1
|
Zhang Y, Wang Z, Xu F, Liu Z, Zhao Y, Yang LZ, Fang W. Progress of Astrocyte-Neuron Crosstalk in Central Nervous System Diseases. Neurochem Res 2024; 49:3187-3207. [PMID: 39292330 DOI: 10.1007/s11064-024-04241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/08/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
Neurons are the primary cells responsible for information processing in the central nervous system (CNS). However, they are vulnerable to damage and insult in a variety of neurological disorders. As the most abundant glial cells in the brain, astrocytes provide crucial support to neurons and participate in synapse formation, synaptic transmission, neurotransmitter recycling, regulation of metabolic processes, and the maintenance of the blood-brain barrier integrity. Though astrocytes play a significant role in the manifestation of injury and disease, they do not work in isolation. Cellular interactions between astrocytes and neurons are essential for maintaining the homeostasis of the CNS under both physiological and pathological conditions. In this review, we explore the diverse interactions between astrocytes and neurons under physiological conditions, including the exchange of neurotrophic factors, gliotransmitters, and energy substrates, and different CNS diseases such as Alzheimer's disease, Parkinson's disease, stroke, traumatic brain injury, and multiple sclerosis. This review sheds light on the contribution of astrocyte-neuron crosstalk to the progression of neurological diseases to provide potential therapeutic targets for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Ziyu Wang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Fenglian Xu
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Zijun Liu
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Yu Zhao
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Lele Zixin Yang
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, PA, 19107, USA
| | - Weirong Fang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China.
| |
Collapse
|
2
|
Raza ML, Imam MH, Zehra W, Jamil S. Neuro-inflammatory pathways in COVID-19-induced central nervous system injury: Implications for prevention and treatment strategies. Exp Neurol 2024; 382:114984. [PMID: 39368535 DOI: 10.1016/j.expneurol.2024.114984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/15/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
This review explores the neuroinflammatory pathways underlying COVID-19-induced central nervous system (CNS) injury, with a focus on mechanisms of brain damage and strategies for prevention. A comprehensive literature review was conducted to summarize current knowledge on the pathways by which SARS-CoV-2 reaches the brain, the neuroinflammatory responses triggered by viral infection, neurological symptoms and long COVID. Results: We discuss the mechanisms of neuroinflammation in COVID-19, including blood-brain barrier disruption, cytokine storm, microglial activation, and peripheral immune cell infiltration. Additionally, we highlight potential strategies for preventing CNS injury, including pharmacological interventions, immunomodulatory therapies, and lifestyle modifications. Conclusively, Understanding the neuroinflammatory pathways in COVID-19-induced CNS injury is crucial for developing effective prevention and treatment strategies to protect brain health during and after viral infection.
Collapse
Affiliation(s)
- Muhammad Liaquat Raza
- Department of Infection Prevention & Control, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| | | | | | - Subia Jamil
- Faculty of Pharmacy, Jinnah University for Women, University, Karachi, Pakistan
| |
Collapse
|
3
|
Wen X, Hu J. Targeting STAT3 signaling pathway in the treatment of Alzheimer's disease with compounds from natural products. Int Immunopharmacol 2024; 141:112936. [PMID: 39163684 DOI: 10.1016/j.intimp.2024.112936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is difficult to cure and of global concern. Neuroinflammation is closely associated with the onset and progression of AD, making its treatment increasingly important. Compounds from natural products, with fewer side effects than synthetic drugs, are of high research interest. STAT3, a multifunctional transcription factor, is involved in various cellular processes including inflammation, cell growth, and apoptosis. Its activation and inhibition can have different effects under various pathological conditions. In AD, the STAT3 protein plays a crucial role in promoting neuroinflammation and contributing to disease progression. This occurs primarily through the JAK2-STAT3 signaling pathway, which impacts microglia, astrocytes, and hippocampal neurons. This paper reviews the STAT3 signaling pathway in AD and 25 compounds targeting STAT3 up to 2024. Notably, Rutin, Paeoniflorin, and Geniposide up-regulate STAT3 in hippocampal and cortex neurons, showing neuroprotective effects in various AD models. Other 23 compounds downregulate AD by suppressing neuroinflammation through inhibition of STAT3 activation in microglia and astrocytes. These findings highlight the potential of compounds from natural products in improving AD by targeting STAT3, offering insights into the prevention and management of AD.
Collapse
Affiliation(s)
- Xiyue Wen
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
| | - Jinyue Hu
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China.
| |
Collapse
|
4
|
Gozlan E, Lewit-Cohen Y, Frenkel D. Sex Differences in Astrocyte Activity. Cells 2024; 13:1724. [PMID: 39451242 PMCID: PMC11506538 DOI: 10.3390/cells13201724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/27/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Astrocytes are essential for maintaining brain homeostasis. Alterations in their activity have been associated with various brain pathologies. Sex differences were reported to affect astrocyte development and activity, and even susceptibility to different neurodegenerative diseases. This review aims to summarize the current knowledge on the effects of sex on astrocyte activity in health and disease.
Collapse
Affiliation(s)
- Elisa Gozlan
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.G.); (Y.L.-C.)
| | - Yarden Lewit-Cohen
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.G.); (Y.L.-C.)
| | - Dan Frenkel
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.G.); (Y.L.-C.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
5
|
Sandoval KE, Witt KA. Somatostatin: Linking Cognition and Alzheimer Disease to Therapeutic Targeting. Pharmacol Rev 2024; 76:1291-1325. [PMID: 39013601 PMCID: PMC11549939 DOI: 10.1124/pharmrev.124.001117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Over 4 decades of research support the link between Alzheimer disease (AD) and somatostatin [somatotropin-releasing inhibitory factor (SRIF)]. SRIF and SRIF-expressing neurons play an essential role in brain function, modulating hippocampal activity and memory formation. Loss of SRIF and SRIF-expressing neurons in the brain rests at the center of a series of interdependent pathological events driven by amyloid-β peptide (Aβ), culminating in cognitive decline and dementia. The connection between the SRIF and AD further extends to the neuropsychiatric symptoms, seizure activity, and inflammation, whereas preclinical AD investigations show SRIF or SRIF receptor agonist administration capable of enhancing cognition. SRIF receptor subtype-4 activation in particular presents unique attributes, with the potential to mitigate learning and memory decline, reduce comorbid symptoms, and enhance enzymatic degradation of Aβ in the brain. Here, we review the links between SRIF and AD along with the therapeutic implications. SIGNIFICANCE STATEMENT: Somatostatin and somatostatin-expressing neurons in the brain are extensively involved in cognition. Loss of somatostatin and somatostatin-expressing neurons in Alzheimer disease rests at the center of a series of interdependent pathological events contributing to cognitive decline and dementia. Targeting somatostatin-mediated processes has significant therapeutic potential for the treatment of Alzheimer disease.
Collapse
Affiliation(s)
- Karin E Sandoval
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| | - Ken A Witt
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| |
Collapse
|
6
|
Lv JM, Gao YL, Wang LY, Li BD, Shan YL, Wu ZQ, Lu QM, Peng HY, Zhou TT, Li XM, Zhang LM. Inhibition of the P38 MAPK/NLRP3 pathway mitigates cognitive dysfunction and mood alterations in aged mice after abdominal surgery plus sevoflurane. Brain Res Bull 2024; 217:111059. [PMID: 39216556 DOI: 10.1016/j.brainresbull.2024.111059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/30/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Cognitive dysfunction, encompassing perioperative psychological distress and cognitive impairment, is a prevalent postoperative complication within the elderly population, and in severe cases, it may lead to dementia. Building upon our prior research that unveiled a connection between postoperative mood fluctuations and cognitive dysfunction with the phosphorylation of P38, this present investigation aims to delve deeper into the involvement of the P38 MAPK/NLRP3 pathway in perioperative neurocognitive disorders (PND) in an abdominal exploratory laparotomy (AEL) aged mice model. METHODS C57BL/6 mice (male, 18-month-old) underwent AEL with 3 % anesthesia. Then, inhibitors targeting P38 MAPK (SB202190, 1 mg/kg) and GSK3β (TWS119, 10 mg/kg) were administered multiple times daily for 7 days post-surgery. The NLRP3-cKO AEL and WT AEL groups only underwent the AEL procedure. Behavioral assessments, including the open field test (OFT), novel object recognition (NOR), force swimming test (FST), and fear conditioning (FC), were initiated on postoperative day 14. Additionally, mice designated for neuroelectrophysiological monitoring had electrodes implanted on day 14 before surgery and underwent novel object recognition while their local field potential (LFP) was concurrently recorded on postoperative day 14. Lastly, after they were euthanasized, pathological analysis and western blot were performed. RESULTS SB202190, TWS119, and astrocyte-conditional knockout NLRP3 all ameliorated the cognitive impairment behaviors induced by AEL in mice and increased mean theta power during novel location exploration. However, it is worth noting that SB202190 may exacerbate postoperative depressive and anxiety-like behaviors in mice, while TWS119 may induce impulsive behaviors. CONCLUSIONS Our study suggests that anesthesia and surgical procedures induce alterations in mood and cognition, which may be intricately linked to the P38 MAPK/NLRP3 pathway.
Collapse
Affiliation(s)
- Jin-Meng Lv
- Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China; Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, China; Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China.
| | - Yi-Long Gao
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Lu-Ying Wang
- Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| | - Bao-Dong Li
- Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| | - Yong-Lin Shan
- Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| | - Zi-Qiang Wu
- Hebei Province Dongguang Traditional Chinese Medicine Hospital, Cangzhou, China.
| | - Qing-Meng Lu
- Hebei Province Cangxian Hospital, Cangzhou, China.
| | - Heng-Yue Peng
- Affiliated Stomatology Hospital of China Medical University, Shenyang, China.
| | - Ting-Ting Zhou
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, China.
| | - Xiao-Ming Li
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, China.
| | - Li-Min Zhang
- Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China; Department of Anesthesia and Trauma Research, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
| |
Collapse
|
7
|
Bettcher BM, Lopez Paniagua D, Wang Y, McConnell BV, Coughlan C, Carlisle TC, Thaker AA, Lippitt W, Filley CM, Pelak VS, Shapiro AL, Heffernan KS, Potter H, Solano A, Boyd J, Carlson NE. Synergistic effects of GFAP and Aβ42: Implications for white matter integrity and verbal memory across the cognitive spectrum. Brain Behav Immun Health 2024; 40:100834. [PMID: 39206431 PMCID: PMC11357780 DOI: 10.1016/j.bbih.2024.100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024] Open
Abstract
Background Plasma glial fibrillary acidic protein (GFAP), an astrocytic biomarker, has previously been linked with Alzheimer's disease (AD) status, amyloid levels, and memory performance in older adults. The neuroanatomical pathways by which astrogliosis/astrocyte reactivity might impact cognitive outcomes remains unclear. We evaluated whether plasma GFAP and amyloid levels had a synergistic effect on fornix structure, which is critically involved in AD-associated cholinergic pathways. We also examined whether fornix structure mediates associations between GFAP and verbal memory. Methods In a cohort of both asymptomatic and symptomatic older adults (total n = 99), we assessed plasma GFAP, amyloid-β42 (Aβ42), other AD-related proteins, and vascular markers, and we conducted comprehensive memory testing. Tractography-based methods were used to assess fornix structure with whole brain diffusion metrics to control for diffuse alterations in brain white matter. Results In individuals in the low plasma amyloid-β42 (Aβ42) group, higher plasma GFAP was associated with lower fractional anisotropy (FA; p = 0.007), higher mean diffusivity (MD; p < 0.001), higher radial diffusivity (RD; p < 0.001), and higher axial diffusivity (DA; p = 0.001) in the left fornix. These associations were independent of APOE gene status, plasma levels of total tau and neurofilament light, plasma vascular biomarkers, and whole brain diffusion metrics. In a sub-analysis of participants in the low plasma Aβ42 group (n = 33), fornix structure mediated the association between higher plasma GFAP levels and lower verbal memory performance. Discussion Higher plasma GFAP was associated with altered fornix microstructure in the setting of greater amyloid deposition. We also expanded on our prior GFAP-verbal memory findings by demonstrating that in the low plasma Aβ42 group, left fornix integrity may be a primary white matter conduit for the negative associations between GFAP and verbal memory performance. Overall, these findings suggest that astrogliosis/astrocyte reactivity may play an early, pivotal role in AD pathogenesis, and further demonstrate that high GFAP and low Aβ42 in plasma may reflect a particularly detrimental synergistic role in forniceal-memory pathways.
Collapse
Affiliation(s)
- Brianne M. Bettcher
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dan Lopez Paniagua
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yue Wang
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brice V. McConnell
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christina Coughlan
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tara C. Carlisle
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ashesh A. Thaker
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Radiology, Denver Health, Denver, CO, USA
| | - William Lippitt
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christopher M. Filley
- Behavioral Neurology Section, Departments of Neurology and Psychiatry, University of Colorado Alzheimer's & Cognition Center, Marcus Institute for Brain Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Victoria S. Pelak
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Allison L.B. Shapiro
- Section of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kate S. Heffernan
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Huntington Potter
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Adriana Solano
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jada Boyd
- Department of Neurology, Behavioral Neurology Section, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nichole E. Carlson
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
8
|
Lin H, Wang Z, Liao Y, Yu Z, Xu H, Qin T, Tang J, Yang X, Chen S, Chen X, Zhang X, Shen Y. Super-resolution ultrasound imaging reveals temporal cerebrovascular changes with disease progression in female 5×FAD mouse model of Alzheimer's disease: correlation with pathological impairments. EBioMedicine 2024; 108:105355. [PMID: 39293213 PMCID: PMC11424966 DOI: 10.1016/j.ebiom.2024.105355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Vascular dysfunction is closely associated with the progression of Alzheimer's disease (AD). A critical research gap exists that no studies have explored the in vivo temporal changes of cerebrovascular alterations with AD progression in mouse models, encompassing both structure and flow dynamics at micron-scale resolution across the early, middle, and late stages of the disease. METHODS In this study, ultrasound localisation microscopy (ULM) was applied to image the cerebrovascular alterations of the transgenic female 5×FAD mouse model across different stages of disease progression: early (4 months), moderate (7 months), and late (12 months). Age-matched non-transgenic (non-Tg) littermates were used as controls. Immunohistology examinations were performed to evaluate the influence of disease progression on the β-amyloid (Aβ) load and microvascular alterations, including morphological changes and the blood-brain barrier (BBB) leakage. FINDINGS Our findings revealed a significant decline in both vascular density and flow velocity in the retrosplenial cortex of 5×FAD mice at an early stage, which subsequently became more pronounced in the visual cortex and hippocampus as the disease progressed. Additionally, we observed a reduction in vascular length preceding diminished flow velocities in cortical penetrating arterioles during the early stages. The quantification of vascular metrics derived from ULM imaging showed significant correlations with those obtained from vascular histological images. Immunofluorescence staining identified early vascular abnormalities in the retrosplenial cortex. As the disease advanced, there was an exacerbation of Aβ accumulation and BBB disruption in a regionally variable manner. The vascular changes observed through ULM imaging exhibited a negative correlation with amyloid load and were associated with the compromise of the BBB integrity. INTERPRETATION Through high-resolution, in vivo imaging of cerebrovasculature, this study reveals significant spatiotemporal dysfunction in cerebrovascular dynamics accompanying disease progression in a mouse model of AD, enhancing our understanding of its pathophysiology. FUNDING This study is supported by grants from National Key Research and Development Program of China (2020YFA0908800), National Natural Science Foundation of China (12074269, 82272014, 82327804, 62071310), Shenzhen Basic Science Research (20220808185138001, JCYJ20220818095612027, JCYJ20210324093006017), STI 2030-Major Projects (2021ZD0200500) and Guangdong Natural Science Foundation (2024A1515012591, 2024A1515011342).
