1
|
Li H, Zheng C, Zheng Y, Wen K, Zhang Y. Distinct functional diversity of branched oligosaccharides as chaperones and inhibitory-binding partners of amyloid beta-protein and its aggregates. Neuropharmacology 2024; 261:110141. [PMID: 39251087 DOI: 10.1016/j.neuropharm.2024.110141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/14/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
Aggregation and deposition of amyloid beta-protein 1-42 (Aβ42) in the brain, primarily owing to hydrophobic interactions between Aβ42 chains, is a common pathology in all forms of Alzheimer's disease (AD). Hydrophilic oligosaccharides are widely present in the extracellular matrix and on the cytoplasmic membrane. To determine if oligosaccharides bind to Aβ42 or its aggregates and consequently affect their aggregation and cellular function, this study examined the interaction of typical functional oligosaccharides with Aβ42 or its aggregates. Isomaltooligosaccharides (IMOs), particularly isomaltotriose, panose, and isomaltotetraose, functioned as molecular chaperones for Aβ42 by binding directly to Aβ42, preserving Aβ42's active conformation and cytotrophic activity. Oral IMOs reduced total plasma Aβ level and indirectly caused a slight reduction in the load of Aβ42 spots/plaques in the brain of AD model mice (male). Another branched oligosaccharide, bianntennary core pentasaccharide (BCP), had a relatively high binding specificity for Aβ42 oligomers (Aβ42O) and acted as an antagonistic binding partner for Aβ42O. Free BCP effectively blocked/prevented further assembly of Aβ42O and their toxicity to neural and vascular endothelial cell lines. Since BCP is also a signaling component of membrane targets (glycolipids, glycoproteins or receptors), it seemed that BCP had two opposing effects on the binding of Aβ42O to target cells. This study's findings suggest that these branched oligosaccharides may be potential candidates for blocking or preventing Aβ42 aggregation and Aβ42O cytotoxicity/neurotoxicity, respectively, and that IMO-like or free BCP-like oligosaccharide deficiencies in the brain may be one of the underlying mechanisms for Aβ42 aggregation and Aβ42O cytotoxicity.
Collapse
Affiliation(s)
- He Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Changxin Zheng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yanru Zheng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Kai Wen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yingjiu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
2
|
Peng Y, Chen B. Role of cell membrane homeostasis in the pathogenicity of pathogenic filamentous fungi. Virulence 2024; 15:2299183. [PMID: 38156783 PMCID: PMC10761126 DOI: 10.1080/21505594.2023.2299183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024] Open
Abstract
The cell membrane forms a fundamental part of all living cells and participates in a variety of physiological processes, such as material exchange, stress response, cell recognition, signal transduction, cellular immunity, apoptosis, and pathogenicity. Here, we review the mechanisms and functions of the membrane structure (lipid components of the membrane and the biosynthesis of unsaturated fatty acids), membrane proteins (transmembrane proteins and proteins contributing to membrane curvature), transcriptional regulation, and cell wall components that influence the virulence and pathogenicity of filamentous fungi.
Collapse
Affiliation(s)
- Yuejin Peng
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Bin Chen
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
3
|
Lloyd EM, Hepburn MS, Li J, Mowla A, Jeong JH, Hwang Y, Choi YS, Jackaman C, Kennedy BF, Grounds MD. Multimodal three-dimensional characterization of murine skeletal muscle micro-scale elasticity, structure, and composition: Impact of dysferlinopathy, Duchenne muscular dystrophy, and age on three hind-limb muscles. J Mech Behav Biomed Mater 2024; 160:106751. [PMID: 39326249 DOI: 10.1016/j.jmbbm.2024.106751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024]
Abstract
Skeletal muscle tissue function is governed by the mechanical properties and organization of its components, including myofibers, extracellular matrix, and adipose tissue, which can be modified by the onset and progression of many disorders. This study used a novel combination of quantitative micro-elastography and clearing-enhanced three-dimensional (3D) microscopy to assess 3D micro-scale elasticity and micro-architecture of muscles from two muscular dystrophies: dysferlinopathy and Duchenne muscular dystrophy, using male BLA/J and mdx mice, respectively, and their wild-type (WT) controls. We examined three muscles with varying proportions of slow- and fast-twitch myofibers: the soleus (predominantly slow), extensor digitorum longus (EDL; fast), and quadriceps (mixed), from BLA/J and WTBLA/J mice aged 3, 10, and 24 months, and mdx and WTmdx mice aged 10 months. Both dysferlin deficiency and age reduced the elasticity and variability of elasticity of the soleus and quadriceps, but not EDL. Overall, the BLA/J soleus was 20% softer than WT and less mechanically heterogeneous (-14% in standard deviation of elasticity). The BLA/J quadriceps at 24 months was 72% softer than WT and less mechanically heterogeneous (-59% in standard deviation), with substantial adipose tissue accumulation. While mdx muscles did not differ quantitatively from WT, regional heterogeneity was evident in micro-scale elasticity and micro-architecture of quadriceps (e.g., 11.2 kPa in a region with marked pathology vs 3.8 kPa in a less affected area). These results demonstrate differing biomechanical changes in hind-limb muscles of two distinct muscular dystrophies, emphasizing the potential for this novel multimodal technique to identify important differences between various myopathies.
Collapse
Affiliation(s)
- Erin M Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Curtin Health Innovation Research Institute, Curtin Medical School, Faculty of Health Sciences, Curtin University, Kent St, Bentley, Western Australia, 6102, Australia.
| | - Matt S Hepburn
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland.
| | - Jiayue Li
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.
| | - Alireza Mowla
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia.
| | - Ji Hoon Jeong
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea.
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea.
| | - Yu Suk Choi
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia.
| | - Connie Jackaman
- Curtin Health Innovation Research Institute, Curtin Medical School, Faculty of Health Sciences, Curtin University, Kent St, Bentley, Western Australia, 6102, Australia.
| | - Brendan F Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia; Centre for Medical Research, The University of Western Australia, Perth, Western Australia, 6009, Australia; Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia; Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland; Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia, 6009, Australia.
