1
|
Non-hippo kinases: indispensable roles in YAP/TAZ signaling and implications in cancer therapy. Mol Biol Rep 2023; 50:4565-4578. [PMID: 36877351 DOI: 10.1007/s11033-023-08329-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/09/2023] [Indexed: 03/07/2023]
Abstract
The transcriptional co-activators Yes-associated protein (YAP) and PDZ-binding domain (TAZ) are the known downstream effectors of the Hippo kinase cascade. YAP/TAZ have been shown to play important roles in cellular growth and differentiation, tissue development and carcinogenesis. Recent studies have found that, in addition to the Hippo kinase cascade, multiple non-Hippo kinases also regulate the YAP/TAZ cellular signaling and produce important effects on cellular functions, particularly on tumorigenesis and progression. In this article, we will review the multifaceted regulation of the YAP/TAZ signaling by the non-Hippo kinases and discuss the potential application of the non-Hippo kinase-regulated YAP/TAZ signaling for cancer therapy.
Collapse
|
2
|
The AMPK-related kinase NUAK2 suppresses glutathione peroxidase 4 expression and promotes ferroptotic cell death in breast cancer cells. Cell Death Dis 2022; 8:253. [PMID: 35523770 PMCID: PMC9076840 DOI: 10.1038/s41420-022-01044-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022]
Abstract
Ferroptosis is a caspase-independent form of regulated cell death strongly linked to the accumulation of reactive lipid hydroperoxides. Lipid hydroperoxides are neutralized in cells by glutathione peroxidase 4 (GPX4) and inhibitors of GPX4 are potent ferroptosis inducers with therapeutic potential in cancer. Here we report that siRNA-mediated silencing of the AMPK-related kinase NUAK2 suppresses cell death by small-molecule inducers of ferroptosis but not apoptosis. Mechanistically we find that NUAK2 suppresses the expression of GPX4 at the RNA level and enhances ferroptosis triggered by GPX4 inhibitors in a manner independent of its kinase activity. NUAK2 is amplified along with MDM4 in a subset of breast cancers, particularly the claudin-low subset, suggesting that this may predict vulnerability to GPX4 inhibitors. These findings identify a novel pathway regulating GPX4 expression as well as ferroptotic sensitivity with potential as a biomarker of breast cancer patients that might respond to GPX4 inhibition as a therapeutic strategy.
Collapse
|
3
|
van de Vis RAJ, Moustakas A, van der Heide LP. NUAK1 and NUAK2 Fine-Tune TGF-β Signaling. Cancers (Basel) 2021; 13:cancers13133377. [PMID: 34282782 PMCID: PMC8268639 DOI: 10.3390/cancers13133377] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 01/13/2023] Open
Abstract
Simple Summary TGF-β is a growth factor implicated in a plethora of processes and malignancies, which include cancer and fibrosis. Via binding to its receptor, TGF-β activates a complex intracellular signal transduction pathway, which is controlled by many forms of positive as well as negative feedback. The integrated sum of this feedback determines the outcome and cellular response to TGF-β. In this review, we discuss the role of NUAK1 and NUAK2, a subgroup of the 5′AMP-activated protein kinase family, in providing feedback on intracellular TGF-β signaling. In addition, we discuss how NUAKs mechanistically augment or attenuate the TGF-β response to steer the cell towards a specific output. Understanding the role of NUAKs may aid in developing specific therapeutic agents to combat TGF-β-dependent disease. Abstract Transforming growth factor-β (TGF-β) signaling plays a key role in governing various cellular processes, extending from cell proliferation and apoptosis to differentiation and migration. Due to this extensive involvement in the regulation of cellular function, aberrant TGF-β signaling is frequently implicated in the formation and progression of tumors. Therefore, a full understanding of the mechanisms of TGF-β signaling and its key components will provide valuable insights into how this intricate signaling cascade can shift towards a detrimental course. In this review, we discuss the interplay between TGF-β signaling and the AMP-activated protein kinase (AMPK)-related NUAK kinase family. We highlight the function and regulation of these kinases with focus on the pivotal role NUAK1 and NUAK2 play in regulating TGF-β signaling. Specifically, TGF-β induces the expression of NUAK1 and NUAK2 that regulates TGF-β signaling output in an opposite manner. Besides the focus on the TGF-β pathway, we also present a broader perspective on the expression and signaling interactions of the NUAK kinases to outline the broader functions of these protein kinases.
Collapse
Affiliation(s)
- Reinofke A. J. van de Vis
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-75123 Uppsala, Sweden;
| | - Lars P. van der Heide
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
- Correspondence: ; Tel.: +31-20-5257061
| |
Collapse
|
4
|
Faisal M, Kim JH, Yoo KH, Roh EJ, Hong SS, Lee SH. Development and Therapeutic Potential of NUAKs Inhibitors. J Med Chem 2020; 64:2-25. [PMID: 33356242 DOI: 10.1021/acs.jmedchem.0c00533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
NUAK isoforms, NUAK1 (ARK5) and NUAK2 (SNARK), are important members of the AMPK family of protein kinases. They are involved in a broad spectrum of physiological and cellular events, and sometimes their biological roles overlap. NUAK isoform dysregulation is associated with numerous pathological disorders, including neurodegeneration, metastatic cancer, and diabetes. Therefore, they are promising therapeutic targets in metabolic diseases and cancers; consequently, various NUAK-targeted inhibitors have been disclosed. The first part of this review comprises a brief discussion of the homology, expression, structure, and characteristics of NUAK isoforms. The second part focuses on NUAK isoforms' involvement in crucial biological operations, including mechanistic findings, highlighting how their abnormal functioning contributes to disease progression and quality of life. The third part summarizes the key findings and applications of targeting NUAK isoforms for treating multiple cancers and neurodegenerative disorders. The final part systematically presents a critical review and analysis of the literature on NUAK isoform inhibitions through small molecules.
Collapse
Affiliation(s)
- Muhammad Faisal
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jae Ho Kim
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Kyung Ho Yoo
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Eun Joo Roh
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea.,Chemical Kinomics Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Soon Sun Hong
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
| | - So Ha Lee
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
5
|
Brooks D, Naeem F, Stetsiv M, Goetting SC, Bawa S, Green N, Clark C, Bashirullah A, Geisbrecht ER. Drosophila NUAK functions with Starvin/BAG3 in autophagic protein turnover. PLoS Genet 2020; 16:e1008700. [PMID: 32320396 PMCID: PMC7176095 DOI: 10.1371/journal.pgen.1008700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/28/2020] [Indexed: 11/18/2022] Open
Abstract
The inability to remove protein aggregates in post-mitotic cells such as muscles or neurons is a cellular hallmark of aging cells and is a key factor in the initiation and progression of protein misfolding diseases. While protein aggregate disorders share common features, the molecular level events that culminate in abnormal protein accumulation cannot be explained by a single mechanism. Here we show that loss of the serine/threonine kinase NUAK causes cellular degeneration resulting from the incomplete clearance of protein aggregates in Drosophila larval muscles. In NUAK mutant muscles, regions that lack the myofibrillar proteins F-actin and Myosin heavy chain (MHC) instead contain damaged organelles and the accumulation of select proteins, including Filamin (Fil) and CryAB. NUAK biochemically and genetically interacts with Drosophila Starvin (Stv), the ortholog of mammalian Bcl-2-associated athanogene 3 (BAG3). Consistent with a known role for the co-chaperone BAG3 and the Heat shock cognate 71 kDa (HSC70)/HSPA8 ATPase in the autophagic clearance of proteins, RNA interference (RNAi) of Drosophila Stv, Hsc70-4, or autophagy-related 8a (Atg8a) all exhibit muscle degeneration and muscle contraction defects that phenocopy NUAK mutants. We further demonstrate that Fil is a target of NUAK kinase activity and abnormally accumulates upon loss of the BAG3-Hsc70-4 complex. In addition, Ubiquitin (Ub), ref(2)p/p62, and Atg8a are increased in regions of protein aggregation, consistent with a block in autophagy upon loss of NUAK. Collectively, our results establish a novel role for NUAK with the Stv-Hsc70-4 complex in the autophagic clearance of proteins that may eventually lead to treatment options for protein aggregate diseases.
Collapse
Affiliation(s)
- David Brooks
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States of America
| | - Fawwaz Naeem
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States of America
| | - Marta Stetsiv
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States of America
| | - Samantha C Goetting
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States of America
| | - Simranjot Bawa
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States of America
| | - Nicole Green
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States of America
| | - Cheryl Clark
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States of America
| | - Arash Bashirullah
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Erika R Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States of America
| |
Collapse
|
6
|
NUAK2 localization in normal skin and its expression in a variety of skin tumors with YAP. J Dermatol Sci 2020; 97:143-151. [PMID: 32001115 DOI: 10.1016/j.jdermsci.2020.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/29/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND NUAK2 is a critical gene that participates in the carcinogenesis of various types of cancers including melanomas. However, the expression patterns of NUAK2 in normal skin and in various types of skin tumors have not been fully elucidated to date. OBJECTIVES To elucidate the distribution and localization of NUAK2 expression in normal skin, and characterize the expression patterns of NUAK2 and YAP in various types of skin tumors. METHODS In this study, we characterized the expression of NUAK2 in tissues by developing a novel NUAK2-specific monoclonal antibody and using that to determine NUAK2 expression patterns in normal skin and in 155 cases of various types of skin tumors, including extramammary Paget's disease (EMPD), squamous cell carcinoma (SCC), Bowen's disease (BD), actinic keratosis (AK), basal cell carcinoma (BCC) and angiosarcoma (AS). Further, we analyzed the expression patterns of YAP and p-Akt in those tumors. RESULTS Our analyses revealed that NUAK2 is expressed at high frequencies in EMPD, SCC, BD, AK, BCC and AS. The expression of p-Akt was positively correlated with tumor size in EMPD (P = 0.001). Importantly, the expression of NUAK2 was significantly correlated with YAP in SCC (P = 0.012) and in BD (P = 0.009). CONCLUSIONS Our results suggest that the YAP-NUAK2 axis has critical importance in the tumorigenesis of SCC and BD, and that therapeutic modalities targeting the YAP-NUAK2 axis may be an effective approach against skin tumors including SCC and BD.
