1
|
Corcione S, Ferrocino I, Lupia T, Busca A, Bianco G, Dellacasa C, Giaccone L, Brunello L, Butera S, Costa C, Bruno B, De Rosa FG. Influence of ESBL colonization status on gut microbiota composition during allogenic hematopoietic stem cell transplantation. Sci Rep 2025; 15:1275. [PMID: 39779737 PMCID: PMC11711636 DOI: 10.1038/s41598-025-85128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
After allogeneic HSCT (allo-HSCT), the diversity of the intestinal microbiota significantly decreases. The changes can be rapid and are thought to be caused by chemotherapy, antibiotics, or intestinal inflammation. Most patients are exposed to prophylactic and therapeutic antibiotics during neutropenia and several patients are colonized by ESBL bacteria. We investigated the changes in gut microbiota composition in allo-HSCT, aiming at investigating if the acquisition of ESBL colonization may affect gut microbiome diversity during allo-HSCT. This was a single-center prospective pilot study. All patients consecutively admitted to the Haematological Unit of the City of Health and Science, Molinette Hospital in Turin, Italy, and undergoing allo-HSCT between August 2017 to August 2020 were enrolled in the study. Microbiome analysis on fecal samples were collected every 7 days from hospital admission to discharge and until 1 year after HSCT. 48 patients were enrolled in the study. At baseline 14 patients (29.16%) were colonized by MDR bacteria, mostly extended-spectrum beta-lactamase (ESBL)-producing gram negatives (N = 11; 78.57%). During allo-HSCT, one patient had a positive rectal swab for a carbapenemase-producing Klebsiella pneumoniae and eight patients lost the colonization during the hospital stay. Microbiota composition was compared between patients colonized by ESBL at baseline and non-colonized patients. Patients colonized by ESBL had a greater abundances of Bifidobacterium, Blautia, Clostridium, Coprococcus, L-Ruminococcus Mogibacteriaceae, Peptostreptococceae and Oscillospira, while non-colonized ESBL patients had a greater abundance of Actinomycetales, Staphylococcus and Sutterella. Moreover, microbiota composition of colonized by ESBL that retained colonization after HSCT showed an increased in abundances of Akkermansia, Dialister, Erysipelotrichaceae and Methanobrevibacter when compared with patients that become negative at rectal swabs. From a clinical perspective, the evolution of this prospective pilot study will be to investigate markers of gut barrier functions, SCFA productions and to correlate the predictivity of these parameters with risk of invasive infections and clinical outcomes in allo-HSCT population.
Collapse
Affiliation(s)
- Silvia Corcione
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy.
- Tufts Medical Center and Tufts University School of Medicine, Boston, MA, USA.
| | - Ilario Ferrocino
- Department of Agriculture, Forest and Food Science, University of Turin, Grugliasco, Italy
| | - Tommaso Lupia
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
| | - Alessandro Busca
- Department of Oncology, Trapianto Allogenico di Cellule Staminali, Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Gabriele Bianco
- Microbiology and Virology Unit, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Chiara Dellacasa
- Department of Oncology, Trapianto Allogenico di Cellule Staminali, Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Luisa Giaccone
- Department of Oncology, Trapianto Allogenico di Cellule Staminali, Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Lucia Brunello
- Department of Oncology, Trapianto Allogenico di Cellule Staminali, Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Sara Butera
- Department of Oncology, Trapianto Allogenico di Cellule Staminali, Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Cristina Costa
- Microbiology and Virology Unit, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Benedetto Bruno
- Department of Oncology, Trapianto Allogenico di Cellule Staminali, Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | | |
Collapse
|
2
|
Wei X, Xi P, Chen M, Wen Y, Wu H, Wang L, Zhu Y, Ren Y, Gu Z. Capsule robots for the monitoring, diagnosis, and treatment of intestinal diseases. Mater Today Bio 2024; 29:101294. [PMID: 39483392 PMCID: PMC11525164 DOI: 10.1016/j.mtbio.2024.101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 11/03/2024] Open
Abstract
Current evidence suggests that the intestine as the new frontier for human health directly impacts both our physical and mental health. Therefore, it is highly desirable to develop the intelligent tool for the enhanced diagnosis and treatment of intestinal diseases. During the past 20 years, capsule robots have opened new avenues for research and clinical applications, potentially revolutionizing human health monitor, disease diagnosis and treatment. In this review, we summarize the research progress of edible multifunctional capsule robots in intestinal diseases. To begin, we introduce the correlation between the intestinal microbiome, intestinal gas and human diseases. After that, we focus on the technical structure of edible multifunctional robots. Subsequently, the biomedical applications in the monitoring, diagnosis and treatment of intestinal diseases are discussed in detail. Last but not least, the main challenges of multifunctional capsule robots during the development process are summarized, followed by a vision for future development opportunities.
Collapse
Affiliation(s)
- Xiangyu Wei
- Department of Rheumatology, Research Center of Immunology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
- Department of Rheumatology, Affiliated Municipal Hospital of Xuzhou Medical University, Xuzhou, 221100, China
- Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Peipei Xi
- Department of Emergency, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
- Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Minjie Chen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ya Wen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Hao Wu
- Department of Otolaryngology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Li Wang
- Institutes of Biomedical Sciences and the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yujuan Zhu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yile Ren
- Department of Rheumatology, Affiliated Municipal Hospital of Xuzhou Medical University, Xuzhou, 221100, China
| | - Zhifeng Gu
- Department of Rheumatology, Research Center of Immunology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| |
Collapse
|
3
|
He J, Zhang Y, Guo Y, Guo J, Chen X, Xu S, Xu X, Wu C, Liu C, Chen J, Ding Y, Fisher M, Jiang M, Liu G, Ji X, Wu D. Blood-derived factors to brain communication in brain diseases. Sci Bull (Beijing) 2024; 69:3618-3632. [PMID: 39353815 DOI: 10.1016/j.scib.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 10/04/2024]
Abstract
Brain diseases, mainly including acute brain injuries, neurodegenerative diseases, and mental disorders, have posed a significant threat to human health worldwide. Due to the limited regenerative capability and the existence of the blood-brain barrier, the brain was previously thought to be separated from the rest of the body. Currently, various cross-talks between the central nervous system and peripheral organs have been widely described, including the brain-gut axis, the brain-liver axis, the brain-skeletal muscle axis, and the brain-bone axis. Moreover, several lines of evidence indicate that leveraging systemic biology intervention approaches, including but not limited to lifestyle interventions, exercise, diet, blood administration, and peripheral immune responses, have demonstrated a significant influence on the progress and prognosis of brain diseases. The advancement of innovative proteomic and transcriptomic technologies has enriched our understanding of the nuanced interplay between peripheral organs and brain diseases. An array of novel or previously underappreciated blood-derived factors have been identified to play pivotal roles in mediating these communications. In this review, we provide a comprehensive summary of blood-to-brain communication following brain diseases. Special attention is given to the instrumental role of blood-derived signals, positing them as significant contributors to the complex process of brain diseases. The insights presented here aim to bridge the current knowledge gaps and inspire novel therapeutic strategies for brain diseases.
Collapse
Affiliation(s)
- Jiachen He
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China; Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin 150081, China
| | - Yanming Zhang
- Department of Rehabilitation, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yansu Guo
- Beijing Geriatric Healthcare Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jiaqi Guo
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Xi Chen
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Shuaili Xu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Xiaohan Xu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Chuanjie Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Chengeng Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Jian Chen
- Department of Neurosurgery, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Yuchuan Ding
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit MI 46801, USA
| | - Marc Fisher
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA 02115, USA
| | - Miaowen Jiang
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China.
| | - Guiyou Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241002, China; Brain Hospital, Shengli Oilfield Central Hospital, Dongying 257034, China.
| | - Xunming Ji
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China.
| | - Di Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
4
|
Qian J, Fang Z, Chang S, Zeng Z, Zhang J. Effectiveness and safety study of formula containing probiotics, prebiotics, synbiotics on fullterm infants' growth - a systematic review and meta-analysis of randomized controlled study. Eur J Clin Nutr 2024:10.1038/s41430-024-01506-9. [PMID: 39448812 DOI: 10.1038/s41430-024-01506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND AND OBJECTIVE Probiotics, prebiotics, and synbiotics, are hot topics of research and have been shown to improve the body's disease state and promote health. Analysis of whether infant formula containing probiotcs, prebiotics, synbiotics is beneficial to infant and child growth. METHODS We systematically searched multiple electronic databases (PubMed, Web of Science, The Cochrane Library, Embase) to identify eligible studies published from 1966 to December 25, 2022. Included studies were randomized controlled trials (RCTs) studying the influence of milk powder containing probiotcs, prebiotics, synbiotics on infants and children's growth. RevMan 5.4 was used to analyze the data. RESULTS A total of 55 RCTs with a total sample size of 8868 participants met the inclusion criteria. Milk powder with probiotics, prebiotics, synbiotics does not significantly improve the growth of infants and children (Weight, height, BMI, and Head Circumference); The incidence of minor adverse events (OR 0.88, 95% CI 0.70-1.11 P = 0.28) and serious adverse events (OR 0.92, 95% CI 0.62-1.36 P = 0.67) was also comparable to the control group; The intestinal microbial diversity of infants consuming probiotcs, prebiotics, synbiotics supplemented formula was lower than that of infants consuming formula without probiotcs, prebiotics, synbiotics (SMD -0.88, 95% CI -1.66- -0.1 P = 0.03), but the abundance of individual beneficial flora was increased. (SMD 1.62, 95%CI 0.61-2.62 P = 0.002). In particular, the abundance of Lactobacillus (SMD 1.62, 95% CI 0.61-2.62 P = 0.002). For metabolites, synbiotics increased fecal antibody concentrations (SMD 0.47, 95% CI 0.08-0.86 P = 0.02), but fecal short-chain fatty acid concentrations remained balanced in both groups (SMD 0.05 95% CI -0.17-0.28 P = 0.64). Compared to the control group, infants who consumed formula with prebiotics had softer stools (SMD -1.47, 95% CI -2.23 to -0.7 P = 0.002) and lower stool pH (SMD -0.82, 95% CI -1.15- -0.5 P < 0.00001), there is also more frequency of bowel movements (SMD 0.27, 95% CI 0.09-0.44 P = 0.002). CONCLUSIONS Probiotcs, prebiotics, synbiotics supplemented formulas significantly increased abundance of individual probiotics, alter intestinal antibody secretion, and improve bowel movements. Incidence of adverse reactions did not differ between the two groups. So we can choose formula-supplemented probiotcs, prebiotics, synbiotics to maintain the intestinal health of infants.
Collapse
Affiliation(s)
- Jiafen Qian
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Zongwei Fang
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Sijie Chang
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Zhiwei Zeng
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Jinhua Zhang
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
5
|
Sasidharan Pillai S, Gagnon CA, Foster C, Ashraf AP. Exploring the Gut Microbiota: Key Insights Into Its Role in Obesity, Metabolic Syndrome, and Type 2 Diabetes. J Clin Endocrinol Metab 2024; 109:2709-2719. [PMID: 39040013 PMCID: PMC11479700 DOI: 10.1210/clinem/dgae499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/22/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
The gut microbiota (GM), comprising trillions of microorganisms in the gastrointestinal tract, is a key player in the development of obesity and related metabolic disorders, such as type 2 diabetes (T2D), metabolic syndrome (MS), and cardiovascular diseases. This mini-review delves into the intricate roles and mechanisms of the GM in these conditions, offering insights into potential therapeutic strategies targeting the microbiota. The review elucidates the diversity and development of the human GM, highlighting its pivotal functions in host physiology, including nutrient absorption, immune regulation, and energy metabolism. Studies show that GM dysbiosis is linked to increased energy extraction, altered metabolic pathways, and inflammation, contributing to obesity, MS, and T2D. The interplay between dietary habits and GM composition is explored, underscoring the influence of diet on microbial diversity and metabolic functions. Additionally, the review addresses the impact of common medications and therapeutic interventions like fecal microbiota transplantation on GM composition. The evidence so far advocates for further research to delineate the therapeutic potential of GM modulation in mitigating obesity and metabolic diseases, emphasizing the necessity of clinical trials to establish effective and sustainable treatment protocols.
Collapse
Affiliation(s)
- Sabitha Sasidharan Pillai
- Center for Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Charles A Gagnon
- University of Alabama at Birmingham Marnix E. Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Christy Foster
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ambika P Ashraf
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
6
|
Boverhoff D, Kool J, Pijnacker R, Ducarmon QR, Zeller G, Shetty S, Sie S, Mulder AC, van der Klis F, Franz E, Mughini-Gras L, van Baarle D, Fuentes S. Profiling the fecal microbiome and its modulators across the lifespan in the Netherlands. Cell Rep 2024; 43:114729. [PMID: 39264809 DOI: 10.1016/j.celrep.2024.114729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/23/2024] [Accepted: 08/22/2024] [Indexed: 09/14/2024] Open
Abstract
Defining what constitutes a healthy microbiome throughout our lives remains an ongoing challenge. Understanding to what extent host and environmental factors can influence it has been the primary motivation for large population studies worldwide. Here, we describe the fecal microbiome of 3,746 individuals (0-87 years of age) in a nationwide study in the Netherlands, in association with extensive questionnaires. We validate previous findings, such as infant-adult trajectories, and explore the collective impact of our variables, which explain over 40% of the variation in microbiome composition. We identify associations with less explored factors, particularly those ethnic related, which show the largest impact on the adult microbiome composition, diversity, metabolic profiles, and CAZy (carbohydrate-active enzyme) repertoires. Understanding the sources of microbiome variability is crucial, given its potential as a modifiable target with therapeutic possibilities. With this work, we aim to serve as a foundational element for the design of health interventions and fundamental research.