| |
Collapse
|
4
|
Cao Y, Zhao LW, Chen ZX, Li SH. New insights in lipid metabolism: potential therapeutic targets for the treatment of Alzheimer's disease. Front Neurosci 2024; 18:1430465. [PMID: 39323915 PMCID: PMC11422391 DOI: 10.3389/fnins.2024.1430465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/14/2024] [Indexed: 09/27/2024] Open
Abstract
Alzheimer's disease (AD) is increasingly recognized as being intertwined with the dysregulation of lipid metabolism. Lipids are a significant class of nutrients vital to all organisms, playing crucial roles in cellular structure, energy storage, and signaling. Alterations in the levels of various lipids in AD brains and dysregulation of lipid pathways and transportation have been implicated in AD pathogenesis. Clinically, evidence for a high-fat diet firmly links disrupted lipid metabolism to the pathogenesis and progression of AD, although contradictory findings warrant further exploration. In view of the significance of various lipids in brain physiology, the discovery of complex and diverse mechanisms that connect lipid metabolism with AD-related pathophysiology will bring new hope for patients with AD, underscoring the importance of lipid metabolism in AD pathophysiology, and promising targets for therapeutic intervention. Specifically, cholesterol, sphingolipids, and fatty acids have been shown to influence amyloid-beta (Aβ) accumulation and tau hyperphosphorylation, which are hallmarks of AD pathology. Recent studies have highlighted the potential therapeutic targets within lipid metabolism, such as enhancing apolipoprotein E lipidation, activating liver X receptors and retinoid X receptors, and modulating peroxisome proliferator-activated receptors. Ongoing clinical trials are investigating the efficacy of these strategies, including the use of ketogenic diets, statin therapy, and novel compounds like NE3107. The implications of these findings suggest that targeting lipid metabolism could offer new avenues for the treatment and management of AD. By concentrating on alterations in lipid metabolism within the central nervous system and their contribution to AD development, this review aims to shed light on novel research directions and treatment approaches for combating AD, offering hope for the development of more effective management strategies.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lin-Wei Zhao
- Department of Cardiology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China
| | - Zi-Xin Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shao-Hua Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Wang F, Zhong ZR, Xie Q, Ou J, Xiong NX, Huang MZ, Li SY, Hu G, Qin ZL, Luo SW. Multiomics Analyses Explore the Immunometabolic Interplay in the Liver of White Crucian Carp (Carassius cuvieri) After Aeromonas veronii Challenge. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:790-809. [PMID: 39042324 DOI: 10.1007/s10126-024-10347-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/13/2024] [Indexed: 07/24/2024]
Abstract
Aeromonas veronii is one of the predominant pathogenic species that can imperil the survival of farmed fish. However, the interactive networks of immune regulation and metabolic response in A. veronii-infected fish are still unclear. In this investigation, we aimed to explore immunometabolic interplay in white crucian carp (WCC) after the A. veronii challenge. Elevated levels of immune-related genes were observed in various tissues after A. veronii infection, along with the sharp alteration of disease-related enzymatic activities. Besides, decreased levels of antioxidant status were observed in the liver, but most metabolic gene expressions increased dramatically. Multiomics analyses revealed that metabolic products of amino acids, such as formiminoglutamic acid (FIGLU), L-glutamate (L-Glu), and 4-hydroxyhippuric acid, were considered the crucial liver biomarkers in A. veronii-infected WCC. In addition, A. veronii infection may dysregulate endoplasmic reticulum (ER) function to affect the metabolic process of lipids, carbohydrates, and amino acids in the liver of WCC. These results may have a comprehensive implication for understanding immunometabolic response in WCC upon A. veronii infection.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy Fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Zi-Rou Zhong
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy Fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Qing Xie
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy Fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Jie Ou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy Fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Ning-Xia Xiong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ming-Zhu Huang
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, 330022, China
| | - Shi-Yun Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy Fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Gang Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy Fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Zi-Le Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy Fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy Fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China.
| |
Collapse
|
6
|
Badaut J, Blochet C, Obenaus A, Hirt L. Physiological and pathological roles of caveolins in the central nervous system. Trends Neurosci 2024; 47:651-664. [PMID: 38972795 PMCID: PMC11324375 DOI: 10.1016/j.tins.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 05/14/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024]
Abstract
Caveolins are a family of transmembrane proteins located in caveolae, small lipid raft invaginations of the plasma membrane. The roles of caveolin-enriched lipid rafts are diverse, and include mechano-protection, lipid homeostasis, metabolism, transport, and cell signaling. Caveolin-1 (Cav-1) and other caveolins were described in endothelial cells and later in other cell types of the central nervous system (CNS), including neurons, astrocytes, oligodendrocytes, microglia, and pericytes. This pancellular presence of caveolins demands a better understanding of their functional roles in each cell type. In this review we describe the various functions of Cav-1 in the cells of normal and pathological brains. Several emerging preclinical findings suggest that Cav-1 could represent a potential therapeutic target in brain disorders.
Collapse
Affiliation(s)
- Jérôme Badaut
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France; Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Camille Blochet
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland; Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - André Obenaus
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA; Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Lorenz Hirt
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland; Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Chaldakov GN, Aloe L, Yanev SG, Fiore M, Tonchev AB, Vinciguerra M, Evtimov NT, Ghenev P, Dikranian K. Trackins (Trk-Targeting Drugs): A Novel Therapy for Different Diseases. Pharmaceuticals (Basel) 2024; 17:961. [PMID: 39065809 PMCID: PMC11279958 DOI: 10.3390/ph17070961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Many routes may lead to the transition from a healthy to a diseased phenotype. However, there are not so many routes to travel in the opposite direction; that is, therapy for different diseases. The following pressing question thus remains: what are the pathogenic routes and how can be they counteracted for therapeutic purposes? Human cells contain >500 protein kinases and nearly 200 protein phosphatases, acting on thousands of proteins, including cell growth factors. We herein discuss neurotrophins with pathogenic or metabotrophic abilities, particularly brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), pro-NGF, neurotrophin-3 (NT-3), and their receptor Trk (tyrosine receptor kinase; pronounced "track"). Indeed, we introduced the word trackins, standing for Trk-targeting drugs, that play an agonistic or antagonistic role in the function of TrkBBDNF, TrkCNT-3, TrkANGF, and TrkApro-NGF receptors. Based on our own published results, supported by those of other authors, we aim to update and enlarge our trackins concept, focusing on (1) agonistic trackins as possible drugs for (1a) neurotrophin-deficiency cardiometabolic disorders (hypertension, atherosclerosis, type 2 diabetes mellitus, metabolic syndrome, obesity, diabetic erectile dysfunction and atrial fibrillation) and (1b) neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, and multiple sclerosis), and (2) antagonistic trackins, particularly TrkANGF inhibitors for prostate and breast cancer, pain, and arrhythmogenic right-ventricular dysplasia. Altogether, the druggability of TrkANGF, TrkApro-NGF, TrkBBDNF, and TrkCNT-3 receptors via trackins requires a further translational pursuit. This could provide rewards for our patients.
Collapse
Affiliation(s)
- George N. Chaldakov
- Departments of Anatomy and Cell Biology and Translational Stem Cell Biology, Research Institute, Medical University, 9002 Varna, Bulgaria
| | - Luigi Aloe
- Fondazione Iret, Tecnopolo R. Levi-Montalcini, Ozzano dell’Emilia, 40064 Bologna, Italy
| | - Stanislav G. Yanev
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, National Research Council, IBBC-CNR, 00185 Rome, Italy
| | - Anton B. Tonchev
- Departments of Anatomy and Cell Biology and Translational Stem Cell Biology, Research Institute, Medical University, 9002 Varna, Bulgaria
| | - Manlio Vinciguerra
- Department of Translational Stem Cell Biology, Research Institute, Medical University, 9002 Varna, Bulgaria
| | - Nikolai T. Evtimov
- Department of Urology, University St Anna Hospital, 9002 Varna, Bulgaria
| | - Peter Ghenev
- Department of General and Clinical Pathology, Medical University, 9002 Varna, Bulgaria
| | - Krikor Dikranian
- Department of Neuroscience, Medical School, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Niyonzima YB, Wanjiru DK, Kadokawa H. Exercise-induced muscle hormone "irisin" controls luteinizing hormone and follicle-stimulating hormone secretion by bovine gonadotrophs. Anim Reprod Sci 2024; 266:107516. [PMID: 38823233 DOI: 10.1016/j.anireprosci.2024.107516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Irisin is a hormone secreted by muscle in response to exercise. The irisin receptor (IrisinR) is a heterodimer of integrin alpha V (ITGAV) and integrin beta 5 (ITGB5) subunits. Since irisin may mediate some beneficial effects of exercise on animal reproduction, we tested the hypothesis that bovine gonadotrophs express IrisinR and irisin stimulates luteinizing hormone (LH) and follicle stimulating hormone (FSH) secretion by gonadotrophs. Reverse transcription polymerase chain reaction was used to detect the mRNA expression of both ITGAV and ITGB5 in the anterior pituitary glands (APs) of post pubertal heifers and mouse gonadotroph cell line "LβT2." Western blotting was used to detect protein expression in bovine APs. Immunofluorescence microscopy, utilizing the same antibody, visualized IrisinR on the plasma membrane of majority of gonadotrophs. We prepared AP cells from healthy postpubertal heifers, cultured them for 3.5 d, and treated them with increasing concentrations (0, 0.01, 0.1, 1, or 10 nM) of irisin for 5 min before either no treatment or gonadotropin-releasing hormone (GnRH) stimulation. After 2 h, media were harvested for LH and FSH assays. Irisin (0.1-10 nM) stimulated basal LH and FSH secretion, and these stimulatory effects were inhibited by the extracellular signal-regulated kinase or SMAD pathway inhibitors. In the presence of GnRH, irisin at 0.01-1 nM stimulated LH and FSH secretion. A higher dose of irisin (10 nM), however, suppressed the GnRH-induced LH and FSH levels. In conclusion, bovine gonadotrophs expressed IrisinR, and irisin controlled LH and FSH secretion from bovine gonadotrophs.