Collapse
|
7
|
Kolliopoulos C, Raja E, Razmara M, Heldin P, Heldin CH, Moustakas A, van der Heide LP. Transforming growth factor β (TGFβ) induces NUAK kinase expression to fine-tune its signaling output. J Biol Chem 2019; 294:4119-4136. [PMID: 30622137 PMCID: PMC6422081 DOI: 10.1074/jbc.ra118.004984] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/22/2018] [Indexed: 12/24/2022] Open
Abstract
TGFβ signaling via SMAD proteins and protein kinase pathways up- or down-regulates the expression of many genes and thus affects physiological processes, such as differentiation, migration, cell cycle arrest, and apoptosis, during developmental or adult tissue homeostasis. We here report that NUAK family kinase 1 (NUAK1) and NUAK2 are two TGFβ target genes. NUAK1/2 belong to the AMP-activated protein kinase (AMPK) family, whose members control central and protein metabolism, polarity, and overall cellular homeostasis. We found that TGFβ-mediated transcriptional induction of NUAK1 and NUAK2 requires SMAD family members 2, 3, and 4 (SMAD2/3/4) and mitogen-activated protein kinase (MAPK) activities, which provided immediate and early signals for the transient expression of these two kinases. Genomic mapping identified an enhancer element within the first intron of the NUAK2 gene that can recruit SMAD proteins, which, when cloned, could confer induction by TGFβ. Furthermore, NUAK2 formed protein complexes with SMAD3 and the TGFβ type I receptor. Functionally, NUAK1 suppressed and NUAK2 induced TGFβ signaling. This was evident during TGFβ-induced epithelial cytostasis, mesenchymal differentiation, and myofibroblast contractility, in which NUAK1 or NUAK2 silencing enhanced or inhibited these responses, respectively. In conclusion, we have identified a bifurcating loop during TGFβ signaling, whereby transcriptional induction of NUAK1 serves as a negative checkpoint and NUAK2 induction positively contributes to signaling and terminal differentiation responses to TGFβ activity.
Collapse
Affiliation(s)
- Constantinos Kolliopoulos
- From the Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582 Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden and.,the Ludwig Institute for Cancer Research, Science for Life Laboratory, Box 595 Biomedical Center, Uppsala University, 751 24 Uppsala, Sweden
| | - Erna Raja
- the Ludwig Institute for Cancer Research, Science for Life Laboratory, Box 595 Biomedical Center, Uppsala University, 751 24 Uppsala, Sweden
| | - Masoud Razmara
- the Ludwig Institute for Cancer Research, Science for Life Laboratory, Box 595 Biomedical Center, Uppsala University, 751 24 Uppsala, Sweden
| | - Paraskevi Heldin
- From the Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582 Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden and.,the Ludwig Institute for Cancer Research, Science for Life Laboratory, Box 595 Biomedical Center, Uppsala University, 751 24 Uppsala, Sweden
| | - Carl-Henrik Heldin
- From the Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582 Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden and.,the Ludwig Institute for Cancer Research, Science for Life Laboratory, Box 595 Biomedical Center, Uppsala University, 751 24 Uppsala, Sweden
| | - Aristidis Moustakas
- From the Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582 Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden and .,the Ludwig Institute for Cancer Research, Science for Life Laboratory, Box 595 Biomedical Center, Uppsala University, 751 24 Uppsala, Sweden
| | - Lars P van der Heide
- the Ludwig Institute for Cancer Research, Science for Life Laboratory, Box 595 Biomedical Center, Uppsala University, 751 24 Uppsala, Sweden
| |
Collapse
|
8
|
NUAK2 is a critical YAP target in liver cancer. Nat Commun 2018; 9:4834. [PMID: 30446657 PMCID: PMC6240092 DOI: 10.1038/s41467-018-07394-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023] Open
Abstract
The Hippo-YAP signaling pathway is a critical regulator of proliferation, apoptosis, and cell fate. The main downstream effector of this pathway, YAP, has been shown to be misregulated in human cancer and has emerged as an attractive target for therapeutics. A significant insufficiency in our understanding of the pathway is the identity of transcriptional targets of YAP that drive its potent growth phenotypes. Here, using liver cancer as a model, we identify NUAK2 as an essential mediator of YAP-driven hepatomegaly and tumorigenesis in vivo. By evaluating several human cancer cell lines we determine that NUAK2 is selectively required for YAP-driven growth. Mechanistically, we found that NUAK2 participates in a feedback loop to maximize YAP activity via promotion of actin polymerization and myosin activity. Additionally, pharmacological inactivation of NUAK2 suppresses YAP-dependent cancer cell proliferation and liver overgrowth. Importantly, our work here identifies a specific, potent, and actionable target for YAP-driven malignancies. Hippo-YAP pathway plays an important role in cancers; however the in vivo relevance of YAP/TAZ target genes is unclear. Here, the authors show that NUAK2 is a target of YAP and participates in a feedback loop to maximize YAP activity. Inhibition of NUAK2 suppresses YAP-driven hepatomegaly and liver cancer growth, offering a new target for cancer therapy.
Collapse
|
9
|
Sun XL, Lessard SJ, An D, Koh HJ, Esumi H, Hirshman MF, Goodyear LJ. Sucrose nonfermenting AMPK-related kinase (SNARK) regulates exercise-stimulated and ischemia-stimulated glucose transport in the heart. J Cell Biochem 2018; 120:685-696. [PMID: 30256437 DOI: 10.1002/jcb.27425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/12/2018] [Indexed: 01/15/2023]
Abstract
The signaling mechanisms mediating myocardial glucose transport are not fully understood. Sucrose nonfermenting AMP-activated protein kinase (AMPK)-related kinase (SNARK) is an AMPK-related protein kinase that is expressed in the heart and has been implicated in contraction-stimulated glucose transport in mouse skeletal muscle. We first determined if SNARK is phosphorylated on Thr208 , a site critical for SNARK activity. Mice were treated with exercise, ischemia, submaximal insulin, or maximal insulin. Treadmill exercise slightly, but significantly increased SNARK Thr208 phosphorylation. Ischemia also increased SNARK Thr208 phosphorylation, but there was no effect of submaximal or maximal insulin. HL1 cardiomyocytes were used to overexpress wild-type (WT) SNARK and to knockdown endogenous SNARK. Overexpression of WT SNARK had no effect on ischemia-stimulated glucose transport; however, SNARK knockdown significantly decreased ischemia-stimulated glucose transport. SNARK overexpression or knockdown did not alter insulin-stimulated glucose transport or glycogen concentrations. To study SNARK function in vivo, SNARK heterozygous knockout mice (SNARK+/- ) and WT littermates performed treadmill exercise. Exercise-stimulated glucose transport was decreased by ~50% in hearts from SNARK+/- mice. In summary, exercise and ischemia increase SNARK Thr208 phosphorylation in the heart and SNARK regulates exercise-stimulated and ischemia-stimulated glucose transport. SNARK is a novel mediator of insulin-independent glucose transport in the heart.
Collapse
Affiliation(s)
- Xiang-Lan Sun
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Integrative Physiology and Metabolism Section, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Sarah J Lessard
- Integrative Physiology and Metabolism Section, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Ding An
- Integrative Physiology and Metabolism Section, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Ho-Jin Koh
- Integrative Physiology and Metabolism Section, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Hiroyasu Esumi
- Cancer Physiology Project, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Michael F Hirshman
- Integrative Physiology and Metabolism Section, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Laurie J Goodyear
- Integrative Physiology and Metabolism Section, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
Schiller NR, Duchesneau CD, Lane LS, Reedy AR, Manzon ER, Hoppe PE. The Role of the UNC-82 Protein Kinase in Organizing Myosin Filaments in Striated Muscle of Caenorhabditis elegans. Genetics 2017; 205:1195-1213. [PMID: 28040740 PMCID: PMC5340333 DOI: 10.1534/genetics.116.193029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/25/2016] [Indexed: 11/18/2022] Open
Abstract
We study the mechanisms that guide the formation and maintenance of the highly ordered actin-myosin cytoskeleton in striated muscle. The UNC-82 kinase of Caenorhabditis elegans is orthologous to mammalian kinases ARK5/NUAK1 and SNARK/NUAK2. UNC-82 localizes to the M-line, and is required for proper organization of thick filaments, but its substrate and mechanism of action are unknown. Antibody staining of three mutants with missense mutations in the UNC-82 catalytic domain revealed muscle structure that is less disorganized than in the null unc-82(0), but contained distinctive ectopic accumulations not found in unc-82(0) These accumulations contain paramyosin and myosin B, but lack myosin A and myosin A-associated proteins, as well as proteins of the integrin-associated complex. Fluorescently tagged missense mutant protein UNC-82 E424K localized normally in wild type; however, in unc-82(0), the tagged protein was found in the ectopic accumulations, which we also show to label with recently synthesized paramyosin. Recruitment of wild-type UNC-82::GFP to aggregates of differing protein composition in five muscle-affecting mutants revealed that colocalization of UNC-82 and paramyosin does not require UNC-96, UNC-98/ZnF, UNC-89/obscurin, CSN-5, myosin A, or myosin B individually. Dosage effects in paramyosin mutants suggest that UNC-82 acts as part of a complex, in which its stoichiometric relationship with paramyosin is critical. UNC-82 dosage affects muscle organization in the absence of paramyosin, perhaps through myosin B. We present evidence that the interaction of UNC-98/ZnF with myosin A is independent of UNC-82, and that UNC-82 acts upstream of UNC-98/ZnF in a pathway that organizes paramyosin during thick filament assembly.