Collapse
Affiliation(s)
- David Boverhoff
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands; Virology & Immunology Research, Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, the Netherlands
| | - Jolanda Kool
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Roan Pijnacker
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Quinten R Ducarmon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Georg Zeller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Sudarshan Shetty
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands; Virology & Immunology Research, Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, the Netherlands
| | - Stephan Sie
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Annemieke Christine Mulder
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Fiona van der Klis
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Eelco Franz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Lapo Mughini-Gras
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands; Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Debbie van Baarle
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands; Virology & Immunology Research, Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, the Netherlands
| | - Susana Fuentes
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| |
Collapse
|
7
|
Soldán M, Argalášová Ľ, Hadvinová L, Galileo B, Babjaková J. The Effect of Dietary Types on Gut Microbiota Composition and Development of Non-Communicable Diseases: A Narrative Review. Nutrients 2024; 16:3134. [PMID: 39339734 PMCID: PMC11434870 DOI: 10.3390/nu16183134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION The importance of diet in shaping the gut microbiota is well established and may help improve an individual's overall health. Many other factors, such as genetics, age, exercise, antibiotic therapy, or tobacco use, also play a role in influencing gut microbiota. AIM This narrative review summarizes how three distinct dietary types (plant-based, Mediterranean, and Western) affect the composition of gut microbiota and the development of non-communicable diseases (NCDs). METHODS A comprehensive literature search was conducted using the PubMed, Web of Science, and Scopus databases, focusing on the keywords "dietary pattern", "gut microbiota" and "dysbiosis". RESULTS Both plant-based and Mediterranean diets have been shown to promote the production of beneficial bacterial metabolites, such as short-chain fatty acids (SCFAs), while simultaneously lowering concentrations of trimethylamine-N-oxide (TMAO), a molecule associated with negative health outcomes. Additionally, they have a positive impact on microbial diversity and therefore are generally considered healthy dietary types. On the other hand, the Western diet is a typical example of an unhealthy nutritional approach leading to an overgrowth of pathogenic bacteria, where TMAO levels rise and SCFA production drops due to gut dysbiosis. CONCLUSION The current scientific literature consistently highlights the superiority of plant-based and Mediterranean dietary types over the Western diet in promoting gut health and preventing NCDs. Understanding the influence of diet on gut microbiota modulation may pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
| | - Ľubica Argalášová
- Institute of Hygiene, Faculty of Medicine, Comenius University in Bratislava, Špitálska 24, 813 72 Bratislava, Slovakia; (M.S.); (L.H.); (B.G.); (J.B.)
| | | | | | | |
Collapse
|
8
|
Zangirolamo AF, Souza AK, Yokomizo DN, Miguel AKA, da Costa MC, Alfieri AA, Seneda MM. Updates and Current Challenges in Reproductive Microbiome: A Comparative Analysis between Cows and Women. Animals (Basel) 2024; 14:1971. [PMID: 38998083 PMCID: PMC11240322 DOI: 10.3390/ani14131971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The microbiota plays an important role in numerous physiological processes, pathogenesis, development, and metabolism in different animal species. In humans, several studies have demonstrated an association between the vaginal microbiota and fertility rates, and even success in assisted reproduction techniques. In the context of cattle reproduction, although few studies have addressed the microbiota in a healthy state (which is not associated with diseases that affect the reproductive tract of cows), changes in its composition also seem to influence fertility. This review aims to explain the importance of the reproductive microbiota in female bovines and what is available in the literature regarding its possible role in increasing fertility. What are the challenges involved in this process? Future perspectives on its use and manipulation as a selection or intervention tool. Will it be possible to one day extrapolate the findings to reality and apply them in the field? In short, understanding the role of the reproductive microbiota of female bovines can signal the prospect of increasing production, whether of milk or meat, from the same number of animals, as it can optimize reproductive efficiency and perhaps become an allied tool for the economic profitability and sustainability of livestock farming.
Collapse
Affiliation(s)
- Amanda Fonseca Zangirolamo
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.F.Z.); (A.A.A.)
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| | - Anne Kemmer Souza
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| | - Deborah Nakayama Yokomizo
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| | - Ana Karolyne Alves Miguel
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| | | | - Amauri Alcindo Alfieri
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.F.Z.); (A.A.A.)
| | - Marcelo Marcondes Seneda
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.F.Z.); (A.A.A.)
- Laboratory of Animal Reproduction, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil; (A.K.S.); (D.N.Y.); (A.K.A.M.)
| |
Collapse
|
9
|
Adeosun J, Rama E, Thahir A, Krkovic M. Additional doses of prophylactic antibiotics post-arthroplasty: Are there any benefits? J Perioper Pract 2024:17504589241252019. [PMID: 38877723 DOI: 10.1177/17504589241252019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Guidelines for prophylactic antibiotic administration in total joint replacement vary considerably in terms of drug, dosage, route of administration and duration of cover. Despite the range of treatment options available, infection remains the most common reason for arthroplasty failure in the decades following a procedure, simultaneously increasing health care costs and lowering patient satisfaction considerably. This work aims to evaluate whether there are benefits to administering further doses of antibiotic post-arthroplasty, in addition to the recommendations of current protocols. We present a review of evidence surrounding infection rates in a variety of prophylactic regimens, and weigh this against further considerations such as cost to the patient and risks of nephrotoxicity. In summary, the available evidence does not suggest a benefit to administering additional doses post-arthroplasty in most cases. However, further doses may benefit those deemed at high risk of infection, or those in areas of high methicillin-resistant Staphylococcus aureus prevalence.
Collapse
Affiliation(s)
- James Adeosun
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Essam Rama
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Azeem Thahir
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Matija Krkovic
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
10
|
Muñoz KA, Ulrich RJ, Vasan AK, Sinclair M, Wen PC, Holmes JR, Lee HY, Hung CC, Fields CJ, Tajkhorshid E, Lau GW, Hergenrother PJ. A Gram-negative-selective antibiotic that spares the gut microbiome. Nature 2024; 630:429-436. [PMID: 38811738 DOI: 10.1038/s41586-024-07502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/01/2024] [Indexed: 05/31/2024]
Abstract
Infections caused by Gram-negative pathogens are increasingly prevalent and are typically treated with broad-spectrum antibiotics, resulting in disruption of the gut microbiome and susceptibility to secondary infections1-3. There is a critical need for antibiotics that are selective both for Gram-negative bacteria over Gram-positive bacteria, as well as for pathogenic bacteria over commensal bacteria. Here we report the design and discovery of lolamicin, a Gram-negative-specific antibiotic targeting the lipoprotein transport system. Lolamicin has activity against a panel of more than 130 multidrug-resistant clinical isolates, shows efficacy in multiple mouse models of acute pneumonia and septicaemia infection, and spares the gut microbiome in mice, preventing secondary infection with Clostridioides difficile. The selective killing of pathogenic Gram-negative bacteria by lolamicin is a consequence of low sequence homology for the target in pathogenic bacteria versus commensals; this doubly selective strategy can be a blueprint for the development of other microbiome-sparing antibiotics.
Collapse
Affiliation(s)
- Kristen A Muñoz
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rebecca J Ulrich
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Archit K Vasan
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matt Sinclair
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Po-Chao Wen
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jessica R Holmes
- High-Performance Computing in Biology, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyang Yeon Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Chien-Che Hung
- Veterinary Diagnostic Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christopher J Fields
- High-Performance Computing in Biology, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Emad Tajkhorshid
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Paul J Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
11
|
Wang Y, Hunt A, Danziger L, Drwiega EN. A Comparison of Currently Available and Investigational Fecal Microbiota Transplant Products for Recurrent Clostridioides difficile Infection. Antibiotics (Basel) 2024; 13:436. [PMID: 38786164 PMCID: PMC11117328 DOI: 10.3390/antibiotics13050436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Clostridioides difficile infection (CDI) is an intestinal infection that causes morbidity and mortality and places significant burden and cost on the healthcare system, especially in recurrent cases. Antibiotic overuse is well recognized as the leading cause of CDI in high-risk patients, and studies have demonstrated that even short-term antibiotic exposure can cause a large and persistent disturbance to human colonic microbiota. The recovery and sustainability of the gut microbiome after dysbiosis have been associated with fewer CDI recurrences. Fecal microbiota transplantation (FMT) refers to the procedure in which human donor stool is processed and transplanted to a patient with CDI. It has been historically used in patients with pseudomembranous colitis even before the discovery of Clostridioides difficile. More recent research supports the use of FMT as part of the standard therapy of recurrent CDI. This article will be an in-depth review of five microbiome therapeutic products that are either under investigation or currently commercially available: Rebyota (fecal microbiota, live-jslm, formerly RBX2660), Vowst (fecal microbiota spores, live-brpk, formerly SER109), VE303, CP101, and RBX7455. Included in this review is a comparison of the products' composition and dosage forms, available safety and efficacy data, and investigational status.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60612, USA
| | - Aaron Hunt
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60612, USA
| | - Larry Danziger
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60612, USA
- Division of Infectious Diseases, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Emily N. Drwiega
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60612, USA
| |
Collapse
|
12
|
Marosvölgyi T, Mintál K, Farkas N, Sipos Z, Makszin L, Szabó É, Tóth A, Kocsis B, Kovács K, Hormay E, Lénárd L, Karádi Z, Bufa A. Antibiotics and probiotics-induced effects on the total fatty acid composition of feces in a rat model. Sci Rep 2024; 14:6542. [PMID: 38503819 PMCID: PMC10951306 DOI: 10.1038/s41598-024-57046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
Fatty acids (FAs) play important roles as membrane components and signal transduction molecules. Changes in short chain FA (SCFA) composition are associated with gut microbiota modifications. However, the effect of bacteria-driven changes on the detailed FA spectrum has not been explored yet. We investigated the effect of antibiotics (ABx) and/or probiotics, in four treatment groups on rat stool FA composition. Principal component analysis indicated that the chromatogram profiles of the treatment groups differ, which was also observed at different time points. Linear mixed effects models showed that in the parameters compared (sampling times, treatments. and their interactions), both the weight percentage and the concentration of FAs were affected by ABx and probiotic administration. This study found that the gut microbiome defines trans and branched saturated FAs, most saturated FAs, and unsaturated FAs with less carbon atoms. These results are among the first ones to demonstrate the restoring effects of a probiotic mixture on a substantial part of the altered total FA spectrum, and also revealed a previously unknown relationship between gut bacteria and a larger group of FAs. These findings suggest that intestinal bacteria produce not only SCFAs but also other FAs that may affect the host's physiological processes.
Collapse
Affiliation(s)
- Tamás Marosvölgyi
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Kitti Mintál
- Institute of Physiology, Medical School, University of Pécs, Pécs, 7624, Hungary
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Nelli Farkas
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Zoltán Sipos
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Lilla Makszin
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Éva Szabó
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, 7624, Hungary.
| | - Attila Tóth
- Institute of Physiology, Medical School, University of Pécs, Pécs, 7624, Hungary
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Krisztina Kovács
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Edina Hormay
- Institute of Physiology, Medical School, University of Pécs, Pécs, 7624, Hungary
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - László Lénárd
- Institute of Physiology, Medical School, University of Pécs, Pécs, 7624, Hungary
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Zoltán Karádi
- Institute of Physiology, Medical School, University of Pécs, Pécs, 7624, Hungary
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Anita Bufa
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, 7624, Hungary
| |
Collapse
|
13
|
Borrego-Ruiz A, Borrego JJ. An updated overview on the relationship between human gut microbiome dysbiosis and psychiatric and psychological disorders. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110861. [PMID: 37690584 DOI: 10.1016/j.pnpbp.2023.110861] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
There is a lot of evidence establishing that nervous system development is related to the composition and functions of the gut microbiome. In addition, the central nervous system (CNS) controls the imbalance of the intestinal microbiota, constituting a bidirectional communication system. At present, various gut-brain crosstalk routes have been described, including immune, endocrine and neural circuits via the vagal pathway. Several empirical data have associated gut microbiota alterations (dysbiosis) with neuropsychiatric diseases, such as Alzheimer's disease, autism and Parkinson's disease, and with other psychological disorders, like anxiety and depression. Fecal microbiota transplantation (FMT) therapy has shown that the gut microbiota can transfer behavioral features to recipient animals, which provides strong evidence to establish a causal-effect relationship. Interventions, based on prebiotics, probiotics or synbiotics, have demonstrated an important influence of microbiota on neurological disorders by the synthesis of neuroactive compounds that interact with the nervous system and by the regulation of inflammatory and endocrine processes. Further research is needed to demonstrate the influence of gut microbiota dysbiosis on psychiatric and psychological disorders, and how microbiota-based interventions may be used as potential therapeutic tools.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Facultad de Psicología, UNED, Madrid, Spain
| | - Juan J Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
14
|
Díaz R, Garrido D. Screening competition and cross-feeding interactions during utilization of human milk oligosaccharides by gut microbes. MICROBIOME RESEARCH REPORTS 2024; 3:12. [PMID: 38455082 PMCID: PMC10917614 DOI: 10.20517/mrr.2023.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 03/09/2024]
Abstract
Background: The infant gut microbiome is a complex community that influences short- and long-term health. Its assembly and composition are governed by variables such as the feeding type. Breast milk provides infants an important supply of human milk oligosaccharides (HMO), a broad family of carbohydrates comprising neutral, fucosylated, and sialylated molecules. There is a positive association between HMOs and the overrepresentation of Bifidobacterium species in the infant gut, which is sustained by multiple molecular determinants present in the genomes of these species. Infant-gut-associated Bifidobacterium species usually share a similar niche and display similar HMO inclinations, suggesting they compete for these resources. There is also strong evidence of cross-feeding interactions between HMO-derived molecules and bifidobacteria. Methods: In this study, we screened for unidirectional and bidirectional interactions between Bifidobacterium and other species using individual HMO. Bifidobacterium bifidum and Bacteroides thetaiotaomicron increased the growth of several other species when their supernatants were used, probably mediated by the partial degradation of HMO. In contrast, Bifidobacterium longum subsp. infantis. supernatants did not exhibit positive growth. Results: Bifidobacterium species compete for lacto-N-tetraose, which is associated with reduced bidirectional growth. The outcome of these interactions was HMO-dependent, in which the two species could compete for one substrate but cross-feed on another. 2'-fucosyllactose and lacto-N-neotetraose are associated with several positive interactions that generally originate from the partial degradation of these HMOs. Conclusion: This study presents evidence for complex interactions during HMO utilization, which can be cooperative or competitive, depending on the nature of the HMO. This information could be useful for understanding how breast milk supports the growth of some Bifidobacterium species, shaping the ecology of this important microbial community.