Collapse
Affiliation(s)
- Yvan Bienvenu Niyonzima
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan
| | - Denis Karani Wanjiru
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan
| | - Hiroya Kadokawa
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan.
| |
Collapse
|
9
|
Nishimura Y. [Regulation of adipose progenitors and fibro-adipogenic progenitors through primary cilia]. Nihon Yakurigaku Zasshi 2024; 159:188-191. [PMID: 38684399 DOI: 10.1254/fpj.23108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The primary cilium, an antenna-like structure of cell membrane, detects various signals and regulates cellular functions such as proliferation and differentiation. The impairment of primary cilium is associated with the etiologies of diseases including cancer, obesity, and congenital anomalies. In this review, novel functions of trichoplein, a suppressor of ciliogenesis, on the regulation of adipose progenitors and fibro-adipogenic progenitors are focused. Trichoplein-knockout mice show resistance to high-fat diet-induced obesity and accelerated regeneration after skeletal muscle injury. The primary cilia of adipose progenitors from trichoplein-knockout mice are elongated, leading to the inhibitions of the accumulation of lipid raft to the base of primary cilia and the phosphorylation of AKT. The primary cilia of fibro-adipogenic progenitors from trichoplein-knockout mice are also elongated, causing the increased expression of IL-13 through IL-33 receptor signaling. These mechanisms are involved in the resistance to diet-induced obesity and improved regeneration. These findings suggest that targeting the primary cilia of specific cells may be a novel therapeutic approach through modulating cellular functions.
Collapse
Affiliation(s)
- Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine
- Research Center for Cilia and Diseases, Mie University Graduate School of Medicine
| |
Collapse
|
10
|
De Sanctis F, Dusi S, Caligola S, Anselmi C, Petrova V, Rossi B, Angelini G, Erdeljan M, Wöll S, Schlitter AM, Metzler T, Steiger K, Borok Z, Bailey P, Bauer A, Halin C, Boschi F, Giugno R, Canè S, Lawlor R, Corbo V, Scarpa A, Constantin G, Ugel S, Vascotto F, Sahin U, Türeci Ö, Bronte V. Expression of the membrane tetraspanin claudin 18 on cancer cells promotes T lymphocyte infiltration and antitumor immunity in pancreatic cancer. Immunity 2024; 57:1378-1393.e14. [PMID: 38749447 DOI: 10.1016/j.immuni.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 06/14/2024]
Abstract
Tumors weakly infiltrated by T lymphocytes poorly respond to immunotherapy. We aimed to unveil malignancy-associated programs regulating T cell entrance, arrest, and activation in the tumor environment. Differential expression of cell adhesion and tissue architecture programs, particularly the presence of the membrane tetraspanin claudin (CLDN)18 as a signature gene, demarcated immune-infiltrated from immune-depleted mouse pancreatic tumors. In human pancreatic ductal adenocarcinoma (PDAC) and non-small cell lung cancer, CLDN18 expression positively correlated with more differentiated histology and favorable prognosis. CLDN18 on the cell surface promoted accrual of cytotoxic T lymphocytes (CTLs), facilitating direct CTL contacts with tumor cells by driving the mobilization of the adhesion protein ALCAM to the lipid rafts of the tumor cell membrane through actin. This process favored the formation of robust immunological synapses (ISs) between CTLs and CLDN18-positive cancer cells, resulting in increased T cell activation. Our data reveal an immune role for CLDN18 in orchestrating T cell infiltration and shaping the tumor immune contexture.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/metabolism
- Cell Line, Tumor
- Claudins/metabolism
- Claudins/genetics
- Gene Expression Regulation, Neoplastic/immunology
- Immunological Synapses/metabolism
- Immunological Synapses/immunology
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Lymphocyte Activation/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Membrane Microdomains/metabolism
- Membrane Microdomains/immunology
- Mice, Inbred C57BL
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Francesco De Sanctis
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy.
| | - Silvia Dusi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | - Cristina Anselmi
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Varvara Petrova
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Barbara Rossi
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Gabriele Angelini
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Michael Erdeljan
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
| | - Stefan Wöll
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
| | - Anna Melissa Schlitter
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany; Institute of Pathology, School of Medicine, TUM, Munich, Germany
| | - Thomas Metzler
- Comparative Experimental Pathology (CEP), Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- Comparative Experimental Pathology (CEP), Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Zea Borok
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Peter Bailey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, Scotland
| | - Aline Bauer
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Federico Boschi
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, Verona, Italy
| | - Stefania Canè
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Rita Lawlor
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy; ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy; ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy; Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Gabriela Constantin
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy; The Center for Biomedical Computing (CBMC), University of Verona, Verona, Italy
| | - Stefano Ugel
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Fulvia Vascotto
- TRON-Translational Oncology at the University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Ugur Sahin
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany; University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Özlem Türeci
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany; University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | |
Collapse
|
11
|
Potdar C, Jagtap S, Singh K, Yadav R, Pal PK, Datta I. Impaired Sonic Hedgehog Responsiveness of Induced Pluripotent Stem Cell-Derived Floor Plate Cells Carrying the LRRK2-I1371V Mutation Contributes to the Ontogenic Origin of Lower Dopaminergic Neuron Yield. Stem Cells Dev 2024; 33:306-320. [PMID: 38753688 DOI: 10.1089/scd.2023.0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Lower population of dopaminergic (DA) neurons is known to increase susceptibility to Parkinson's disease (PD), and our earlier study showed a lower yield of DA neurons in Leucine-Rich Repeat Kinase Isoleucine 1371 Valine (LRRK2-I1371V) mutation-carrying PD patient-derived induced Pluripotent Stem Cells (iPSCs). Although the role of Sonic Hedgehog (SHH) in DA neurogenesis of floor plate cells (FPCs) is known, the effect of LRRK2 mutations on SHH responsiveness of FPCs impacting DA neuronal yield has not been studied. We investigated SHH responsiveness of FPCs derived from LRRK2-I1371V PD patient iPSCs with regard to the expression of SHH receptors Patched1 (Ptch1) and Smoothened (Smo), in conjunction with nuclear Gli1 (glioma-associated oncogene 1) expression, intracellular Ca2+ rise, and cytosolic cyclic adenosine monophosphate (cAMP) levels upon SHH induction. In addition, we examined the mechanistic link with LRRK2-I1371V gain-of-function by assessing membrane fluidity and Rab8A and Rab10 phosphorylation in SH-SY5Y cells and healthy control (HC) FPCs overexpressing LRRK2-I1371V as well as FPCs. Although total expression of Ptch1 and Smo was comparable, receptor expression on cell surface was significantly lower in LRRK2-I1371V FPCs than in HC FPCs, with distinctly lower nuclear expression of the downstream transcription factor Gli1. HC-FPCs transfected with LRRK2-I1371V exhibited a similarly reduced cell surface expression of Ptch1 and Smo. Intracellular Ca2+ response was significantly lower with corresponding elevated cAMP levels in LRRK2-I1371V FPCs compared with HC FPCs upon SHH stimulation. The LRRK2-I1371V mutant FPCs and LRRK2-I1371V-transfected SH-SY5Y and HC FPCs too exhibited higher autophosphorylation of phospho LRRK2 (pLRRK2) serine1292 and serine935, as well as substrate phosphorylation of Rab8A and Rab10. Concurrent increase in membrane fluidity, accompanied by a decrease in membrane cholesterol, and lower expression of lipid raft marker caveolin 1 were also observed in them. These findings suggest that impaired SHH responsiveness of LRRK2-I1371V PD FPCs indeed leads to lower yield of DA neurons during ontogeny. Reduced cell surface expression of SHH receptors is influenced by alteration in membrane fluidity owing to the increased substrate phosphorylation of Rab8A and reduced membrane protein trafficking due to pRab10, both results of the LRRK2-I1371V mutation.
