Peter, United Kingdom
| | - David E J Linden
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Jingyu Liu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
| | - Arvid Lundervold
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | | | - Anne M Maillard
- Service des Troubles du Spectre de l'Autisme et apparentés, Lausanne University Hospital, Lausanne, Switzerland
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Sandra Martin-Brevet
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuroscience Research Australia, Randwick, Australia
| | - Samuel R Mathias
- Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Katie L McMahon
- Herston Imaging Research Facility and School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Allan F McRae
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Torgeir Moberget
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Claudia Modenato
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- University of Lausanne, Lausanne, Switzerland
| | - Jennifer Monereo Sánchez
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Derek W Morris
- Centre for Neuroimaging and Cognitive Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Thomas W Mühleisen
- Institute of Neuroscience and Medicine, INM-1, Research Centre Jülich, Jülich, Germany
- C. and O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Düsseldorf, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Robin M Murray
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jacob Nielsen
- Signal Transduction, H. Lundbeck A/S, Ottiliavej 9, DK-2500, Valby, Denmark
| | | | - Lars Nyberg
- Umeå Centre for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Loes M Olde Loohuis
- Center for Neurobehavioral Genetics, University of California, Los Angeles, USA
| | - Roel A Ophoff
- Center for Neurobehavioral Genetics, University of California, Los Angeles, USA
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Tomas Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Zdenka Pausova
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Juan M Peralta
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, USA
| | - G Bruce Pike
- Departments of Radiology and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Carlos Prieto
- Bioinformatics Service, Nucleus, University of Salamanca, Salamanca, Spain
| | - Erin B Quinlan
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Céline S Reinbold
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Tiago Reis Marques
- Department of Psychosis, Institute of Psychiatry, Psychology & Neuroscience, Kings College, London, United Kingdom
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Hammersmith Hospital, Imperial College, London, United Kingdom
| | - James J H Rucker
- Institute of Psychiatry, Psychology and Neuroscience, London, London, United Kingdom
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuropsychiatric Institute, The Prince of Wales Hospital, Sydney, Australia
| | - Sigrid B Sando
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- University Hospital of Trondheim,Department of Neurology and Clinical Neurophysiology, Trondheim, Norway
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Andrew J Schork
- Institute of Biological Psychiatry, Roskilde, Denmark
- The Translational Genetics Institute (TGEN), Phoenix, AZ, United States
| | - Gunter Schumann
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jean Shin
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Elena Shumskaya
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ana I Silva
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- Cardiff University Brain Research Imaging Centre School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont-St-Peter, United Kingdom
| | - Vidar M Steen
- Norwegian Centre for Mental Disorders Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Dan J Stein
- South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Lachlan T Strike
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Ikuo K Suzuki
- VIB Center for Brain & Disease Research, Stem Cell and Developmental Neurobiology Lab, Leuven, Belgium
- University of Brussels (ULB), Institute of Interdisciplinary Research (IRIBHM) ULB Neuroscience Institute, Brussels, Belgium
- The University of Tokyo, Department of Biological Sciences, Graduate School of Science, Tokyo, Japan
| | - Christian K Tamnes
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Diana Tordesillas-Gutiérrez
- University Hospital Marqués de Valdecilla, IDIVAL, Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM), Santander, Spain
- Department of Radiology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute IDIVAL, Santander, Spain
| | - Anne Uhlmann
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Magnus O Ulfarsson
- deCODE Genetics (Amgen), Reykjavík, Iceland
- Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavík, Iceland
| | - Dennis van 't Ent
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Marianne B M van den Bree
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000, Leuven, Belgium
- Université Libre de Bruxelles (U.L.B.), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070, Brussels, Belgium
| | - Evangelos Vassos
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research, Mental Health Biomedical Research Centre, South London and Maudsley National Health Service Foundation Trust and King's College London, London, United Kingdom
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center of Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Greifswald, Germany
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Ingrid Agartz
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | | | - Kari Stefansson
- deCODE Genetics (Amgen), Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Sébastien Jacquemont
- Sainte Justine Hospital Research Center, Montreal, Quebec, Canada
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, USA
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
26
|
Linden SC, Watson CJ, Smith J, Chawner SJRA, Lancaster TM, Evans F, Williams N, Skuse D, Raymond FL, Hall J, Owen MJ, Linden DEJ, Green-Snyder L, Chung WK, Maillard AM, Jacquemont S, van den Bree MBM. The psychiatric phenotypes of 1q21 distal deletion and duplication. Transl Psychiatry 2021; 11:105. [PMID: 33542195 PMCID: PMC7862693 DOI: 10.1038/s41398-021-01226-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 01/06/2023] Open
Abstract
Copy number variants are amongst the most highly penetrant risk factors for psychopathology and neurodevelopmental deficits, but little information about the detailed clinical phenotype associated with particular variants is available. We present the largest study of the microdeletion and -duplication at the distal 1q21 locus, which has been associated with schizophrenia and intellectual disability, in order to investigate the range of psychiatric phenotypes. Clinical and cognitive data from 68 deletion and 55 duplication carriers were analysed with logistic regression analysis to compare frequencies of mental disorders between carrier groups and controls, and linear mixed models to compare quantitative phenotypes. Both children and adults with copy number variants at 1q21 had high frequencies of psychopathology. In the children, neurodevelopmental disorders were most prominent (56% for deletion, 68% for duplication carriers). Adults had increased prevalence of mood (35% for deletion [OR = 6.6 (95% CI: 1.4-40.1)], 55% for duplication carriers [8.3 (1.4-55.5)]) and anxiety disorders (24% [1.8 (0.4-8.4)] and 55% [10.0 (1.9-71.2)]). The adult group, which included mainly genetically affected parents of probands, had an IQ in the normal range. These results confirm high prevalence of neurodevelopmental disorders associated with CNVs at 1q21 but also reveal high prevalence of mood and anxiety disorders in a high-functioning adult group with these CNVs. Because carriers of neurodevelopmental CNVs who show relevant psychopathology but no major cognitive impairment are not currently routinely receiving clinical genetic services widening of genetic testing in psychiatry may be considered.
