1
|
Nikolova YS, Ruocco AC, Felsky D, Lange S, Prevot TD, Vieira E, Voineskos D, Wardell JD, Blumberger DM, Clifford K, Dharavath RN, Gerretsen P, Hassan AN, Jennings SK, Le Foll B, Melamed O, Orson J, Pangarov P, Quigley L, Russell C, Shield K, Sloan ME, Smoke A, Tang V, Cabrera DV, Wang W, Wells S, Wickramatunga R, Sibille E, Quilty LC. Cognitive Dysfunction in the Addictions (CDiA): A Neuron to Neighbourhood Collaborative Research Program on Executive Dysfunction and Functional Outcomes in Outpatients Seeking Treatment for Addiction. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.30.24312806. [PMID: 39252904 PMCID: PMC11383479 DOI: 10.1101/2024.08.30.24312806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Background Substance use disorders (SUDs) are pressing global public health problems. Executive functions (EFs) are prominently featured in mechanistic models of addiction. However, there remain significant gaps in our understanding of EFs in SUDs, including the dimensional relationships of EFs to underlying neural circuits, molecular biomarkers, disorder heterogeneity, and functional ability. To improve health outcomes for people with SUDs, interdisciplinary clinical, preclinical and health services research is needed to inform policies and interventions aligned with biopsychosocial models of addiction. Here, we introduce Cognitive Dysfunction in the Addictions (CDiA), an integrative team-science and translational research program, which aims to fill these knowledge gaps and facilitate research discoveries to enhance treatments for people living with SUDs. Methods The CDiA Program comprises seven complementary interdisciplinary projects that aim to progress understanding of EF in SUDs and investigate new biological treatment approaches. The projects draw on a diverse sample of adults aged 18-60 (target N=400) seeking treatment for addiction, who are followed prospectively over one year to identify EF domains crucial to recovery. Projects 1-3 investigate SUD symptoms, brain circuits, and blood biomarkers and their associations with both EF domains (inhibition, working memory, and set-shifting) and functional outcomes (disability, quality of life). Projects 4 and 5 evaluate interventions for addiction and their impacts on EF: a clinical trial of repetitive transcranial magnetic stimulation and a preclinical study of potential new pharmacological treatments in rodents. Project 6 links EF to healthcare utilization and is supplemented with a qualitative investigation of EF-related barriers to treatment engagement for those with substance use concerns. Project 7 uses innovative whole-person modeling to integrate the multi-modal data generated across projects, applying clustering and deep learning methods to identify patient subtypes and drive future cross-disciplinary initiatives. Discussion The CDiA program has promise to bring scientific domains together to uncover the diverse ways in which EFs are linked to SUD severity and functional recovery. These findings, supported by emerging clinical, preclinical, health service, and whole-person modeling investigations, will facilitate future discoveries about cognitive dysfunction in addiction and could enhance the future clinical care of individuals seeking treatment for SUDs.
Collapse
Affiliation(s)
- Yuliya S Nikolova
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada
| | - Anthony C Ruocco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Daniel Felsky
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Shannon Lange
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Thomas D Prevot
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Erica Vieira
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Daphne Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey D Wardell
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - Daniel M Blumberger
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Kevan Clifford
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Ravinder Naik Dharavath
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Philip Gerretsen
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Ahmed N Hassan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Sheila K Jennings
- Centre for Addiction & Mental Health, Toronto, Ontario, Canada
- Moms Stop the Harm, Victoria, British Columbia
| | - Bernard Le Foll
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Osnat Melamed
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Family and Community Medicine, University of Toronto
| | - Joshua Orson
- Centre for Addiction & Mental Health, Toronto, Ontario, Canada
| | - Peter Pangarov
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Leanne Quigley
- Ferkauf Graduate School of Psychology, Yeshiva University, New York, USA
| | - Cayley Russell
- Ontario CRISM Node Team, Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Kevin Shield
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Matthew E Sloan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ashley Smoke
- Centre for Addiction & Mental Health, Toronto, Ontario, Canada
- The Ontario Network of People Who Use Drugs, Toronto, Ontario, Canada
| | - Victor Tang
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Diana Valdes Cabrera
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Wei Wang
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Samantha Wells
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Western University, London, Ontario, Canada
| | - Rajith Wickramatunga
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lena C Quilty
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Zheng H, Xiao X, Han Y, Wang P, Zang L, Wang L, Zhao Y, Shi P, Yang P, Guo C, Xue J, Zhao X. Research progress of propofol in alleviating cerebral ischemia/reperfusion injury. Pharmacol Rep 2024; 76:962-980. [PMID: 38954373 DOI: 10.1007/s43440-024-00620-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
Ischemic stroke is a leading cause of adult disability and death worldwide. The primary treatment for cerebral ischemia patients is to restore blood supply to the ischemic region as quickly as possible. However, in most cases, more severe tissue damage occurs, which is known as cerebral ischemia/reperfusion (I/R) injury. The pathological mechanisms of brain I/R injury include mitochondrial dysfunction, oxidative stress, excitotoxicity, calcium overload, neuroinflammation, programmed cell death and others. Propofol (2,6-diisopropylphenol), a short-acting intravenous anesthetic, possesses not only sedative and hypnotic effects but also immunomodulatory and neuroprotective effects. Numerous studies have reported the protective properties of propofol during brain I/R injury. In this review, we summarize the potential protective mechanisms of propofol to provide insights for its better clinical application in alleviating cerebral I/R injury.
Collapse
Affiliation(s)
- Haijing Zheng
- Basic Medical College, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
- Zhengzhou Central Hospital, Zhengzhou, China
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Xian Xiao
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Yiming Han
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Pengwei Wang
- Department of Pharmacy, the First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Weihui, Henan, 453100, China
| | - Lili Zang
- Department of Surgery, the First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Weihui, China
| | - Lilin Wang
- Department of Pediatric Surgery, the First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Weihui, China
| | - Yinuo Zhao
- Basic Medical College, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Peijie Shi
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Pengfei Yang
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China.
| | - Chao Guo
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China.
| | - Jintao Xue
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China.
| | - Xinghua Zhao
- Basic Medical College, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China.
| |
Collapse
|
3
|
Sokouti B. The identification of biomarkers for Alzheimer's disease using a systems biology approach based on lncRNA-circRNA-miRNA-mRNA ceRNA networks. Comput Biol Med 2024; 179:108860. [PMID: 38996555 DOI: 10.1016/j.compbiomed.2024.108860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/16/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
In addition to being the most prevalent form of neurodegeneration among the elderly, AD is a devastating multifactorial disease. Currently, treatments address only its symptoms. Several clinical studies have shown that the disease begins to manifest decades before the first symptoms appear, indicating that studying early changes is crucial to improving early diagnosis and discovering novel treatments. Our study used bioinformatics and systems biology to identify biomarkers in AD that could be used for diagnosis and prognosis. The procedure was performed on data from the GEO database, and GO and KEGG enrichment analysis were performed. Then, we set up a network of interactions between proteins. Several miRNA prediction tools including miRDB, miRWalk, and TargetScan were used. The ceRNA network led to the identification of eight mRNAs, four circRNAs, seven miRNAs, and seven lncRNAs. Multiple mechanisms, including the cell cycle and DNA replication, have been linked to the promotion of AD development by the ceRNA network. By using the ceRNA network, it should be possible to extract prospective biomarkers and therapeutic targets for the treatment of AD. It is possible that the processes involved in DNA cell cycle and the replication of DNA contribute to the development of Alzheimer's disease.
Collapse
Affiliation(s)
- Babak Sokouti
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Zhang Q, Yang G, Luo Y, Jiang L, Chi H, Tian G. Neuroinflammation in Alzheimer's disease: insights from peripheral immune cells. Immun Ageing 2024; 21:38. [PMID: 38877498 PMCID: PMC11177389 DOI: 10.1186/s12979-024-00445-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Alzheimer's disease (AD) is a serious brain disorder characterized by the presence of beta-amyloid plaques, tau pathology, inflammation, neurodegeneration, and cerebrovascular dysfunction. The presence of chronic neuroinflammation, breaches in the blood-brain barrier (BBB), and increased levels of inflammatory mediators are central to the pathogenesis of AD. These factors promote the penetration of immune cells into the brain, potentially exacerbating clinical symptoms and neuronal death in AD patients. While microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in AD, recent evidence suggests the infiltration of cerebral vessels and parenchyma by peripheral immune cells, including neutrophils, T lymphocytes, B lymphocytes, NK cells, and monocytes in AD. These cells participate in the regulation of immunity and inflammation, which is expected to play a huge role in future immunotherapy. Given the crucial role of peripheral immune cells in AD, this article seeks to offer a comprehensive overview of their contributions to neuroinflammation in the disease. Understanding the role of these cells in the neuroinflammatory response is vital for developing new diagnostic markers and therapeutic targets to enhance the diagnosis and treatment of AD patients.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Laboratory Medicine, Southwest Medical University, Luzhou, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, USA
| | - Yuan Luo
- Department of Laboratory Medicine, Southwest Medical University, Luzhou, China
| | - Lai Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China.
| | - Gang Tian
- Department of Laboratory Medicine, Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China.
| |
Collapse
|
5
|
Huang Y, Shi Y, Wang M, Liu B, Chang X, Xiao X, Yu H, Cui X, Bai Y. Pannexin1 Channel-Mediated Inflammation in Acute Ischemic Stroke. Aging Dis 2024; 15:1296-1307. [PMID: 37196132 PMCID: PMC11081155 DOI: 10.14336/ad.2023.0303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/03/2023] [Indexed: 05/19/2023] Open
Abstract
Emerging evidence suggests that inflammation mediated by the pannexin1 channel contributes significantly to acute ischemic stroke. It is believed that the pannexin1 channel is key in initiating central system inflammation during the early stages of acute ischemic stroke. Moreover, the pannexin1 channel is involved in the inflammatory cascade to maintain the inflammation levels. Specifically, the interaction of pannexin1 channels with ATP-sensitive P2X7 purinoceptors or promotion of potassium efflux mediates the activation of the NLRP3 inflammasome, triggering the release of pro-inflammatory factors such as IL-1 and IL-18, exacerbating and sustaining inflammation of brain. Also, increased release of ATP induced by cerebrovascular injury activates pannexin1 in vascular endothelial cells. This signal directs peripheral leukocytes to migrate into ischemic brain tissue, leading to an expansion of the inflammatory zone. Intervention strategies targeting pannexin1 channels may greatly alleviate inflammation after acute ischemic stroke to improve this patient population's clinical outcomes. In this review, we sought to summarize relevant studies on inflammation mediated by the pannexin1 channel in acute ischemic stroke and discussed the possibility of using brain organoid-on-a-chip technology to screen miRNAs that exclusively target the pannexin1 channel to provide new therapeutic measures for targeted regulation of pannexin1 channel to reduce inflammation in acute ischemic stroke.
Collapse
Affiliation(s)
- Yubing Huang
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Yutong Shi
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Mengmeng Wang
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Medical College, Institute of Microanalysis, Dalian University, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Bingyi Liu
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Xueqin Chang
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Xia Xiao
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Huihui Yu
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Xiaodie Cui
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Ying Bai
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
| |
Collapse
|
6
|
Zhou T, Wang J, Lin Z, Zhu H, Hu W, Zhang R, Chen X. Abietane diterpenoids with anti-neuroinflammation activity from Rosmarinus officinalis. Fitoterapia 2024; 174:105866. [PMID: 38378134 DOI: 10.1016/j.fitote.2024.105866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024]
Abstract
A total of 12 abietane diterpenoids were isolated and identified from Rosmarinus officinalis in which 6 ones were undescribed compounds. Their structures were illuminated by the HRESIMS, NMR, and ECD methods and named as rosmarinusin Q-V (1-6). It worthy mentioned that rosmarinusin Q was a novel abietane diterpenoid with 6/6/5 skeleton whose C ring was an α,β-unsaturated five-element ketone. All the compounds and four compounds (13-16) reported in our previous paper were evaluated their anti-neuroinflammatory activities on the LPS-induced BV2 cells. Compounds 5, 8, 9, 11, and 15 displayed significant anti-neuroinflammatory activity at the concentration of 10, 20, and 40 μM respectively. These results confirmed that R. officinalis contained abundant abietane diterpenoids and these compounds showed potential values of anti-neuroinflammation which could be developed as neuroprotective agents for the treatment of nerve damage caused by inflammation.