Collapse
Affiliation(s)
- Chandrakanta Potdar
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru, India
| | - Soham Jagtap
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru, India
| | - Khushboo Singh
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru, India
| | - Indrani Datta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru, India
| |
Collapse
|
12
|
Pio-Lopez L, Levin M. Aging as a loss of morphostatic information: A developmental bioelectricity perspective. Ageing Res Rev 2024; 97:102310. [PMID: 38636560 DOI: 10.1016/j.arr.2024.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/21/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Maintaining order at the tissue level is crucial throughout the lifespan, as failure can lead to cancer and an accumulation of molecular and cellular disorders. Perhaps, the most consistent and pervasive result of these failures is aging, which is characterized by the progressive loss of function and decline in the ability to maintain anatomical homeostasis and reproduce. This leads to organ malfunction, diseases, and ultimately death. The traditional understanding of aging is that it is caused by the accumulation of molecular and cellular damage. In this article, we propose a complementary view of aging from the perspective of endogenous bioelectricity which has not yet been integrated into aging research. We propose a view of aging as a morphostasis defect, a loss of biophysical prepattern information, encoding anatomical setpoints used for dynamic tissue and organ homeostasis. We hypothesize that this is specifically driven by abrogation of the endogenous bioelectric signaling that normally harnesses individual cell behaviors toward the creation and upkeep of complex multicellular structures in vivo. Herein, we first describe bioelectricity as the physiological software of life, and then identify and discuss the links between bioelectricity and life extension strategies and age-related diseases. We develop a bridge between aging and regeneration via bioelectric signaling that suggests a research program for healthful longevity via morphoceuticals. Finally, we discuss the broader implications of the homologies between development, aging, cancer and regeneration and how morphoceuticals can be developed for aging.
Collapse
Affiliation(s)
- Léo Pio-Lopez
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Hachem M, Ahmmed MK, Nacir-Delord H. Phospholipidomics in Clinical Trials for Brain Disorders: Advancing our Understanding and Therapeutic Potentials. Mol Neurobiol 2024; 61:3272-3295. [PMID: 37981628 PMCID: PMC11087356 DOI: 10.1007/s12035-023-03793-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023]
Abstract
Phospholipidomics is a specialized branch of lipidomics that focuses on the characterization and quantification of phospholipids. By using sensitive analytical techniques, phospholipidomics enables researchers to better understand the metabolism and activities of phospholipids in brain disorders such as Alzheimer's and Parkinson's diseases. In the brain, identifying specific phospholipid biomarkers can offer valuable insights into the underlying molecular features and biochemistry of these diseases through a variety of sensitive analytical techniques. Phospholipidomics has emerged as a promising tool in clinical studies, with immense potential to advance our knowledge of neurological diseases and enhance diagnosis and treatment options for patients. In the present review paper, we discussed numerous applications of phospholipidomics tools in clinical studies, with a particular focus on the neurological field. By exploring phospholipids' functions in neurological diseases and the potential of phospholipidomics in clinical research, we provided valuable insights that could aid researchers and clinicians in harnessing the full prospective of this innovative practice and improve patient outcomes by providing more potent treatments for neurological diseases.
Collapse
Affiliation(s)
- Mayssa Hachem
- Department of Chemistry and Healthcare Engineering Innovation Center, Khalifa University of Sciences and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Mirja Kaizer Ahmmed
- Department of Fishing and Post-Harvest Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Houda Nacir-Delord
- Department of Chemistry, Khalifa University of Sciences and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
14
|
Wu Y, Jensen N, Rossner MJ, Wehr MC. Exploiting Cell-Based Assays to Accelerate Drug Development for G Protein-Coupled Receptors. Int J Mol Sci 2024; 25:5474. [PMID: 38791511 PMCID: PMC11121687 DOI: 10.3390/ijms25105474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are relevant targets for health and disease as they regulate various aspects of metabolism, proliferation, differentiation, and immune pathways. They are implicated in several disease areas, including cancer, diabetes, cardiovascular diseases, and mental disorders. It is worth noting that about a third of all marketed drugs target GPCRs, making them prime pharmacological targets for drug discovery. Numerous functional assays have been developed to assess GPCR activity and GPCR signaling in living cells. Here, we review the current literature of genetically encoded cell-based assays to measure GPCR activation and downstream signaling at different hierarchical levels of signaling, from the receptor to transcription, via transducers, effectors, and second messengers. Singleplex assay formats provide one data point per experimental condition. Typical examples are bioluminescence resonance energy transfer (BRET) assays and protease cleavage assays (e.g., Tango or split TEV). By contrast, multiplex assay formats allow for the parallel measurement of multiple receptors and pathways and typically use molecular barcodes as transcriptional reporters in barcoded assays. This enables the efficient identification of desired on-target and on-pathway effects as well as detrimental off-target and off-pathway effects. Multiplex assays are anticipated to accelerate drug discovery for GPCRs as they provide a comprehensive and broad identification of compound effects.
Collapse
Affiliation(s)
- Yuxin Wu
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
- Systasy Bioscience GmbH, Balanstr. 6, 81669 Munich, Germany
| | - Niels Jensen
- Systasy Bioscience GmbH, Balanstr. 6, 81669 Munich, Germany
- Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Moritz J. Rossner
- Systasy Bioscience GmbH, Balanstr. 6, 81669 Munich, Germany
- Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Michael C. Wehr
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
- Systasy Bioscience GmbH, Balanstr. 6, 81669 Munich, Germany
| |
Collapse
|
15
|
Zhao L, Wang Y, Zhang Y, Chen H, Sun F. Dynamic Simulations of Interaction of the PEG-DPPE Micelle-Encapsulated Short-Chain Ceramides with the Raft-Included Membrane. J Chem Inf Model 2024; 64:3874-3883. [PMID: 38652138 DOI: 10.1021/acs.jcim.4c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The lipid raft subdomains in cancer cell membranes play a key role in signal transduction, biomolecule recruitment, and drug transmembrane transport. Augmented membrane rigidity due to the formation of a lipid raft is unfavorable for the entry of drugs, a limiting factor in clinical oncology. The short-chain ceramide (CER) has been reported to promote drug entry into membranes and disrupt lipid raft formation, but the underlying mechanism is not well understood. We recently explored the carrier-membrane fusion dynamics of PEG-DPPE micelles in delivering doxorubicin (DOX). Based on the phase-segregated membrane model composed of DPPC/DIPC/CHOL/GM1/PIP2, we aim to explore the dynamic mechanism of the PEG-DPPE micelle-encapsulating DOXs in association with the raft-included cell membrane modulated by C8 acyl tail CERs. The results show that the lipid raft remains integrated and DOX-resistant subjected to free DOXs and the micelle-encapsulating ones. Addition of CERs disorganizes the lipid raft by pushing CHOL aside from DPPC. It subsequently allows for a good permeability for PEG-DPPE micelle-encapsulated DOXs, which penetrate deeper as CER concentration increases. GM1 is significant in guiding drugs' redistributing between bilayer phases, and the anionic PIP2 further helps DOXs attain the inner bilayer surface. These results elaborate on the perturbing effect of CERs on lipid raft stability, which provides a new comprehensive approach for further design of drug delivery systems.