Collapse
Affiliation(s)
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile
| |
Collapse
|
15
|
Li R, Roy R. Gut Microbiota and Its Role in Anti-aging Phenomenon: Evidence-Based Review. Appl Biochem Biotechnol 2023; 195:6809-6823. [PMID: 36930406 DOI: 10.1007/s12010-023-04423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
The gut microbiota widely varies from individual to individual, but the variation shows stability over a period of time. The presence of abundant bacterial taxa is a common structure that determines the microbiota of human being. The presence of this microbiota greatly varies from geographic location, sex, food habits and age. Microbiota existing within the gut plays a significant role in nutrient absorption, development of immunity, curing of diseases and various developmental phases. With change in age, chronology diversification and variation of gut microbiota are observed within human being. But it has been observed that with the enhancement of age the richness of the microbial diversity has shown a sharp decline. The enhancement of age also results in the drift of the characteristic of the microbes associated with the microbiota from commensals to pathogenic. Various studies have shown that age associated gut-dysbiosis may result in decrease in tlongevity along with unhealthy aging. The host signalling pathways regulate the presence of the gut microbiota and their longevity. The presence of various nutrients regulates the presence of various microbial species. Innate immunity can be triggered due to the mechanism of gut dysbiosis resulting in the development of various age-related pathological syndromes and early aging. The gut microbiota possesses the ability to communicate with the host system with the help of various types of biomolecules, epigenetic mechanisms and various types of signalling-independent pathways. Drift in this mechanism of communication may affect the life span along with the health of the host. Thus, this review would focus on the use of gut-microbiota in anti-aging and healthy conditions of the host system.
Collapse
Affiliation(s)
- Ruishan Li
- Guiyang Healthcare Vocational University, Guiyang, China.
| | - Rupak Roy
- SHRM Biotechnologies Pvt. Ltd, Kolkata, India
| |
Collapse
|
16
|
Cickovski T, Mathee K, Aguirre G, Tatke G, Hermida A, Narasimhan G, Stollstorff M. Attention Deficit Hyperactivity Disorder (ADHD) and the gut microbiome: An ecological perspective. PLoS One 2023; 18:e0273890. [PMID: 37594987 PMCID: PMC10437823 DOI: 10.1371/journal.pone.0273890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/08/2023] [Indexed: 08/20/2023] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is an increasingly prevalent neuropsychiatric disorder characterized by hyperactivity, inattention, and impulsivity. Symptoms emerge from underlying deficiencies in neurocircuitry, and recent research has suggested a role played by the gut microbiome. The gut microbiome is an ecosystem of interdependent taxa involved in an exponentially complex web of interactions, plus host gene and reaction pathways, some of which involve neurotransmitters with roles in ADHD neurocircuitry. Studies have analyzed the ADHD gut microbiome using macroscale metrics such as diversity and differential abundance, and have proposed several taxa as elevated or reduced in ADHD compared to Control. Few studies have delved into the complex underlying dynamics ultimately responsible for the emergence of such metrics, leaving a largely incomplete, sometimes contradictory, and ultimately inconclusive picture. We aim to help complete this picture by venturing beyond taxa abundances and into taxa relationships (i.e. cooperation and competition), using a publicly available gut microbiome dataset (targeted 16S, v3-4 region, qPCR) from an observational, case-control study of 30 Control (15 female, 15 male) and 28 ADHD (15 female, 13 male) undergraduate students. We first perform the same macroscale analyses prevalent in ADHD gut microbiome literature (diversity, differential abundance, and composition) to observe the degree of correspondence, or any new trends. We then estimate two-way ecological relationships by producing Control and ADHD Microbial Co-occurrence Networks (MCNs), using SparCC correlations (p ≤ 0.01). We perform community detection to find clusters of taxa estimated to mutually cooperate along with their centroids, and centrality calculations to estimate taxa most vital to overall gut ecology. We finally summarize our results, providing conjectures on how they can guide future experiments, some methods for improving our experiments, and general implications for the field.
Collapse
Affiliation(s)
- Trevor Cickovski
- Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, FL, United States of America
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL United States of America
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States of America
| | - Gloria Aguirre
- Department of Biological Sciences, College of Arts, Sciences and Education, Florida International University, Miami, FL, United States of America
| | - Gorakh Tatke
- Department of Biological Sciences, College of Arts, Sciences and Education, Florida International University, Miami, FL, United States of America
| | - Alejandro Hermida
- Cognitive Neuroscience Laboratory, Department of Psychology, Florida International University, Miami, FL, United States of America
| | - Giri Narasimhan
- Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, FL, United States of America
| | - Melanie Stollstorff
- Cognitive Neuroscience Laboratory, Department of Psychology, Florida International University, Miami, FL, United States of America
| |
Collapse
|
17
|
Herviou P, Balvay A, Bellet D, Bobet S, Maudet C, Staub J, Alric M, Leblond-Bourget N, Delorme C, Rabot S, Denis S, Payot S. Transfer of the Integrative and Conjugative Element ICE St3 of Streptococcus thermophilus in Physiological Conditions Mimicking the Human Digestive Ecosystem. Microbiol Spectr 2023; 11:e0466722. [PMID: 36995244 PMCID: PMC10269554 DOI: 10.1128/spectrum.04667-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/12/2023] [Indexed: 03/31/2023] Open
Abstract
Metagenome analyses of the human microbiome suggest that horizontal gene transfer (HGT) is frequent in these rich and complex microbial communities. However, so far, only a few HGT studies have been conducted in vivo. In this work, three different systems mimicking the physiological conditions encountered in the human digestive tract were tested, including (i) the TNO gastro-Intestinal tract Model 1 (TIM-1) system (for the upper part of the intestine), (ii) the ARtificial COLon (ARCOL) system (to mimic the colon), and (iii) a mouse model. To increase the likelihood of transfer by conjugation of the integrative and conjugative element studied in the artificial digestive systems, bacteria were entrapped in alginate, agar, and chitosan beads before being placed in the different gut compartments. The number of transconjugants detected decreased, while the complexity of the ecosystem increased (many clones in TIM-1 but only one clone in ARCOL). No clone was obtained in a natural digestive environment (germfree mouse model). In the human gut, the richness and diversity of the bacterial community would offer more opportunities for HGT events to occur. In addition, several factors (SOS-inducing agents, microbiota-derived factors) that potentially increase in vivo HGT efficiency were not tested here. Even if HGT events are rare, expansion of the transconjugant clones can happen if ecological success is fostered by selecting conditions or by events that destabilize the microbial community. IMPORTANCE The human gut microbiota plays a key role in maintaining normal host physiology and health, but its homeostasis is fragile. During their transit in the gastrointestinal tract, bacteria conveyed by food can exchange genes with resident bacteria. New traits acquired by HGT (e.g., new catabolic properties, bacteriocins, antibiotic resistance) can impact the gut microbial composition and metabolic potential. We showed here that TIM-1, a system mimicking the upper digestive tract, is a useful tool to evaluate HGT events in conditions closer to the physiological ones. Another important fact pointed out in this work is that Enterococcus faecalis is a good candidate for foreign gene acquisition. Due to its high ability to colonize the gut and acquire mobile genetic elements, this commensal bacterium could serve as an intermediate for HGT in the human gut.
Collapse
Affiliation(s)
- Pauline Herviou
- Université Clermont-Auvergne, INRAE, MEDIS, Clermont-Ferrand, France
| | - Aurélie Balvay
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Deborah Bellet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Sophie Bobet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Claire Maudet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Johan Staub
- Université de Lorraine, INRAE, DynAMic, Nancy, France
| | - Monique Alric
- Université Clermont-Auvergne, INRAE, MEDIS, Clermont-Ferrand, France
| | | | - Christine Delorme
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Sylvie Rabot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Sylvain Denis
- Université Clermont-Auvergne, INRAE, MEDIS, Clermont-Ferrand, France
| | - Sophie Payot
- Université de Lorraine, INRAE, DynAMic, Nancy, France
| |
Collapse
|
18
|
Bicknell B, Liebert A, Borody T, Herkes G, McLachlan C, Kiat H. Neurodegenerative and Neurodevelopmental Diseases and the Gut-Brain Axis: The Potential of Therapeutic Targeting of the Microbiome. Int J Mol Sci 2023; 24:9577. [PMID: 37298527 PMCID: PMC10253993 DOI: 10.3390/ijms24119577] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The human gut microbiome contains the largest number of bacteria in the body and has the potential to greatly influence metabolism, not only locally but also systemically. There is an established link between a healthy, balanced, and diverse microbiome and overall health. When the gut microbiome becomes unbalanced (dysbiosis) through dietary changes, medication use, lifestyle choices, environmental factors, and ageing, this has a profound effect on our health and is linked to many diseases, including lifestyle diseases, metabolic diseases, inflammatory diseases, and neurological diseases. While this link in humans is largely an association of dysbiosis with disease, in animal models, a causative link can be demonstrated. The link between the gut and the brain is particularly important in maintaining brain health, with a strong association between dysbiosis in the gut and neurodegenerative and neurodevelopmental diseases. This link suggests not only that the gut microbiota composition can be used to make an early diagnosis of neurodegenerative and neurodevelopmental diseases but also that modifying the gut microbiome to influence the microbiome-gut-brain axis might present a therapeutic target for diseases that have proved intractable, with the aim of altering the trajectory of neurodegenerative and neurodevelopmental diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, autism spectrum disorder, and attention-deficit hyperactivity disorder, among others. There is also a microbiome-gut-brain link to other potentially reversible neurological diseases, such as migraine, post-operative cognitive dysfunction, and long COVID, which might be considered models of therapy for neurodegenerative disease. The role of traditional methods in altering the microbiome, as well as newer, more novel treatments such as faecal microbiome transplants and photobiomodulation, are discussed.
Collapse
Affiliation(s)
- Brian Bicknell
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
| | - Ann Liebert
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
- Department of Governance and Research, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia;
| | - Thomas Borody
- Centre for Digestive Diseases, Five Dock, NSW 2046, Australia;
| | - Geoffrey Herkes
- Department of Governance and Research, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia;
| | - Craig McLachlan
- Centre for Healthy Futures, Torrens University Australia, Ultimo, NSW 2007, Australia;
| | - Hosen Kiat
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
- Centre for Healthy Futures, Torrens University Australia, Ultimo, NSW 2007, Australia;
- Macquarie Medical School, Macquarie University, Macquarie Park, NSW 2109, Australia
- ANU College of Health and Medicine, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
19
|
Preissner S, Heiland M, Preissner R, Wirth M, Wollenberg B. Antibiotics Significantly Decrease the Survival of Head and Neck Carcinoma Patients with Immunotherapy: A Real-World Analysis of More Than 3000 Cases. Cancers (Basel) 2023; 15:cancers15082342. [PMID: 37190270 DOI: 10.3390/cancers15082342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/09/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
OBJECTIVE The human gut microbiome is strongly influenced by the administration of drugs, namely antibiotics. We hypothesized that the effectiveness of immunotherapy with pembrolizumab in oral squamous cell carcinoma patients is decreased by the administration of antibiotics three months before and after immunotherapy. METHODS We retrieved data from patients diagnosed with head and neck squamous cell carcinoma (HNSCC) (International Classification of Diseases [ICD]-10 codes C00-C14) and receiving immunotherapy with pembrolizumab from the TriNetX network. Two cohorts were built: patients in cohort I did not receive any antibiotics within three months before or up to three months after immunotherapy, while patients in cohort II were administered antibiotics at least once within three months before or after immunotherapy. To exclude confounders, we matched cohorts 1:1 for age, sex, secondary lymph node metastases, nicotine dependence, the insertion of feeding devices, body mass index (BMI) and severe sepsis. After defining the primary outcome as "death", a Kaplan-Meier analysis was performed, and the risk ratio (RR), odds ratio (OR) and hazard ratio (HR) were calculated. RESULTS A total of 3651 patients were enrolled, and after matching, each cohort consisted of 1362 patients. Among cohorts I and II, 346 and 511 patients were deceased within one year (risk of death = 25.5 and 38.3%, respectively), whereby the risk difference was significant (p = 0.000; log-rank test). The RR was 0.68 (95% confidence interval: 0.60-0.76), OR was 0.57 (0.48-0.67) and HR was 0.58 (0.51-0.67). CONCLUSIONS Our hypothesis was confirmed: administering antibiotics significantly decreases the drug effectiveness of immunotherapy. We hypothesize that this finding is associated with antibiotic-related changes in the gut microbiome. Prospective clinical studies on the gut microbiome in cancer patients are necessary to understand the complex ecosystem of microbiota during immunotherapy. TRIAL REGISTRATION Due to the retrospective nature of the study, no registration was necessary.