Collapse
Affiliation(s)
- Tang Zhou
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Ji Wang
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Zhiqi Lin
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Hongbo Zhu
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Weiyan Hu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, PR China
| | - Rongping Zhang
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Xinglong Chen
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, PR China.
| |
Collapse
|
7
|
Demirtaş N, Mazlumoğlu BŞ, Palabıyık Yücelik ŞS. Role of NLRP3 Inflammasomes in Neurodegenerative Diseases. Eurasian J Med 2023; 55:98-105. [PMID: 39109852 PMCID: PMC11075041 DOI: 10.5152/eurasianjmed.2023.23349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/24/2023] [Indexed: 08/11/2024] Open
Abstract
Large-scale neuronal degeneration in the human brain is a hallmark of neurodegenerative diseases. These diseases range in location and cause, but they all have neurodegenerative characteristics in common. Neurodegenerative diseases, which have almost no efective treatment options, tend to progress irreversibly and cause large socioeconomic and healthcare costs. In recent years, due to the increase in the elderly population, neurodegenerative diseases that have a risk factor with aging are becoming increasingly common. Evidence that neurodegenerative diseases, which have an important place in public health, may be caused by neuroinflammation, has led to comprehensive investigation of neurodegenerative diseases in this regard. Inflammasomes are innate immune system-associated multiproteins that regulate caspase-1 activation and induce inflammation. The NLRP3 inflammasome is the most researched inflammasome and also located in microglia, its activation mediates the maturation and secretion of the inflammatory cytokines interleukin1beta (IL-1β) and IL-18, thus exerting its efects in the central nervous system. Within the scope of this review, experimental and human studies evaluating the role of NLRP3 inflammasome activation and the efects of its inhibition in neurodegenerative diseases frequently encountered in society have been compiled with studies from past to present.
Collapse
Affiliation(s)
- Nagihan Demirtaş
- Department of Pharmaceutical Toxicology, Atatürk University Faculty of Pharmacy, Erzurum, Turkey
| | - Büşra Şahin Mazlumoğlu
- Department of Pharmaceutical Toxicology, Atatürk University Faculty of Pharmacy, Erzurum, Turkey
| | - Şaziye Sezin Palabıyık Yücelik
- Department of Pharmaceutical Toxicology, Atatürk University Faculty of Pharmacy, Erzurum, Turkey
- Clinical Research, Development and Design Application and Research Center, Atatürk University, Erzurum, Turkey
| |
Collapse
|
8
|
Wang T, Chen S, Mao Z, Shang Y, Brinton RD. Allopregnanolone pleiotropic action in neurons and astrocytes: calcium signaling as a unifying mechanism. Front Endocrinol (Lausanne) 2023; 14:1286931. [PMID: 38189047 PMCID: PMC10771836 DOI: 10.3389/fendo.2023.1286931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/13/2023] [Indexed: 01/09/2024] Open
Abstract
Objective Allopregnanolone (Allo) is a neurosteroid with pleiotropic action in the brain that includes neurogenesis, oligogenesis, human and rodent neural stem cell regeneration, increased glucose metabolism, mitochondrial respiration and biogenesis, improved cognitive function, and reduction of both inflammation and Alzheimer's disease (AD) pathology. Because the breadth of Allo-induced responses requires activation of multiple systems of biology in the absence of an Allo-specific nuclear receptor, analyses were conducted in both neurons and astrocytes to identify unifying systems and signaling pathways. Methods Mechanisms of Allo action were investigated in embryonic hippocampal neurons and astrocytes cultured in an Aging Model (AM) media. Cellular morphology, mitochondrial function, and transcriptomics were investigated followed by mechanistic pathway analyses. Results In hippocampal neurons, Allo significantly increased neurite outgrowth and synaptic protein expression, which were paralleled by upregulated synaptogenesis and long-term potentiation gene expression profiles. Mechanistically, Allo induced Ca2+/CREB signaling cascades. In parallel, Allo significantly increased maximal mitochondrial respiration, mitochondrial membrane potential, and Complex IV activity while reducing oxidative stress, which required both the GABAA and L-type Ca2+ channels. In astrocytes, Allo increased ATP generation, mitochondrial function and dynamics while reducing oxidative stress, inflammasome indicators, and apoptotic signaling. Mechanistically, Allo regulation of astrocytic mitochondrial function required both the GABAA and L-type Ca2+ channels. Furthermore, Allo activated NRF1-TFAM signaling and increased the DRP1/OPA1 protein ratio, which led to increased mitochondrial biogenesis and dynamics. Conclusion Collectively, the cellular, mitochondrial, transcriptional, and pharmacological profiles provide evidence in support of calcium signaling as a unifying mechanism for Allo pleiotropic actions in the brain.
Collapse
Affiliation(s)
- Tian Wang
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
- Department of Neurology, College of Medicine Tucson, University of Arizona, Tucson, AZ, United States
| | - Shuhua Chen
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Zisu Mao
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Yuan Shang
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
- Department of Neurology, College of Medicine Tucson, University of Arizona, Tucson, AZ, United States
- Department of Pharmacology, College of Medicine Tucson, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
9
|
Saresella M, Zoia CP, La Rosa F, Bazzini C, Sala G, Grassenis E, Marventano I, Hernis A, Piancone F, Conti E, Sesana S, Re F, Seneci P, Ferrarese C, Clerici M. Glibenclamide-Loaded Engineered Nanovectors (GNVs) Modulate Autophagy and NLRP3-Inflammasome Activation. Pharmaceuticals (Basel) 2023; 16:1725. [PMID: 38139851 PMCID: PMC10747596 DOI: 10.3390/ph16121725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Activation of the NLRP3 inflammasome in response to either exogenous (PAMPs) or endogenous (DAMPs) stimuli results in the production of IL-18, caspase-1 and IL-1β. These cytokines have a beneficial role in promoting inflammation, but an excessive activation of the inflammasome and the consequent constitutive inflammatory status plays a role in human pathologies, including Alzheimer's disease (AD). Autophagic removal of NLRP3 inflammasome activators can reduce inflammasome activation and inflammation. Likewise, inflammasome signaling pathways regulate autophagy, allowing the development of inflammatory responses but preventing excessive and detrimental inflammation. Nanotechnology led to the development of liposome engineered nanovectors (NVs) that can load and carry drugs. We verified in an in vitro model of AD-associated inflammation the ability of Glibenclamide-loaded NVs (GNVs) to modulate the balance between inflammasome activation and autophagy. Human THP1dM cells were LPS-primed and oligomeric Aß-stimulated in the presence/absence of GNVs. IL-1β, IL-18 and activated caspase-1 production was evaluated by the Automated Immunoassay System (ELLA); ASC speck formation (a marker of NLRP3 activation) was analyzed by FlowSight Imaging flow-cytometer (AMNIS); the expression of autophagy targets was investigated by RT-PCR and Western blot (WB); and the modulation of autophagy-related up-stream signaling pathways and Tau phosphorylation were WB-quantified. Results showed that GNVs reduce activation of the NLRP3 inflammasome and prevent the Aß-induced phosphorylation of ERK, AKT, and p70S6 kinases, potentiating autophagic flux and counteracting Tau phosphorylation. These preliminary results support the investigation of GNVs as a possible novel strategy in disease and rehabilitation to reduce inflammasome-associated inflammation.
Collapse
Affiliation(s)
- Marina Saresella
- IRCCS Fondazione Don Carlo Gnocchi, 20147 Milan, Italy; (M.S.); (I.M.); (A.H.); (F.P.); (M.C.)
| | - Chiara Paola Zoia
- Neurobiology Laboratory, School of Medicine and Surgery, University of Study of Milano-Bicocca, 20900 Monza, Italy; (C.P.Z.); (C.B.); (G.S.); (E.G.); (E.C.); (C.F.)
- Milan Center for Neuroscience, University of Study of Milano-Bicocca, 20126 Milano, Italy
| | - Francesca La Rosa
- IRCCS Fondazione Don Carlo Gnocchi, 20147 Milan, Italy; (M.S.); (I.M.); (A.H.); (F.P.); (M.C.)
| | - Chiara Bazzini
- Neurobiology Laboratory, School of Medicine and Surgery, University of Study of Milano-Bicocca, 20900 Monza, Italy; (C.P.Z.); (C.B.); (G.S.); (E.G.); (E.C.); (C.F.)
- Milan Center for Neuroscience, University of Study of Milano-Bicocca, 20126 Milano, Italy
| | - Gessica Sala
- Neurobiology Laboratory, School of Medicine and Surgery, University of Study of Milano-Bicocca, 20900 Monza, Italy; (C.P.Z.); (C.B.); (G.S.); (E.G.); (E.C.); (C.F.)
- Milan Center for Neuroscience, University of Study of Milano-Bicocca, 20126 Milano, Italy
| | - Erica Grassenis
- Neurobiology Laboratory, School of Medicine and Surgery, University of Study of Milano-Bicocca, 20900 Monza, Italy; (C.P.Z.); (C.B.); (G.S.); (E.G.); (E.C.); (C.F.)
- Milan Center for Neuroscience, University of Study of Milano-Bicocca, 20126 Milano, Italy
| | - Ivana Marventano
- IRCCS Fondazione Don Carlo Gnocchi, 20147 Milan, Italy; (M.S.); (I.M.); (A.H.); (F.P.); (M.C.)
| | - Ambra Hernis
- IRCCS Fondazione Don Carlo Gnocchi, 20147 Milan, Italy; (M.S.); (I.M.); (A.H.); (F.P.); (M.C.)
| | - Federica Piancone
- IRCCS Fondazione Don Carlo Gnocchi, 20147 Milan, Italy; (M.S.); (I.M.); (A.H.); (F.P.); (M.C.)
| | - Elisa Conti
- Neurobiology Laboratory, School of Medicine and Surgery, University of Study of Milano-Bicocca, 20900 Monza, Italy; (C.P.Z.); (C.B.); (G.S.); (E.G.); (E.C.); (C.F.)
- Milan Center for Neuroscience, University of Study of Milano-Bicocca, 20126 Milano, Italy
| | - Silvia Sesana
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy; (S.S.); (F.R.)
| | - Francesca Re
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy; (S.S.); (F.R.)
| | - Pierfausto Seneci
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy;
| | - Carlo Ferrarese
- Neurobiology Laboratory, School of Medicine and Surgery, University of Study of Milano-Bicocca, 20900 Monza, Italy; (C.P.Z.); (C.B.); (G.S.); (E.G.); (E.C.); (C.F.)