Collapse
Affiliation(s)
- Haoming Lin
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Zidan Wang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Yingtao Liao
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China; Department of Radiation Oncology, Huizhou Central People's Hospital, Huizhou, 516001, Guangdong, China
| | - Zhifan Yu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Huiqin Xu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Ting Qin
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Jianbo Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518071, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Centre for Disease Control and Prevention, Shenzhen, 518055, China
| | - Siping Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Xin Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Xinyu Zhang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Yuanyuan Shen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China.
| |
Collapse
|
9
|
Jiang Y, Neal J, Sompol P, Yener G, Arakaki X, Norris CM, Farina FR, Ibanez A, Lopez S, Al‐Ezzi A, Kavcic V, Güntekin B, Babiloni C, Hajós M. Parallel electrophysiological abnormalities due to COVID-19 infection and to Alzheimer's disease and related dementia. Alzheimers Dement 2024; 20:7296-7319. [PMID: 39206795 PMCID: PMC11485397 DOI: 10.1002/alz.14089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 09/04/2024]
Abstract
Many coronavirus disease 2019 (COVID-19) positive individuals exhibit abnormal electroencephalographic (EEG) activity reflecting "brain fog" and mild cognitive impairments even months after the acute phase of infection. Resting-state EEG abnormalities include EEG slowing (reduced alpha rhythm; increased slow waves) and epileptiform activity. An expert panel conducted a systematic review to present compelling evidence that cognitive deficits due to COVID-19 and to Alzheimer's disease and related dementia (ADRD) are driven by overlapping pathologies and neurophysiological abnormalities. EEG abnormalities seen in COVID-19 patients resemble those observed in early stages of neurodegenerative diseases, particularly ADRD. It is proposed that similar EEG abnormalities in Long COVID and ADRD are due to parallel neuroinflammation, astrocyte reactivity, hypoxia, and neurovascular injury. These neurophysiological abnormalities underpinning cognitive decline in COVID-19 can be detected by routine EEG exams. Future research will explore the value of EEG monitoring of COVID-19 patients for predicting long-term outcomes and monitoring efficacy of therapeutic interventions. HIGHLIGHTS: Abnormal intrinsic electrophysiological brain activity, such as slowing of EEG, reduced alpha wave, and epileptiform are characteristic findings in COVID-19 patients. EEG abnormalities have the potential as neural biomarkers to identify neurological complications at the early stage of the disease, to assist clinical assessment, and to assess cognitive decline risk in Long COVID patients. Similar slowing of intrinsic brain activity to that of COVID-19 patients is typically seen in patients with mild cognitive impairments, ADRD. Evidence presented supports the idea that cognitive deficits in Long COVID and ADRD are driven by overlapping neurophysiological abnormalities resulting, at least in part, from neuroinflammatory mechanisms and astrocyte reactivity. Identifying common biological mechanisms in Long COVID-19 and ADRD can highlight critical pathologies underlying brain disorders and cognitive decline. It elucidates research questions regarding cognitive EEG and mild cognitive impairment in Long COVID that have not yet been adequately investigated.
Collapse
Affiliation(s)
- Yang Jiang
- Aging Brain and Cognition LaboratoryDepartment of Behavioral ScienceCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Sanders Brown Center on AgingCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Jennifer Neal
- Aging Brain and Cognition LaboratoryDepartment of Behavioral ScienceCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Pradoldej Sompol
- Sanders Brown Center on AgingCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Department of Pharmacology and Nutritional SciencesCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Görsev Yener
- Faculty of MedicineDept of Neurologyİzmir University of EconomicsİzmirTurkey
- IBG: International Biomedicine and Genome CenterİzmirTurkey
| | - Xianghong Arakaki
- Cognition and Brain Integration LaboratoryDepartment of NeurosciencesHuntington Medical Research InstitutesPasadenaCaliforniaUSA
| | - Christopher M. Norris
- Sanders Brown Center on AgingCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Department of Pharmacology and Nutritional SciencesCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | | | - Agustin Ibanez
- BrainLat: Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiagoChile
- Cognitive Neuroscience CenterUniversidad de San AndrésVictoriaBuenos AiresArgentina
- GBHI: Global Brain Health InstituteTrinity College DublinThe University of DublinDublin 2Ireland
| | - Susanna Lopez
- Department of Physiology and Pharmacology “V. Erspamer,”Sapienza University of RomeRomeItaly
| | - Abdulhakim Al‐Ezzi
- Cognition and Brain Integration LaboratoryDepartment of NeurosciencesHuntington Medical Research InstitutesPasadenaCaliforniaUSA
| | - Voyko Kavcic
- Institute of GerontologyWayne State UniversityDetroitMichiganUSA
| | - Bahar Güntekin
- Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTurkey
- Department of BiophysicsSchool of MedicineIstanbul Medipol UniversityIstanbulTurkey
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “V. Erspamer,”Sapienza University of RomeRomeItaly
- Hospital San Raffaele CassinoCassinoFrosinoneItaly
| | - Mihály Hajós
- Cognito TherapeuticsCambridgeMassachusettsUSA
- Department of Comparative MedicineYale University School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
10
|
Qin H, Zhou L, Haque FT, Martin-Jimenez C, Trang A, Benveniste EN, Wang Q. Diverse signaling mechanisms and heterogeneity of astrocyte reactivity in Alzheimer's disease. J Neurochem 2024; 168:3536-3557. [PMID: 37932959 DOI: 10.1111/jnc.16002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023]
Abstract
Alzheimer's disease (AD) affects various brain cell types, including astrocytes, which are the most abundant cell types in the central nervous system (CNS). Astrocytes not only provide homeostatic support to neurons but also actively regulate synaptic signaling and functions and become reactive in response to CNS insults through diverse signaling pathways including the JAK/STAT, NF-κB, and GPCR-elicited pathways. The advent of new technology for transcriptomic profiling at the single-cell level has led to increasing recognition of the highly versatile nature of reactive astrocytes and the context-dependent specificity of astrocyte reactivity. In AD, reactive astrocytes have long been observed in senile plaques and have recently been suggested to play a role in AD pathogenesis and progression. However, the precise contributions of reactive astrocytes to AD remain elusive, and targeting this complex cell population for AD treatment poses significant challenges. In this review, we summarize the current understanding of astrocyte reactivity and its role in AD, with a particular focus on the signaling pathways that promote astrocyte reactivity and the heterogeneity of reactive astrocytes. Furthermore, we explore potential implications for the development of therapeutics for AD. Our objective is to shed light on the complex involvement of astrocytes in AD and offer insights into potential therapeutic targets and strategies for treating and managing this devastating neurodegenerative disorder.
Collapse
Affiliation(s)
- Hongwei Qin
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lianna Zhou
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Faris T Haque
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Cynthia Martin-Jimenez
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Amy Trang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Etty N Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Qin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
11
|
Hu XH, Yu KY, Li XX, Zhang JN, Jiao JJ, Wang ZJ, Cai HY, Wang L, He YX, Wu MN. Selective Orexin 2 Receptor Blockade Alleviates Cognitive Impairments and the Pathological Progression of Alzheimer's Disease in 3xTg-AD Mice. J Gerontol A Biol Sci Med Sci 2024; 79:glae115. [PMID: 38682858 DOI: 10.1093/gerona/glae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Indexed: 05/01/2024] Open
Abstract
The orexin system is closely related to the pathogenesis of Alzheimer's disease (AD). Orexin-A aggravates cognitive dysfunction and increases amyloid β (Aβ) deposition in AD model mice, but studies of different dual orexin receptor (OXR) antagonists in AD have shown inconsistent results. Our previous study revealed that OX1R blockade aggravates cognitive deficits and pathological progression in 3xTg-AD mice, but the effects of OX2R and its potential mechanism in AD have not been reported. In the present study, OX2R was blocked by oral administration of the selective OX2R antagonist MK-1064, and the effects of OX2R blockade on cognitive dysfunction and neuropsychiatric symptoms in 3xTg-AD mice were evaluated via behavioral tests. Then, immunohistochemistry, western blotting, and ELISA were used to detect Aβ deposition, tau phosphorylation, and neuroinflammation, and electrophysiological and wheel-running activity recording were recorded to observe hippocampal synaptic plasticity and circadian rhythm. The results showed that OX2R blockade ameliorated cognitive dysfunction, improved LTP depression, increased the expression of PSD-95, alleviated anxiety- and depression-like behaviors and circadian rhythm disturbances in 3xTg-AD mice, and reduced Aβ pathology, tau phosphorylation, and neuroinflammation in the brains of 3xTg-AD mice. These results indicated that chronic OX2R blockade exerts neuroprotective effects in 3xTg-AD mice by reducing AD pathology at least partly through improving circadian rhythm disturbance and the sleep-wake cycle and that OX2R might be a potential target for the prevention and treatment of AD; however, the potential mechanism by which OX2R exerts neuroprotective effects on AD needs to be further investigated.
Collapse
Affiliation(s)
- Xiao-Hong Hu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Kai-Yue Yu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xin-Xin Li
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jin-Nan Zhang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Juan-Juan Jiao
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Hong-Yan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Lei Wang
- Department of Geriatrics, Shanxi Bethune Hospital, Taiyuan, People's Republic of China
| | - Ye-Xin He
- Department of Radiology, Shanxi Provincial People's Hospital, Taiyuan, People's Republic of China
| | - Mei-Na Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, People's Republic of China
| |
Collapse
|
12
|
Beckers E, Van Egroo M, Ashton NJ, Blennow K, Vandewalle G, Zetterberg H, Poser BA, Jacobs HIL. Microstructural associations between locus coeruleus, cortical, and subcortical regions are modulated by astrocyte reactivity: a 7T MRI adult lifespan study. Cereb Cortex 2024; 34:bhae261. [PMID: 38904081 PMCID: PMC11190376 DOI: 10.1093/cercor/bhae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024] Open
Abstract
The locus coeruleus-norepinephrine system plays a key role in supporting brain health along the lifespan, notably through its modulatory effects on neuroinflammation. Using ultra-high field diffusion magnetic resonance imaging, we examined whether microstructural properties (neurite density index and orientation dispersion index) in the locus coeruleus were related to those in cortical and subcortical regions, and whether this was modulated by plasma glial fibrillary acidic protein levels, as a proxy of astrocyte reactivity. In our cohort of 60 healthy individuals (30 to 85 yr, 50% female), higher glial fibrillary acidic protein correlated with lower neurite density index in frontal cortical regions, the hippocampus, and the amygdala. Furthermore, under higher levels of glial fibrillary acidic protein (above ~ 150 pg/mL for cortical and ~ 145 pg/mL for subcortical regions), lower locus coeruleus orientation dispersion index was associated with lower orientation dispersion index in frontotemporal cortical regions and in subcortical regions. Interestingly, individuals with higher locus coeruleus orientation dispersion index exhibited higher orientation dispersion index in these (sub)cortical regions, despite having higher glial fibrillary acidic protein levels. Together, these results suggest that the interaction between locus coeruleus-norepinephrine cells and astrocytes can signal a detrimental or neuroprotective pathway for brain integrity and support the importance of maintaining locus coeruleus neuronal health in aging and in the prevention of age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Elise Beckers
- Faculty of Health, Medicine and Life Sciences, Mental Health and Neuroscience Research Institute, Alzheimer Centre Limburg, Maastricht University, 6229 ET Maastricht, The Netherlands
- GIGA-CRC Human Imaging, University of Liège, 4000 Liège, Belgium
| | - Maxime Van Egroo
- Faculty of Health, Medicine and Life Sciences, Mental Health and Neuroscience Research Institute, Alzheimer Centre Limburg, Maastricht University, 6229 ET Maastricht, The Netherlands
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Gothenburg, 431 41 Mölndal, Sweden
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London SE5 9RT, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London SE5 8AF, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, 4011 Stavanger, Norway
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Gothenburg, 431 41 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, 75013 Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei 230036, China
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Gothenburg, 431 41 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1E 6BT, UK
- UK Dementia Research Institute at UCL, London W1T 7NF, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Heidi I L Jacobs
- Faculty of Health, Medicine and Life Sciences, Mental Health and Neuroscience Research Institute, Alzheimer Centre Limburg, Maastricht University, 6229 ET Maastricht, The Netherlands
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Xu J, Sun Y, Zhu X, Pan S, Tong Z, Jiang K. Tactile discrimination as a diagnostic indicator of cognitive decline in patients with mild cognitive impairment: A narrative review. Heliyon 2024; 10:e31256. [PMID: 38803967 PMCID: PMC11129005 DOI: 10.1016/j.heliyon.2024.e31256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 04/08/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Background Tactile discrimination, a cognitive task reliant on fingertip touch for stimulus discrimination, encompasses the somatosensory system and working memory, with its acuity diminishing with advancing age. Presently, the evaluation of cognitive capacity to differentiate between individuals with early Alzheimer's disease (AD) and typical older adults predominantly relies on visual or auditory tasks, yet the efficacy of discrimination remains constrained. Aims To review the existing tactile cognitive tasks and explore the interaction between tactile perception and the pathological process of Alzheimer's disease. The tactile discrimination task may be used as a reference index of cognitive decline in patients with mild cognitive impairment and provide a new method for clinical evaluation. Methods We searched four databases (Embase, PubMed, Web of Science and Google scholar). The reference coverage was from 1936 to 2023. The search terms included "Alzheimer disease" "mild cognitive impairment" "tactile" "tactile discrimination" "tactile test" and so on. Reviews and experimental reports in the field were examined and the effectiveness of different types of tactile tasks was compared. Main results Individuals in the initial phases of Alzheimer's spectrum disease, specifically those in the stage of mild cognitive impairment (MCI), exhibit notable impairments in tasks involving tactile discrimination. These tasks possess certain merits, such as their quick and straightforward comparability, independence from educational background, and ability to circumvent the limitations associated with conventional cognitive assessment scales. Furthermore, tactile discrimination tasks offer enhanced accuracy compared to cognitive tasks that employ visual or auditory stimuli. Conclusions Tactile discrimination has the potential to serve as an innovative reference indicator for the swift diagnosis of clinical MCI patients, thereby assisting in the screening process on a clinical scale.