Collapse
Affiliation(s)
- Lina Zhao
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yanjiao Wang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yi Zhang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Hao Chen
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Fude Sun
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
16
|
Rezaie J, Chodari L, Mohammadpour-Asl S, Jafari A, Niknam Z. Cell-mediated barriers in cancer immunosurveillance. Life Sci 2024; 342:122528. [PMID: 38408406 DOI: 10.1016/j.lfs.2024.122528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The immune cells within the tumor microenvironment (TME) exert multifaceted functions ranging from tumor-antagonizing or tumor-promoting activities. During the initial phases of tumor development, the tumor-antagonizing immune cells in the TME combat cancer cells in an immune surveillance process. However, with time, cancer cells can evade detection and impede the immune cells' effectiveness through diverse mechanisms, such as decreasing immunogenic antigen presentation on their surfaces and/or secreting anti-immune factors that cause tolerance in TME. Moreover, some immune cells cause immunosuppressive situations and inhibit antitumoral immune responses. Physical and cellular-mediated barriers in the TME, such as cancer-associated fibroblasts, tumor endothelium, the altered lipid composition of tumor cells, and exosomes secreted from cancer cells, also mediate immunosuppression and prevent extravasation of immune cells. Due to successful clinical outcomes of cancer treatment strategies the potential barriers must be identified and addressed. We need to figure out how to optimize cancer immunotherapy strategies, and how to combine therapeutic approaches for maximum clinical benefit. This review provides a detailed overview of various cells and molecules in the TME, their association with escaping from immune surveillance, therapeutic targets, and future perspectives for improving cancer immunotherapy.
Collapse
Affiliation(s)
- Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Chodari
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shadi Mohammadpour-Asl
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
17
|
Yamasaki H, Itoh RD, Mizumoto KB, Yoshida YS, Otaki JM, Cohen MF. Spatiotemporal Characteristics Determining the Multifaceted Nature of Reactive Oxygen, Nitrogen, and Sulfur Species in Relation to Proton Homeostasis. Antioxid Redox Signal 2024. [PMID: 38407968 DOI: 10.1089/ars.2023.0544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Significance: Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) act as signaling molecules, regulating gene expression, enzyme activity, and physiological responses. However, excessive amounts of these molecular species can lead to deleterious effects, causing cellular damage and death. This dual nature of ROS, RNS, and RSS presents an intriguing conundrum that calls for a new paradigm. Recent Advances: Recent advancements in the study of photosynthesis have offered significant insights at the molecular level and with high temporal resolution into how the photosystem II oxygen-evolving complex manages to prevent harmful ROS production during the water-splitting process. These findings suggest that a dynamic spatiotemporal arrangement of redox reactions, coupled with strict regulation of proton transfer, is crucial for minimizing unnecessary ROS formation. Critical Issues: To better understand the multifaceted nature of these reactive molecular species in biology, it is worth considering a more holistic view that combines ecological and evolutionary perspectives on ROS, RNS, and RSS. By integrating spatiotemporal perspectives into global, cellular, and biochemical events, we discuss local pH or proton availability as a critical determinant associated with the generation and action of ROS, RNS, and RSS in biological systems. Future Directions: The concept of localized proton availability will not only help explain the multifaceted nature of these ubiquitous simple molecules in diverse systems but also provide a basis for new therapeutic strategies to manage and manipulate these reactive species in neural disorders, pathogenic diseases, and antiaging efforts.
Collapse
Affiliation(s)
- Hideo Yamasaki
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Ryuuichi D Itoh
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | | | - Yuki S Yoshida
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Joji M Otaki
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Michael F Cohen
- University of California Cooperative Extension, Santa Clara County, San Jose, California, USA
| |
Collapse
|
18
|
Shaver M, Gomez K, Kaiser K, Hutcheson JD. Mechanical stretch leads to increased caveolin-1 content and mineralization potential in extracellular vesicles from vascular smooth muscle cells. BMC Mol Cell Biol 2024; 25:8. [PMID: 38486163 PMCID: PMC10938675 DOI: 10.1186/s12860-024-00504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Hypertension-induced mechanical stress on vascular smooth muscle cells (VSMCs) is a known risk factor for vascular remodeling, including vascular calcification. Caveolin-1 (Cav-1), an integral structural component of plasma membrane invaginations, is a mechanosensitive protein that is required for the formation of calcifying extracellular vesicles (EVs). However, the role of mechanics in Cav-1-induced EV formation from VSMCs has not been reported. RESULTS Exposure of VSMCs to 10% mechanical stretch (0.5 Hz) for 72 h resulted in Cav-1 translocation into non-caveolar regions of the plasma membrane and subsequent redistribution of Cav-1 from the VSMCs into EVs. Inhibition of Rho-A kinase (ROCK) in mechanically-stimulated VSMCs exacerbated the liberation of Cav-1 positive EVs from the cells, suggesting a potential involvement of actin stress fibers in this process. The mineralization potential of EVs was measured by incubating the EVs in a high phosphate solution and measuring light scattered by the minerals at 340 nm. EVs released from stretched VSMCs showed higher mineralization potential than the EVs released from non-stretched VSMCs. Culturing VSMCs in pro-calcific media and exposure to mechanical stretch increased tissue non-specific alkaline phosphatase (ALP), an important enzyme in vascular calcification, activity in EVs released from the cells, with cyclic stretch further elevating EV ALP activity compared to non-stretched cells. CONCLUSION Our data demonstrate that mechanical stretch alters Cav-1 trafficking and EV release, and the released EVs have elevated mineralization potential.
Collapse
Affiliation(s)
- Mohammad Shaver
- Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, Engineering Center 2600, Miami, FL, 33174, USA
| | - Kassandra Gomez
- Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, Engineering Center 2600, Miami, FL, 33174, USA
| | - Katherine Kaiser
- Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, Engineering Center 2600, Miami, FL, 33174, USA
| | - Joshua D Hutcheson
- Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, Engineering Center 2600, Miami, FL, 33174, USA.
