1
|
Eladl SN, Elnabawy AM, Eltanahy EG. Recent biotechnological applications of value-added bioactive compounds from microalgae and seaweeds. BOTANICAL STUDIES 2024; 65:28. [PMID: 39312045 PMCID: PMC11420431 DOI: 10.1186/s40529-024-00434-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/24/2024] [Indexed: 09/26/2024]
Abstract
Microalgae and seaweed have been consumed as food for several decades to combat starvation and food shortages worldwide. The most famous edible microalgae species are Nostoc, Spirulina, and Aphanizomenon, in addition to seaweeds, which are used in traditional medicine and food, such as Nori, which is one of the most popular foods containing Pyropia alga as a major ingredient. Recently, many applications use algae-derived polysaccharides such as agar, alginate, carrageenan, cellulose, fucoidan, mannan, laminarin, ulvan, and xylan as gelling agents in food, pharmaceuticals, and cosmetics industries. Moreover, pigments (carotenoids particularly astaxanthins, chlorophylls, and phycobilins), minerals, vitamins, polyunsaturated fatty acids, peptides, proteins, polyphenols, and diterpenes compounds are accumulated under specific cultivation and stress conditions in the algal cells to be harvested and their biomass used as a feedstock for the relevant industries and applications. No less critical is the use of algae in bioremediation, thus contributing significantly to environmental sustainability.This review will explore and discuss the various applications of microalgae and seaweeds, emphasising their role in bioremediation, recent products with algal added-value compounds that are now on the market, and novel under-developing applications such as bioplastics and nanoparticle production. Nonetheless, special attention is also drawn towards the limitations of these applications and the technologies applied, and how they may be overcome.
Collapse
Affiliation(s)
- Salma N Eladl
- Algae Biotechnology and Water Quality Lab, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Aya M Elnabawy
- Algae Biotechnology and Water Quality Lab, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Eladl G Eltanahy
- Algae Biotechnology and Water Quality Lab, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
2
|
Hajri AK, Alsharif I, Albalawi MA, Alshareef SA, Albalawi RK, Jamoussi B. Utilizing Mixed Cultures of Microalgae to Up-Cycle and Remove Nutrients from Dairy Wastewater. BIOLOGY 2024; 13:591. [PMID: 39194529 DOI: 10.3390/biology13080591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
This study explores the novel use of mixed cultures of microalgae-Spirulina platensis, Micractinium, and Chlorella-for nutrient removal from dairy wastewater (DW). Microalgae were isolated from a local wastewater treatment plant and cultivated under various light conditions. The results showed significant biomass production, with mixed cultures achieving the highest biomass (2.51 g/L), followed by Spirulina (1.98 g/L) and Chlorella (1.92 g/L). Supplementing DW (75%) with BG medium (25%) significantly enhanced biomass and pH levels, improving pathogenic bacteria removal. Spirulina and mixed cultures exhibited high nitrogen removal efficiencies of 92.56% and 93.34%, respectively, while Chlorella achieved 86.85% nitrogen and 83.45% phosphorus removal. Although growth rates were lower under phosphorus-limited conditions, the microalgae adapted well to real DW, which is essential for effective algal harvesting. Phosphorus removal efficiencies ranged from 69.56% to 86.67%, with mixed cultures achieving the highest removal. Microbial and coliform removal efficiencies reached 97.81%, with elevated pH levels contributing to significant reductions in fecal E. coli and coliform levels. These findings suggest that integrating microalgae cultivation into DW treatment systems can significantly enhance nutrient and pathogen removal, providing a sustainable solution for wastewater management.
Collapse
Affiliation(s)
- Amira K Hajri
- Department of Chemistry, Alwajh College, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Ifat Alsharif
- Department of Biology, Jamoum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Marzough A Albalawi
- Department of Chemistry, Alwajh College, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Shareefa A Alshareef
- Department of Chemistry, Alwajh College, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Raghad K Albalawi
- Department of Chemistry, Alwajh College, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Bassem Jamoussi
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Bossa R, Di Colandrea M, Salbitani G, Carfagna S. Phosphorous Utilization in Microalgae: Physiological Aspects and Applied Implications. PLANTS (BASEL, SWITZERLAND) 2024; 13:2127. [PMID: 39124245 PMCID: PMC11314164 DOI: 10.3390/plants13152127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Phosphorus (P) is a fundamental element for life, playing an integral role in cellular metabolism including energy transfer, nucleic acid synthesis, and membrane structure. This nutrient is critical to the physiological ecology in all photosynthetic organisms including eukaryotic microalgae and cyanobacteria. The review, here presented, delves into the intricate mechanisms governing phosphorus acquisition from the environment, its utilization in plant metabolism, and regulation in these photosynthetic microorganisms. Furthermore, it comprehensively explores the strategies employed by microalgae to cope with phosphorus limitation, such as the activation of high-affinity phosphate transporters and the synthesis of phosphorus storage compounds. On the other hand, the ability to consume abundant phosphate makes microalgae exploitable organisms for environmental remediation processes. The knowledge synthesized in this review contributes to the broader understanding of microalgal physiology, offering insights into the ecological and biotechnological implications of phosphorus assimilation in these microorganisms.
Collapse
Affiliation(s)
| | | | - Giovanna Salbitani
- Department of Biology, University Federico II of Naples, Complesso Universitario MSA, 80126 Naples, Italy; (R.B.); (M.D.C.); (S.C.)
| | | |
Collapse
|
4
|
Comley JG, Scott JA, Laamanen CA. Utilizing CO 2 in industrial off-gas for microalgae cultivation: considerations and solutions. Crit Rev Biotechnol 2024; 44:910-923. [PMID: 37500178 DOI: 10.1080/07388551.2023.2233692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/24/2023] [Accepted: 06/17/2023] [Indexed: 07/29/2023]
Abstract
The utilization of microalgae to treat carbon dioxide (CO2)-rich industrial off-gas has been suggested as both beneficial for emissions reduction and economically favorable for the production of microalgal products. Common sources of off-gases include coal combustion (2-15% CO2), cement production (8-15% CO2), coke production (18-23% CO2), and ore smelting (6-7% CO2). However, industrial off-gas also commonly contains other acid gas components [typically nitrogen oxides (NOX) and sulfur dioxide (SO2)] and metals that could inhibit microalgae growth and productivity. To utilize industrial off-gas effectively in microalgae cultivation systems, a number of solutions have been proposed to overcome potential inhibitions. These include bioprospecting to identify suitable strains, genetic modification to improve specific cellular characteristics, chemical additions, and bioreactor designs and operating procedures.In this review, results from microalgae experiments related to utilizing off-gas are presented, and the outcomes of different conditions discussed along with potential solutions to resolve limitations associated with the application of off-gas.
Collapse
Affiliation(s)
- Jacob G Comley
- School of Engineering and Computer Science, Laurentian University, Sudbury, Canada
| | - John A Scott
- School of Engineering and Computer Science, Laurentian University, Sudbury, Canada
| | - Corey A Laamanen
- School of Engineering and Computer Science, Laurentian University, Sudbury, Canada
| |
Collapse
|
5
|
Torres MJ, Bellido-Pedraza CM, Llamas A. Applications of the Microalgae Chlamydomonas and Its Bacterial Consortia in Detoxification and Bioproduction. Life (Basel) 2024; 14:940. [PMID: 39202682 PMCID: PMC11355400 DOI: 10.3390/life14080940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
The wide metabolic diversity of microalgae, their fast growth rates, and low-cost production make these organisms highly promising resources for a variety of biotechnological applications, addressing critical needs in industry, agriculture, and medicine. The use of microalgae in consortia with bacteria is proving valuable in several areas of biotechnology, including the treatment of various types of wastewater, the production of biofertilizers, and the extraction of various products from their biomass. The monoculture of the microalga Chlamydomonas has been a prominent research model for many years and has been extensively used in the study of photosynthesis, sulphur and phosphorus metabolism, nitrogen metabolism, respiration, and flagellar synthesis, among others. Recent research has increasingly recognised the potential of Chlamydomonas-bacteria consortia as a biotechnological tool for various applications. The detoxification of wastewater using Chlamydomonas and its bacterial consortia offers significant potential for sustainable reduction of contaminants, while facilitating resource recovery and the valorisation of microalgal biomass. The use of Chlamydomonas and its bacterial consortia as biofertilizers can offer several benefits, such as increasing crop yields, protecting crops, maintaining soil fertility and stability, contributing to CO2 mitigation, and contributing to sustainable agricultural practises. Chlamydomonas-bacterial consortia play an important role in the production of high-value products, particularly in the production of biofuels and the enhancement of H2 production. This review aims to provide a comprehensive understanding of the potential of Chlamydomonas monoculture and its bacterial consortia to identify current applications and to propose new research and development directions to maximise their potential.
Collapse
Affiliation(s)
- María J. Torres
- Correspondence: (M.J.T.); (A.L.); Tel.: +34-957-218352 (M.J.T. & A.L.)
| | | | - Angel Llamas
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain;
| |
Collapse
|
6
|
Renganathan P, Puente EOR, Sukhanova NV, Gaysina LA. Hydroponics with Microalgae and Cyanobacteria: Emerging Trends and Opportunities in Modern Agriculture. BIOTECH 2024; 13:27. [PMID: 39051342 PMCID: PMC11270261 DOI: 10.3390/biotech13030027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
The global population is expected to reach 9.5 billion, which means that crop productivity needs to double to meet the growing population's food demand. Soil degradation and environmental factors, such as climate events, significantly threaten crop production and global food security. Furthermore, rapid urbanization has led to 55% of the world's population migrating to cities, and this proportion is expected to increase to 75% by 2050, which presents significant challenges in producing staple foods through conventional hinterland farming. Numerous studies have proposed various sustainable farming techniques to combat the shortage of farmable land and increase food security in urban areas. Soilless farming techniques such as hydroponics have gained worldwide popularity due to their resource efficiency and production of superior-quality fresh products. However, using chemical nutrients in a conventional hydroponic system can have significant environmental impacts, including eutrophication and resource depletion. Incorporating microalgae into hydroponic systems as biostimulants offers a sustainable and ecofriendly approach toward circular bioeconomy strategies. The present review summarizes the plant growth-promoting activity of microalgae as biostimulants and their mechanisms of action. We discuss their effects on plant growth parameters under different applications, emphasizing the significance of integrating microalgae into a closed-loop circular economy model to sustainably meet global food demands.
Collapse
Affiliation(s)
- Prabhaharan Renganathan
- Department of Bioecology and Biological Education, M. Akmullah Bashkir State Pedagogical University, 450000 Ufa, Russia; (P.R.); (N.V.S.)
| | - Edgar Omar Rueda Puente
- Departamento de Agricultura y Ganadería, Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo 83000, Sonora, Mexico;
| | - Natalia V. Sukhanova
- Department of Bioecology and Biological Education, M. Akmullah Bashkir State Pedagogical University, 450000 Ufa, Russia; (P.R.); (N.V.S.)
| | - Lira A. Gaysina
- Department of Bioecology and Biological Education, M. Akmullah Bashkir State Pedagogical University, 450000 Ufa, Russia; (P.R.); (N.V.S.)
