1
|
Chandwaskar R, Dalal R, Gupta S, Sharma A, Parashar D, Kashyap VK, Sohal JS, Tripathi SK. Dysregulation of T cell response in the pathogenesis of inflammatory bowel disease. Scand J Immunol 2024; 100:e13412. [PMID: 39394898 DOI: 10.1111/sji.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
Inflammatory bowel disease (IBD), comprised of Crohn's disease (CD) and ulcerative colitis (UC), are gut inflammatory diseases that were earlier prevalent in the Western Hemisphere but now are on the rise in the East, with India standing second highest in the incidence rate in the world. Inflammation in IBD is a cause of dysregulated immune response, wherein helper T (Th) cell subsets and their cytokines play a major role in the pathogenesis of IBD. In addition, gut microbiota, environmental factors such as dietary factors and host genetics influence the outcome and severity of IBD. Dysregulation between effector and regulatory T cells drives gut inflammation, as effector T cells like Th1, Th17 and Th9 subsets Th cell lineages were found to be increased in IBD patients. In this review, we attempted to discuss the role of different Th cell subsets together with other T cells like CD8+ T cells, NKT and γδT cells in the outcome of gut inflammation in IBD. We also highlighted the potential therapeutic candidates for IBD.
Collapse
Affiliation(s)
- Rucha Chandwaskar
- Amity Institute of Microbial Technology (AIMT), Amity University Jaipur, Rajasthan, India
| | - Rajdeep Dalal
- Infection and Immunology Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Saurabh Gupta
- Centre for Vaccines and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aishwarya Sharma
- Sri Siddhartha Medical College and Research Center, Tumkur, Karnataka, India
| | - Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vivek K Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| | - Jagdip Singh Sohal
- Centre for Vaccines and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Subhash K Tripathi
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
2
|
Li J, Tao W, Zhou W, Xing J, Luo M, Yang Y. The comprehensive analysis of gut microbiome and spleen transcriptome revealed the immunomodulatory mechanism of Dendrobium officinale leaf polysaccharide on immunosuppressed mice. Int J Biol Macromol 2024; 278:134975. [PMID: 39179063 DOI: 10.1016/j.ijbiomac.2024.134975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 08/26/2024]
Abstract
In recent years, the immunomodulatory efficacy of Dendrobium officinale leaf polysaccharide (DOLP) has attracted much attention, but its potential immunomodulatory mechanism remains unclear. Therefore, we investigated the molecular mechanism of DOLP to ameliorate cyclophosphamide-induced immunosuppressed mice based on transcriptome profiling technology. The results indicated that DOLP significantly mitigated damage to immune organs, regulated the expression levels of inflammatory factors and immunoglobulins, and restored the balance of gut microbiota. Furthermore, it modulated metabolic pathways associated with the immune system, including antigen processing and presentation, hematopoietic cell line development, and natural killer cell-mediated cytotoxicity. DOLP might promote host hematopoietic function to enhance immune cell proliferation and differentiation by up-regulating Cd19, Cr2 and Il7r but down-regulating Dntt. DOLP also up-regulated the expression of MHC-1 (Gm11127, H2-K1, H2-Q10, H2-Q6, and H2-Q7), thus promoting antigen recognition by NK cells to enhance the innate immunity and helping T cells to deliver antigen and secrete immune factors so that enhancing the adaptive immunity.
Collapse
Affiliation(s)
- Jingrui Li
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wenyang Tao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wanyi Zhou
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianrong Xing
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mengfan Luo
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ying Yang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
3
|
Hooda V, Khandpur S, Arava S, Sharma A. Distorted frequency and functionality of natural killer cells in pemphigus vulgaris: A potential therapeutic target. Immunol Lett 2024; 269:106900. [PMID: 39032911 DOI: 10.1016/j.imlet.2024.106900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Pemphigus vulgaris (PV) is a rare autoimmune disorder where autoantibodies target the desmosomal proteins resulting in blistering of oral mucosa and skin. While the pathogenesis of PV is mainly mediated by the adaptive immune system, key players of innate immunity are also emerging. This study outlines the phenotypic as well as functional attributes of NK cells in PV. Through in-depth analysis using flow cytometry we identified an increase in the frequency of CD56+ CD3- NK cells and their subtypes in periphery. Along with this there is an increased frequency of IFNγ+ CD56bright CD16dim NK cells. mRNA expression of sorted NK cells for differentially expressed genes, particularly key transcription factors such as T-bet and EOMES, as well as surface receptors like NKG2D and KIR2D, and the cytokine IFNγ, displayed significant upregulation. A significant activation of NK cells was seen in the disease state. The levels of perforin and IFNγ were significantly elevated in the culture supernatants of patients. Additionally, a significantly higher cytotoxicity of NK cells in PV was observed. In lesioned tissues of PV, NK related markers were significantly increased. Lastly, we observed NK cells using confocal microscopy in the tissue biopsies of patients which showed significant infiltration of CD56+ CD3- NK cells at the lesional sites. This study aimed to shed light on the pivotal role of NK cells in the immunopathology of PV, offering a thorough understanding of their behaviour and changes in expression which might help in contributing to the development of novel therapeutics.
Collapse
Affiliation(s)
| | - Sujay Khandpur
- Department of Dermatology and Venereology, AIIMS, New Delhi, India
| | | | - Alpana Sharma
- Department of Biochemistry, AIIMS, New Delhi, India.
| |
Collapse
|
4
|
Qian Q, Wu Y, Cui N, Li Y, Zhou Y, Li Y, Lian M, Xiao X, Miao Q, You Z, Wang Q, Shi Y, Cordell HJ, Timilsina S, Gershwin ME, Li Z, Ma X, Ruqi Tang. Epidemiologic and genetic associations between primary biliary cholangitis and extrahepatic rheumatic diseases. J Autoimmun 2024; 148:103289. [PMID: 39059058 DOI: 10.1016/j.jaut.2024.103289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/14/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
Patients with primary biliary cholangitis (PBC) commonly experience extrahepatic rheumatic diseases. However, the epidemiologic and genetic associations as well as causal relationship between PBC and these extrahepatic conditions remain undetermined. In this study, we first conducted systematic review and meta-analyses by analyzing 73 studies comprising 334,963 participants across 17 countries and found strong phenotypic associations between PBC and rheumatic diseases. Next, we utilized large-scale genome-wide association study summary data to define the shared genetic architecture between PBC and rheumatic diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic sclerosis (SSc) and Sjögren's syndrome (SS). We observed significant genetic correlations between PBC and each of the four rheumatic diseases. Pleiotropy and heritability enrichment analysis suggested the involvement of humoral immunity and interferon-associated processes for the comorbidity. Of note, we identified four variants shared between PBC and RA (rs80200208), SLE (rs9843053), and SSc (rs27524, rs3873182) using cross-trait meta-analysis. Additionally, several pleotropic loci for PBC and rheumatic diseases were found to share causal variants with gut microbes possessing immunoregulatory functions. Finally, Mendelian randomization revealed consistent evidence for a causal effect of PBC on RA, SLE, SSc, and SS, but no or inconsistent evidence for a causal effect of extrahepatic rheumatic diseases on PBC. Our study reveals a profound genetic overlap and causal relationships between PBC and extrahepatic rheumatic diseases, thus providing insights into shared biological mechanisms and novel therapeutic interventions.
Collapse
Affiliation(s)
- Qiwei Qian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yi Wu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Nana Cui
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yikang Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yujie Zhou
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - You Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Min Lian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiao Xiao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qi Miao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhengrui You
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qixia Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China; Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Heather J Cordell
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Suraj Timilsina
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - M Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China; Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China.
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China; Institute of Aging & Tissue Regeneration, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China.
| |
Collapse
|
5
|
Santiago-Lamelas L, Castro-Santos P, Carracedo Á, Olloquequi J, Díaz-Peña R. Unveiling the Significance of HLA and KIR Diversity in Underrepresented Populations. Biomedicines 2024; 12:1333. [PMID: 38927540 PMCID: PMC11202227 DOI: 10.3390/biomedicines12061333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Human leukocyte antigen (HLA) molecules and their relationships with natural killer (NK) cells, specifically through their interaction with killer-cell immunoglobulin-like receptors (KIRs), exhibit robust associations with the outcomes of diverse diseases. Moreover, genetic variations in HLA and KIR immune system genes offer limitless depths of complexity. In recent years, a surge of high-powered genome-wide association studies (GWASs) utilizing single nucleotide polymorphism (SNP) arrays has occurred, significantly advancing our understanding of disease pathogenesis. Additionally, advances in HLA reference panels have enabled higher resolution and more reliable imputation, allowing for finer-grained evaluation of the association between sequence variations and disease risk. However, it is essential to note that the majority of these GWASs have focused primarily on populations of Caucasian and Asian origins, neglecting underrepresented populations in Latin America and Africa. This omission not only leads to disparities in health care access but also restricts our knowledge of novel genetic variants involved in disease pathogenesis within these overlooked populations. Since the KIR and HLA haplotypes prevalent in each population are clearly modelled by the specific environment, the aim of this review is to encourage studies investigating HLA/KIR involvement in infection and autoimmune diseases, reproduction, and transplantation in underrepresented populations.
Collapse
Affiliation(s)
- Lucía Santiago-Lamelas
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Grupo de Medicina Xenomica-USC, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (L.S.-L.); (P.C.-S.); (Á.C.)
| | - Patricia Castro-Santos
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Grupo de Medicina Xenomica-USC, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (L.S.-L.); (P.C.-S.); (Á.C.)
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Ángel Carracedo
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Grupo de Medicina Xenomica-USC, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (L.S.-L.); (P.C.-S.); (Á.C.)
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jordi Olloquequi
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Roberto Díaz-Peña
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Grupo de Medicina Xenomica-USC, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (L.S.-L.); (P.C.-S.); (Á.C.)
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
| |
Collapse
|
6
|
Shao C, Xia N, Zhen Y, Zhang X, Yan N, Guo Q. Prognostic significance of natural killer cell depletion in predicting progressive fibrosing interstitial lung disease in idiopathic inflammatory myopathies. Front Immunol 2024; 15:1404828. [PMID: 38745647 PMCID: PMC11091831 DOI: 10.3389/fimmu.2024.1404828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Objectives Interstitial lung disease (ILD) is one of the common extramuscular involvement in idiopathic inflammatory myopathies (IIMs) (1). Several patients develop a progressive fibrosing ILD (PF-ILD) despite conventional treatment, resulting in a progressive deterioration in their quality of life (2). Here, we investigated the clinical and immune characteristics of IIM-ILD and risk factors for PF-ILD in IIM, mainly in anti-melanoma differentiation-associated protein 5 (anti-MDA5+) dermatomyositis (DM) and anti-synthetase syndrome (ASS). Methods Here, a prospective cohort of 156 patients with IIM-ILD were included in the longitudinal analysis and divided into the PF-ILD (n=65) and non-PF-ILD (n=91) groups, and their baseline clinical characteristics were compared. Univariate and multivariate Cox analyses were performed to identify the variables significantly associated with pulmonary fibrosis progression in the total cohort, then anti-MDA5+ DM and ASS groups separately. Results Peripheral blood lymphocyte counts, including T, B, and NK cell counts, were significantly lower in the PF-ILD group than in the non-PF-ILD group. This characteristic is also present in the comparison between patients with anti-MDA5+ DM and ASS. The multivariate Cox regression analysis revealed that age > 43.5 years [HR: 7.653 (95% CI: 2.005-29.204), p = 0.003], absolute NK cell count < 148 cells/μL [HR: 6.277 (95% CI: 1.572-25.067), p = 0.009] and absolute Th cell count < 533.2 cells/μL [HR: 4.703 (95% CI: 1.014-21.821), p = 0.048] were independent predictors of progressive fibrosing during 1-year follow-up for patients with anti-MDA5+ DM, while absolute count of NK cells < 303.3 cells/µL [HR: 19.962 (95% CI: 3.108-128.223), p = 0.002], absolute count of lymphocytes < 1.545×109/L [HR: 9.684 (95% CI: 1.063-88.186), p = 0.044], and ferritin > 259.45 ng/mL [HR: 6 (95% CI: 1.116-32.256), p = 0.037] were independent predictors of PF-ILD for patients with ASS. Conclusions Patients with anti-MDA5+ DM and ASS have independent risk factors for PF-ILD. Lymphocyte depletion (particularly NK cells) was significantly associated with PF-ILD within 1-year of follow-up for IIM-ILD.