Collapse
Affiliation(s)
- Saskia Preissner
- Department of Oral and Maxillofacial Surgery, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Max Heiland
- Department of Oral and Maxillofacial Surgery, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Robert Preissner
- Institute of Physiology and Science-IT, Charité-Universitätsmedizin Berlin, Philippstr. 12, 10115 Berlin, Germany
| | - Markus Wirth
- Clinic for Otorhinolaryngology, Head and Neck Surgery, Klinikum Rechts der Isar der Technischen Universität München (MRI TUM), Ismaningerstr. 22, 81675 Munich, Germany
| | - Barbara Wollenberg
- Clinic for Otorhinolaryngology, Head and Neck Surgery, Klinikum Rechts der Isar der Technischen Universität München (MRI TUM), Ismaningerstr. 22, 81675 Munich, Germany
| |
Collapse
|
20
|
Räisänen LK, Kääriäinen SE, Sund R, Engberg E, Viljakainen HT, Kolho KL. Antibiotic exposures and the development of pediatric autoimmune diseases: a register-based case-control study. Pediatr Res 2023; 93:1096-1104. [PMID: 35854091 PMCID: PMC10033398 DOI: 10.1038/s41390-022-02188-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/27/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Antibiotics have been associated with several individual autoimmune diseases (ADs). This study aims to discover whether pre-diagnostic antibiotics are associated with the onset of ADs in general. METHODS From a cohort of 11,407 children, 242 developed ADs (type 1 diabetes, autoimmune thyroiditis, juvenile idiopathic arthritis (JIA), or inflammatory bowel diseases) by a median age of 16 years. Antibiotic purchases from birth until the date of diagnosis (or respective date in the matched controls n = 708) were traced from national registers. RESULTS Total number of antibiotic purchases was not related to the onset of ADs when studied as a group. Of specific diagnoses, JIA was associated with the total number of antibiotics throughout the childhood and with broad-spectrum antibiotics before the age of 3 years. Intriguingly, recent and frequent antibiotic use (within 2 years before diagnosis and ≥3 purchases) was associated with the onset of ADs (OR 1.72, 95% CI 1.08-2.74). Regardless of frequent use in childhood (40% of all antibiotics), penicillin group antibiotics were not related to any ADs. CONCLUSIONS Use of antibiotics was relatively safe regarding the overall development of ADs. However, broad-spectrum antibiotics should be used considerately as they may associate with an increased likelihood of JIA. IMPACT Increasing numbers of antibiotic purchases before the age of 3 years or throughout childhood were not associated with the development of pediatric autoimmune diseases. Broad-spectrum antibiotics were related to the development of autoimmune diseases, especially juvenile idiopathic arthritis in children, while penicillin group antibiotics were not. The use of broad-spectrum antibiotics in children should be cautious as they may carry along a risk for autoimmune disease development.
Collapse
Affiliation(s)
- Laura K Räisänen
- Faculty of Medicine and Health Technology (MET), Tampere University, Tampere, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | | | - Reijo Sund
- Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elina Engberg
- Folkhälsan Research Center, Helsinki, Finland
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Heli T Viljakainen
- Folkhälsan Research Center, Helsinki, Finland
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kaija-Leena Kolho
- Faculty of Medicine and Health Technology (MET), Tampere University, Tampere, Finland.
- Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Children's Hospital, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
21
|
Rymer TL, Pillay N. The effects of antibiotics and illness on gut microbial composition in the fawn-footed mosaic-tailed rat (Melomys cervinipes). PLoS One 2023; 18:e0281533. [PMID: 36827295 PMCID: PMC9956021 DOI: 10.1371/journal.pone.0281533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/25/2023] [Indexed: 02/25/2023] Open
Abstract
The gut microbiota are critical for maintaining the health and physiological function of individuals. However, illness and treatment with antibiotics can disrupt bacterial community composition, the consequences of which are largely unknown in wild animals. In this study, we described and quantified the changes in bacterial community composition in response to illness and treatment with antibiotics in a native Australian rodent, the fawn-footed mosaic-tailed rat (Melomys cervinipes). We collected faecal samples during an undiagnosed illness outbreak in a captive colony of animals, and again at least one year later, and quantified the microbiome at each time point using 16s ribosomal rRNA gene sequencing. Gut bacterial composition was quantified at different taxonomic levels, up to family. Gut bacterial composition changed between time periods, indicating that illness, treatment with antibiotics, or a combination affects bacterial communities. While some bacterial groups increased in abundance, others decreased, suggesting differential effects and possible co-adapted and synergistic interactions. Our findings provide a greater understanding of the dynamic nature of the gut microbiome of a native Australian rodent species and provides insights into the management and ethical well-being of animals kept under captive conditions.
Collapse
Affiliation(s)
- Tasmin L. Rymer
- College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, Queensland, Australia
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Neville Pillay
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
22
|
Fagnant HS, Isidean SD, Wilson L, Bukhari AS, Allen JT, Agans RT, Lee DM, Hatch-McChesney A, Whitney CC, Sullo E, Porter CK, Karl JP. Orally Ingested Probiotic, Prebiotic, and Synbiotic Interventions as Countermeasures for Gastrointestinal Tract Infections in Nonelderly Adults: A Systematic Review and Meta-Analysis. Adv Nutr 2023; 14:539-554. [PMID: 36822240 DOI: 10.1016/j.advnut.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/26/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Meta-analyses have not examined the prophylactic use of orally ingested probiotics, prebiotics, and synbiotics for preventing gastrointestinal tract infections (GTIs) of various etiologies in adult populations, despite evidence that these gut microbiota-targeted interventions can be effective in treating certain GTIs. This systematic review and meta-analysis aimed to estimate the effects of prophylactic use of orally ingested probiotics, prebiotics, and synbiotics on GTI incidence, duration, and severity in nonelderly, nonhospitalized adults. CENTRAL, PubMed, Scopus, and Web of Science were searched through January 2022. English-language, peer-reviewed publications of randomized, placebo-controlled studies testing an orally ingested probiotic, prebiotic, or synbiotic intervention of any dose for ≥1 wk in adults who were not hospitalized, immunosuppressed, or taking antibiotics were included. Results were analyzed using random-effects meta-analyses of intention-to-treat (ITT) and complete case (CC) cohorts. Heterogeneity was explored by subgroup meta-analysis and meta-regression. The risk of bias was assessed using the Cochrane risk-of-bias 2 tool. Seventeen publications reporting 20 studies of probiotics (n = 16), prebiotics (n = 3), and synbiotics (n = 1) were identified (n > 6994 subjects). In CC and ITT analyses, risk of experiencing ≥1 GTI was reduced with probiotics (CC analysis-risk ratio: 0.86; 95% CI: 0.73, 1.01) and prebiotics (risk ratio: 0.80; 95% CI: 0.66, 0.98). No effects on GTI duration or severity were observed. Sources of heterogeneity included the study population and number of probiotic strains administered but were often unexplained, and a high risk of bias was observed for most studies. The specific effects of individual probiotic strains and prebiotic types could not be assessed owing to a lack of confirmatory studies. Findings indicated that both orally ingested probiotics and prebiotics, relative to placebo, demonstrated modest benefit for reducing GTI risk in nonelderly adults. However, results should be interpreted cautiously owing to the low number of studies, high risk of bias, and unexplained heterogeneity that may include probiotic strain-specific or prebiotic-specific effects. This review was registered at PROSPERO as CRD42020200670.
Collapse
Affiliation(s)
- Heather S Fagnant
- US Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Sandra D Isidean
- Naval Medical Research Center, Silver Spring, MD, United States; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Lydia Wilson
- The George Washington University, Washington, DC, United States
| | - Asma S Bukhari
- US Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Jillian T Allen
- US Army Research Institute of Environmental Medicine, Natick, MA, United States; Oak Ridge Institute of Science and Education, Belcamp, MD, United States
| | - Richard T Agans
- U.S. Air Force School of Aerospace Medicine, Dayton, OH, United States
| | - Dustin M Lee
- Brooke Army Medical Center, Fort Sam Houston, TX, United States
| | | | - Claire C Whitney
- US Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Elaine Sullo
- The George Washington University, Washington, DC, United States
| | - Chad K Porter
- Naval Medical Research Center, Silver Spring, MD, United States
| | - J Philip Karl
- US Army Research Institute of Environmental Medicine, Natick, MA, United States.
| |
Collapse
|
23
|
Aleman RS, Moncada M, Aryana KJ. Leaky Gut and the Ingredients That Help Treat It: A Review. Molecules 2023; 28:619. [PMID: 36677677 PMCID: PMC9862683 DOI: 10.3390/molecules28020619] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
The human body is in daily contact with potentially toxic and infectious substances in the gastrointestinal tract (GIT). The GIT has the most significant load of antigens. The GIT can protect the intestinal integrity by allowing the passage of beneficial agents and blocking the path of harmful substances. Under normal conditions, a healthy intestinal barrier prevents toxic elements from entering the blood stream. However, factors such as stress, an unhealthy diet, excessive alcohol, antibiotics, and drug consumption can compromise the composition of the intestinal microbiota and the homeostasis of the intestinal barrier function of the intestine, leading to increased intestinal permeability. Intestinal hyperpermeability can allow the entry of harmful agents through the junctions of the intestinal epithelium, which pass into the bloodstream and affect various organs and systems. Thus, leaky gut syndrome and intestinal barrier dysfunction are associated with intestinal diseases, such as inflammatory bowel disease and irritable bowel syndrome, as well as extra-intestinal diseases, including heart diseases, obesity, type 1 diabetes mellitus, and celiac disease. Given the relationship between intestinal permeability and numerous conditions, it is convenient to seek an excellent strategy to avoid or reduce the increase in intestinal permeability. The impact of dietary nutrients on barrier function can be crucial for designing new strategies for patients with the pathogenesis of leaky gut-related diseases associated with epithelial barrier dysfunctions. In this review article, the role of functional ingredients is suggested as mediators of leaky gut-related disorders.
Collapse
Affiliation(s)
- Ricardo Santos Aleman
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 28081, USA
| | - Marvin Moncada
- Department of Food, Bioprocessing & Nutrition Sciences and the Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 27599, USA
| | - Kayanush J. Aryana
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 28081, USA
| |
Collapse
|
24
|
MacDonald T, Dunn KA, MacDonald J, Langille MG, Van Limbergen JE, Bielawski JP, Kulkarni K. The gastrointestinal antibiotic resistome in pediatric leukemia and lymphoma patients. Front Cell Infect Microbiol 2023; 13:1102501. [PMID: 36909730 PMCID: PMC9998685 DOI: 10.3389/fcimb.2023.1102501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
Introduction Most children with leukemia and lymphoma experience febrile neutropenia. These are treated with empiric antibiotics that include β-lactams and/or vancomycin. These are often administered for extended periods, and the effect on the resistome is unknown. Methods We examined the impact of repeated courses and duration of antibiotic use on the resistome of 39 pediatric leukemia and lymphoma patients. Shotgun metagenome sequences from 127 stool samples of pediatric oncology patients were examined for abundance of antibiotic resistance genes (ARGs) in each sample. Abundances were grouped by repeated courses (no antibiotics, 1-2 courses, 3+ courses) and duration (no use, short duration, long and/or mixed durationg) of β-lactams, vancomycin and "any antibiotic" use. We assessed changes in both taxonomic composition and prevalence of ARGs among these groups. Results We found that Bacteroidetes taxa and β-lactam resistance genes decreased, while opportunistic Firmicutes and Proteobacteria taxa, along with multidrug resistance genes, increased with repeated courses and/or duration of antibiotics. Efflux pump related genes predominated (92%) among the increased multidrug genes. While we found β-lactam ARGs present in the resistome, the taxa that appear to contain them were kept in check by antibiotic treatment. Multidrug ARGs, mostly efflux pumps or regulators of efflux pump genes, were associated with opportunistic pathogens, and both increased in the resistome with repeated antibiotic use and/or increased duration. Conclusions Given the strong association between opportunistic pathogens and multidrug-related efflux pumps, we suggest that drug efflux capacity might allow the opportunistic pathogens to persist or increase despite repeated courses and/or duration of antibiotics. While drug efflux is the most direct explanation, other mechanisms that enhance the ability of opportunistic pathogens to handle environmental stress, or other aspects of the treatment environment, could also contribute to their ability to flourish within the gut during treatment. Persistence of opportunistic pathogens in an already dysbiotic and weakened gastrointestinal tract could increase the likelihood of life-threatening blood borne infections. Of the 39 patients, 59% experienced at least one gastrointestinal or blood infection and 60% of bacteremia's were bacteria found in stool samples. Antimicrobial stewardship and appropriate use and duration of antibiotics could help reduce morbidity and mortality in this vulnerable population.
Collapse
Affiliation(s)
- Tamara MacDonald
- Department of Pharmacy, IWK Health, Halifax, NS, Canada
- Faculty of Health Professions, Dalhousie University, Halifax, NS, Canada
- *Correspondence: Ketan Kulkarni, ; Katherine A. Dunn, ; Tamara MacDonald,
| | - Katherine A. Dunn
- Department of Pediatrics, Division of Hematology Oncology, Izaak Walton Killam (IWK) Health, Halifax, NS, Canada
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
- *Correspondence: Ketan Kulkarni, ; Katherine A. Dunn, ; Tamara MacDonald,
| | - Jane MacDonald
- Department of Pediatrics, Division of Hematology Oncology, Izaak Walton Killam (IWK) Health, Halifax, NS, Canada
- Department of Science, University of Waterloo, Waterloo, ON, Canada
| | - Morgan G.I. Langille
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Johan E. Van Limbergen
- Department of Pediatric Gastroenterology and Nutrition, Emma Children’s Hospital, Amsterdam University Medical Centers, Amsterdam, Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Joseph P. Bielawski
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
- Department of Mathematics & Statistics, Dalhousie University, Halifax, NS, Canada
| | - Ketan Kulkarni
- Department of Pediatrics, Division of Hematology Oncology, Izaak Walton Killam (IWK) Health, Halifax, NS, Canada
- *Correspondence: Ketan Kulkarni, ; Katherine A. Dunn, ; Tamara MacDonald,
| |
Collapse
|
25
|
Lin H, Xu C, Chen J, Ma X, Shi L, Shi W, Du L, Ni Y. Alteration of the gut microbiota after surgery in preterm infants with necrotizing enterocolitis. Front Pediatr 2023; 11:993759. [PMID: 36793334 PMCID: PMC9923499 DOI: 10.3389/fped.2023.993759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/03/2023] [Indexed: 02/03/2023] Open
Abstract
PURPOSE To investigate the dynamic changes in the intestinal microbiota in preterm infants with necrotizing enterocolitis (NEC) before and after treatment via a prospective case-control study. METHODS Preterm infants with NEC and preterm infants with similar age and weight (control group) were enrolled in this study. They were divided into NEC_Onset (diagnosis time), NEC_Refeed (refeed time), NEC_FullEn (full enteral nutrition time), Control_Onset, and Control_FullEn groups according to the time of the fecal material collected. Except for basic clinical information, fecal specimens of the infants were obtained as well at indicated times for 16S rRNA gene sequencing. All infants were followed up after discharge from the NICU, and the growth data of the corrected age of 12 months were acquired from the electronic outpatient system and telephonic interviews. RESULTS A total of 13 infants with NEC and 15 control infants were enrolled. A gut microbiota analysis showed that the Shannon and Simpson indices were lower in the NEC_FullEn group than in the Control_FullEn group (p < .05). Methylobacterium, Clostridium_butyricum, and Acidobacteria were more abundant in infants with NEC during diagnosis. Methylobacterium and Acidobacteria were remained plentiful in the NEC group until the end of treatment. These bacteria species were significantly positively correlated with CRP and negatively correlated with platelet count. The rate of delayed growth was higher in the NEC group than in the control group (25% vs. 7.1%) at 12 months of corrected age, but there was no significant difference. In addition, the pathways of synthesis and degradation of ketone bodies were more active in the NEC subgroups, including both the NEC_Onset group and the NEC_FullEn group. The pathway of sphingolipid metabolism was more active in the Control_FullEn group. CONCLUSION Even after reaching the full enteral nutrition period, alpha diversity in infants with NEC who underwent surgery was lower than that in the control group infants. It may take more time to reestablish the normal gut flora of NEC infants after surgery. The pathways of the synthesis and degradation of ketone bodies and sphingolipid metabolism might be related to the pathogenesis of NEC and physical development after the occurrence of NEC.