- All-Russian Research Institute of Phytopathology, 143050 Bolshye Vyazemy, Russia
| |
Collapse
|
7
|
Solovchenko A, Plouviez M, Khozin-Goldberg I. Getting Grip on Phosphorus: Potential of Microalgae as a Vehicle for Sustainable Usage of This Macronutrient. PLANTS (BASEL, SWITZERLAND) 2024; 13:1834. [PMID: 38999674 PMCID: PMC11243885 DOI: 10.3390/plants13131834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Phosphorus (P) is an important and irreplaceable macronutrient. It is central to energy and information storage and exchange in living cells. P is an element with a "broken geochemical cycle" since it lacks abundant volatile compounds capable of closing the P cycle. P fertilizers are critical for global food security, but the reserves of minable P are scarce and non-evenly distributed between countries of the world. Accordingly, the risks of global crisis due to limited access to P reserves are expected to be graver than those entailed by competition for fossil hydrocarbons. Paradoxically, despite the scarcity and value of P reserves, its usage is extremely inefficient: the current waste rate reaches 80% giving rise to a plethora of unwanted consequences such as eutrophication leading to harmful algal blooms. Microalgal biotechnology is a promising solution to tackle this challenge. The proposed review briefly presents the relevant aspects of microalgal P metabolism such as cell P reserve composition and turnover, and the regulation of P uptake kinetics for maximization of P uptake efficiency with a focus on novel knowledge. The multifaceted role of polyPhosphates, the largest cell depot for P, is discussed with emphasis on the P toxicity mediated by short-chain polyPhosphates. Opportunities and hurdles of P bioremoval via P uptake from waste streams with microalgal cultures, either suspended or immobilized, are discussed. Possible avenues of P-rich microalgal biomass such as biofertilizer production or extraction of valuable polyPhosphates and other bioproducts are considered. The review concludes with a comprehensive assessment of the current potential of microalgal biotechnology for ensuring the sustainable usage of phosphorus.
Collapse
Affiliation(s)
- Alexei Solovchenko
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia
| | | | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Sde-Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| |
Collapse
|
8
|
Camarena-Bernard C, Pozzobon V. Evolving perspectives on lutein production from microalgae - A focus on productivity and heterotrophic culture. Biotechnol Adv 2024; 73:108375. [PMID: 38762164 DOI: 10.1016/j.biotechadv.2024.108375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
Increased consumer awareness for healthier and more sustainable products has driven the search for naturally sourced compounds as substitutes for chemically synthesized counterparts. Research on pigments of natural origin, such as carotenoids, particularly lutein, has been increasing for over three decades. Lutein is recognized for its antioxidant and photoprotective activity. Its ability to cross the blood-brain barrier allows it to act at the eye and brain level and has been linked to benefits for vision, cognitive function and other conditions. While marigold flower is positioned as the only crop from which lutein is extracted from and commercialized, microalgae are proposed as an alternative with several advantages over this terrestrial crop. The main barrier to scaling up lutein production from microalgae to the commercial level is the low productivity compared to the high costs. This review explores strategies to enhance lutein production in microalgae by emphasizing the overall productivity over lutein content alone. Evaluation of how culture parameters, such as light quality, nitrogen sufficiency, temperature and even stress factors, affect lutein content and biomass development in batch phototrophic cultures was performed. Overall, the total lutein production remains low under this metabolic regime due to the low biomass productivity of photosynthetic batch cultures. For this reason, we describe findings on microalgal cultures grown under different metabolic regimes and culture protocols (fed-batch, pulse-feed, semi-batch, semi-continuous, continuous). After a careful literature examination, two-step heterotrophic or mixotrophic cultivation strategies are suggested to surpass the lutein productivity achieved in single-step photosynthetic cultures. Furthermore, this review highlights the urgent need to develop technical feasibility studies at a pilot scale for these cultivation strategies, which will strengthen the necessary techno-economic analyses to drive their commercial production.
Collapse
Affiliation(s)
- Cristobal Camarena-Bernard
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 rue des Rouges Terres 51110 Pomacle, France; Instituto de Estudios Superiores de Occidente (ITESO), 45604 Tlaquepaque, Jalisco, Mexico.
| | - Victor Pozzobon
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 rue des Rouges Terres 51110 Pomacle, France
| |
Collapse
|
9
|
Mohammed V, Arockiaraj J. Unveiling the trifecta of cyanobacterial quorum sensing: LuxI, LuxR and LuxS as the intricate machinery for harmful algal bloom formation in freshwater ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171644. [PMID: 38471587 DOI: 10.1016/j.scitotenv.2024.171644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/22/2024] [Accepted: 03/09/2024] [Indexed: 03/14/2024]
Abstract
Harmful algal blooms (HABs) are causing significant disruptions in freshwater ecosystems, primarily due to the proliferation of cyanobacteria. These blooms have a widespread impact on various lakes globally, leading to profound environmental and health consequences. Cyanobacteria, with their ability to produce diverse toxins, pose a particular concern as they negatively affect the well-being of humans and animals, exacerbating the situation. Notably, cyanobacteria utilize quorum sensing (QS) as a complex communication mechanism that facilitates coordinated growth and toxin production. QS plays a critical role in regulating the dynamics of HABs. However, recent advances in control and mitigation strategies have shown promising results in effectively managing and reducing the occurrence of HABs. This comprehensive review explores the intricate aspects of cyanobacteria development in freshwater ecosystems, explicitly focusing on deciphering the signaling molecules associated with QS and their corresponding genes. Furthermore, a concise overview of diverse measures implemented to efficiently control and mitigate the spread of these bacteria will be provided, shedding light on the ongoing global efforts to address this urgent environmental issue. By deepening our understanding of the mechanisms driving cyanobacteria growth and developing targeted control strategies, we hope to safeguard freshwater ecosystems and protect the health of humans and animals from the detrimental impacts of HABs.
Collapse
Affiliation(s)
- Vajagathali Mohammed
- Department of Forensic Science, Yenepoya Institute of Arts, Science, Commerce, and Management, Yenepoya (Deemed to be University), Mangaluru 575013, Karnataka, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
10
|
Philipp LA, Bühler K, Ulber R, Gescher J. Beneficial applications of biofilms. Nat Rev Microbiol 2024; 22:276-290. [PMID: 37957398 DOI: 10.1038/s41579-023-00985-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 11/15/2023]
Abstract
Many microorganisms live in the form of a biofilm. Although they are feared in the medical sector, biofilms that are composed of non-pathogenic organisms can be highly beneficial in many applications, including the production of bulk and fine chemicals. Biofilm systems are natural retentostats in which the biocatalysts can adapt and optimize their metabolism to different conditions over time. The adherent nature of biofilms allows them to be used in continuous systems in which the hydraulic retention time is much shorter than the doubling time of the biocatalysts. Moreover, the resilience of organisms growing in biofilms, together with the potential of uncoupling growth from catalytic activity, offers a wide range of opportunities. The ability to work with continuous systems using a potentially self-advancing whole-cell biocatalyst is attracting interest from a range of disciplines, from applied microbiology to materials science and from bioengineering to process engineering. The field of beneficial biofilms is rapidly evolving, with an increasing number of applications being explored, and the surge in demand for sustainable and biobased solutions and processes is accelerating advances in the field. This Review provides an overview of the research topics, challenges, applications and future directions in beneficial and applied biofilm research.
Collapse
Affiliation(s)
- Laura-Alina Philipp
- Hamburg University of Technology, Institute of Technical Microbiology, Hamburg, Germany
| | - Katja Bühler
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research, Leipzig, Germany
| | - Roland Ulber
- RPTU Kaiserslautern-Landau, Institute of Bioprocess Engineering, Kaiserslautern, Germany
| | - Johannes Gescher
- Hamburg University of Technology, Institute of Technical Microbiology, Hamburg, Germany.
| |
Collapse
|
11
|
Helamieh M, Reich M, Rohne P, Riebesell U, Kerner M, Kümmerer K. Impact of green and blue-green light on the growth, pigment concentration, and fatty acid unsaturation in the microalga Monoraphidium braunii. Photochem Photobiol 2024; 100:587-595. [PMID: 37882377 DOI: 10.1111/php.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023]
Abstract
The spectral composition of light is an important factor for the metabolism of photosynthetic organisms. Several blue light-regulated metabolic processes have already been identified in the industrially relevant microalga Monoraphidium braunii. However, little is known about the spectral impact on this species' growth, fatty acid (FA), and pigment composition. In this study, M. braunii was cultivated under different light spectra (white light: 400-700 nm, blue light: 400-550 nm, green light: 450-600 nm, and red light: 580-700 nm) at 25°C for 96 h. The growth was monitored daily. Additionally, the FA composition, and pigment concentration was analyzed after 96 h. The highest biomass production was observed upon white light and red light irradiation. However, green light also led to comparably high biomass production, fueling the scientific debate about the contribution of weakly absorbed light wavelengths to microalgal biomass production. All light spectra (white, blue, and green) that comprised blue-green light (450-550 nm) led to a higher degree of FA unsaturation and a greater concentration of all identified pigments than red light. These results further contribute to the growing understanding that blue-green light is an essential trigger for maximized pigment concentration and FA unsaturation in green microalgae.
Collapse
Affiliation(s)
- Mark Helamieh
- Institute of Sustainable Chemistry, Leuphana University of Lueneburg, Lueneburg, Germany
- Strategic Science Consult Ltd., Hamburg, Germany
| | - Marco Reich
- Institute of Sustainable Chemistry, Leuphana University of Lueneburg, Lueneburg, Germany
| | - Philipp Rohne
- Institute of Pharmacy and Biochemistry, Therapeutical Life Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ulf Riebesell
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | | | - Klaus Kümmerer
- Institute of Sustainable Chemistry, Leuphana University of Lueneburg, Lueneburg, Germany
| |
Collapse
|
12
|
Joseph J, Ray JG. A critical review of soil algae as a crucial soil biological component of high ecological and economic significance. JOURNAL OF PHYCOLOGY 2024; 60:229-253. [PMID: 38502571 DOI: 10.1111/jpy.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/14/2023] [Accepted: 01/08/2024] [Indexed: 03/21/2024]
Abstract
Aero-terrestrial algae are ecologically and economically valuable bioresources contributing to carbon sequestration, sustenance of soil health, and fertility. Compared to aquatic algae, the literature on subaerial algae is minimal, including studies of distinctive habitats such as forest soils, agricultural fields, deserts, polar regions, specific subaerial zones, artificial structures, and tropical soils. The primary goal here was to identify the gaps and scope of research on such algae. Accordingly, the literature was analyzed per sub-themes, such as the "nature of current research data on terrestrial algae," "methodological approaches," "diversity," "environmental relationships," "ecological roles," and "economic significance." The review showed there is a high diversity of algae in soils, especially members belonging to the Cyanophyta (Cyanobacteria) and Chlorophyta. Algal distributions in terrestrial environments depend on the microhabitat conditions, and many species of soil algae are sensitive to specific soil conditions. The ecological significance of soil algae includes primary production, the release of biochemical stimulants and plant growth promoters into soils, nitrogen fixation, solubilization of minerals, and the enhancement and maintenance of soil fertility. Since aero-terrestrial habitats are generally stressed environments, algae of such environments can be rich in rare metabolites and natural products. For example, epilithic soil algae use wet adhesive molecules to fix them firmly on the substratum. Exploring the ecological roles and economic utility of soil and other subaerial algae could be helpful for the development of algae-based industries and for achieving sustainable soil management.