Collapse
Affiliation(s)
- NaTasha R Schiller
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410
| | | | - Latrisha S Lane
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410
| | - April R Reedy
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410
| | - Emily R Manzon
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410
| | - Pamela E Hoppe
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410
| |
Collapse
|
11
|
Lessard SJ, Rivas DA, So K, Koh HJ, Queiroz AL, Hirshman MF, Fielding RA, Goodyear LJ. The AMPK-related kinase SNARK regulates muscle mass and myocyte survival. J Clin Invest 2016; 126:560-70. [PMID: 26690705 DOI: 10.1172/jci79197] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/12/2015] [Indexed: 12/25/2022] Open
Abstract
The maintenance of skeletal muscle mass is critical for sustaining health; however, the mechanisms responsible for muscle loss with aging and chronic diseases, such as diabetes and obesity, are poorly understood. We found that expression of a member of the AMPK-related kinase family, the SNF1-AMPK-related kinase (SNARK, also known as NUAK2), increased with muscle cell differentiation. SNARK expression increased in skeletal muscles from young mice exposed to metabolic stress and in muscles from healthy older human subjects. The regulation of SNARK expression in muscle with differentiation and physiological stress suggests that SNARK may function in the maintenance of muscle mass. Consistent with this hypothesis, decreased endogenous SNARK expression (using siRNA) in cultured muscle cells resulted in increased apoptosis and decreased cell survival under conditions of metabolic stress. Likewise, muscle-specific transgenic animals expressing a SNARK dominant-negative inactive mutant (SDN) had increased myonuclear apoptosis and activation of apoptotic mediators in muscle. Moreover, animals expressing SDN had severe, age-accelerated muscle atrophy and increased adiposity, consistent with sarcopenic obesity. Reduced SNARK activity, in vivo and in vitro, caused downregulation of the Rho kinase signaling pathway, a key mediator of cell survival. These findings reveal a critical role for SNARK in myocyte survival and the maintenance of muscle mass with age.
Collapse
|
12
|
Monteverde T, Muthalagu N, Port J, Murphy DJ. Evidence of cancer-promoting roles for AMPK and related kinases. FEBS J 2015; 282:4658-71. [PMID: 26426570 DOI: 10.1111/febs.13534] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/16/2015] [Accepted: 09/25/2015] [Indexed: 12/14/2022]
Abstract
The discovery that the 5'AMP-activated protein kinase (AMPK) serves to link the tumour suppressors LKB1 and the tuberous sclerosis complex and functions to slow macromolecular synthesis through attenuation of the mechanistic target of rapamycin complex 1 revealed a role for AMPK in tumour suppression. On the other hand, the well-recognized role of AMPK in maintaining ATP homeostasis, through suppression of anabolism and promotion of catabolism, as well as the role of AMPK in neutralizing reactive oxygen species, via maintenance of NADPH-dependent reductive capacity, point to tumour-protective roles in the context of metabolic stress, which is a key feature of many solid tumours. A growing number of studies thus suggest a duality of functions for AMPK that are either pro- or anti-cancer, depending upon context. Importantly, AMPK is composed of three subunits, and multiple isoforms exist for all three, allowing for different permutations to assemble and the potential for specific AMPK complexes to regulate distinct cellular processes. Moreover, certain subunits of the AMPK complex are frequently overexpressed in a spectrum of human cancer types, suggesting an outright oncogenic function for specific AMPK complexes. Adding complexity to this picture, the catalytic AMPK alpha subunits belong to a family of 14 kinases that can all be activated by LKB1 and studies are beginning to reveal a similar duality of roles in cancer for other members of the AMPK-related kinase family.
Collapse
Affiliation(s)
| | | | - Jennifer Port
- Institute of Cancer Sciences, University of Glasgow, UK
| | - Daniel J Murphy
- Institute of Cancer Sciences, University of Glasgow, UK.,CRUK Beatson Institute, Glasgow, UK
| |
Collapse
|
13
|
Zineldeen DH, Keshk WA, Ghazy AH, El-Barbary AM. Sucrose non-fermenting AMPK related kinase/Pentraxin 3 and DNA damage axis: a gateway to cardiovascular disease in systemic lupus erythematosus among Egyptian patients. Ann Clin Biochem 2015; 53:240-51. [DOI: 10.1177/0004563215578190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2015] [Indexed: 01/14/2023]
Abstract
Background Systemic lupus erythematosus is a chronic multisystemic autoimmune disease characterized by chronic inflammatory processes and failure of immune-regulatory mechanisms. Systemic lupus erythematosus is associated with increased risk for cardiovascular disease. In view of immunometabolic derangements of systemic lupus erythematosus, we investigated the roles of sucrose non-fermenting AMPK related kinase, Pentraxin 3, and DNA damage in the pathogenesis of systemic lupus erythematosus complicated with cardiovascular disease. Methods Forty systemic lupus erythematosus women with cardiovascular disease (systemic lupus erythematosus cases), 40 systemic lupus erythematosus women without cardiovascular disease, and 40 healthy controls were enrolled in this study. Demographic and clinical data were recorded. Plasma concentrations of sucrose non-fermenting AMPK related kinase and Pentraxin 3 were immunoassayed. Carotid intima media thickness, atherogenic, and DNA damage indices were also assessed. Results Plasma sucrose non-fermenting AMPK related kinase and Pentraxin 3 concentrations were increased in systemic lupus erythematosus cases with cardiovascular disease compared to systemic lupus erythematosus controls and healthy controls ( P < 0.0001). In systemic lupus erythematosus cases, there was a positive correlation between sucrose non-fermenting AMPK related kinase and Pentraxin 3 (r = 0.57, P < 0.002). Conclusions These data highlight a novel role of sucrose non-fermenting AMPK related kinase/Pentraxin 3 axis in systemic lupus erythematosus pathogenesis. Sucrose non-fermenting AMPK related kinase/Pentraxin 3 combined role in immunometabolic signaling and DNA damage response is proposed to accelerate cardiovascular complications in systemic lupus erythematosus patients.
Collapse
Affiliation(s)
- Doaa Hussein Zineldeen
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Walaa Arafa Keshk
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Amal Mohamed El-Barbary
- Department of Rheumatology & Rehabilitation, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
14
|
Recent progress on liver kinase B1 (LKB1): expression, regulation, downstream signaling and cancer suppressive function. Int J Mol Sci 2014; 15:16698-718. [PMID: 25244018 PMCID: PMC4200829 DOI: 10.3390/ijms150916698] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/12/2014] [Accepted: 08/28/2014] [Indexed: 12/15/2022] Open
Abstract
Liver kinase B1 (LKB1), known as a serine/threonine kinase, has been identified as a critical cancer suppressor in many cancer cells. It is a master upstream kinase of 13 AMP-activated protein kinase (AMPK)-related protein kinases, and possesses versatile biological functions. LKB1 gene is mutated in many cancers, and its protein can form different protein complexes with different cellular localizations in various cell types. The expression of LKB1 can be regulated through epigenetic modification, transcriptional regulation and post-translational modification. LKB1 dowcnstream pathways mainly include AMPK, microtubule affinity regulating kinase (MARK), salt-inducible kinase (SIK), sucrose non-fermenting protein-related kinase (SNRK) and brain selective kinase (BRSK) signalings, etc. This review, therefore, mainly discusses recent studies about the expression, regulation, downstream signaling and cancer suppressive function of LKB1, which can be helpful for better understanding of this molecular and its significance in cancers.