Collapse
Affiliation(s)
- Stefanie C Linden
- Department of Health, Ethics and Society, Care and Public Health Research Institute (CAPHRI), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Cameron J Watson
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | - Jacqueline Smith
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Samuel J R A Chawner
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Thomas M Lancaster
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- School of Psychology, University of Bath, Bath, UK
| | - Ffion Evans
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Nigel Williams
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - David Skuse
- Behavioural and Brain Sciences Unit Institute of Child Health, University College London, London, UK
| | - F Lucy Raymond
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Jeremy Hall
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Michael J Owen
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - David E J Linden
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Live Sciences, Maastricht University, Maastricht, The Netherlands
| | | | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA
| | - Anne M Maillard
- Service des Troubles du Spectre de l'Autisme et apparentés, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Sébastien Jacquemont
- Service de Génétique Médicale, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Marianne B M van den Bree
- Division of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK.
| |
Collapse
|
27
|
Okawa Y, Kohara S, Uchiyama A, Yamazaki H, Uno Y. Evaluation of domain of unknown function 1220 (DUF1220) for detection of human genome by quantitative polymerase chain reaction: Potential use in assessing the biodistribution of transplanted therapeutic human cells. Drug Metab Pharmacokinet 2020; 38:100366. [PMID: 33714132 DOI: 10.1016/j.dmpk.2020.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 10/23/2022]
Abstract
The biodistribution profile of cell-based therapy products in animal models is important for evaluation of their safety and efficacy. Because of its quantitative nature and sensitivity, the quantitative polymerase chain reaction (qPCR) is a useful method for detecting and quantifying xenogeneic cell-derived DNA in animal models, thereby allowing a biodistribution profile to be established. Although the restriction endonuclease family from Arthrobacter luteus (Alu) of repetitive elements in human genome sequences has been used to assess the biodistribution of human cells, high background signals are detected. In the present study, we evaluate the potential of domain of unknown function 1220 (DUF1220), which is a human lineage-specific, multiple-copy gene similar to Alu sequences, for such analysis. Using qPCR analysis for DUF1220, human genome could be detected against a mouse genome background at a level comparable to that of Alu sequences with no detectable background signals. Moreover, using this approach, the human genome could be distinguished from the cynomolgus monkey genome. Further investigation of the quantitative aspects of this DUF1220-based qPCR assay might prove its usefulness for biodistribution studies of human cells transplanted into animals in the future.
Collapse
Affiliation(s)
- Yurie Okawa
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd., Kagoshima, Japan.
| | - Sakae Kohara
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Japan
| | - Asako Uchiyama
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd., Kagoshima, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan.
| | - Yasuhiro Uno
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Japan; Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
28
|
Pang H, Yu X, Kim YM, Wang X, Jinkins JK, Yin J, Li S, Gu H. Disorders Associated With Diverse, Recurrent Deletions and Duplications at 1q21.1. Front Genet 2020; 11:577. [PMID: 32655619 PMCID: PMC7325322 DOI: 10.3389/fgene.2020.00577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/11/2020] [Indexed: 01/22/2023] Open
Abstract
The subchromosomal region 1q21.1 is one of the hotspots in the human genome for deletions and reciprocal duplications, owing to the existence of hundreds of segmental duplications. Recurrent deletions and duplications in this region are thought to be causative in patients with variable clinical manifestations. Based on the genomic locations, deletions and duplications at the 1q21.1 locus have been associated with distinguishable syndromes: chromosome 1q21.1 deletion syndrome, chromosome 1q21.1 duplication syndrome, and thrombocytopenia-absent radius (TAR) syndrome, which is partially due to deletions at the proximal 1q21.1 region. We report here diverse, recurrent deletions and duplications at the 1q21.1 locus in 36 patients from a cohort of 5,200 individuals. Among the 36 patients, 18 patients carry 1q21.1 deletions, nine individuals have reciprocal duplications at 1q21.1, two patients share an identical short deletion, and the remaining seven possess variable sizes of duplications at the proximal 1q21.1 region. Furthermore, we provide cytogenetic characterization and detailed clinical features for each patient. Notably, duplications at the proximal 1q21.1 region have not been associated with a defined disorder in publications. However, recurrent duplications at the proximal 1q21.1 region among the seven patients strongly suggested that the variants are likely pathogenic. The common phenotypical features of those disorders are also summarized to facilitate clinical diagnoses and genetic counseling.
Collapse
Affiliation(s)
- Hui Pang
- Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Xiaowei Yu
- The First Affiliated Hospital of Jilin University, Changchun, China
| | - Young Mi Kim
- Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Xianfu Wang
- Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Jeremy K Jinkins
- Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Jianing Yin
- The First Affiliated Hospital of Jilin University, Changchun, China
| | - Shibo Li
- Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Hongcang Gu
- Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma, OK, United States.,Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
29
|
Bekpen C, Tautz D. Human core duplicon gene families: game changers or game players? Brief Funct Genomics 2020; 18:402-411. [PMID: 31529038 PMCID: PMC6920530 DOI: 10.1093/bfgp/elz016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/01/2019] [Accepted: 06/24/2019] [Indexed: 01/09/2023] Open
Abstract
Illuminating the role of specific gene duplications within the human lineage can provide insights into human-specific adaptations. The so-called human core duplicon gene families have received particular attention in this respect, due to special features, such as expansion along single chromosomes, newly acquired protein domains and signatures of positive selection. Here, we summarize the data available for 10 such families and include some new analyses. A picture emerges that suggests broad functions for these protein families, possibly through modification of core cellular pathways. Still, more dedicated studies are required to elucidate the function of core-duplicons gene families and how they have shaped adaptations and evolution of humans.
Collapse
Affiliation(s)
| | - Diethard Tautz
- Max-Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| |
Collapse
|
30
|
The N-terminal of NBPF15 causes multiple types of aggregates and mediates phase transition. Biochem J 2020; 477:445-458. [DOI: 10.1042/bcj20190566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/26/2022]
Abstract
The neuroblastoma breakpoint family (NBPF) consists of 24 members that play an important role in neuroblastoma and other cancers. NBPF is an evolutionarily recent gene family that encodes several repeats of Olduvai domain and an abundant N-terminal region. The function and biochemical properties of both Olduvai domain and the N-terminal region remain enigmatic. Human NBPF15 encodes a 670 AA protein consisting of six clades of Olduvai domains. In this study, we synthesized and expressed full-length NBPF15, and purified a range of NBPF15 truncations which were analyzed using dynamic light scattering (DLS), superdex200 (S200), small-angle X-ray scattering (SAXS), far-UV circular dichroism (CD) spectroscopy, transmission electron microscope (TEM), and crystallography. We found that proteins containing both the N-terminal region and Olduvai domain are heterogeneous with multiple types of aggregates, and some of them underwent a liquid-to-solid phase transition, probably because of the entanglement within the N-terminal coiled-coil. Proteins that contain only the Olduvai domain are homogeneous extended monomers, and those with the conserved clade 1 (CON1) have manifested a tendency to crystallize. We suggest that the entanglements between the mosaic disorder-ordered segments in NBPF15 N terminus have triggered the multiple types of aggregates and phase transition of NBPF15 proteins, which could be associated with Olduvai-related cognitive dysfunction diseases.