Collapse
Affiliation(s)
- Jebin Joseph
- Department of Botany, St Berchmans College, Changanacherry, Kerala, India
- Laboratory of Ecology and Plant Science, School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Joseph George Ray
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| |
Collapse
|
13
|
Nayeem J, Dey P, Dey SK, Karim R, Ayoun M, Tuser AH, Zemi NZ, Khatoon H. Dataset representing growth performance, nutritional assay and biochemical profile of Oscillatoria spp. Data Brief 2024; 53:110255. [PMID: 38533122 PMCID: PMC10964075 DOI: 10.1016/j.dib.2024.110255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
Cyanobacteria are regarded as vital constituents of aquatic ecosystems which recently become viable option for bioremediation since it can remove contaminants from polluted water. They possess intriguing metabolic properties and exhibit differential growth patterns. This study elucidates the isolation and identification of two marine and two freshwater indigenous Oscillatoria spp., their growth performance, nutritional composition along with intricate biochemical profiles. Agar streak plate method was used for the isolation, growth curve was determined through chlorophyll content and optical density. Freshwater and marine Oscillatoria spp. were mass cultured in commercial Bold Basal Media and Conway media respectively. Wet biomass was harvested through centrifugation at the early stationary phase of their respective growth curve and oven-dried at 40 °C to determine the nutritional and biochemical profiles. Oscillatoria sp. 2 displayed significantly higher (p ˂ 0.05) chlorophyll-a (22.72 ± 0.04 µg/mL) and OD value (1.87 ± 0.03) in the stationary phase (9th to 11th day) than the other species. Crude protein contents (%) varied from 21.56 ± 0.09 to 56.97 ± 0.03. Crude lipid (%) ranged from 9.07 ± 0.07 to 17.13 ± 0.13 and Crude fiber content (%) showed the range from 7.49 ± 0.15 to 17.04 ± 0.08. Fatty acid and amino acid were also found variable among the species. Present study will contribute to the meticulous selection and characterization of Oscillatoria sp. to utilize it in the rigorous scientific investigations and diverse commercial applications.
Collapse
Affiliation(s)
- Jannatul Nayeem
- Department of Aquaculture, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Proma Dey
- Department of Aquaculture, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Sumit Kanti Dey
- Department of Aquaculture, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Rezaul Karim
- Institute of Technology Transfer and Innovation, Bangladesh Council of Scientific and Industrial Research, Dr Qudrate-I-Khuda Road, Dhaka 1205, Bangladesh
| | - Mohammed Ayoun
- Department of Aquaculture, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Abed Hasan Tuser
- Department of Aquaculture, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Nusrat Zaman Zemi
- Department of Aquaculture, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Helena Khatoon
- Department of Aquaculture, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| |
Collapse
|
14
|
Chen H, Yu S, Yu Z, Ma M, Liu M, Pei H. Phycoremediation Potential of Salt-Tolerant Microalgal Species: Motion, Metabolic Characteristics, and Their Application for Saline-Alkali Soil Improvement in Eco-Farms. Microorganisms 2024; 12:676. [PMID: 38674620 PMCID: PMC11052205 DOI: 10.3390/microorganisms12040676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Microalgae have great potential for remediating salt-affected soil. In this study, the microalgae species Coelastrella sp. SDEC-28, Dunaliella salina SDEC-36, and Spirulina subsalsa FACHB-351 were investigated for their potential to rehabilitate salt-affected soils. Nylon screens with optimal aperture sizes and layer numbers were identified to efficiently intercept and harvest biomass, suggesting a correlation between underflow capability and the tough cell walls, strong motility, and intertwining characteristics of the algae. Our investigations proved the feasibility of incorporating monosodium glutamate residue (MSGR) into soil extracts at dilution ratios of 1/200, 1/2000, and 1/500 to serve as the optimal medium for the three microalgae species, respectively. After one growth period of these three species, the electrical conductivities of the media decreased by 0.21, 1.18, and 1.78 mS/cm, respectively, and the pH remained stable at 7.7, 8.6, and 8.4. The hypotheses that microalgae can remediate soil and return profits have been verified through theoretical calculations, demonstrating the potential of employing specific microalgal strains to enhance soil conditions in eco-farms, thereby broadening the range of crops that can be cultivated, including those that are intolerant to saline-alkali environments.
Collapse
Affiliation(s)
- Huiying Chen
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; (H.C.); (S.Y.); (M.M.); (M.L.)
| | - Siteng Yu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; (H.C.); (S.Y.); (M.M.); (M.L.)
| | - Ze Yu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China;
| | - Meng Ma
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; (H.C.); (S.Y.); (M.M.); (M.L.)
| | - Mingyan Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; (H.C.); (S.Y.); (M.M.); (M.L.)
| | - Haiyan Pei
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; (H.C.); (S.Y.); (M.M.); (M.L.)
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China;
- Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China
- Institute of Eco-Chongming (IEC), Shanghai 202162, China
| |
Collapse
|
15
|
Miranda AM, Hernandez-Tenorio F, Villalta F, Vargas GJ, Sáez AA. Advances in the Development of Biofertilizers and Biostimulants from Microalgae. BIOLOGY 2024; 13:199. [PMID: 38534468 DOI: 10.3390/biology13030199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Microalgae have commercial potential in different sectors of the industry. Specifically in modern agriculture, they can be used because they have the ability to supply nutrients to the soil and produce plant growth hormones, polysaccharides, antimicrobial compounds, and other metabolites that improve agricultural productivity. Therefore, products formulated from microalgae as biofertilizers and biostimulants turn out to be beneficial for agriculture and are positioned as a novel and environmentally friendly strategy. However, these bioproducts present challenges in preparation that affect their shelf life due to the rapid degradation of bioformulated products. Therefore, this work aimed to provide a comprehensive review of biofertilizers and biostimulants from microalgae, for which a bibliometric analysis was carried out to establish trends using scientometric indicators, technological advances were identified in terms of formulation methods, and the global market for these bioproducts was analyzed.
Collapse
Affiliation(s)
- Alejandra M Miranda
- Biological Sciences and Bioprocesses Group (CIBIOP), Environmental and Biotechnological Processes Group (GIPAB), School of Applied Sciences and Engineering, Universidad de EAFIT, Medellín 050022, Colombia
| | - Fabian Hernandez-Tenorio
- Environmental Processes Research Group (GIPAB), School of Applied Sciences and Engineering, Universidad de EAFIT, Medellín 050022, Colombia
| | - Fabian Villalta
- Centro de Investigación de Biotecnología, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Gabriel J Vargas
- I&D Cementos Argos S.A, Centro de Argos para la Innovación, Medellín 050022, Colombia
| | - Alex A Sáez
- Biological Sciences and Bioprocesses Group (CIBIOP), Environmental and Biotechnological Processes Group (GIPAB), School of Applied Sciences and Engineering, Universidad de EAFIT, Medellín 050022, Colombia
| |
Collapse
|
16
|
Morón-Ortiz Á, Mapelli-Brahm P, León-Vaz A, Benitez-González AM, León R, Meléndez-Martínez AJ. Ultrasound-assisted extraction of carotenoids from phytoene-accumulating Chlorella sorokiniana microalgae: Effect of milling and performance of the green biosolvents 2-methyltetrahydrofuran and ethyl lactate. Food Chem 2024; 434:137437. [PMID: 37716142 DOI: 10.1016/j.foodchem.2023.137437] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/24/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
This study aimed at optimizing the accumulation of phytoene in Chlorella sorokiniana by using norflurazon and investigating the capacity of green and traditional solvents to extract carotenoids by ultrasound-assisted extraction with and without previous milling. Phytoene-rich first described C. sorokiniana biomass was used, both fresh, freeze-dried, and encapsulated. The ideal dose of norflurazon (1 µg/mL) was selected to block the carotenoid pathway at the level of phytoene desaturase and induce the accumulation of phytoene in C. sorokiniana. A mill pre-treatment allowed a higher recovery of carotenoids compared to non-milled samples, in both the freeze-dried and encapsulated matrices. 2-Methyloxolane provided a higher total carotenoid content (4.75-5546.96 µg/g) compared to the other solvents tested in all the matrices, proving a promising bio-based solvent to replace traditional organic ones for the extraction of microalgal carotenoids.
Collapse
Affiliation(s)
- Ángeles Morón-Ortiz
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Paula Mapelli-Brahm
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Antonio León-Vaz
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and RENSMA, University of Huelva, 21071 Huelva, Spain
| | - Ana M Benitez-González
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Rosa León
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and RENSMA, University of Huelva, 21071 Huelva, Spain
| | | |
Collapse
|
17
|
Mohanta A, Prasad N, Khadim SR, Singh P, Singh S, Singh A, Kayastha AM, Asthana RK. Optimizing light regimes for neutral lipid accumulation in Dunaliella salina MCC 43: a study on physiological status and carbon allocation. World J Microbiol Biotechnol 2024; 40:82. [PMID: 38285311 DOI: 10.1007/s11274-024-03893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
Dunaliella salina is a favourable source of high lipid feedstock for biofuel and medicinal chemicals. Low biomass output from microalgae is a significant barrier to industrial-scale commercialisation. The current study aimed to determine how photosynthetic efficiency, carbon fixation, macromolecular synthesis, accumulation of neutral lipids, and antioxidative defence (ROS scavenging enzyme activities) of D. salina cells were affected by different light intensities (LI) (50, 100, 200, and 400 µmol m-2 s-1). The cells when exposed to strong light (400 µmol m-2 s-1) led to reduction in chlorophyll a but the carotenoid content increased by 19% in comparison to the control (LI 100). The amount of carbohydrate changed significantly under high light and in spite of stress inflicted on the cells by high irradiation, a considerable increase in activity of carbonic anhydrase and fixation rate of CO2 were recorded, thus, preserving the biomass content. The high light exposed biomass when subjected to nitrogen-deficient medium led to increase in lipid content (59.92% of the dry cell weight). However, neutral lipid made up 78.26% of the total lipid while other lipids like phospholipid and glycolipid content decreased, showing that the lipid was redistributed in these cells under nitrogen deprivation, making the organism more appropriate for biodiesel/jet fuel use. Although D. salina cells had a relatively longer generation time (3.5 d) than other microalgal cells, an economic analysis concluded that the amount of carotenoid they produced and the quality of their lipids made them more suited for commercialization.
Collapse
Affiliation(s)
- Abhishek Mohanta
- R. N. Singh Memorial Laboratory, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Nitesh Prasad
- R. N. Singh Memorial Laboratory, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Sk Riyazat Khadim
- P.G. Department of Botany, Dhenkanal Autonomous College, Dhenkanal, Odisha, India
| | - Prabhakar Singh
- Biochemistry Department, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Savita Singh
- R. N. Singh Memorial Laboratory, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Avinash Singh
- R. N. Singh Memorial Laboratory, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India
| | - A M Kayastha
- School of Biotechnology, Banaras Hindu University, Varanasi, 221005, India
| | - R K Asthana
- R. N. Singh Memorial Laboratory, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
18
|
Lorentz JF, Calijuri ML, Rad C, Cecon PR, Assemany PP, Martinez JM, Kholssi R. Microalgae biomass as a conditioner and regulator of soil quality and fertility. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:198. [PMID: 38265731 DOI: 10.1007/s10661-024-12355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
Characteristics of an acid soil cultivated with Urochloa brizantha cv. Marandu were evaluated in relation to two types of fertilization: a conventional one, chemical based on nitrogen and potassium, and a biofertilizer, based on microalgae biomass. The results were compared among three treatments, control, conventional, and biological fertilization, with seven replications each. The study evaluated microalgae community, total carbon and nitrogen contents, mineral nitrogen, and enzymatic activity. Chlorella vulgaris showed the highest organism density, which can be explained by its rapid growth and high resistance. The highest species diversity was detected in the control 1,380,938 org cm-3 and biological 1,841,250 org cm-3 treatments, with the latter showing a higher density of cyanobacteria, especially Pseudanabaena limnetica with 394,554 org cm-3. The soil treated with chemical fertilization showed higher nitrate (9.14 mg NKg-1 NO3--N) and potassium (52.32 mg dm-3) contents. The highest levels of sulfur (21.73 mg dm-3) and iron (96.46 mgdm-3) were detected in the biological treatment. The chemical treatment showed higher activity of the enzymes acid phosphatase, acetylglucosaminidase, and sulfatase, while α-glucosidase and leucine aminopeptidase stood out in the biological treatment. Soil properties were not significantly affected by the treatments. The use of microalgae biomass derived from wastewater treatment from milking parlors was evaluated and presented as a promising biofertilizer for agriculture, following the line of recovering nutrient-rich wastes. In this sense, although many challenges need to be overcome, the results suggest that microalgal-based fertilizers could lead to low-impact agriculture.