- Milan Center for Neuroscience, University of Study of Milano-Bicocca, 20126 Milano, Italy
- Department of Neuroscience, IRCC Fondazione S. Gerardo dei Tintori, 20900 Monza, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, 20147 Milan, Italy; (M.S.); (I.M.); (A.H.); (F.P.); (M.C.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| |
Collapse
|
10
|
Kim JY, Hwang M, Choi NY, Koh SH. Inhibition of the NLRP3 Inflammasome Activation/Assembly through the Activation of the PI3K Pathway by Naloxone Protects Neural Stem Cells from Ischemic Condition. Mol Neurobiol 2023; 60:5330-5342. [PMID: 37300646 DOI: 10.1007/s12035-023-03418-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Naloxone is a well-known opioid antagonist and has been suggested to have neuroprotective effects in cerebral ischemia. We investigated whether naloxone exhibits anti-inflammatory and neuroprotective effects in neural stem cells (NSCs) injured by oxygen-glucose deprivation (OGD), whether it affects the NOD-like receptor protein 3 (NLRP3) inflammasome activation/assembly, and whether the role of the phosphatidylinositol 3-kinase (PI3K) pathway is important in the control of NLRP3 inflammasome activation/assembly by naloxone. Primary cultured NSCs were subjected to OGD and treated with different concentrations of naloxone. Cell viability, proliferation, and the intracellular signaling proteins associated with the PI3K pathway and NLRP3 inflammasome activation/assembly were evaluated in OGD-injured NSCs. OGD significantly reduced survival, proliferation, and migration and increased apoptosis of NSCs. However, treatment with naloxone significantly restored survival, proliferation, and migration and decreased apoptosis of NSCs. Moreover, OGD markedly increased NLRP3 inflammasome activation/assembly and cleaved caspase-1 and interleukin-1β levels in NSCs, but naloxone significantly attenuated these effects. These neuroprotective and anti-inflammatory effects of naloxone were eliminated when cells were treated with PI3K inhibitors. Our results suggest that NLRP3 inflammasome is a potential therapeutic target and that naloxone reduces ischemic injury in NSCs by inhibiting NLRP3 inflammasome activation/assembly mediated by the activation of the PI3K signaling pathway.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Nuclear Medicine, Hanyang University College of Medicine, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri-si, Gyeonggi-do, 11923, Republic of Korea
| | - Mina Hwang
- Department of Neurology, Hanyang University College of Medicine, 153, Gyeongchun-ro, Guri-si, Gyeonggi-do, 11923, Republic of Korea
| | - Na-Young Choi
- Department of Neurology, Hanyang University College of Medicine, 153, Gyeongchun-ro, Guri-si, Gyeonggi-do, 11923, Republic of Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University College of Medicine, 153, Gyeongchun-ro, Guri-si, Gyeonggi-do, 11923, Republic of Korea.
| |
Collapse
|
11
|
Schmidt-Morgenroth I, Michaud P, Gasparini F, Avrameas A. Central and Peripheral Inflammation in Mild Cognitive Impairment in the Context of Alzheimer's Disease. Int J Mol Sci 2023; 24:10523. [PMID: 37445700 DOI: 10.3390/ijms241310523] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Mild cognitive impairment (MCI) is characterized by an abnormal decline in mental and cognitive function compared with normal cognitive aging. It is an underlying condition of Alzheimer's disease (AD), an irreversible neurodegenerative disease. In recent years, neuroinflammation has been investigated as a new leading target that contributes to MCI progression into AD. Understanding the mechanism underlying inflammatory processes involved in the early onset of the disease could help find a safe and effective way to diagnose and treat patients. In this article, we assessed over twenty different blood and cerebrospinal fluid (CSF) inflammatory biomarker concentrations with immunoassay methods in patients with MCI (mild cognitive impairment), non-impaired control (NIC), and serum healthy control (HC). We performed group comparisons and analyzed in-group correlations between the biomarkers. We included 107 participants (mean age: 64.7 ± 7.8, women: 58.9%). CSF osteopontin and YKL-40 were significantly increased in the MCI group, whereas serum C-reactive protein and interleukin-6 were significantly higher (p < 0.001) in the NIC group compared with the MCI and HC groups. Stronger correlations between interleukin-1β and inflammasome markers were observed in the serum of the MCI group. We confirmed specific inflammatory activation in the central nervous system and interleukin-1β pathway upregulation in the serum of the MCI cohort.
Collapse
Affiliation(s)
- Inès Schmidt-Morgenroth
- Novartis Institutes for Biomedical Research (NIBR), Translational Medicine, 4056 Basel, Switzerland
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, 63000 Clermont-Ferrand, France
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, 63000 Clermont-Ferrand, France
| | - Fabrizio Gasparini
- Novartis Institutes for Biomedical Research (NIBR), Translational Medicine, 4056 Basel, Switzerland
| | - Alexandre Avrameas
- Novartis Institutes for Biomedical Research (NIBR), Translational Medicine, 4056 Basel, Switzerland
| |
Collapse
|
12
|
Chen L, Zhao S, Wang Y, Niu X, Zhang B, Li X, Peng D. Genetic Insights into Obesity and Brain: Combine Mendelian Randomization Study and Gene Expression Analysis. Brain Sci 2023; 13:892. [PMID: 37371369 PMCID: PMC10295948 DOI: 10.3390/brainsci13060892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
As a major public-health concern, obesity is imposing an increasing social burden around the world. The link between obesity and brain-health problems has been reported, but controversy remains. To investigate the relationship among obesity, brain-structure changes and diseases, a two-stage analysis was performed. At first, we used the Mendelian-randomization (MR) approach to identify the causal relationship between obesity and cerebral structure. Obesity-related data were retrieved from the Genetic Investigation of ANthropometric Traits (GIANT) consortium and the UK Biobank, whereas the cortical morphological data were from the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) consortium. Further, we extracted region-specific expressed genes according to the Allen Human Brian Atlas (AHBA) and carried out a series of bioinformatics analyses to find the potential mechanism of obesity and diseases. In the univariable MR, a higher body mass index (BMI) or larger visceral adipose tissue (VAT) was associated with a smaller global cortical thickness (pBMI = 0.006, pVAT = 1.34 × 10-4). Regional associations were found between obesity and specific gyrus regions, mainly in the fusiform gyrus and inferior parietal gyrus. Multivariable MR results showed that a greater body fat percentage was linked to a smaller fusiform-gyrus thickness (p = 0.029) and precuneus surface area (p = 0.035). As for the gene analysis, region-related genes were enriched to several neurobiological processes, such as compound transport, neuropeptide-signaling pathway, and neuroactive ligand-receptor interaction. These genes contained a strong relationship with some neuropsychiatric diseases, such as Alzheimer's disease, epilepsy, and other disorders. Our results reveal a causal relationship between obesity and brain abnormalities and suggest a pathway from obesity to brain-structure abnormalities to neuropsychiatric diseases.
Collapse
Affiliation(s)
- Leian Chen
- Department of Neurology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100029, China
| | - Shaokun Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Yuye Wang
- Department of Neurology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100029, China
| | - Xiaoqian Niu
- Department of Neurology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Bin Zhang
- Department of Neurology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100029, China
| | - Xin Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Dantao Peng
- Department of Neurology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100029, China
- Department of Neurology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| |
Collapse
|
13
|
Shvachiy L, Amaro-Leal Â, Outeiro TF, Rocha I, Geraldes V. Intermittent Lead Exposure Induces Behavioral and Cardiovascular Alterations Associated with Neuroinflammation. Cells 2023; 12:cells12050818. [PMID: 36899953 PMCID: PMC10000953 DOI: 10.3390/cells12050818] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
The nervous system is the primary target for lead exposure and the developing brain appears to be especially susceptible, namely the hippocampus. The mechanisms of lead neurotoxicity remain unclear, but microgliosis and astrogliosis are potential candidates, leading to an inflammatory cascade and interrupting the pathways involved in hippocampal functions. Moreover, these molecular changes can be impactful as they may contribute to the pathophysiology of behavioral deficits and cardiovascular complications observed in chronic lead exposure. Nevertheless, the health effects and the underlying influence mechanism of intermittent lead exposure in the nervous and cardiovascular systems are still vague. Thus, we used a rat model of intermittent lead exposure to determine the systemic effects of lead and on microglial and astroglial activation in the hippocampal dentate gyrus throughout time. In this study, the intermittent group was exposed to lead from the fetal period until 12 weeks of age, no exposure (tap water) until 20 weeks, and a second exposure from 20 to 28 weeks of age. A control group (without lead exposure) matched in age and sex was used. At 12, 20 and 28 weeks of age, both groups were submitted to a physiological and behavioral evaluation. Behavioral tests were performed for the assessment of anxiety-like behavior and locomotor activity (open-field test), and memory (novel object recognition test). In the physiological evaluation, in an acute experiment, blood pressure, electrocardiogram, and heart and respiratory rates were recorded, and autonomic reflexes were evaluated. The expression of GFAP, Iba-1, NeuN and Synaptophysin in the hippocampal dentate gyrus was assessed. Intermittent lead exposure induced microgliosis and astrogliosis in the hippocampus of rats and changes in behavioral and cardiovascular function. We identified increases in GFAP and Iba1 markers together with presynaptic dysfunction in the hippocampus, concomitant with behavioral changes. This type of exposure produced significant long-term memory dysfunction. Regarding physiological changes, hypertension, tachypnea, baroreceptor reflex impairment and increased chemoreceptor reflex sensitivity were observed. In conclusion, the present study demonstrated the potential of lead intermittent exposure inducing reactive astrogliosis and microgliosis, along with a presynaptic loss that was accompanied by alterations of homeostatic mechanisms. This suggests that chronic neuroinflammation promoted by intermittent lead exposure since fetal period may increase the susceptibility to adverse events in individuals with pre-existing cardiovascular disease and/or in the elderly.
Collapse
Affiliation(s)
- Liana Shvachiy
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal
- Institute of Physiology, Faculty of Medicine of the University of Lisbon, 1649-028 Lisbon, Portugal
| | - Ângela Amaro-Leal
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal
- Institute of Physiology, Faculty of Medicine of the University of Lisbon, 1649-028 Lisbon, Portugal
| | - Tiago F. Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany
- Max Planck Institute for Natural Science, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37073 Göttingen, Germany
| | - Isabel Rocha
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal
- Institute of Physiology, Faculty of Medicine of the University of Lisbon, 1649-028 Lisbon, Portugal
| | - Vera Geraldes
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal
- Institute of Physiology, Faculty of Medicine of the University of Lisbon, 1649-028 Lisbon, Portugal
- Correspondence: ; Tel.: +351-217999435
| |
Collapse
|
14
|
Xu J, Ni B, Ma C, Rong S, Gao H, Zhang L, Xiang X, Huang Q, Deng Q, Huang F. Docosahexaenoic acid enhances hippocampal insulin sensitivity to promote cognitive function of aged rats on a high-fat diet. J Adv Res 2023; 45:31-42. [PMID: 35618634 PMCID: PMC10006543 DOI: 10.1016/j.jare.2022.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/18/2022] [Accepted: 04/24/2022] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Diminished brain insulin sensitivity is associated with reduced cognitive function. Docosahexaenoic acid (DHA) is known to maintain normal brain function. OBJECTIVES This study aimed to determine whether DHA impacts hippocampal insulin sensitivity and cognitive function in aged rats fed a high-fat diet (HFD). METHODS Eight-month-old female Sprague-Dawley rats were randomly divided into three groups (n = 50 each). Rats in the aged group, HFD group, and DHA treatment group received standard diet (10 kcal% fat), HFD (45 kcal% fat), and DHA-enriched HFD (45 kcal% fat, 1% DHA, W/W) for 10 months, respectively. Four-month-old female rats (n = 40) that received a standard diet served as young controls. Neuroinflammation, oxidative stress, amyloid formation, and tau phosphorylation in the hippocampus, as well as systemic glucose homeostasis and cognitive function, were tested. RESULTS DHA treatment relieved a block in the insulin signaling pathway and consequently protected aged rats against HFD-induced hippocampal insulin resistance. The beneficial effects were explained by a DHA-induced decrease in systemic glucose homeostasis dysregulation, hippocampal neuroinflammation and oxidative stress. In addition, DHA treatment broke the reciprocal cycle of hippocampal insulin resistance, Aβ burden, and tau hyperphosphorylation. Importantly, treatment of model rats with DHA significantly increased their cognitive capacity, as evidenced by their increased hippocampal-dependent learning and memory, restored neuron morphology, enhanced cholinergic activity, and activated cyclic AMP-response element-binding protein. CONCLUSION DHA improves cognitive function by enhancing hippocampal insulin sensitivity.