Collapse
|
15
|
Bravo-Nuevo A, Marcy A, Huang M, Kappler F, Mulgrew J, Laury-Kleintop L, Reichman M, Tobia A, Prendergast GC. Meglumine exerts protective effects against features of metabolic syndrome and type II diabetes. PLoS One 2014; 9:e90031. [PMID: 24587200 PMCID: PMC3937407 DOI: 10.1371/journal.pone.0090031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 01/30/2014] [Indexed: 11/19/2022] Open
Abstract
Metabolic syndrome, diabetes and diabetes complications pose a growing medical challenge worldwide, accentuating the need of safe and effective strategies for their clinical management. Here we present preclinical evidence that the sorbitol derivative meglumine (N-methyl-D-glucamine) can safely protect against several features of metabolic syndrome and diabetes, as well as elicit enhancement in muscle stamina. Meglumine is a compound routinely used as an approved excipient to improve drug absorption that has not been ascribed any direct biological effects in vivo. Normal mice (SV129) administered 18 mM meglumine orally for six weeks did not display any gastrointestinal or other observable adverse effects, but had a marked effect on enhancing muscle stamina and at longer times in limiting weight gain. In the established KK.Cg-Ay/J model of non-insulin dependent diabetes, oral administration of meglumine significantly improved glycemic control and significantly lowered levels of plasma and liver triglycerides. Compared to untreated control animals, meglumine reduced apparent diabetic nephropathy. Sorbitol can improve blood glucose uptake by liver and muscle in a manner associated with upregulation of the AMPK-related enzyme SNARK, but with undesirable gastrointestinal side effects not seen with meglumine. In murine myoblasts, we found that meglumine increased steady-state SNARK levels in a dose-dependent manner more potently than sorbitol. Taken together, these findings provide support for the clinical evaluation of meglumine as a low-cost, safe supplement offering the potential to improve muscle function, limit metabolic syndrome and reduce diabetic complications.
Collapse
Affiliation(s)
- Arturo Bravo-Nuevo
- Lankenau Institute for Medical Research (LIMR), Wynnewood, Pennsylvania, United States of America
- * E-mail:
| | - Alice Marcy
- Dynamis Pharmaceuticals Co. Inc., Jenkintown, Pennsylvania, United States of America
| | - Minzhou Huang
- Lankenau Institute for Medical Research (LIMR), Wynnewood, Pennsylvania, United States of America
| | - Frank Kappler
- Dynamis Pharmaceuticals Co. Inc., Jenkintown, Pennsylvania, United States of America
| | - Jennifer Mulgrew
- Lankenau Institute for Medical Research (LIMR), Wynnewood, Pennsylvania, United States of America
| | - Lisa Laury-Kleintop
- Lankenau Institute for Medical Research (LIMR), Wynnewood, Pennsylvania, United States of America
| | - Melvin Reichman
- LIMR Chemical Genomics Center Inc., Wynnewood, Pennsylvania, United States of America
| | - Annette Tobia
- Dynamis Pharmaceuticals Co. Inc., Jenkintown, Pennsylvania, United States of America
| | - George C. Prendergast
- Lankenau Institute for Medical Research (LIMR), Wynnewood, Pennsylvania, United States of America
| |
Collapse
|
16
|
Goto K, Lin W, Zhang L, Jilg N, Shao RX, Schaefer EA, Zhao H, Fusco DN, Peng LF, Kato N, Chung RT. The AMPK-related kinase SNARK regulates hepatitis C virus replication and pathogenesis through enhancement of TGF-β signaling. J Hepatol 2013; 59:942-8. [PMID: 23831117 PMCID: PMC3866804 DOI: 10.1016/j.jhep.2013.06.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 06/03/2013] [Accepted: 06/19/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) is a major cause of chronic liver disease worldwide. The biological and therapeutic importance of host cellular cofactors for viral replication has been recently appreciated. Here we examined the roles of SNF1/AMP kinase-related kinase (SNARK) in HCV replication and pathogenesis. METHODS The JFH1 infection system and the full-length HCV replicon OR6 cell line were used. Gene expression was knocked down by siRNAs. SNARK mutants were created by site-directed mutagenesis. Intracellular mRNA levels were measured by qRT-PCR. Endogenous and overexpressed proteins were detected by Western blot analysis and immunofluorescence. Transforming growth factor (TGF)-β signaling was monitored by a luciferase reporter construct. Liver biopsy samples from HCV-infected patients were analyzed for SNARK expression. RESULTS Knockdown of SNARK impaired viral replication, which was rescued by wild type SNARK but not by unphosphorylated or kinase-deficient mutants. Knockdown and overexpression studies demonstrated that SNARK promoted TGF-β signaling in a manner dependent on both its phosphorylation and kinase activity. In turn, chronic HCV replication upregulated the expression of SNARK in patients. Further, the SNARK kinase inhibitor metformin suppressed both HCV replication and SNARK-mediated enhancement of TGF-β signaling. CONCLUSIONS Thus reciprocal regulation between HCV and SNARK promotes TGF-β signaling, a major driver of hepatic fibrogenesis. These findings suggest that SNARK will be an attractive target for the design of novel host-directed antiviral and antifibrotic drugs.
Collapse
Affiliation(s)
- Kaku Goto
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA,The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan,Japan Society for the Promotion of Science, Tokyo 102-8472, Japan
| | - Wenyu Lin
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Leiliang Zhang
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nikolaus Jilg
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Run-Xuan Shao
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Esperance A.K. Schaefer
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hong Zhao
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dahlene N. Fusco
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lee F. Peng
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Naoya Kato
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Raymond T. Chung
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA,Corresponding author. Address: Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA 02114, USA. Tel.: +1 617 724 7562; fax: +1 617 643 0446. (R.T. Chung)
| |
Collapse
|
17
|
Abstract
AMP-activated protein kinase (AMPK) is a critical regulator of cellular and whole-body energy homeostasis. Twelve AMPK-related kinases (ARKs; BRSK1, BRSK2, NUAK1, NUAK2, QIK, QSK, SIK, MARK1, MARK2, MARK3, MARK4, and MELK) have been identified recently. These kinases show a similar structural organization, including an N-terminal catalytic domain, followed by a ubiquitin-associated domain and a C-terminal spacer sequence, which in some cases also contains a kinase-associated domain 1. Eleven of the ARKs are phosphorylated and activated by the master upstream kinase liver kinase B1. However, most of these ARKs are largely unknown, and the NUAK family seems to have different regulations and functions. This review contains a brief discussion of the NUAK family including the specific characteristics of NUAK1 and NUAK2.
Collapse
Affiliation(s)
- Xianglan Sun
- Department of Endocrinology Central Laboratory, Provincial Hospital affiliated to Shandong University, Jinan, China Department of Endocrinology and Metabolism, Taipei City Hospital, Ren-Ai Branch, Taipei, Taiwan Department of Dentistry, School of Dentistry, Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
18
|
Fu A, Eberhard CE, Screaton RA. Role of AMPK in pancreatic beta cell function. Mol Cell Endocrinol 2013; 366:127-34. [PMID: 22766107 DOI: 10.1016/j.mce.2012.06.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 05/08/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
Abstract
Pharmacological activation of AMP activated kinase (AMPK) by metformin has proven to be a beneficial therapeutic approach for the treatment of type II diabetes. Despite improved glucose regulation achieved by administration of small molecule activators of AMPK, the potential negative impact of enhanced AMPK activity on insulin secretion by the pancreatic beta cell is an important consideration. In this review, we discuss our current understanding of the role of AMPK in central functions of the pancreatic beta cell, including glucose-stimulated insulin secretion (GSIS), proliferation, and survival. In addition we discuss the controversy surrounding the role of AMPK in insulin secretion, underscoring the merits and caveats of methods used to date.
Collapse
Affiliation(s)
- Accalia Fu
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | | | | |
Collapse
|
19
|
Denison FC, Smith LB, Muckett PJ, O'Hara L, Carling D, Woods A. LKB1 is an essential regulator of spermatozoa release during spermiation in the mammalian testis. PLoS One 2011; 6:e28306. [PMID: 22145035 PMCID: PMC3228757 DOI: 10.1371/journal.pone.0028306] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 11/05/2011] [Indexed: 11/18/2022] Open
Abstract
LKB1 acts as a master upstream protein kinase regulating a number of kinases involved in diverse cellular functions. Recent studies have suggested a role for LKB1 in male fertility. Male mice with reduced total LKB1 expression, including the complete absence of the major splice variant in testis (LKB1(S)), are completely infertile. We sought to further characterise these mice and determine the mechanism underlying this infertility. This involved expression studies of LKB1 in developing germ cells, morphological analysis of mature spermatozoa and histological studies of both the testis and epididymis using light microscopy and transmission electron microscopy. We conclude that a defect in the release of mature spermatids from the seminiferous epithelium (spermiation) during spermatozoan development is a major cause of the infertility phenotype. We also present evidence that this is due, at least in part, to defects in the breakdown of the junctions, known as ectoplasmic specialisations, between the sertoli cells of the testis epithelium and the heads of the maturing spermatids. Overall this study uncovers a critical role for LKB1 in spermiation, a highly regulated, but poorly understood process vital for male fertility.