Collapse
Affiliation(s)
| | - Maria Lúcia Calijuri
- Department of Civil Engineering, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Carlos Rad
- Composting Research Group, Faculty of Sciences, University of Burgos, Burgos, Spain
| | | | - Paula Peixoto Assemany
- Department of Environmental Engineering, Federal University of Lavras, Lavras, MG, Brazil
| | - Jorge Miñon Martinez
- Composting Research Group, Faculty of Sciences, University of Burgos, Burgos, Spain
| | - Rajaa Kholssi
- Composting Research Group, Faculty of Sciences, University of Burgos, Burgos, Spain
| |
Collapse
|
19
|
Calatrava V, Hom EF, Guan Q, Llamas A, Fernández E, Galván A. Genetic evidence for algal auxin production in Chlamydomonas and its role in algal-bacterial mutualism. iScience 2024; 27:108762. [PMID: 38269098 PMCID: PMC10805672 DOI: 10.1016/j.isci.2023.108762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/31/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024] Open
Abstract
Interactions between algae and bacteria are ubiquitous and play fundamental roles in nutrient cycling and biomass production. Recent studies have shown that the plant auxin indole acetic acid (IAA) can mediate chemical crosstalk between algae and bacteria, resembling its role in plant-bacterial associations. Here, we report a mechanism for algal extracellular IAA production from L-tryptophan mediated by the enzyme L-amino acid oxidase (LAO1) in the model Chlamydomonas reinhardtii. High levels of IAA inhibit algal cell multiplication and chlorophyll degradation, and these inhibitory effects can be relieved by the presence of the plant-growth-promoting bacterium (PGPB) Methylobacterium aquaticum, whose growth is mutualistically enhanced by the presence of the alga. These findings reveal a complex interplay of microbial auxin production and degradation by algal-bacterial consortia and draws attention to potential ecophysiological roles of terrestrial microalgae and PGPB in association with land plants.
Collapse
Affiliation(s)
- Victoria Calatrava
- Departamento de Bioquímica y Biología Molecular. Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Erik F.Y. Hom
- Department of Biology and Center for Biodiversity and Conservation Research, University of Mississippi, University, MS 38677-1848, USA
| | - Qijie Guan
- Department of Biology and Center for Biodiversity and Conservation Research, University of Mississippi, University, MS 38677-1848, USA
| | - Angel Llamas
- Departamento de Bioquímica y Biología Molecular. Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Emilio Fernández
- Departamento de Bioquímica y Biología Molecular. Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Aurora Galván
- Departamento de Bioquímica y Biología Molecular. Campus de Rabanales y Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
20
|
Macdonald Miller S, Abbriano RM, Herdean A, Banati R, Ralph PJ, Pernice M. Random mutagenesis of Phaeodactylum tricornutum using ultraviolet, chemical, and X-radiation demonstrates the need for temporal analysis of phenotype stability. Sci Rep 2023; 13:22385. [PMID: 38104215 PMCID: PMC10725415 DOI: 10.1038/s41598-023-45899-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 10/25/2023] [Indexed: 12/19/2023] Open
Abstract
We investigated two non-ionising mutagens in the form of ultraviolet radiation (UV) and ethyl methanosulfonate (EMS) and an ionising mutagen (X-ray) as methods to increase fucoxanthin content in the model diatom Phaeodactylum tricornutum. We implemented an ultra-high throughput method using fluorescence-activated cell sorting (FACS) and live culture spectral deconvolution for isolation and screening of potential pigment mutants, and assessed phenotype stability by measuring pigment content over 6 months using high-performance liquid chromatography (HPLC) to investigate the viability of long-term mutants. Both UV and EMS resulted in significantly higher fucoxanthin within the 6 month period after treatment, likely as a result of phenotype instability. A maximum fucoxanthin content of 135 ± 10% wild-type found in the EMS strain, a 35% increase. We found mutants generated using all methods underwent reversion to the wild-type phenotype within a 6 month time period. X-ray treatments produced a consistently unstable phenotype even at the maximum treatment of 1000 Grays, while a UV mutant and an EMS mutant reverted to wild-type after 4 months and 6 months, respectively, despite showing previously higher fucoxanthin than wild-type. This work provides new insights into key areas of microalgal biotechnology, by (i) demonstrating the use of an ionising mutagen (X-ray) on a biotechnologically relevant microalga, and by (ii) introducing temporal analysis of mutants which has substantial implications for strain creation and utility for industrial applications.
Collapse
Affiliation(s)
- Sean Macdonald Miller
- Faculty of Science, Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Raffaela M Abbriano
- Faculty of Science, Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Andrei Herdean
- Faculty of Science, Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Richard Banati
- Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee DC, NSW, 2232, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Peter J Ralph
- Faculty of Science, Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Mathieu Pernice
- Faculty of Science, Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, 2007, Australia
| |
Collapse
|
21
|
Sánchez-Quintero Á, Fernandes SCM, Beigbeder JB. Overview of microalgae and cyanobacteria-based biostimulants produced from wastewater and CO 2 streams towards sustainable agriculture: A review. Microbiol Res 2023; 277:127505. [PMID: 37832502 DOI: 10.1016/j.micres.2023.127505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023]
Abstract
For a long time, marine macroalgae (seaweeds) have been used to produce commercial biostimulants in order to ensure both productivity and quality of agricultural crops under abiotic stress. With similar biological properties, microalgae have slowly attracted the scientific community and the biostimulant industry, in particular because of their ability to be cultivated on non-arable lands with high biomass productivity all year long. Moreover, the recent strategies of culturing these photosynthetic microorganisms using wastewater and CO2 opens the possibility to produce large quantity of biomass at moderate costs while integrating local and circular economy approaches. This paper aims to provide a state of the art review on the development of microalgae and cyanobacteria based biostimulants, focusing on the different cultivation, extraction and application techniques available in the literature. Emphasis will be placed on microalgae and cyanobacteria cultivation using liquid and gaseous effluents as well as emerging green-extraction approaches, taking in consideration the actual European regulatory framework.
Collapse
Affiliation(s)
- Ángela Sánchez-Quintero
- Universite de Pau et des Pays de l'Adour, E2S UPPA, IPREM, CNRS, 64 600 Anglet, France; MANTA-Marine Materials Research Group, Universite de Pau et des Pays de l'Adour, E2S UPPA, 64 600 Anglet, France; APESA, Pôle valorisation, 3 chemin de Sers, 64121 Montardon, France
| | - Susana C M Fernandes
- Universite de Pau et des Pays de l'Adour, E2S UPPA, IPREM, CNRS, 64 600 Anglet, France; MANTA-Marine Materials Research Group, Universite de Pau et des Pays de l'Adour, E2S UPPA, 64 600 Anglet, France.
| | | |
Collapse
|
22
|
Perales-Pérez Á, Macías-Sánchez MD, Ruiz J, Perales JA, Garrido-Pérez C. Process for nutrient recycling from intensive aquaculture through microalgae-bacteria consortium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165848. [PMID: 37536584 DOI: 10.1016/j.scitotenv.2023.165848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/30/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
This work studies a biological process based on a microalgae-bacteria consortium for recycling nutrients in a recirculating aquaculture system (RAS) implanted in an intensive marine aquaculture farm. Additionally, some techniques were used for microalgae biomass harvesting and tested the effectiveness of filtration by a column with multi-layer sand to reduce the solids concentrations in the effluent. The consortium was grown in photobioreactors in batch and semi-continuous operation modes using the solids concentrated stream generated in the RAS system. The semi-continuous operation showed a high percentage of TDN and TDP removal, achieving final concentrations of 1.09 ± 0.02 mg·L-1 and 0.01 ± 0.01 mg·L-1, respectively, while DOC was reduced to 3.87 ± 0.06 mg·L-1. The values of productivity 44 ± 9 mg TSS·L-1 indicated that the studied stream is a suitable culture medium for the growth of the microalgae-bacteria consortium. A combination of harvesting techniques was studied, coagulation-flocculation-settling and coagulation-flocculation-flotation. The first step was to optimise the dose of FeCl3 through the coagulation-flocculation test to pre-concentrate the biomass generated, achieving an optimal dose of 0.106 mg Fe·mg TSS-1. Then, two separation processes were applied to the stream and compared: settling and flotation. The maximum removal efficiency (90.2 ± 0.3 %) was obtained in the settling process, so the coagulation-flocculation-settling was select as the best combination of harvesting techniques. Finally, sand filtration was studied as an effluent refining process to improve solids reduction of the water obtained in the harvesting step resulting in an effluent with 17.18 ± 1.49 mg TSS·L-1. The proposed sequence process is capable of recycling nutrients from an intensive marine aquaculture farm by using these resources via transformation into microalgae biomass and generating quality effluent.
Collapse
Affiliation(s)
- Ángela Perales-Pérez
- Department of Environmental Technologies, Marine Research Institute, INMAR, Faculty of Marine and Environmental Sciences, University of Cadiz, Campus Universitario de Puerto Real, 11510 Cadiz, Spain.
| | - María D Macías-Sánchez
- Department of Chemical Engineering and Food Technology, Science Faculty, University of Cadiz, Campus Universitario de Puerto Real, 11510 Cadiz, Spain.
| | - Jesús Ruiz
- Department of Environmental Technologies, Marine Research Institute, INMAR, Faculty of Marine and Environmental Sciences, University of Cadiz, Campus Universitario de Puerto Real, 11510 Cadiz, Spain.
| | - José A Perales
- Department of Environmental Technologies, Marine Research Institute, INMAR, Faculty of Marine and Environmental Sciences, University of Cadiz, Campus Universitario de Puerto Real, 11510 Cadiz, Spain.
| | - Carmen Garrido-Pérez
- Department of Environmental Technologies, Marine Research Institute, INMAR, Faculty of Marine and Environmental Sciences, University of Cadiz, Campus Universitario de Puerto Real, 11510 Cadiz, Spain.
| |
Collapse
|
23
|
Liu S, Liu Y, Cai Y. Incubation study on remediation of nitrate-contaminated soil by Chroococcus sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117637-117653. [PMID: 37870669 DOI: 10.1007/s11356-023-30383-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
The possibility of using the non-nitrogen-fixing cyanobacterium (Chroococcus sp.) for the reduction of soil nitrate contamination was tested through Petri dish experiments. The application of 0.03, 0.05 and 0.08 mg/cm2 Chroococcus sp. efficiently removed NO3--N from the soil through assimilation of nitrate nutrient and promotion of soil denitrification. At the optimal application dose of 0.05 mg/cm2, 44.06%, 36.89% and 36.17% of NO3--N were removed at initial NO3--N concentrations of 60, 90 and 120 mg/kg, respectively. The polysaccharides released by Chroococcus sp. acted as carbon sources for bacterial denitrification and facilitated the reduction of soil salinity, which significantly (p < 0.05) stimulated the growth of denitrifying bacteria (Hyphomicrobium denitrificans and Hyphomicrobium sp.) as well as significantly (p < 0.05) elevated the activities of nitrate reductase and nitrite reductase by 1.07-1.23 and 1.15-1.22 times, respectively. The application of Chroococcus sp. promoted the dominance of Nocardioides maradonensis in soil microbial community, which resulted in elevated phosphatase activity and increased available phosphorus content. The application of Chroococcus sp. positively regulated the growth of soil bacteria belonging to the genera Chitinophaga, Prevotella and Tumebacillus, which may contribute to increased soil fertility through the production of beneficial enzymes such as invertase, urease and catalase. To date, this is the first study verifying the remediation effect of non-nitrogen-fixing cyanobacteria on nitrate-contaminated soil.