Collapse
Affiliation(s)
- Chenyi Shao
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nana Xia
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhen
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueliang Zhang
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ninghui Yan
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Guo
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Jiading Branch, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Song Y, Lei L, Cai X, Wei H, Yu CY. Immunomodulatory Peptides for Tumor Treatment. Adv Healthc Mater 2024:e2400512. [PMID: 38657003 DOI: 10.1002/adhm.202400512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/07/2024] [Indexed: 04/26/2024]
Abstract
Peptides exhibit various biological activities, including biorecognition, cell targeting, and tumor penetration, and can stimulate immune cells to elicit immune responses for tumor immunotherapy. Peptide self-assemblies and peptide-functionalized nanocarriers can reduce the effect of various biological barriers and the degradation by peptidases, enhancing the efficiency of peptide delivery and improving antitumor immune responses. To date, the design and development of peptides with various functionalities have been extensively reviewed for enhanced chemotherapy; however, peptide-mediated tumor immunotherapy using peptides acting on different immune cells, to the knowledge, has not yet been summarized. Thus, this work provides a review of this emerging subject of research, focusing on immunomodulatory anticancer peptides. This review introduces the role of peptides in the immunomodulation of innate and adaptive immune cells, followed by a link between peptides in the innate and adaptive immune systems. The peptides are discussed in detail, following a classification according to their effects on different innate and adaptive immune cells, as well as immune checkpoints. Subsequently, two delivery strategies for peptides as drugs are presented: peptide self-assemblies and peptide-functionalized nanocarriers. The concluding remarks regarding the challenges and potential solutions of peptides for tumor immunotherapy are presented.
Collapse
Affiliation(s)
- Yang Song
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Longtianyang Lei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xingyu Cai
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, 410013, China
| |
Collapse
|
8
|
Long Y, Lu KJ, Xia CS, Feng JH, Li WY, Ma YT, Sun YY, Fan CH, Li C. Altered CD226/TIGIT expressions were associated with NK phenotypes in primary antiphospholipid syndrome and affected by IL-4/JAK pathway. Clin Exp Immunol 2024; 216:132-145. [PMID: 38386917 PMCID: PMC11036109 DOI: 10.1093/cei/uxae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/08/2023] [Accepted: 02/21/2024] [Indexed: 02/24/2024] Open
Abstract
Natural killer (NK) cells were reported to be involved in the pathogenesis of primary antiphospholipid syndrome (pAPS). Immunosuppressive receptor T-cell immunoreceptor with Ig and ITIM domains (TIGIT) and activating receptor cluster of differentiation 226 (CD226) are specifically expressed on NK cells with competitive functions. This study aims to investigate the expression diversities of CD226/TIGIT on NK subsets and their associations with NK subsets activation phenotypes and potential clinical significance, furthermore, to explore potential cause for CD226/TIGIT expression diversities in pAPS. We comparatively assessed the changes of CD56brightNK, CD56dimNK, and NK-like cells in 70 pAPS patients compared with control groups, including systemic lupus erythematosus, asymptomatic antiphospholipid antibodies carriers (asymp-aPLs carriers), and healthy controls and their expression diversities of CD226/TIGIT by flow cytometry. CD25, CD69, CD107α expression, and interferon gamma (IFN-γ) secretion levels of NK subsets were detected to determine the potential association of CD226/TIGIT expression with NK subsets phenotypes. CD226/TIGIT expression levels were compared among different subgroups divided by aPLs status. Moreover, in vitro cultures were conducted to explore the potential mechanisms of CD226/TIGIT expression imbalance. CD56brightNK and CD3+CD56+NK-like cells were significantly increased while CD56dimNK cells were obviously decreased in pAPS, and CD56brightNK and NK-like cells exhibited significantly higher CD226 but lower TIGIT expressions. CD226+CD56brightNK and TIGIT-CD56brightNK cells show higher CD69 expression and IFN-γ secretion capacity, and CD226+NK-like and TIGIT-NK-like cells showed higher expressions of CD25 and CD69 but lower apoptosis rate than CD226- and TIGIT+CD56brightNK/NK-like cells, respectively. The imbalanced CD226/TIGIT expressions were most significant in aPLs triple-positive group. Imbalanced expressions of CD226/TIGIT on CD56brightNK and NK-like cells were aggravated after interleukin-4 (IL-4) stimulation and recovered after tofacitinib blocking. Our data revealed significant imbalanced CD226/TIGIT expressions on NK subsets in pAPS, which closely associated with NK subsets phenotypes and more complicated autoantibody status. CD226/TIGIT imbalanced may be affected by IL-4/Janus Kinase (JAK) pathway activation.
Collapse
Affiliation(s)
- Yan Long
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Ke-Jia Lu
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, China
| | - Chang-Sheng Xia
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Jing-Hong Feng
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Wen-Yi Li
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Yin-Ting Ma
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Yuan-Yuan Sun
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Chun-Hong Fan
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Chun Li
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
9
|
Zhang Q, Lin J, Yang M, Li Z, Zhang M, Bu B. Therapeutic potential of natural killer cells in neuroimmunological diseases. Biomed Pharmacother 2024; 173:116371. [PMID: 38430631 DOI: 10.1016/j.biopha.2024.116371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024] Open
Abstract
Natural killer (NK) cells, a major component of the innate immune system, have prominent immunoregulatory, antitumor proliferation, and antiviral activities. NK cells act as a double-edged sword with therapeutic potential in neurological autoimmunity. Emerging evidence has identified NK cells are involved in the development and progression of neuroimmunological diseases such as multiple sclerosis, neuromyelitis optica spectrum disorders, autoimmune encephalitis, Guillain-Barré Syndrome, chronic inflammatory demyelinating polyneuropathy, myasthenia gravis, and idiopathic inflammatory myopathy. However, the regulatory mechanisms and functional roles of NK cells are highly variable in different clinical states of neuroimmunological diseases and need to be further determined. In this review, we summarize the evidence for the heterogenic involvement of NK cells in the above conditions. Further, we describe cutting-edge NK-cell-based immunotherapy for neuroimmunological diseases in preclinical and clinical development and highlight challenges that must be overcome to fully realize the therapeutic potential of NK cells.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Lin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengge Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhijun Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Bitao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
10
|
Ning Z, Liu Y, Guo D, Lin WJ, Tang Y. Natural killer cells in the central nervous system. Cell Commun Signal 2023; 21:341. [PMID: 38031097 PMCID: PMC10685650 DOI: 10.1186/s12964-023-01324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/17/2023] [Indexed: 12/01/2023] Open
Abstract
Natural killer (NK) cells are essential components of the innate lymphoid cell family that work as both cytotoxic effectors and immune regulators. Accumulating evidence points to interactions between NK cells and the central nervous system (CNS). Here, we review the basic knowledge of NK cell biology and recent advances in their roles in the healthy CNS and pathological conditions, with a focus on normal aging, CNS autoimmune diseases, neurodegenerative diseases, cerebrovascular diseases, and CNS infections. We highlight the crosstalk between NK cells and diverse cell types in the CNS and the potential value of NK cells as novel therapeutic targets for CNS diseases. Video Abstract.
Collapse
Affiliation(s)
- Zhiyuan Ning
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ying Liu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Daji Guo
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Wei-Jye Lin
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| |
Collapse
|
11
|
Carlson KB, Nguyen C, Wcisel DJ, Yoder JA, Dornburg A. Ancient fish lineages illuminate toll-like receptor diversification in early vertebrate evolution. Immunogenetics 2023; 75:465-478. [PMID: 37555888 DOI: 10.1007/s00251-023-01315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/28/2023] [Indexed: 08/10/2023]
Abstract
Since its initial discovery over 50 years ago, understanding the evolution of the vertebrate RAG- mediated adaptive immune response has been a major area of research focus for comparative geneticists. However, how the evolutionary novelty of an adaptive immune response impacted the diversity of receptors associated with the innate immune response has received considerably less attention until recently. Here, we investigate the diversification of vertebrate toll-like receptors (TLRs), one of the most ancient and well conserved innate immune receptor families found across the Tree of Life, integrating genomic data that represent all major vertebrate lineages with new transcriptomic data from Polypteriformes, the earliest diverging ray-finned fish lineage. Our analyses reveal TLR sequences that reflect the 6 major TLR subfamilies, TLR1, TLR3, TLR4, TLR5, TLR7, and TLR11, and also currently unnamed, yet phylogenetically distinct TLR clades. We additionally recover evidence for a pulse of gene gain coincident with the rise of the RAG-mediated adaptive immune response in jawed vertebrates, followed by a period of rapid gene loss during the Cretaceous. These gene losses are primarily concentrated in marine teleost fish and synchronous with the mid Cretaceous anoxic event, a period of rapid extinction for marine species. Finally, we reveal a mismatch between phylogenetic placement and gene nomenclature for up to 50% of TLRs found in clades such as ray-finned fishes, cyclostomes, amphibians, and elasmobranchs. Collectively, these results provide an unparalleled perspective of TLR diversity and offer a ready framework for testing gene annotations in non-model species.
Collapse
Affiliation(s)
- Kara B Carlson
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Genetics and Genomics Academy, North Carolina State University, Raleigh, NC, USA
| | - Cameron Nguyen
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Dustin J Wcisel
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Genetics and Genomics Academy, North Carolina State University, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
12
|
Zhang YY, Li MZ, Shen HH, Abudukeyoumu A, Xie F, Ye JF, Xu FY, Sun JS, Li MQ. Ginsenosides in endometrium-related diseases: Emerging roles and mechanisms. Biomed Pharmacother 2023; 166:115340. [PMID: 37625321 DOI: 10.1016/j.biopha.2023.115340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 08/27/2023] Open
Abstract
Ginsenosides, agents extracted from an important herb (ginseng), are expected to provide new therapies for endometrium-related diseases. Based on the molecular types of ginsenosides, we reviewed the main pharmacological effects of ginsenosides against endometrium-related diseases (e.g., endometrial cancers, endometriosis, and endometritis). The mechanism of action of ginsenosides involves inducing apoptosis of endometrium-related cells, promoting autophagy of endometrium-related cells, regulating epithelial-mesenchymal transition (EMT) in endometrium-related cells, and activating the immune system to kill cells associated with endometrial diseases. We hope to provide a theoretical foundation for the treatment of endometrium-related diseases by ginsenosides.
Collapse
Affiliation(s)
- Yang-Yang Zhang
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Mao-Zhi Li
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Hui-Hui Shen
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Ayitila Abudukeyoumu
- Department of Gynecology, Shanghai Jiading Maternal Child Health Hospital, Shanghai 201800, People's Republic of China
| | - Feng Xie
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, People's Republic of China
| | - Jiang-Feng Ye
- Institute for Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138632, Singapore
| | - Feng-Yuan Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jian-Song Sun
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Ming-Qing Li
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China.
| |
Collapse
|
13
|
Zhang Z, Jin L, Liu L, Zhou M, Zhang X, Zhang L. The intricate relationship between autoimmunity disease and neutrophils death patterns: a love-hate story. Apoptosis 2023; 28:1259-1284. [PMID: 37486407 DOI: 10.1007/s10495-023-01874-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Autoimmune diseases are pathological conditions that result from the misidentification of self-antigens in immune system, leading to host tissue damage and destruction. These diseases can affect different organs and systems, including the blood, joints, skin, and muscles. Despite the significant progress made in comprehending the underlying pathogenesis, the complete mechanism of autoimmune disease is still not entirely understood. In autoimmune diseases, the innate immunocytes are not functioning properly: they are either abnormally activated or physically disabled. As a vital member of innate immunocyte, neutrophils and their modes of death are influenced by the microenvironment of different autoimmune diseases due to their short lifespan and diverse death modes. Related to neutrophil death pathways, apoptosis is the most frequent cell death form of neutrophil non-lytic morphology, delayed or aberrant apoptosis may contribute to the development anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV). In addition, NETosis, necroptosis and pyroptosis which are parts of lytic morphology exacerbate disease progression through various mechanisms in autoimmune diseases. This review aims to summarize recent advancements in understanding neutrophil death modes in various autoimmune diseases and provide insights into the development of novel therapeutic approaches for autoimmune diseases.
Collapse
Affiliation(s)
- Ziwei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China
| | - Lin Jin
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China
| | - Lianghu Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China
| | - Mengqi Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China
| | - Xianzheng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China.
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China.
| |
Collapse
|
14
|
Butyrate limits human natural killer cell effector function. Sci Rep 2023; 13:2715. [PMID: 36792800 PMCID: PMC9932090 DOI: 10.1038/s41598-023-29731-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The gut microbiota regulates chronic inflammation and has been implicated in the pathogenesis of a broad spectrum of disease including autoimmunity and cancer. Microbial short-chain fatty acids (SCFAs) e.g., butyrate have demonstrated immunomodulatory effects and are thought to be key mediators of the host-microbiome interaction. Here, we investigated the effect of butyrate on effector functions of blood derived human NK cells stimulated for 18 h with a combination of IL-12/IL-15, a potent mix of cytokines that drive NK cell activation. We show that butyrate has a strong anti-inflammatory effect on NK cells. NK cells cultured in the presence of butyrate expressed lower levels of activating receptors (TRAIL, NKp30, NKp44) and produced lower levels of cytokines (IFNγ, TNF-α, IL-22, granzyme B, granzyme A, perforin) in response to IL-12/IL-15. Butyrate restricted NK cell function by downregulation of mTORC1 activity, c-Myc mRNA expression and metabolism. Using a shotgun proteomic approach, we confirmed the effect of butyrate on NK cell cytokine signaling and metabolism and identified BRD2, MAT2A and EHD1 as downstream mediators of these effects. This insight into the immunomodulatory activity of butyrate on human NK cell function might help to develop new ways to limit NK cell function during chronic inflammation.