Collapse
Affiliation(s)
- Fiona C. Denison
- Medical Research Council's Clinical Sciences Centre, Imperial College, London, United Kingdom
| | - Lee B. Smith
- Medical Research Council's Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Phillip J. Muckett
- Medical Research Council's Clinical Sciences Centre, Imperial College, London, United Kingdom
| | - Laura O'Hara
- Medical Research Council's Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - David Carling
- Medical Research Council's Clinical Sciences Centre, Imperial College, London, United Kingdom
| | - Angela Woods
- Medical Research Council's Clinical Sciences Centre, Imperial College, London, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Namiki T, Coelho SG, Hearing VJ. NUAK2: an emerging acral melanoma oncogene. Oncotarget 2011; 2:695-704. [PMID: 21911917 PMCID: PMC3248218 DOI: 10.18632/oncotarget.325] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 09/10/2011] [Indexed: 02/04/2023] Open
Abstract
Recent technological advances in cancer genomics make it possible to dissect complicated genomic aberrations of melanomas. In particular, several specific genomic aberrations including 11q13 amplification and KIT aberrations have been identified in acral melanomas. We recently identified NUAK2 at 1q32 as a promising oncogene in acral melanomas and reported its significant roles in tumorigenesis in melanoma cells using both in vitro and in vivo analyses. NUAK2 as a member of the AMPK family has several intriguing aspects both as an oncogene and as a tumor suppressor gene. Here we review genomic aberrations of melanomas focusing on acral melanomas to emphasize the possible roles of NUAK2 in tumorigenesis in general and suggest that NUAK2 has pivotal roles in acral melanomagenesis.
Collapse
Affiliation(s)
- Takeshi Namiki
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA.
| | | | | |
Collapse
|
21
|
Alexander A, Walker CL. The role of LKB1 and AMPK in cellular responses to stress and damage. FEBS Lett 2011; 585:952-7. [PMID: 21396365 DOI: 10.1016/j.febslet.2011.03.010] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/03/2011] [Accepted: 03/04/2011] [Indexed: 01/25/2023]
Abstract
The LKB1 and AMPK proteins participate in an energy sensing cascade that responds to depletion of ATP, serving as a master regulator of metabolism that inhibits anabolic processes and stimulates catabolic processes. However in recent years, LKB1 and AMPK have been implicated in a variety of other cellular processes, both cytoplasmic and nuclear, such as control of cell polarity and regulation of gene transcription. In this review, we summarize the most recent discoveries regarding participation of LKB1 and AMPK in signaling pathways that respond to cellular stress and damage, and the relevance of this signaling for disease and therapy.
Collapse
Affiliation(s)
- Angela Alexander
- Department of Molecular Carcinogenesis, The University of Texas, MD Anderson Cancer Center, Smithville, TX 78957, United States
| | | |
Collapse
|
22
|
Dalai SK, Khoruzhenko S, Drake CG, Jie CC, Sadegh-Nasseri S. Resolution of infection promotes a state of dormancy and long survival of CD4 memory T cells. Immunol Cell Biol 2011; 89:870-81. [PMID: 21358746 PMCID: PMC3131418 DOI: 10.1038/icb.2011.2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Memory T cells survive throughout the lifetime of an individual and are protective upon recall. It is not clear how memory T cells can live so long. Here, we demonstrate that at the resolution of a viral infection, low levels of antigen are captured by B cells and presented to specific CD4+ memory T cells to render a state of unresponsiveness. We demonstrate in two systems that this process occurs naturally during the fall of antigen and is associated with a global gene expression program initiated with the clearance of antigen. Our study suggests that in the absence of antigen, a state of dormancy associated with low energy utilization and proliferation can help memory CD4+ T cells to survive nearly throughout the lifetime of mice. The dormant CD4+ memory T cells become activated by stimulatory signals generated by a subsequent infection. We propose that quiescence might be a mechanism necessary to regulate long-term survival of CD4 memory T cells and to prevent cross-reactivity to self, hence autoimmunity.
Collapse
Affiliation(s)
- Sarat K Dalai
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
23
|
Yeh ES, Yang TW, Jung JJ, Gardner HP, Cardiff RD, Chodosh LA. Hunk is required for HER2/neu-induced mammary tumorigenesis. J Clin Invest 2011; 121:866-79. [PMID: 21393859 PMCID: PMC3049391 DOI: 10.1172/jci42928] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 12/29/2010] [Indexed: 12/20/2022] Open
Abstract
Understanding the molecular pathways that contribute to the aggressive behavior of human cancers is a critical research priority. The SNF1/AMPK-related protein kinase Hunk is overexpressed in aggressive subsets of human breast, ovarian, and colon cancers. Analysis of Hunk(–/–) mice revealed that this kinase is required for metastasis of c-myc–induced mammary tumors but not c-myc–induced primary tumor formation. Similar to c-myc, amplification of the proto-oncogene HER2/neu occurs in 10%–30% of breast cancers and is associated with aggressive tumor behavior. By crossing Hunk(–/–) mice with transgenic mouse models for HER2/neu-induced mammary tumorigenesis, we report that Hunk is required for primary tumor formation induced by HER2/neu. Knockdown and reconstitution experiments in mouse and human breast cancer cell lines demonstrated that Hunk is required for maintenance of the tumorigenic phenotype in HER2/neu-transformed cells. This requirement is kinase dependent and resulted from the ability of Hunk to suppress apoptosis in association with downregulation of the tumor suppressor p27(kip1). Additionally, we find that Hunk is rapidly upregulated following HER2/neu activation in vivo and in vitro. These findings provide what we believe is the first evidence for a role for Hunk in primary tumorigenesis and cell survival and identify this kinase as an essential effector of the HER2/neu oncogenic pathway.
Collapse
Affiliation(s)
- Elizabeth S. Yeh
- Department of Cancer Biology, Department of Cell and Developmental Biology, Department of Medicine, and Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Pathology and Laboratory Medicine School of Medicine, University of California Davis Center for Comparative Medicine, UCD, Davis, California, USA
| | - Thomas W. Yang
- Department of Cancer Biology, Department of Cell and Developmental Biology, Department of Medicine, and Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Pathology and Laboratory Medicine School of Medicine, University of California Davis Center for Comparative Medicine, UCD, Davis, California, USA
| | - Jason J. Jung
- Department of Cancer Biology, Department of Cell and Developmental Biology, Department of Medicine, and Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Pathology and Laboratory Medicine School of Medicine, University of California Davis Center for Comparative Medicine, UCD, Davis, California, USA
| | - Heather P. Gardner
- Department of Cancer Biology, Department of Cell and Developmental Biology, Department of Medicine, and Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Pathology and Laboratory Medicine School of Medicine, University of California Davis Center for Comparative Medicine, UCD, Davis, California, USA
| | - Robert D. Cardiff
- Department of Cancer Biology, Department of Cell and Developmental Biology, Department of Medicine, and Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Pathology and Laboratory Medicine School of Medicine, University of California Davis Center for Comparative Medicine, UCD, Davis, California, USA
| | - Lewis A. Chodosh
- Department of Cancer Biology, Department of Cell and Developmental Biology, Department of Medicine, and Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Pathology and Laboratory Medicine School of Medicine, University of California Davis Center for Comparative Medicine, UCD, Davis, California, USA
| |
Collapse
|
24
|
Sucrose nonfermenting AMPK-related kinase (SNARK) mediates contraction-stimulated glucose transport in mouse skeletal muscle. Proc Natl Acad Sci U S A 2010; 107:15541-6. [PMID: 20713714 DOI: 10.1073/pnas.1008131107] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The signaling mechanisms that mediate the important effects of contraction to increase glucose transport in skeletal muscle are not well understood, but are known to occur through an insulin-independent mechanism. Muscle-specific knockout of LKB1, an upstream kinase for AMPK and AMPK-related protein kinases, significantly inhibited contraction-stimulated glucose transport. This finding, in conjunction with previous studies of ablated AMPKalpha2 activity showing no effect on contraction-stimulated glucose transport, suggests that one or more AMPK-related protein kinases are important for this process. Muscle contraction increased sucrose nonfermenting AMPK-related kinase (SNARK) activity, an effect blunted in the muscle-specific LKB1 knockout mice. Expression of a mutant SNARK in mouse tibialis anterior muscle impaired contraction-stimulated, but not insulin-stimulated, glucose transport. Whole-body SNARK heterozygotic knockout mice also had impaired contraction-stimulated glucose transport in skeletal muscle, and knockdown of SNARK in C2C12 muscle cells impaired sorbitol-stimulated glucose transport. SNARK is activated by muscle contraction and is a unique mediator of contraction-stimulated glucose transport in skeletal muscle.
Collapse
|
25
|
Maternal protein restriction affects gene expression profiles in the kidney at weaning with implications for the regulation of renal function and lifespan. Clin Sci (Lond) 2010; 119:373-84. [DOI: 10.1042/cs20100230] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nutritionally induced alterations in early growth can influence health and disease in later adult life. We have demonstrated previously that low birthweight resulting from maternal protein restriction during pregnancy followed by accelerated growth in rodents was associated with shortened lifespan, whereas protein restriction and slow growth during lactation increased lifespan. Thus early life events can also have a long lasting impact on longevity. In the present study, we show that long-lived PLP (postnatal low protein) mice were protected from developing albuminuria, whereas short-lived recuperated mice demonstrated an age-dependent increase in albuminuria in old age. Microarray analysis of kidneys from 21-day-old mice revealed that gene expression profiles were differentially affected depending on whether protein restriction was imposed during pregnancy or lactation. The differentially expressed genes were involved in diverse biological functions such as cytoprotective functions, vitamin D synthesis, protein homoeostasis, regulation of antioxidant enzymes and cellular senescence. Significantly, up-regulation of Hmox1 (haem oxygenase 1) in kidneys from PLP mice suggests that tissues of long-lived mice are equipped with a better cytoprotective function. In contrast, up-regulation of Nuak2 (NUAK family, SNF1-like kinase 2) and down-regulation of Lonp2 (Lon peptidase 2), Foxo3a (forkhead box O3a), Sod1 (copper/zinc superoxide dismutase) and Sesn1 (sestrin 1) in the kidneys of recuperated offspring suggest that protein homoeostasis and resistance to oxidative stress are compromised, leading to accelerated cellular senescence in these shorter-lived mice.