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
19
|
Mishra J, Chakraborty S, Niharika, Roy A, Manna S, Baral T, Nandi P, Patra SK. Mechanotransduction and epigenetic modulations of chromatin: Role of mechanical signals in gene regulation. J Cell Biochem 2024; 125:e30531. [PMID: 38345428 DOI: 10.1002/jcb.30531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/08/2024] [Accepted: 01/26/2024] [Indexed: 03/12/2024]
Abstract
Mechanical forces may be generated within a cell due to tissue stiffness, cytoskeletal reorganization, and the changes (even subtle) in the cell's physical surroundings. These changes of forces impose a mechanical tension within the intracellular protein network (both cytosolic and nuclear). Mechanical tension could be released by a series of protein-protein interactions often facilitated by membrane lipids, lectins and sugar molecules and thus generate a type of signal to drive cellular processes, including cell differentiation, polarity, growth, adhesion, movement, and survival. Recent experimental data have accentuated the molecular mechanism of this mechanical signal transduction pathway, dubbed mechanotransduction. Mechanosensitive proteins in the cell's plasma membrane discern the physical forces and channel the information to the cell interior. Cells respond to the message by altering their cytoskeletal arrangement and directly transmitting the signal to the nucleus through the connection of the cytoskeleton and nucleoskeleton before the information despatched to the nucleus by biochemical signaling pathways. Nuclear transmission of the force leads to the activation of chromatin modifiers and modulation of the epigenetic landscape, inducing chromatin reorganization and gene expression regulation; by the time chemical messengers (transcription factors) arrive into the nucleus. While significant research has been done on the role of mechanotransduction in tumor development and cancer progression/metastasis, the mechanistic basis of force-activated carcinogenesis is still enigmatic. Here, in this review, we have discussed the various cues and molecular connections to better comprehend the cellular mechanotransduction pathway, and we also explored the detailed role of some of the multiple players (proteins and macromolecular complexes) involved in mechanotransduction. Thus, we have described an avenue: how mechanical stress directs the epigenetic modifiers to modulate the epigenome of the cells and how aberrant stress leads to the cancer phenotype.
Collapse
Affiliation(s)
- Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Samir K Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
20
|
Zhou Y, Wang D, Zhou L, Zhou N, Wang Z, Chen J, Pang R, Fu H, Huang Q, Dong F, Cheng H, Zhang H, Tang K, Ma J, Lv J, Cheng T, Fiskesund R, Zhang X, Huang B. Cell softness renders cytotoxic T lymphocytes and T leukemic cells resistant to perforin-mediated killing. Nat Commun 2024; 15:1405. [PMID: 38360940 PMCID: PMC10869718 DOI: 10.1038/s41467-024-45750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 02/03/2024] [Indexed: 02/17/2024] Open
Abstract
Mechanical force contributes to perforin pore formation at immune synapses, thus facilitating the cytotoxic T lymphocytes (CTL)-mediated killing of tumor cells in a unidirectional fashion. How such mechanical cues affect CTL evasion of perforin-mediated autolysis remains unclear. Here we show that activated CTLs use their softness to evade perforin-mediated autolysis, which, however, is shared by T leukemic cells to evade CTL killing. Downregulation of filamin A is identified to induce softness via ZAP70-mediated YAP Y357 phosphorylation and activation. Despite the requirements of YAP in both cell types for softness induction, CTLs are more resistant to YAP inhibitors than malignant T cells, potentially due to the higher expression of the drug-resistant transporter, MDR1, in CTLs. As a result, moderate inhibition of YAP stiffens malignant T cells but spares CTLs, thus allowing CTLs to cytolyze malignant cells without autolysis. Our findings thus hint a mechanical force-based immunotherapeutic strategy against T cell leukemia.
Collapse
Affiliation(s)
- Yabo Zhou
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Dianheng Wang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Li Zhou
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Nannan Zhou
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Zhenfeng Wang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Jie Chen
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Ruiyang Pang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Haixia Fu
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, Beijing, China
| | - Qiusha Huang
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, Beijing, China
| | - Fang Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Huafeng Zhang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Tang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingwei Ma
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiadi Lv
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Roland Fiskesund
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Xiaohui Zhang
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, Beijing, China.
| | - Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China.
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
21
|
Guerrero-Ochoa P, Rodríguez-Zapater S, Anel A, Esteban LM, Camón-Fernández A, Espilez-Ortiz R, Gil-Sanz MJ, Borque-Fernando Á. Prostate Cancer and the Mevalonate Pathway. Int J Mol Sci 2024; 25:2152. [PMID: 38396837 PMCID: PMC10888820 DOI: 10.3390/ijms25042152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Antineoplastic therapies for prostate cancer (PCa) have traditionally centered around the androgen receptor (AR) pathway, which has demonstrated a significant role in oncogenesis. Nevertheless, it is becoming progressively apparent that therapeutic strategies must diversify their focus due to the emergence of resistance mechanisms that the tumor employs when subjected to monomolecular treatments. This review illustrates how the dysregulation of the lipid metabolic pathway constitutes a survival strategy adopted by tumors to evade eradication efforts. Integrating this aspect into oncological management could prove valuable in combating PCa.
Collapse
Affiliation(s)
- Patricia Guerrero-Ochoa
- Health Research Institute of Aragon Foundation, 50009 Zaragoza, Spain; (P.G.-O.); (A.C.-F.); (R.E.-O.); (M.J.G.-S.)
| | - Sergio Rodríguez-Zapater
- Minimally Invasive Research Group (GITMI), Faculty of Veterinary Medicine, University of Zaragoza, 50009 Zaragoza, Spain;
| | - Alberto Anel
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza, Spain;
| | - Luis Mariano Esteban
- Department of Applied Mathematics, Escuela Universitaria Politécnica de La Almunia, Institute for Biocomputation and Physic of Complex Systems, Universidad de Zaragoza, 50100 La Almunia de Doña Godina, Spain
| | - Alejandro Camón-Fernández
- Health Research Institute of Aragon Foundation, 50009 Zaragoza, Spain; (P.G.-O.); (A.C.-F.); (R.E.-O.); (M.J.G.-S.)
| | - Raquel Espilez-Ortiz
- Health Research Institute of Aragon Foundation, 50009 Zaragoza, Spain; (P.G.-O.); (A.C.-F.); (R.E.-O.); (M.J.G.-S.)
- Department of Urology, Miguel Servet University Hospital, 50009 Zaragoza, Spain
- Area of Urology, Department of Surgery, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - María Jesús Gil-Sanz
- Health Research Institute of Aragon Foundation, 50009 Zaragoza, Spain; (P.G.-O.); (A.C.-F.); (R.E.-O.); (M.J.G.-S.)
- Department of Urology, Miguel Servet University Hospital, 50009 Zaragoza, Spain
| | - Ángel Borque-Fernando
- Health Research Institute of Aragon Foundation, 50009 Zaragoza, Spain; (P.G.-O.); (A.C.-F.); (R.E.-O.); (M.J.G.-S.)
- Department of Applied Mathematics, Escuela Universitaria Politécnica de La Almunia, Institute for Biocomputation and Physic of Complex Systems, Universidad de Zaragoza, 50100 La Almunia de Doña Godina, Spain
- Department of Urology, Miguel Servet University Hospital, 50009 Zaragoza, Spain
- Area of Urology, Department of Surgery, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
22
|
Kundu S, Jaiswal M, Babu Mullapudi V, Guo J, Kamat M, Basso KB, Guo Z. Investigation of Glycosylphosphatidylinositol (GPI)-Plasma Membrane Interaction in Live Cells and the Influence of GPI Glycan Structure on the Interaction. Chemistry 2024; 30:e202303047. [PMID: 37966101 PMCID: PMC10922586 DOI: 10.1002/chem.202303047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
Glycosylphosphatidylinositols (GPIs) need to interact with other components in the cell membrane to transduce transmembrane signals. A bifunctional GPI probe was employed for photoaffinity-based proximity labelling and identification of GPI-interacting proteins in the cell membrane. This probe contained the entire core structure of GPIs and was functionalized with photoreactive diazirine and clickable alkyne to facilitate its crosslinking with proteins and attachment of an affinity tag. It was disclosed that this probe was more selective than our previously reported probe containing only a part structure of the GPI core for cell membrane incorporation and an improved probe for studying GPI-cell membrane interaction. Eighty-eight unique membrane proteins, many of which are related to GPIs/GPI-anchored proteins, were identified utilizing this probe. The proteomics dataset is a valuable resource for further analyses and data mining to find new GPI-related proteins and signalling pathways. A comparison of these results with those of our previous probe provided direct evidence for the profound impact of GPI glycan structure on its interaction with the cell membrane.