Collapse
|
15
|
Zhang M, Xia T, Lin F, Yu J, Yang Y, Lei W, Zhang T. Vitiligo: An immune disease and its emerging mesenchymal stem cell therapy paradigm. Transpl Immunol 2023; 76:101766. [PMID: 36464219 DOI: 10.1016/j.trim.2022.101766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/31/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
Melanocyte damage, innate immune response, adaptive immune response, and immune inflammatory microenvironment disorders are involved in the development of the immunological pathogenic mechanism of vitiligo. Mesenchymal stem cells are considered an ideal type of cells for the treatment of vitiligo owing to their low immunogenicity, lower rates of transplant rejection, and ability to secrete numerous growth factors, exosomes, and cytokines in vivo. The regulation of signaling pathways related to oxidative stress and immune imbalance in the immunological pathogenesis of vitiligo can improve the immune microenvironment of tissue injury sites. In addition, co-transplantation with melanocytes can reverse the progression of vitiligo. Therefore, continuous in-depth research on the immunopathogenic mechanism involved in this disease and mesenchymal stem cell-based therapy is warranted for the treatment of vitiligo in the future.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Tingting Xia
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Fengqin Lin
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiang Yu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China; The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Ying Yang
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Wei Lei
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China; The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China; Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
16
|
Hejazian SS, Hejazian SM, Farnood F, Abedi Azar S. Dysregulation of immunity in COVID-19 and SLE. Inflammopharmacology 2022; 30:1517-1531. [PMID: 36028612 PMCID: PMC9417079 DOI: 10.1007/s10787-022-01047-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/30/2022] [Indexed: 12/15/2022]
Abstract
The immune response plays a crucial role in preventing diseases, such as infections. There are two types of immune responses, specific and innate immunity, each of which consists of two components: cellular immunity and humoral immunity. Dysfunction in any immune system component increases the risk of developing certain diseases. Systemic lupus erythematosus (SLE), an autoimmune disease in the human body, develops an immune response against its own components. In these patients, due to underlying immune system disorders and receipt of immunosuppressive drugs, the susceptibility to infections is higher than in the general population and is the single largest cause of mortality in this group. COVID-19 infection, which first appeared in late 2019, has caused several concerns in patients with SLE. However, there is no strong proof of additional risk of developing COVID-19 in patients with SLE, and in some cases, studies have shown less severity of the disease in these individuals. This review paper discusses the immune disorders in SLE and COVID-19.
Collapse
Affiliation(s)
- Seyyed Sina Hejazian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farahnoosh Farnood
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Abedi Azar
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Chimienti R, Baccega T, Torchio S, Manenti F, Pellegrini S, Cospito A, Amabile A, Lombardo MT, Monti P, Sordi V, Lombardo A, Malnati M, Piemonti L. Engineering of immune checkpoints B7-H3 and CD155 enhances immune compatibility of MHC-I -/- iPSCs for β cell replacement. Cell Rep 2022; 40:111423. [PMID: 36170817 PMCID: PMC9532846 DOI: 10.1016/j.celrep.2022.111423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/09/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) represent a source from which β cells can be derived for diabetes replacement therapy. However, their application may be hindered by immune-mediated responses. Although abrogation of major histocompatibility complex class I (MHC-I) can address this issue, it may trigger natural killer (NK) cells through missing-self recognition mechanisms. By profiling the relevant NK-activating ligands on iPSCs during in vitro differentiation into pancreatic β cells, we find that they express high levels of B7-H3 and CD155. Hypothesizing that such surface ligands could be involved in the amplification of NK-activating signals following missing-self, we generate MHC-I-deprived B7-H3−/−, CD155−/−, and B7-H3−/−/CD155−/− iPSCs. All engineered lines correctly differentiate into insulin-secreting β cells and are protected from cell lysis mediated by CD16dim and CD16+ NK subpopulations both in vitro and in vivo in NSG mice. Our data support targeted disruption of NK-activating ligands to enhance the transplant compatibility of MHC-I−/− iPSC pancreatic derivatives. MHC-I−/− cells are killed by NK cells via missing-self recognition mechanisms Stem cell-derived pancreatic progenitors (PPs) express B7-H3 and CD155 NK ligands B7-H3/CD155 knockout (KO) prevents killing of the MHC-I−/− cells by NKs in vitro B7-H3/CD155 KO increases immune compatibility of MHC-I−/− PPs in a mouse model
Collapse
Affiliation(s)
- Raniero Chimienti
- Diabetes Research Institute (DRI), IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy; Unit of Viral Transmission and Evolution, Division of Immunology, Transplantation and Infectious Disease (DITID), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Tania Baccega
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Silvia Torchio
- Diabetes Research Institute (DRI), IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Fabio Manenti
- Diabetes Research Institute (DRI), IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Silvia Pellegrini
- Diabetes Research Institute (DRI), IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Alessandro Cospito
- Diabetes Research Institute (DRI), IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Angelo Amabile
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marta Tiffany Lombardo
- Diabetes Research Institute (DRI), IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Paolo Monti
- Diabetes Research Institute (DRI), IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Valeria Sordi
- Diabetes Research Institute (DRI), IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Angelo Lombardo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Mauro Malnati
- Unit of Viral Transmission and Evolution, Division of Immunology, Transplantation and Infectious Disease (DITID), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute (DRI), IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy.
| |
Collapse
|
18
|
Boland L, Bitterlich LM, Hogan AE, Ankrum JA, English K. Translating MSC Therapy in the Age of Obesity. Front Immunol 2022; 13:943333. [PMID: 35860241 PMCID: PMC9289617 DOI: 10.3389/fimmu.2022.943333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stromal cell (MSC) therapy has seen increased attention as a possible option to treat a number of inflammatory conditions including COVID-19 acute respiratory distress syndrome (ARDS). As rates of obesity and metabolic disease continue to rise worldwide, increasing proportions of patients treated with MSC therapy will be living with obesity. The obese environment poses critical challenges for immunomodulatory therapies that should be accounted for during development and testing of MSCs. In this review, we look to cancer immunotherapy as a model for the challenges MSCs may face in obese environments. We then outline current evidence that obesity alters MSC immunomodulatory function, drastically modifies the host immune system, and therefore reshapes interactions between MSCs and immune cells. Finally, we argue that obese environments may alter essential features of allogeneic MSCs and offer potential strategies for licensing of MSCs to enhance their efficacy in the obese microenvironment. Our aim is to combine insights from basic research in MSC biology and clinical trials to inform new strategies to ensure MSC therapy is effective for a broad range of patients.
Collapse
Affiliation(s)
- Lauren Boland
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Laura Melanie Bitterlich
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
| | - Andrew E. Hogan
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
| | - James A. Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
- *Correspondence: James A. Ankrum, ; Karen English,
| | - Karen English
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
- *Correspondence: James A. Ankrum, ; Karen English,
| |
Collapse
|
19
|
Verma V, Drury GL, Parisien M, Özdağ Acarli AN, Al-Aubodah TA, Nijnik A, wen X, Tugarinov N, Verner M, Klares R, Linton A, Krock E, Morado Urbina CE, Winsvold B, Fritsche LG, Fors EA, Piccirillo C, Khoutorsky A, Svensson CI, Fitzcharles MA, Ingelmo PM, Bernard NF, Dupuy FP, Üçeyler N, Sommer C, King IL, Meloto CB, Diatchenko L. Unbiased immune profiling reveals a natural killer cell-peripheral nerve axis in fibromyalgia. Pain 2022; 163:e821-e836. [PMID: 34913882 PMCID: PMC8942876 DOI: 10.1097/j.pain.0000000000002498] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/13/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT The pathophysiology of fibromyalgia syndrome (FMS) remains elusive, leading to a lack of objective diagnostic criteria and targeted treatment. We globally evaluated immune system changes in FMS by conducting multiparametric flow cytometry analyses of peripheral blood mononuclear cells and identified a natural killer (NK) cell decrease in patients with FMS. Circulating NK cells in FMS were exhausted yet activated, evidenced by lower surface expression of CD16, CD96, and CD226 and more CD107a and TIGIT. These NK cells were hyperresponsive, with increased CCL4 production and expression of CD107a when co-cultured with human leukocyte antigen null target cells. Genetic and transcriptomic pathway analyses identified significant enrichment of cell activation pathways in FMS driven by NK cells. Skin biopsies showed increased expression of NK activation ligand, unique long 16-binding protein, on subepidermal nerves of patients FMS and the presence of NK cells near peripheral nerves. Collectively, our results suggest that chronic activation and redistribution of circulating NK cells to the peripheral nerves contribute to the immunopathology associated with FMS.
Collapse
Affiliation(s)
- Vivek Verma
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, Canada
- Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montréal, Canada
| | - Gillian L. Drury
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, Canada
| | - Marc Parisien
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, Canada
| | - Ayşe N. Özdağ Acarli
- Department of Neurology, Faculty of Medicine, Istanbul University, Istanbul, Turkey
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Tho-Alfakar Al-Aubodah
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Canada
| | - Anastasia Nijnik
- Department of Physiology, Faculty of Medicine, McGill University, Montréal, Canada
- McGill Research Centre on Complex Traits, McGill University, Montréal, Canada
| | - Xia wen
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, Canada
| | - Nicol Tugarinov
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, Canada
| | - Maria Verner
- Faculty of Dentistry, McGill University, Montréal, Canada
| | - Richie Klares
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, Canada
| | - Alexander Linton
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, Canada
| | - Emerson Krock
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carlos E. Morado Urbina
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bendik Winsvold
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Lars G. Fritsche
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, USA
| | - Egil A. Fors
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ciriaco Piccirillo
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Canada
| | - Arkady Khoutorsky
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, Canada
- Faculty of Dentistry, McGill University, Montréal, Canada
- Department of Anesthesia, Faculty of Medicine, McGill University, Montréal, Canada
| | - Camilla I. Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mary A. Fitzcharles
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, Canada
- Division of Rheumatology, Faculty of Medicine, McGill University, Montréal, Canada
| | - Pablo M. Ingelmo
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, Canada
- Department of Anesthesia, Faculty of Medicine, McGill University, Montréal, Canada
| | - Nicole F. Bernard
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Canada
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Canada
| | - Franck P. Dupuy
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Canada
| | - Nurcan Üçeyler
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Irah L. King
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montréal, Canada
| | - Carolina B. Meloto
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, Canada
- Faculty of Dentistry, McGill University, Montréal, Canada
| | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, Canada
- Faculty of Dentistry, McGill University, Montréal, Canada
- Department of Anesthesia, Faculty of Medicine, McGill University, Montréal, Canada
| |
Collapse
|
20
|
Hojjatipour T, Aslani S, Salimifard S, Mikaeili H, Hemmatzadeh M, Gholizadeh Navashenaq J, Ahangar Parvin E, Jadidi-Niaragh F, Mohammadi H. NK cells - Dr. Jekyll and Mr. Hyde in autoimmune rheumatic diseases. Int Immunopharmacol 2022; 107:108682. [DOI: 10.1016/j.intimp.2022.108682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
|
21
|
Beliën J, Goris A, Matthys P. Natural Killer Cells in Multiple Sclerosis: Entering the Stage. Front Immunol 2022; 13:869447. [PMID: 35464427 PMCID: PMC9019710 DOI: 10.3389/fimmu.2022.869447] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/14/2022] [Indexed: 11/14/2022] Open
Abstract
Studies investigating the immunopathology of multiple sclerosis (MS) have largely focused on adaptive T and B lymphocytes. However, in recent years there has been an increased interest in the contribution of innate immune cells, amongst which the natural killer (NK) cells. Apart from their canonical role of controlling viral infections, cell stress and malignancies, NK cells are increasingly being recognized for their modulating effect on the adaptive immune system, both in health and autoimmune disease. From different lines of research there is now evidence that NK cells contribute to MS immunopathology. In this review, we provide an overview of studies that have investigated the role of NK cells in the pathogenesis of MS by use of the experimental autoimmune encephalomyelitis (EAE) animal model, MS genetics or through ex vivo and in vitro work into the immunology of MS patients. With the advent of modern hypothesis-free technologies such as single-cell transcriptomics, we are exposing an unexpected NK cell heterogeneity, increasingly blurring the boundaries between adaptive and innate immunity. We conclude that unravelling this heterogeneity, as well as the mechanistic link between innate and adaptive immune cell functions will lay the foundation for the use of NK cells as prognostic tools and therapeutic targets in MS and a myriad of other currently uncurable autoimmune disorders.