Collapse
Affiliation(s)
- Jiqu Xu
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China
| | - Ben Ni
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China
| | - Congcong Ma
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China
| | - Shuang Rong
- Department of Nutrition and Food Hygiene, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P.R. China
| | - Hui Gao
- Department of Clinical Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, P.R. China
| | - Li Zhang
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, No. 11, Lingjiaohu Road, Wuhan 430015, P.R. China
| | - Xia Xiang
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China
| | - Qingde Huang
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China
| | - Qianchun Deng
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China
| | - Fenghong Huang
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, P.R. China.
| |
Collapse
|
15
|
de Melo MFFT, de Souza MA, de Cássia Ramos do Egypto Queiroga R, Soares JKB. Functionality of bioactive lipids in cognitive function. BIOACTIVE LIPIDS 2023:169-190. [DOI: 10.1016/b978-0-12-824043-4.00010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
16
|
Sharma S, Borski C, Hanson J, Garcia MA, Link CD, Hoeffer C, Chatterjee A, Nagpal P. Identifying an Optimal Neuroinflammation Treatment Using a Nanoligomer Discovery Engine. ACS Chem Neurosci 2022; 13:3247-3256. [PMID: 36410860 DOI: 10.1021/acschemneuro.2c00365] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Acute activation of innate immune response in the brain, or neuroinflammation, protects this vital organ from a range of external pathogens and promotes healing after traumatic brain injury. However, chronic neuroinflammation leading to the activation of immune cells like microglia and astrocytes causes damage to the nervous tissue, and it is causally linked to a range of neurodegenerative diseases such as Alzheimer's diseases (AD), Multiple Sclerosis (MS), Parkinson's disease (PD), and many others. While neuroinflammation is a key target for a range of neuropathological diseases, there is a lack of effective countermeasures to tackle it, and existing experimental therapies require fairly invasive intracerebral and intrathecal delivery due to difficulty associated with the therapeutic crossover between the blood-brain barrier, making such treatments impractical to treat neuroinflammation long-term. Here, we present the development of an optimal neurotherapeutic using our Nanoligomer Discovery Engine, by screening downregulation of several proinflammatory cytokines (e.g., Interleukin-1β or IL-1β, tumor necrosis factor-alpha or TNF-α, TNF receptor 1 or TNFR1, Interleukin 6 or IL-6), inflammasomes (e.g., NLRP1), key transcription factors (e.g., nuclear factor kappa-B or NF-κβ) and their combinations, as upstream regulators and canonical pathway targets, to identify and validate the best-in-class treatment. Using our high-throughput drug discovery, target validation, and lead molecule identification via a bioinformatics and artificial intelligence-based ranking method to design sequence-specific peptide molecules to up- or downregulate gene expression of the targeted gene at will, we used our discovery engine to perturb and identify most effective upstream regulators and canonical pathways for therapeutic intervention to reverse neuroinflammation. The lead neurotherapeutic was a combination of Nanoligomers targeted to NF-κβ (SB.201.17D.8_NF-κβ1) and TNFR1 (SB.201.18D.6_TNFR1), which were identified using in vitro cell-based screening in donor-derived human astrocytes and further validated in vivo using a mouse model of lipopolysaccharide (LPS)-induced neuroinflammation. The combination treatment SB_NI_111 was delivered without any special formulation using a simple intraperitoneal injection of low dose (5 mg/kg) and was found to significantly suppress the expression of LPS-induced neuroinflammation in mouse hippocampus. These results point to the broader applicability of this approach towards the development of therapies for chronic neuroinflammation-linked neurodegenerative diseases, sleep countermeasures, and others, and the potential for further investigation of the lead neurotherapeutic molecule as reversible gene therapy.
Collapse
Affiliation(s)
- Sadhana Sharma
- Sachi Bioworks, Colorado Technology Center, 685 S Arthur AvenueLouisville, Colorado 80027, United States
| | - Curtis Borski
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Jessica Hanson
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Micklaus A Garcia
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Christopher D Link
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Charles Hoeffer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Anushree Chatterjee
- Sachi Bioworks, Colorado Technology Center, 685 S Arthur AvenueLouisville, Colorado 80027, United States
| | - Prashant Nagpal
- Sachi Bioworks, Colorado Technology Center, 685 S Arthur AvenueLouisville, Colorado 80027, United States
| |
Collapse
|
17
|
Dopamine D2 receptor agonist Bromocriptine ameliorates Aβ 1-42-induced memory deficits and neuroinflammation in mice. Eur J Pharmacol 2022; 938:175443. [PMID: 36470446 DOI: 10.1016/j.ejphar.2022.175443] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Alzheimer's Disease (AD) is the most common neurodegenerative disease, which lacks disease-modifying therapeutics so far. Studies have shown that the dysfunction of the dopaminergic system is related to a variety of pathophysiology of AD, and the expression of Dopamine D2 receptor (DRD2) in the brains of AD patients and animal models is significantly downregulated, suggesting that DRD2 may represent a therapeutic target for AD. However, the strategy of targeting DRD2 for AD treatment still lacks some key experimental evidences. Here we show that DRD2 agonist Bromocriptine improved Aβ1-42 induced neuroinflammation, neuronal apoptosis, and memory deficits in mice. For animal study, the mice have injected intracerebroventricularly (i.c.v.) with Aβ1-42(410 pmol/5 μl) to induced AD cognitive deficit model (Mazzola et al., 2003; van der Stelt et al., 2006). After 7 days, Bromocriptine (2.5 mg/kg, 5 mg/kg and 10 mg/kg) or normal saline was administered intragastrically once a day for 30 days. Behavioral tests about the Y maze and Morris water maze in mice were initiated on the twenty-fourth day of drug administration for 7 days. In vivo and in vitro mechanism research revealed that Bromocriptine, via activating DRD2, promoted the recruitment of PP2A and JNK by scaffold protein β-arrestin 2, that repressed JNK-mediated transcription of proinflammatory cytokines and activation of NLRP3 inflammasome in microglia. Collectively, our findings suggest that Bromocriptine can ameliorate Aβ1-42 induced neuroinflammation and memory deficits in mice through DRD2/β-arrestin 2/PP2A/JNK signaling axis, which provides an experimental basis for the development of Bromocriptine as a drug for AD.
Collapse
|
18
|
Bi F, Bai Y, Zhang Y, Liu W. Ligustroflavone exerts neuroprotective activity through suppression of NLRP1 inflammasome in ischaemic stroke mice. Exp Ther Med 2022; 25:8. [PMID: 36561613 PMCID: PMC9748641 DOI: 10.3892/etm.2022.11707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammation is thought to play an important role in the pathophysiology of ischaemic stroke, which is a main cause of disability and morbidity worldwide. Inhibition of the NOD-like receptor protein 1 (NLRP1) inflammasome has been reported to alleviate the inflammatory response in cell and animal models. Ligustroflavone (LIG) is a compound derived from Ligustrum lucidum, which shows anti-inflammatory activity and may play a beneficial role in a number of neurological diseases. To date, the potential for LIG to act through NLRP1 as a treatment for ischemic stroke has not been studied. The present study established an ischaemic stroke model by middle cerebral artery occlusion (MCAO). Modified neurological severity scoring, open-field and the Rotarod test were used to assess neurological deficits. Staining with Hoechst 33258 and western blotting were used to evaluate neuronal damage. Expression levels of NLRP1 inflammasome complexes and inflammatory cytokines were determined using western blotting, enzyme-linked immunosorbent assay and reverse transcription-quantitative PCR. Treatment with LIG minimized the impairment of neurological function and blocked neuronal damage in MCAO mice. In addition, treatment with LIG attenuated the upregulation of expression levels of the NLRP1 inflammasome complexes and the inflammatory cytokines TNF-α, IL-18, IL-6 and IL-1β. Overall, LIG played an important role in anti-inflammatory and neuroprotective activity in MCAO models of ischaemic stroke.
Collapse
Affiliation(s)
- Fangfang Bi
- Department of Medicine, Xi'an Peihua University, Xi'an, Shaanxi 710125, P.R. China
| | - Ya Bai
- Department of Neurosurgery, Xijing Hospital, Xi'an, Shaanxi 710032, P.R. China
| | - Yiyong Zhang
- Department of Neurosurgery, Jinan Jiyang District People's Hospital, Jinan, Shandong 251401, P.R. China
| | - Wenbo Liu
- Translational Research Institute of Intensive Care Medicine, College of Anaesthesiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China,Correspondence to: Professor Wenbo Liu, Translational Research Institute of Intensive Care Medicine, College of Anaesthesiology, Weifang Medical University, 7166 Baotong West Street, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
19
|
Chiu YJ, Lin TH, Chang KH, Lin W, Hsieh-Li HM, Su MT, Chen CM, Sun YC, Lee-Chen GJ. Novel TRKB agonists activate TRKB and downstream ERK and AKT signaling to protect Aβ-GFP SH-SY5Y cells against Aβ toxicity. Aging (Albany NY) 2022; 14:7568-7586. [PMID: 36170028 PMCID: PMC9550238 DOI: 10.18632/aging.204306] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/17/2022] [Indexed: 11/28/2022]
Abstract
Decreased BDNF and impaired TRKB signaling contribute to neurodegeneration in Alzheimer’s disease (AD). We have shown previously that coumarin derivative LM-031 enhanced CREB/BDNF/BCL2 pathway. In this study we explored if LM-031 analogs LMDS-1 to -4 may act as TRKB agonists to protect SH-SY5Y cells against Aβ toxicity. By docking computation for binding with TRKB using 7,8-DHF as a control, all four LMDS compounds displayed potential of binding to domain d5 of TRKB. In addition, all four LMDS compounds exhibited anti-aggregation and neuroprotective efficacy on SH-SY5Y cells with induced Aβ-GFP expression. Knock-down of TRKB significantly attenuated TRKB downstream signaling and the neurite outgrowth-promoting effects of these LMDS compounds. Among them, LMDS-1 and -2 were further examined for TRKB signaling. Treatment of ERK inhibitor U0126 or PI3K inhibitor wortmannin decreased p-CREB, BDNF and BCL2 in Aβ-GFP cells, implicating the neuroprotective effects are via activating TRKB downstream ERK, PI3K-AKT and CREB signaling. LMDS-1 and -2 are blood–brain barrier permeable as shown by parallel artificial membrane permeability assay. Our results demonstrate how LMDS-1 and -2 are likely to work as TRKB agonists to exert neuroprotection in Aβ cells, which may shed light on the potential application in therapeutics of AD.
Collapse
Affiliation(s)
- Ya-Jen Chiu
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Te-Hsien Lin
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Ming-Tsan Su
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Ying-Chieh Sun
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
20
|
Synthesis and evaluation of new 2-oxo-1,2-dihydroquinoline-3-carboxamides as potent inhibitors against acetylcholinesterase enzyme. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02922-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Blevins HM, Xu Y, Biby S, Zhang S. The NLRP3 Inflammasome Pathway: A Review of Mechanisms and Inhibitors for the Treatment of Inflammatory Diseases. Front Aging Neurosci 2022; 14:879021. [PMID: 35754962 PMCID: PMC9226403 DOI: 10.3389/fnagi.2022.879021] [Citation(s) in RCA: 176] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022] Open
Abstract
The NLRP3 inflammasome is a multiprotein complex that plays a pivotal role in regulating the innate immune system and inflammatory signaling. Upon activation by PAMPs and DAMPs, NLRP3 oligomerizes and activates caspase-1 which initiates the processing and release of pro-inflammatory cytokines IL-1β and IL-18. NLRP3 is the most extensively studied inflammasome to date due to its array of activators and aberrant activation in several inflammatory diseases. Studies using small molecules and biologics targeting the NLRP3 inflammasome pathway have shown positive outcomes in treating various disease pathologies by blocking chronic inflammation. In this review, we discuss the recent advances in understanding the NLRP3 mechanism, its role in disease pathology, and provide a broad review of therapeutics discovered to target the NLRP3 pathway and their challenges.
Collapse
Affiliation(s)
| | | | | | - Shijun Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
22
|
Tan MS, Liu Y, Hu H, Tan CC, Tan L. Inhibition of caspase-1 ameliorates tauopathy and rescues cognitive impairment in SAMP8 mice. Metab Brain Dis 2022; 37:1197-1205. [PMID: 35143023 DOI: 10.1007/s11011-022-00914-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/14/2022] [Indexed: 10/19/2022]
Abstract
The inflammasome assembles leading to increased cleavage and activity of caspase-1 and downstream IL-1β release, which plays a significant role in the pathogenesis of Alzheimer's disease (AD). Previous studies have shown that caspase-1-mediated neuroinflammation occurs early in AD process. However, the detailed role of caspase-1 in aging-related AD-like neuropathology is still unclear so far. In this study, by using SAMP8 mice, an animal model of accelerated aging, we detected the levels of caspase-1 in brains of 3-, 7-, and 11-month-old mice and observed that caspase-1 was activated during aging process. More importantly, we provided the evidence that VX-765, a selective inhibitor of caspase-1, significantly rescued spatial learning and memory impairments and reduced tau hyperphosphorylation in brains of SAMP8 mice at early stages of the disease. This amelioration might be attributed to IL-1β-induced hypoactivation of tau kinases. Our results imply that caspase-1 may represent as a potential therapeutic target for neurodegenerative tauopathies.