Collapse
|
26
|
Hoppe PE, Chau J, Flanagan KA, Reedy AR, Schriefer LA. Caenorhabditis elegans unc-82 encodes a serine/threonine kinase important for myosin filament organization in muscle during growth. Genetics 2010; 184:79-90. [PMID: 19901071 PMCID: PMC2815932 DOI: 10.1534/genetics.109.110189] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 11/01/2009] [Indexed: 11/18/2022] Open
Abstract
Mutations in the unc-82 locus of Caenorhabditis elegans were previously identified by screening for disrupted muscle cytoskeleton in otherwise apparently normal mutagenized animals. Here we demonstrate that the locus encodes a serine/threonine kinase orthologous to human ARK5/SNARK (NUAK1/NUAK2) and related to the PAR-1 and SNF1/AMP-Activated kinase (AMPK) families. The predicted 1600-amino-acid polypeptide contains an N-terminal catalytic domain and noncomplex repetitive sequence in the remainder of the molecule. Phenotypic analyses indicate that unc-82 is required for maintaining the organization of myosin filaments and internal components of the M-line during cell-shape changes. Mutants exhibit normal patterning of cytoskeletal elements during early embryogenesis. Defects in localization of thick filament and M-line components arise during embryonic elongation and become progressively more severe as development proceeds. The phenotype is independent of contractile activity, consistent with unc-82 mutations preventing proper cytoskeletal reorganization during growth, rather than undermining structural integrity of the M-line. This is the first report establishing a role for the UNC-82/ARK5/SNARK kinases in normal development. We propose that activation of UNC-82 kinase during cell elongation regulates thick filament attachment or growth, perhaps through phosphorylation of myosin and paramyosin. We speculate that regulation of myosin is an ancestral characteristic of kinases in this region of the kinome.
Collapse
Affiliation(s)
- Pamela E. Hoppe
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410 and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Johnnie Chau
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410 and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Kelly A. Flanagan
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410 and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - April R. Reedy
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410 and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Lawrence A. Schriefer
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008-5410 and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
27
|
Rune A, Osler ME, Fritz T, Zierath JR. Regulation of skeletal muscle sucrose, non-fermenting 1/AMP-activated protein kinase-related kinase (SNARK) by metabolic stress and diabetes. Diabetologia 2009; 52:2182-9. [PMID: 19652946 PMCID: PMC2744802 DOI: 10.1007/s00125-009-1465-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 06/18/2009] [Indexed: 11/28/2022]
Abstract
AIMS/HYPOTHESIS Sucrose, non-fermenting 1/AMP-activated protein kinase-related kinase (SNARK) is involved in cellular stress responses linked to obesity and type 2 diabetes. We determined the role of SNARK in response to metabolic stress and insulin action on glucose and lipid metabolism in skeletal muscle. METHODS Vastus lateralis skeletal muscle biopsies were obtained from normal glucose tolerant (n = 35) and type 2 diabetic (n = 31) men and women for SNARK expression studies. Primary myotube cultures were derived from biopsies obtained from normal glucose tolerant individuals for metabolic studies. RESULTS SNARK (also known as NUAK2) mRNA expression was unaltered between normal glucose tolerant individuals and type 2 diabetic patients. SNARK expression was increased in skeletal muscle from obese (BMI >31 kg/m(2)) normal glucose tolerant individuals and type 2 diabetic patients (1.4- and 1.4-fold, respectively, p < 0.05) vs overweight (BMI <28 kg/m(2)) normal glucose tolerant individuals and type 2 diabetic patients. SNARK mRNA was increased in myotubes exposed to palmitate (12-fold; p < 0.01), or TNF-alpha (25-fold, p < 0.05), but not to oleate, glucose or IL-6, whereas expression of the AMP-activated protein kinase alpha2 subunit was unaltered. Small interfering (si)RNA against SNARK reduced mRNA and protein in myotubes by 61% and 60%, respectively (p < 0.05). SNARK siRNA was without effect on basal or insulin-stimulated glucose uptake or lipid oxidation, and insufficient to rescue TNF-alpha- or palmitate-induced insulin resistance. CONCLUSIONS/INTERPRETATION Skeletal muscle SNARK expression is increased in human obesity, and in response to metabolic stressors, but not type 2 diabetes. Partial SNARK depletion failed to modify either glucose or lipid metabolism, or protect against TNF-alpha- or palmitate-induced insulin resistance in primary human myotubes.
Collapse
MESH Headings
- Cells, Cultured
- Diabetes Mellitus, Type 2/enzymology
- Diabetes Mellitus, Type 2/metabolism
- Female
- Gene Expression/drug effects
- Glucose/pharmacology
- Humans
- Interleukin-6/pharmacology
- Lipid Metabolism/drug effects
- Male
- Middle Aged
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Obesity/metabolism
- Oleic Acid/pharmacology
- Palmitic Acid/pharmacology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/physiology
- RNA, Small Interfering/genetics
- RNA, Small Interfering/physiology
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- A. Rune
- Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, von Eulers väg 4a, 171 77 Stockholm, Sweden
| | - M. E. Osler
- Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, von Eulers väg 4a, 171 77 Stockholm, Sweden
| | - T. Fritz
- Center of Family Medicine, Karolinska Institutet, Huddinge, Sweden
| | - J. R. Zierath
- Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, von Eulers väg 4a, 171 77 Stockholm, Sweden
| |
Collapse
|
28
|
The Snf1-related kinase, Hunk, is essential for mammary tumor metastasis. Proc Natl Acad Sci U S A 2009; 106:15855-60. [PMID: 19717424 DOI: 10.1073/pnas.0906993106] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We previously identified a SNF1/AMPK-related protein kinase, Hunk, from a mammary tumor arising in an MMTV-neu transgenic mouse. The function of this kinase is unknown. Using targeted deletion in mice, we now demonstrate that Hunk is required for the metastasis of c-myc-induced mammary tumors, but is dispensable for normal development. Reconstitution experiments revealed that Hunk is sufficient to restore the metastatic potential of Hunk-deficient tumor cells, as well as defects in migration and invasion, and does so in a manner that requires its kinase activity. Consistent with a role for this kinase in the progression of human cancers, the human homologue of Hunk is overexpressed in aggressive subsets of carcinomas of the ovary, colon, and breast. In addition, a murine gene expression signature that distinguishes Hunk-wild type from Hunk-deficient mammary tumors predicts clinical outcome in women with breast cancer in a manner consistent with the pro-metastatic function of Hunk in mice. These findings identify a direct role for Hunk kinase activity in metastasis and establish an in vivo function for this kinase.
Collapse
|
29
|
Ichinoseki-Sekine N, Naito H, Tsuchihara K, Kobayashi I, Ogura Y, Kakigi R, Kurosaka M, Fujioka R, Esumi H. Provision of a voluntary exercise environment enhances running activity and prevents obesity in Snark-deficient mice. Am J Physiol Endocrinol Metab 2009; 296:E1013-21. [PMID: 19276392 DOI: 10.1152/ajpendo.90891.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was performed to investigate the involvement of SNARK in physical activity levels in mice. To examine the acute effect of SNARK deficiency on voluntary running, Snark-deficient mice (Snark(+/-): n = 16) and their wild-type counterparts (Snark(+/+): n = 16) were assigned to sedentary or exercise (1 wk voluntary wheel running) groups. In addition, to clarify the differences in voluntary running activity and its effect between genotypes, mice (Snark(+/+): n = 16; Snark(+/-): n = 16) were also kept in individual cages with/without a running wheel for 5 mo. Unexpectedly, in both voluntary running experiments, running distances were increased in Snark(+/-) mice compared with Snark(+/+) mice. Under sedentary conditions, body and white adipose tissue weights were increased significantly in Snark(+/-) mice. However, no significant differences were observed between the two genotypes under exercise conditions, and the values were significantly less than those under sedentary conditions in the long-term experiment. In the short-term experiment, serum interleukin-6 level in exercised Snark(+/+) mice was the same as that in sedentary Snark(+/+) mice, whereas that in sedentary Snark(+/-) mice was significantly lower than in the other groups. In contrast, serum leptin level was reduced significantly in exercised Snark(+/-) mice compared with sedentary Snark(+/-) mice. The results of this study demonstrated that exposure to an environment that allows voluntary exercise promotes increased running activity and prevents obesity in Snark-deficient mice.
Collapse
|
30
|
|
31
|
Abstract
AMP-activated protein kinase (AMPK) is a key regulator of cellular and whole-body energy homeostasis. Recently, 12 AMPK-related kinases (BRSK1, BRSK2, NUAK1, NUAK2, QIK, QSK, SIK, MARK1, MARK2, MARK3, MARK4 and MELK) were identified that are closely related by sequence homology to the catalytic domain of AMPK. The protein kinase LKB1 acts as a master upstream kinase activating AMPK and 11 of the AMPK-related kinases by phosphorylation of a conserved threonine residue in their T-loop region. Further sequence analyses have identified the eight-member SNRK kinase family as distant relatives of AMPK. However, only one of these is phosphorylated and activated by LKB1. Although much is known about AMPK, many of the AMPK-related kinases remain largely uncharacterized. This review outlines the general similarities in structure and function of the AMPK-related kinases before examining the specific characteristics of each, including a brief discussion of the SNRK family.