Collapse
Affiliation(s)
- Jarne Beliën
- Department of Neurosciences, Laboratory for Neuroimmunology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - An Goris
- Department of Neurosciences, Laboratory for Neuroimmunology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Muscari I, Fierabracci A, Adorisio S, Moretti M, Cannarile L, Thi Minh Hong V, Ayroldi E, Delfino DV. Glucocorticoids and natural killer cells: A suppressive relationship. Biochem Pharmacol 2022; 198:114930. [PMID: 35149054 DOI: 10.1016/j.bcp.2022.114930] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/02/2022]
Abstract
Glucocorticoids exert their pharmacological actions by mimicking and amplifying the function of the endogenous glucocorticoid system's canonical physiological stress response. They affect the immune system at the levels of inflammation and adaptive and innate immunity. These effects are the basis for therapeutic use of glucocorticoids. Innate immunity is the body's first line of defense against disease conditions. It is relatively nonspecific and, among its mediators, natural killer(NK) cells link innate and acquired immunity. NK cell numbers are altered in patients with auto immune diseases, and research suggests that interactions between glucocorticoids and natural killer cells arecritical for successful glucocorticoid therapy. The aim of this review is to summarize these interactions while highlighting the latest and most important developments in this field. Production and release in theblood of endogenous glucocorticoids are strictly regulated by the hypothalamus-pituitary-adrenal axis. Aself-regulatory mechanism prevents excessive plasma levels of these hormones. However, exogenousstimuli such as stress, inflammation, infections, cancer, and autoimmune disease can trigger thehypothalamus-pituitary-adrenal axis response and lead to excessive systemic release of glucocorticoids.Thus, stress stimuli, such as sleep deprivation, intense exercise, depression, viral infections, andcancer, can result in release of glucocorticoids and associated immunosuppressant effects. Among theseeffects are decreases in the numbers and activities of NK cells in inflammatory and autoimmune diseases(e.g., giant cell arteritis, polymyalgia rheumatica, and familial hypogammaglobulinemia).
Collapse
Affiliation(s)
- Isabella Muscari
- Section of Onco-hematology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Alessandra Fierabracci
- Immunology and Pharmacotherapy Research Area Bambino Gesù Children's Hospital, Rome, Italy
| | - Sabrina Adorisio
- Foligno Nursing School, Department of Medicine, University of Perugia, Foligno, PG, Italy
| | - Marina Moretti
- Section of Onco-hematology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Lorenza Cannarile
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | | | - Emira Ayroldi
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Domenico V Delfino
- Foligno Nursing School, Department of Medicine, University of Perugia, Foligno, PG, Italy; Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy.
| |
Collapse
|
23
|
Wang J, Liu W, Yu D, Yang Z, Li S, Sun X. Research Progress on the Treatment of Premature Ovarian Failure Using Mesenchymal Stem Cells: A Literature Review. Front Cell Dev Biol 2021; 9:749822. [PMID: 34966738 PMCID: PMC8710809 DOI: 10.3389/fcell.2021.749822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022] Open
Abstract
Premature ovarian failure (POF) has become one of the main causes of infertility in women of childbearing age and the incidence of POF is increasing year by year, seriously affecting the physical and mental health of patients and increasing the economic burden on families and society as a whole. The etiology and pathogenesis of POF are complex and not very clear at present. Currently, hormone replacement therapy is mainly used to improve the symptoms of low estrogen, but cannot fundamentally solve the fertility problem. In recent years, stem cell (SC) transplantation has become one of the research hotspots in the treatment of POF. The results from animal experiments bring hope for the recovery of ovarian function and fertility in patients with POF. In this article, we searched the published literature between 2000 and 2020 from the PubMed database (https://pubmed.ncbi.nlm.nih.gov), and summarized the preclinical research data and possible therapeutic mechanism of mesenchymal stem cells (MSCs) in the treatment of POF. Our aim is to provide useful information for understanding POF and reference for follow-up research and treatment of POF.
Collapse
Affiliation(s)
- Jing Wang
- Department of Reproductive Medicine, Department of Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, China
| | - Wanru Liu
- Department of Reproductive Medicine, Department of Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, China
| | - Dehai Yu
- The Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zongxing Yang
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xiguang Sun
- Hand Surgery Department, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
24
|
Rola autoimmunizacji w rozwoju powikłań cukrzycowych – przegląd badań. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstrakt
Przewlekłe powikłania cukrzycy są główną przyczyną obniżenia jakości życia, niepełnosprawności, a nawet przedwczesnej śmierci pacjentów cierpiących na tę chorobę. Mimo istotnego postępu w dziedzinie farmakoterapii, ich leczenie pozostaje nadal wyzwaniem w codziennej praktyce klinicznej. Brak terapii przyczynowej wynika z niewystarczającego zrozumienia molekularnych mechanizmów uszkadzających poszczególne narządy w cukrzycy. Uważa się, że etiopatogeneza tych powikłań jest złożona i zależy od czynników genetycznych i środowiskowych. W ich rozwoju, oprócz zaburzeń metabolicznych związanych z hiperglikemią, nasilenia stresu oksydacyjnego, dysfunkcji śródbłonka, indukcji stanu zapalnego, coraz częściej wskazuje się też na znaczącą rolę zaburzeń immunologicznych.
Wyniki badań doświadczalnych przeprowadzonych na zwierzętach, jak również na hodowlach tkankowych, oraz obserwacje kliniczne potwierdzają udział układu odpornościowego obejmujący aktywność autoreaktywnych limfocytów oraz cytotoksyczne działanie autoprzeciwciał w rozwoju poszczególnych powikłań w obu typach cukrzycy. Wydaje się zatem, że zachwianie równowagi immunologicznej wyzwalające autoagresję jest ważnym czynnikiem przyczyniającym się do dysfunkcji poszczególnych organów w typach cukrzycy 1 i 2.
Dokładne zrozumienie immunopatogenezy tych zaburzeń może zmienić dotychczasowe podejście w leczeniu powikłań cukrzycy oraz umożliwić opracowanie skutecznej terapii przyczynowej ukierunkowanej na układ odpornościowy. Identyfikacja swoistych autoprzeciwciał mogłaby usprawnić ich wczesną diagnostykę i prewencję. W artykule podjęto próbę analizy czynników ryzyka najczęstszych schorzeń o podłożu autoimmunizacyjnym, ich związku z typem 1 i 2 cukrzycy oraz podsumowano potencjalne znaczenie autoagresji w rozwoju jej powikłań w oparciu o wyniki dotychczasowych badań doświadczalnych i klinicznych.
Collapse
|
25
|
Ekşioğlu-Demiralp E, Alan S, Sili U, Bakan D, Ocak İ, Yürekli R, Alpay N, Görçin S, Yıldız A. Peripheral innate and adaptive immune cells during COVID-19: Functional neutrophils, pro-inflammatory monocytes, and half-dead lymphocytes. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2021; 102:153-167. [PMID: 34846101 PMCID: PMC9015471 DOI: 10.1002/cyto.b.22042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND A better understanding of innate and adaptive cells in COVID-19 is necessary for the development of effective treatment methods and vaccines. METHODS We studied phenotypic features of innate and adaptive immune cells, oxidative burst, phagocytosis, and apoptosis. One hundred and three patients with COVID-19 were grouped according to their clinical features into the categories of mild (35%), moderate (40.8%), and severe (24.3%). RESULTS Monocytes were CD16+ pro-inflammatory monocytes and tended to shed their HLA-DR, especially in severe cases (p < 0.01). Neutrophils were mature and functional, although a decline of their CD10 and CD16 was observed (p < 0.01). No defect was found in the reactive oxygen species production and their apoptosis. The percentage of natural killer cells was in the normal range, whereas the percentages of CD8+ NK and CD56+ T lymphocytes were found to be high (p < 0.01). Although the absolute numbers of all lymphocyte subsets were low and showed a tendency for a gradual decrease in accordance with the disease progression, the most decreased absolute number was that of B lymphocytes, followed by CD4+ T cells in the severe cases. The percentages of double-negative T cells; HLA-DR+ CD3+ and CD28- CD8+ subsets were found to be significantly increased. Importantly, we demonstrated the increased baseline activation of caspase-3 and increased lymphocyte apoptosis. CONCLUSION We suggest that SARS-CoV-2 primarily affects the lymphocytes and not the innate cells. The increased baseline activation of Caspase-3 could make the COVID-19 lymphocytes more vulnerable to cell death. Therefore, this may interrupt the crosstalk between the adaptive and innate immune systems.
Collapse
Affiliation(s)
- Emel Ekşioğlu-Demiralp
- Tissue Typing and Immunology Laboratory, Istanbul Memorial Şişli Hospital, Istanbul, Turkey
| | - Servet Alan
- Department of Infectious Diseases and Clinical Microbiology, Istanbul Memorial Şişli Hospital, Istanbul, Turkey
| | - Uluhan Sili
- Department of Infectious Diseases and Clinical Microbiology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Dilek Bakan
- Department of Chest Diseases, ÜsküdarÜniversitesi, Istanbul Memorial Şişli Hospital, Istanbul, Turkey
| | - İlhan Ocak
- Department of Intensive Care, Istanbul Memorial Şişli Hospital, Istanbul, Turkey
| | - Rayfe Yürekli
- Tissue Typing and Immunology Laboratory, Istanbul Memorial Şişli Hospital, Istanbul, Turkey
| | - Nadir Alpay
- Department of Nephrology, Istanbul Hizmet Hospital, Istanbul, Turkey
| | - Serpil Görçin
- Department of Nephrology, Istanbul Memorial Şişli Hospital, Istanbul, Turkey
| | - Alaattin Yıldız
- Department of Nephrology, Istanbul Memorial Şişli Hospital, Istanbul, Turkey
| |
Collapse
|
26
|
Dubis J, Niepiekło-Miniewska W, Jędruchniewicz N, Sobczyński M, Witkiewicz W, Zapotoczny N, Kuśnierczyk P. Associations of Genes for Killer Cell Immunoglobulin-like Receptors and Their Human Leukocyte Antigen-A/B/C Ligands with Abdominal Aortic Aneurysm. Cells 2021; 10:cells10123357. [PMID: 34943866 PMCID: PMC8699266 DOI: 10.3390/cells10123357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 11/28/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is an immune-mediated disease with a genetic component. The multifactorial pathophysiology is not clear and there is still no pharmacotherapy to slow the growth of aneurysms. The signal integration of cell-surface KIRs (killer cell immunoglobulin-like receptors) with HLA (ligands, human leukocyte class I antigen molecules) modulates the activity of natural killer immune cells. The genetic diversity of the KIR/HLA system is associated with the risk of immune disorders. This study was a multivariate analysis of the association between genetic variants of KIRs, HLA ligands, clinical data and AAA formation. Genotyping was performed by single polymerase chain reaction with sequence-specific primers using commercial assays. Patients with HLA-A-Bw4 have a larger aneurysm by an average of 4 mm (p = 0.008). We observed a relationship between aneurysm diameter and BMI in patients with AAA and co-existing CAD; its shape was determined by the presence of HLA-A-Bw4. There was also a nearly 10% difference in KIR3DL1 allele frequency between the study and control groups. High expression of the cell surface receptor KIR3DL1 may protect, to some extent, against AAA. The presence of HLA-A-Bw4 may affect the rate of aneurysm growth and represents a potential regional pathogenetic risk of autoimmune injury to the aneurysmal aorta.