Collapse
Affiliation(s)
- Shuaitong Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| | - Ying Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China.
| | - Yong Cai
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
24
|
Jha A, Pathania D, Sonu, Damathia B, Raizada P, Rustagi S, Singh P, Rani GM, Chaudhary V. Panorama of biogenic nano-fertilizers: A road to sustainable agriculture. ENVIRONMENTAL RESEARCH 2023; 235:116456. [PMID: 37343760 DOI: 10.1016/j.envres.2023.116456] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
The ever-increasing demand for food from the growing population has augmented the consumption of fertilizers in global agricultural practices. However, the excessive usage of chemical fertilizers with poor efficacy is drastically deteriorating ecosystem health through the degradation of soil fertility by diminishing soil microflora, environment contamination, and human health by inducing chemical remnants to the food chain. These challenges have been addressed by the integration of nanotechnological and biotechnological approaches resulting in nano-enabled biogenic fertilizers (NBF), which have revolutionized agriculture sector and food production. This review critically details the state-of-the-art NBF production, types, and mechanism involved in cultivating crop productivity/quality with insights into genetic, physiological, morphological, microbiological, and physiochemical attributes. Besides, it explores the associated challenges and future routes to promote the adoption of NBF for intelligent and sustainable agriculture. Furthermore, diverse applications of nanotechnology in precision agriculture including plant biosensors and its impact on agribusiness and environmental management are discussed.
Collapse
Affiliation(s)
- Ayush Jha
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Diksha Pathania
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Sonu
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Bhavna Damathia
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttrakhand, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Gokana Mohana Rani
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Keelung Road, Taipei, 10607, Taiwan, ROC
| | - Vishal Chaudhary
- Physics Department, Bhagini Nivedita College, University of Delhi, Delhi, India.
| |
Collapse
|
25
|
Shayesteh H, Jenkins SN, Moheimani NR, Bolan N, Bühlmann CH, Gurung SK, Vadiveloo A, Bahri PA, Mickan BS. Nitrogen dynamics and biological processes in soil amended with microalgae grown in abattoir digestate to recover nutrients. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118467. [PMID: 37421817 DOI: 10.1016/j.jenvman.2023.118467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/30/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
The use of microalgae for nutrient recovery from wastewater and subsequent conversion of the harvested biomass into fertilizers offers a sustainable approach towards creating a circular economy. Nonetheless, the process of drying the harvested microalgae represents an additional cost, and its impact on soil nutrient cycling compared to wet algal biomass is not thoroughly understood. To investigate this, a 56-day soil incubation experiment was conducted to compare the effects of wet and dried Scenedesmus sp. microalgae on soil chemistry, microbial biomass, CO2 respiration, and bacterial community diversity. The experiment also included control treatments with glucose, glucose + ammonium nitrate, and no fertilizer addition. The Illumina Mi-Seq platform was used to profile the bacterial community and in-silico analysis was performed to assess the functional genes involved in N and C cycling processes. The maximum CO2 respiration and microbial biomass carbon (MBC) concentration of dried microalgae treatment were 17% and 38% higher than those of paste microalgae treatment, respectively. NH4+ and NO3- released slowly and through decomposition of microalgae by soil microorganisms as compared to synthetic fertilizer control. The results indicate that heterotrophic nitrification may contribute to nitrate production for both microalgae amendments, as evidenced by low amoA gene abundance and a decrease in ammonium with an increase in nitrate concentration. Additionally, dissimilatory nitrate reduction to ammonium (DNRA) may be contributing to ammonium production in the wet microalgae amendment, as indicated by an increase in nrfA gene and ammonium concentration. This is a significant finding because DNRA leads to N retention in agricultural soils instead of N loss via nitrification and denitrification. Thus, further processing the microalgae through drying or dewetting may not be favorable for fertilizer production as the wet microalgae appeared to promote DNRA and N retention.
Collapse
Affiliation(s)
- Hajar Shayesteh
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, WA 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Sasha N Jenkins
- The UWA Institute of Agriculture, And UWA School of Agriculture and Environment, The University of Western Australia, Perth, 6009, Australia
| | - Navid R Moheimani
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, WA 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia.
| | - Nanthi Bolan
- The UWA Institute of Agriculture, And UWA School of Agriculture and Environment, The University of Western Australia, Perth, 6009, Australia
| | - Christopher H Bühlmann
- Centre for Agricultural Engineering, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia
| | - Sun Kumar Gurung
- The UWA Institute of Agriculture, And UWA School of Agriculture and Environment, The University of Western Australia, Perth, 6009, Australia
| | - Ashiwin Vadiveloo
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, WA 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Parisa A Bahri
- Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia; Discipline of Engineering and Energy, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Bede S Mickan
- The UWA Institute of Agriculture, And UWA School of Agriculture and Environment, The University of Western Australia, Perth, 6009, Australia; Richgro Garden Products, 203 Acourt Rd, Jandakot, WA 6164, Australia
| |
Collapse
|
26
|
Sadvakasova AK, Bauenova MO, Kossalbayev BD, Zayadan BK, Huang Z, Wang J, Balouch H, Alharby HF, Chang JS, Allakhverdiev SI. Synthetic algocyanobacterial consortium as an alternative to chemical fertilizers. ENVIRONMENTAL RESEARCH 2023; 233:116418. [PMID: 37321341 DOI: 10.1016/j.envres.2023.116418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/28/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
The use of unregulated pesticides and chemical fertilizers can have detrimental effects on biodiversity and human health. This problem is exacerbated by the growing demand for agricultural products. To address these global challenges and promote food and biological security, a new form of agriculture is needed that aligns with the principles of sustainable development and the circular economy. This entails developing the biotechnology market and maximizing the use of renewable and eco-friendly resources, including organic fertilizers and biofertilizers. Phototrophic microorganisms capable of oxygenic photosynthesis and assimilation of molecular nitrogen play a crucial role in soil microbiota, interacting with diverse microflora. This suggests the potential for creating artificial consortia based on them. Microbial consortia offer advantages over individual organisms as they can perform complex functions and adapt to variable conditions, making them a frontier in synthetic biology. Multifunctional consortia overcome the limitations of monocultures and produce biological products with a wide range of enzymatic activities. Biofertilizers based on such consortia present a viable alternative to chemical fertilizers, addressing the issues associated with their usage. The described capabilities of phototrophic and heterotrophic microbial consortia enable effective and environmentally safe restoration and preservation of soil properties, fertility of disturbed lands, and promotion of plant growth. Hence, the utilization of algo-cyano-bacterial consortia biomass can serve as a sustainable and practical substitute for chemical fertilizers, pesticides, and growth promoters. Furthermore, employing these bio-based organisms is a significant stride towards enhancing agricultural productivity, which is an essential requirement to meet the escalating food demands of the growing global population. Utilizing domestic and livestock wastewater, as well as CO2 flue gases, for cultivating this consortium not only helps reduce agricultural waste but also enables the creation of a novel bioproduct within a closed production cycle.
Collapse
Affiliation(s)
- Assemgul K Sadvakasova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Meruyert O Bauenova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Bekzhan D Kossalbayev
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan; Department of Chemical and Biochemical Engineering, Institute of Geology and Oil-Gas Business Institute Named After K. Turyssov, Satbayev University, Satpaev 22, Almaty, 050043, Kazakhstan
| | - Bolatkhan K Zayadan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Zhiyong Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, West 7th Road, Tianjin Airport Economic Area, 300308, Tianjin, China
| | - Jingjing Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, West 7th Road, Tianjin Airport Economic Area, 300308, Tianjin, China
| | - Huma Balouch
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, 32003, Taiwan.
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia; Institute of Basic Biological Problems, FRC PSCBR RAS, Pushchino, 142290, Russia; Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, 34353, Turkey.
| |
Collapse
|
27
|
Abreu AP, Martins R, Nunes J. Emerging Applications of Chlorella sp. and Spirulina ( Arthrospira) sp. Bioengineering (Basel) 2023; 10:955. [PMID: 37627840 PMCID: PMC10451540 DOI: 10.3390/bioengineering10080955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Chlorella sp. and Spirulina (Arthrospira) sp. account for over 90% of the global microalgal biomass production and represent one of the most promising aquiculture bioeconomy systems. These microorganisms have been widely recognized for their nutritional and therapeutic properties; therefore, a significant growth of their market is expected, especially in the nutraceutical, food, and beverage segments. However, recent advancements in biotechnology and environmental science have led to the emergence of new applications for these microorganisms. This paper aims to explore these innovative applications, while shedding light on their roles in sustainable development, health, and industry. From this state-of-the art review, it was possible to give an in-depth outlook on the environmental sustainability of Chlorella sp. and Spirulina (Arthrospira) sp. For instance, there have been a variety of studies reported on the use of these two microorganisms for wastewater treatment and biofuel production, contributing to climate change mitigation efforts. Moreover, in the health sector, the richness of these microalgae in photosynthetic pigments and bioactive compounds, along with their oxygen-releasing capacity, are being harnessed in the development of new drugs, wound-healing dressings, photosensitizers for photodynamic therapy, tissue engineering, and anticancer treatments. Furthermore, in the industrial sector, Chlorella sp. and Spirulina (Arthrospira) sp. are being used in the production of biopolymers, fuel cells, and photovoltaic technologies. These innovative applications might bring different outlets for microalgae valorization, enhancing their potential, since the microalgae sector presents issues such as the high production costs. Thus, further research is highly needed to fully explore their benefits and potential applications in various sectors.
Collapse
Affiliation(s)
- Ana P. Abreu
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, 3405-155 Oliveira do Hospital, Portugal; (R.M.); (J.N.)
| | - Rodrigo Martins
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, 3405-155 Oliveira do Hospital, Portugal; (R.M.); (J.N.)
| | - João Nunes
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, 3405-155 Oliveira do Hospital, Portugal; (R.M.); (J.N.)