Collapse
Affiliation(s)
- Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, People's Republic of China.
| | - Yi Liu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
23
|
SOCE-mediated NFAT1–NOX2–NLRP1 inflammasome involves in lipopolysaccharide-induced neuronal damage and Aβ generation. Mol Neurobiol 2022; 59:3183-3205. [DOI: 10.1007/s12035-021-02717-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022]
|
24
|
Liu Y, Tan MS, Wang ZT, Xu W, Tan L. Caspase-1 variant influencing CSF tau and FDG PET levels in non-demented elders from the ADNI cohort. BMC Neurol 2022; 22:59. [PMID: 35172755 PMCID: PMC8848902 DOI: 10.1186/s12883-022-02582-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/04/2022] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Genetic variations in the inflammatory Caspase-1 gene have been shown associated with cognitive function in elderly individuals and in predisposition to Alzheimer's disease (AD), but its detailed mechanism before the typical AD onset was still unclear. Our current study evaluated the impact of Caspase-1 common variant rs554344 on the pathological processes of brain amyloidosis, tauopathy, and neurodegeneration. METHODS Data used in our study were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. We examined the relationship between Caspase-1 rs554344 allele carrier status with AD-related cerebrospinal fluid (CSF), PET, and MRI measures at baseline by using a multiple linear regression model. We also analyzed the longitudinal effects of this variant on the change rates of CSF biomarkers and imaging data using a mixed effect model. RESULTS We found that Caspase-1 variant was significantly associated with FDG PET levels and CSF t-tau levels at baseline in total non-demented elderly group, and especially in mild cognitive impairment (MCI) subgroup. In addition, this variant was also detected associated with CSF p-tau levels in MCI subgroup. The mediation analysis showed that CSF p-tau partially mediated the association between Caspase-1 variant and CSF t-tau levels, accounting for 80% of the total effect. CONCLUSIONS Our study indicated a potential role of Caspase-1 variant in influencing cognitive function might through changing tau related-neurodegeneration process.
Collapse
Affiliation(s)
- Yi Liu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| |
Collapse
|
25
|
Kolykhalov I, Androsova L, Gavrilova S. Clinical and immunological effects of choline alfoscerate in the treatment of amnestic type Mild Cognitive Impairment. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:59-66. [DOI: 10.17116/jnevro202212211259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Sun D, Gao G, Zhong B, Zhang H, Ding S, Sun Z, Zhang Y, Li W. NLRP1 inflammasome involves in learning and memory impairments and neuronal damages during aging process in mice. Behav Brain Funct 2021; 17:11. [PMID: 34920732 PMCID: PMC8680336 DOI: 10.1186/s12993-021-00185-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/15/2021] [Indexed: 11/14/2022] Open
Abstract
Background Brain aging is an important risk factor in many human diseases, such as Alzheimer’s disease (AD). The production of excess reactive oxygen species (ROS) mediated by nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) and the maturation of inflammatory cytokines caused by activation of the NOD-like receptor protein 1 (NLRP1) inflammasome play central roles in promoting brain aging. However, it is still unclear when and how the neuroinflammation appears in the brain during aging process. Methods In this study, we observed the alterations of learning and memory impairments, neuronal damage, NLRP1 inflammasome activation, ROS production and NOX2 expression in the young 6-month-old (6 M) mice, presenile 16 M mice, and older 20 M and 24 M mice. Results The results indicated that, compared to 6 M mice, the locomotor activity, learning and memory abilities were slightly decreased in 16 M mice, and were significantly decreased in 20 M and 24 M mice, especially in the 24 M mice. The pathological results also showed that there were no significant neuronal damages in 6 M and 16 M mice, while there were obvious neuronal damages in 20 M and 24 M mice, especially in the 24 M group. Consistent with the behavioral and histological changes in the older mice, the activity of β-galactosidase (β-gal), the levels of ROS and IL-1β, and the expressions of NLRP1, ASC, caspase-1, NOX2, p47phox and p22phox were significantly increased in the cortex and hippocampus in the older 20 M and 24 M mice. Conclusion Our study suggested that NLRP1 inflammasome activation may be closely involved in aging-related neuronal damage and may be an important target for preventing brain aging. Supplementary Information The online version contains supplementary material available at 10.1186/s12993-021-00185-x.
Collapse
Affiliation(s)
- Dan Sun
- Department of Pharmacy, The First People's Hospital of Xiaoshan District, 199 Shixin South Road, Hangzhou, 311200, Zhejiang, China
| | - Guofang Gao
- Department of Pharmacy, The First People's Hospital of Xiaoshan District, 199 Shixin South Road, Hangzhou, 311200, Zhejiang, China
| | - Bihua Zhong
- Department of Pharmacy, The First People's Hospital of Xiaoshan District, 199 Shixin South Road, Hangzhou, 311200, Zhejiang, China
| | - Han Zhang
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.,Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shixin Ding
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.,Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhenghao Sun
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.,Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yaodong Zhang
- Department of Pharmacy, The First People's Hospital of Xiaoshan District, 199 Shixin South Road, Hangzhou, 311200, Zhejiang, China
| | - Weizu Li
- Department of Pharmacology, Basic Medicine College, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China. .,Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
27
|
Karkhah A, Saadi M, Pourabdolhossein F, Saleki K, Nouri HR. Indomethacin attenuates neuroinflammation and memory impairment in an STZ-induced model of Alzheimer’s like disease. Immunopharmacol Immunotoxicol 2021. [DOI: 10.1080/08923973.2021.1981374 10.1080/08923973.2021.1981374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Affiliation(s)
- Ahmad Karkhah
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Mahdiye Saadi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Fereshteh Pourabdolhossein
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Hamid Reza Nouri
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
28
|
Karkhah A, Saadi M, Pourabdolhossein F, Saleki K, Nouri HR. Indomethacin attenuates neuroinflammation and memory impairment in an STZ-induced model of Alzheimer's like disease. Immunopharmacol Immunotoxicol 2021; 43:758-766. [PMID: 34585992 DOI: 10.1080/08923973.2021.1981374] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Objective: Non-steroidal anti-inflammatory drugs (NSAIDs) exposure might be considerably associated with a decreased risk of Alzheimer's disease (AD). Therefore, we conducted an experiment to investigate the impact of indomethacin (IND) on inflammasome as a key player of neuroinflammation.Methods: The Alzheimer's-like condition was induced by streptozotocin (STZ) in rats. IND was injected intraperitoneally 1 d prior to STZ administration and resumed with 2 d interval up to 60 d. Morris water maze (MWM) was utilized to assess learning and memory. The expression level of genes that contribute to the inflammasome pathway was measured using real-time polymerase chain reaction (PCR). To authenticate the obtained outcomes, immunostaining for caspase-1, interleukin-1β (IL-1β), and phosphorylated tau (p-Tau) protein was conducted.Results: Behavioral experiments indicated that IND treatment was able to improve learning and memory performance (p<.05). A significant decrease in C-terminal caspase recruitment domain [CARD] domain-containing protein 4 (NLRC4), nucleotide-binding oligomerization domain [NOD]-like receptor protein 3 (NLRP3), IL-1β, and apoptosis-associated speck-like protein containing CARD (ASC) mRNA expression was recorded in IND administered group compared with the STZ group (p<.05). Furthermore, expression levels of IL-18 and caspase-1 in the hippocampus of IND-treated group tended to decrease. Immunostaining evaluations showed that few positive cells for caspase-1, IL-1β, and p-Tau protein in IND treated animals, whereas the number of positive cells was considerably increased in STZ treated animals (p<.05).Conclusion: It could be deduced that IND improves neuroinflammation and memory impairment in AD through decreasing IL-1β and caspase-1 that are associated with suppression of NLRC4 and NLRP3 inflammasome genes. This holds the potential to introduce valuable targets in the field for successful combat against AD.
Collapse
Affiliation(s)
- Ahmad Karkhah
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Mahdiye Saadi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Fereshteh Pourabdolhossein
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Hamid Reza Nouri
- USERN Office, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
29
|
Linagliptin Protects Human SH-SY5Y Neuroblastoma Cells against Amyloid-β Cytotoxicity via the Activation of Wnt1 and Suppression of IL-6 Release. IRANIAN BIOMEDICAL JOURNAL 2021; 25:343-8. [PMID: 34425652 PMCID: PMC8487681 DOI: 10.52547/ibj.25.5.343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background Alzheimer’s disease is one of the neurodegenerative disorders typified by the aggregate of amyloid-β (Aβ) and phosphorylated tau protein. Oxidative stress and neuroinflammation, because of Aβ peptides, are strongly involved in the pathophysiology of Alzheimer’s disease (AD). Linagliptin shows neuroprotective properties against AD pathological processes through alleviation of neural inflammation and AMPK activation. Methods We assessed the benefits of linagliptin pretreatment (at 10, 20, and 50 nM concentrations), against Aβ1-42 toxicity (20 μM) in SH-SY5Y cells. The concentrations of secreted cytokines, such as TNF-α, IL-6, and IL-1β, and signaling proteins, including pCREB, Wnt1, and PKCε, were quantified by ELISA. Results We observed that Aβ led to cellular inflammation, which was assessed by measuring inflammatory cytokines (TNF-α, IL-1β, and IL-6). Moreover, Aβ1-42 treatment impaired pCREB, PKCε, and Wnt1 signaling in human SH-SY5Y neuroblastoma cells. Addition of Linagliptin significantly reduced IL-6 levels in the lysates of cells, treated with Aβ1-42. Furthermore, linagliptin prevented the downregulation of Wnt1 in Aβ1-42-treated cells exposed. Conclusion The current findings reveal that linagliptin alleviates Aβ1-42-induced inflammation in SH-SY5Y cells, probably through the suppression of IL-6 release, and some of its benefits are mediated through the activation of the Wnt1 signaling pathway.
Collapse
|
30
|
Mohamed Asik R, Suganthy N, Aarifa MA, Kumar A, Szigeti K, Mathe D, Gulyás B, Archunan G, Padmanabhan P. Alzheimer's Disease: A Molecular View of β-Amyloid Induced Morbific Events. Biomedicines 2021; 9:biomedicines9091126. [PMID: 34572312 PMCID: PMC8468668 DOI: 10.3390/biomedicines9091126] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022] Open
Abstract
Amyloid-β (Aβ) is a dynamic peptide of Alzheimer’s disease (AD) which accelerates the disease progression. At the cell membrane and cell compartments, the amyloid precursor protein (APP) undergoes amyloidogenic cleavage by β- and γ-secretases and engenders the Aβ. In addition, externally produced Aβ gets inside the cells by receptors mediated internalization. An elevated amount of Aβ yields spontaneous aggregation which causes organelles impairment. Aβ stimulates the hyperphosphorylation of tau protein via acceleration by several kinases. Aβ travels to the mitochondria and interacts with its functional complexes, which impairs the mitochondrial function leading to the activation of apoptotic signaling cascade. Aβ disrupts the Ca2+ and protein homeostasis of the endoplasmic reticulum (ER) and Golgi complex (GC) that promotes the organelle stress and inhibits its stress recovery machinery such as unfolded protein response (UPR) and ER-associated degradation (ERAD). At lysosome, Aβ precedes autophagy dysfunction upon interacting with autophagy molecules. Interestingly, Aβ act as a transcription regulator as well as inhibits telomerase activity. Both Aβ and p-tau interaction with neuronal and glial receptors elevate the inflammatory molecules and persuade inflammation. Here, we have expounded the Aβ mediated events in the cells and its cosmopolitan role on neurodegeneration, and the current clinical status of anti-amyloid therapy.