Collapse
Affiliation(s)
- Joanna Dubis
- Research and Development Centre, Regional Specialist Hospital, 51-124 Wroclaw, Poland;
- Correspondence: (J.D.); (P.K.)
| | - Wanda Niepiekło-Miniewska
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland;
| | | | - Maciej Sobczyński
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Wojciech Witkiewicz
- Department of Vascular Surgery, Regional Specialist Hospital in Wroclaw, 51-124 Wrocław, Poland; (W.W.); (N.Z.)
| | - Norbert Zapotoczny
- Department of Vascular Surgery, Regional Specialist Hospital in Wroclaw, 51-124 Wrocław, Poland; (W.W.); (N.Z.)
| | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland;
- Correspondence: (J.D.); (P.K.)
| |
Collapse
|
27
|
Kashani N, Kelland EE, Vajdi B, Anderson LM, Gilmore W, Lund BT. Immune Regulatory Cell Bias Following Alemtuzumab Treatment in Relapsing-Remitting Multiple Sclerosis. Front Immunol 2021; 12:706278. [PMID: 34777337 PMCID: PMC8581537 DOI: 10.3389/fimmu.2021.706278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Alemtuzumab is a highly effective treatment for relapsing-remitting multiple sclerosis. It selectively targets the CD52 antigen to induce profound lymphocyte depletion, followed by recovery of T and B cells with regulatory phenotypes. We previously showed that regulatory T cell function is restored with cellular repletion, but little is known about the functional capacity of regulatory B-cells and peripheral blood monocytes during the repletion phase. In this study (ClinicalTrials.gov ID# NCT03647722) we simultaneously analyzed the change in composition and function of both regulatory lymphocyte populations and distinct monocyte subsets in cross-sectional cohorts of MS patients prior to or 6, 12, 18, 24 or 36 months after their first course of alemtuzumab treatment. We found that the absolute number and percentage of cells with a regulatory B cell phenotype were significantly higher after treatment and were positivity correlated with regulatory T cells. In addition, B cells from treated patients secreted higher levels of IL-10 and BDNF, and inhibited the proliferation of autologous CD4+CD25- T cell targets. Though there was little change in monocytes populations overall, following the second annual course of treatment, CD14+ monocytes had a significantly increased anti-inflammatory bias in cytokine secretion patterns. These results confirmed that the immune system in alemtuzumab-treated patients is altered in favor of a regulatory milieu that involves expansion and increased functionality of multiple regulatory populations including B cells, T cells and monocytes. Here, we showed for the first time that functionally competent regulatory B cells re-appear with similar kinetics to that of regulatory T-cells, whereas the change in anti-inflammatory bias of monocytes does not occur until after the second treatment course. These findings justify future studies of all regulatory cell types following alemtuzumab treatment to reveal further insights into mechanisms of drug action, and to identify key immunological predictors of durable clinical efficacy in alemtuzumab-treated patients.
Collapse
Affiliation(s)
- Nicole Kashani
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Eve E Kelland
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Borna Vajdi
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lauren M Anderson
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Wendy Gilmore
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brett T Lund
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
28
|
Shen Z, Huang W, Liu J, Tian J, Wang S, Rui K. Effects of Mesenchymal Stem Cell-Derived Exosomes on Autoimmune Diseases. Front Immunol 2021; 12:749192. [PMID: 34646275 PMCID: PMC8503317 DOI: 10.3389/fimmu.2021.749192] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Recent years, the immunosuppressive properties of mesenchymal stem cells (MSCs) have been demonstrated in preclinical studies and trials of inflammatory and autoimmune diseases. Emerging evidence indicates that the immunomodulatory effect of MSCs is primarily attributed to the paracrine pathway. As one of the key paracrine effectors, mesenchymal stem cell-derived exosomes (MSC-EXOs) are small vesicles 30-200 nm in diameter that play an important role in cell-to-cell communication by carrying bioactive substances from parental cells. Recent studies support the finding that MSC-EXOs have an obvious inhibitory effect toward different effector cells involved in the innate and adaptive immune response. Moreover, substantial progress has been made in the treatment of autoimmune diseases, including multiple sclerosis (MS), systemic lupus erythematosus (SLE), type-1 diabetes (T1DM), uveitis, rheumatoid arthritis (RA), and inflammatory bowel disease (IBD). MSC-EXOs are capable of reproducing MSC function and overcoming the limitations of traditional cell therapy. Therefore, using MSC-EXOs instead of MSCs to treat autoimmune diseases appears to be a promising cell-free treatment strategy. In this review, we review the current understanding of MSC-EXOs and discuss the regulatory role of MSC-EXOs on immune cells and its potential application in autoimmune diseases.
Collapse
Affiliation(s)
- Ziwei Shen
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wei Huang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jun Liu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
29
|
Inflammaging, an Imbalanced Immune Response That Needs to Be Restored for Cancer Prevention and Treatment in the Elderly. Cells 2021; 10:cells10102562. [PMID: 34685542 PMCID: PMC8533838 DOI: 10.3390/cells10102562] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022] Open
Abstract
Nowadays, new advances in society and health have brought an increased life expectancy. However, at the same time, aging comes with complications that impact the development of autoimmunity, neurodegenerative diseases and cancer. These complications affect the quality of life and impact the public health system. Specifically, with aging, a low-grade chronic sterile systemic inflammation with self-reactivity in the absence of acute infection occurs termed inflammaging. Inflammaging is related to an imbalanced immune response that can be either naturally acquired with aging or accelerated due to external triggers. Different molecules, metabolites and inflammatory forms of cell death are highly involved in these processes. Importantly, adoptive cellular immunotherapy is a modality of treatment for cancer patients that administers ex vivo expanded immune cells in the patient. The manipulation of these cells confers them enhanced proinflammatory properties. A general consequence of proinflammatory events is the development of autoimmune diseases and cancer. Herein, we review subsets of immune cells with a pertinent role in inflammaging, relevant proteins involved in these inflammatory events and external triggers that enhance and accelerate these processes. Moreover, we mention relevant preclinical studies that demonstrate associations of chronic inflammation with cancer development.
Collapse
|
30
|
NK Cell Patterns in Idiopathic Inflammatory Myopathies with Pulmonary Affection. Cells 2021; 10:cells10102551. [PMID: 34685530 PMCID: PMC8534165 DOI: 10.3390/cells10102551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pulmonary affection (PA) is associated with a substantial increase in morbidity and mortality in patients with idiopathic inflammatory myopathies (IIM). However, the underlying immune mechanisms of PA remain enigmatic and prompt deeper immunological analyses. Importantly, the Janus-faced role of natural killer (NK) cells, capable of pro-inflammatory as well as regulatory effects, might be of interest for the pathophysiologic understanding of PA in IIM. METHODS To extend our understanding of immunological alterations in IIM patients with PA, we compared the signatures of NK cells in peripheral blood using multi-color flow cytometry in IIM patients with (n = 12, of which anti-synthetase syndrome = 8 and dermatomyositis = 4) or without PA (n = 12). RESULTS We did not observe any significant differences for B cells, CD4, and CD8 T cells, while total NK cell numbers in IIM patients with PA were reduced compared to non-PA patients. NK cell alterations were driven by a particular decrease of CD56dim NK cells, while CD56bright NK cells remained unchanged. Comparisons of the cell surface expression of a large panel of NK receptors revealed an increased mean fluorescence intensity of NKG2D+ on NK cells from patients with PA compared with non-PA patients, especially on the CD56dim subset. NKG2D+ and NKp46+ cell surface levels were associated with reduced vital capacity, serving as a surrogate marker for clinical severity of PA. CONCLUSION Our data illustrate that PA in IIM is associated with alterations of the NK cell repertoire, suggesting a relevant contribution of NK cells in certain IIMs, which might pave the way for NK cell-targeted therapeutic approaches.
Collapse
|
31
|
Han MM, Yuan XR, Shi X, Zhu XY, Su Y, Xiong DK, Zhang XM, Zhou H, Wang JN. The Pathological Mechanism and Potential Application of IL-38 in Autoimmune Diseases. Front Pharmacol 2021; 12:732790. [PMID: 34539413 PMCID: PMC8443783 DOI: 10.3389/fphar.2021.732790] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
Interleukin-38 (IL-38), a new cytokine of interleukin-1 family (IL-1F), is expressed in the human heart, kidney, skin, etc. Recently, new evidence indicated that IL-38 is involved in the process of different autoimmune diseases. Autoimmune diseases are a cluster of diseases accompanied with tissue damage caused by autoimmune reactions, including rheumatoid arthritis (RA), psoriasis, etc. This review summarized the links between IL-38 and autoimmune diseases, as well as the latest knowledge about the function and regulatory mechanism of IL-38 in autoimmune diseases. Especially, this review focused on the differentiation of immune cells and explore future prospects, such as the application of IL-38 in new technologies. Understanding the function of IL-38 is helpful to shed light on the progress of autoimmune diseases.
Collapse
Affiliation(s)
- Miao-Miao Han
- School of Health Management, Anhui Medical University, Hefei, China
| | - Xin-Rong Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Shi
- School of Health Management, Anhui Medical University, Hefei, China
| | - Xing-Yu Zhu
- School of Pharmacy, Bengbu Medical College, Bengbu, China.,National Drug Clinical Trial Institution, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yue Su
- National Drug Clinical Trial Institution, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,Public Basic College, Bengbu Medical College, Bengbu, China
| | - De-Kai Xiong
- School of Health Management, Anhui Medical University, Hefei, China
| | - Xing-Min Zhang
- School of Health Management, Anhui Medical University, Hefei, China
| | - Huan Zhou
- School of Pharmacy, Bengbu Medical College, Bengbu, China.,National Drug Clinical Trial Institution, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ji-Nian Wang
- Department of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
32
|
Krupa A, Kowalska I. The Kynurenine Pathway-New Linkage between Innate and Adaptive Immunity in Autoimmune Endocrinopathies. Int J Mol Sci 2021; 22:9879. [PMID: 34576041 PMCID: PMC8469440 DOI: 10.3390/ijms22189879] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022] Open
Abstract
The kynurenine pathway (KP) is highly regulated in the immune system, where it promotes immunosuppression in response to infection or inflammation. Indoleamine 2,3-dioxygenase 1 (IDO1), the main enzyme of KP, has a broad spectrum of activity on immune cells regulation, controlling the balance between stimulation and suppression of the immune system at sites of local inflammation, relevant to a wide range of autoimmune and inflammatory diseases. Various autoimmune diseases, among them endocrinopathies, have been identified to date, but despite significant progress in their diagnosis and treatment, they are still associated with significant complications, morbidity, and mortality. The precise cellular and molecular mechanisms leading to the onset and development of autoimmune disease remain poorly clarified so far. In breaking of tolerance, the cells of the innate immunity provide a decisive microenvironment that regulates immune cells' differentiation, leading to activation of adaptive immunity. The current review provided a comprehensive presentation of the known role of IDO1 and KP activation in the regulation of the innate and adaptive arms of the immune system. Significant attention has been paid to the immunoregulatory role of IDO1 in the most prevalent, organ-specific autoimmune endocrinopathies-type 1 diabetes mellitus (T1DM) and autoimmune thyroiditis.
Collapse
Affiliation(s)
- Anna Krupa
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Irina Kowalska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| |
Collapse
|
33
|
Wang H, Fang K, Yan W, Chang X. T-Cell Immune Imbalance in Rheumatoid Arthritis Is Associated with Alterations in NK Cells and NK-Like T Cells Expressing CD38. J Innate Immun 2021; 14:148-166. [PMID: 34428762 DOI: 10.1159/000516642] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 04/18/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND CD38+ NK (CD3- CD16+ CD38+ CD56+) cells were increased in rheumatoid arthritis (RA), which suppressed Treg cell differentiation. This study explored how CD38+ NK cells regulated CD4+ T-cell differentiation into Treg cells in RA. METHODS Proportions of CD38+ NK cells and their counterpart CD38+ NK-like T (CD3+ CD16+ CD38+ CD56+) cells were measured in RA and rats with collagen-induced arthritis (CIA). CD38+ NK cells and CD38+ NK-like T cells were cocultured with CD4+ T cells, respectively. RESULTS A significantly increased proportion of CD38+ NK cells and a decreased proportion of CD38+ NK-like T cells were detected in RA and CIA blood and synovial fluids. When CD4+ T cells were cocultured with CD38+ NK cells, mammalian target of rapamycin (mTOR) signaling was activated, and Th1/Th2 and Th17/Treg ratios were increased. When CD38+ NK cells were pretreated with anti-CD38 antibody, Treg cell proportion was increased, and Th1/Th2 and Th17/Treg ratios were decreased. CD38+ NK-like T cells showed the opposite results. CD38+ NK cells and CD38+ NK-like-T cells activated differential gene expressions and pathways in CD4+ T cells and initiated Th1 and Th2 cell differentiation by differential gene nodes. CONCLUSIONS This study suggest that the high CD38+ NK cell proportion and low CD38+ NK-like T cell proportion in RA suppress Treg cell differentiation by stimulating mTOR signaling in CD4+ T cells, which consequentially disturbs the immune tolerance.