- BLC3 Evolution Lda, 3405-155 Oliveira do Hospital, Portugal
| |
Collapse
|
28
|
Nakanishi A, Nemoto S, Yamamoto N, Iritani K, Watanabe M. Identification of Cell-Attachment Factors Derived from Green Algal Cells Disrupted by Sonication in Fabrication of Cell Plastics. Bioengineering (Basel) 2023; 10:893. [PMID: 37627778 PMCID: PMC10451321 DOI: 10.3390/bioengineering10080893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Cell plastics which are composed of unicellular green algal cells have been proposed in previous studies. While unicellular green algae can be freely arranged using fabrication processes, a matrix is required to attach the cells together. To date, although the cell contents collected from Chlamydomonas reinhardtii show the possibility of attaching cells, but it is unclear which components can be considered attachment factors. Therefore, in this study, C. reinhardtii cells were disrupted with sonication, and the components were separated and purified with hexane. The cell plastics with only 0.5 wt% of intermediate showed similar mechanical properties to those with 17 wt% and 25 wt% of cell components that were untreated with hexane, meaning that the purified intermediates could function as matrices. The purified intermediate was composed of approximately 60 wt% of protein as the main component, and proteomic analysis was performed to survey the main proteins that remained after hexane treatment. The protein compositions of the cell content and purified intermediate were compared via proteomic analysis, revealing that the existing ratios of 532 proteins were increased in the purified intermediate rather than in the cell content. In particular, the outer structure of each of the 49 proteins-the intensity of which was increased by over 10 times-had characteristically random coil conformations, containing ratios of proline and alanine. The information could suggest a matrix of cell plastics, inspiring the possibility to endow the cell plastics with more properties and functions.
Collapse
Affiliation(s)
- Akihito Nakanishi
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo 192-0982, Japan
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo 192-0982, Japan; (S.N.); (N.Y.); (M.W.)
| | - Shintaro Nemoto
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo 192-0982, Japan; (S.N.); (N.Y.); (M.W.)
| | - Naotaka Yamamoto
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo 192-0982, Japan; (S.N.); (N.Y.); (M.W.)
| | - Kohei Iritani
- Department of Applied Chemistry, School of Engineering, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo 192-0982, Japan
- Research Center for Advanced Lignin-Based Materials, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo 192-0982, Japan
| | - Marina Watanabe
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo 192-0982, Japan; (S.N.); (N.Y.); (M.W.)
| |
Collapse
|
29
|
Wei L, Zhao Q, Chen X, Sun Q, Zhang X, Chen Y. Seasonal variation in soil algal community structure in different forest plantations in subtropic China. FRONTIERS IN PLANT SCIENCE 2023; 14:1181184. [PMID: 37521936 PMCID: PMC10382206 DOI: 10.3389/fpls.2023.1181184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Algae exert great impact on soil formation and biogeochemical cycling. However, there is no full understanding of the response of soil algal community structure to the seasonal fluctuations in temperature and moisture and changes of soil physicochemical properties across different forests. Here, based on 23S rRNA gene sequencing, we analyzed soil algal community structure in four different forest plantations in two seasons and examined soil physiochemical properties. The results showed the significantly seasonal variation in soil algal community structure, with the higher overall diversity in summer than in winter. In addition, there existed significant correlations between soil algae (species composition, relative abundance, diversity index) and physicochemical properties (pH, total phosphorus, organic matter and nitrate nitrogen), suggesting that edaphic characteristics are also largely responsible for the variation in soil algal community. Nevertheless, the seasonal variation in algal community structure was greater than the variation across different forest plantations. This suggest temperature and moisture are more important than soil physicochemical properties in determining soil algal community structure. The findings of the present study enhance our understanding of the algal communities in forest ecosystems and are of great significance for the management and protection of algal ecosystem.
Collapse
Affiliation(s)
- Liman Wei
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Agricultural Sensors and Intelligent Perception Technology Innovation Center of Anhui Province, Zhongke Hefei Institutes of Collaborative Research and Innovation for Intelligent Agriculture, Hefei, China
| | - Qiong Zhao
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Xiangyu Chen
- Agricultural Sensors and Intelligent Perception Technology Innovation Center of Anhui Province, Zhongke Hefei Institutes of Collaborative Research and Innovation for Intelligent Agriculture, Hefei, China
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Qingye Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Xiang Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Yongjing Chen
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| |
Collapse
|
30
|
Koehle AP, Brumwell SL, Seto EP, Lynch AM, Urbaniak C. Microbial applications for sustainable space exploration beyond low Earth orbit. NPJ Microgravity 2023; 9:47. [PMID: 37344487 DOI: 10.1038/s41526-023-00285-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
With the construction of the International Space Station, humans have been continuously living and working in space for 22 years. Microbial studies in space and other extreme environments on Earth have shown the ability for bacteria and fungi to adapt and change compared to "normal" conditions. Some of these changes, like biofilm formation, can impact astronaut health and spacecraft integrity in a negative way, while others, such as a propensity for plastic degradation, can promote self-sufficiency and sustainability in space. With the next era of space exploration upon us, which will see crewed missions to the Moon and Mars in the next 10 years, incorporating microbiology research into planning, decision-making, and mission design will be paramount to ensuring success of these long-duration missions. These can include astronaut microbiome studies to protect against infections, immune system dysfunction and bone deterioration, or biological in situ resource utilization (bISRU) studies that incorporate microbes to act as radiation shields, create electricity and establish robust plant habitats for fresh food and recycling of waste. In this review, information will be presented on the beneficial use of microbes in bioregenerative life support systems, their applicability to bISRU, and their capability to be genetically engineered for biotechnological space applications. In addition, we discuss the negative effect microbes and microbial communities may have on long-duration space travel and provide mitigation strategies to reduce their impact. Utilizing the benefits of microbes, while understanding their limitations, will help us explore deeper into space and develop sustainable human habitats on the Moon, Mars and beyond.
Collapse
Affiliation(s)
- Allison P Koehle
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | - Stephanie L Brumwell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | | | - Anne M Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Camilla Urbaniak
- ZIN Technologies Inc, Middleburg Heights, OH, USA.
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
31
|
Álvarez-González A, Uggetti E, Serrano L, Gorchs G, Escolà Casas M, Matamoros V, Gonzalez-Flo E, Díez-Montero R. The potential of wastewater grown microalgae for agricultural purposes: Contaminants of emerging concern, heavy metals and pathogens assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121399. [PMID: 36878273 DOI: 10.1016/j.envpol.2023.121399] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
In the coming years, the use of microalgal biomass as agricultural biofertilizers has shown promising results. The use of wastewater as culture medium has resulted in the reduction of production costs, making microalgae-based fertilizers highly attractive for farmers. However, the occurrence of specific pollutants in wastewater, like pathogens, heavy metals and contaminants of emerging concern (CECs), such as pharmaceuticals and personal care products may pose a risk on human health. This study presents an holistic assessment of the production and use of microalgal biomass grown in municipal wastewater as biofertilizer in agriculture. Results showed that pathogens and heavy metals concentrations in the microalgal biomass were below the threshold established by the European regulation for fertilizing products, except for cadmium. Regarding CECs, 25 out of 29 compounds were found in wastewater. However, only three of them (hydrocinnamic acid, caffeine, and bisphenol A) were found in the microalgae biomass used as biofertilizer. Agronomic tests were performed for lettuce growth in greenhouse. Four treatments were studied, comparing the use of microalgae biofertilizer with a conventional mineral fertilizer, and also a combination of both of them. Results suggested that microalgae can help reducing the mineral nitrogen dose, since similar fresh shoot weights were obtained in the plants grown with the different assessed fertilizers. Lettuce samples revealed the presence of cadmium and CECs in all the treatments including both negative and positive controls, which suggests that their presence was not linked to the microalgae biomass. On the whole, this study revealed that wastewater grown microalgae can be used for agricultural purposes reducing mineral N need and guaranteeing health safety of the crops.
Collapse
Affiliation(s)
- Ana Álvarez-González
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain
| | - Enrica Uggetti
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain.
| | - Lydia Serrano
- Department of Agri-Food Engineering and Biotechnology, Universitat Politècnica de Catalunya·BarcelonaTech, C/Esteve Terradas 8, Building D4, E-08860, Castelldefels, Spain
| | - Gil Gorchs
- Department of Agri-Food Engineering and Biotechnology, Universitat Politècnica de Catalunya·BarcelonaTech, C/Esteve Terradas 8, Building D4, E-08860, Castelldefels, Spain
| | - Mònica Escolà Casas
- Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - Víctor Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - Eva Gonzalez-Flo
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-BarcelonaTech, Av. Eduard Maristany 16, Building C5.1, E-08019, Barcelona, Spain
| | - Rubén Díez-Montero
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain
| |
Collapse
|
32
|
Cao TND, Mukhtar H, Le LT, Tran DPH, Ngo MTT, Pham MDT, Nguyen TB, Vo TKQ, Bui XT. Roles of microalgae-based biofertilizer in sustainability of green agriculture and food-water-energy security nexus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161927. [PMID: 36736400 DOI: 10.1016/j.scitotenv.2023.161927] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
For years, agrochemical fertilizers have been used in agriculture for crop production. However, intensive utilization of chemical fertilizers is not an ecological and environmental choice since they are destroying soil health and causing an emerging threat to agricultural production on a global scale. Under the circumstances of the increasing utilization of chemical fertilizers, cultivating microalgae to produce biofertilizers would be a wise solution since desired environmental targets will be obtained including (1) replacing chemical fertilizer while improving crop yields and soil health; (2) reducing the harvest of non-renewable elements from limited natural resources for chemical fertilizers production, and (3) mitigating negative influences of climate change through CO2 capture through microalgae cultivation. Recent improvements in microalgae-derived-biofertilizer-applied agriculture will be summarized in this review article. At last, the recent challenges of applying biofertilizers will be discussed as well as the perspective regarding the concept of circular bio-economy and sustainable development goals (SDGs).
Collapse
Affiliation(s)
- Thanh Ngoc-Dan Cao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Hussnain Mukhtar
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Linh-Thy Le
- Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City (UMP), Ward 11, District 5, Ho Chi Minh city 72714, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Duyen Phuc-Hanh Tran
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan, ROC; Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - My Thi Tra Ngo
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Mai-Duy-Thong Pham
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNUT.HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan, ROC
| | - Thi-Kim-Quyen Vo
- Faculty of Biology and Environment, Ho Chi Minh City University of Food Industry (HUFI), 140 Le Trong Tan street, Tan Phu district, Ho Chi Minh city 700000, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNUT.HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
33
|
Photosynthetic and transcriptomic responses of Chlorella sp. to tigecycline. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
34
|
Parmar P, Kumar R, Neha Y, Srivatsan V. Microalgae as next generation plant growth additives: Functions, applications, challenges and circular bioeconomy based solutions. FRONTIERS IN PLANT SCIENCE 2023; 14:1073546. [PMID: 37063190 PMCID: PMC10101342 DOI: 10.3389/fpls.2023.1073546] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/05/2023] [Indexed: 06/19/2023]
Abstract
Sustainable agriculture practices involve the application of environment-friendly plant growth promoters and additives that do not negatively impact the health of the ecosystem. Stringent regulatory frameworks restricting the use of synthetic agrochemicals and the increase in demand for organically grown crops have paved the way for the development of novel bio-based plant growth promoters. In this context, microalgae biomass and derived agrochemicals offer novel sources of plant growth promotors that enhance crop productivity and impart disease resistance. These beneficial effects could be attributed to the presence of wide range of biomolecules such as soluble amino acid (AA), micronutrients, polysaccharides, phytohormones and other signaling molecules in microalgae biomass. In addition, their phototrophic nature, high photosynthetic efficiency, and wide environmental adaptability make them an attractive source of biostimulants, biofertilizers and biopesticides. The present review aims to describe the various plant growth promoting metabolites produced by microalgae and their effects on plant growth and productivity. Further, the effects elicited by microalgae biostimulants with respect to different modes of applications such as seed treatments, foliar spray and soil/root drenching is reviewed in detail. In addition, the ability of microalgae metabolites to impart tolerance against various abiotic and biotic stressors along with the mechanism of action is discussed in this paper. Although the use of microalgae based biofertilizers and biostimulants is gaining popularity, the high nutrient and water requirements and energy intensive downstream processes makes microalgae based technology commercially unsustainable. Addressing this challenge, we propose a circular economy model of microalgae mediated bioremediation coupled with biorefinery approaches of generating high value metabolites along with biofertilizer applications. We discuss and review new trends in enhancing the sustainability of microalgae biomass production by co-cultivation of algae with hydroponics and utilization of agriculture effluents.