Collapse
|
31
|
Decoding the development of the human hippocampus. Nature 2020; 577:531-536. [PMID: 31942070 DOI: 10.1038/s41586-019-1917-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/12/2019] [Indexed: 01/08/2023]
Abstract
The hippocampus is an important part of the limbic system in the human brain that has essential roles in spatial navigation and the consolidation of information from short-term memory to long-term memory1,2. Here we use single-cell RNA sequencing and assay for transposase-accessible chromatin using sequencing (ATAC-seq) analysis to illustrate the cell types, cell linage, molecular features and transcriptional regulation of the developing human hippocampus. Using the transcriptomes of 30,416 cells from the human hippocampus at gestational weeks 16-27, we identify 47 cell subtypes and their developmental trajectories. We also identify the migrating paths and cell lineages of PAX6+ and HOPX+ hippocampal progenitors, and regional markers of CA1, CA3 and dentate gyrus neurons. Multiomic data have uncovered transcriptional regulatory networks of the dentate gyrus marker PROX1. We also illustrate spatially specific gene expression in the developing human prefrontal cortex and hippocampus. The molecular features of the human hippocampus at gestational weeks 16-20 are similar to those of the mouse at postnatal days 0-5 and reveal gene expression differences between the two species. Transient expression of the primate-specific gene NBPF1 leads to a marked increase in PROX1+ cells in the mouse hippocampus. These data provides a blueprint for understanding human hippocampal development and a tool for investigating related diseases.
Collapse
|
32
|
Heft IE, Mostovoy Y, Levy-Sakin M, Ma W, Stevens AJ, Pastor S, McCaffrey J, Boffelli D, Martin DI, Xiao M, Kennedy MA, Kwok PY, Sikela JM. The Driver of Extreme Human-Specific Olduvai Repeat Expansion Remains Highly Active in the Human Genome. Genetics 2020; 214:179-191. [PMID: 31754017 PMCID: PMC6944415 DOI: 10.1534/genetics.119.302782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/05/2019] [Indexed: 11/18/2022] Open
Abstract
Sequences encoding Olduvai protein domains (formerly DUF1220) show the greatest human lineage-specific increase in copy number of any coding region in the genome and have been associated, in a dosage-dependent manner, with brain size, cognitive aptitude, autism, and schizophrenia. Tandem intragenic duplications of a three-domain block, termed the Olduvai triplet, in four NBPF genes in the chromosomal 1q21.1-0.2 region, are primarily responsible for the striking human-specific copy number increase. Interestingly, most of the Olduvai triplets are adjacent to, and transcriptionally coregulated with, three human-specific NOTCH2NL genes that have been shown to promote cortical neurogenesis. Until now, the underlying genomic events that drove the Olduvai hyperamplification in humans have remained unexplained. Here, we show that the presence or absence of an alternative first exon of the Olduvai triplet perfectly discriminates between amplified (58/58) and unamplified (0/12) triplets. We provide sequence and breakpoint analyses that suggest the alternative exon was produced by an nonallelic homologous recombination-based mechanism involving the duplicative transposition of an existing Olduvai exon found in the CON3 domain, which typically occurs at the C-terminal end of NBPF genes. We also provide suggestive in vitro evidence that the alternative exon may promote instability through a putative G-quadraplex (pG4)-based mechanism. Lastly, we use single-molecule optical mapping to characterize the intragenic structural variation observed in NBPF genes in 154 unrelated individuals and 52 related individuals from 16 families and show that the presence of pG4-containing Olduvai triplets is strongly correlated with high levels of Olduvai copy number variation. These results suggest that the same driver of genomic instability that allowed the evolutionarily recent, rapid, and extreme human-specific Olduvai expansion remains highly active in the human genome.
Collapse
Affiliation(s)
- Ilea E Heft
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Yulia Mostovoy
- Cardiovascular Research Institute, University of California, San Francisco, California
| | - Michal Levy-Sakin
- Cardiovascular Research Institute, University of California, San Francisco, California
| | - Walfred Ma
- Cardiovascular Research Institute, University of California, San Francisco, California
| | - Aaron J Stevens
- Department of Pathology, University of Otago, Christchurch, New Zealand 8140
| | - Steven Pastor
- School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania 19104
| | - Jennifer McCaffrey
- School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania 19104
| | - Dario Boffelli
- Children's Hospital Oakland Research Institute, Oakland, California 94609
| | - David I Martin
- Children's Hospital Oakland Research Institute, Oakland, California 94609
| | - Ming Xiao
- School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania 19104
| | - Martin A Kennedy
- Department of Pathology, University of Otago, Christchurch, New Zealand 8140
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, University of California, San Francisco, California
- Department of Dermatology, University of California, San Francisco, California
- Institute for Human Genetics, University of California, San Francisco, California
| | - James M Sikela
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado 80045
| |
Collapse
|
33
|
Nesic MJ, Stojkovic B, Maric NP. On the origin of schizophrenia: Testing evolutionary theories in the post-genomic era. Psychiatry Clin Neurosci 2019; 73:723-730. [PMID: 31525268 DOI: 10.1111/pcn.12933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
Abstract
Considering the relatively high heritability of schizophrenia and the fact that it significantly reduces the reproductive fitness of affected individuals, it is not clear how the disorder is still maintained in human populations at a disproportionally high prevalence. Many theories propose that the disorder is a result of a trade-off between costs and benefits of the evolution of exclusively human adaptations. There have also been suggestions that schizophrenia risk alleles are accompanied with increase in fitness of affected persons or their relatives in both past and current social contexts. The discoveries of novel schizophrenia-related genes and the advancements in comparative genomics (especially comparisons of the human genome and the genomes of related species, such as chimpanzees and extinct hominids) have finally made certain evolutionary theories testable. In this paper, we review the current understanding of the genetics of schizophrenia, the basic principles of evolution that complement our understanding of the subject, and the latest genetic studies that examine long-standing evolutionary theories of schizophrenia using novel methodologies and data. We find that the origin of schizophrenia is complex and likely governed by different evolutionary mechanisms that are not mutually exclusive. Furthermore, the most recent evidence implies that schizophrenia cannot be comprehended as a trait that has elevated fitness in human evolutionary lineage, but has been a mildly deleterious by-product of specific patterns of the evolution of the human brain. In other words, novel findings do not support previous hypotheses stating that schizophrenia risk genes have an evolutionary advantage.