Collapse
Affiliation(s)
- Hongxing Wang
- Medical Research Center of The Affiliated Hospital of Qingdao University, Qingdao, China.,Clinical Laboratory of Qilu Hospital, Shandong University, Jinan, China
| | - Kehua Fang
- Clinical Laboratory of The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weining Yan
- Joint Surgery Department of The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaotian Chang
- Medical Research Center of The Affiliated Hospital of Qingdao University, Qingdao, China.,Qingdao Engineering Technology Center for Major Disease Marker, Qingdao, China
| |
Collapse
|
34
|
Berg NK, Li J, Kim B, Mills T, Pei G, Zhao Z, Li X, Zhang X, Ruan W, Eltzschig HK, Yuan X. Hypoxia-inducible factor-dependent induction of myeloid-derived netrin-1 attenuates natural killer cell infiltration during endotoxin-induced lung injury. FASEB J 2021; 35:e21334. [PMID: 33715200 PMCID: PMC8251729 DOI: 10.1096/fj.202002407r] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022]
Abstract
Sepsis and sepsis‐associated lung inflammation significantly contribute to the morbidity and mortality of critical illness. Here, we examined the hypothesis that neuronal guidance proteins could orchestrate inflammatory events during endotoxin‐induced lung injury. Through a targeted array, we identified netrin‐1 as the top upregulated neuronal guidance protein in macrophages treated with lipopolysaccharide (LPS). Furthermore, we found that netrin‐1 is highly enriched in infiltrating myeloid cells, particularly in macrophages during LPS‐induced lung injury. Transcriptional studies implicate hypoxia‐inducible factor HIF‐1α in the transcriptional induction of netrin‐1 during LPS treatment. Subsequently, the deletion of netrin‐1 in the myeloid compartment (Ntn1loxp/loxp LysM Cre) resulted in exaggerated mortality and lung inflammation. Surprisingly, further studies revealed enhanced natural killer cells (NK cells) infiltration in Ntn1loxp/loxp LysM Cre mice, and neutralization of NK cell chemoattractant chemokine (C‐C motif) ligand 2 (CCL2) reversed the exaggerated lung inflammation. Together, these studies provide functional insight into myeloid cell‐derived netrin‐1 in controlling lung inflammation through the modulation of CCL2‐dependent infiltration of NK cells.
Collapse
Affiliation(s)
- Nathaniel K Berg
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Jiwen Li
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.,Department of Cardiac Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Boyun Kim
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Tingting Mills
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX, USA.,Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, TX, USA
| | - Xiangyun Li
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.,Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Xu Zhang
- Department of Internal Medicine, The University of Texas Health Science Center, Houston, TX, USA.,Center for Clinical and Translational Sciences, The University of Texas Health Science Center, Houston, TX, USA
| | - Wei Ruan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.,Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
35
|
Made to Measure: Patient-Tailored Treatment of Multiple Sclerosis Using Cell-Based Therapies. Int J Mol Sci 2021; 22:ijms22147536. [PMID: 34299154 PMCID: PMC8304207 DOI: 10.3390/ijms22147536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, there is still no cure for multiple sclerosis (MS), which is an autoimmune and neurodegenerative disease of the central nervous system. Treatment options predominantly consist of drugs that affect adaptive immunity and lead to a reduction of the inflammatory disease activity. A broad range of possible cell-based therapeutic options are being explored in the treatment of autoimmune diseases, including MS. This review aims to provide an overview of recent and future advances in the development of cell-based treatment options for the induction of tolerance in MS. Here, we will focus on haematopoietic stem cells, mesenchymal stromal cells, regulatory T cells and dendritic cells. We will also focus on less familiar cell types that are used in cell therapy, including B cells, natural killer cells and peripheral blood mononuclear cells. We will address key issues regarding the depicted therapies and highlight the major challenges that lie ahead to successfully reverse autoimmune diseases, such as MS, while minimising the side effects. Although cell-based therapies are well known and used in the treatment of several cancers, cell-based treatment options hold promise for the future treatment of autoimmune diseases in general, and MS in particular.
Collapse
|
36
|
Dębska-Zielkowska J, Moszkowska G, Zieliński M, Zielińska H, Dukat-Mazurek A, Trzonkowski P, Stefańska K. KIR Receptors as Key Regulators of NK Cells Activity in Health and Disease. Cells 2021; 10:1777. [PMID: 34359951 PMCID: PMC8303609 DOI: 10.3390/cells10071777] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are part of the cellular immune response. They target mainly cancer and virally infected cells. To a high extent cytotoxic activity of NK cells is regulated inter alia by signals from killer immunoglobulin-like receptors (KIR). The major histocompatibility complex (MHC) class I molecules are important ligands for KIR receptors. Binding of ligands (such as MHC I) to the KIR receptors has the important role in solid organ or hematopoietic cell transplantation. Of note, the understanding of the relationship between KIR and MHC receptors may contribute to the improvement of transplant results. Donor-recipient matching, which also includes the KIR typing, may improve monitoring, individualize the treatment and allow for predicting possible effects after transplantation, such as the graft-versus-leukemia effect (GvL) or viral re-infection. There are also less evident implications of KIR/MHC matching, such as with pregnancy and cancer. In this review, we present the most relevant literature reports on the importance of the KIR/MHC relationship on NK cell activity and hematopoietic stem cell transplantation (HSCT)/solid organ transplantation (SOT) effects, the risk of allograft rejection, protection against post-transplant cytomegalovirus (CMV) infection, pregnancy complications, cancer and adoptive therapy with NK cells.
Collapse
Affiliation(s)
- Joanna Dębska-Zielkowska
- Department of Medical Immunology, Medical University of Gdańsk, 80-210 Gdansk, Poland; (G.M.); (M.Z.); (H.Z.); (A.D.-M.); (P.T.)
| | - Grażyna Moszkowska
- Department of Medical Immunology, Medical University of Gdańsk, 80-210 Gdansk, Poland; (G.M.); (M.Z.); (H.Z.); (A.D.-M.); (P.T.)
| | - Maciej Zieliński
- Department of Medical Immunology, Medical University of Gdańsk, 80-210 Gdansk, Poland; (G.M.); (M.Z.); (H.Z.); (A.D.-M.); (P.T.)
| | - Hanna Zielińska
- Department of Medical Immunology, Medical University of Gdańsk, 80-210 Gdansk, Poland; (G.M.); (M.Z.); (H.Z.); (A.D.-M.); (P.T.)
| | - Anna Dukat-Mazurek
- Department of Medical Immunology, Medical University of Gdańsk, 80-210 Gdansk, Poland; (G.M.); (M.Z.); (H.Z.); (A.D.-M.); (P.T.)
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, 80-210 Gdansk, Poland; (G.M.); (M.Z.); (H.Z.); (A.D.-M.); (P.T.)
| | - Katarzyna Stefańska
- Department of Obstetrics, Medical University of Gdańsk, 80-214 Gdansk, Poland;
| |
Collapse
|
37
|
Wang CM, Tan KP, Jan Wu YJ, Lin JC, Zheng JW, Yu AL, Wu JM, Chen JY. MICA*019 Allele and Soluble MICA as Biomarkers for Ankylosing Spondylitis in Taiwanese. J Pers Med 2021; 11:jpm11060564. [PMID: 34208618 PMCID: PMC8235541 DOI: 10.3390/jpm11060564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/23/2022] Open
Abstract
MICA (major histocompatibility complex class I chain-related gene A) interacts with NKG2D on immune cells to regulate host immune responses. We aimed to determine whether MICA alleles are associated with AS susceptibility in Taiwanese. MICA alleles were determined through haplotype analyses of major MICA coding SNP (cSNP) data from 895 AS patients and 896 normal healthy controls in Taiwan. The distributions of MICA alleles were compared between AS patients and normal healthy controls and among AS patients, stratified by clinical characteristics. ELISA was used to determine soluble MICA (sMICA) levels in serum of AS patients and healthy controls. Stable cell lines expressing four major MICA alleles (MICA*002, MICA*008, MICA*010 and MICA*019) in Taiwanese were used for biological analyses. We found that MICA*019 is the only major MICA allele significantly associated with AS susceptibility (PFDR = 2.25 × 10−115; OR, 14.90; 95% CI, 11.83–18.77) in Taiwanese. In addition, the MICA*019 allele is associated with syndesmophyte formation (PFDR = 0.0017; OR, 1.69; 95% CI, 1.29–2.22) and HLA-B27 positivity (PFDR = 1.45 × 10−33; OR, 28.79; 95% CI, 16.83–49.26) in AS patients. Serum sMICA levels were significantly increased in AS patients as compared to healthy controls. Additionally, MICA*019 homozygous subjects produced the highest levels of sMICA, compared to donors with other genotypes. Furthermore, in vitro experiments revealed that cells expressing MICA*019 produced the highest level of sMICA, as compared to other major MICA alleles. In summary, the MICA*019 allele, producing the highest levels of sMICA, is a significant risk factor for AS and syndesmophyte formation in Taiwanese. Our data indicate that a high level of sMICA is a biomarker for AS.
Collapse
Affiliation(s)
- Chin-Man Wang
- Department of Rehabilitation, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan;
| | - Keng-Poo Tan
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan; (K.-P.T.); (Y-.J.J.W.); (J.-C.L.); (J.-W.Z.)
| | - Yeong-Jian Jan Wu
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan; (K.-P.T.); (Y-.J.J.W.); (J.-C.L.); (J.-W.Z.)
| | - Jing-Chi Lin
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan; (K.-P.T.); (Y-.J.J.W.); (J.-C.L.); (J.-W.Z.)
| | - Jian-Wen Zheng
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan; (K.-P.T.); (Y-.J.J.W.); (J.-C.L.); (J.-W.Z.)
| | - Alice L. Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan 33375, Taiwan;
- Department of Pediatrics, University of California, San Diego, CA 92103, USA
| | - Jian-Ming Wu
- Department of Veterinary and Biomedical Sciences, Department of Medicine, University of Minnesota, Minneapolis, MN 55108, USA;
| | - Ji-Yih Chen
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan; (K.-P.T.); (Y-.J.J.W.); (J.-C.L.); (J.-W.Z.)
- Correspondence: ; Tel.: +886-3-328-1200 (ext. 2410); Fax: 886-3-3288-287
| |
Collapse
|
38
|
Manolakou T, Verginis P, Boumpas DT. DNA Damage Response in the Adaptive Arm of the Immune System: Implications for Autoimmunity. Int J Mol Sci 2021; 22:5842. [PMID: 34072535 PMCID: PMC8198144 DOI: 10.3390/ijms22115842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
In complex environments, cells have developed molecular responses to confront threats against the genome and achieve the maintenance of genomic stability assuring the transfer of undamaged DNA to their progeny. DNA damage response (DDR) mechanisms may be activated upon genotoxic or environmental agents, such as cytotoxic drugs or ultraviolet (UV) light, and during physiological processes requiring DNA transactions, to restore DNA alterations that may cause cellular malfunction and affect viability. In addition to the DDR, multicellular organisms have evolved specialized immune cells to respond and defend against infections. Both adaptive and innate immune cells are subjected to DDR processes, either as a prerequisite to the immune response, or as a result of random endogenous and exogenous insults. Aberrant DDR activities have been extensively studied in the immune cells of the innate arm, but not in adaptive immune cells. Here, we discuss how the aberrant DDR may lead to autoimmunity, with emphasis on the adaptive immune cells and the potential of therapeutic targeting.
Collapse
Affiliation(s)
- Theodora Manolakou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Panayotis Verginis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 700 13 Heraklion, Greece;
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, University of Crete Medical School, 700 13 Heraklion, Greece
| | - Dimitrios T. Boumpas
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
- Joint Rheumatology Program, 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, 124 62 Athens, Greece
| |
Collapse
|
39
|
Devaprasad A, Radstake TRDJ, Pandit A. Integration of Immunome With Disease-Gene Network Reveals Common Cellular Mechanisms Between IMIDs and Drug Repurposing Strategies. Front Immunol 2021; 12:669400. [PMID: 34108969 PMCID: PMC8181425 DOI: 10.3389/fimmu.2021.669400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/04/2021] [Indexed: 01/25/2023] Open
Abstract
Objective Development and progression of immune-mediated inflammatory diseases (IMIDs) involve intricate dysregulation of the disease-associated genes (DAGs) and their expressing immune cells. Identifying the crucial disease-associated cells (DACs) in IMIDs has been challenging due to the underlying complex molecular mechanism. Methods Using transcriptome profiles of 40 different immune cells, unsupervised machine learning, and disease-gene networks, we constructed the Disease-gene IMmune cell Expression (DIME) network and identified top DACs and DAGs of 12 phenotypically different IMIDs. We compared the DIME networks of IMIDs to identify common pathways between them. We used the common pathways and publicly available drug-gene network to identify promising drug repurposing targets. Results We found CD4+Treg, CD4+Th1, and NK cells as top DACs in inflammatory arthritis such as ankylosing spondylitis (AS), psoriatic arthritis, and rheumatoid arthritis (RA); neutrophils, granulocytes, and BDCA1+CD14+ cells in systemic lupus erythematosus and systemic scleroderma; ILC2, CD4+Th1, CD4+Treg, and NK cells in the inflammatory bowel diseases (IBDs). We identified lymphoid cells (CD4+Th1, CD4+Treg, and NK) and their associated pathways to be important in HLA-B27 type diseases (psoriasis, AS, and IBDs) and in primary-joint-inflammation-based inflammatory arthritis (AS and RA). Based on the common cellular mechanisms, we identified lifitegrast as a potential drug repurposing candidate for Crohn's disease and other IMIDs. Conclusions Existing methods are inadequate in capturing the intricate involvement of the crucial genes and cell types essential to IMIDs. Our approach identified the key DACs, DAGs, common mechanisms between IMIDs, and proposed potential drug repurposing targets using the DIME network. To extend our method to other diseases, we built the DIME tool (https://bitbucket.org/systemsimmunology/dime/) to help scientists uncover the etiology of complex and rare diseases to further drug development by better-determining drug targets, thereby mitigating the risk of failure in late clinical development.