Collapse
Affiliation(s)
- Rajmohamed Mohamed Asik
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Natarajan Suganthy
- Department of Nanoscience and Technology, Alagappa University, Karaikudi 630003, Tamil Nadu, India;
| | - Mohamed Asik Aarifa
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Arvind Kumar
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India;
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (K.S.); (D.M.)
- CROmed Translational Research Centers, 1094 Budapest, Hungary
| | - Domokos Mathe
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (K.S.); (D.M.)
- CROmed Translational Research Centers, 1094 Budapest, Hungary
- In Vivo Imaging Advanced Core Facility, Hungarian Center of Excellence for Molecular Medicine (HCEMM), 1094 Budapest, Hungary
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Govindaraju Archunan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
- Marudupandiyar College, Thanjavur 613403, Tamil Nadu, India
- Correspondence: (G.A.); (P.P.)
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; (R.M.A.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Correspondence: (G.A.); (P.P.)
| |
Collapse
|
31
|
Gene expression correlates of advanced epigenetic age and psychopathology in postmortem cortical tissue. Neurobiol Stress 2021; 15:100371. [PMID: 34458511 PMCID: PMC8377489 DOI: 10.1016/j.ynstr.2021.100371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 07/02/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022] Open
Abstract
Psychiatric stress has been associated with accelerated epigenetic aging (i.e., when estimates of cellular age based on DNA methylation exceed chronological age) in both blood and brain tissue. Little is known about the downstream biological effects of accelerated epigenetic age on gene expression. In this study we examined associations between DNA methylation-derived estimates of cellular age that range from decelerated to accelerated relative to chronological age (“DNAm age residuals”) and transcriptome-wide gene expression. This was examined using tissue from three post-mortem cortical regions (ventromedial and dorsolateral prefrontal cortex and motor cortex, n = 97) from the VA National PTSD Brain Bank. In addition, we examined how posttraumatic stress disorder (PTSD) and alcohol-use disorders (AUD) moderated the association between DNAm age residuals and gene expression. Transcriptome-wide results across brain regions, psychiatric diagnoses, and cohorts (full sample and male and female subsets) revealed experiment-wide differential expression of 11 genes in association with PTSD or AUD in interaction with DNAm age residuals. This included the inflammation-related genes IL1B, RCOR2, and GCNT1. Candidate gene class analyses and gene network enrichment analyses further supported differential expression of inflammation/immune gene networks as well as glucocorticoid, circadian, and oxidative stress-related genes. Gene co-expression network modules suggested enrichment of myelination related processes and oligodendrocyte enrichment in association with DNAm age residuals in the presence of psychopathology. Collectively, results suggest that psychiatric stress accentuates the association between advanced epigenetic age and expression of inflammation genes in the brain. This highlights the role of inflammatory processes in the pathophysiology of accelerated cellular aging and suggests that inflammatory pathways may link accelerated cellular aging to premature disease onset and neurodegeneration, particularly in stressed populations. This suggests that anti-inflammatory interventions may be an important direction to pursue in evaluating ways to prevent or delay cellular aging and increase resilience to diseases of aging.
Collapse
|
32
|
Cardona K, Medina J, Orrego-Cardozo M, Restrepo de Mejía F, Elcoroaristizabal X, Naranjo Galvis CA. Inflammatory gene expression profiling in peripheral blood from patients with Alzheimer's disease reveals key pathways and hub genes with potential diagnostic utility: a preliminary study. PeerJ 2021; 9:e12016. [PMID: 34484988 PMCID: PMC8381883 DOI: 10.7717/peerj.12016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/29/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is an age-related neurodegenerative disease caused by central nervous system disorders. Late-onset Alzheimer disease (LOAD) is the most common neurodegenerative disorder worldwide. Differences at the expression level of certain genes, resulting from either genetic variations or environmental interactions, might be one of the mechanisms underlying differential risks for developing AD. Peripheral blood genome transcriptional profiling may provide a powerful and minimally invasive tool for the identification of novel targets beyond Aβ and tau for AD research. METHODS This preliminary study explores molecular pathogenesis of LOAD-related inflammation through next generation sequencing, to assess RNA expression profiles in peripheral blood from five patients with LOAD and 10 healthy controls. RESULTS The analysis of RNA expression profiles revealed 94 genes up-regulated and 147 down-regulated. Gene function analysis, including Gene Ontology (GO) and KOBAS-Kyoto Encyclopedia of DEGs and Genomes (KEGG) pathways indicated upregulation of interferon family (INF) signaling, while the down-regulated genes were mainly associated with the cell cycle process. KEGG metabolic pathways mapping showed gene expression alterations in the signaling pathways of JAK/STAT, chemokines, MAP kinases and Alzheimer disease. The results of this preliminary study provided not only a comprehensive picture of gene expression, but also the key processes associated with pathology for the regulation of neuroinflammation, to improve the current mechanisms to treat LOAD.
Collapse
Affiliation(s)
- Kelly Cardona
- Facultad de Salud, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia
| | - Javier Medina
- Facultad de Salud, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia
| | - Mary Orrego-Cardozo
- Facultad de Salud, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia
| | | | | | | |
Collapse
|
33
|
Zhang Y, Ding S, Chen Y, Sun Z, Zhang J, Han Y, Dong X, Fang Z, Li W. Ginsenoside Rg1 alleviates lipopolysaccharide-induced neuronal damage by inhibiting NLRP1 inflammasomes in HT22 cells. Exp Ther Med 2021; 22:782. [PMID: 34055081 PMCID: PMC8145787 DOI: 10.3892/etm.2021.10214] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Lipopolysaccharide (LPS) is a toxic component of cell walls of Gram-negative bacteria that are widely present in gastrointestinal tracts. Increasing evidence showed that LPS plays important roles in the pathogeneses of neurodegenerative disorders, such as Alzheimer's disease (AD). NADPH oxidase s2 (NOX2) is a complex membrane protein that contributes to the production of reactive oxygen species (ROS) in several neurological diseases. The NLRP1 inflammasome can be activated in response to an accumulation of ROS in neurons. However, it is still unknown whether LPS exposure can deteriorate neuronal damage by activating NOX2-NLRP1 inflammasomes. Ginsenoside Rg1 (Rg1) has protective effects on neurons, although whether Rg1 alleviates LPS-induced neuronal damage by inhibiting NOX2-NLRP1 inflammasomes remains unclear. In the present study, the effect of concentration gradients and different times of LPS exposure on neuronal damage was investigated in HT22 cells, and further observed the effect of Rg1 treatment on NOX2-NLPR1 inflammasome activation, ROS production and neuronal damage in LPS-treated HT22 cells. The results demonstrated that LPS exposure significantly induced NOX2-NLRP1 inflammasome activation, excessive production of ROS, and neuronal damage in HT22 cells. It was also shown that Rg1 treatment significantly decreased NOX2-NLRP1 inflammasome activation and ROS production and alleviated neuronal damage in LPS-induced HT22 cells. The present data suggested that Rg1 has protective effects on LPS-induced neuronal damage by inhibiting NOX2-NLRP1 inflammasomes in HT22 cells, and Rg1 may be a potential therapeutic approach for delaying neuronal damage in AD.
Collapse
Affiliation(s)
- Yaodong Zhang
- Department of Pharmacy, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang 311200, P.R. China
| | - Shixin Ding
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yali Chen
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhenghao Sun
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Junyan Zhang
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuli Han
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xianan Dong
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhirui Fang
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Weizu Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
34
|
Ghanbari M, Momen Maragheh S, Aghazadeh A, Mehrjuyan SR, Hussen BM, Abdoli Shadbad M, Dastmalchi N, Safaralizadeh R. Interleukin-1 in obesity-related low-grade inflammation: From molecular mechanisms to therapeutic strategies. Int Immunopharmacol 2021; 96:107765. [PMID: 34015596 DOI: 10.1016/j.intimp.2021.107765] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
Since adipose tissue (AT) can upregulate pro-inflammatory interleukins (ILs) via storing extra lipids in obesity, obesity is considered the leading cause of chronic low-grade inflammation. These ILs can pave the way for the infiltration of immune cells into the AT, ultimately resulting in low-grade inflammation and dysregulation of adipocytes. IL-1, which is divided into two subclasses, i.e., IL-1α and IL-1β, is a critical pro-inflammatory factor. In obesity, IL-1α and IL-1β can promote insulin resistance via impairing the function of adipocytes and promoting inflammation. The current study aims to review the detailed molecular mechanisms and the roles of IL-1α and IL-1β and their antagonist, interleukin-1 receptor antagonist(IL-1Ra), in developing obesity-related inflammatory complications, i.e., type II diabetes (T2D), non-alcoholic steatohepatitis (NASH), atherosclerosis, and cognitive disorders. Besides, the current study discusses the recent advances in natural drugs, synthetic agents, and gene therapy approaches to treat obesity-related inflammatory complications via suppressing IL-1.
Collapse
Affiliation(s)
- Mohammad Ghanbari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Aida Aghazadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | | | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Dastmalchi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
35
|
Vogrinc D, Goričar K, Dolžan V. Genetic Variability in Molecular Pathways Implicated in Alzheimer's Disease: A Comprehensive Review. Front Aging Neurosci 2021; 13:646901. [PMID: 33815092 PMCID: PMC8012500 DOI: 10.3389/fnagi.2021.646901] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease, affecting a significant part of the population. The majority of AD cases occur in the elderly with a typical age of onset of the disease above 65 years. AD presents a major burden for the healthcare system and since population is rapidly aging, the burden of the disease will increase in the future. However, no effective drug treatment for a full-blown disease has been developed to date. The genetic background of AD is extensively studied; numerous genome-wide association studies (GWAS) identified significant genes associated with increased risk of AD development. This review summarizes more than 100 risk loci. Many of them may serve as biomarkers of AD progression, even in the preclinical stage of the disease. Furthermore, we used GWAS data to identify key pathways of AD pathogenesis: cellular processes, metabolic processes, biological regulation, localization, transport, regulation of cellular processes, and neurological system processes. Gene clustering into molecular pathways can provide background for identification of novel molecular targets and may support the development of tailored and personalized treatment of AD.
Collapse
Affiliation(s)
| | | | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
36
|
Sebastian-Valverde M, Wu H, Al Rahim M, Sanchez R, Kumar K, De Vita RJ, Pasinetti GM. Discovery and characterization of small-molecule inhibitors of NLRP3 and NLRC4 inflammasomes. J Biol Chem 2021; 296:100597. [PMID: 33781745 PMCID: PMC8095128 DOI: 10.1016/j.jbc.2021.100597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
Inflammasomes are macromolecular complexes involved in the host response to external and endogenous danger signals. Inflammasome-mediated sterile inflammation plays a central role in several human conditions such as autoimmune diseases, type-2 diabetes, and neurodegenerative disorders, indicating inflammasomes could be appealing therapeutic targets. Previous work has demonstrated that inhibiting the ATPase activity of the nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3), disrupts inflammasome assembly and function. However, there is a necessity to find new potent compounds with therapeutic potential. Here we combine computational modeling of the target and virtual screening to discover a group of novel compounds predicted to inhibit NLRP3. We characterized the best compounds and determined their potency, specificity, and ability to inhibit processes downstream from NLRP3 activation. Moreover, we analyzed in mice the competence of a lead candidate to reduce lipopolysaccharide-induced inflammation. We also validated the active pharmacophore shared among all the NLRP3 inhibitors, and through computational docking, we clarify key structural features for compound positioning within the inflammasome ATP-binding site. Our study sets the basis for rational design and optimization of inflammasome-targeting probes and drugs.