Collapse
Affiliation(s)
- Milica J Nesic
- Clinic for Psychiatry, Clinical Center of Serbia, Belgrade, Serbia
| | - Biljana Stojkovic
- Institute of Zoology, Faculty of Biology, University of Belgrade, Belgrade, Serbia.,Department of Evolutionary Biology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade, Serbia
| | - Nadja P Maric
- Clinic for Psychiatry, Clinical Center of Serbia, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
34
|
Link N, Chung H, Jolly A, Withers M, Tepe B, Arenkiel BR, Shah PS, Krogan NJ, Aydin H, Geckinli BB, Tos T, Isikay S, Tuysuz B, Mochida GH, Thomas AX, Clark RD, Mirzaa GM, Lupski JR, Bellen HJ. Mutations in ANKLE2, a ZIKA Virus Target, Disrupt an Asymmetric Cell Division Pathway in Drosophila Neuroblasts to Cause Microcephaly. Dev Cell 2019; 51:713-729.e6. [PMID: 31735666 DOI: 10.1016/j.devcel.2019.10.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/19/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022]
Abstract
The apical Par complex, which contains atypical protein kinase C (aPKC), Bazooka (Par-3), and Par-6, is required for establishing polarity during asymmetric division of neuroblasts in Drosophila, and its activity depends on L(2)gl. We show that loss of Ankle2, a protein associated with microcephaly in humans and known to interact with Zika protein NS4A, reduces brain volume in flies and impacts the function of the Par complex. Reducing Ankle2 levels disrupts endoplasmic reticulum (ER) and nuclear envelope morphology, releasing the kinase Ballchen-VRK1 into the cytosol. These defects are associated with reduced phosphorylation of aPKC, disruption of Par-complex localization, and spindle alignment defects. Importantly, removal of one copy of ballchen or l(2)gl suppresses Ankle2 mutant phenotypes and restores viability and brain size. Human mutational studies implicate the above-mentioned genes in microcephaly and motor neuron disease. We suggest that NS4A, ANKLE2, VRK1, and LLGL1 define a pathway impinging on asymmetric determinants of neural stem cell division.
Collapse
Affiliation(s)
- Nichole Link
- Howard Hughes Medical Institute, BCM, Houston, TX 77030, USA; Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hyunglok Chung
- Howard Hughes Medical Institute, BCM, Houston, TX 77030, USA; Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Angad Jolly
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; MD/PhD Medical Scientist Training Program and MHG Graduate program, BCM, Houston, TX 77030, USA
| | - Marjorie Withers
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Burak Tepe
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, BCM, Houston, TX 77030, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, BCM, Houston, TX 77030, USA
| | - Priya S Shah
- Department of Chemical Engineering and Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hatip Aydin
- Center of Genetics Diagnosis, Zeynep Kamil Maternity and Children's Training and Research Hospital, Istanbul, Turkey
| | - Bilgen B Geckinli
- Department of Medical Genetics, Marmara University School of Medicine, Istanbul, Turkey
| | - Tulay Tos
- Department of Medical Genetics, Dr. Sami Ulus Research and Training Hospital of Women's and Children's Health and Diseases, Ankara, Turkey
| | - Sedat Isikay
- Department of Physiotherapy and Rehabilitation, Hasan Kalyoncu University, School of Health Sciences, Gaziantep, Turkey
| | - Beyhan Tuysuz
- Department of Pediatrics, Istanbul University-Cerrahpasa, Medical Faculty, Istanbul, Turkey
| | - Ganesh H Mochida
- Division of Genetics and Genomics, Department of Pediatrics and Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Pediatric Neurology Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ajay X Thomas
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, BCM, Houston, TX 77030, USA; Section of Child Neurology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Robin D Clark
- Division of Medical Genetics, Department of Pediatrics, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Ghayda M Mirzaa
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Department of Pediatrics, BCM, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hugo J Bellen
- Howard Hughes Medical Institute, BCM, Houston, TX 77030, USA; Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; MD/PhD Medical Scientist Training Program and MHG Graduate program, BCM, Houston, TX 77030, USA; Program in Developmental Biology, BCM, Houston, TX 77030, USA.
| |
Collapse
|
35
|
Issaian A, Schmitt L, Born A, Nichols PJ, Sikela J, Hansen K, Vögeli B, Henen MA. Solution NMR backbone assignment reveals interaction-free tumbling of human lineage-specific Olduvai protein domains. BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:339-343. [PMID: 31264103 PMCID: PMC6715528 DOI: 10.1007/s12104-019-09902-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
Olduvai protein domains, encoded primarily by NBPF genes, have been linked to both human brain evolution and cognitive diseases such as autism and schizophrenia. There are six primary domains that comprise the Olduvai family: three conserved domains (CON1-3) and three human lineage-specific domains (HLS1-3), which typically occur as a triplet (HLS1, HLS2 and HLS3). Herein, we present the solution NMR assignment of the backbone chemical shifts of the separate HLS1, 2 and 3 domains of NBPF15. Our data suggest that there is no change in the structure of the separate domains when compared to the full-length triplet (HLS1-HLS2-HLS3). We also demonstrate that there is no direct interaction between the three domains.
Collapse
Affiliation(s)
- Aaron Issaian
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Colorado, 12801 E. 17th Avenue, Aurora, CO, 80045, USA
| | - Lauren Schmitt
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Colorado, 12801 E. 17th Avenue, Aurora, CO, 80045, USA
| | - Alexandra Born
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Colorado, 12801 E. 17th Avenue, Aurora, CO, 80045, USA
| | - Parker J Nichols
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Colorado, 12801 E. 17th Avenue, Aurora, CO, 80045, USA
| | - James Sikela
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Colorado, 12801 E. 17th Avenue, Aurora, CO, 80045, USA
| | - Kirk Hansen
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Colorado, 12801 E. 17th Avenue, Aurora, CO, 80045, USA
| | - Beat Vögeli
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Colorado, 12801 E. 17th Avenue, Aurora, CO, 80045, USA.