Collapse
Affiliation(s)
- Abhinandan Devaprasad
- Division Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Timothy R. D. J. Radstake
- Division Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Aridaman Pandit
- Division Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
40
|
Li X, Liu Y, Zheng S, Zhang T, Wu J, Sun Y, Zhang J, Liu G. Role of exosomes in the immune microenvironment of ovarian cancer. Oncol Lett 2021; 21:377. [PMID: 33777201 PMCID: PMC7988709 DOI: 10.3892/ol.2021.12638] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are excretory vesicles that can deliver a variety of bioactive cargo molecules to the extracellular environment. Accumulating evidence demonstrates exosome participation in intercellular communication, immune response, inflammatory response and they even play an essential role in affecting the tumor immune microenvironment. The role of exosomes in the immune microenvironment of ovarian cancer is mainly divided into suppression and stimulation. On one hand exosomes can stimulate the innate and adaptive immune systems by activating dendritic cells (DCs), natural killer cells and T cells, allowing these immune cells exert an antitumorigenic effect. On the other hand, ovarian cancer-derived exosomes initiate cross-talk with immunosuppressive effector cells, which subsequently cause immune evasion; one of the hallmarks of cancer. Exosomes induce the polarization of macrophages in M2 phenotype and induce apoptosis of lymphocytes and DCs. Exosomes further activate additional immunosuppressive effector cells (myeloid-derived suppressor cells and regulatory T cells) that induce fibroblasts to differentiate into cancer-associated fibroblasts. Exosomes also induce the tumorigenicity of mesenchymal stem cells to exert additional immune suppression. Furthermore, besides mediating the intercellular communication, exosomes carry microRNAs (miRNAs), proteins and lipids to the tumor microenvironment, which collectively promotes ovarian cancer cells to proliferate, invade and tumors to metastasize. Studying proteins, lipids and miRNAs carried by exosomes could potentially be used as an early diagnostic marker of ovarian cancer for designing treatment strategies.
Collapse
Affiliation(s)
- Xiao Li
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yang Liu
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shuangshuang Zheng
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Tianyu Zhang
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jing Wu
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yue Sun
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jingzi Zhang
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Guoyan Liu
- Department of Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
41
|
Makuch S, Więcek K, Woźniak M. The Immunomodulatory and Anti-Inflammatory Effect of Curcumin on Immune Cell Populations, Cytokines, and In Vivo Models of Rheumatoid Arthritis. Pharmaceuticals (Basel) 2021; 14:ph14040309. [PMID: 33915757 PMCID: PMC8065689 DOI: 10.3390/ph14040309] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is a widespread chronic autoimmune disorder affecting the joints, causing irreversible cartilage, synovium, and bone degradation. During the course of the disease, many immune and joint cells are activated, causing inflammation. Immune cells including macrophages, lymphocytes, neutrophils, mast cells, natural killer cells, innate lymphoid cells, as well as synovial tissue cells, like fibroblast-like synoviocytes, chondrocytes, and osteoclasts secrete different proinflammatory factors, including many cytokines, angiogenesis-stimulating molecules and others. Recent studies reveal that curcumin, a natural dietary anti-inflammatory compound, can modulate the response of the cells engaging in RA course. This review comprises detailed data about the pathogenesis and inflammation process in rheumatoid arthritis and demonstrates scientific investigations about the molecular interactions between curcumin and immune cells responsible for rheumatoid arthritis development to discuss this herbal drug’s immunoregulatory role in RA treatment.
Collapse
Affiliation(s)
- Sebastian Makuch
- Department of Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Kamil Więcek
- Department of Biotechnology, Wroclaw University, 50-383 Wroclaw, Poland;
| | - Marta Woźniak
- Department of Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Correspondence:
| |
Collapse
|
42
|
Chu R, van Eeden C, Suresh S, Sligl WI, Osman M, Cohen Tervaert JW. Do COVID-19 Infections Result in a Different Form of Secondary Hemophagocytic Lymphohistiocytosis. Int J Mol Sci 2021; 22:2967. [PMID: 33803997 PMCID: PMC8001312 DOI: 10.3390/ijms22062967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/12/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in significant morbidity and mortality across the world, with no current effective treatments available. Recent studies suggest the possibility of a cytokine storm associated with severe COVID-19, similar to the biochemical profile seen in hemophagocytic lymphohistiocytosis (HLH), raising the question of possible benefits that could be derived from targeted immunosuppression in severe COVID-19 patients. We reviewed the literature regarding the diagnosis and features of HLH, particularly secondary HLH, and aimed to identify gaps in the literature to truly clarify the existence of a COVID-19 associated HLH. Diagnostic criteria such as HScore or HLH-2004 may have suboptimal performance in identifying COVID-19 HLH-like presentations, and criteria such as soluble CD163, NK cell activity, or other novel biomarkers may be more useful in identifying this entity.
Collapse
Affiliation(s)
- Raymond Chu
- Division of Rheumatology, Department of Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, ON K1H 7W9, Canada;
| | - Charmaine van Eeden
- Division of Rheumatology, Department of Medicine, University of Alberta Hospital, University of Alberta, Edmonton, AB T6G 2R3, Canada; (C.v.E.); (M.O.)
| | - Sneha Suresh
- Division of IHOPE, Department of Pediatrics, Stollery Children’s Hospital, University of Alberta, Edmonton, AB T6G 1C9, Canada;
| | - Wendy I. Sligl
- Department of Critical Care Medicine and Division of Infectious Diseases, Department of Medicine, University of Alberta Hospital, University of Alberta, Edmonton, AB T6G 2B7, Canada;
| | - Mohammed Osman
- Division of Rheumatology, Department of Medicine, University of Alberta Hospital, University of Alberta, Edmonton, AB T6G 2R3, Canada; (C.v.E.); (M.O.)
| | - Jan Willem Cohen Tervaert
- Division of Rheumatology, Department of Medicine, University of Alberta Hospital, University of Alberta, Edmonton, AB T6G 2R3, Canada; (C.v.E.); (M.O.)
| |
Collapse
|
43
|
Zhao R, Luo S, Zhao C. The role of innate immunity in myasthenia gravis. Autoimmun Rev 2021; 20:102800. [PMID: 33722749 DOI: 10.1016/j.autrev.2021.102800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Myasthenia gravis (MG) is a T cell-driven, B cell-mediated and autoantibody-dependent autoimmune disorder against neuromuscular junctions (NMJ). Accumulated evidence has emerged regarding the role of innate immunity in the pathogenesis of MG. In this review, we proposed two hypothesis underlying the pathological mechanism. In the context of gene predisposition, on the one hand, Toll-like receptors (TLRs) pathways were initiated by viral infection in the thymus with MG to generate chemokines and pro-inflammatory cytokines such as Type I interferon (IFN), which facilitate the thymus to function as a tertiary lymphoid organ (TLO). On the another hand, the antibodies against acetylcholine receptors (AChR) generated by thymus then activated the classical pathways on thymus and neuromuscular junction (NMJ). Futher, we also highlight the role of innate immune cells in the pathogenic response. Finally, we provide some future perspectives in developing new therapeutic approaches particularly targeting the innate immunity for MG.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Neurology, Huashan hospital Fudan University, 200040 Shanghai, China
| | - Sushan Luo
- Department of Neurology, Huashan hospital Fudan University, 200040 Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan hospital Fudan University, 200040 Shanghai, China.
| |
Collapse
|
44
|
Liu M, Liang S, Zhang C. NK Cells in Autoimmune Diseases: Protective or Pathogenic? Front Immunol 2021; 12:624687. [PMID: 33777006 PMCID: PMC7994264 DOI: 10.3389/fimmu.2021.624687] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Autoimmune diseases generally result from the loss of self-tolerance (i.e., failure of the immune system to distinguish self from non-self), and are characterized by autoantibody production and hyperactivation of T cells, which leads to damage of specific or multiple organs. Thus, autoimmune diseases can be classified as organ-specific or systemic. Genetic and environmental factors contribute to the development of autoimmunity. Recent studies have demonstrated the contribution of innate immunity to the onset of autoimmune diseases. Natural killer (NK) cells, which are key components of the innate immune system, have been implicated in the development of multiple autoimmune diseases such as systemic lupus erythematosus, type I diabetes mellitus, and autoimmune liver disease. However, NK cells have both protective and pathogenic roles in autoimmunity depending on the NK cell subset, microenvironment, and disease type or stage. In this work, we review the current knowledge of the varied roles of NK cell subsets in systemic and organic-specific autoimmune diseases and their clinical potential as therapeutic targets.
Collapse
Affiliation(s)
- Meifang Liu
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Shujuan Liang
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Cai Zhang
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Institute of Immunopharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
45
|
Strumillo ST, Kartavykh D, de Carvalho FF, Cruz NC, de Souza Teodoro AC, Sobhie Diaz R, Curcio MF. Host-virus interaction and viral evasion. Cell Biol Int 2021; 45:1124-1147. [PMID: 33533523 PMCID: PMC8014853 DOI: 10.1002/cbin.11565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
With each infectious pandemic or outbreak, the medical community feels the need to revisit basic concepts of immunology to understand and overcome the difficult times brought about by these infections. Regarding viruses, they have historically been responsible for many deaths, and such a peculiarity occurs because they are known to be obligate intracellular parasites that depend upon the host's cell machinery for their replication. Successful infection with the production of essential viral components requires constant viral evolution as a strategy to manipulate the cellular environment, including host internal factors, the host's nonspecific and adaptive immune responses to viruses, the metabolic and energetic state of the infected cell, and changes in the intracellular redox environment during the viral infection cycle. Based on this knowledge, it is fundamental to develop new therapeutic strategies for controlling viral dissemination, by means of antiviral therapies, vaccines, or antioxidants, or by targeting the inhibition or activation of cell signaling pathways or metabolic pathways that are altered during infection. The rapid recovery of altered cellular homeostasis during viral infection is still a major challenge. Here, we review the strategies by which viruses evade the host's immune response and potential tools used to develop more specific antiviral therapies to cure, control, or prevent viral diseases.
Collapse
Affiliation(s)
- Scheilla T Strumillo
- Department of Biochemistry, Laboratory of Cell Signaling, Federal University of São Paulo, São Paulo, Brazil
| | - Denis Kartavykh
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Fábio F de Carvalho
- Departament of Educational Development, Getulio Vargas Foundation, São Paulo, Brazil
| | - Nicolly C Cruz
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Ana C de Souza Teodoro
- Department of Biochemistry, Laboratory of Cell Signaling, Federal University of São Paulo, São Paulo, Brazil
| | - Ricardo Sobhie Diaz
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Marli F Curcio
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
46
|
Gianchecchi E, Delfino DV, Fierabracci A. Natural Killer Cells: Potential Biomarkers and Therapeutic Target in Autoimmune Diseases? Front Immunol 2021; 12:616853. [PMID: 33679757 PMCID: PMC7933577 DOI: 10.3389/fimmu.2021.616853] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Autoimmune diseases recognize a multifactorial pathogenesis, although the exact mechanism responsible for their onset remains to be fully elucidated. Over the past few years, the role of natural killer (NK) cells in shaping immune responses has been highlighted even though their involvement is profoundly linked to the subpopulation involved and to the site where such interaction takes place. The aberrant number and functionality of NK cells have been reported in several different autoimmune disorders. In the present review, we report the most recent findings regarding the involvement of NK cells in both systemic and organ-specific autoimmune diseases, including type 1 diabetes (T1D), primary biliary cholangitis (PBC), systemic sclerosis, systemic lupus erythematosus (SLE), primary Sjögren syndrome, rheumatoid arthritis, and multiple sclerosis. In T1D, innate inflammation induces NK cell activation, disrupting the Treg function. In addition, certain genetic variants identified as risk factors for T1D influenced the activation of NK cells promoting their cytotoxic activity. The role of NK cells has also been demonstrated in the pathogenesis of PBC mediating direct or indirect biliary epithelial cell destruction. NK cell frequency and number were enhanced in both the peripheral blood and the liver of patients and associated with increased NK cell cytotoxic activity and perforin expression levels. NK cells were also involved in the perpetuation of disease through autoreactive CD4 T cell activation in the presence of antigen-presenting cells. In systemic sclerosis (SSc), in addition to phenotypic abnormalities, patients presented a reduction in CD56hi NK-cells. Moreover, NK cells presented a deficient killing activity. The influence of the activating and inhibitory killer cell immunoglobulin-like receptors (KIRs) has been investigated in SSc and SLE susceptibility. Furthermore, autoantibodies to KIRs have been identified in different systemic autoimmune conditions. Because of its role in modulating the immune-mediated pathology, NK subpopulation could represent a potential marker for disease activity and target for therapeutic intervention.