Collapse
Affiliation(s)
- Huijia Lin
- Department of NICU, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Cuifang Xu
- Department of National Clinical Research Center, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Junjin Chen
- Department of NICU, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaolu Ma
- Department of NICU, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Liping Shi
- Department of NICU, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Wei Shi
- Department of NICU, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lizhong Du
- Department of NICU, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yan Ni
- Department of National Clinical Research Center, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
26
|
Stavroulaki EM, Suchodolski JS, Xenoulis PG. Effects of antimicrobials on the gastrointestinal microbiota of dogs and cats. Vet J 2023; 291:105929. [PMID: 36427604 DOI: 10.1016/j.tvjl.2022.105929] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Among several environmental factors, exposure to antimicrobials has been in the spotlight as a cause of profound and long-term disturbance of the intestinal microbiota. Antimicrobial-induced dysbiosis is a general term and includes decreases in microbial richness and diversity, loss of beneficial bacterial groups, blooms of intestinal pathogens and alterations in the metabolic functions and end-products of the microbiota. Mounting evidence from human and experimental animal studies suggest an association between antimicrobial-induced dysbiosis and susceptibility to gastrointestinal, metabolic, endocrine, immune and neuropsychiatric diseases. These associations are commonly stronger after early life exposure to antimicrobials, a period during which maturation of the microbiota and immune system take place in parallel. In addition, these associations commonly become stronger as the number of antimicrobial courses increases. The repeatability of these findings among different studies as well as the presence of a dose-dependent relationship between antimicrobial exposure and disease development collectively require careful consideration of the need for antimicrobial use. There are limited studies are available in dogs and cats regarding the long-term effects of antimicrobials on the microbiota and subsequent susceptibility to diseases. This review discusses the effects of antimicrobials on the gastrointestinal microbiota and the most important associations between antimicrobial-induced dysbiosis and diseases in humans, dogs, and cats.
Collapse
Affiliation(s)
- Evangelia M Stavroulaki
- Clinic of Medicine, Faculty of Veterinary Science, University of Thessaly, Karditsa 43131, Greece.
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station 77845, TX, USA
| | - Panagiotis G Xenoulis
- Clinic of Medicine, Faculty of Veterinary Science, University of Thessaly, Karditsa 43131, Greece; Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station 77845, TX, USA
| |
Collapse
|
27
|
Lekang K, Shekhar S, Berild D, Petersen FC, Winther-Larsen HC. Effects of different amoxicillin treatment durations on microbiome diversity and composition in the gut. PLoS One 2022; 17:e0275737. [PMID: 36301847 PMCID: PMC9612567 DOI: 10.1371/journal.pone.0275737] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 09/22/2022] [Indexed: 11/05/2022] Open
Abstract
Antibiotics seize an effect on bacterial composition and diversity and have been demonstrated to induce disruptions on gut microbiomes. This may have implications for human health and wellbeing, and an increasing number of studies suggest a link between the gut microbiome and several diseases. Hence, reducing antibiotic treatments may be beneficial for human health status. Further, antimicrobial resistance (AMR) is an increasing global problem that can be counteracted by limiting the usage of antibiotics. Longer antibiotic treatments have been demonstrated to increase the development of AMR. Therefore, shortening of antibiotic treatment durations, provided it is safe for patients, may be one measure to reduce AMR. In this study, the objective was to investigate effects of standard and reduced antibiotic treatment lengths on gut microbiomes using a murine model. Changes in the murine gut microbiome was assessed after using three different treatment durations of amoxicillin (3, 7 or 14 days) as well as a control group not receiving amoxicillin. Fecal samples were collected before and during the whole experiment, until three weeks past end of treatment. These were further subject for 16S rRNA Illumina MiSeq sequencing. Our results demonstrated significant changes in bacterial diversity, richness and evenness during amoxicillin treatment, followed by a reversion in terms of alpha-diversity and abundance of major phyla, after end of treatment. However, a longer restitution time was indicated for mice receiving amoxicillin for 14 days, and phylum Patescibacteria did not fully recover. In addition, an effect on the composition of Firmicutes was indicated to last for at least three weeks in mice treated with amoxicillin for 14 days. Despite an apparently reversion to a close to original state in overall bacterial diversity and richness, the results suggested more durable changes in lower taxonomical levels. We detected several families, genera and ASVs with significantly altered abundance three weeks after exposure to amoxicillin, as well as bacterial taxa that appeared significantly affected by amoxicillin treatment length. This may strengthen the argument for shorter antibiotic treatment regimens to both limit the emergence of antibiotic resistance and risk of gut microbiome disturbance.
Collapse
Affiliation(s)
- Katrine Lekang
- Department of Pharmacy, Section for Pharmacology and Pharmaceutical Biosciences, University of Oslo, Oslo, Norway
| | - Sudhanshu Shekhar
- Faculty of Dentistry, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Dag Berild
- Faculty of Medicine, Department of Infectious Diseases, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Hanne C. Winther-Larsen
- Department of Pharmacy, Section for Pharmacology and Pharmaceutical Biosciences, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
28
|
Zhong S, Wu X, Zhang D, Du S, Shen J, Xiao L, Zhu Y, Xu Y, Lin Y, Yin L, Rao M, Lu S. Antibiotics in urine from general adults in Shenzhen, China: Demographic-related difference in exposure levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157070. [PMID: 35780901 DOI: 10.1016/j.scitotenv.2022.157070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Misuse or overuse of antibiotics can have a variety of detrimental microbial effects. However, the body burden of antibiotics in the general population is currently unclear. In this cross-sectional study, we determined four classes of widely-applied antibiotics (3 imidazoles, 2 sulfonamides, 5 quinolones, and 2 chloramphenicols) in urine samples from 1170 adult residents in Shenzhen, China. Antibiotics were detected in 30.8 % of all urine samples with concentrations ranging from <LOD to 3517 μg/mL, among which metronidazole, ofloxacin and florfenicol were predominant. Notably, antibiotics prohibited for human or veterinary use were detected in 21.0 % of samples, indicating that these antibiotics may still be overused in daily life. We found that the presence of antibiotics in urine is associated with being overweight (OR: 1.386, 95 % CI: 1.056-1.819, p = 0.019) and obesity (OR: 1.862, 95 % CI: 1.103-3.146, p = 0.020) in the adult population. Multilinear regression analysis showed that a percent increase of hydroxy metronidazole was related to 9.86 % positive change of body mass index (p = 0.029). Interestingly, we also found total antibiotic concentration higher in the unmarried group (p = 0.006). Besides, consumption of smoked foods was correlated with urinary antibiotic levels (p = 0.001), indicating smoked meat may be a potential exposure source of veterinary antibiotics. These results highlight the need to reduce human exposure to banned antibiotics. Future research could focus on assessing the health risk and other outcomes of antibiotic overuse.
Collapse
Affiliation(s)
- Shihua Zhong
- Shenzhen Institute of Quality and Safety Inspection and Research, Shenzhen, China
| | - Xiaoling Wu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Sijin Du
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Junchun Shen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Lehan Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Ying Zhu
- Shenzhen Institute of Quality and Safety Inspection and Research, Shenzhen, China
| | - Yuanyuan Xu
- Shenzhen Institute of Quality and Safety Inspection and Research, Shenzhen, China
| | - Yuli Lin
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Liuyi Yin
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Manting Rao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
29
|
Liu D, Wang J, Xie Y. Refractory Helicobacter pylori infection and the gastric microbiota. Front Cell Infect Microbiol 2022; 12:976710. [PMID: 36237432 PMCID: PMC9552320 DOI: 10.3389/fcimb.2022.976710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
Background Curing refractory Helicobacter pylori infection is difficult. In addition, there is currently no research on the gastric microbiota of refractory H. pylori infection. Methods We designed a clinical retrospective study involving 32 subjects divided into three groups: 1. nAGHp.a, treatment-naïve patients with H. pylori infection; 2. nAGHp.b, H. pylori-negative patients; and 3. EFHp.a, patients with refractory H. pylori infection. Gastric mucosal samples from the biobank of our research center were collected for 16S rRNA sequencing analysis and bacterial functions were predicted via PICRUSt. Results There were significant differences between the H. pylori- positive group and the H. pylori-negative group in species diversity, gastric microbiota structure, and bacterial function. The beneficial Lactobacillus in the H. pylori-positive group were significantly enriched compared with those in the refractory H. pylori infection group. The bacterial interaction network diagram suggested that the microbiota interactions in the refractory H. pylori infection group decreased. The gastric microbiota of the refractory H. pylori infection group was enriched in the pathways of metabolism and infectious diseases (energy metabolism, bacterial secretion system, glutathione metabolism, protein folding and associated processing, sulphur metabolism, membrane and intracellular structural molecules, lipopolysaccharide biosynthesis, ubiquinone and other terpenoid-quinone biosynthesis, inorganic ion transport and metabolism, and metabolism of cofactors and vitamins) when compared with the H. pylori-positive group without treatment based on PICRUSt analysis. Conclusion Significant alterations occurred in the gastric microbiota when eradication of H. pylori failed multiple times. A history of eradication of multiple H. pylori infections leads to an imbalance in the gastric mucosal microbiota to a certain extent, which was mainly reflected in the inhibition of the growth of beneficial Lactobacillus in the stomach. Patients with refractory H. pylori infection may be at a higher risk of developing gastric cancer than other H. pylori-positive patients.
Collapse
Affiliation(s)
- Dongsheng Liu
- Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinyun Wang
- Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Xie
- Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Yong Xie,
| |
Collapse
|
30
|
Litos A, Intze E, Pavlidis P, Lagkouvardos I. Cronos: A Machine Learning Pipeline for Description and Predictive Modeling of Microbial Communities Over Time. FRONTIERS IN BIOINFORMATICS 2022; 2:866902. [PMID: 36304308 PMCID: PMC9580867 DOI: 10.3389/fbinf.2022.866902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial time-series analysis, typically, examines the abundances of individual taxa over time and attempts to assign etiology to observed patterns. This approach assumes homogeneous groups in terms of profiles and response to external effectors. These assumptions are not always fulfilled, especially in complex natural systems, like the microbiome of the human gut. It is actually established that humans with otherwise the same demographic or dietary backgrounds can have distinct microbial profiles. We suggest an alternative approach to the analysis of microbial time-series, based on the following premises: 1) microbial communities are organized in distinct clusters of similar composition at any time point, 2) these intrinsic subsets of communities could have different responses to the same external effects, and 3) the fate of the communities is largely deterministic given the same external conditions. Therefore, tracking the transition of communities, rather than individual taxa, across these states, can enhance our understanding of the ecological processes and allow the prediction of future states, by incorporating applied effects. We implement these ideas into Cronos, an analytical pipeline written in R. Cronos’ inputs are a microbial composition table (e.g., OTU table), their phylogenetic relations as a tree, and the associated metadata. Cronos detects the intrinsic microbial profile clusters on all time points, describes them in terms of composition, and records the transitions between them. Cluster assignments, combined with the provided metadata, are used to model the transitions and predict samples’ fate under various effects. We applied Cronos to available data from growing infants’ gut microbiomes, and we observe two distinct trajectories corresponding to breastfed and formula-fed infants that eventually converge to profiles resembling those of mature individuals. Cronos is freely available at https://github.com/Lagkouvardos/Cronos.
Collapse
Affiliation(s)
- Aristeidis Litos
- School of Medicine, University of Crete, Heraklion, Greece
- Institute of Computer Science, Foundation of Research and Technology, Heraklion, Greece
| | - Evangelia Intze
- School of Science and Technology, Hellenic Open University, Patras, Greece
| | - Pavlos Pavlidis
- Institute of Computer Science, Foundation of Research and Technology, Heraklion, Greece
| | - Ilias Lagkouvardos
- Institute of Computer Science, Foundation of Research and Technology, Heraklion, Greece
- Core Facility Microbiome—ZIEL Institute for Food and Health, Technical University of Munich, Freising, Germany
- *Correspondence: Ilias Lagkouvardos,
| |
Collapse
|
31
|
Fernandes D, Andreyev J. The Role of the Human Gut Microbiome in Inflammatory Bowel Disease and Radiation Enteropathy. Microorganisms 2022; 10:1613. [PMID: 36014031 PMCID: PMC9415405 DOI: 10.3390/microorganisms10081613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
The human gut microbiome plays a key role in regulating host physiology. In a stable state, both the microbiota and the gut work synergistically. The overall homeostasis of the intestinal flora can be affected by multiple factors, including disease states and the treatments given for those diseases. In this review, we examine the relatively well-characterised abnormalities that develop in the microbiome in idiopathic inflammatory bowel disease, and compare and contrast them to those that are found in radiation enteropathy. We discuss how these changes may exert their effects at a molecular level, and the possible role of manipulating the microbiome through the use of a variety of therapies to reduce the severity of the underlying condition.