Collapse
Affiliation(s)
- Priyanka Parmar
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Raman Kumar
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Yograj Neha
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vidyashankar Srivatsan
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
35
|
Zhou L, Liu W, Duan H, Dong H, Li J, Zhang S, Zhang J, Ding S, Xu T, Guo B. Improved effects of combined application of nitrogen-fixing bacteria Azotobacter beijerinckii and microalgae Chlorella pyrenoidosa on wheat growth and saline-alkali soil quality. CHEMOSPHERE 2023; 313:137409. [PMID: 36457265 DOI: 10.1016/j.chemosphere.2022.137409] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/05/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Soil salinization seriously affects crop yield and soil productivity. The application of bacteria and microalgae has been considered as a promising strategy to alleviate soil salinization. However, the effect of bacteria-microalgae symbiosis on saline-alkali land is still unclear. This study evaluated the effects of Azotobacter beijerinckii, Chlorella pyrenoidosa, and their combined application on the wheat growth and saline-alkali soil improvement. The results showed that, among all the treatments, A. beijerinckii + live C. pyrenoidosa combined inoculation group (BA) had the best effect on increasing wheat plant biomass, improving salt tolerance, and improving soil fertility. The dry weight of wheat plant in the BA group increased by 66.7%, 17.4%, and 35.0%, respectively, compared with the control group (CK), A. beijerinckii inoculation group (B), and live C. pyrenoidosa inoculation group (A). The total nitrogen content of wheat plant in the BA group increased by 69.5%, 76.7%, and 71.1%, compared with the CK, B, and A group. The proline content of wheat plant in the BA group was 100% higher than that in the CK group. The N/P ratio and K/Na ratio of wheat plant increased by 157% and 12.9% in the BA group compared with the CK group, respectively, which was more conducive to alleviating nitrogen limitation and salt stress. The A. beijerinckii + live C. pyrenoidosa inoculation treatment better reduced soil pH and improved the availability of phosphorus in soil. This study illustrated the comprehensive application prospects of bacteria-microalgae interactions on wheat growth promotion and soil improvement in saline-alkali land, and provided a new effective strategy for improving saline-alkali soil quality and increasing crop productivity.
Collapse
Affiliation(s)
- Lixiu Zhou
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China; Faculty of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Wei Liu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China; Faculty of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Huijie Duan
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China; Faculty of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Haiwen Dong
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China; Faculty of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jingchao Li
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China; Faculty of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shuxi Zhang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China; Faculty of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jing Zhang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| | - Shigang Ding
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| | - Tongtong Xu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China; Faculty of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Beibei Guo
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| |
Collapse
|
36
|
Chong JWR, Khoo KS, Chew KW, Vo DVN, Balakrishnan D, Banat F, Munawaroh HSH, Iwamoto K, Show PL. Microalgae identification: Future of image processing and digital algorithm. BIORESOURCE TECHNOLOGY 2023; 369:128418. [PMID: 36470491 DOI: 10.1016/j.biortech.2022.128418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
The identification of microalgae species is an important tool in scientific research and commercial application to prevent harmful algae blooms (HABs) and recognizing potential microalgae strains for the bioaccumulation of valuable bioactive ingredients. The aim of this study is to incorporate rapid, high-accuracy, reliable, low-cost, simple, and state-of-the-art identification methods. Thus, increasing the possibility for the development of potential recognition applications, that could identify toxic-producing and valuable microalgae strains. Recently, deep learning (DL) has brought the study of microalgae species identification to a much higher depth of efficiency and accuracy. In doing so, this review paper emphasizes the significance of microalgae identification, and various forms of machine learning algorithms for image classification, followed by image pre-processing techniques, feature extraction, and selection for further classification accuracy. Future prospects over the challenges and improvements of potential DL classification model development, application in microalgae recognition, and image capturing technologies are discussed accordingly.
Collapse
Affiliation(s)
- Jun Wei Roy Chong
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000 Cyberjaya, Selangor, Malaysia
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Dai-Viet N Vo
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 755414, Vietnam
| | - Deepanraj Balakrishnan
- Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, P.O Box 127788, Abu Dhabi, United Arab Emirates
| | - Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Bandung 40154, West Java, Indonesia
| | - Koji Iwamoto
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India.
| |
Collapse
|
37
|
Pei H, Yu Z. Microalgae: a revolution for salt-affected soil remediation. Trends Biotechnol 2023; 41:147-149. [PMID: 36117021 DOI: 10.1016/j.tibtech.2022.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 01/24/2023]
Abstract
Salt-affected soil and carbon emissions are worldwide problems. Tiny microalgae hold huge power to remediate soil and reduce carbon. An eco-friendly and cost-effective approach is proposed to remediate salt-affected soils using microalgal eco-farms, which would deliver threefold benefits: salt-affected soil amelioration, CO2 reduction, and agricultural production.
Collapse
Affiliation(s)
- Haiyan Pei
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, 250061, China.
| | - Ze Yu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, 250061, China
| |
Collapse
|
38
|
Osorio-Reyes JG, Valenzuela-Amaro HM, Pizaña-Aranda JJP, Ramírez-Gamboa D, Meléndez-Sánchez ER, López-Arellanes ME, Castañeda-Antonio MD, Coronado-Apodaca KG, Gomes Araújo R, Sosa-Hernández JE, Melchor-Martínez EM, Iqbal HMN, Parra-Saldivar R, Martínez-Ruiz M. Microalgae-Based Biotechnology as Alternative Biofertilizers for Soil Enhancement and Carbon Footprint Reduction: Advantages and Implications. Mar Drugs 2023; 21:md21020093. [PMID: 36827134 PMCID: PMC9958754 DOI: 10.3390/md21020093] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/21/2023] [Accepted: 01/21/2023] [Indexed: 02/01/2023] Open
Abstract
Due to the constant growth of the human population and anthropological activity, it has become necessary to use sustainable and affordable technologies that satisfy the current and future demand for agricultural products. Since the nutrients available to plants in the soil are limited and the need to increase the yields of the crops is desirable, the use of chemical (inorganic or NPK) fertilizers has been widespread over the last decades, causing a nutrient shortage due to their misuse and exploitation, and because of the uncontrolled use of these products, there has been a latent environmental and health problem globally. For this reason, green biotechnology based on the use of microalgae biomass is proposed as a sustainable alternative for development and use as soil improvers for crop cultivation and phytoremediation. This review explores the long-term risks of using chemical fertilizers for both human health (cancer and hypoxia) and the environment (eutrophication and erosion), as well as the potential of microalgae biomass to substitute current fertilizer using different treatments on the biomass and their application methods for the implementation on the soil; additionally, the biomass can be a source of carbon mitigation and wastewater treatment in agro-industrial processes.
Collapse
Affiliation(s)
| | | | | | - Diana Ramírez-Gamboa
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | | | - Ma. Dolores Castañeda-Antonio
- Centro de Investigaciones en Ciencias Microbiológicas del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72490, Mexico
| | - Karina G. Coronado-Apodaca
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Rafael Gomes Araújo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Elda M. Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
- Correspondence: (R.P.-S.); (M.M.-R.)
| | - Manuel Martínez-Ruiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
- Correspondence: (R.P.-S.); (M.M.-R.)
| |
Collapse
|
39
|
Goveas LC, Nayak S, Vinayagam R, Loke Show P, Selvaraj R. Microalgal remediation and valorisation of polluted wastewaters for zero-carbon circular bioeconomy. BIORESOURCE TECHNOLOGY 2022; 365:128169. [PMID: 36283661 DOI: 10.1016/j.biortech.2022.128169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Overexploitation of natural resources to meet human needs has considerably impacted CO2 emissions, contributing to global warming and severe climatic change. This review furnishes an understanding of the sources, brutality, and effects of CO2 emissions and compelling requirements for metamorphosis from a linear to a circular bioeconomy. A detailed emphasis on microalgae, its types, properties, and cultivation are explained with significance in attaining a zero-carbon circular bioeconomy. Microalgal treatment of a variety of wastewaters with the conversion of generated biomass into value-added products such as bio-energy and pharmaceuticals, along with agricultural products is elaborated. Challenges encountered in large-scale implementation of microalgal technologies for low-carbon circular bioeconomy are discussed along with solutions and future perceptions. Emphasis on the suitability of microalgae in wastewater treatment and its conversion into alternate low-carbon footprint bio-energies and value-added products enforcing a zero-carbon circular bioeconomy is the major focus of this review.
Collapse
Affiliation(s)
- Louella Concepta Goveas
- Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Department of Biotechnology Engineering, Nitte, Karnataka 574110, India
| | - Sneha Nayak
- Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Department of Biotechnology Engineering, Nitte, Karnataka 574110, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
40
|
Microbial-Mediated Emissions of Greenhouse Gas from Farmland Soils: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10112361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The greenhouse effect is one of the concerning environmental problems. Farmland soil is an important source of greenhouse gases (GHG), which is characterized by the wide range of ways to produce GHG, multiple influencing factors and complex regulatory measures. Therefore, reducing GHG emissions from farmland soil is a hot topic for relevant researchers. This review systematically expounds on the main pathways of soil CO2, CH4 and N2O; analyzes the effects of soil temperature, moisture, organic matter and pH on various GHG emissions from soil; and focuses on the microbial mechanisms of soil GHG emissions under soil remediation modes, such as biochar addition, organic fertilizer addition, straw return and microalgal biofertilizer application. Finally, the problems and environmental benefits of various soil remediation modes are discussed. This paper points out the important role of microalgae biofertilizer in the GHG emissions reduction in farmland soil, which provides theoretical support for realizing the goal of “carbon peaking and carbon neutrality” in agriculture.