| | - Morkos A Henen
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Colorado, 12801 E. 17th Avenue, Aurora, CO, 80045, USA
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
36
|
Davis JM, Heft I, Scherer SW, Sikela JM. A Third Linear Association Between Olduvai (DUF1220) Copy Number and Severity of the Classic Symptoms of Inherited Autism. Am J Psychiatry 2019; 176:643-650. [PMID: 30764650 PMCID: PMC6675654 DOI: 10.1176/appi.ajp.2018.18080993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The authors previously reported that the copy number of sequences encoding an Olduvai protein domain subtype (CON1) shows a linear association with the severity of social deficits and communication impairment in individuals with autism. In this study, using an improved measurement method, the authors replicated this association in an independent population. METHOD The authors obtained whole genome sequence (WGS) data and phenotype data on 215 individuals from the Autism Speaks MSSNG project. They derived copy number from WGS data using a modified sequence read-depth technique. A linear mixed-effects model was used to test the association between Olduvai CON1 copy number and symptom severity as measured by the Autism Diagnostic Interview-Revised. The authors then combined data from previous studies (N=524) for final analyses. RESULTS A significant linear association was observed between CON1 copy number and social diagnostic score (SDS) (β=0.24) and communicative diagnostic score (CDS) (β=0.23). Using the combined data, the authors present strong significant associations of CON1 dosage with SDS (β=0.18) and CDS (β=0.13). The authors also implicate Olduvai subtypes found in two genes, NBPF1 and NBPF14 (R2=6.2%). Associations were preferentially found in multiplex versus simplex families. CONCLUSIONS The finding of a third dose-dependent association between Olduvai sequences and autism severity, preferentially in multiplex families, provides strong evidence that this highly duplicated and underexamined protein domain family plays an important role in inherited autism.
Collapse
Affiliation(s)
- Jonathan M. Davis
- Department of Biochemistry and Molecular Genetics, Human Medical Genetics and Genomics Program and Neuroscience Program, University of Colorado School of Medicine
| | - Ilea Heft
- Department of Biochemistry and Molecular Genetics, Human Medical Genetics and Genomics Program and Neuroscience Program, University of Colorado School of Medicine
| | - Stephen W. Scherer
- McLaughlin Centre and Department of Molecular Genetics, University of Toronto,The Centre for Applied Genomics and Program in Genetics and Genome Biology, Hospital for Sick Children
| | - James M. Sikela
- Department of Biochemistry and Molecular Genetics, Human Medical Genetics and Genomics Program and Neuroscience Program, University of Colorado School of Medicine
| |
Collapse
|
37
|
Doan RN, Shin T, Walsh CA. Evolutionary Changes in Transcriptional Regulation: Insights into Human Behavior and Neurological Conditions. Annu Rev Neurosci 2019; 41:185-206. [PMID: 29986162 DOI: 10.1146/annurev-neuro-080317-062104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding the biological basis for human-specific cognitive traits presents both immense challenges and unique opportunities. Although the question of what makes us human has been investigated with several different methods, the rise of comparative genomics, epigenomics, and medical genetics has provided tools to help narrow down and functionally assess the regions of the genome that seem evolutionarily relevant along the human lineage. In this review, we focus on how medical genetic cases have provided compelling functional evidence for genes and loci that appear to have interesting evolutionary signatures in humans. Furthermore, we examine a special class of noncoding regions, human accelerated regions (HARs), that have been suggested to show human-lineage-specific divergence, and how the use of clinical and population data has started to provide functional information to examine these regions. Finally, we outline methods that provide new insights into functional noncoding sequences in evolution.
Collapse
Affiliation(s)
- Ryan N Doan
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Taehwan Shin
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, Massachusetts 02138, USA
| |
Collapse
|
38
|
Kuhlwilm M, Boeckx C. A catalog of single nucleotide changes distinguishing modern humans from archaic hominins. Sci Rep 2019; 9:8463. [PMID: 31186485 PMCID: PMC6560109 DOI: 10.1038/s41598-019-44877-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/24/2019] [Indexed: 01/06/2023] Open
Abstract
Throughout the past decade, studying ancient genomes has provided unique insights into human prehistory, and differences between modern humans and other branches like Neanderthals can enrich our understanding of the molecular basis of unique modern human traits. Modern human variation and the interactions between different hominin lineages are now well studied, making it reasonable to go beyond fixed genetic changes and explore changes that are observed at high frequency in present-day humans. Here, we identify 571 genes with non-synonymous changes at high frequency. We suggest that molecular mechanisms in cell division and networks affecting cellular features of neurons were prominently modified by these changes. Complex phenotypes in brain growth trajectory and cognitive traits are likely influenced by these networks and other non-coding changes presented here. We propose that at least some of these changes contributed to uniquely human traits, and should be prioritized for experimental validation.
Collapse
Affiliation(s)
- Martin Kuhlwilm
- Institut de Biologia Evolutiva, (CSIC-Universitat Pompeu Fabra), PRBB, Barcelona, Spain
| | - Cedric Boeckx
- ICREA, Barcelona, Spain.
- University of Barcelona, Barcelona, Spain.
- UB Institute of Complex Systems, Barcelona, Spain.
| |
Collapse
|
39
|
Ceylan AC, Sahin I, Erdem HB, Kayhan G, Simsek-Kiper PO, Utine GE, Percin F, Boduroglu K, Alikasifoglu M. An eight-case 1q21 region series: novel aberrations and clinical variability with new features. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2019; 63:548-557. [PMID: 30773728 DOI: 10.1111/jir.12592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/04/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Rearrangement of the 1q21 region of chromosome 1 manifests as multiple phenotypes, including microcephaly, intellectual disability, dysmorphic facial features, eye abnormalities, cardiac defects, genitourinary anomalies, autism spectrum disorder, psychiatric conditions and seizures. Herein, we describe eight patients with 1q21 deletion and duplication syndromes, and novel deletions and findings. METHODS Chromosomal microarray analysis was performed to identify the existence of copy number variation. Quantitative polymerase chain reaction was applied using specific primers for the control and 1q21 region of chromosome 1. Mutational analysis was performed in case 5 using direct genomic sequencing for exons 1-6 in RBM8A. RESULTS Copy number variation analysis identified seven deletions and one duplication of the 1q21 region in the eight patients. In addition, four variations were de novo, and two deletions are reported here for the first time. One of the cases (case 7) presents moderate intellectual disability and dysmorphic facial findings, whereas chromosomal microarray analysis showed that case 7 had an 889-kb deletion in the 1q21 proximal region (GPR89A, PDZK1, CD160, POLR3C and NBPF12). CONCLUSION Although the deletion in case 5 did not include the thrombocytopenia-absent radius syndrome critical region or the RBM8A gene, he had pectoral muscle hypoplasia, radius and humerus hypoplasia and short curved ribs, which are indicative of a potential thrombocytopenia-absent radius region modifier. The findings in case 7 suggest that the proximal part of the 1q21 microdeletion syndrome region might be very important for the onset of clinical manifestations. Some novel findings were observed in the presented cases, such as radius and humerus hypoplasia and brain stem hypoplasia. The presented findings expand the spectrum of 1q21 aberrations and provide evidence of genotype-phenotype correlations for this region.