Collapse
Affiliation(s)
- Darren Fernandes
- The Department of Gastroenterology, United Lincolnshire NHS Trust, Lincoln County Hospital, Lincoln LN2 5QY, UK
| | - Jervoise Andreyev
- The Department of Gastroenterology, United Lincolnshire NHS Trust, Lincoln County Hospital, Lincoln LN2 5QY, UK
- The Biomedical Research Centre, Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
32
|
Hu Y, Zhu Q, Wang Y, Liao C, Jiang G. A short review of human exposure to antibiotics based on urinary biomonitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154775. [PMID: 35339554 DOI: 10.1016/j.scitotenv.2022.154775] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/09/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics play a role in preventing and treating infectious diseases and also contribute to other health risks for humans. With the overuse of antibiotics, they are widely distributed in the environment. Long-term exposure to multiple antibiotics may occur in humans through medication and dietary intake. Therefore, it is critical to estimate daily intake and health risk of antibiotics based on urinary biomonitoring. This review compares the strengths and weaknesses of current analytical methods to determine antibiotics in urine samples, discusses the urinary concentration profiles and hazard quotients of individual antibiotics, and overviews correlations of antibiotic exposure with the risk of diseases. Liquid chromatography-tandem mass spectrometry is most applied to simultaneously determine multiple types of antibiotics at trace levels. Solid-phase extraction with a hydrophilic-lipophilic balance adsorbent is commonly used to extract antibiotics in urine samples. Fifteen major antibiotics with relatively higher detection frequencies and concentrations include sulfaclozine, trimethoprim, erythromycin, azithromycin, penicillin V, amoxicillin, oxytetracycline, chlortetracycline, tetracycline, doxycycline, ofloxacin, enrofloxacin, ciprofloxacin, norfloxacin, and florfenicol. Humans can be easily at microbiological effect-based risk induced by florfenicol, ciprofloxacin, azithromycin, and amoxicillin. Positive associations were observed between specific antibiotic exposure and obesity, allergic diseases, and mental disorders. Overall, the accessible, automated, and environmentally friendly methods are prospected for simultaneous determinations of antibiotics at trace level in urine. To estimate human exposure to antibiotics more accurately, knowledge gaps need to be filled up, including the transformation between parent and metabolic antibiotics, urinary excretion proportions of antibiotics at low-dose exposure and pharmacokinetic data of antibiotics in humans, and the repeated sampling over a long period in future research is needed. Longitudinal studies about antibiotic exposure and the risk of diseases in different developmental windows as well as in-depth research on the pathogenic mechanism of long-term, low-dose, and joint antibiotic exposure are warranted.
Collapse
Affiliation(s)
- Yu Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Koyande N, Gangopadhyay M, Thatikonda S, Rengan AK. The role of gut microbiota in the development of colorectal cancer: a review. Int J Colorectal Dis 2022; 37:1509-1523. [PMID: 35704091 DOI: 10.1007/s00384-022-04192-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE Colorectal cancer (CRC) is the cancer of the colon and rectum. Recent research has found a link between CRC and human gut microbiota. This review explores the effect of gut microbiota on colorectal carcinogenesis and the development of chemoresistance. METHODS A literature overview was performed to identify the gut microbiota species that showed altered abundance in CRC patients and the mechanisms by which some of them aid in the development of chemoresistance. RESULTS Types of gut microbiota present and methods of analyzing them were discussed. We observed that numerous microbiota showed altered abundance in CRC patients and could act as a biomarker for CRC diagnosis and treatment. Further, it was demonstrated that microbes also have a role in the development of chemoresistance by mechanisms like immune system activation, drug modification, and autophagy modulation. Finally, the key issue of the growing global problem of antimicrobial resistance and its relationship with CRC was highlighted. CONCLUSION This review discussed the role of gut microbiota dysbiosis on colorectal cancer progression and the development of chemoresistance.
Collapse
Affiliation(s)
- Navami Koyande
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy- 502284, India
| | - Madhusree Gangopadhyay
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy- 502284, India
| | - Shashidhar Thatikonda
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy- 502284, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy- 502284, India.
| |
Collapse
|
34
|
Hu Y, Wei X, Zhu Q, Li L, Liao C, Jiang G. COVID-19 Pandemic Impacts on Humans Taking Antibiotics in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8338-8349. [PMID: 35675530 PMCID: PMC9195570 DOI: 10.1021/acs.est.1c07655] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/31/2022] [Accepted: 05/24/2022] [Indexed: 05/24/2023]
Abstract
The outbreak of the novel coronavirus 2019 (COVID-19) pandemic has resulted in the increased human consumption of medicines. Antibiotics are of great concern due to their adverse effects, such as increased bacterial resistance and dysbiosis of gut microbiota. Nevertheless, very little is known about the changes in self-medication with antibiotics during the COVID-19 pandemic and the resultant potential health risks. Herein, we examined the concentration profiles of some commonly used antibiotics in human urine collected from several geographical regions in China between 2020 and 2021. Antibiotics were found in 99.2% of the urine samples at concentrations ranging from not detected (nd) to 357 000 (median: 10.2) ng/mL. During the COVID-19 pandemic, concentrations of urinary antibiotics were remarkably higher than those found either before the pandemic or in the smooth period of the pandemic. Moreover, elevated levels of antibiotics were determined in urine samples from the regions with more confirmed cases. The exposure assessment showed that hazard index values >1 were determined in 35.2% of people. These findings show that human exposure to antibiotics increased during the COVID-19 pandemic, and further research is imperative to identify the public health risks.
Collapse
Affiliation(s)
- Yu Hu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianping Wei
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| | - Qingqing Zhu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingxiangyu Li
- School
of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
| | - Chunyang Liao
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
- School
of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
- School
of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Tian X, Mei T, Yu M, Li Y, Ao R, Gong Y. The impact of antibiotic selection and interval time among advanced non-small cell lung cancer patients receiving prior antibacterial treatment and first-line chemotherapy. Cancer Med 2022; 11:4849-4864. [PMID: 35543371 PMCID: PMC9761060 DOI: 10.1002/cam4.4815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND To determine whether antibiotic use before chemotherapy is associated with chemotherapy responses and patient outcomes among NSCLC patients and define the optimal interval between chemotherapy initiation and antibiotic treatment. MATERIALS AND METHODS One thousand four hundred and four advanced NSCLC patients receiving first-line platinum-based doublets therapy were retrospectively analyzed. Kaplan-Meier curve evaluated the impact of antibiotic use and type of antibiotics on the survival of patients. The factors affect the patient's prognosis were further confirmed by Cox regression. The optimal interval between antibiotic treatment and the initiation of chemotherapy was determined by the X-tile program. RESULTS NSCLC patients of 33.5% advanced underwent broad-spectrum antibiotic treatment prior to chemotherapy. In the chemotherapy only (Chemo) and chemotherapy plus antiangiogenesis (Chemo-angio) treatment groups, prior antibiotic treatment was associated with worse OS (Chemo: 13.8 vs. 17.6 months, p < 0.001; Chemo-angio:11.9 vs. 18.1 months, p = 0.012) and PFS (Chemo: 3.7 vs. 5.8 months, p < 0.001; Chemo-angio: 3.1 vs. 5.9 months, p < 0.001). Cox regression analysis revealed prior antibiotic administration as an independent predictor of OS and PFS (HR for PFS/OS: 1.925/1.452, both p < 0.001). Antibiotic usage duration (HR for PFS/OS: 1.030/1.036, p = 0.009/0.001) and type (PFS/OS: p < 0.001/p = 0.01) also showed significant association with patient prognosis, with calculated interval time cutoff values of 2, 4, and 2 days for fluoroquinolones, β-lactamase inhibitors, and cephalosporins, respectively. CONCLUSION Antibiotic use before first-line chemotherapy was associated with poor results in advanced NSCLC patients; treatment length and type being strongly correlated with patient outcomes. Appropriate prolongation of the time between two treatments may enhance patient survival. Further prospective research is however necessary.
Collapse
Affiliation(s)
- Xiaoman Tian
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduPR.China,Department of OncologyChengdu Jinniu District People's HospitalChengduPR.China
| | - Ting Mei
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduPR.China
| | - Min Yu
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduPR.China
| | - Yanying Li
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduPR.China
| | - Rui Ao
- Department of OncologyChengdu Jinniu District People's HospitalChengduPR.China,Department of OncologySichuan Provincial People's HospitalChengduPR.China
| | - Youling Gong
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduPR.China
| |
Collapse
|
36
|
El Houari A, Ecale F, Mercier A, Crapart S, Laparre J, Soulard B, Ramnath M, Berjeaud JM, Rodier MH, Crépin A. Development of an in vitro Model of Human Gut Microbiota for Screening the Reciprocal Interactions With Antibiotics, Drugs, and Xenobiotics. Front Microbiol 2022; 13:828359. [PMID: 35495704 PMCID: PMC9042397 DOI: 10.3389/fmicb.2022.828359] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
Altering the gut microbiota can negatively affect human health. Efforts may be sustained to predict the intended or unintended effects of molecules not naturally produced or expected to be present within the organism on the gut microbiota. Here, culture-dependent and DNA-based approaches were combined to UHPLC-MS/MS analyses in order to investigate the reciprocal interactions between a constructed Human Gut Microbiota Model (HGMM) and molecules including antibiotics, drugs, and xenobiotics. Our HGMM was composed of strains from the five phyla commonly described in human gut microbiota and belonging to Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, and Actinobacteria. Relevantly, the bacterial diversity was conserved in our constructed human gut model through subcultures. Uneven richness distribution was revealed and the sensitivity of the HGMM was mainly affected by antibiotic exposure rather than by drugs or xenobiotics. Interestingly, the constructed model and the individual cultured strains respond with the same sensitivity to the different molecules. UHPLC-MS/MS analyses revealed the disappearance of some native molecules in the supernatants of the HGMM as well as in those of the individual strains. These results suggest that biotransformation of molecules occurred in the presence of our gut microbiota model and the coupled approaches performed on the individual cultures may emphasize new bacterial strains active in these metabolic processes. From this study, the new HGMM appears as a simple, fast, stable, and inexpensive model for screening the reciprocal interactions between the intestinal microbiota and molecules of interest.
Collapse
Affiliation(s)
- Abdelaziz El Houari
- UMR CNRS 7267, Laboratoire Ecologie and Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Florine Ecale
- UMR CNRS 7267, Laboratoire Ecologie and Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Anne Mercier
- UMR CNRS 7267, Laboratoire Ecologie and Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Stéphanie Crapart
- UMR CNRS 7267, Laboratoire Ecologie and Biologie des Interactions, Université de Poitiers, Poitiers, France
| | | | | | | | - Jean-Marc Berjeaud
- UMR CNRS 7267, Laboratoire Ecologie and Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Marie-Hélène Rodier
- UMR CNRS 7267, Laboratoire Ecologie and Biologie des Interactions, Université de Poitiers, Poitiers, France.,Laboratoire de Parasitologie et Mycologie, CHU de Poitiers, Poitiers, France
| | - Alexandre Crépin
- UMR CNRS 7267, Laboratoire Ecologie and Biologie des Interactions, Université de Poitiers, Poitiers, France
| |
Collapse
|
37
|
Seo H, Kim S, Mahmud HA, Islam MI, Yoon Y, Cho HD, Nam KW, Choi J, Gil YS, Lee BE, Song HY. A novel class of antimicrobial drugs selectively targets a Mycobacterium tuberculosis PE-PGRS protein. PLoS Biol 2022; 20:e3001648. [PMID: 35639773 PMCID: PMC9154192 DOI: 10.1371/journal.pbio.3001648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
The continued spread of drug-resistant tuberculosis is one of the most pressing and complex challenges facing tuberculosis management worldwide. Therefore, developing a new class of drugs is necessary and urgently needed to cope with the increasing threat of drug-resistant tuberculosis. This study aims to discover a potential new class of tuberculosis drug candidates different from existing tuberculosis drugs. By screening a library of compounds, methyl (S)-1-((3-alkoxy-6,7-dimethoxyphenanthren-9-yl)methyl)-5-oxopyrrolidine-2-carboxylate (PP) derivatives with antitubercular activity were discovered. MIC ranges for PP1S, PP2S, and PP3S against clinically isolated drug-resistant Mycobacterium tuberculosis strains were 0.78 to 3.13, 0.19 to 1.56, and 0.78 to 6.25 μg/ml, respectively. PPs demonstrated antitubercular activities in macrophage and tuberculosis mouse models, showing no detectable toxicity in all assays tested. PPs specifically inhibited M. tuberculosis without significantly changing the intestinal microbiome in mice. Mutants selected in vitro suggest that the drug targets the PE-PGRS57, which has been found only in the genomes of the M. tuberculosis complex, highlighting the specificity and safety potency of this compound. As PPs show an excellent safety profile and highly selective toxicity specific to M. tuberculosis, PPs are considered a promising new candidate for the treatment of drug-resistant tuberculosis while maintaining microbiome homeostasis.