Collapse
Affiliation(s)
- Jinan Xu
- Center for Applied Psychological Research (Ningbo), School of Mental Health, Wenzhou Medical University, Cixi, 315300, China
- School of Mental Health, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuqi Sun
- Center for Applied Psychological Research (Ningbo), School of Mental Health, Wenzhou Medical University, Cixi, 315300, China
- School of Mental Health, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xianghe Zhu
- Center for Applied Psychological Research (Ningbo), School of Mental Health, Wenzhou Medical University, Cixi, 315300, China
- School of Mental Health, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Sipei Pan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhiqian Tong
- Center for Applied Psychological Research (Ningbo), School of Mental Health, Wenzhou Medical University, Cixi, 315300, China
- School of Mental Health, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ke Jiang
- Center for Applied Psychological Research (Ningbo), School of Mental Health, Wenzhou Medical University, Cixi, 315300, China
- School of Mental Health, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
- Center for Brain, Mind and Education, Shaoxing University, China
| |
Collapse
|
14
|
Vargas-Barona A, Bernáldez-Sarabia J, Castro-Ceseña AB. Lipid-polymer hybrid nanoparticles loaded with N-acetylcysteine for the modulation of neuroinflammatory biomarkers in human iPSC-derived PSEN2 (N141I) astrocytes as a model of Alzheimer's disease. J Mater Chem B 2024; 12:5085-5097. [PMID: 38713059 DOI: 10.1039/d4tb00521j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive impairment associated with the accumulation of beta-amyloid protein (Aβ). Aβ activates glial cells in the brain, increasing the secretion of proinflammatory cytokines, which leads to neuroinflammation and neuronal death. Currently, there are no effective treatments that cure or stop its progression; therefore, AD is considered a global health priority. The main limitations are the low drug bioavailability and impermeability of the blood-brain barrier (BBB). Fortunately, nanomedicine has emerged as a promising field for the development of new nanosystems for the controlled and targeted delivery of drugs to the brain. Therefore, in this work, lipid-polymer hybrid nanoparticles (LPHNPs) conjugated with transferrin (Tf) to facilitate crossing the BBB and loaded with N-acetylcysteine (NAC) for its anti-inflammatory effect were synthesized, and their physicochemical characterization was carried out. Subsequently, an in vitro model involving human astrocytes derived from induced pluripotent stem cells (iPSC) from an AD-diagnosed patient was developed, which was brought to a reactive state by stimulation with lipopolysaccharides (LPSs). The cell culture was treated with either Tf-conjugated LPHNPs loaded with NAC (NAC-Tf-LPHNPs) at 0.25 mg mL-1, or free NAC at 5 mM. The results showed that NAC-Tf-LPHNPs favorably modulated the expression of proinflammatory genes such as interleukin-1β (IL-1β), amyloid precursor protein (APP) and glial fibrillary acidic protein (GFAP). In addition, they reduced the secretion of the proinflammatory cytokines interleukin 6 (IL-6), IL-1β and interferon-gamma (INF-γ). Results for both cases were compared to the group of cells that did not receive any treatment. In contrast, free NAC only had this effect on the expression of IL-1β and the secretion of the cytokines IL-6 and INF-γ. These results indicate the potential of NAC-Tf-LPHNPs for AD treatment.
Collapse
Affiliation(s)
- Alondra Vargas-Barona
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada- Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Johanna Bernáldez-Sarabia
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada- Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Ana B Castro-Ceseña
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada- Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
- CONAHCYT-Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico
| |
Collapse
|
15
|
Jin Y, Liu J, Wang M, Jiang Y. Thioketal-Based Electrochemical Sensor Reveals Biphasic Effects of l-DOPA on Neuroinflammation. ACS Sens 2024; 9:2364-2371. [PMID: 38642367 DOI: 10.1021/acssensors.3c02420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
Neuroinflammation is linked closely to neurodegenerative diseases, with reactive oxygen species (ROS) exacerbating neuronal damage. Traditional electrochemical sensors show promise in targeting cellular ROS to understand their role in neuropathogenesis and assess therapies. Nevertheless, these sensors face challenges in mitigating the ROS oxidation overpotential. We herein introduce an ROS oxidation-independent nucleic acid sensor for in situ ROS analysis and therapeutic assessment. The sensor comprises ionizable and thioketal (TK)-based lipids with methylene blue-tagged nucleic acids on a glass carbon electrode. ROS exposure triggers cleavage within the sensor's thioketal moiety, detaching the nucleic acid from the electrode and yielding quantifiable results via square-wave voltammetry. Importantly, the sensor's low potential window minimizes interference, ensuring precise ROS measurements with high selectivity. Using this sensor, we unveil levodopa's dose-dependent biphasic effect on neuroinflammation: low doses alleviate oxidative stress, while high doses exacerbate it. The TK-based sensor offers a promising methodology for investigating neuroinflammation's pathogenesis and screening potential treatments, advancing neurodegenerative disease research.
Collapse
Affiliation(s)
- Ying Jin
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Ji Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Ying Jiang
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
16
|
Zhang S, Shu H, Zhou J, Rubin-Sigler J, Yang X, Liu Y, Cooper-Knock J, Monte E, Zhu C, Tu S, Li H, Tong M, Ecker JR, Ichida JK, Shen Y, Zeng J, Tsao PS, Snyder MP. Deconvolution of polygenic risk score in single cells unravels cellular and molecular heterogeneity of complex human diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594252. [PMID: 38798507 PMCID: PMC11118500 DOI: 10.1101/2024.05.14.594252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Polygenic risk scores (PRSs) are commonly used for predicting an individual's genetic risk of complex diseases. Yet, their implication for disease pathogenesis remains largely limited. Here, we introduce scPRS, a geometric deep learning model that constructs single-cell-resolved PRS leveraging reference single-cell chromatin accessibility profiling data to enhance biological discovery as well as disease prediction. Real-world applications across multiple complex diseases, including type 2 diabetes (T2D), hypertrophic cardiomyopathy (HCM), and Alzheimer's disease (AD), showcase the superior prediction power of scPRS compared to traditional PRS methods. Importantly, scPRS not only predicts disease risk but also uncovers disease-relevant cells, such as hormone-high alpha and beta cells for T2D, cardiomyocytes and pericytes for HCM, and astrocytes, microglia and oligodendrocyte progenitor cells for AD. Facilitated by a layered multi-omic analysis, scPRS further identifies cell-type-specific genetic underpinnings, linking disease-associated genetic variants to gene regulation within corresponding cell types. We substantiate the disease relevance of scPRS-prioritized HCM genes and demonstrate that the suppression of these genes in HCM cardiomyocytes is rescued by Mavacamten treatment. Additionally, we establish a novel microglia-specific regulatory relationship between the AD risk variant rs7922621 and its target genes ANXA11 and TSPAN14. We further illustrate the detrimental effects of suppressing these two genes on microglia phagocytosis. Our work provides a multi-tasking, interpretable framework for precise disease prediction and systematic investigation of the genetic, cellular, and molecular basis of complex diseases, laying the methodological foundation for single-cell genetics.
Collapse
Affiliation(s)
- Sai Zhang
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
- Departments of Biostatistics & Biomedical Engineering, Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Genetics, Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
- These authors contributed equally: Sai Zhang, Hantao Shu, and Jingtian Zhou
| | - Hantao Shu
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
- These authors contributed equally: Sai Zhang, Hantao Shu, and Jingtian Zhou
| | - Jingtian Zhou
- Arc Institute, Palo Alto, CA, USA
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
- These authors contributed equally: Sai Zhang, Hantao Shu, and Jingtian Zhou
| | - Jasper Rubin-Sigler
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Xiaoyu Yang
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Yuxi Liu
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Emma Monte
- Department of Genetics, Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Chenchen Zhu
- Department of Genetics, Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sharon Tu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Han Li
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Mingming Tong
- Department of Genetics, Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph R. Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Justin K. Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Yin Shen
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Jianyang Zeng
- School of Engineering, Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Philip S. Tsao
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael P. Snyder
- Department of Genetics, Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
17
|
Barsoum S, Latimer CS, Nolan AL, Barrett A, Chang K, Troncoso J, Keene CD, Benjamini D. Resiliency to Alzheimer's disease neuropathology can be distinguished from dementia using cortical astrogliosis imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592719. [PMID: 38766087 PMCID: PMC11100587 DOI: 10.1101/2024.05.06.592719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Despite the presence of significant Alzheimer's disease (AD) pathology, characterized by amyloid β (Aβ) plaques and phosphorylated tau (pTau) tangles, some cognitively normal elderly individuals do not inevitably develop dementia. These findings give rise to the notion of cognitive 'resilience', suggesting maintained cognitive function despite the presence of AD neuropathology, highlighting the influence of factors beyond classical pathology. Cortical astroglial inflammation, a ubiquitous feature of symptomatic AD, shows a strong correlation with cognitive impairment severity, potentially contributing to the diversity of clinical presentations. However, noninvasively imaging neuroinflammation, particularly astrogliosis, using MRI remains a significant challenge. Here we sought to address this challenge and to leverage multidimensional (MD) MRI, a powerful approach that combines relaxation with diffusion MR contrasts, to map cortical astrogliosis in the human brain by accessing sub-voxel information. Our goal was to test whether MD-MRI can map astroglial pathology in the cerebral cortex, and if so, whether it can distinguish cognitive resiliency from dementia in the presence of hallmark AD neuropathological changes. We adopted a multimodal approach by integrating histological and MRI analyses using human postmortem brain samples. Ex vivo cerebral cortical tissue specimens derived from three groups comprised of non-demented individuals with significant AD pathology postmortem, individuals with both AD pathology and dementia, and non-demented individuals with minimal AD pathology postmortem as controls, underwent MRI at 7 T. We acquired and processed MD-MRI, diffusion tensor, and quantitative T 1 and T 2 MRI data, followed by histopathological processing on slices from the same tissue. By carefully co-registering MRI and microscopy data, we performed quantitative multimodal analyses, leveraging targeted immunostaining to assess MD-MRI sensitivity and specificity towards Aβ, pTau, and glial fibrillary acidic protein (GFAP), a marker for astrogliosis. Our findings reveal a distinct MD-MRI signature of cortical astrogliosis, enabling the creation of predictive maps for cognitive resilience amid AD neuropathological changes. Multiple linear regression linked histological values to MRI changes, revealing that the MD-MRI cortical astrogliosis biomarker was significantly associated with GFAP burden (standardized β=0.658, pFDR<0.0001), but not with Aβ (standardized β=0.009, p FDR =0.913) or pTau (standardized β=-0.196, p FDR =0.051). Conversely, none of the conventional MRI parameters showed significant associations with GFAP burden in the cortex. While the extent to which pathological glial activation contributes to neuronal damage and cognitive impairment in AD is uncertain, developing a noninvasive imaging method to see its affects holds promise from a mechanistic perspective and as a potential predictor of cognitive outcomes.
Collapse
|
18
|
Wetering JV, Geut H, Bol JJ, Galis Y, Timmermans E, Twisk JWR, Hepp DH, Morella ML, Pihlstrom L, Lemstra AW, Rozemuller AJM, Jonkman LE, van de Berg WDJ. Neuroinflammation is associated with Alzheimer's disease co-pathology in dementia with Lewy bodies. Acta Neuropathol Commun 2024; 12:73. [PMID: 38715119 PMCID: PMC11075309 DOI: 10.1186/s40478-024-01786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Neuroinflammation and Alzheimer's disease (AD) co-pathology may contribute to disease progression and severity in dementia with Lewy bodies (DLB). This study aims to clarify whether a different pattern of neuroinflammation, such as alteration in microglial and astroglial morphology and distribution, is present in DLB cases with and without AD co-pathology. METHODS The morphology and load (% area of immunopositivity) of total (Iba1) and reactive microglia (CD68 and HLA-DR), reactive astrocytes (GFAP) and proteinopathies of alpha-synuclein (KM51/pser129), amyloid-beta (6 F/3D) and p-tau (AT8) were assessed in a cohort of mixed DLB + AD (n = 35), pure DLB (n = 15), pure AD (n = 16) and control (n = 11) donors in limbic and neocortical brain regions using immunostaining, quantitative image analysis and confocal microscopy. Regional and group differences were estimated using a linear mixed model analysis. RESULTS Morphologically, reactive and amoeboid microglia were common in mixed DLB + AD, while homeostatic microglia with a small soma and thin processes were observed in pure DLB cases. A higher density of swollen astrocytes was observed in pure AD cases, but not in mixed DLB + AD or pure DLB cases. Mixed DLB + AD had higher CD68-loads in the amygdala and parahippocampal gyrus than pure DLB cases, but did not differ in astrocytic loads. Pure AD showed higher Iba1-loads in the CA1 and CA2, higher CD68-loads in the CA2 and subiculum, and a higher astrocytic load in the CA1-4 and subiculum than mixed DLB + AD cases. In mixed DLB + AD cases, microglial load associated strongly with amyloid-beta (Iba1, CD68 and HLA-DR), and p-tau (CD68 and HLA-DR), and minimally with alpha-synuclein load (CD68). In addition, the highest microglial activity was found in the amygdala and CA2, and astroglial load in the CA4. Confocal microscopy demonstrated co-localization of large amoeboid microglia with neuritic and classic-cored plaques of amyloid-beta and p-tau in mixed DLB + AD cases. CONCLUSIONS In conclusion, microglial activation in DLB was largely associated with AD co-pathology, while astrocytic response in DLB was not. In addition, microglial activity was high in limbic regions, with prevalent AD pathology. Our study provides novel insights into the molecular neuropathology of DLB, highlighting the importance of microglial activation in mixed DLB + AD.