Collapse
Affiliation(s)
- Sayan Kundu
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Mohit Jaiswal
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | | | - Jiatong Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Manasi Kamat
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- UF Health Cancer Centre, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
23
|
Wang T, Kimmel HRC, Park C, Ryoo H, Liu J, Underhill GH, Pattabiraman PP. Regulatory role of cholesterol in modulating actin dynamics and cell adhesive interactions in the trabecular meshwork. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578717. [PMID: 38352310 PMCID: PMC10862777 DOI: 10.1101/2024.02.02.578717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The trabecular meshwork (TM) tissue plays a crucial role in maintaining intraocular pressure (IOP) homeostasis. Increased TM contractility and stiffness are directly correlated with elevated IOP. Although cholesterol is known to be a determinant of glaucoma occurrence and elevated IOP, the underlying mechanisms remain elusive. In this study, we used human TM (HTM) cells to unravel the effects of cholesterol on TM stiffness. We achieved this by performing acute cholesterol depletion with Methyl-β-cyclodextrin (MβCD) and cholesterol enrichment/replenishment with MβCD cholesterol complex (CHOL). Interestingly, cholesterol depletion triggered notable actin depolymerization and decreased focal adhesion formation, while enrichment/replenishment promoted actin polymerization, requiring the presence of actin monomers. Using a specific reporter of phosphatidylinositol 4,5-bisphosphate (PIP2), we demonstrated that cholesterol depletion decreases PIP2 levels on the cell membrane, whereas enrichment increases them. Given the critical role of PIP2 in actin remodeling and focal adhesion formation, we postulate that cholesterol regulates actin dynamics by modulating PIP2 levels on the membrane. Furthermore, we showed that cholesterol levels regulate integrin α5β1 and αVβ3 distribution and activation, subsequently altering cell-extracellular matrix (ECM) interactions. Notably, the depletion of cholesterol, as a major lipid constituent of the cell membrane, led to a decrease in HTM cell membrane tension, which was reversed upon cholesterol replenishment. Overall, our systematic exploration of cholesterol modulation on TM stiffness highlights the critical importance of maintaining appropriate membrane and cellular cholesterol levels for achieving IOP homeostasis.
Collapse
Affiliation(s)
- Ting Wang
- Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, Indiana, 46202, United States of America
- Stark Neuroscience Research Institute, Medical Neuroscience Graduate Program, Indiana University School of Medicine, 320 W. 15th Street, Indiana, 46202, United States of America
| | - Hannah R C Kimmel
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States of America
| | - Charles Park
- Deparment of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana, 47907, United States of America
| | - Hyeon Ryoo
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States of America
| | - Jing Liu
- Deparment of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana, 47907, United States of America
| | - Gregory H Underhill
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States of America
| | - Padmanabhan P Pattabiraman
- Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, Indiana, 46202, United States of America
- Stark Neuroscience Research Institute, Medical Neuroscience Graduate Program, Indiana University School of Medicine, 320 W. 15th Street, Indiana, 46202, United States of America
| |
Collapse
|
24
|
Mlinac-Jerkovic K, Kalanj-Bognar S, Heffer M, Blažetić S. Methodological Pitfalls of Investigating Lipid Rafts in the Brain: What Are We Still Missing? Biomolecules 2024; 14:156. [PMID: 38397393 PMCID: PMC10886647 DOI: 10.3390/biom14020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The purpose of this review is to succinctly examine the methodologies used in lipid raft research in the brain and to highlight the drawbacks of some investigative approaches. Lipid rafts are biochemically and biophysically different from the bulk membrane. A specific lipid environment within membrane domains provides a harbor for distinct raftophilic proteins, all of which in concert create a specialized platform orchestrating various cellular processes. Studying lipid rafts has proved to be arduous due to their elusive nature, mobility, and constant dynamic reorganization to meet the cellular needs. Studying neuronal lipid rafts is particularly cumbersome due to the immensely complex regional molecular architecture of the central nervous system. Biochemical fractionation, performed with or without detergents, is still the most widely used method to isolate lipid rafts. However, the differences in solubilization when various detergents are used has exposed a dire need to find more reliable methods to study particular rafts. Biochemical methods need to be complemented with other approaches such as live-cell microscopy, imaging mass spectrometry, and the development of specific non-invasive fluorescent probes to obtain a more complete image of raft dynamics and to study the spatio-temporal expression of rafts in live cells.
Collapse
Affiliation(s)
| | | | - Marija Heffer
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Senka Blažetić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
25
|
Dang Y, Li J, Li Y, Wang Y, Zhao Y, Zhao N, Li W, Zhang H, Ye C, Ma H, Zhang L, Liu H, Dong Y, Yao M, Lei Y, Xu Z, Zhang F, Ye W. N-acetyltransferase 10 regulates alphavirus replication via N4-acetylcytidine (ac4C) modification of the lymphocyte antigen six family member E (LY6E) mRNA. J Virol 2024; 98:e0135023. [PMID: 38169284 PMCID: PMC10805074 DOI: 10.1128/jvi.01350-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/19/2023] [Indexed: 01/05/2024] Open
Abstract
Epitranscriptomic RNA modifications can regulate the stability of mRNA and affect cellular and viral RNA functions. The N4-acetylcytidine (ac4C) modification in the RNA viral genome was recently found to promote viral replication; however, the mechanism by which RNA acetylation in the host mRNA regulates viral replication remains unclear. To help elucidate this mechanism, the roles of N-acetyltransferase 10 (NAT10) and ac4C during the infection and replication processes of the alphavirus, Sindbis virus (SINV), were investigated. Cellular NAT10 was upregulated, and ac4C modifications were promoted after alphavirus infection, while the loss of NAT10 or inhibition of its N-acetyltransferase activity reduced alphavirus replication. The NAT10 enhanced alphavirus replication as it helped to maintain the stability of lymphocyte antigen six family member E mRNA, which is a multifunctional interferon-stimulated gene that promotes alphavirus replication. The ac4C modification was thus found to have a non-conventional role in the virus life cycle through regulating host mRNA stability instead of viral mRNA, and its inhibition could be a potential target in the development of new alphavirus antivirals.IMPORTANCEThe role of N4-acetylcytidine (ac4C) modification in host mRNA and virus replication is not yet fully understood. In this study, the role of ac4C in the regulation of Sindbis virus (SINV), a prototype alphavirus infection, was investigated. SINV infection results in increased levels of N-acetyltransferase 10 (NAT10) and increases the ac4C modification level of cellular RNA. The NAT10 was found to positively regulate SINV infection in an N-acetyltransferase activity-dependent manner. Mechanistically, the NAT10 modifies lymphocyte antigen six family member E (LY6E) mRNA-the ac4C modification site within the 3'-untranslated region (UTR) of LY6E mRNA, which is essential for its translation and stability. The findings of this study demonstrate that NAT10 regulated mRNA stability and translation efficiency not only through the 5'-UTR or coding sequence but also via the 3'-UTR region. The ac4C modification of host mRNA stability instead of viral mRNA impacting the viral life cycle was thus identified, indicating that the inhibition of ac4C could be a potential target when developing alphavirus antivirals.