Collapse
Affiliation(s)
- Hoonhee Seo
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Dongnam-gu, Cheonan-si, Chungnam, Republic of Korea
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Sinchang-myeon, Asan-si, Chungnam, Republic of Korea
| | - Sukyung Kim
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Dongnam-gu, Cheonan-si, Chungnam, Republic of Korea
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Sinchang-myeon, Asan-si, Chungnam, Republic of Korea
| | - Hafij Al Mahmud
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Dongnam-gu, Cheonan-si, Chungnam, Republic of Korea
| | - Md Imtiazul Islam
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Dongnam-gu, Cheonan-si, Chungnam, Republic of Korea
| | - Youjin Yoon
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Dongnam-gu, Cheonan-si, Chungnam, Republic of Korea
| | - Hyun-Deuk Cho
- Department of Pathology, School of Medicine, Soonchunhyang University, Dongnam-gu, Cheonan-si, Chungnam, Republic of Korea
| | - Kung-Woo Nam
- Department of Life Science and Biotechnology, School of Life Sciences, Soonchunhyang University, Sinchang-myeon, Asan-si, Chungnam, Republic of Korea
| | - Jiwon Choi
- College of Pharmacy, Dongduk Women’s University, Seongbuk-gu, Seoul, Republic of Korea
| | - Young Sig Gil
- R&D Center, Kolmarpharma Co., Ltd., Jecheon-si, Chungbuk, Republic of Korea
| | - Byung-Eui Lee
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Sinchang-myeon, Asan-si, Chungnam, Republic of Korea
| | - Ho-Yeon Song
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Dongnam-gu, Cheonan-si, Chungnam, Republic of Korea
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Sinchang-myeon, Asan-si, Chungnam, Republic of Korea
| |
Collapse
|
38
|
Moats C, Cook K, Armantrout K, Crank H, Uttke S, Maher K, Bochart RM, Lawrence G, Axthelm MK, Smedley JV. Antimicrobial prophylaxis does not improve post-surgical outcomes in SIV/SHIV-uninfected or SIV/SHIV-infected macaques (Macaca mulatta and Macaca fascicularis) based on a retrospective analysis. PLoS One 2022; 17:e0266616. [PMID: 35442982 PMCID: PMC9020680 DOI: 10.1371/journal.pone.0266616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/23/2022] [Indexed: 12/11/2022] Open
Abstract
Surgical antimicrobial prophylaxis is indicated when performing contaminated surgeries, when specific surgical implants are placed, and for prolonged surgical procedures. Unnecessary prophylactic antibiotics are often utilized for macaque surgeries, despite medical and veterinary guidelines. In this study we compared complication rates in macaques receiving peripheral lymph node (PLN) and laparoscopic biopsies, with and without antimicrobial prophylaxis. A majority of animals were SIV or SHIV infected at the time of surgery, so we also compared post-operative complication rates based on infection status. We found no significant difference in PLN biopsy complication rates for animals that received antimicrobial prophylaxis versus those that did not. Animals who underwent laparoscopic procedures and received prophylactic antibiotics had a higher complication rate than those who did not receive them. Complication rates did not differ significantly for SIV/SHIV infected versus uninfected animals for both laparoscopic biopsy procedures and PLN biopsy procedures. SIV/SHIV infected animals that underwent PLN biopsies had no significant difference in complication rates with and without antimicrobial prophylaxis, and SIV/SHIV infected animals receiving prophylactic antibiotics for laparoscopic biopsies had a higher complication rate than those that did not. This study suggests that perioperative prophylactic antibiotics have no role in the management of SIV/SHIV-infected and uninfected macaques undergoing clean, minimally invasive surgeries. Additionally, we recommend eliminating unnecessary antibiotic use in study animals due to their potential confounding impacts on research models and their potential to promote antimicrobial resistance.
Collapse
Affiliation(s)
- Cassandra Moats
- Infectious Disease Resource, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Kimberly Cook
- Infectious Disease Resource, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Kimberly Armantrout
- Infectious Disease Resource, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Hugh Crank
- Infectious Disease Resource, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Samantha Uttke
- Infectious Disease Resource, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Kelly Maher
- Infectious Disease Resource, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Rachele M. Bochart
- Infectious Disease Resource, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - George Lawrence
- Director’s Office, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Michael K. Axthelm
- Infectious Disease Resource, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Jeremy V. Smedley
- Infectious Disease Resource, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| |
Collapse
|
39
|
Ternák G, Németh M, Rozanovic M, Bogár L. Alzheimer's Disease-Related Dysbiosis Might Be Triggered by Certain Classes of Antibiotics with Time-Lapse: New Insights into the Pathogenesis? J Alzheimers Dis 2022; 87:443-451. [PMID: 35275547 DOI: 10.3233/jad-220018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Several putative factors are identified in the literature as causative agents or risk factors for the development of Alzheimer's disease (AD). The amyloid cascade hypothesis has been the main hypothesis about the pathophysiology of AD for decades, but recent studies raised the possible role of dysbiosis in the development of AD, which prevents memory loss. OBJECTIVE Finding possible associations between antibiotic consumption patterns and the prevalence of AD in European countries. METHODS Antibiotic consumption (European Centre for Disease Prevention and Control, ECDC) for 1997-2007, 2008-2018, and as the whole 1997-2018 period, has been compared to the AD prevalence for 2018 expressed in percentage of the population and statistically analyzed by Pearson calculation. RESULTS A significant positive correlation has been found between the AD prevalence (2018) and the average quinolone consumption for the years 1997-2007 (r: 0.37, p: 0.044). A similar association was not observed for the entire 22 years (1997-2018) of the average quinolone consumption, and the years 2008-2018, indicating 10-20 years of time-lapse between the antibiotic exposure and the development of AD. The ratio of broad-spectrum and narrow-spectrum antibiotics (B/N) estimated in the ECDC database for the years of 2008-2018 showed a strong positive association with AD prevalence (2018) (r: 0.406, p: 0.026) and a positive correlation tendency for the entire 22 years 1997-2018 (r: 0.344, p: 0.063), but none for the years 1997-2007 (r: 0.256, p: 0.241). CONCLUSION Our study indicated the possible sequential role of certain classes of antibiotics in the development of dysbiosis leading to amyloid deposits of AD, which strengthen the possible role of different mediator molecules (short-chain fatty acids, lipopolysaccharides, etc.) produced by the altered microbiome in the development of AD.
Collapse
Affiliation(s)
- Gábor Ternák
- University of Pécs, Medical School, Institute of Migration Health, Pécs, Hungary
| | - Márton Németh
- Department of Anesthesiology and Intensive Care, University of Pécs, Medical School, Pécs, Hungary
| | - Martin Rozanovic
- Department of Anesthesiology and Intensive Care, University of Pécs, Medical School, Pécs, Hungary
| | - Lajos Bogár
- Department of Anesthesiology and Intensive Care, University of Pécs, Medical School, Pécs, Hungary
| |
Collapse
|
40
|
Rana D, Salave S, Perla A, Nadkarni A, Kohle S, Jindal AB, Mandoli A, Dwivedi P, Benival D. Bugs as Drugs: Understanding the Linkage between Gut Microbiota and Cancer Treatment Microbiome in Cancer Therapy. Curr Drug Targets 2022; 23:869-888. [PMID: 35264088 DOI: 10.2174/1389450123666220309101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The commensal microbiota is known to regulate host physiology. Dysbiosis or compromised Resilience in the microbial ecology is related to the impending risk of cancer. A potential link between cancer and microbiota is indicated by a lot of evidence. OBJECTIVE The current review explores in detail the various links leading to and /or facilitating oncogenesis, providing sound reasoning or a basis for its utilization as potential therapeutic targets. The present review emphasizes the existing knowledge of the microbiome in cancer and further elaborates on the factors like genetic modifications, effects of dietary components, and environmental agents that are considered to assess the direct and indirect effect of microbes in the process of oncogenesis and on the host's health. Strategies modulating the microbiome and novel biotherapeutics are also discussed. Pharmacomicrobiomics is one such niche accounting for the interplay between the microbiome, xenobiotic, and host responses is also looked upon. METHODS The literature search strategy for this review was conducted by following the methodology of the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). The method includes the collection of data from different search engines like PubMed, ScienceDirect, SciFinder etc. to get coverage of relevant literature for accumulating appropriate information regarding microbiome, cancer, and their linkages. RESULTS These considerations are made to expand the existing literature on the role of gut microbiota on the host's health, the interaction between host and microbiota, and the reciprocal relationship between the microbiome and modified neoplastic cells. CONCLUSION Potential therapeutic implications of cancer microbiomes that are yet unexplored and have rich therapeutic dividends improving human health are discussed in detail in this review.
Collapse
Affiliation(s)
- Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Akhil Perla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Akanksha Nadkarni
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Shital Kohle
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS PILANI), Pilani Campus, Rajasthan, 333031, India
| | - Amit Mandoli
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Pradeep Dwivedi
- Department of Pharmacology, All India Institute of Medical Sciences- Jodhpur (AIIMS), 342005, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| |
Collapse
|
41
|
Liu L, Kirst ME, Zhao L, Li E, Wang GP. Microbiome Resilience despite a Profound Loss of Minority Microbiota following Clindamycin Challenge in Humanized Gnotobiotic Mice. Microbiol Spectr 2022; 10:e0196021. [PMID: 35019780 PMCID: PMC8754120 DOI: 10.1128/spectrum.01960-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023] Open
Abstract
Antibiotics are known to induce gut dysbiosis and increase the risk of antibiotic resistance. While antibiotic exposure is a known risk factor leading to compromised colonization resistance against enteric pathogens such as Clostridioides difficile, the extent and consequences of antibiotic perturbation on the human gut microbiome remain poorly understood. Human studies on impacts of antibiotics are complicated by the tremendous variability of gut microbiome among individuals, even between identical twins. Furthermore, antibiotic challenge experiments cannot be replicated in human subjects for a given gut microbiome. Here, we transplanted feces from three unrelated human donors into groups of identical germfree (GF) Swiss-Webster mice, and examined the temporal responses of the transplanted microbiome to oral clindamycin challenge in gnotobiotic isolators over 7 weeks. Analysis of 177 longitudinal fecal samples revealed that 59% to 81% of human microbiota established a stable configuration rapidly and stably in GF mice. Microbiome responses to clindamycin challenge was highly reproducible and microbiome-dependent. A short course of clindamycin was sufficient to induce a profound loss (∼one third) of the microbiota by disproportionally eliminating minority members of the transplanted microbiota. However, it was inadequate to disrupt the global microbial community structure or function, which rebounded rapidly to resemble its pre-treatment state after clindamycin discontinuation. Furthermore, the response of individual microbes was community-dependent. Taken together, these results suggest that the overall gut microbiome structure is resilient to antibiotic perturbation, the functional consequences of which warrant further investigation. IMPORTANCE Antibiotics cause imbalance of gut microbiota, which in turn increase our susceptibility to gastrointestinal infections. However, how antibiotics disrupt gut bacterial communities is not well understood, and exposing healthy volunteers to unnecessary antibiotics for research purposes carries clinical and ethical concerns. In this study, we used genetically identical mice transplanted with the same human gut microbiota to control for both genetic and environmental variables. We found that a short course of oral clindamycin was sufficient to eliminate one third of the gut bacteria by disproportionally eliminating minority members of the transplanted microbiota, but it was inadequate to disrupt the overall microbial community structure and function, which rebounded rapidly to its pre-treatment state. These results suggest that gut microbiome is highly resilient to antibiotic challenge and degradation of the human gut ecosystem may require repeated or prolonged antibiotic exposure.
Collapse
Affiliation(s)
- Lin Liu
- Division of Infectious Diseases and Global Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Mariana E. Kirst
- Division of Infectious Diseases and Global Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Lisa Zhao
- Division of Infectious Diseases and Global Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Eric Li
- Division of Infectious Diseases and Global Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Gary P. Wang
- Division of Infectious Diseases and Global Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
- North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| |
Collapse
|
42
|
Holt BA, Tuttle M, Xu Y, Su M, Røise JJ, Wang X, Murthy N, Kwong GA. Dimensionless parameter predicts bacterial prodrug success. Mol Syst Biol 2022; 18:e10495. [PMID: 35005851 PMCID: PMC8744131 DOI: 10.15252/msb.202110495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/09/2022] Open
Abstract
Understanding mechanisms of antibiotic failure is foundational to combating the growing threat of multidrug-resistant bacteria. Prodrugs-which are converted into a pharmacologically active compound after administration-represent a growing class of therapeutics for treating bacterial infections but are understudied in the context of antibiotic failure. We hypothesize that strategies that rely on pathogen-specific pathways for prodrug conversion are susceptible to competing rates of prodrug activation and bacterial replication, which could lead to treatment escape and failure. Here, we construct a mathematical model of prodrug kinetics to predict rate-dependent conditions under which bacteria escape prodrug treatment. From this model, we derive a dimensionless parameter we call the Bacterial Advantage Heuristic (BAH) that predicts the transition between prodrug escape and successful treatment across a range of time scales (1-104 h), bacterial carrying capacities (5 × 104 -105 CFU/µl), and Michaelis constants (KM = 0.747-7.47 mM). To verify these predictions in vitro, we use two models of bacteria-prodrug competition: (i) an antimicrobial peptide hairpin that is enzymatically activated by bacterial surface proteases and (ii) a thiomaltose-conjugated trimethoprim that is internalized by bacterial maltodextrin transporters and hydrolyzed by free thiols. We observe that prodrug failure occurs at BAH values above the same critical threshold predicted by the model. Furthermore, we demonstrate two examples of how failing prodrugs can be rescued by decreasing the BAH below the critical threshold via (i) substrate design and (ii) nutrient control. We envision such dimensionless parameters serving as supportive pharmacokinetic quantities that guide the design and administration of prodrug therapeutics.