Collapse
Affiliation(s)
- Janna van Wetering
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Hanne Geut
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - John J Bol
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
| | - Yvon Galis
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
| | - Evelien Timmermans
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
| | - Jos W R Twisk
- Department of Epidemiology and Biostatistics, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Dagmar H Hepp
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Martino L Morella
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Lasse Pihlstrom
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Afina W Lemstra
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, De Boelelaan 1117, The Netherlands
- Alzheimer Center, Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Laura E Jonkman
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands.
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Rahman MS, Islam R, Bhuiyan MIH. Ion transporter cascade, reactive astrogliosis and cerebrovascular diseases. Front Pharmacol 2024; 15:1374408. [PMID: 38659577 PMCID: PMC11041382 DOI: 10.3389/fphar.2024.1374408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
Cerebrovascular diseases and their sequalae, such as ischemic stroke, chronic cerebral hypoperfusion, and vascular dementia are significant contributors to adult disability and cognitive impairment in the modern world. Astrocytes are an integral part of the neurovascular unit in the CNS and play a pivotal role in CNS homeostasis, including ionic and pH balance, neurotransmission, cerebral blood flow, and metabolism. Astrocytes respond to cerebral insults, inflammation, and diseases through unique molecular, morphological, and functional changes, collectively known as reactive astrogliosis. The function of reactive astrocytes has been a subject of debate. Initially, astrocytes were thought to primarily play a supportive role in maintaining the structure and function of the nervous system. However, recent studies suggest that reactive astrocytes may have both beneficial and detrimental effects. For example, in chronic cerebral hypoperfusion, reactive astrocytes can cause oligodendrocyte death and demyelination. In this review, we will summarize the (1) roles of ion transporter cascade in reactive astrogliosis, (2) role of reactive astrocytes in vascular dementia and related dementias, and (3) potential therapeutic approaches for dementing disorders targeting reactive astrocytes. Understanding the relationship between ion transporter cascade, reactive astrogliosis, and cerebrovascular diseases may reveal mechanisms and targets for the development of therapies for brain diseases associated with reactive astrogliosis.
Collapse
Affiliation(s)
- Md Shamim Rahman
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, United States
| | | | - Mohammad Iqbal H. Bhuiyan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
20
|
Niu C, Dong M, Niu Y. Natural polyphenol: Their pathogenesis-targeting therapeutic potential in Alzheimer's disease. Eur J Med Chem 2024; 269:116359. [PMID: 38537514 DOI: 10.1016/j.ejmech.2024.116359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 03/17/2024] [Accepted: 03/24/2024] [Indexed: 04/07/2024]
Abstract
Alzheimer's disease (AD) is a detrimental neurodegenerative disease affecting the elderly. Clinically, it is characterized by progressive memory decline and subsequent loss of broader cognitive functions. Current drugs provide only symptomatic relief but do not have profound disease-modifying effects. There is an unmet need to identify novel pharmacological agents for AD therapy. Neuropathologically, the characteristic hallmarks of the disease are extracellular senile plaques containing amyloid β-peptides and intracellular neurofibrillary tangles containing hyperphosphorylated microtubule-associated protein tau. Simultaneously, oxidative stress, neuroinflammation and mitochondrial dysfunction in specific brain regions are early events during the process of AD pathologic changes and are associated with Aβ/tau toxicity. Here, we first summarized probable pathogenic mechanisms leading to neurodegeneration and hopefully identify pathways that serve as specific targets to improve therapy for AD. We then reviewed the mechanisms that underlie disease-modifying effects of natural polyphenols, with a focus on nuclear factor erythroid 2-related factor 2 activators for AD treatment. Lastly, we discussed challenges in the preclinical to clinical translation of natural polyphenols. In conclusion, there is evidence that natural polyphenols can be therapeutically useful in AD through their multifaceted mechanism of action. However, more clinical studies are needed to confirm these effects.
Collapse
Affiliation(s)
- Chengu Niu
- Internal Medicine Residency Program, Rochester General Hospital, Rochester, NY, 14621, USA
| | - Miaoxian Dong
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, 161006, China
| | - Yingcai Niu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, 161006, China.
| |
Collapse
|
21
|
Zhang X, Chen C, Liu Y. Navigating the metabolic maze: anomalies in fatty acid and cholesterol processes in Alzheimer's astrocytes. Alzheimers Res Ther 2024; 16:63. [PMID: 38521950 PMCID: PMC10960454 DOI: 10.1186/s13195-024-01430-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, and its underlying mechanisms have been a subject of great interest. The mainstream theory of AD pathology suggests that the disease is primarily associated with tau protein and amyloid-beta (Aβ). However, an increasing body of research has revealed that abnormalities in lipid metabolism may be an important event throughout the pathophysiology of AD. Astrocytes, as important members of the lipid metabolism network in the brain, play a significant role in this event. The study of abnormal lipid metabolism in astrocytes provides a new perspective for understanding the pathogenesis of AD. This review focuses on the abnormal metabolism of fatty acids (FAs) and cholesterol in astrocytes in AD, and discusses it from three perspectives: lipid uptake, intracellular breakdown or synthesis metabolism, and efflux transport. We found that, despite the accumulation of their own fatty acids, astrocytes cannot efficiently uptake fatty acids from neurons, leading to fatty acid accumulation within neurons and resulting in lipotoxicity. In terms of cholesterol metabolism, astrocytes exhibit a decrease in endogenous synthesis due to the accumulation of exogenous cholesterol. Through a thorough investigation of these metabolic abnormalities, we can provide new insights for future therapeutic strategies by literature review to navigate this complex metabolic maze and bring hope to patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chuanying Chen
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Yi Liu
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
22
|
Wei H, Withrow J, Rakshit J, Ul Amin F, Nahm J, Mowry FE, Mao Z, Bhattacharjee MB, Zhu JJ, Yang Y, Wu JQ. The identification of a Distinct Astrocyte Subtype that Diminishes in Alzheimer's Disease. Aging Dis 2024; 15:2752-2769. [PMID: 38502590 PMCID: PMC11567244 DOI: 10.14336/ad.2024.0205-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/05/2024] [Indexed: 03/21/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by the presence of two hallmark pathologies: the accumulation of Amyloid beta (Aβ) and tau proteins in the brain. There is a growing body of evidence suggesting that astrocytes, a type of glial cell in the brain, play crucial roles in clearing Aβ and binding to tau proteins. However, due to the heterogeneity of astrocytes, the specific roles of different astrocyte subpopulations in response to Aβ and tau remain unclear. To enhance the understanding of astrocyte subpopulations in AD, we investigated astrocyte lineage cells based on single-nuclei transcriptomic data obtained from both human and mouse samples. We characterized the diversity of astrocytes and identified global and subpopulation-specific transcriptomic changes between control and AD samples. Our findings revealed the existence of a specific astrocyte subpopulation marked by low levels of GFAP and the presence of AQP4 and CD63 expression, which showed functional enrichment in Aβ clearance and tau protein binding, and diminished in AD. We verified this type of astrocytes in mouse models and in AD patient brain samples. Furthermore, our research also unveiled significant alterations of the ligand-receptor interactions between astrocytes and other cell types. These changes underscore the complex interplay between astrocytes and neighboring cells in the context of AD. Overall, our work gives insights into astrocyte heterogeneity in the context of AD and reveals a distinct astrocyte subpopulation that holds potential for therapeutic interventions in AD. Targeting specific astrocyte subpopulations may offer new avenues for the development of novel treatments for AD.
Collapse
Affiliation(s)
- Haichao Wei
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA.
| | - Joseph Withrow
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Jyotirmoy Rakshit
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA.
| | - Faiz Ul Amin
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA.
| | - Joshua Nahm
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Francesca E. Mowry
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
| | - Zhengmei Mao
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA.
| | - Meenakshi B. Bhattacharjee
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Jay-Jiguang Zhu
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Yongjie Yang
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
| | - Jia Qian Wu
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
23
|
He L, Duan X, Li S, Zhang R, Dai X, Lu M. Unveiling the role of astrocytes in postoperative cognitive dysfunction. Ageing Res Rev 2024; 95:102223. [PMID: 38325753 DOI: 10.1016/j.arr.2024.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized by progressive cognitive decline and the accumulation of amyloid-beta plaques, tau tangles, and neuroinflammation in the brain. Postoperative cognitive dysfunction (POCD) is a prevalent and debilitating condition characterized by cognitive decline following neuroinflammation and oxidative stress induced by procedures. POCD and AD are two conditions that share similarities in the underlying mechanisms and pathophysiology. Compared to normal aging individuals, individuals with POCD are at a higher risk for developing AD. Emerging evidence suggests that astrocytes, the most abundant glial cells in the central nervous system, play a critical role in the pathogenesis of these conditions. Comprehensive functions of astrocyte in AD has been extensively explored, but very little is known about POCD may experience late-onset AD pathogenesis. Herein, in this context, we mainly explore the multifaceted roles of astrocytes in the context of POCD, highlighting their involvement in neuroinflammation, neurotransmitter regulation, synaptic plasticity and neurotrophic support, and discuss how POCD may augment the onset of AD. Additionally, we discuss potential therapeutic strategies targeting astrocytes to mitigate or prevent POCD, which hold promise for improving the quality of life for patients undergoing surgeries and against AD in the future.
Collapse
Affiliation(s)
- Liang He
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China.
| | - Xiyuan Duan
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Shikuo Li
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Ruqiang Zhang
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Xulei Dai
- Department of Clinical Laboratory Science, Xingtai Medical College, Xingtai 050054, China
| | - Meilin Lu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| |
Collapse
|
24
|
Nadiga APR, Suman, Krishna KL. A novel Zebrafish model of Alzheimer's disease by Aluminium chloride; involving nitro-oxidative stress, neuroinflammation and cholinergic pathway. Eur J Pharmacol 2024; 965:176332. [PMID: 38228217 DOI: 10.1016/j.ejphar.2024.176332] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is a progressive neurodegenerative disorder of the brain. Most AD experimental animal models are pharmacological or transgenic in origin. The existing pharmacological approaches for developing AD are poorly developed and most of them fail to replicate the complete characteristics of disease pathology. Developing a cost-effective and reliable experimental animal model will meet this research gap. Zebrafish (ZF) are progressively emerging as a powerful drug discovery disease model to evaluate central nervous system (CNS) disorders due to their homologous similarities to humans as well as cost-effectiveness. The present research is conceptualized to develop and evaluate a reliable ZF AD model using aluminum chloride (AlCl3). Chronic exposure of 0.04 mM of AlCl3 for 28 days increased the expression of amyloid-β, phosphorylated tau protein and senile plaque development in the ZF brain. The observed changes were associated with learning and memory impairment. Furthermore, decreased brain-derived neurotrophic factor (BDNF) level and elevated oxidative stress indices, pro-inflammatory cytokines levels and acetylcholine esterase (AChE) activity was observed upon exposure to AlCl3 in the ZF brain. Chronic exposure to 0.04 mM of AlCl3 would be a cost-effective ZF AD model for pharmacological screening and may also be used to unravel the molecular mechanism underlying the neuropathology of the disease.
Collapse
Affiliation(s)
- Abhishek P R Nadiga
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, 570 015, Karnataka, India
| | - Suman
- Government Ayurveda Medical College and Hospital, Mysore, 570 015, Karnataka, India
| | - K L Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, 570 015, Karnataka, India.
| |
Collapse
|
25
|
Yu W, Li Y, Zhong F, Deng Z, Wu J, Yu W, Lü Y. Disease-Associated Neurotoxic Astrocyte Markers in Alzheimer Disease Based on Integrative Single-Nucleus RNA Sequencing. Cell Mol Neurobiol 2024; 44:20. [PMID: 38345650 PMCID: PMC10861702 DOI: 10.1007/s10571-024-01453-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024]
Abstract
Alzheimer disease (AD) is an irreversible neurodegenerative disease, and astrocytes play a key role in its onset and progression. The aim of this study is to analyze the characteristics of neurotoxic astrocytes and identify novel molecular targets for slowing down the progression of AD. Single-nucleus RNA sequencing (snRNA-seq) data were analyzed from various AD cohorts comprising about 210,654 cells from 53 brain tissue. By integrating snRNA-seq data with bulk RNA-seq data, crucial astrocyte types and genes associated with the prognosis of patients with AD were identified. The expression of neurotoxic astrocyte markers was validated using 5 × FAD and wild-type (WT) mouse models, combined with experiments such as western blot, quantitative real-time PCR (qRT-PCR), and immunofluorescence. A group of neurotoxic astrocytes closely related to AD pathology was identified, which were involved in inflammatory responses and pathways related to neuron survival. Combining snRNA and bulk tissue data, ZEP36L, AEBP1, WWTR1, PHYHD1, DST and RASL12 were identified as toxic astrocyte markers closely related to disease severity, significantly elevated in brain tissues of 5 × FAD mice and primary astrocytes treated with Aβ. Among them, WWTR1 was significantly increased in astrocytes of 5 × FAD mice, driving astrocyte inflammatory responses, and has been identified as an important marker of neurotoxic astrocytes. snRNA-seq analysis reveals the biological functions of neurotoxic astrocytes. Six genes related to AD pathology were identified and validated, among which WWTR1 may be a novel marker of neurotoxic astrocytes.