Collapse
Affiliation(s)
- N J Bright
- Cellular Stress Group, MRC Clinical Sciences Centre, London, UK
| | | | | |
Collapse
|
32
|
Abstract
The AMP-activated serine/threonine protein kinase (AMPK) is a sensor of cellular energy status found in all eukaryotes that is activated under conditions of low intracellular ATP following stresses such as nutrient deprivation or hypoxia. In the past 5 years, work from a large number of laboratories has revealed that one of the major downstream signalling pathways regulated by AMPK is the mammalian target-of-rapamycin [mammalian target of rapamycin (mTOR) pathway]. Interestingly, like AMPK, the mTOR serine/threonine kinase plays key roles not only in growth control and cell proliferation but also in metabolism. Recent work has revealed that across eukaryotes mTOR orthologues are found in two biochemically distinct complexes and only one of those complexes (mTORC1 in mammals) is acutely sensitive to rapamycin and regulated by nutrients and AMPK. Many details of the molecular mechanism by which AMPK inhibits mTORC1 signalling have also been decoded in the past 5 years. AMPK directly phosphorylates at least two proteins to induce rapid suppression of mTORC1 activity, the TSC2 tumour suppressor and the critical mTORC1 binding subunit raptor. Here we explore the molecular connections between AMPK and mTOR signalling pathways and examine the physiological processes in which AMPK regulation of mTOR is critical for growth or metabolic control. The functional conservation of AMPK and TOR in all eukaryotes, and the sequence conservation around the AMPK phosphorylation sites in raptor across all eukaryotes examined suggest that this represents a fundamental cell growth module connecting nutrient status to the cell growth machinery. These findings have broad implications for the control of cell growth by nutrients in a number of cellular and organismal contexts.
Collapse
Affiliation(s)
- R J Shaw
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
33
|
Kuga W, Tsuchihara K, Ogura T, Kanehara S, Saito M, Suzuki A, Esumi H. Nuclear localization of SNARK; its impact on gene expression. Biochem Biophys Res Commun 2008; 377:1062-6. [PMID: 18992219 DOI: 10.1016/j.bbrc.2008.10.143] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 10/17/2008] [Indexed: 12/21/2022]
Abstract
SNARK, a member of the AMPK-related kinases, has been involved in the cellular stress responses but its precise mechanisms remain unclear. Subcellular localization of SNARK protein was identified. Unlike cytoplasmic localizing AMPKalpha, SNARK was predominantly localized in the nucleus. SNARK was constitutively distributed in the nucleus even when SNARK was activated by metabolic stimuli such as AICAR and glucose-deprivation. Conserved nuclear localization signal (NLS) was identified at the N-terminal portion ((68)KKAR(71)). Deletion and point mutation of this part resulted in the cytoplasmic translocation of mutant proteins. Furthermore, GFP fused with the SNARK fragment containing (68)KKAR(71) translocated to the nucleus. A microarray analysis revealed that the nuclear localizing SNARK altered transcriptome profiles and a considerable part of these alterations were canceled by the mutation of NLS, suggesting the ability of SNARK to modulate gene expression dependent on its nuclear localization.
Collapse
Affiliation(s)
- Wataru Kuga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Kim JH, Kim WS, Park C. SNARK, a novel downstream molecule of EBV latent membrane protein 1, is associated with resistance to cancer cell death. Leuk Lymphoma 2008; 49:1392-8. [PMID: 18452098 DOI: 10.1080/10428190802087454] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
To investigate the effect of Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) on human cancer cells, we sought to identify and analyse potential target genes that were differentially expressed in the presence and absence of LMP1. LMP1 upregulated the expression of SNARK compared with the empty vector transfected control cells, which was confirmed by reverse-transcription polymerase chain reaction. Cytotoxicity assay showed that SNARK expression increased drug resistance in response to doxorubicin (P = 0.0009), whereas knockdown of SNARK by siRNA (siSNARK) effectively inhibited LMP-1-mediated increase of cell survival (P = 0.0131). The expression of anti-apoptotic genes such as BCL6 and BIRC2 was increased by SNARK, and knockdown of these genes decreased SNARK-mediated increase of cell survival. The associations of SNARK, BCL6, and BIRC2 and the presence of EBV were also observed in T-cell lymphoma cell lines, NKL and HANK-1. These results suggest that SNARK is a downstream cellular target of LMP1 in malignant cells and can be a novel candidate for therapeutic intervention of EBV-associated cancer.
Collapse
Affiliation(s)
- Joo Hyun Kim
- Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul 135-710, Korea
| | | | | |
Collapse
|
35
|
Tsuchihara K, Ogura T, Fujioka R, Fujii S, Kuga W, Saito M, Ochiya T, Ochiai A, Esumi H. Susceptibility of Snark-deficient mice to azoxymethane-induced colorectal tumorigenesis and the formation of aberrant crypt foci. Cancer Sci 2008; 99:677-82. [PMID: 18307533 PMCID: PMC11158890 DOI: 10.1111/j.1349-7006.2008.00734.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/03/2007] [Accepted: 12/05/2007] [Indexed: 11/28/2022] Open
Abstract
SNF-1/5'-AMP-activated kinase (AMPK)-related kinase (SNARK) is a member of the AMPK-related kinases. Snark(+/-) mice exhibited mature-onset obesity and related metabolic disorders. Obesity is regarded as a risk factor for colorectal cancer. To investigate whether Snark deficiency is involved in tumorigenesis in the large intestine, obese Snark(+/-) mice were treated with a chemical carcinogen, azoxymethane (AOM). The incidences of both adenomas and aberrant crypt foci (ACF) were significantly higher in Snark(+/-) mice than in their wild-type counterparts 28 weeks after the completion of AOM treatment (10 mg/kg/week for 8 weeks). Furthermore, ACF formation was enhanced in Snark(+/-) mice treated with AOM for 2 weeks, suggesting that Snark deficiency contributed to the early phase of tumorigenesis. The total number of ACF was correlated with bodyweight in Snark(+/-) and Snark(+/+) mice, suggesting that obesity was a risk factor for colorectal tumorigenesis in this model. However, the correlation coefficient was higher in Snark(+/-) mice. Moreover, AOM-induced ACF formation was also enhanced in preobese Snark(+/-) mice. Together, these findings suggest that AOM-induced tumorigenesis in Snark(+/-) mice was enhanced via obesity-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Katsuya Tsuchihara
- Cancer Physiology Project, Research Center for Innovative Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Du J, Chen Q, Takemori H, Xu H. SIK2 can be activated by deprivation of nutrition and it inhibits expression of lipogenic genes in adipocytes. Obesity (Silver Spring) 2008; 16:531-8. [PMID: 18239551 DOI: 10.1038/oby.2007.98] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Determine the biological function of SIK2 in 3T3-L1 adipocytes. METHODS AND PROCEDURES 3T3-L1 adipocytes were treated with serum-free, serum/glucose-free, or complete Dulbecco's Modified Eagle's Medium (DMEM) for 15 min, or 10 microg/ml oligomycin in serum-free DMEM for 15 min, or different doses of 5-amino-4-imidazolecarboxamide (AICAR) for different periods of time in serum-free DMEM. After treatment, SIK2 kinase activity was measured by examining phosphorylation of a peptide substrate. SIK2 was overexpressed and knocked down in 3T3-L1 CAR adipocytes using adenovirus-mediated gene transfer for the assessment of lipogenic gene expression and triglyceride content. Electroporation was used to transiently transfect 3T3-L1 adipocytes with fatty acid synthase (FAS) promoter-driven luciferase construct to evaluate the effect of SIK2 on FAS transcription. RESULTS In 3T3-L1 adipocytes, SIK2 can be activated by nutrient deprivation, inhibition of ATP synthesis, and treatment of AICAR. Overexpression of SIK2 repressed the expression of lipogenic genes, including FAS, acetyl CoA carboxylase 2 (ACC2), and stearoyl CoA desaturase 1 (SCD1), and reduced triglyceride content. Reduction of endogenous SIK2 expression through RNA interference increased the expression of FAS, ACC2, and SCD1. This effect is independent of adenosine monophosphate-activated protein kinase (AMPK) since neither phosphorylation state nor protein level of AMPKalpha1 and AMPKalpha2 was affected by SIK2 overexpression. SIK2 inhibits the expression of FAS-promoter driven luciferase reporter gene, and this effect can be reversed by overexpression of constitutively active sterol regulatory element binding protein-1 (SREBP-1). Furthermore, SIK2 also reduces the nuclear translocation of endogenous SREBP-1. DISCUSSION Our results support a role for SIK2 in adipocyte energy metabolism. SIK2 may function similarly to AMPK for turning off lipogenesis in low-energy state.