Collapse
Affiliation(s)
- Brandon Alexander Holt
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Tech College of Engineering and Emory School of MedicineAtlantaGAUSA
| | - McKenzie Tuttle
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Tech College of Engineering and Emory School of MedicineAtlantaGAUSA
| | - Yilin Xu
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Tech College of Engineering and Emory School of MedicineAtlantaGAUSA
| | - Melanie Su
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Tech College of Engineering and Emory School of MedicineAtlantaGAUSA
| | - Joachim J Røise
- Department of BioengineeringInnovative Genomics InstituteUniversity of CaliforniaBerkeleyCAUSA
| | - Xioajian Wang
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech UniversityNanjingChina
| | - Niren Murthy
- Department of BioengineeringInnovative Genomics InstituteUniversity of CaliforniaBerkeleyCAUSA
| | - Gabriel A Kwong
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Tech College of Engineering and Emory School of MedicineAtlantaGAUSA
- Parker H. Petit Institute of Bioengineering and BioscienceAtlantaGAUSA
- Institute for Electronics and NanotechnologyGeorgia TechAtlantaGAUSA
- Integrated Cancer Research CenterGeorgia TechAtlantaGAUSA
- Georgia ImmunoEngineering ConsortiumGeorgia Tech and Emory UniversityAtlantaGAUSA
- Emory School of MedicineAtlantaGAUSA
- Emory Winship Cancer InstituteAtlantaGAUSA
| |
Collapse
|
43
|
Yoon Y, Seo H, Kim S, Lee Y, Rahim MDA, Lee S, Song HY. Anti-Tuberculosis Activity of Pediococcus acidilactici Isolated from Young Radish Kimchi against Mycobacterium tuberculosis. J Microbiol Biotechnol 2021; 31:1632-1642. [PMID: 34584040 PMCID: PMC9705845 DOI: 10.4014/jmb.2107.07044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022]
Abstract
Tuberculosis is a highly contagious disease caused by Mycobacterium tuberculosis. It affects about 10 million people each year and is still one of the leading causes of death worldwide. About 2 to 3 billion people (equivalent to 1 in 3 people in the world) are infected with latent tuberculosis. Moreover, as the number of multidrug-resistant, extensively drug-resistant, and totally drug-resistant strains of M. tuberculosis continues to increase, there is an urgent need to develop new anti-tuberculosis drugs that are different from existing drugs to combat antibiotic-resistant M. tuberculosis. Against this background, we aimed to develop new anti-tuberculosis drugs using probiotics. Here, we report the anti-tuberculosis effect of Pediococcus acidilactici PMC202 isolated from young radish kimchi, a traditional Korean fermented food. Under coculture conditions, PMC202 inhibited the growth of M. tuberculosis. In addition, PMC202 inhibited the growth of drug-sensitive and -resistant M. tuberculosis- infected macrophages at a concentration that did not show cytotoxicity and showed a synergistic effect with isoniazid. In a 2-week, repeated oral administration toxicity study using mice, PMC202 did not cause weight change or specific clinical symptoms. Furthermore, the results of 16S rRNA-based metagenomics analysis confirmed that dysbiosis was not induced in bronchoalveolar lavage fluid after oral administration of PMC202. The anti-tuberculosis effect of PMC202 was found to be related to the reduction of nitric oxide. Our findings indicate that PMC202 could be used as an anti-tuberculosis drug candidate with the potential to replace current chemicalbased drugs. However, more extensive toxicity, mechanism of action, and animal efficacy studies with clinical trials are needed.
Collapse
Affiliation(s)
- Youjin Yoon
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Hoonhee Seo
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Sukyung Kim
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Youngkyoung Lee
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - MD Abdur Rahim
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Saebim Lee
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Ho-Yeon Song
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan 31538, Republic of Korea,Corresponding author Phone: +82-41-570-2412 Fax : +82-41-577-2415 E-mail:
| |
Collapse
|
44
|
Abstract
The intestinal tract is the entry gate for nutrients and symbiotic organisms, being in constant contact with external environment. DNA methylation is one of the keys to how environmental conditions, diet and nutritional status included, shape functionality in the gut and systemically. This review aims to summarise findings on the importance of methylation to gut development, differentiation and function. Evidence to date on how external factors such as diet, dietary supplements, nutritional status and microbiota modifications modulate intestinal function through DNA methylation is also presented.
Collapse
|
45
|
Jayalath S, Magana-Arachchi D. Dysbiosis of the Human Urinary Microbiome and its Association to Diseases Affecting the Urinary System. Indian J Microbiol 2021; 62:153-166. [DOI: 10.1007/s12088-021-00991-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022] Open
|
46
|
Wang L, Zhang J, Zhou M, Chen Q, Yang X, Hou Y, Huang M, Man C, Jiang Y. Evaluation of the effect of antibiotics on gut microbiota in early life based on culturomics, SMRT sequencing and metagenomics sequencing methods. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5144-5156. [PMID: 34727151 DOI: 10.1039/d1ay01106e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Symbiotic gut microbiota in early life plays a vital role in human health, and changes in its communication and function are associated with various complex disorders. In this study, we analyzed the gut flora communication of 6 infants at 4 months of age and determined the disturbances related to antibiotic treatment. By the culturomics and Single Molecule Real-time sequencing methods, a total of 6234 strains were divided into 16 genera and 45 species. The alpha diversity of culturable microorganisms in amoxicillin-treated infants was significantly less than that in healthy infants (p <0.05), as indicated by Chao 1, observed species and Faith's PD index. According to metagenomics, the dominant genus and species were Bifidobacterium and B. longum in the healthy group. After treatment with amoxicillin, the dominant genus and species shifted to Enterococcus and E. faecium. Based on the functional annotation of metagenomics, amoxicillin affected the metabolic function of the gut microbiome by activating carbohydrate and lipid metabolism and inhibiting amino acid metabolism. Besides, the intake of antibiotics in early life increased the risk of neurodegenerative disease, virus infectious disease and antimicrobial resistance. The Antibiotic Resistance Genes Database annotation result indicated that the abundance of drug-resistance genes in the antibiotic group was higher than that in the healthy group. These genes were associated with resistance to bacitracin, most of which were associated with K. pneumonia. These findings can provide guidance in the clinic on the proper usage of antibiotics.
Collapse
Affiliation(s)
- Lihan Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Jiaxin Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Mengyao Zhou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Qing Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Yichao Hou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Mingli Huang
- First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| |
Collapse
|
47
|
Association between antibiotics use and diabetes incidence in a nationally representative retrospective cohort among Koreans. Sci Rep 2021; 11:21681. [PMID: 34737360 PMCID: PMC8568925 DOI: 10.1038/s41598-021-01125-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022] Open
Abstract
Numerous studies have reported that antibiotics could lead to diabetes, even after adjusting for confounding variables. This study aimed to determine the causal relationship between antibiotics use and diabetes in a nationally representative cohort. This retrospective cohort study included adults aged 40 years or older who were enrolled in the Korean National Health Insurance Service-Health Screening Cohort. Antibiotic exposure was assessed from 2002 to 2005 and newly diagnosed diabetes mellitus was determined based on diagnostic codes and history of antidiabetic medication use from 2006 to 2015. Multivariate Cox proportional hazards model was used to assess the association between antibiotic use and diabetes incidence. The mean age of the 201,459 study subjects was 53.2 years. People who used antibiotics for 90 or more days had a higher risk of diabetes (adjusted hazard ratio [aHR] 1.16, 95% confidence interval [CI] 1.07–1.26) compared to non-users. Those who used five or more classes of antibiotics had a higher risk of diabetes than those who used one antibiotic class (aHR 1.14; 95% CI 1.06–1.23). The clear dose-dependent association between antibiotics and diabetes incidence supports the judicious use of antibiotics in the future.
Collapse
|
48
|
Bono LM, Mao S, Done RE, Okamoto KW, Chan BK, Turner PE. Advancing phage therapy through the lens of virus host-breadth and emergence potential. Adv Virus Res 2021; 111:63-110. [PMID: 34663499 DOI: 10.1016/bs.aivir.2021.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Phages are viruses that specifically infect bacteria, and their biodiversity contributes to historical and current development of phage therapy to treat myriad bacterial infections. Phage therapy holds promise as an alternative to failing chemical antibiotics, but there are benefits and costs of this technology. Here, we review the rich history of phage therapy, highlighting reasons (often political) why it was widely rejected by Western medicine until recently. One longstanding idea involves mixing different phages together in cocktails, to increase the probability of killing target pathogenic bacteria without pre-screening for phage susceptibility. By challenging 30 lytic phages to infect 14 strains of the bacteria Pseudomonas aeruginosa, we showed that some phages were "generalists" with broad host-ranges, emphasizing that extreme host-specificity of phages was not necessarily a liability. Using a "greedy algorithm" analysis, we identified the best cocktail mixture of phages to achieve broad bacteria killing. Additionally, we review how virus host-range can evolve and connect lessons learned from virus emergence-including contributions of elevated virus mutation rates in promoting emergence and virus evolutionary transitions from specialized to generalized host-use-as cautionary tales for avoiding risk of "off-target" phage emergence on commensal bacteria in microbiomes. Throughout, we highlight how fundamental understanding of virus ecology and evolution is vital for developing phage therapy; heeding these principles should help in designing therapeutic strategies that do not recapitulate consequences of virus selection to emerge on novel hosts.
Collapse
Affiliation(s)
- Lisa M Bono
- Department of Biology, Emory University, Atlanta, GA, United States.
| | - Stephanie Mao
- Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rachel E Done
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States; Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Kenichi W Okamoto
- Department of Biology, University of St. Thomas, St. Paul, MN, United States
| | - Benjamin K Chan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States; Microbiology Program, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
49
|
Vallianou N, Dalamaga M, Stratigou T, Karampela I, Tsigalou C. Do Antibiotics Cause Obesity Through Long-term Alterations in the Gut Microbiome? A Review of Current Evidence. Curr Obes Rep 2021; 10:244-262. [PMID: 33945146 PMCID: PMC8093917 DOI: 10.1007/s13679-021-00438-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW In this review, we summarize current evidence on the association between antibiotics and the subsequent development of obesity through modulation of the gut microbiome. Particular emphasis is given on (i) animal and human studies and their limitations; (ii) the reservoir of antibiotics in animal feed, emerging antibiotic resistance, gut dysbiosis, and obesity; (iii) the role of infections, specifically viral infections, as a cause of obesity; and (iv) the potential therapeutic approaches other than antibiotics to modulate gut microbiome. RECENT FINDINGS Overall, the majority of animal studies and meta-analyses of human studies on the association between antibiotics and subsequent development of obesity are suggestive of a link between exposure to antibiotics, particularly early exposure in life, and the development of subsequent obesity as a result of alterations in the diversity of gut microbiota. The evidence is strong in animal models whereas evidence in humans is inconclusive requiring well-designed, long-term longitudinal studies to examine this association. Based on recent meta-analyses and epidemiologic studies in healthy children, factors, such as the administration of antibiotics during the first 6 months of life, repeated exposure to antibiotics for ≥ 3 courses, treatment with broad-spectrum antibiotics, and male gender have been associated with increased odds of overweight/obesity. Early antibiotic exposure in animal models has shown that reductions in the population size of specific microbiota, such as Lactobacillus, Allobaculum, Rikenellaceae, and Candidatus Arthromitus, are related to subsequent adiposity. These data suggest that the loss of diversity of the gut microbiome, especially early in life, may have potential long-term detrimental effects on the adult host gut microbiome and metabolic health. Genetic, environmental, and age-related factors influence the gut microbiome throughout the lifetime. More large-scale, longer-term, longitudinal studies are needed to determine whether changes that occur in the microbiome after exposure to antibiotics, particularly early exposure, are causal of subsequent weight gain or consequent of weight gain in humans. Further well-designed, large-scale RCTs in humans are required to evaluate the effects of administration of antibiotics, particularly early administration, and the subsequent development of overweight/obesity. Therapeutic interventions, such as bacteriophage treatment or the use of probiotics, especially genetically engineered ones, need to be evaluated in terms of prevention and management of obesity.
Collapse
Affiliation(s)
- Natalia Vallianou
- grid.414655.70000 0004 4670 4329Department of Internal Medicine and Endocrinology, ‘Evangelismos’ General Hospital of Athens, 45-47 Ypsilantou Street, 10676 Athens, Greece
| | - Maria Dalamaga
- grid.5216.00000 0001 2155 0800Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece
| | - Theodora Stratigou
- grid.414655.70000 0004 4670 4329Department of Internal Medicine and Endocrinology, ‘Evangelismos’ General Hospital of Athens, 45-47 Ypsilantou Street, 10676 Athens, Greece
| | - Irene Karampela
- grid.5216.00000 0001 2155 0800Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece
- grid.5216.00000 0001 2155 0800Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini St, Haidari, 12462 Athens, Greece
| | - Christina Tsigalou
- grid.12284.3d0000 0001 2170 8022Laboratory of Microbiology, Medical School, Democritus University of Thrace, 6th Km Alexandroupolis-Makri, Alexandroupolis, Greece
| |
Collapse
|
50
|
Fernandes A, Oliveira A, Soares R, Barata P. The Effects of Ionizing Radiation on Gut Microbiota, a Systematic Review. Nutrients 2021; 13:3025. [PMID: 34578902 PMCID: PMC8465723 DOI: 10.3390/nu13093025] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The human gut microbiota is defined as the microorganisms that collectively inhabit the intestinal tract. Its composition is relatively stable; however, an imbalance can be precipitated by various factors and is known to be associated with various diseases. Humans are daily exposed to ionizing radiation from ambient and medical procedures, and gastrointestinal side effects are not rare. METHODS A systematic search of PubMed, EMBASE, and Cochrane Library databases was conducted. Primary outcomes were changes in composition, richness, and diversity of the gut microbiota after ionizing radiation exposure. Standard methodological procedures expected by Cochrane were used. RESULTS A total of 2929 nonduplicated records were identified, and based on the inclusion criteria, 11 studies were considered. Studies were heterogeneous, with differences in population and outcomes. Overall, we found evidence for an association between ionizing radiation exposure and dysbiosis: reduction in microbiota diversity and richness, increase in pathogenic bacteria abundance (Proteobacteria and Fusobacteria), and decrease in beneficial bacteria (Faecalibacterium and Bifidobacterium). CONCLUSIONS This review highlights the importance of considering the influence of ionizing radiation exposure on gut microbiota, especially when considering the side effects of abdominal and pelvic radiotherapy. Better knowledge of these effects, with larger population studies, is needed.
Collapse
Affiliation(s)
- Ana Fernandes
- Department of Nuclear Medicine, Centro Hospitalar Universitário de São João, E.P.E., 4200-319 Porto, Portugal;
| | - Ana Oliveira
- Department of Nuclear Medicine, Centro Hospitalar Universitário de São João, E.P.E., 4200-319 Porto, Portugal;
| | - Raquel Soares
- Department of Biomedicine, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal;
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Pedro Barata
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Department of Pharmaceutical Science, Faculdade de Ciências da Saúde da Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- Department of Pathology, Centro Hospitalar Universitário do Porto, 4099-001 Porto, Portugal
| |
Collapse
|