Collapse
Affiliation(s)
- Wuhan Yu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong, Chongqing, 400016, China
| | - Yin Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fuxin Zhong
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong, Chongqing, 400016, China
| | - Zhangjing Deng
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong, Chongqing, 400016, China
| | - Jiani Wu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong, Chongqing, 400016, China
| | - Weihua Yu
- Institutes of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong, Chongqing, 400016, China.
| |
Collapse
|
26
|
Szlufik S, Kopeć K, Szleszkowski S, Koziorowski D. Glymphatic System Pathology and Neuroinflammation as Two Risk Factors of Neurodegeneration. Cells 2024; 13:286. [PMID: 38334678 PMCID: PMC10855155 DOI: 10.3390/cells13030286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024] Open
Abstract
The key to the effective treatment of neurodegenerative disorders is a thorough understanding of their pathomechanism. Neurodegeneration and neuroinflammation are mutually propelling brain processes. An impairment of glymphatic system function in neurodegeneration contributes to the progression of pathological processes. The question arises as to how neuroinflammation and the glymphatic system are related. This review highlights the direct and indirect influence of these two seemingly independent processes. Protein aggregates, a characteristic feature of neurodegeneration, are correlated with glymphatic clearance and neuroinflammation. Glial cells cannot be overlooked when considering the neuroinflammatory processes. Astrocytes are essential for the effective functioning of the glymphatic system and play a crucial role in the inflammatory responses in the central nervous system. It is imperative to acknowledge the significance of AQP4, a protein that exhibits a high degree of polarization in astrocytes and is crucial for the functioning of the glymphatic system. AQP4 influences inflammatory processes that have not yet been clearly delineated. Another interesting issue is the gut-brain axis and microbiome, which potentially impact the discussed processes. A discussion of the correlation between the functioning of the glymphatic system and neuroinflammation may contribute to exploring the pathomechanism of neurodegeneration.
Collapse
Affiliation(s)
- Stanisław Szlufik
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, 02-091 Warszawa, Poland; (K.K.)
| | | | | | | |
Collapse
|
27
|
Katsumata Y, Wu X, Aung KZ, Gauthreaux K, Mock C, Forrest SL, Kovacs GG, Nelson PT. Pathologic correlates of aging-related tau astrogliopathy: ARTAG is associated with LATE-NC and cerebrovascular pathologies, but not with ADNC. Neurobiol Dis 2024; 191:106412. [PMID: 38244935 PMCID: PMC10892903 DOI: 10.1016/j.nbd.2024.106412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024] Open
Abstract
Age-related tau astrogliopathy (ARTAG) is detectable in the brains of over one-third of autopsied persons beyond age 80, but the pathoetiology of ARTAG is poorly understood. Insights can be gained by analyzing risk factors and comorbid pathologies. Here we addressed the question of which prevalent co-pathologies are observed with increased frequency in brains with ARTAG. The study sample was the National Alzheimer's Coordinating Center (NACC) data set, derived from multiple Alzheimer's disease research centers (ADRCs) in the United States. Data from persons with unusual conditions (e.g. frontotemporal dementia) were excluded leaving 504 individual autopsied research participants, clustering from 20 different ADRCs, autopsied since 2020; ARTAG was reported in 222 (44.0%) of included participants. As has been shown previously, ARTAG was increasingly frequent with older age and in males. The presence and severity of other common subtypes of pathology that were previously linked to dementia were analyzed, stratifying for the presence of ARTAG. In logistical regression-based statistical models that included age and sex as covariates, ARTAG was relatively more likely to be found in brains with limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC), and in brains with comorbid cerebrovascular pathology (arteriolosclerosis and/or brain infarcts). However, ARTAG was not associated with severe Alzheimer's disease neuropathologic change (ADNC), or primary age-related tauopathy (PART). In a subset analysis of 167 participants with neurocognitive testing data, there was a marginal trend for ARTAG pathology to be associated with cognitive impairment as assessed with MMSE scores (P = 0.07, adjusting for age, sex, interval between final clinic visit and death, and ADNC severity). A limitation of the study was that there were missing data about ARTAG pathologies, with incomplete operationalization of ARTAG according to anatomic region and pathologic subtypes (e.g., thorn-shaped or granular-fuzzy astrocytes). In summary, ARTAG was not associated with ADNC, whereas prior observations about ARTAG occurring with increased frequency in aging, males, and brains with LATE-NC were replicated. It remains to be determined whether the increased frequency of ARTAG in brains with comorbid cerebrovascular pathology is related to local infarctions or neuroinflammatory signaling, or with some other set of correlated factors including blood-brain barrier dysfunction.
Collapse
Affiliation(s)
- Yuriko Katsumata
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, United States of America; Department of Biostatistics, University of Kentucky, Lexington, KY 40506, United States of America
| | - Xian Wu
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, United States of America; Department of Biostatistics, University of Kentucky, Lexington, KY 40506, United States of America
| | - Khine Zin Aung
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, United States of America; Department of Biostatistics, University of Kentucky, Lexington, KY 40506, United States of America
| | - Kathryn Gauthreaux
- National Alzheimer's Coordinating Center, Department of Epidemiology, University of Washington, Seattle, WA 98105, United States of America
| | - Charles Mock
- National Alzheimer's Coordinating Center, Department of Epidemiology, University of Washington, Seattle, WA 98105, United States of America
| | - Shelley L Forrest
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada; Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, Canada
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada; Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, Canada
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, United States of America; Department of Pathology, Division of Neuropathology, University of Kentucky, Lexington, KY, United States of America.
| |
Collapse
|
28
|
Kraner SD, Sompol P, Prateeptrang S, Promkan M, Hongthong S, Thongsopha N, Nelson PT, Norris CM. Development of a monoclonal antibody specific for a calpain-generated ∆48 kDa calcineurin fragment, a marker of distressed astrocytes. J Neurosci Methods 2024; 402:110012. [PMID: 37984591 PMCID: PMC10841921 DOI: 10.1016/j.jneumeth.2023.110012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/23/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Calcineurin (CN) is a Ca2+/calmodulin-dependent protein phosphatase. In healthy tissue, CN exists mainly as a full-length (∼60 kDa) highly-regulated protein phosphatase involved in essential cellular functions. However, in diseased or injured tissue, CN is proteolytically converted to a constitutively active fragment that has been causatively-linked to numerous pathophysiologic processes. These calpain-cleaved CN fragments (∆CN) appear at high levels in human brain at early stages of cognitive decline associated with Alzheimer's disease (AD). NEW METHOD We developed a monoclonal antibody to ∆CN, using an immunizing peptide corresponding to the C-terminal end of the ∆CN fragment. RESULTS We obtained a mouse monoclonal antibody, designated 26A6, that selectively detects ∆CN in Western analysis of calpain-cleaved recombinant human CN. Using this antibody, we screened both pathological and normal human brain sections provided by the University of Kentucky's Alzheimer's Disease Research Center. 26A6 showed low reactivity towards normal brain tissue, but detected astrocytes both surrounding AD amyloid plaques and throughout AD brain tissue. In brain tissue with infarcts, there was considerable concentration of 26A6-positive astrocytes within/around infarcts, suggesting a link with anoxic/ischemia pathways. COMPARISON WITH EXISTING METHOD The results obtained with the new monoclonal are similar to those obtained with a polyclonal we had previously developed. However, the monoclonal is an abundant tool available to the dementia research community. CONCLUSIONS The new monoclonal 26A6 antibody is highly selective for the ∆CN proteolytic fragment and labels a subset of astrocytes, and could be a useful tool for marking insidious brain pathology and identifying novel astrocyte phenotypes.
Collapse
Affiliation(s)
| | - Pradoldej Sompol
- Sanders Brown Center on Aging, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Siriyagon Prateeptrang
- Sanders Brown Center on Aging, USA; School of Allied Health Science, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Moltira Promkan
- Sanders Brown Center on Aging, USA; Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Suthida Hongthong
- Sanders Brown Center on Aging, USA; School of Allied Health Science, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Napasorn Thongsopha
- Sanders Brown Center on Aging, USA; School of Allied Health Science, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Peter T Nelson
- Sanders Brown Center on Aging, USA; Department of Pathology, University of Kentucky, Lexington, KY 40536, USA
| | - Christopher M Norris
- Sanders Brown Center on Aging, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
29
|
Czyżewski W, Mazurek M, Sakwa L, Szymoniuk M, Pham J, Pasierb B, Litak J, Czyżewska E, Turek M, Piotrowski B, Torres K, Rola R. Astroglial Cells: Emerging Therapeutic Targets in the Management of Traumatic Brain Injury. Cells 2024; 13:148. [PMID: 38247839 PMCID: PMC10813911 DOI: 10.3390/cells13020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Traumatic Brain Injury (TBI) represents a significant health concern, necessitating advanced therapeutic interventions. This detailed review explores the critical roles of astrocytes, key cellular constituents of the central nervous system (CNS), in both the pathophysiology and possible rehabilitation of TBI. Following injury, astrocytes exhibit reactive transformations, differentiating into pro-inflammatory (A1) and neuroprotective (A2) phenotypes. This paper elucidates the interactions of astrocytes with neurons, their role in neuroinflammation, and the potential for their therapeutic exploitation. Emphasized strategies encompass the utilization of endocannabinoid and calcium signaling pathways, hormone-based treatments like 17β-estradiol, biological therapies employing anti-HBGB1 monoclonal antibodies, gene therapy targeting Connexin 43, and the innovative technique of astrocyte transplantation as a means to repair damaged neural tissues.
Collapse
Affiliation(s)
- Wojciech Czyżewski
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland;
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| | - Marek Mazurek
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| | - Leon Sakwa
- Student Scientific Society, Kazimierz Pulaski University of Radom, 26-600 Radom, Poland;
| | - Michał Szymoniuk
- Student Scientific Association, Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Jennifer Pham
- Student Scientific Society, Medical University of Lublin, 20-954 Lublin, Poland; (J.P.); (M.T.)
| | - Barbara Pasierb
- Department of Dermatology, Radom Specialist Hospital, 26-600 Radom, Poland;
| | - Jakub Litak
- Department of Clinical Immunology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Ewa Czyżewska
- Department of Otolaryngology, Mazovian Specialist Hospital, 26-617 Radom, Poland;
| | - Michał Turek
- Student Scientific Society, Medical University of Lublin, 20-954 Lublin, Poland; (J.P.); (M.T.)
| | - Bartłomiej Piotrowski
- Institute of Automatic Control and Robotics, Warsaw University of Technology, 00-661 Warsaw, Poland;
| | - Kamil Torres
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Radosław Rola
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| |
Collapse
|
30
|
Shea MK, Xuan AY, Booth SL. Vitamin D, Alzheimer's disease and related dementia. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 109:185-219. [PMID: 38777413 DOI: 10.1016/bs.afnr.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Vitamin D has been proposed as a potential strategy to mitigate age-related cognitive decline and dementia, including Alzheimer's dementia, the predominant type of dementia. Rodent studies have provided insight into the potential mechanisms underlying the role of vitamin D in Alzheimer's disease and dementia. However, inconsistencies with respect to age, sex, and genetic background of the rodent models used poses some limitations regarding scientific rigor and translation. Several human observational studies have evaluated the association of vitamin D status with cognitive decline and dementia, and the results are conflicting. Randomized clinical trials of vitamin D supplementation have included cognitive outcomes. However, most of the available trials have not been designed specifically to test the effect of vitamin D on age-related cognitive decline and dementia, so it remains questionable how much additional vitamin D will improve cognitive performance. Here we evaluate the strengths and limitations of the available evidence regarding the role of vitamin D in AD, cognitive decline, dementia.
Collapse
Affiliation(s)
- M Kyla Shea
- Tufts University USDA Human Nutrition Research Center on Aging.
| | - Andrew Y Xuan
- Tufts University USDA Human Nutrition Research Center on Aging
| | - Sarah L Booth
- Tufts University USDA Human Nutrition Research Center on Aging
| |
Collapse
|
31
|
Pinkiewicz M, Pinkiewicz M, Walecki J, Zaczyński A, Zawadzki M. Breaking Barriers in Neuro-Oncology: A Scoping Literature Review on Invasive and Non-Invasive Techniques for Blood-Brain Barrier Disruption. Cancers (Basel) 2024; 16:236. [PMID: 38201663 PMCID: PMC10778052 DOI: 10.3390/cancers16010236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The blood-brain barrier (BBB) poses a significant challenge to drug delivery for brain tumors, with most chemotherapeutics having limited permeability into non-malignant brain tissue and only restricted access to primary and metastatic brain cancers. Consequently, due to the drug's inability to effectively penetrate the BBB, outcomes following brain chemotherapy continue to be suboptimal. Several methods to open the BBB and obtain higher drug concentrations in tumors have been proposed, with the selection of the optimal method depending on the size of the targeted tumor volume, the chosen therapeutic agent, and individual patient characteristics. Herein, we aim to comprehensively describe osmotic disruption with intra-arterial drug administration, intrathecal/intraventricular administration, laser interstitial thermal therapy, convection-enhanced delivery, and ultrasound methods, including high-intensity focused and low-intensity ultrasound as well as tumor-treating fields. We explain the scientific concept behind each method, preclinical/clinical research, advantages and disadvantages, indications, and potential avenues for improvement. Given that each method has its limitations, it is unlikely that the future of BBB disruption will rely on a single method but rather on a synergistic effect of a combined approach. Disruption of the BBB with osmotic infusion or high-intensity focused ultrasound, followed by the intra-arterial delivery of drugs, is a promising approach. Real-time monitoring of drug delivery will be necessary for optimal results.