Collapse
Affiliation(s)
- Jing Du
- Brown Medical School, Department of Medicine, Hallett Center for Diabetes and Endocrinology, Providence, RI, USA
| | | | | | | |
Collapse
|
37
|
Identification of a novel substrate for TNFalpha-induced kinase NUAK2. Biochem Biophys Res Commun 2007; 365:541-7. [PMID: 18023418 DOI: 10.1016/j.bbrc.2007.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 11/05/2007] [Indexed: 10/22/2022]
Abstract
TNFalpha has multiple important cellular functions both in normal cells and in tumor cells. To explore the role of TNFalpha, we identified NUAK family, SNF1-like kinase 2 (NUAK2), as a TNFalpha-induced kinase by gene chip analysis. NUAK2 is known to be induced by various cellular stresses and involved in cell mortality, however, its substrate has never been identified. We developed original protocol of de novo screening for kinase substrates using an in vitro kinase assay and high performance liquid chromatography (HPLC). Using this procedure, we identified myosin phosphatase target subunit 1 (MYPT1) as a specific substrate for NUAK2. MYPT1 was phosphorylated at another site(s) by NUAK2, other than known Rho-kinase phosphorylation sites (Thr696 or Thr853) responsible for inhibition of myosin phosphatase activity. These data suggests different phosphorylation and regulation of MYPT1 activity by NUAK2.
Collapse
|
38
|
Shen C, Lin MJ, Yaradanakul A, Lariccia V, Hill JA, Hilgemann DW. Dual control of cardiac Na+ Ca2+ exchange by PIP(2): analysis of the surface membrane fraction by extracellular cysteine PEGylation. J Physiol 2007; 582:1011-26. [PMID: 17540704 PMCID: PMC2075243 DOI: 10.1113/jphysiol.2007.132720] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We describe a new assay to determine the fraction of cardiac Na(+)-Ca(2+) exchangers (NCX1) in the surface membrane of cells (F(surf)). An extracellular NCX1 disulphide bond is rapidly reduced by tris(2-carboxyethyl)phosphine hydrochloride (TCEP), cysteines are 'PEGylated' by alkylation with an impermeable conjugate of maleimide and a 5000 MW polyethylene glycol (MPEG), and F(surf) is quantified from Western blots as the fraction of NCX1 that migrates at a higher molecular weight. F(surf) remains less than 0.1 when NCX1 is expressed via transient transfections. Values of 0.15-0.4 are obtained for cell lines with stable NCX1 expression, 0.3 for neonatal myocytes and 0.6-0.8 for adult hearts. To validate the assay, we analysed an intervention that promotes clathrin-independent endocytosis in fibroblasts. Using BHK cells, removal of extracellular potassium (K(+)) caused yellow fluorescent protein (YFP)-tagged NCX1 to redistribute diffusely into the cytoplasm within 30 min, F(surf) decreased by 35%, and whole-cell exchange currents decreased by > 50%. In both HEK 293 and BHK cell lines, expression of human hPIP5Ibeta kinase significantly decreases F(surf). In BHK cells expressing M1 receptors, a muscarinic agonist (carbachol) causes a 40% decrease of F(surf) in normal media. This decrease is blocked by a high wortmannin concentration (3 mum), suggesting that type III phosphatidylinositol-4-kinase (PI4K) activity is required. As predicted from functional studies, carbachol increases F(surf) when cytoplasmic Ca(2) is increased by removing extracellular Na(+). Phorbol esters are without effect in BHK cells. In intact hearts, interventions that change contractility have no effect within 15 min, but we have identified two long-term changes. First, we analysed the diurnal dependence of F(surf) because messages for cardiac phosphatidylinositol-4-phosphate (PIP) 5-kinases increase during the light phase in entrained mice (i.e. during sleep). Cardiac phosphatidylinositol-(4,5)-bis-phosphate (PIP(2)) levels increase during the light phase and F(surf) decreases in parallel. Second, we analysed effects of aortic banding because NCX1 currents do not mirror the increases of NCX1 message and protein that occur in this model. F(surf) decreases significantly within 10 days, and cardiac PIP and PIP(2) levels are significantly increased. In summary, multiple experimental approaches suggest that PIP(2) synthesis favours NCX1 internalization, that NCX1 internalization is probably clathrin-independent, and that significant changes of NCX1 surface expression occur physiologically and pathologically in intact myocardium.
Collapse
Affiliation(s)
- Chengcheng Shen
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | | | | | | | | | | |
Collapse
|
39
|
Ikesugi K, Mulhern ML, Madson CJ, Hosoya KI, Terasaki T, Kador PF, Shinohara T. Induction of endoplasmic reticulum stress in retinal pericytes by glucose deprivation. Curr Eye Res 2007; 31:947-53. [PMID: 17114120 DOI: 10.1080/02713680600966785] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Diabetic retinopathy is one of the major microvascular complications associated with diabetes mellitus, and the selective degeneration of retinal capillary pericytes is considered to be a hallmark of early retinopathy. Because glucose fluctuations commonly occur in diabetes, we hypothesized that these fluctuations will increase the endoplasmic reticulum (ER) stress and induce the unfolded protein response (UPR) in retinal pericytes. To study whether ER stress and the UPR can be induced in retinal pericytes, rat retinal capillary pericytes were cultured in different concentrations of glucose. Hypoglycemia but not hyperglycemia was found to activate UPR-specific enzymes in pericytes. Strong UPR activation leading to apoptosis was also observed when pericytes were cultured in glucose concentrations that were reduced from high to low or no glucose. These results indicate that induction of UPR is related not only to absolute concentrations but also to a shifting from higher to lower concentrations of glucose.
Collapse
Affiliation(s)
- Kengo Ikesugi
- Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198-5840, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Rider MH. The ubiquitin-associated domain of AMPK-related protein kinases allows LKB1-induced phosphorylation and activation. Biochem J 2006; 394:e7-9. [PMID: 16492140 PMCID: PMC1383723 DOI: 10.1042/bj20060184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The AMPK (AMP-activated protein kinase)-related protein kinase subfamily of the human kinome comprises 12 members closely related to the catalytic alpha1/alpha2 subunits of AMPK. The precise role of the AMPK-related kinases and their in vivo substrates is rather unclear at present, but some are involved in regulating cell polarity, whereas others appear to control cellular differentiation. Of the 12 human AMPK-related protein kinase family members, 11 can be activated following phosphorylation of their T-loop threonine residue by the LKB1 complex. Nine of these AMPK-related kinases activated by LKB1 contain an UBA (ubiquitin-associated) domain immediately C-terminal to the kinase catalytic domain. In this issue of the Biochemical Journal, Jaleel et al. show that the presence of an UBA domain in AMP-related kinases allows LKB1-induced phosphorylation and activation. The findings have implications for understanding the molecular mechanisms of activation of this fascinating family of protein kinases. Also, mutations in the UBA domains of the AMP-related kinase genes might be present in families with Peutz-Jehgers syndrome and in other cancer patients.
Collapse
Affiliation(s)
- Mark H Rider
- Hormone and Metabolic Research Unit, Christian de Duve Institute of Cellular Pathology and Université catholique de Louvain, Avenue Hippocrate 75, B-1200 Brussels, Belgium.
| |
Collapse
|
41
|
Al-Hakim AK, Göransson O, Deak M, Toth R, Campbell DG, Morrice NA, Prescott AR, Alessi DR. 14-3-3 cooperates with LKB1 to regulate the activity and localization of QSK and SIK. J Cell Sci 2006; 118:5661-73. [PMID: 16306228 DOI: 10.1242/jcs.02670] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The LKB1 tumour suppressor kinase phosphorylates and activates a number of protein kinases belonging to the AMP-activated protein kinase (AMPK) subfamily. We have used a modified tandem affinity purification strategy to identify proteins that interact with AMPKalpha, as well as the twelve AMPK-related kinases that are activated by LKB1. The AMPKbeta and AMPKgamma regulatory subunits were associated with AMPKalpha, but not with any of the AMPK-related kinases, explaining why AMP does not influence the activity of these enzymes. In addition, we identified novel binding partners that interacted with one or more of the AMPK subfamily enzymes, including fat facets/ubiquitin specific protease-9 (USP9), AAA-ATPase-p97, adenine nucleotide translocase, protein phosphatase 2A holoenzyme and isoforms of the phospho-protein binding adaptor 14-3-3. Interestingly, the 14-3-3 isoforms bound directly to the T-loop Thr residue of QSK and SIK, after these were phosphorylated by LKB1. Consistent with this, the 14-3-3 isoforms failed to interact with non-phosphorylated QSK and SIK, in LKB1 knockout muscle or in HeLa cells in which LKB1 is not expressed. Moreover, mutation of the T-loop Thr phosphorylated by LKB1, prevented QSK and SIK from interacting with 14-3-3 in vitro. Binding of 14-3-3 to QSK and SIK, enhanced catalytic activity towards the TORC2 protein and the AMARA peptide, and was required for the cytoplasmic localization of SIK and for localization of QSK to punctate structures within the cytoplasm. To our knowledge, this study provides the first example of 14-3-3 binding directly to the T-loop of a protein kinase and influencing its catalytic activity and cellular localization.
Collapse
Affiliation(s)
- Abdallah K Al-Hakim
- MRC Protein Phosphorylation Unit, MSI/WTB complex, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| | | | | | | | | | | | | | | |
Collapse
|