Collapse
Affiliation(s)
| | - Henry Wu
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Md Al Rahim
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Roberto Sanchez
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kunal Kumar
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert J De Vita
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA.
| |
Collapse
|
37
|
Yang L, Liu Y, Wang Y, Li J, Liu N. Azeliragon ameliorates Alzheimer's disease via the Janus tyrosine kinase and signal transducer and activator of transcription signaling pathway. Clinics (Sao Paulo) 2021; 76:e2348. [PMID: 33681944 PMCID: PMC7920406 DOI: 10.6061/clinics/2021/e2348] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/05/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES TTP488, an antagonist of the receptor for advanced glycation end-products, was evaluated as a potential treatment for patients with mild-to-moderate Alzheimer's disease (AD). However, the mechanism underlying the protective action of TTP488 against AD has not yet been fully explored. METHODS Healthy male rats were exposed to aberrant amyloid β (Aβ) 1-42. Lipopolysaccharide (LPS) and the NOD-like receptor family pyrin domain containing 1 (NLRP1) overexpression lentivirus were injected to activate the NLRP1 inflammasome and exacerbate AD. TTP488 was administered to reverse AD injury. Finally, tofacitinib and fludarabine were used to inhibit the activity of Janus tyrosine kinase (JAK) and signal transducer and activator of transcription (STAT) to prove the relationship between the JAK/STAT signaling pathway and TTP488. RESULTS LPS and NLRP1 overexpression significantly increased the NLRP1 levels, reduced neurological function, and aggravated neuronal damage, as demonstrated by the impact latency time of, time spent by, and length of the platform covered by, the mice in the Morris water maze assay, Nissl staining, and immunofluorescence staining in rats with AD. CONCLUSIONS TTP488 administration successfully reduced AD injury and reversed the aforementioned processes. Additionally, tofacitinib and fludarabine administration could further reverse AD injury after the TTP488 intervention. These results suggest a new potential mechanism underlying the TTP488-mediated alleviation of AD injury.
Collapse
Affiliation(s)
- Lijuan Yang
- Nursing Faculty of Xingtai Medical College, Xingtai, Hebei 054008, China
| | - Yepei Liu
- Medical Image Center, Xingtai City Fifth Hospital, Xingtai, Hebei 054008, China
| | - Yuanyuan Wang
- Nursing Faculty of Xingtai Medical College, Xingtai, Hebei 054008, China
| | - Junsheng Li
- Nursing Faculty of Xingtai Medical College, Xingtai, Hebei 054008, China
- *Corresponding authors. E-mails: /
| | - Na Liu
- Nursing Faculty of Xingtai Medical College, Xingtai, Hebei 054008, China
- *Corresponding authors. E-mails: /
| |
Collapse
|
38
|
Therapeutic role of inflammasome inhibitors in neurodegenerative disorders. Brain Behav Immun 2021; 91:771-783. [PMID: 33157255 DOI: 10.1016/j.bbi.2020.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/16/2022] Open
Abstract
Neuroinflammation, characterized by the activation of glial cells, is a hallmark in several neurological and neurodegenerative disorders. Inadequate inflammation cannot eliminate the infection of pathogens, while excessive or hyper-reactive inflammation can cause chronic or systemic inflammatory diseases affecting the central nervous system (CNS). In response to a brain injury or pathogen invasion, the pathogen recognition receptors (PRRs) expressed on glial cells are activated via binding to cellular damage-associated molecular patterns (DAMPs) or pathogen-associated molecular patterns (PAMPs). This subsequently leads to the activation of NOD (nucleotide-binding oligomerization domain)-like receptor proteins (NLRs). In neurodegenerative diseases such as HIV-1-associated neurocognitive disorders (HAND), Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS), chronic inflammation is a critical contributing factor for disease manifestation including pathogenesis. Emerging evidence points to the involvement of "inflammasomes", especially the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-containing (NLRP) complex in the development of these diseases. The activated NLRP3 results in the proteolytic activation of caspase-1 that facilitates the cleavage of pro-IL-1β and the secretion of IL-1β and IL-18 proinflammatory cytokines. Accordingly, these and other seminal findings have led to the development of NLRP-targeting small-molecule therapeutics as possible treatment options for neurodegenerative disorders. In this review, we will discuss the new advances and evidence-based literature concerning the role of inflammasomes in neurodegenerative diseases, its role in the neurological repercussions of CNS chronic infection, and the examples of preclinical or clinically tested NLRP inhibitors as potential strategies for the treatment of chronic neurological diseases.
Collapse
|
39
|
Timmerman R, Burm SM, Bajramovic JJ. Tissue-specific features of microglial innate immune responses. Neurochem Int 2020; 142:104924. [PMID: 33248205 DOI: 10.1016/j.neuint.2020.104924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/21/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023]
Abstract
As tissue-resident macrophages of the brain, microglia are increasingly considered as cellular targets for therapeutical intervention. Innate immune responses in particular have been implicated in central nervous system (CNS) infections, neuro-oncology, neuroinflammatory and neurodegenerative diseases. We here review the impact of 'nature and nurture' on microglial innate immune responses and summarize documented tissue-specific adaptations. Overall, such adaptations are associated with regulatory processes rather than with overt differences in the expressed repertoire of activating receptors of different tissue-resident macrophages. Microglial responses are characterized by slower kinetics, by a more persistent nature and by a differential usage of downstream enzymes and accessory receptors. We further consider factors like aging, previous exposure to inflammatory stimuli, and differences in the microenvironment that can modulate innate immune responses. The long-life span of microglia in the metabolically active CNS renders them susceptible to the phenomenon of 'inflammaging', and major challenges lie in the unraveling of the factors that underlie age-related alterations in microglial behavior.
Collapse
Affiliation(s)
- R Timmerman
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | - S M Burm
- Genmab, Utrecht, the Netherlands
| | - J J Bajramovic
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, the Netherlands.
| |
Collapse
|
40
|
Sil S, Niu F, Chivero ET, Singh S, Periyasamy P, Buch S. Role of Inflammasomes in HIV-1 and Drug Abuse Mediated Neuroinflammaging. Cells 2020; 9:cells9081857. [PMID: 32784383 PMCID: PMC7464640 DOI: 10.3390/cells9081857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the effectiveness of combined antiretroviral therapy (cART) in suppressing virus replication, chronic inflammation remains one of the cardinal features intersecting HIV-1, cART, drug abuse, and likely contributes to the accelerated neurocognitive decline and aging in people living with HIV-1 (PLWH) that abuse drugs. It is also estimated that ~30–60% of PLWH on cART develop cognitive deficits associated with HIV-1-associated neurocognitive disorders (HAND), with symptomatology ranging from asymptomatic to mild, neurocognitive impairments. Adding further complexity to HAND is the comorbidity of drug abuse in PLWH involving activated immune responses and the release of neurotoxins, which, in turn, mediate neuroinflammation. Premature or accelerated aging is another feature of drug abusing PLWH on cART regimes. Emerging studies implicate the role of HIV-1/HIV-1 proteins, cART, and abused drugs in altering the inflammasome signaling in the central nervous system (CNS) cells. It is thus likely that exposure of these cells to HIV-1/HIV-1 proteins, cART, and/or abused drugs could have synergistic/additive effects on the activation of inflammasomes, in turn, leading to exacerbated neuroinflammation, ultimately resulting in premature aging referred to as “inflammaging” In this review, we summarize the current knowledge of inflammasome activation, neuroinflammation, and aging in central nervous system (CNS) cells such as microglia, astrocytes, and neurons in the context of HIV-1 and drug abuse.
Collapse
Affiliation(s)
| | | | | | | | | | - Shilpa Buch
- Correspondence: (P.P.); (S.B.); Tel.: +1-402-559-3165 (S.B.)
| |
Collapse
|
41
|
Heckmann BL, Teubner BJW, Boada-Romero E, Tummers B, Guy C, Fitzgerald P, Mayer U, Carding S, Zakharenko SS, Wileman T, Green DR. Noncanonical function of an autophagy protein prevents spontaneous Alzheimer's disease. SCIENCE ADVANCES 2020; 6:eabb9036. [PMID: 32851186 PMCID: PMC7428329 DOI: 10.1126/sciadv.abb9036] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/02/2020] [Indexed: 05/02/2023]
Abstract
Noncanonical functions of autophagy proteins have been implicated in neurodegenerative conditions, including Alzheimer's disease (AD). The WD domain of the autophagy protein Atg16L is dispensable for canonical autophagy but required for its noncanonical functions. Two-year-old mice lacking this domain presented with robust β-amyloid (Aβ) pathology, tau hyperphosphorylation, reactive microgliosis, pervasive neurodegeneration, and severe behavioral and memory deficiencies, consistent with human disease. Mechanistically, we found this WD domain was required for the recycling of Aβ receptors in primary microglia. Pharmacologic suppression of neuroinflammation reversed established memory impairment and markers of disease pathology in this novel AD model. Therefore, loss of the Atg16L WD domain drives spontaneous AD in mice, and inhibition of neuroinflammation is a potential therapeutic approach for treating neurodegeneration and memory loss. A decline in expression of ATG16L in the brains of human patients with AD suggests the possibility that a similar mechanism may contribute in human disease.
Collapse
Affiliation(s)
- Bradlee L. Heckmann
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Brett J. W. Teubner
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Emilio Boada-Romero
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Bart Tummers
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Clifford Guy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Patrick Fitzgerald
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Ulrike Mayer
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, UK
| | - Simon Carding
- Quadram Institute of Bioscience, Norwich, Norfolk, UK
| | - Stanislav S. Zakharenko
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Thomas Wileman
- Quadram Institute of Bioscience, Norwich, Norfolk, UK
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
| | - Douglas R. Green
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
42
|
Mészáros Á, Molnár K, Nógrádi B, Hernádi Z, Nyúl-Tóth Á, Wilhelm I, Krizbai IA. Neurovascular Inflammaging in Health and Disease. Cells 2020; 9:cells9071614. [PMID: 32635451 PMCID: PMC7407516 DOI: 10.3390/cells9071614] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 12/19/2022] Open
Abstract
Aging is characterized by a chronic low-grade sterile inflammation dubbed as inflammaging, which in part originates from accumulating cellular debris. These, acting as danger signals with many intrinsic factors such as cytokines, are sensed by a network of pattern recognition receptors and other cognate receptors, leading to the activation of inflammasomes. Due to the inflammasome activity-dependent increase in the levels of pro-inflammatory interleukins (IL-1β, IL-18), inflammation is initiated, resulting in tissue injury in various organs, the brain and the spinal cord included. Similarly, in age-related diseases of the central nervous system (CNS), inflammasome activation is a prominent moment, in which cells of the neurovascular unit occupy a significant position. In this review, we discuss the inflammatory changes in normal aging and summarize the current knowledge on the role of inflammasomes and contributing mechanisms in common CNS diseases, namely Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis and stroke, all of which occur more frequently with aging.
Collapse
Affiliation(s)
- Ádám Mészáros
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (Á.M.); (K.M.); (B.N.); (Z.H.); (Á.N.-T.); (I.W.)
- Doctoral School of Biology, University of Szeged, 6726 Szeged, Hungary
| | - Kinga Molnár
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (Á.M.); (K.M.); (B.N.); (Z.H.); (Á.N.-T.); (I.W.)
- Theoretical Medicine Doctoral School, University of Szeged, 6720 Szeged, Hungary
| | - Bernát Nógrádi
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (Á.M.); (K.M.); (B.N.); (Z.H.); (Á.N.-T.); (I.W.)
- Foundation for the Future of Biomedical Sciences in Szeged, Szeged Scientists Academy, 6720 Szeged, Hungary
| | - Zsófia Hernádi
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (Á.M.); (K.M.); (B.N.); (Z.H.); (Á.N.-T.); (I.W.)
- Foundation for the Future of Biomedical Sciences in Szeged, Szeged Scientists Academy, 6720 Szeged, Hungary
| | - Ádám Nyúl-Tóth
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (Á.M.); (K.M.); (B.N.); (Z.H.); (Á.N.-T.); (I.W.)
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (Á.M.); (K.M.); (B.N.); (Z.H.); (Á.N.-T.); (I.W.)
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, 310414 Arad, Romania
| | - István A. Krizbai
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (Á.M.); (K.M.); (B.N.); (Z.H.); (Á.N.-T.); (I.W.)