Collapse
Affiliation(s)
- Miłosz Pinkiewicz
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wrocław, Poland
| | - Mateusz Pinkiewicz
- Department of Diagnostic Imaging, Mazowiecki Regional Hospital in Siedlce, 08-110 Siedlce, Poland
| | - Jerzy Walecki
- Division of Interventional Neuroradiology, Department of Radiology, The National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Artur Zaczyński
- Department of Neurosurgery, The National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Michał Zawadzki
- Division of Interventional Neuroradiology, Department of Radiology, The National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
- Department of Radiology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| |
Collapse
|
32
|
Tyliszczak M, Wiatrak B, Danielewski M, Szeląg A, Kucharska AZ, Sozański T. Does a pickle a day keep Alzheimer's away? Fermented food in Alzheimer's disease: A review. Exp Gerontol 2023; 184:112332. [PMID: 37967591 DOI: 10.1016/j.exger.2023.112332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
Fermented food is commonly viewed as healthy, mostly due to its probiotic and digestion-enhancing properties and recently it has been examined with regard to the development of new therapeutic and preventive measures for Alzheimer's disease. Fermented food has been shown to have anti-inflammatory and antioxidant properties and to alter the gut microbiota. However, the exact pathogenesis of Alzheimer's disease is still unknown and its connections to systemic inflammation and gut dysbiosis, as potential targets of fermented food, require further investigation. Therefore, to sum up the current knowledge, this article reviews recent research on the pathogenesis of Alzheimer's disease with emphasis on the role of the gut-brain axis and studies examining the use of fermented foods. The analysis of the fermented food research includes clinical and preclinical in vivo and in vitro studies. The fermented food studies have shown promising effects on amyloid-β metabolism, inflammation, and cognitive impairment in animals and humans. Fermented food has great potential in developing new approaches to Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Michał Tyliszczak
- Department of Pharmacology, Wroclaw Medical University, Wrocław, Poland.
| | - Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Wrocław, Poland
| | | | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, Wrocław, Poland
| | - Alicja Z Kucharska
- Department of Fruit, Vegetable, and Plant Nutraceutical Technology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Tomasz Sozański
- Department of Preclinical Sciences, Pharmacology and Medical Diagnostics, Faculty of Medicine, Wroclaw University of Science and Technology, Wrocław, Poland
| |
Collapse
|
33
|
Niedowicz DM, Katsumata Y, Nelson PT. In severe ADNC, hippocampi with comorbid LATE-NC and hippocampal sclerosis have substantially more astrocytosis than those with LATE-NC or hippocampal sclerosis alone. J Neuropathol Exp Neurol 2023; 82:987-994. [PMID: 37935530 PMCID: PMC10658353 DOI: 10.1093/jnen/nlad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) and hippocampal sclerosis of aging (HS-A) pathologies are found together at autopsy in ∼20% of elderly demented persons. Although astrocytosis is known to occur in neurodegenerative diseases, it is currently unknown how the severity of astrocytosis is correlated with the common combinations of pathologies in aging brains. To address this knowledge gap, we analyzed a convenience sample of autopsied subjects from the University of Kentucky Alzheimer's Disease Research Center community-based autopsy cohort. The subjects were stratified into 5 groups (n = 51 total): pure ADNC, ADNC + LATE-NC, ADNC + HS-A, ADNC + LATE-NC + HS-A, and low-pathology controls. Following GFAP immunostaining and digital slide scanning with a ScanScope, we measured GFAP-immunoreactive astrocytosis. The severities of GFAP-immunoreactive astrocytosis in hippocampal subfield CA1 and subiculum were compared between groups. The group with ADNC + LATE-NC + HS-A had the most astrocytosis as operationalized by either any GFAP+ or strong GFAP+ immunoreactivity in both CA1 and subiculum. In comparison to that pathologic combination, ADNC + HS or ADNC + LATE-NC alone showed lower astrocytosis. Pure ADNC had only marginally increased astrocytosis in CA1 and subiculum, in comparison to low-pathology controls. We conclude that there appeared to be pathogenetic synergy such that ADNC + LATE-NC + HS-A cases had relatively high levels of astrocytosis in the hippocampal formation.
Collapse
|
34
|
Tang D, Sun C, Yang J, Fan L, Wang Y. Advances in the Study of the Pathology and Treatment of Alzheimer's Disease and Its Association with Periodontitis. Life (Basel) 2023; 13:2203. [PMID: 38004343 PMCID: PMC10672606 DOI: 10.3390/life13112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) has become one of the leading causes of health problems in the elderly, and studying its causes and treatments remains a serious challenge for researchers worldwide. The two main pathological features of Alzheimer's disease are the extracellular deposition of β-amyloid (Aβ) to form senile plaques and the intracellular aggregation of hyperphosphorylated Tau protein to form neurofibrillary tangles (NFTs). Researchers have proposed several hypotheses to elucidate the pathogenesis of AD, but due to the complexity of the pathophysiologic factors involved in the development of AD, no effective drugs have been found to stop the progression of the disease. Currently, the mainstay drugs used to treat AD can only alleviate the patient's symptoms and do not have a therapeutic effect. As researchers explore interactions among diseases, much evidence suggests that there is a close link between periodontitis and AD, and that periodontal pathogenic bacteria can exacerbate Aβ deposition and Tau protein hyperphosphorylation through neuroinflammatory mechanisms, thereby advancing the pathogenesis of AD. This article reviews recent advances in the pathogenesis of AD, available therapeutic agents, the relevance of periodontitis to AD, and mechanisms of action.
Collapse
Affiliation(s)
- Dan Tang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Chang Sun
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Jumei Yang
- Lanzhou University Second Hospital, Lanzhou 730000, China;
| | - Lili Fan
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| |
Collapse
|
35
|
Whitlock JH, Soelter TM, Howton TC, Wilk EJ, Oza VH, Lasseigne BN. Cell-type-specific gene expression and regulation in the cerebral cortex and kidney of atypical Setbp1 S858R Schinzel Giedion Syndrome mice. J Cell Mol Med 2023; 27:3565-3577. [PMID: 37872881 PMCID: PMC10660642 DOI: 10.1111/jcmm.18001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023] Open
Abstract
Schinzel Giedion Syndrome (SGS) is an ultra-rare autosomal dominant Mendelian disease presenting with abnormalities spanning multiple organ systems. The most notable phenotypes involve severe developmental delay, progressive brain atrophy, and drug-resistant seizures. SGS is caused by spontaneous variants in SETBP1, which encodes for the epigenetic hub SETBP1 transcription factor (TF). SETBP1 variants causing classical SGS cluster at the degron, disrupting SETBP1 protein degradation and resulting in toxic accumulation, while those located outside cause milder atypical SGS. Due to the multisystem phenotype, we evaluated gene expression and regulatory programs altered in atypical SGS by snRNA-seq of the cerebral cortex and kidney of Setbp1S858R heterozygous mice (corresponds to the human likely pathogenic SETBP1S867R variant) compared to matched wild-type mice by constructing cell-type-specific regulatory networks. Setbp1 was differentially expressed in excitatory neurons, but known SETBP1 targets were differentially expressed and regulated in many cell types. Our findings suggest molecular drivers underlying neurodevelopmental phenotypes in classical SGS also drive atypical SGS, persist after birth, and are present in the kidney. Our results indicate SETBP1's role as an epigenetic hub leads to cell-type-specific differences in TF activity, gene targeting, and regulatory rewiring. This research provides a framework for investigating cell-type-specific variant impact on gene expression and regulation.
Collapse
Affiliation(s)
- Jordan H. Whitlock
- Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Tabea M. Soelter
- Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Timothy C. Howton
- Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Elizabeth J. Wilk
- Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Vishal H. Oza
- Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
36
|
Thaker AA, McConnell BV, Rogers DM, Carlson NE, Coughlan C, Jensen AM, Lopez-Paniagua D, Holden SK, Pressman PS, Pelak VS, Filley CM, Potter H, Solano DA, Heffernan KS, Bettcher BM. Astrogliosis, neuritic microstructure, and sex effects: GFAP is an indicator of neuritic orientation in women. Brain Behav Immun 2023; 113:124-135. [PMID: 37394144 PMCID: PMC10584366 DOI: 10.1016/j.bbi.2023.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023] Open
Abstract
BACKGROUND Data from human studies suggest that immune dysregulation is associated with Alzheimer's disease (AD) pathology and cognitive decline and that neurites may be affected early in the disease trajectory. Data from animal studies further indicate that dysfunction in astrocytes and inflammation may have a pivotal role in facilitating dendritic damage, which has been linked with negative cognitive outcomes. To elucidate these relationships further, we have examined the relationship between astrocyte and immune dysregulation, AD-related pathology, and neuritic microstructure in AD-vulnerable regions in late life. METHODS We evaluated panels of immune, vascular, and AD-related protein markers in blood and conducted in vivo multi-shell neuroimaging using Neurite Orientation Dispersion and Density Imaging (NODDI) to assess indices of neuritic density (NDI) and dispersion (ODI) in brain regions vulnerable to AD in a cohort of older adults (n = 109). RESULTS When examining all markers in tandem, higher plasma GFAP levels were strongly related to lower neurite dispersion (ODI) in grey matter. No biomarker associations were found with higher neuritic density. Associations between GFAP and neuritic microstructure were not significantly impacted by symptom status, APOE status, or plasma Aβ42/40 ratio; however, there was a large sex effect observed for neurite dispersion, wherein negative associations between GFAP and ODI were only observed in females. DISCUSSION This study provides a comprehensive, concurrent appraisal of immune, vascular, and AD-related biomarkers in the context of advanced grey matter neurite orientation and dispersion methodology. Sex may be an important modifier of the complex associations between astrogliosis, immune dysregulation, and brain microstructure in older adults.
Collapse
Affiliation(s)
- Ashesh A Thaker
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brice V McConnell
- Department of Neurology, Behavioral Neurology Section, University of Colorado Alzheimer's & Cognition Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Dustin M Rogers
- Department of Biostatistics and Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Nichole E Carlson
- Department of Biostatistics and Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Christina Coughlan
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandria M Jensen
- Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Dan Lopez-Paniagua
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Samantha K Holden
- Department of Neurology, Behavioral Neurology Section, University of Colorado Alzheimer's & Cognition Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Peter S Pressman
- Department of Neurology, Behavioral Neurology Section, University of Colorado Alzheimer's & Cognition Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Victoria S Pelak
- Department of Neurology, Behavioral Neurology Section, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA; Department of Ophthalmology, Sue Anschutz-Rodgers University of Colorado Eye Center, University of Colorado School of Medicine, Aurora, CO, USA
| | - Christopher M Filley
- Behavioral Neurology Section, Departments of Neurology and Psychiatry, University of Colorado Alzheimer's & Cognition Center, Marcus Institute for Brain Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Huntington Potter
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - D Adriana Solano
- Department of Neurology, University of Colorado Alzheimer's & Cognition Center, Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kate S Heffernan
- Division of Neuropharmacology and Neurological Disorders, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Brianne M Bettcher
- Department of Neurology, Behavioral Neurology Section, University of Colorado Alzheimer's & Cognition Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
37
|
Lin CCJ, Herisson F, Le H, Jaafar N, Chetal K, Oram MK, Flynn KL, Gavrilles EP, Sadreyev RI, Schiffino FL, Tanzi RE. Mast cell deficiency improves cognition and enhances disease-associated microglia in 5XFAD mice. Cell Rep 2023; 42:113141. [PMID: 37713312 PMCID: PMC10634538 DOI: 10.1016/j.celrep.2023.113141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 06/20/2023] [Accepted: 08/30/2023] [Indexed: 09/17/2023] Open
Abstract
Emerging evidence suggests that peripheral immune cells contribute to Alzheimer's disease (AD) neuropathogenesis. Among these, mast cells are known for their functions in allergic reactions and neuroinflammation; however, little is known about their role in AD. Here, we crossed 5XFAD mice with mast cell-deficient strains and observed the effects on AD-related neuropathology and cognitive impairment. We found that mast cell depletion improved contextual fear conditioning in 5XFAD mice without affecting cued fear conditioning, anxiety-like behavior, or amyloid burden. Furthermore, mast cell depletion led to an upregulation of transcriptomic signatures for putatively protective disease-associated microglia and resulted in reduced markers indicative of reactive astrocytes. We hypothesize a system of bidirectional communication between dural mast cells and the brain, where mast cells respond to signals from the brain environment by expressing immune-regulatory mediators, impacting cognition and glial cell function. These findings highlight mast cells as potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Chih-Chung Jerry Lin
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Fanny Herisson
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Hoang Le
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Nader Jaafar
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Kashish Chetal
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mary K Oram
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Kelly L Flynn
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Evan P Gavrilles
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Felipe L Schiffino
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| |
Collapse
|
38
|
Chiotis K, Johansson C, Rodriguez-Vieitez E, Ashton NJ, Blennow K, Zetterberg H, Graff C, Nordberg A. Tracking reactive astrogliosis in autosomal dominant and sporadic Alzheimer's disease with multi-modal PET and plasma GFAP. Mol Neurodegener 2023; 18:60. [PMID: 37697307 PMCID: PMC10496408 DOI: 10.1186/s13024-023-00647-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Plasma assays for the detection of Alzheimer's disease neuropathological changes are receiving ever increasing interest. The concentration of plasma glial fibrillary acidic protein (GFAP) has been suggested as a potential marker of astrocytes or recently, amyloid-β burden, although this hypothesis remains unproven. We compared plasma GFAP levels with the astrocyte tracer 11C-Deuterium-L-Deprenyl (11C-DED) in a multi-modal PET design in participants with sporadic and Autosomal Dominant Alzheimer's disease. METHODS Twenty-four individuals from families with known Autosomal Dominant Alzheimer's Disease mutations (mutation carriers = 10; non-carriers = 14) and fifteen patients with sporadic Alzheimer's disease were included. The individuals underwent PET imaging with 11C-DED, 11C-PIB and 18F-FDG, as markers of reactive astrogliosis, amyloid-β deposition, and glucose metabolism, respectively, and plasma sampling for measuring GFAP concentrations. Twenty-one participants from the Autosomal Dominant Alzheimer's Disease group underwent follow-up plasma sampling and ten of these participants underwent follow-up PET imaging. RESULTS In mutation carriers, plasma GFAP levels and 11C-PIB binding increased, while 11C-DED binding and 18F-FDG uptake significantly decreased across the estimated years to symptom onset. Cross-sectionally, plasma GFAP demonstrated a negative correlation with 11C-DED binding in both mutation carriers and patients with sporadic disease. Plasma GFAP indicated cross-sectionally a significant positive correlation with 11C-PIB binding and a significant negative correlation with 18F-FDG in the whole sample. The longitudinal levels of 11C-DED binding showed a significant negative correlation with longitudinal plasma GFAP concentrations over the follow-up interval. CONCLUSIONS Plasma GFAP concentration and astrocyte 11C-DED brain binding levels followed divergent trajectories and may reflect different underlying processes. The strong negative association between plasma GFAP and 11C-DED binding in Autosomal Dominant and sporadic Alzheimer's disease brains may indicate that if both are markers of reactive astrogliosis, they may detect different states or subtypes of astrogliosis. Increased 11C-DED brain binding seems to be an earlier phenomenon in Alzheimer's disease progression than increased plasma GFAP concentration.