Collapse
Affiliation(s)
- A C Ceylan
- Faculty of Medicine, Department of Medical Genetics, Hacettepe University, Ankara, Turkey
- Department of Medical Genetics, Ankara Ataturk Training and Research Hospital, Yildirim Beyazit University, Ankara, Turkey
| | - I Sahin
- Faculty of Medicine, Department of Medical Genetics, Ataturk University, Erzurum, Turkey
- Department of Medical Genetics, Ankara Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - H B Erdem
- Faculty of Medicine, Department of Medical Genetics, Ataturk University, Erzurum, Turkey
- Department of Medical Genetics, Ankara Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - G Kayhan
- Faculty of Medicine, Department of Medical Genetics, Gazi University, Ankara, Turkey
| | - P O Simsek-Kiper
- Faculty of Medicine, Department of Pediatric Genetics, Hacettepe University, Ankara, Turkey
| | - G E Utine
- Faculty of Medicine, Department of Pediatric Genetics, Hacettepe University, Ankara, Turkey
| | - F Percin
- Faculty of Medicine, Department of Medical Genetics, Gazi University, Ankara, Turkey
| | - K Boduroglu
- Faculty of Medicine, Department of Medical Genetics, Hacettepe University, Ankara, Turkey
- Faculty of Medicine, Department of Pediatric Genetics, Hacettepe University, Ankara, Turkey
| | - M Alikasifoglu
- Faculty of Medicine, Department of Medical Genetics, Hacettepe University, Ankara, Turkey
- Faculty of Medicine, Department of Pediatric Genetics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
40
|
Fiddes IT, Pollen AA, Davis JM, Sikela JM. Paired involvement of human-specific Olduvai domains and NOTCH2NL genes in human brain evolution. Hum Genet 2019; 138:715-721. [PMID: 31087184 PMCID: PMC6611739 DOI: 10.1007/s00439-019-02018-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/16/2019] [Indexed: 02/07/2023]
Abstract
Sequences encoding Olduvai (DUF1220) protein domains show the largest human-specific increase in copy number of any coding region in the genome and have been linked to human brain evolution. Most human-specific copies of Olduvai (119/165) are encoded by three NBPF genes that are adjacent to three human-specific NOTCH2NL genes that have been shown to promote cortical neurogenesis. Here, employing genomic, phylogenetic, and transcriptomic evidence, we show that these NOTCH2NL/NBPF gene pairs evolved jointly, as two-gene units, very recently in human evolution, and are likely co-regulated. Remarkably, while three NOTCH2NL paralogs were added, adjacent Olduvai sequences hyper-amplified, adding 119 human-specific copies. The data suggest that human-specific Olduvai domains and adjacent NOTCH2NL genes may function in a coordinated, complementary fashion to promote neurogenesis and human brain expansion in a dosage-related manner.
Collapse
Affiliation(s)
| | - Alex A Pollen
- Department of Neurology and the Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research at the University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan M Davis
- Department of Biochemistry and Molecular Genetics, Human Medical Genetics and Genomics Program and Neuroscience Program, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - James M Sikela
- Department of Biochemistry and Molecular Genetics, Human Medical Genetics and Genomics Program and Neuroscience Program, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
41
|
De novo emergence and potential function of human-specific tandem repeats in brain-related loci. Hum Genet 2019; 138:661-672. [PMID: 31069507 DOI: 10.1007/s00439-019-02017-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/16/2019] [Indexed: 01/02/2023]
Abstract
Tandem repeats (TRs) are widespread in the genomes of all living organisms. In eukaryotes, they are found in both coding and noncoding regions and have potential roles in the regulation of cellular processes such as transcription, translation and in the modification of protein structure. Recent studies have highlighted TRs as a key regulator of gene expression and a potential contributor to human evolution. Thus, TRs are emerging as an important source of variation that can result in differential gene expression at intra- and inter-species levels. In this study, we performed a genome-wide survey to identify TRs that have emerged in the human lineage. We further examined these loci to explore their potential functional significance for human evolution. We identified 152 human-specific TR (HSTR) loci containing a repeat unit of more than ten bases, with most of them showing a repeat count of two. Gene set enrichment analysis showed that HSTR-associated genes were associated with biological functions in brain development and synapse function. In addition, we compared gene expression of human HSTR loci with orthologues from non-human primates (NHP) in seven different tissues. Strikingly, the expression level of HSTR-associated genes in brain tissues was significantly higher in human than in NHP. These results suggest the possibility that de novo emergence of TRs could have resulted in altered gene expression in humans within a short-time frame and contributed to the rapid evolution of human brain function.
Collapse
|
42
|
Lupski JR. 2018 Victor A. McKusick Leadership Award: Molecular Mechanisms for Genomic and Chromosomal Rearrangements. Am J Hum Genet 2019; 104:391-406. [PMID: 30849326 PMCID: PMC6407437 DOI: 10.1016/j.ajhg.2018.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, and Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
43
|
Dougherty ML, Underwood JG, Nelson BJ, Tseng E, Munson KM, Penn O, Nowakowski TJ, Pollen AA, Eichler EE. Transcriptional fates of human-specific segmental duplications in brain. Genome Res 2018; 28:1566-1576. [PMID: 30228200 PMCID: PMC6169893 DOI: 10.1101/gr.237610.118] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/07/2018] [Indexed: 01/27/2023]
Abstract
Despite the importance of duplicate genes for evolutionary adaptation, accurate gene annotation is often incomplete, incorrect, or lacking in regions of segmental duplication. We developed an approach combining long-read sequencing and hybridization capture to yield full-length transcript information and confidently distinguish between nearly identical genes/paralogs. We used biotinylated probes to enrich for full-length cDNA from duplicated regions, which were then amplified, size-fractionated, and sequenced using single-molecule, long-read sequencing technology, permitting us to distinguish between highly identical genes by virtue of multiple paralogous sequence variants. We examined 19 gene families as expressed in developing and adult human brain, selected for their high sequence identity (average >99%) and overlap with human-specific segmental duplications (SDs). We characterized the transcriptional differences between related paralogs to better understand the birth-death process of duplicate genes and particularly how the process leads to gene innovation. In 48% of the cases, we find that the expressed duplicates have changed substantially from their ancestral models due to novel sites of transcription initiation, splicing, and polyadenylation, as well as fusion transcripts that connect duplication-derived exons with neighboring genes. We detect unannotated open reading frames in genes currently annotated as pseudogenes, while relegating other duplicates to nonfunctional status. Our method significantly improves gene annotation, specifically defining full-length transcripts, isoforms, and open reading frames for new genes in highly identical SDs. The approach will be more broadly applicable to genes in structurally complex regions of other genomes where the duplication process creates novel genes important for adaptive traits.