Collapse
Affiliation(s)
- Elena Gianchecchi
- VisMederi srl, Siena, Italy.,Infectivology and Clinical Trials Research Area, Primary Immunodeficiencies Research Unit, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Domenico V Delfino
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Research Area, Primary Immunodeficiencies Research Unit, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| |
Collapse
|
47
|
Gaurav R, Mikuls TR, Thiele GM, Nelson AJ, Niu M, Guda C, Eudy JD, Barry AE, Wyatt TA, Romberger DJ, Duryee MJ, England BR, Poole JA. High-throughput analysis of lung immune cells in a combined murine model of agriculture dust-triggered airway inflammation with rheumatoid arthritis. PLoS One 2021; 16:e0240707. [PMID: 33577605 PMCID: PMC7880471 DOI: 10.1371/journal.pone.0240707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/18/2020] [Indexed: 01/10/2023] Open
Abstract
Rheumatoid arthritis (RA)-associated lung disease is a leading cause of mortality in RA, yet the mechanisms linking lung disease and RA remain unknown. Using an established murine model of RA-associated lung disease combining collagen-induced arthritis (CIA) with organic dust extract (ODE)-induced airway inflammation, differences among lung immune cell populations were analyzed by single cell RNA-sequencing. Additionally, four lung myeloid-derived immune cell populations including macrophages, monocytes/macrophages, monocytes, and neutrophils were isolated by fluorescence cell sorting and gene expression was determined by NanoString analysis. Unsupervised clustering revealed 14 discrete clusters among Sham, CIA, ODE, and CIA+ODE treatment groups: 3 neutrophils (inflammatory, resident/transitional, autoreactive/suppressor), 5 macrophages (airspace, differentiating/recruited, recruited, resident/interstitial, and proliferative airspace), 2 T-cells (differentiating and effector), and a single cluster each of inflammatory monocytes, dendritic cells, B-cells and natural killer cells. Inflammatory monocytes, autoreactive/suppressor neutrophils, and recruited/differentiating macrophages were predominant with arthritis induction (CIA and CIA+ODE). By specific lung cell isolation, several interferon-related and autoimmune genes were disproportionately expressed among CIA and CIA+ODE (e.g. Oasl1, Oas2, Ifit3, Gbp2, Ifi44, and Zbp1), corresponding to RA and RA-associated lung disease. Monocytic myeloid-derived suppressor cells were reduced, while complement genes (e.g. C1s1 and Cfb) were uniquely increased in CIA+ODE mice across cell populations. Recruited and inflammatory macrophages/monocytes and neutrophils expressing interferon-, autoimmune-, and complement-related genes might contribute towards pro-fibrotic inflammatory lung responses following airborne biohazard exposures in setting of autoimmune arthritis and could be predictive and/or targeted to reduce disease burden.
Collapse
Affiliation(s)
- Rohit Gaurav
- Division of Allergy and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
- * E-mail:
| | - Ted R. Mikuls
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, United States of America
- Division of Rheumatology & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Geoffrey M. Thiele
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, United States of America
- Division of Rheumatology & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Amy J. Nelson
- Division of Allergy and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Meng Niu
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - James D. Eudy
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Austin E. Barry
- Division of Allergy and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Todd A. Wyatt
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, United States of America
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
- Department of Environmental, Agricultural & Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States of America
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Debra J. Romberger
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, United States of America
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Michael J. Duryee
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, United States of America
- Division of Rheumatology & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Bryant R. England
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, United States of America
- Division of Rheumatology & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Jill A. Poole
- Division of Allergy and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| |
Collapse
|
48
|
Rebuli ME, Glista-Baker E, Hoffman JR, Duffney PF, Robinette C, Speen AM, Pawlak EA, Dhingra R, Noah TL, Jaspers I. Electronic-Cigarette Use Alters Nasal Mucosal Immune Response to Live-attenuated Influenza Virus. A Clinical Trial. Am J Respir Cell Mol Biol 2021; 64:126-137. [PMID: 33095645 PMCID: PMC7781000 DOI: 10.1165/rcmb.2020-0164oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inhalation of tobacco smoke has been linked to increased risk of viral infection, such as influenza. Inhalation of electronic-cigarette (e-cigarette) aerosol has also recently been linked to immune suppression within the respiratory tract, specifically the nasal mucosa. We propose that changes in the nasal mucosal immune response modify antiviral host-defense responses in e-cigarette users. Nonsmokers, cigarette smokers, and e-cigarette users were inoculated with live-attenuated influenza virus (LAIV) to safely examine the innate immune response to influenza infection. Before and after LAIV inoculation, we collected nasal epithelial-lining fluid, nasal lavage fluid, nasal-scrape biopsy specimens, urine, and blood. Endpoints examined include cytokines and chemokines, influenza-specific IgA, immune-gene expression, and markers of viral load. Statistical analysis included primary comparisons of cigarette and e-cigarette groups with nonsmokers, as well as secondary analysis of demographic factors as potential modifiers. Markers of viral load did not differ among the three groups. Nasal-lavage-fluid anti-LAIV IgA levels increased in nonsmokers after LAIV inoculation but did not increase in e-cigarette users and cigarette smokers. LAIV-induced gene-expression changes in nasal biopsy specimens differed in cigarette smokers and e-cigarette users as compared with nonsmokers, with a greater number of genes changed in e-cigarette users, mostly resulting in decreased expression. The top downregulated genes in cigarette smokers were SMPD3, NOS2A, and KLRB1, and the top downregulated genes in e-cigarette users were MR1, NT5E, and HRAS. Similarly, LAIV-induced cytokine levels in nasal epithelial-lining fluid differed among the three groups, including decreased antiviral host-defense mediators (IFNγ, IL6, and IL12p40). We also detected that sex interacted with tobacco-product exposure to modify LAIV-induced immune-gene expression. Our results demonstrate that e-cigarette use altered nasal LAIV-induced immune responses, including gene expression, cytokine and chemokine release, and LAIV-specific IgA levels. Together, these data suggest that e-cigarette use induces changes in the nasal mucosa that are consistent with the potential for altered respiratory antiviral host-defense function. Clinical trial registered with www.clinicaltrials.gov (NCT 02019745).
Collapse
Affiliation(s)
- Meghan E Rebuli
- Curriculum in Toxicology and Environmental Medicine.,Center for Environmental Medicine, Asthma and Lung Biology, and.,Department of Pediatrics, School of Medicine
| | | | - Jessica R Hoffman
- Curriculum for the Environment and Ecology, College of Arts and Sciences
| | | | | | - Adam M Speen
- Curriculum in Toxicology and Environmental Medicine
| | - Erica A Pawlak
- Center for Environmental Medicine, Asthma and Lung Biology, and
| | - Radhika Dhingra
- Institute for Environmental Health Solutions, and.,Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Terry L Noah
- Center for Environmental Medicine, Asthma and Lung Biology, and.,Department of Pediatrics, School of Medicine
| | - Ilona Jaspers
- Curriculum in Toxicology and Environmental Medicine.,Center for Environmental Medicine, Asthma and Lung Biology, and.,Department of Pediatrics, School of Medicine.,Institute for Environmental Health Solutions, and
| |
Collapse
|
49
|
Gomez-Muñoz L, Perna-Barrull D, Villalba A, Rodriguez-Fernandez S, Ampudia RM, Teniente-Serra A, Vazquez F, Murillo M, Perez J, Corripio R, Bel J, Vives-Pi M. NK Cell Subsets Changes in Partial Remission and Early Stages of Pediatric Type 1 Diabetes. Front Immunol 2021; 11:611522. [PMID: 33569058 PMCID: PMC7869615 DOI: 10.3389/fimmu.2020.611522] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic metabolic disease characterized by the autoimmune destruction of β-cells in the pancreatic islets. T1D is preceded by islet-specific inflammation led by several immune cells. Among them, natural killer (NK) cells are emerging as important players in T1D development. Human NK cells are characterized by CD56 and CD16 expression, which allows classifying NK cells into four subsets: 1) CD56dimCD16+ or effector NK cells (NKeff); 2) CD56brightCD16- or regulatory NK cells (NKreg); 3) intermediate CD56brightCD16+ NK cells; and 4) CD56dimCD16- NK cells, whose function is not well determined. Since many studies have shown that T1D progression is associated with changes in various immune cell types, we hypothesize that the kinetics of NK cell subsets in the blood could correlate with different stages of T1D. To that aim, pediatric patients newly diagnosed with T1D were recruited, and peripheral NK cell subsets were analyzed by flow cytometry at several disease checkpoints: disease onset, partial remission (PR), 8 months (for non-remitters), and 12 months of progression. Our results showed that total NK cells and their four subsets are altered at the early stages of T1D. A decrease in the counts and percentage of total NK cells and NKeff cells at the different disease stages was found when compared to controls. These results suggest the extravasation of these cells into the islets at disease onset, which is maintained throughout the follow-up. By contrast, NKreg cells increased during the early stages after T1D onset, and both intermediate NK cells and CD56dimCD16- NK cells diminished at the PR stage, which might reflect the immunoregulatory attempts and could be candidate biomarkers for this stage. Also, CD56dimCD16- NK cells increased during T1D progression. Finally, changes in CD16 expression were identified in the different T1D stages, highlighting a CD16 expression reduction in total NK cells and NKeff cells 1 year after diagnosis. That may reflect a state of exhaustion after multiple cell-to-cell interactions. Altogether, our preliminary data provide a longitudinal picture of peripheral NK cell subpopulations during the different T1D stages, which could be potential candidate biomarkers indicators of disease progression.
Collapse
Affiliation(s)
- Laia Gomez-Muñoz
- Immunology Service, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - David Perna-Barrull
- Immunology Service, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Adrian Villalba
- Immunology Service, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Silvia Rodriguez-Fernandez
- Immunology Service, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Rosa-Maria Ampudia
- Immunology Service, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Aina Teniente-Serra
- Immunology Service, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Federico Vazquez
- Endocrinology Service, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Marta Murillo
- Pediatrics Service, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Jacobo Perez
- Department of Pediatric Endocrine, Parc Tauli Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autonoma de Barcelona, Sabadell, Spain
| | - Raquel Corripio
- Department of Pediatric Endocrine, Parc Tauli Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autonoma de Barcelona, Sabadell, Spain
| | - Joan Bel
- Pediatrics Service, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Marta Vives-Pi
- Immunology Service, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| |
Collapse
|
50
|
Gao ZW, Wang X, Zhang HZ, Lin F, Liu C, Dong K. The roles of adenosine deaminase in autoimmune diseases. Autoimmun Rev 2020; 20:102709. [PMID: 33197575 DOI: 10.1016/j.autrev.2020.102709] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Autoimmune diseases patients are characterized by the autoimmune disorders, whose immune system can't distinguish between auto- and foreign- antigens. Thus, Immune homeostasis disorder is the key factor for autoimmune diseases development. Adenosine deaminase (ADA) is the degrading enzyme for an immunosuppressive signal - adenosine, and play an important role in immune homeostasis regulation. Increasing evidences have shown that ADA is involved in various autoimmune diseases. ADA activity were changed in multiple autoimmune diseases patients and could be served as a biomarker for clinical diagnosis. In this study, we analyze the change of ADA activity in patients with autoimmune diseases, and we underline its potential diagnostic value for autoimmune diseases patients.
Collapse
Affiliation(s)
- Zhao-Wei Gao
- Department of Clinical Diagnose, Tangdu Hospital, Airforce military medical university, Xi'an City, Shannxi Province, China
| | - Xi Wang
- Department of Clinical Diagnose, Tangdu Hospital, Airforce military medical university, Xi'an City, Shannxi Province, China
| | - Hui-Zhong Zhang
- Department of Clinical Diagnose, Tangdu Hospital, Airforce military medical university, Xi'an City, Shannxi Province, China
| | - Fang Lin
- Department of Clinical Diagnose, Tangdu Hospital, Airforce military medical university, Xi'an City, Shannxi Province, China
| | - Chong Liu
- Department of Clinical Diagnose, Tangdu Hospital, Airforce military medical university, Xi'an City, Shannxi Province, China
| | - Ke Dong
- Department of Clinical Diagnose, Tangdu Hospital, Airforce military medical university, Xi'an City, Shannxi Province, China.
| |
Collapse
|