Collapse
Affiliation(s)
- Konstantinos Chiotis
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Charlotte Johansson
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Elena Rodriguez-Vieitez
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Caroline Graff
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
- Unit for Hereditary Dementia, Karolinska University Hospital-Solna, Solna, Sweden
| | - Agneta Nordberg
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden.
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
39
|
Stanca S, Rossetti M, Bongioanni P. Astrocytes as Neuroimmunocytes in Alzheimer's Disease: A Biochemical Tool in the Neuron-Glia Crosstalk along the Pathogenetic Pathways. Int J Mol Sci 2023; 24:13880. [PMID: 37762184 PMCID: PMC10531177 DOI: 10.3390/ijms241813880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
This work aimed at assessing Alzheimer's disease (AD) pathogenesis through the investigation of the astrocytic role to transduce the load of amyloid-beta (Aβ) into neuronal death. The backbone of this review is focused on the deepening of the molecular pathways eliciting the activation of astrocytes crucial phenomena in the understanding of AD as an autoimmune pathology. The complex relations among astrocytes, Aβ and tau, together with the role played by the tripartite synapsis are discussed. A review of studies published from 1979 to 2023 on Scopus, PubMed and Google Scholar databases was conducted. The selected papers focused not only on the morphological and metabolic characteristics of astrocytes, but also on the latest notions about their multifunctional involvement in AD pathogenesis. Astrocytes participate in crucial pathways, including pruning and sprouting, by which the AD neurodegeneration evolves from an aggregopathy to neuroinflammation, loss of synapses and neuronal death. A1 astrocytes stimulate the production of pro-inflammatory molecules which have been correlated with the progression of AD cognitive impairment. Further research is needed to "hold back" the A1 polarization and, thus, to slow the worsening of the disease. AD clinical expression is the result of dysfunctional neuronal interactions, but this is only the end of a process involving a plurality of protagonists. One of these is the astrocyte, whose importance this work intends to put under the spotlight in the AD scenario, reflecting the multifaceted nature of this disease in the functional versatility of this glial population.
Collapse
Affiliation(s)
- Stefano Stanca
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi 10, 56126 Pisa, Italy
- NeuroCare Onlus, 56100 Pisa, Italy
| | - Martina Rossetti
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi 10, 56126 Pisa, Italy
- NeuroCare Onlus, 56100 Pisa, Italy
| | - Paolo Bongioanni
- NeuroCare Onlus, 56100 Pisa, Italy
- Medical Specialties Department, Azienda Ospedaliero-Universitaria Pisana, 56100 Pisa, Italy
| |
Collapse
|
40
|
Zong B, Yu F, Zhang X, Pang Y, Zhao W, Sun P, Li L. Mechanosensitive Piezo1 channel in physiology and pathophysiology of the central nervous system. Ageing Res Rev 2023; 90:102026. [PMID: 37532007 DOI: 10.1016/j.arr.2023.102026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Since the discovery of the mechanosensitive Piezo1 channel in 2010, there has been a significant amount of research conducted to explore its regulatory role in the physiology and pathology of various organ systems. Recently, a growing body of compelling evidence has emerged linking the activity of the mechanosensitive Piezo1 channel to health and disease of the central nervous system. However, the exact mechanisms underlying these associations remain inadequately comprehended. This review systematically summarizes the current research on the mechanosensitive Piezo1 channel and its implications for central nervous system mechanobiology, retrospects the results demonstrating the regulatory role of the mechanosensitive Piezo1 channel on various cell types within the central nervous system, including neural stem cells, neurons, oligodendrocytes, microglia, astrocytes, and brain endothelial cells. Furthermore, the review discusses the current understanding of the involvement of the Piezo1 channel in central nervous system disorders, such as Alzheimer's disease, multiple sclerosis, glaucoma, stroke, and glioma.
Collapse
Affiliation(s)
- Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Fengzhi Yu
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoyou Zhang
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Yige Pang
- Department of Neurosurgery, Zibo Central Hospital, Zibo 255000, Shandong, China
| | - Wenrui Zhao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Peng Sun
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Lin Li
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
41
|
Wang N, Yang X, Zhao Z, Liu D, Wang X, Tang H, Zhong C, Chen X, Chen W, Meng Q. Cooperation between neurovascular dysfunction and Aβ in Alzheimer's disease. Front Mol Neurosci 2023; 16:1227493. [PMID: 37654789 PMCID: PMC10466809 DOI: 10.3389/fnmol.2023.1227493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
The amyloid-β (Aβ) hypothesis was once believed to represent the pathogenic process of Alzheimer's disease (AD). However, with the failure of clinical drug development and the increasing understanding of the disease, the Aβ hypothesis has been challenged. Numerous recent investigations have demonstrated that the vascular system plays a significant role in the course of AD, with vascular damage occurring prior to the deposition of Aβ and neurofibrillary tangles (NFTs). The question of how Aβ relates to neurovascular function and which is the trigger for AD has recently come into sharp focus. In this review, we outline the various vascular dysfunctions associated with AD, including changes in vascular hemodynamics, vascular cell function, vascular coverage, and blood-brain barrier (BBB) permeability. We reviewed the most recent findings about the complicated Aβ-neurovascular unit (NVU) interaction and highlighted its vital importance to understanding disease pathophysiology. Vascular defects may lead to Aβ deposition, neurotoxicity, glial cell activation, and metabolic dysfunction; In contrast, Aβ and oxidative stress can aggravate vascular damage, forming a vicious cycle loop.
Collapse
Affiliation(s)
- Niya Wang
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xiang Yang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhong Zhao
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Da Liu
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xiaoyan Wang
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Hao Tang
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Chuyu Zhong
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xinzhang Chen
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Wenli Chen
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Qiang Meng
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
42
|
Handy G, Borisyuk A. Investigating the ability of astrocytes to drive neural network synchrony. PLoS Comput Biol 2023; 19:e1011290. [PMID: 37556468 PMCID: PMC10441806 DOI: 10.1371/journal.pcbi.1011290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 08/21/2023] [Accepted: 06/21/2023] [Indexed: 08/11/2023] Open
Abstract
Recent experimental works have implicated astrocytes as a significant cell type underlying several neuronal processes in the mammalian brain, from encoding sensory information to neurological disorders. Despite this progress, it is still unclear how astrocytes are communicating with and driving their neuronal neighbors. While previous computational modeling works have helped propose mechanisms responsible for driving these interactions, they have primarily focused on interactions at the synaptic level, with microscale models of calcium dynamics and neurotransmitter diffusion. Since it is computationally infeasible to include the intricate microscale details in a network-scale model, little computational work has been done to understand how astrocytes may be influencing spiking patterns and synchronization of large networks. We overcome this issue by first developing an "effective" astrocyte that can be easily implemented to already established network frameworks. We do this by showing that the astrocyte proximity to a synapse makes synaptic transmission faster, weaker, and less reliable. Thus, our "effective" astrocytes can be incorporated by considering heterogeneous synaptic time constants, which are parametrized only by the degree of astrocytic proximity at that synapse. We then apply our framework to large networks of exponential integrate-and-fire neurons with various spatial structures. Depending on key parameters, such as the number of synapses ensheathed and the strength of this ensheathment, we show that astrocytes can push the network to a synchronous state and exhibit spatially correlated patterns.
Collapse
Affiliation(s)
- Gregory Handy
- Departments of Neurobiology and Statistics, University of Chicago, Chicago, Illinois, United States of America
- Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, Illinois, United States of America
| | - Alla Borisyuk
- Department of Mathematics, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
43
|
Choudhury N, Chen L, Al-Harthi L, Hu XT. Hyperactivity of medial prefrontal cortex pyramidal neurons occurs in a mouse model of early-stage Alzheimer's disease without β-amyloid accumulation. Front Pharmacol 2023; 14:1194869. [PMID: 37465526 PMCID: PMC10350500 DOI: 10.3389/fphar.2023.1194869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023] Open
Abstract
The normal function of the medial prefrontal cortex (mPFC) is essential for regulating neurocognition, but it is disrupted in the early stages of Alzheimer's disease (AD) before the accumulation of Aβ and the appearance of symptoms. Despite this, little is known about how the functional activity of medial prefrontal cortex pyramidal neurons changes as Alzheimer's disease progresses during aging. We used electrophysiological techniques (patch-clamping) to assess the functional activity of medial prefrontal cortex pyramidal neurons in the brain of 3xTg-Alzheimer's disease mice modeling early-stage Alzheimer's disease without Aβ accumulation. Our results indicate that firing rate and the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) were significantly increased in medial prefrontal cortex neurons from young Alzheimer's disease mice (4-5-month, equivalent of <30-year-old humans) compared to age-matched control mice. Blocking ionotropic glutamatergic NMDA receptors, which regulate neuronal excitability and Ca2+ homeostasis, abolished this neuronal hyperactivity. There were no changes in Ca2+ influx through the voltage-gated Ca2+ channels (VGCCs) or inhibitory postsynaptic activity in medial prefrontal cortex neurons from young Alzheimer's disease mice compared to controls. Additionally, acute exposure to Aβ42 potentiated medial prefrontal cortex neuronal hyperactivity in young Alzheimer's disease mice but had no effects on controls. These findings indicate that the hyperactivity of medial prefrontal cortex pyramidal neurons at early-stage Alzheimer's disease is induced by an abnormal increase in presynaptic glutamate release and postsynaptic NMDA receptor activity, which initiates neuronal Ca2+ dyshomeostasis. Additionally, because accumulated Aβ forms unconventional but functional Ca2+ channels in medial prefrontal cortex neurons in the late stage of Alzheimer's disease, our study also suggests an exacerbated Ca2+ dyshomeostasis in medial prefrontal cortex pyramidal neurons following overactivation of such VGCCs.
Collapse
Affiliation(s)
| | | | | | - Xiu-Ti Hu
- Department of Microbial Pathogens and Immunity, Rush University Medical Centre, Chicago, IL, United States
| |
Collapse
|
44
|
Kruk PK, Nader K, Skupien-Jaroszek A, Wójtowicz T, Buszka A, Olech-Kochańczyk G, Wilczynski GM, Worch R, Kalita K, Włodarczyk J, Dzwonek J. Astrocytic CD44 Deficiency Reduces the Severity of Kainate-Induced Epilepsy. Cells 2023; 12:1483. [PMID: 37296604 PMCID: PMC10252631 DOI: 10.3390/cells12111483] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/05/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Epilepsy affects millions of people worldwide, yet we still lack a successful treatment for all epileptic patients. Most of the available drugs modulate neuronal activity. Astrocytes, the most abundant cells in the brain, may constitute alternative drug targets. A robust expansion of astrocytic cell bodies and processes occurs after seizures. Highly expressed in astrocytes, CD44 adhesion protein is upregulated during injury and is suggested to be one of the most important proteins associated with epilepsy. It connects the astrocytic cytoskeleton to hyaluronan in the extracellular matrix, influencing both structural and functional aspects of brain plasticity. METHODS Herein, we used transgenic mice with an astrocyte CD44 knockout to evaluate the impact of the hippocampal CD44 absence on the development of epileptogenesis and ultrastructural changes at the tripartite synapse. RESULTS We demonstrated that local, virally-induced CD44 deficiency in hippocampal astrocytes reduces reactive astrogliosis and decreases the progression of kainic acid-induced epileptogenesis. We also observed that CD44 deficiency resulted in structural changes evident in a higher dendritic spine number along with a lower percentage of astrocyte-synapse contacts, and decreased post-synaptic density size in the hippocampal molecular layer of the dentate gyrus. CONCLUSIONS Overall, our study indicates that CD44 signaling may be important for astrocytic coverage of synapses in the hippocampus and that alterations of astrocytes translate to functional changes in the pathology of epilepsy.
Collapse
Affiliation(s)
- Patrycja K. Kruk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura St, 02-093 Warsaw, Poland
| | - Karolina Nader
- Laboratory of Neurobiology, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders-Braincity, 3 Pasteura St, 02-093 Warsaw, Poland
| | - Anna Skupien-Jaroszek
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura St, 02-093 Warsaw, Poland
| | - Tomasz Wójtowicz
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura St, 02-093 Warsaw, Poland
| | - Anna Buszka
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura St, 02-093 Warsaw, Poland
| | - Gabriela Olech-Kochańczyk
- Laboratory of Molecular and Structural Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura St, 02-093 Warsaw, Poland
| | - Grzegorz M. Wilczynski
- Laboratory of Molecular and Structural Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura St, 02-093 Warsaw, Poland
| | - Remigiusz Worch
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura St, 02-093 Warsaw, Poland
| | - Katarzyna Kalita
- Laboratory of Neurobiology, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders-Braincity, 3 Pasteura St, 02-093 Warsaw, Poland
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura St, 02-093 Warsaw, Poland
| | - Joanna Dzwonek
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura St, 02-093 Warsaw, Poland
| |
Collapse
|
45
|
Luo Y, Chen J, Huang HY, Lam ESY, Wong GKC. Narrative review of roles of astrocytes in subarachnoid hemorrhage. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:302. [PMID: 37181334 PMCID: PMC10170286 DOI: 10.21037/atm-22-5486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/16/2023] [Indexed: 03/28/2023]
Abstract
Background and Objective Astrocytes play an important role in healthy brain function, including the development and maintenance of blood-brain barrier (BBB), structural support, brain homeostasis, neurovascular coupling and secretion of neuroprotective factors. Reactive astrocytes participate in various pathophysiology after subarachnoid hemorrhage (SAH) including neuroinflammation, glutamate toxicity, brain edema, vasospasm, BBB disruption, cortical spreading depolarization (SD). Methods We searched PubMed up to 31 May, 2022 and evaluated the articles for screening and inclusion for subsequent systemic review. We found 198 articles with the searched terms. After exclusion based on the selection criteria, we selected 30 articles to start the systemic review. Key Content and Findings We summarized the response of astrocytes induced by SAH. Astrocytes are critical for brain edema formation, BBB reconstruction and neuroprotection in the acute stage of SAH. Astrocytes clear extracellular glutamate by increasing the uptake of glutamate and Na+/K+ ATPase activity after SAH. Neurotrophic factors released by astrocytes contribute to neurological recovery after SAH. Meanwhile, Astrocytes also form glial scars which hinder axon regeneration, produce proinflammatory cytokines, free radicals, and neurotoxic molecules. Conclusions Preclinical studies showed that therapeutic targeting the astrocytes response could have a beneficial effect in ameliorating neuronal injury and cognitive impairment after SAH. Clinical trials and preclinical animal studies are still urgently needed in order to determine where astrocytes stand in various pathway of brain damage and repair after SAH and, above all, to develop therapeutic approaches which benefit patient outcomes.