Collapse
|
41
|
Fatima B, Bibi F, Ishtiaq Ali M, Woods J, Ahmad M, Mubashir M, Shariq Khan M, Bokhari A, Khoo KS. Accompanying effects of sewage sludge and pine needle biochar with selected organic additives on the soil and plant variables. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 153:197-208. [PMID: 36108538 DOI: 10.1016/j.wasman.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/09/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
The effects of synthetic fertilizer and nutrient leaching are causing serious problems impacting soil function and its fertility. Mitigation of nutrient leaching and use of chemical fertilizer is crucial as fertile land adds up sustainability to climate changes. Biochar produced from agricultural bio-waste and municipal solid waste has been used for crop production and when applied in combination with organic nutrients may support mitigation of nutrient loss and adverse effects of chemical fertilizers. Different types of biochar and their application for soil enhancement have been observed, pine needle and sewage sludge derived low-temperature biochar along with compost, organic fertilizer in the form of manure and microalgal biomass may interact with soil chemistry and plant growth to impact nutrient loss and compensate the hazardous effect of chemical fertilizer, but it has not been investigated yet. This present study elaborates application of sewage sludge and pine needle biochar produced at 400 °C in an application rate of 5 % w/w and 10 t h-1 in combination with compost, manure and microalgal biomasses of Closteriopsis acicularis (BM1) and Tetradesmus nygaardi (BM2) on the growth of Chickpea (Cicer arietinum) and Fenugreek (Trigonella foenum-graecum) crop assessed in a pot experiment over a two crop (Chickpea - Fenugreek) cycle in Pakistan. Results depict that the pine needle biochar with additives has increased plant height by 104.1 ± 2.76 cm and fresh biomass by 49.9 ± 1.02 g, buffered the soil pH to 6.5 for optimum growth of crops and enhance carbon retention by 36 %. This study highlights the valorization of sewage sludge and pine needle into biochar and the effect of biochar augmentation, its impact on soil nutrients and plant biomass enhancement. The greener approach also mitigates and helps in the sustainable management of solid wastes.
Collapse
Affiliation(s)
- Bushra Fatima
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Farhana Bibi
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Jeremy Woods
- Centre for Environmental Policy, Imperial College London, United Kingdom
| | - Mushtaq Ahmad
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000 Kuala Lumpur, Malaysia
| | - Mohd Shariq Khan
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah, Oman
| | - Awais Bokhari
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00 Brno, Czech Republic; Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Punjab, 54000, Lahore, Pakistan
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
42
|
Untargeted GC-MS reveals differential regulation of metabolic pathways in cyanobacterium Anabaena and its biofilms with Trichoderma viride and Providencia sp. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100174. [DOI: 10.1016/j.crmicr.2022.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
43
|
Production of forest seedlings using sewage sludge and automated irrigation with ozonated cattle wastewater. PLoS One 2022; 17:e0276633. [PMID: 36315565 PMCID: PMC9621441 DOI: 10.1371/journal.pone.0276633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
The large volume of effluents generated by intensive cattle production can become an environmental problem, requiring solutions that combine treatment and disposal of reuse water. The quality of cattle wastewater (CWW) treated by ozonation, the water requirement and its effect on the growth of seedlings of Dalbergia nigra cultivated with sewage sludge were determined under different light conditions. The study was carried out in a split plot scheme with 2 shading levels (0%—C1, and 49.4% attenuation—C2) and 3 types of irrigation water (control–T1, 1 h ozonation–T2, and 2 h–T3), with 4 repetitions. Direct sowing was realized into 280 cm3 tubes which were irrigated by drip irrigation with automatic management. The height and collar diameter were measured every 21 days, and at the end of the nursery phase, and the Dickson quality index (DQI) and irrigation water productivity (WPir) were determined. In addition, seedlings were transplanted in a forest restauration area (FRA) of Atlantic Forest, with height and diameter monitoring for 200 days. With ozonation, there was an increase in pH and a reduction in electrical conductivity, total solids and turbidity in the CWW, allowing its use for irrigation of forest seedlings. The maximum volumes of water applied were 2.096 and 1.921 L plant-1, with water supply T2 and T1, respectively, and coverages C1 and C2. In these conditions, the seedlings reached DQI of 0.47 and 0.17, and WPir of 2.35 and 1.48 g L-1, respectively. The initial vegetative growth of the seedlings planted in the FRA was benefited by the nutrients provided by the CWW treated. Therefore, the use of sewage sludge and CWW treated has the potential to produce forest seedlings, reducing the release of waste and effluents into the environment.
Collapse
|
44
|
Zhou J, Wang M, Saraiva JA, Martins AP, Pinto CA, Prieto MA, Simal-Gandara J, Cao H, Xiao J, Barba FJ. Extraction of lipids from microalgae using classical and innovative approaches. Food Chem 2022; 384:132236. [PMID: 35240572 DOI: 10.1016/j.foodchem.2022.132236] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/05/2023]
Abstract
Microalgae, as a photosynthetic autotrophic organism, contain a variety of bioactive compounds, including lipids, proteins, polysaccharides, which have been applied in food, medicine, and fuel industries, among others. Microalgae are considered a good source of marine lipids due to their high content in unsaturated fatty acid (UFA) and can be used as a supplement/replacement for fish-based oil. The high concentration of docosahexaenoic (DHA) and eicosapentaenoic acids (EPA) in microalgae lipids, results in important physiological functions, such as antibacterial, anti-inflammatory, and immune regulation, being also a prerequisite for its development and application. In this paper, a variety of approaches for the extraction of lipids from microalgae were reviewed, including classical and innovative approaches, being the advantages and disadvantages of these methods emphasized. Further, the effects of microalgae lipids as high value bioactive compounds in human health and their use for several applications are dealt with, aiming using green(er) and effective methods to extract lipids from microalgae, as well as develop and extend their application potential.
Collapse
Affiliation(s)
- Jianjun Zhou
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain; Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Min Wang
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain; Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Jorge A Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana P Martins
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Carlos A Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, Universidade de Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, Universidade de Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, Universidade de Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, Universidade de Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain.
| |
Collapse
|
45
|
Microalgae Polysaccharides: An Alternative Source for Food Production and Sustainable Agriculture. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3020027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Carbohydrates or polysaccharides are the main products derived from photosynthesis and carbon fixation in the Calvin cycle. Compared to other sources, polysaccharides derived from microalgae are safe, biocompatible, biodegradable, stable, and versatile. These polymeric macromolecules present complex biochemical structures according to each microalgal species. In addition, they exhibit emulsifying properties and biological characteristics that include antioxidant, anti-inflammatory, antitumor, and antimicrobial activities. Some microalgal species have a naturally high concentration of carbohydrates. Other species can adapt their metabolism to produce more sugars from changes in temperature and light, carbon source, macro and micronutrient limitations (mainly nitrogen), and saline stress. In addition to growing in adverse conditions, microalgae can use industrial effluents as an alternative source of nutrients. Microalgal polysaccharides are predominantly composed of pentose and hexose monosaccharide subunits with many glycosidic bonds. Microalgae polysaccharides can be structural constituents of the cell wall, energy stores, or protective polysaccharides and cell interaction. The industrial use of microalgae polysaccharides is on the rise. These microorganisms present rheological and biological properties, making them a promising candidate for application in the food industry and agriculture. Thus, microalgae polysaccharides are promising sustainable alternatives for potential applications in several sectors, and the choice of producing microalgal species depends on the required functional activity. In this context, this review article aims to provide an overview of microalgae technology for polysaccharide production, emphasizing its potential in the food, animal feed, and agriculture sector.
Collapse
|
46
|
Employment of algae-based biological soil crust to control desertification for the sustainable development: A mini-review. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Van Camp C, Fraikin C, Claverie E, Onderwater R, Wattiez R. Capsular polysaccharides and exopolysaccharides from Gloeothece verrucosa under various nitrogen regimes and their potential plant defence stimulation activity. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
48
|
Microalga Biofertilizer Triggers Metabolic Changes Improving Onion Growth and Yield. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Seeking the development of nature-friendly agronomic techniques, the use of natural sources to promote plant growth and increase agricultural yield has gained relevance. In this context, the use of biofertilizers or biostimulants obtained from microalgae has been studied, as these microorganisms have in their composition a great diversity of bioactive molecules. This study aimed to evaluate the effect of microalga Asterarcys quadricellulare (CCAP 294/1) on organic onion production, verifying its action on metabolism, growth and yield of two cultivars. Thus, two experiments were carried out: (i) foliar applications on onion plants grown in pots in a greenhouse; (ii) foliar applications on field-grown onion under an organic system. Both experiments were undertaken using solutions with spray-dried microalga biomass at concentrations of 0.05, 0.15, 0.25 and 0.4 g L−1. Biometric variables, yield of bulbs and biochemical variables were evaluated indicating that the use of A. quadricellulare promoted plant growth and increases in bulb caliber and yield of both onion cultivars. The microalga biomass stimulated plant metabolism by increases in contents of chlorophyll, carotenoids, amino acids, and the nitrate reductase enzyme activity in leaves, also free amino acids and total sugar contents in bulbs, highlighting the biomass concentration of 0.25 g L−1.
Collapse
|
49
|
Biomolecules from Microalgae and Cyanobacteria: Applications and Market Survey. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041924] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nowadays, microalgae and cyanobacteria have become a promising and sustainable source of useful products, thanks to their richness in bioactive metabolites of high value (antibiotics, toxins, pharmaceutically active compounds, plant growth regulators, and others). These photoautotroph microorganisms generate biomass using photosynthesis. This review, which distinguishes microalgae and Cyanobacteria, often called blue-green microalgae, aims to present their classification and taxonomic diversity as the ecological niches occupied by them. In addition, the usages of open ponds and photobioreactors to produce various microalgae and Cyanobacteria strains and the high-value bioactive compounds from these microorganisms are summarized. Finally, the numerous commercial applications of these phytoplanktons in different fields, such as food, dietary supplements, feed, cosmetic, and biofuel applications, are reviewed.
Collapse
|
50
|
Shrestha RC, Ghazaryan L, Poodiack B, Zorin B, Gross A, Gillor O, Khozin-Goldberg I, Gelfand I. The effects of microalgae-based fertilization of wheat on yield, soil microbiome and nitrogen oxides emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151320. [PMID: 34743875 DOI: 10.1016/j.scitotenv.2021.151320] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Overuse of agrochemicals is linked to nutrient loss, greenhouse gases (GHG) emissions, and resource depletion thus requiring the development of sustainable agricultural solutions. Cultivated microalgal biomass could provide such a solution. The environmental consequences of algal biomass application in agriculture and more specifically its effect on soil GHG emissions are understudied. Here we report the results of a field experiment of wheat grown on three different soil types under the same climatic conditions and fertilized by urea or the untreated biomass of fresh-water green microalga (Coelastrella sp.). The results show that neither soil type nor fertilization types impacted the aboveground wheat biomass, whereas, soil microbiomes differed in accordance with soil but not the fertilizer type. However, wheat grain nitrogen (N) content and soil N oxides emissions were significantly lower in plots fertilized by algal biomass compared to urea. Grain N content in the wheat grain that was fertilized by algal biomass was between 1.3%-1.5% vs. 1.6%-2.0% in the urea fertilized wheat. Cumulative soil nitric oxide (NO) emissions were 2-5 fold lower, 313-726 g N ha-1 season-1 vs. 909-3079 g N ha-1 season-1. Cumulative soil nitrous oxide (N2O) emissions were 2-fold lower, 90-348 g N ha-1 season-1 vs. 147-761 g N ha-1 season-1. The lower emissions resulted in a 4-11 fold lower global warming impact of the algal fertilized crops. This calculation excluded the CO2 cost from the algae biomass production. Once included algal fertilization had a similar, or 40% higher, climatic impact compared to the urea fertilization.
Collapse
Affiliation(s)
- Ram Chandra Shrestha
- The Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| | - Lusine Ghazaryan
- Zukerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 8499000, Israel
| | - Ben Poodiack
- Zukerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 8499000, Israel
| | - Boris Zorin
- The Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| | - Avner Gross
- Department of Geography and Environmental Development, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Osnat Gillor
- Zukerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 8499000, Israel
| | - Inna Khozin-Goldberg
- The French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 8499000, Israel
| | - Ilya Gelfand
- The French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 8499000, Israel.
| |
Collapse
|