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, 310414 Arad, Romania
- Correspondence: ; Tel.: +36-62-599-794
| |
Collapse
|
43
|
Sebastian-Valverde M, Pasinetti GM. The NLRP3 Inflammasome as a Critical Actor in the Inflammaging Process. Cells 2020; 9:cells9061552. [PMID: 32604771 PMCID: PMC7348816 DOI: 10.3390/cells9061552] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/12/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
As a consequence of the considerable increase in the human lifespan over the last century, we are experiencing the appearance and impact of new age-related diseases. The causal relationships between aging and an enhanced susceptibility of suffering from a broad spectrum of diseases need to be better understood. However, one specific shared feature seems to be of capital relevance for most of these conditions: the low-grade chronic inflammatory state inherently associated with aging, i.e., inflammaging. Here, we review the molecular and cellular mechanisms that link aging and inflammaging, focusing on the role of the innate immunity and more concretely on the nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, as well as how the chronic activation of this inflammasome has a detrimental effect on different age-related disorders.
Collapse
Affiliation(s)
| | - Giulio M. Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- James J. Peters Veterans Affairs Medical Center, Bronx, New York, NY 10468, USA
- Correspondence: ; Tel.: +1-212-241-1952
| |
Collapse
|
44
|
Khan MSH, Hegde V. Obesity and Diabetes Mediated Chronic Inflammation: A Potential Biomarker in Alzheimer's Disease. J Pers Med 2020; 10:jpm10020042. [PMID: 32455946 PMCID: PMC7354630 DOI: 10.3390/jpm10020042] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is the sixth leading cause of death and is correlated with obesity, which is the second leading cause of preventable diseases in the United States. Obesity, diabetes, and AD share several common features, and inflammation emerges as the central link. High-calorie intake, elevated free fatty acids, and impaired endocrine function leads to insulin resistance and systemic inflammation. Systemic inflammation triggers neuro-inflammation, which eventually hinders the metabolic and regulatory function of the brain mitochondria leading to neuronal damage and subsequent AD-related cognitive decline. As an early event in the pathogenesis of AD, chronic inflammation could be considered as a potential biomarker in the treatment strategies for AD.
Collapse
|
45
|
Summary-Based Methylome-Wide Association Analyses Suggest Potential Genetically Driven Epigenetic Heterogeneity of Alzheimer's Disease. J Clin Med 2020; 9:jcm9051489. [PMID: 32429084 PMCID: PMC7290473 DOI: 10.3390/jcm9051489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/30/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with no curative treatment available. Exploring the genetic and non-genetic contributors to AD pathogenesis is essential to better understand its underlying biological mechanisms, and to develop novel preventive and therapeutic strategies. We investigated potential genetically driven epigenetic heterogeneity of AD through summary data-based Mendelian randomization (SMR), which combined results from our previous genome-wide association analyses with those from two publicly available methylation quantitative trait loci studies of blood and brain tissue samples. We found that 152 probes corresponding to 113 genes were epigenetically associated with AD at a Bonferroni-adjusted significance level of 5.49E-07. Of these, 10 genes had significant probes in both brain-specific and blood-based analyses. Comparing males vs. females and hypertensive vs. non-hypertensive subjects, we found that 22 and 79 probes had group-specific associations with AD, respectively, suggesting a potential role for such epigenetic modifications in the heterogeneous nature of AD. Our analyses provided stronger evidence for possible roles of four genes (i.e., AIM2, C16orf80, DGUOK, and ST14) in AD pathogenesis as they were also transcriptionally associated with AD. The identified associations suggest a list of prioritized genes for follow-up functional studies and advance our understanding of AD pathogenesis.
Collapse
|
46
|
Inhibition of the NLRP3-inflammasome prevents cognitive deficits in experimental autoimmune encephalomyelitis mice via the alteration of astrocyte phenotype. Cell Death Dis 2020; 11:377. [PMID: 32415059 PMCID: PMC7229224 DOI: 10.1038/s41419-020-2565-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/15/2023]
Abstract
Multiple sclerosis (MS) is a chronic disease that is characterized by demyelination and axonal damage in the central nervous system. Cognitive deficits are recognized as one of the features of MS, and these deficits affect the patients’ quality of life. Increasing evidence from experimental autoimmune encephalomyelitis (EAE), the animal model of MS, has suggested that EAE mice exhibit hippocampal impairment and cognitive deficits. However, the underlying mechanisms are still unclear. The NLRP3 inflammasome is a key contributor to neuroinflammation and is involved in the development of MS and EAE. Activation of the NLRP3 inflammasome in microglia is fundamental for subsequent inflammatory events. Activated microglia can convert astrocytes to the neurotoxic A1 phenotype in a variety of neurological diseases. However, it remains unknown whether the NLRP3 inflammasome contributes to cognitive deficits and astrocyte phenotype alteration in EAE. In this study, we demonstrated that severe memory deficits occurred in the late phase of EAE, and cognitive deficits were ameliorated by treatment with MCC950, an inhibitor of the NLRP3 inflammasome. In addition, MCC950 alleviated hippocampal pathology and synapse loss. Astrocytes from EAE mice were converted to the neurotoxic A1 phenotype, and this conversion was prevented by MCC950 treatment. IL-18, which is the downstream of NLRP3 inflammasome, was sufficient to induce the conversion of astrocytes to the A1 phenotype through the NF-κB pathway. IL-18 induced A1 type reactive astrocytes impaired hippocampal neurons through the release of complement component 3 (C3). Altogether, our present data suggest that the NLRP3 inflammasome plays an important role in cognitive deficits in EAE, possibly via the alteration of astrocyte phenotypes. Our study provides a novel therapeutic strategy for hippocampal impairment in EAE and MS.
Collapse
|
47
|
Sedighi M, Baluchnejadmojarad T, Fallah S, Moradi N, Afshin-Majd S, Roghani M. The Association Between Circulating Klotho and Dipeptidyl Peptidase-4 Activity and Inflammatory Cytokines in Elderly Patients With Alzheimer Disease. Basic Clin Neurosci 2020; 11:349-357. [PMID: 32963727 PMCID: PMC7502192 DOI: 10.32598/bcn.11.2.1747.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/05/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022] Open
Abstract
Introduction: Klotho and Dipeptidyl Peptidase-4 (DPP4) are two proteins that modulate inflammatory pathways. We investigated the association between circulating klotho and DPP4 activity and their relationship with inflammatory cytokines, miR-29a, and miR-195 in Alzheimer Disease (AD). Methods: This study was conducted on 16 AD patients and 16 healthy age-matched controls. Plasma levels of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β, interleukin-6 (IL-6), klotho, and DPP4 were measured by enzyme-linked immunosorbent assay. Plasma expression of miR-29a and miR-195 were also measured and compared by a real-time polymerase chain reaction. Results: There was a significant increase in TNF-α (p=0.006), IL-1β (p=0.012), and IL-6 (p=0.012) levels in the AD subjects compared with controls. Also, we found a decrease in plasma levels of klotho and an increase in plasma levels of DPP4 in the AD group that was not significant compared with the controls. Lower expression of miR-29a (P=0.009) and higher expression of miR-195 (P=0.003) were observed in the AD group that was significant than controls. Further analysis showed a negative correlation between klotho and plasma levels of IL-6 (r=−0.58, p=0.01). Also, there was a positive correlation between plasma DPP4 activity and TNF-α levels (r=0.50, P=0.04) and IL-1β (r=0.62, P=0.01). Likewise, plasma klotho concentration showed a negative correlation with the age of AD subjects (r=−0.56, P=0.02). Conclusion: TNF-α, IL-1β, and IL-6 are involved in AD pathophysiology, and dysregulation of DPP4 and klotho may be associated with the inflammatory response of AD. Down-regulation of miR-29a and up-regulation of miR-195 indicated the role of miRNAs in the AD process.
Collapse
Affiliation(s)
- Mohsen Sedighi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tourandokht Baluchnejadmojarad
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soudabeh Fallah
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nariman Moradi
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Siamak Afshin-Majd
- Neurophysiology Research Center, Shahed University, Tehran, Iran.,Department of Neurology, School of Medicine, Shahed University, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
48
|
Scarabino D, Peconi M, Broggio E, Gambina G, Maggi E, Armeli F, Mantuano E, Morello M, Corbo RM, Businaro R. Relationship between proinflammatory cytokines (Il-1beta, Il-18) and leukocyte telomere length in mild cognitive impairment and Alzheimer's disease. Exp Gerontol 2020; 136:110945. [PMID: 32289486 DOI: 10.1016/j.exger.2020.110945] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 01/25/2023]
Abstract
Inflammation plays a crucial role in Alzheimer's disease (AD). AD neurodegeneration and concurrent involvement of the peripheral immune system may promote leukocyte division and telomere shortening. We examined genotypes and plasma levels of two proinflammatory cytokines, IL-1beta and IL-18, and leukocyte telomere length (LTL) in patients with mild cognitive impairment (MCI) and AD. We wanted to determine whether changes in plasma IL-1beta and IL-18 levels, together with LTL shortening, could be diagnostic for disease progression from MCI to AD. Median plasma IL-1beta levels were in the order MCI patients (2.2 pg/ml) < AD patients (4.0 pg/ml), both of which differed significantly from the controls (0.0 pg/ml). In the AD patients, the lowest IL-1beta levels were associated with the presence of the C allele of IL-1beta rs16944 SNP. Median plasma IL-18 levels were in the order MCI patients (116.3 pg/ml) > AD patients (85.8 pg/ml), both of which were significantly higher than in the controls (17.6 pg/ml). Analysis of LTL showed a progressive reduction in the order controls > MCI > AD patients (p < 0.0001). Overall LTL reduction was correlated with increased plasma IL-1beta levels, substantiating the hypothesis that inflammatory processes secondary to neuroinflammation may trigger telomere attrition. Changes in plasma IL-1beta and Il-18 levels, and LTL seem to reflect shifts in AD stage; they may have potential use as blood biomarkers to monitor disease onset and progression from MCI to AD.
Collapse
Affiliation(s)
- D Scarabino
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - M Peconi
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - E Broggio
- Alzheimer's Disease Center, Department of Neuroscience, University and Hospital of Verona, Verona, Italy
| | - G Gambina
- Alzheimer's Disease Center, Department of Neuroscience, University and Hospital of Verona, Verona, Italy
| | - E Maggi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Italy
| | - F Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Italy
| | - E Mantuano
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - M Morello
- Department of Experimental Medicine and Surgery, Tor Vergata University, Rome, Italy
| | - R M Corbo
- Department of Biology and Biotechnology, La Sapienza University, Rome, Italy.
| | - R Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Italy
| |
Collapse
|
49
|
Korhonen E, Piippo N, Hytti M, Hyttinen JMT, Kaarniranta K, Kauppinen A. Only IL‐1β release is inflammasome‐dependent upon ultraviolet B irradiation although IL‐18 is also secreted. FASEB J 2020; 34:6437-6448. [DOI: 10.1096/fj.201902355rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Eveliina Korhonen
- School of Pharmacy Faculty of Health Sciences University of Eastern Finland Kuopio Finland
- HUSLAB University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Niina Piippo
- School of Pharmacy Faculty of Health Sciences University of Eastern Finland Kuopio Finland
| | - Maria Hytti
- School of Pharmacy Faculty of Health Sciences University of Eastern Finland Kuopio Finland
| | - Juha M. T. Hyttinen
- Department of Ophthalmology Institute of Clinical Medicine University of Eastern Finland Kuopio Finland
| | - Kai Kaarniranta
- Department of Ophthalmology Institute of Clinical Medicine University of Eastern Finland Kuopio Finland
- Department of Ophthalmology Kuopio University Hospital Kuopio Finland
| | - Anu Kauppinen
- School of Pharmacy Faculty of Health Sciences University of Eastern Finland Kuopio Finland
| |
Collapse
|
50
|
Chen Y, Ding S, Zhang H, Sun Z, Shen X, Sun L, Yin Y, Qun S, Li W. Protective effects of ginsenoside Rg1 on neuronal senescence due to inhibition of NOX2 and NLRP1 inflammasome activation in SAMP8 mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|