Collapse
Affiliation(s)
- Yujie Luo
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong, China
| | - Junfan Chen
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong, China
| | - Hiu Yin Huang
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong, China
| | - Erica Sin Yu Lam
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong, China
| | - George Kwok-Chu Wong
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, the Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
46
|
Choi SH, Tanzi RE. Adult neurogenesis in Alzheimer's disease. Hippocampus 2023; 33:307-321. [PMID: 36748337 DOI: 10.1002/hipo.23504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is the most common form of age-related dementia, characterized by progressive memory loss and cognitive disturbances. The hippocampus, where adult hippocampal neurogenesis (AHN), a relatively novel form of brain plasticity that refers to the birth of new neurons, occurs, is one of the first brain regions to be affected in AD patients. Recent studies showed that AHN persists throughout life in humans, but it drops sharply in AD patients. Next questions to consider would be whether AHN impairment is a contributing factor to learning and memory impairment in AD and whether restoring AHN could ameliorate or delay cognitive dysfunction. Here, we outline and discuss the current knowledge about the state of AHN in AD patients, AHN impairment as a potentially relevant mechanism underlying memory deficits in AD, therapeutic potential of activating AHN in AD, and the mechanisms of AHN impairment in AD.
Collapse
Affiliation(s)
- Se Hoon Choi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
47
|
Cunha Feio Leal MD, Amaral Junior FLD, Silva Arruda BFD, Kurosawa JAA, Vieira AA, Maia JCC, Scalfoni VVB, Silveira Junior AMD, Feijó MO, Albuquerque FBAD, Marta MHM, Normando MPN, Silva AGOCD, Trindade FCPD, Siqueira Mendes FDCCD, Sosthenes MCK. The Masticatory Activity Interference in Quantitative Estimation of CA1, CA3 and Dentate Gyrus Hippocampal Astrocytes of Aged Murine Models and under Environmental Stimulation. Int J Mol Sci 2023; 24:ijms24076529. [PMID: 37047502 PMCID: PMC10095286 DOI: 10.3390/ijms24076529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 04/03/2023] Open
Abstract
Studies indicating the influence of masticatory dysfunction, due to a soft diet or lack of molars, on impairing spatial memory and learning have led to research about neuronal connections between areas and cell populations possibly affected. In this sense, with scarce detailed data on the subfields of hippocampus in dementia neurodegeneration, there is no information about astrocytic responses in its different layers. Thus, considering this context, the present study evaluated the effects of deprivation and rehabilitation of masticatory activity, aging, and environmental enrichment on the stereological quantification of hippocampal astrocytes from layers CA1, CA3, and DG. For this purpose, we examined mature (6-month-old; 6M), and aged (18-month-old; 18M) mice, subjected to distinct masticatory regimens and environments. Three different regimens of masticatory activity were applied: continuous normal mastication with hard pellets (HD); normal mastication followed by deprived mastication with equal periods of pellets followed by soft powder (HD/SD); or rehabilitated masticatory activity with equal periods of HD, followed by powder, followed by pellets (HD/SD/HD). Under each specific regimen, half of the animals were raised in standard cages (impoverished environment (IE)) and the other half in enriched cages (enriched environment (EE)), mimicking sedentary or active lifestyles. Microscopic stereological, systematic, and random sampling approaches with an optical dissector of GFAP-immunolabeled astrocytes were done, allowing for an astrocyte numerical estimate. Stratum moleculare and hilus, from the dentate gyrus (DG) and Strata Lacunosum-Moleculare, Oriens, and Radiatum, similarly to the dentate gyrus, showed no significant change in any of the investigated variables (age, diet, or environment) in these layers. However, in Stratum radiatum, it was possible to observe significant differences associated with diet regimens and age. Therefore, diet-related differences were found when the HD 18M IE group was compared to the HD/SD/HD 18-month-old group in the same environment (IE) (p = 0.007). In the present study, we present modulatory factors (masticatory function, environmental enrichment, and aging) for the differentiated quantitative laminar response in the hippocampal regions, suggesting other studies to read the plasticity and responsiveness of astrocytes, including the molecular background.
Collapse
Affiliation(s)
- Marília da Cunha Feio Leal
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil
| | - Fabio Leite do Amaral Junior
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil
| | - Bernardo Freire da Silva Arruda
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil
| | | | - Amanda Almeida Vieira
- Curso de Medicina, Centro Universitário do Estado do Pará, Belém 66613-903, PA, Brazil
| | | | | | - Antonio Morais da Silveira Junior
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil
| | - Matheus Oliveira Feijó
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil
| | - Fernanda Beatriz Araújo de Albuquerque
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil
| | | | | | - Alana Gabriele Oliveira Cabeça da Silva
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil
| | - Fernanda Catharina Pires da Trindade
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil
| | - Fabíola de Carvalho Chaves de Siqueira Mendes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil
- Curso de Medicina, Centro Universitário do Estado do Pará, Belém 66613-903, PA, Brazil
| | - Marcia Consentino Kronka Sosthenes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil
| |
Collapse
|
48
|
Sompol P, Gollihue JL, Weiss BE, Lin RL, Case SL, Kraner SD, Weekman EM, Gant JC, Rogers CB, Niedowicz DM, Sudduth TL, Powell DK, Lin AL, Nelson PT, Thibault O, Wilcock DM, Norris CM. Targeting Astrocyte Signaling Alleviates Cerebrovascular and Synaptic Function Deficits in a Diet-Based Mouse Model of Small Cerebral Vessel Disease. J Neurosci 2023; 43:1797-1813. [PMID: 36746627 PMCID: PMC10010459 DOI: 10.1523/jneurosci.1333-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Despite the indispensable role that astrocytes play in the neurovascular unit, few studies have investigated the functional impact of astrocyte signaling in cognitive decline and dementia related to vascular pathology. Diet-mediated induction of hyperhomocysteinemia (HHcy) recapitulates numerous features of vascular contributions to cognitive impairment and dementia (VCID). Here, we used astrocyte targeting approaches to evaluate astrocyte Ca2+ dysregulation and the impact of aberrant astrocyte signaling on cerebrovascular dysfunction and synapse impairment in male and female HHcy diet mice. Two-photon imaging conducted in fully awake mice revealed activity-dependent Ca2+ dysregulation in barrel cortex astrocytes under HHcy. Stimulation of contralateral whiskers elicited larger Ca2+ transients in individual astrocytes of HHcy diet mice compared with control diet mice. However, evoked Ca2+ signaling across astrocyte networks was impaired in HHcy mice. HHcy also was associated with increased activation of the Ca2+/calcineurin-dependent transcription factor NFAT4, which has been linked previously to the reactive astrocyte phenotype and synapse dysfunction in amyloid and brain injury models. Targeting the NFAT inhibitor VIVIT to astrocytes, using adeno-associated virus vectors, led to reduced GFAP promoter activity in HHcy diet mice and improved functional hyperemia in arterioles and capillaries. VIVIT expression in astrocytes also preserved CA1 synaptic function and improved spontaneous alternation performance on the Y maze. Together, the results demonstrate that aberrant astrocyte signaling can impair the major functional properties of the neurovascular unit (i.e., cerebral vessel regulation and synaptic regulation) and may therefore represent a promising drug target for treating VCID and possibly Alzheimer's disease and other related dementias.SIGNIFICANCE STATEMENT The impact of reactive astrocytes in Alzheimer's disease and related dementias is poorly understood. Here, we evaluated Ca2+ responses and signaling in barrel cortex astrocytes of mice fed with a B-vitamin deficient diet that induces hyperhomocysteinemia (HHcy), cerebral vessel disease, and cognitive decline. Multiphoton imaging in awake mice with HHcy revealed augmented Ca2+ responses in individual astrocytes, but impaired signaling across astrocyte networks. Stimulation-evoked arteriole dilation and elevated red blood cell velocity in capillaries were also impaired in cortex of awake HHcy mice. Astrocyte-specific inhibition of the Ca2+-dependent transcription factor, NFAT, normalized cerebrovascular function in HHcy mice, improved synaptic properties in brain slices, and stabilized cognition. Results suggest that astrocytes are a mechanism and possible therapeutic target for vascular-related dementia.
Collapse
Affiliation(s)
- Pradoldej Sompol
- Sanders-Brown Center on Aging
- Departments of Pharmacology and Nutritional Sciences
| | | | - Blaine E Weiss
- Sanders-Brown Center on Aging
- Departments of Pharmacology and Nutritional Sciences
| | - Ruei-Lung Lin
- Departments of Pharmacology and Nutritional Sciences
| | - Sami L Case
- Departments of Pharmacology and Nutritional Sciences
| | | | | | - John C Gant
- Sanders-Brown Center on Aging
- Departments of Pharmacology and Nutritional Sciences
| | | | | | | | | | - Ai-Ling Lin
- Sanders-Brown Center on Aging
- Departments of Pharmacology and Nutritional Sciences
| | - Peter T Nelson
- Sanders-Brown Center on Aging
- Pathology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Olivier Thibault
- Sanders-Brown Center on Aging
- Departments of Pharmacology and Nutritional Sciences
| | | | - Christopher M Norris
- Sanders-Brown Center on Aging
- Departments of Pharmacology and Nutritional Sciences
| |
Collapse
|
49
|
Beltran-Lobo P, Reid MJ, Jimenez-Sanchez M, Verkhratsky A, Perez-Nievas BG, Noble W. Astrocyte adaptation in Alzheimer's disease: a focus on astrocytic P2X7R. Essays Biochem 2023; 67:119-130. [PMID: 36449279 PMCID: PMC10011405 DOI: 10.1042/ebc20220079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 12/02/2022]
Abstract
Astrocytes are key homeostatic and defensive cells of the central nervous system (CNS). They undertake numerous functions during development and in adulthood to support and protect the brain through finely regulated communication with other cellular elements of the nervous tissue. In Alzheimer's disease (AD), astrocytes undergo heterogeneous morphological, molecular and functional alterations represented by reactive remodelling, asthenia and loss of function. Reactive astrocytes closely associate with amyloid β (Aβ) plaques and neurofibrillary tangles in advanced AD. The specific contribution of astrocytes to AD could potentially evolve along the disease process and includes alterations in their signalling, interactions with pathological protein aggregates, metabolic and synaptic impairments. In this review, we focus on the purinergic receptor, P2X7R, and discuss the evidence that P2X7R activation contributes to altered astrocyte functions in AD. Expression of P2X7R is increased in AD brain relative to non-demented controls, and animal studies have shown that P2X7R antagonism improves cognitive and synaptic impairments in models of amyloidosis and tauopathy. While P2X7R activation can induce inflammatory signalling pathways, particularly in microglia, we focus here specifically on the contributions of astrocytic P2X7R to synaptic changes and protein aggregate clearance in AD, highlighting cell-specific roles of this purinoceptor activation that could be targeted to slow disease progression.
Collapse
Affiliation(s)
- Paula Beltran-Lobo
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 5 Cutcombe Road, London, SE5 9RX, U.K
| | - Matthew J Reid
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 5 Cutcombe Road, London, SE5 9RX, U.K
| | - Maria Jimenez-Sanchez
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 5 Cutcombe Road, London, SE5 9RX, U.K
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, U.K
- Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania
| | - Beatriz G Perez-Nievas
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 5 Cutcombe Road, London, SE5 9RX, U.K
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, 5 Cutcombe Road, London, SE5 9RX, U.K
| |
Collapse
|
50
|
Shen Z, Li ZY, Yu MT, Tan KL, Chen S. Metabolic perspective of astrocyte dysfunction in Alzheimer's disease and type 2 diabetes brains. Biomed Pharmacother 2023; 158:114206. [PMID: 36916433 DOI: 10.1016/j.biopha.2022.114206] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
The term type III diabetes (T3DM) has been proposed for Alzheimer's disease (AD) due to the shared molecular and cellular features between type 2 diabetes (T2DM) and insulin resistance-associated memory deficits and cognitive decline in elderly individuals. Astrocytes elicit neuroprotective or deleterious effects in AD progression and severity. Patients with T2DM are at a high risk of cognitive impairment, and targeting astrocytes might be promising in alleviating neurodegeneration in the diabetic brain. Recent studies focusing on cell-specific activities in the brain have revealed the important role of astrocytes in brain metabolism (e.g., glucose metabolism, lipid metabolism), neurovascular coupling, synapses, and synaptic plasticity. In this review, we discuss how astrocytes and their dysfunction result in multiple pathological and clinical features of AD and T2DM from a metabolic perspective and the potential comorbid mechanism in these two diseases from the perspective of astrocytes.
Collapse
Affiliation(s)
- Zheng Shen
- Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519041, China
| | - Zheng-Yang Li
- Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519041, China
| | - Meng-Ting Yu
- Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519041, China
| | - Kai-Leng Tan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China.
| | - Si Chen
- Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519041, China.
| |
Collapse
|