Collapse
Affiliation(s)
- Max L Dougherty
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Jason G Underwood
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA.,Pacific Biosciences (PacBio) of California, Incorporated, Menlo Park, California 94025, USA
| | - Bradley J Nelson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Elizabeth Tseng
- Pacific Biosciences (PacBio) of California, Incorporated, Menlo Park, California 94025, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Osnat Penn
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Tomasz J Nowakowski
- Department of Anatomy, University of California, San Francisco, San Francisco, California 94158, USA.,Department of Psychiatry, University of California, San Francisco, San Francisco, California 94158, USA
| | - Alex A Pollen
- Department of Neurology, University of California, San Francisco, San Francisco, California 94158, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
44
|
Recurrent homozygous deletion of DROSHA and microduplication of PDE4DIP in pineoblastoma. Nat Commun 2018; 9:2868. [PMID: 30030436 PMCID: PMC6054684 DOI: 10.1038/s41467-018-05029-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/10/2018] [Indexed: 11/08/2022] Open
Abstract
Pineoblastoma is a rare and highly aggressive brain cancer of childhood, histologically belonging to the spectrum of primitive neuroectodermal tumors. Patients with germline mutations in DICER1, a ribonuclease involved in microRNA processing, have increased risk of pineoblastoma, but genetic drivers of sporadic pineoblastoma remain unknown. Here, we analyzed pediatric and adult pineoblastoma samples (n = 23) using a combination of genome-wide DNA methylation profiling and whole-exome sequencing or whole-genome sequencing. Pediatric and adult pineoblastomas showed distinct methylation profiles, the latter clustering with lower-grade pineal tumors and normal pineal gland. Recurrent variants were found in genes involved in PKA- and NF-κB signaling, as well as in chromatin remodeling genes. We identified recurrent homozygous deletions of DROSHA, acting upstream of DICER1 in microRNA processing, and a novel microduplication involving chromosomal region 1q21 containing PDE4DIP (myomegalin), comprising the ancient DUF1220 protein domain. Expresion of PDE4DIP and DUF1220 proteins was present exclusively in pineoblastoma with PDE4DIP gain.
Collapse
|
45
|
Dharanipragada P, Vogeti S, Parekh N. iCopyDAV: Integrated platform for copy number variations-Detection, annotation and visualization. PLoS One 2018; 13:e0195334. [PMID: 29621297 PMCID: PMC5886540 DOI: 10.1371/journal.pone.0195334] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/20/2018] [Indexed: 12/14/2022] Open
Abstract
Discovery of copy number variations (CNVs), a major category of structural variations, have dramatically changed our understanding of differences between individuals and provide an alternate paradigm for the genetic basis of human diseases. CNVs include both copy gain and copy loss events and their detection genome-wide is now possible using high-throughput, low-cost next generation sequencing (NGS) methods. However, accurate detection of CNVs from NGS data is not straightforward due to non-uniform coverage of reads resulting from various systemic biases. We have developed an integrated platform, iCopyDAV, to handle some of these issues in CNV detection in whole genome NGS data. It has a modular framework comprising five major modules: data pre-treatment, segmentation, variant calling, annotation and visualization. An important feature of iCopyDAV is the functional annotation module that enables the user to identify and prioritize CNVs encompassing various functional elements, genomic features and disease-associations. Parallelization of the segmentation algorithms makes the iCopyDAV platform even accessible on a desktop. Here we show the effect of sequencing coverage, read length, bin size, data pre-treatment and segmentation approaches on accurate detection of the complete spectrum of CNVs. Performance of iCopyDAV is evaluated on both simulated data and real data for different sequencing depths. It is an open-source integrated pipeline available at https://github.com/vogetihrsh/icopydav and as Docker’s image at http://bioinf.iiit.ac.in/icopydav/.
Collapse
Affiliation(s)
- Prashanthi Dharanipragada
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, India
| | - Sriharsha Vogeti
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, India
| | - Nita Parekh
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, India
- * E-mail:
| |
Collapse
|
46
|
Alzarka B, Usala R, Whitehead MT, Ahn SY. Hyponatremia: An Unusual Presentation in a Neonate With Chromosome 1q21.1 Deletion Syndrome. Front Pediatr 2018; 6:273. [PMID: 30364227 PMCID: PMC6193093 DOI: 10.3389/fped.2018.00273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/11/2018] [Indexed: 11/13/2022] Open
Abstract
Chromosome 1q21.1 deletion syndrome is associated with a wide variety of clinical features including mild to moderate mental retardation, microcephaly, cardiac abnormalities, and cataracts. We report an unusual case of a premature neonate with persistent hyponatremia, markedly elevated plasma arginine vasopressin level (32.7 pg/mL), and clinical findings consistent with the syndrome of inappropriate antidiuretic hormone secretion (SIADH). The patient, who also had microcephaly and dextrocardia, was subsequently diagnosed with chromosome 1q21.1 deletion syndrome. Further evaluation revealed hypothalamic abnormalities, features not previously described with this syndrome. To our knowledge, this is the first report of SIADH associated with congenital hypothalamic anomalies in a neonate with chromosome 1q21.1 deletion syndrome. We also report our experience using tolvaptan, a vasopressin receptor antagonist, in this patient to effectively maintain eunatremia.
Collapse
Affiliation(s)
- Bakri Alzarka
- Department of Nephrology, Children's National Health System, Washington, DC, United States.,The George Washington University School of Medicine, Washington, DC, United States
| | - Rachel Usala
- Departments of Medicine and Pediatrics, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Matthew T Whitehead
- The George Washington University School of Medicine, Washington, DC, United States.,Department of Radiology, Children's National Health System, Washington, DC, United States
| | - Sun-Young Ahn
- Department of Nephrology, Children's National Health System, Washington, DC, United States.,The George Washington University School of Medicine, Washington, DC, United States
| |
Collapse
|
47
|
Levchenko A, Kanapin A, Samsonova A, Gainetdinov RR. Human Accelerated Regions and Other Human-Specific Sequence Variations in the Context of Evolution and Their Relevance for Brain Development. Genome Biol Evol 2018; 10:166-188. [PMID: 29149249 PMCID: PMC5767953 DOI: 10.1093/gbe/evx240] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2017] [Indexed: 12/24/2022] Open
Abstract
The review discusses, in a format of a timeline, the studies of different types of genetic variants, present in Homo sapiens, but absent in all other primate, mammalian, or vertebrate species, tested so far. The main characteristic of these variants is that they are found in regions of high evolutionary conservation. These sequence variations include single nucleotide substitutions (called human accelerated regions), deletions, and segmental duplications. The rationale for finding such variations in the human genome is that they could be responsible for traits, specific to our species, of which the human brain is the most remarkable. As became obvious, the vast majority of human-specific single nucleotide substitutions are found in noncoding, likely regulatory regions. A number of genes, associated with these human-specific alleles, often through novel enhancer activity, were in fact shown to be implicated in human-specific development of certain brain areas, including the prefrontal cortex. Human-specific deletions may remove regulatory sequences, such as enhancers. Segmental duplications, because of their large size, create new coding sequences, like new functional paralogs. Further functional study of these variants will shed light on evolution of our species, as well as on the etiology of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Anastasia Levchenko
- Institute of Translational Biomedicine, Saint Petersburg State University, Russia
| | - Alexander Kanapin
- Institute of Translational Biomedicine, Saint Petersburg State University, Russia
- Department of Oncology, University of Oxford, United Kingdom
| | - Anastasia Samsonova
- Institute of Translational Biomedicine, Saint Petersburg State University, Russia
- Department of Oncology, University of Oxford, United Kingdom
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia
| |
Collapse
|
48
|
Sikela JM, Searles Quick VB. Genomic trade-offs: are autism and schizophrenia the steep price of the human brain? Hum Genet 2018; 137:1-13. [PMID: 29335774 PMCID: PMC5898792 DOI: 10.1007/s00439-017-1865-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/29/2017] [Indexed: 01/29/2023]
Abstract
Evolution often deals in genomic trade-offs: changes in the genome that are beneficial overall persist even though they also produce disease in a subset of individuals. Here, we explore the possibility that such trade-offs have occurred as part of the evolution of the human brain. Specifically, we provide support for the possibility that the same key genes that have been major contributors to the rapid evolutionary expansion of the human brain and its exceptional cognitive capacity also, in different combinations, are significant contributors to autism and schizophrenia. Furthermore, the model proposes that one of the primary genes behind this trade-off may not technically be "a gene" or "genes" but rather are the highly duplicated sequences that encode the Olduvai protein domain family (formerly called DUF1220). This is not an entirely new idea. Others have proposed that the same genes involved in schizophrenia were also critical to the rapid expansion of the human brain, a view that has been expressed as "the same 'genes' that drive us mad have made us human". What is new is that a "gene", or more precisely a protein domain family, has been found that may satisfy these requirements.
Collapse
Affiliation(s)
- J M Sikela
- University of Colorado School of Medicine, Aurora, CO, USA.
| | - V B Searles Quick
- University of Colorado School of Medicine, Aurora, CO, USA
- Department of Psychiatry, University of California, San Francisco, California, USA
| |
Collapse
|
49
|
Abstract
We are jointly proposing a new name for a protein domain of approximately 65 amino acids that has been previously termed NBPF or DUF1220. Our two labs independently reported the initial studies of this domain, which is encoded almost entirely within a single gene family. The name Neuroblastoma Breakpoint Family (
NBPF) was applied to this gene family when the first identified member of the family was found to be interrupted in an individual with neuroblastoma. Prior to this discovery, the Pfam database had termed the domain DUF1220, denoting it as one of many protein
domains of
unknown
function. It has been Pfam’s intention to use “DUF” nomenclature to serve only as a temporary placeholder until more appropriate names are proposed based on research findings. We believe that additional studies of this domain, primarily from our laboratories over the past 10 years, have resulted in furthering our understanding of these sequences to the point where proposing a new name for this domain is warranted. Because of considerable data linking the domain to human-specific evolution, brain expansion and cognition, we believe a name reflecting these findings would be appropriate. With this in mind, we have chosen to name the domain (and the repeat that encodes it) Olduvai. The gene family will remain as
NBPF for now. The primary domain subtypes will retain their previously assigned names (e.g. CON1-3; HLS1-3), and the three-domain block that expanded dramatically in the human lineage will be termed the Olduvai triplet. The new name refers to Olduvai Gorge, which is a site in East Africa that has been the source of major anthropological discoveries in the early-mid 1900’s. We also chose the name as a tribute to the scientists who made important contributions to the early studies of human origins and our African genesis.
Collapse
Affiliation(s)
- James M Sikela
- Department of Biochemistry and Molecular Genetics, Human Medical Genetics and Neuroscience Programs, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Frans van Roy
- Department of Biomedical Molecular Biology, Ghent University, Ghent, 9052, Belgium.,VIB-UGent Center for Inflammation Research, Ghent, 9052, Belgium
| |
Collapse
|
50
|
Astling DP, Heft IE, Jones KL, Sikela JM. High resolution measurement of DUF1220 domain copy number from whole genome sequence data. BMC Genomics 2017; 18:614. [PMID: 28807002 PMCID: PMC5556342 DOI: 10.1186/s12864-017-3976-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 07/31/2017] [Indexed: 11/10/2022] Open
Abstract
Background DUF1220 protein domains found primarily in Neuroblastoma BreakPoint Family (NBPF) genes show the greatest human lineage-specific increase in copy number of any coding region in the genome. There are 302 haploid copies of DUF1220 in hg38 (~160 of which are human-specific) and the majority of these can be divided into 6 different subtypes (referred to as clades). Copy number changes of specific DUF1220 clades have been associated in a dose-dependent manner with brain size variation (both evolutionarily and within the human population), cognitive aptitude, autism severity, and schizophrenia severity. However, no published methods can directly measure copies of DUF1220 with high accuracy and no method can distinguish between domains within a clade. Results Here we describe a novel method for measuring copies of DUF1220 domains and the NBPF genes in which they are found from whole genome sequence data. We have characterized the effect that various sequencing and alignment parameters and strategies have on the accuracy and precision of the method and defined the parameters that lead to optimal DUF1220 copy number measurement and resolution. We show that copy number estimates obtained using our read depth approach are highly correlated with those generated by ddPCR for three representative DUF1220 clades. By simulation, we demonstrate that our method provides sufficient resolution to analyze DUF1220 copy number variation at three levels: (1) DUF1220 clade copy number within individual genes and groups of genes (gene-specific clade groups) (2) genome wide DUF1220 clade copies and (3) gene copy number for DUF1220-encoding genes. Conclusions To our knowledge, this is the first method to accurately measure copies of all six DUF1220 clades and the first method to provide gene specific resolution of these clades. This allows one to discriminate among the ~300 haploid human DUF1220 copies to an extent not possible with any other method. The result is a greatly enhanced capability to analyze the role that these sequences play in human variation and disease. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3976-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David P Astling
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ilea E Heft
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kenneth L Jones
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - James M Sikela
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|