Collapse
Affiliation(s)
- Yamei Dang
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Jia Li
- Department of Neurology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Yuchang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Yuan Wang
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Yajing Zhao
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Ningbo Zhao
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Wanying Li
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
- Department of Pathogenic Biology, School of Preclinical Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Hui Zhang
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Chuantao Ye
- Department of Infectious Diseases, Tangdu Hospital, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Hongwei Ma
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Liang Zhang
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - He Liu
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Yangchao Dong
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Min Yao
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Yingfeng Lei
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Zhikai Xu
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Fanglin Zhang
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Wei Ye
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| |
Collapse
|
26
|
Coradini D. Impact of De Novo Cholesterol Biosynthesis on the Initiation and Progression of Breast Cancer. Biomolecules 2024; 14:64. [PMID: 38254664 PMCID: PMC10813427 DOI: 10.3390/biom14010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
Cholesterol (CHOL) is a multifaceted lipid molecule. It is an essential structural component of cell membranes, where it cooperates in regulating the intracellular trafficking and signaling pathways. Additionally, it serves as a precursor for vital biomolecules, including steroid hormones, isoprenoids, vitamin D, and bile acids. Although CHOL is normally uptaken from the bloodstream, cells can synthesize it de novo in response to an increased requirement due to physiological tissue remodeling or abnormal proliferation, such as in cancer. Cumulating evidence indicated that increased CHOL biosynthesis is a common feature of breast cancer and is associated with the neoplastic transformation of normal mammary epithelial cells. After an overview of the multiple biological activities of CHOL and its derivatives, this review will address the impact of de novo CHOL production on the promotion of breast cancer with a focus on mammary stem cells. The review will also discuss the effect of de novo CHOL production on in situ and invasive carcinoma and its impact on the response to adjuvant treatment. Finally, the review will discuss the present and future therapeutic strategies to normalize CHOL biosynthesis.
Collapse
Affiliation(s)
- Danila Coradini
- Laboratory of Medical Statistics and Biometry, "Giulio A. Maccacaro", Department of Clinical Sciences and Community Health, University of Milan, Campus Cascina Rosa, 20133 Milan, Italy
| |
Collapse
|
27
|
Maharjan S, Kirk RS, Lawton SP, Walker AJ. Human growth factor-mediated signalling through lipid rafts regulates stem cell proliferation, development and survival of Schistosoma mansoni. Open Biol 2024; 14:230262. [PMID: 38195062 PMCID: PMC10776228 DOI: 10.1098/rsob.230262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/16/2023] [Indexed: 01/11/2024] Open
Abstract
Although the mechanisms by which schistosomes grow and develop in humans are poorly defined, their unique outer tegument layer, which interfaces with host blood, is considered vital to homeostasis of the parasite. Here, we investigated the importance of tegument lipid rafts to the biology of Schistosoma mansoni in the context of host-parasite interactions. We demonstrate the temporal clustering of lipid rafts in response to human epidermal growth factor (EGF) during early somule development, concomitant with the localization of anteriorly orientated EGF receptors (EGFRs) and insulin receptors, mapped using fluorescent EGF/insulin ligand. Methyl-β-cyclodextrin (MβCD)-mediated depletion of cholesterol from lipid rafts abrogated the EGFR/IR binding at the parasite surface and led to modulation of protein kinase C, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase and Akt signalling pathways within the parasite. Furthermore, MβCD-mediated lipid raft disruption, and blockade of EGFRs using canertinib, profoundly reduced somule motility and survival, and attenuated stem cell proliferation and somule growth and development particularly to the fast-growing liver stage. These findings provide a novel paradigm for schistosome development and vitality in the host, driven through host-parasite interactions at the tegument, that might be exploitable for developing innovative therapeutic approaches to combat human schistosomiasis.
Collapse
Affiliation(s)
- Shradha Maharjan
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| | - Ruth S. Kirk
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| | - Scott P. Lawton
- Centre for Epidemiology and Planetary Health, SRUC School of Veterinary Medicine, Scotland's Rural College, West Mains Road, Edinburgh EH9 3JG, UK
| | - Anthony J. Walker
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| |
Collapse
|
28
|
Ledoux B, Zanin N, Yang J, Mercier V, Coster C, Dupont-Gillain C, Alsteens D, Morsomme P, Renard HF. Plasma membrane nanodeformations promote actin polymerization through CIP4/CDC42 recruitment and regulate type II IFN signaling. SCIENCE ADVANCES 2023; 9:eade1660. [PMID: 38091386 PMCID: PMC10848735 DOI: 10.1126/sciadv.ade1660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/10/2023] [Indexed: 12/18/2023]
Abstract
In their environment, cells must cope with mechanical stresses constantly. Among these, nanoscale deformations of plasma membrane induced by substrate nanotopography are now largely accepted as a biophysical stimulus influencing cell behavior and function. However, the mechanotransduction cascades involved and their precise molecular effects on cellular physiology are still poorly understood. Here, using homemade fluorescent nanostructured cell culture surfaces, we explored the role of Bin/Amphiphysin/Rvs (BAR) domain proteins as mechanosensors of plasma membrane geometry. Our data reveal that distinct subsets of BAR proteins bind to plasma membrane deformations in a membrane curvature radius-dependent manner. Furthermore, we show that membrane curvature promotes the formation of dynamic actin structures mediated by the Rho GTPase CDC42, the F-BAR protein CIP4, and the presence of PI(4,5)P2. In addition, these actin-enriched nanodomains can serve as platforms to regulate receptor signaling as they appear to contain interferon-γ receptor (IFNγ-R) and to lead to the partial inhibition of IFNγ-induced JAK/STAT signaling.
Collapse
Affiliation(s)
- Benjamin Ledoux
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Croix du Sud 4-5 bte L7.07.14, Louvain-la-Neuve 1348, Belgium
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, NanoBiophysics lab, Croix du Sud 4-5 bte L7.07.07, Louvain-la-Neuve 1348, Belgium
- UNamur, Morph-Im platform, Rue de Bruxelles 61, Namur 5000, Belgium
| | - Natacha Zanin
- UNamur, NAmur Research Institute for LIfe Sciences, Unité de Recherche en Biologie Cellulaire animale, Rue de Bruxelles 61, Namur 5000, Belgium
| | - Jinsung Yang
- Gyeongsang National University, Department of Biochemistry, College of Medicine, Department of Convergence Medical Sciences, Institute of Medical Science, Jinju 52727, South Korea
| | - Vincent Mercier
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Charlotte Coster
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Croix du Sud 4-5 bte L7.07.14, Louvain-la-Neuve 1348, Belgium
| | - Christine Dupont-Gillain
- UCLouvain, Institute of Condensed Matter and Nanosciences, Bio- and Soft Matter, Place Louis Pasteur 1 bte L4.01.10, Louvain-la-Neuve 1348, Belgium
| | - David Alsteens
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, NanoBiophysics lab, Croix du Sud 4-5 bte L7.07.07, Louvain-la-Neuve 1348, Belgium
| | - Pierre Morsomme
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Croix du Sud 4-5 bte L7.07.14, Louvain-la-Neuve 1348, Belgium
| | - Henri-François Renard
- UNamur, Morph-Im platform, Rue de Bruxelles 61, Namur 5000, Belgium
- UNamur, NAmur Research Institute for LIfe Sciences, Unité de Recherche en Biologie Cellulaire animale, Rue de Bruxelles 61, Namur 5000, Belgium
| |
Collapse
|
29
|
Sampieri A, Padilla-Flores T, Thawani AR, Lam PY, Fuchter MJ, Peterson R, Vaca L. The conducting state of TRPA1 modulates channel lateral mobility. Cell Calcium 2023; 116:102800. [PMID: 37776645 DOI: 10.1016/j.ceca.2023.102800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/04/2023] [Accepted: 09/16/2023] [Indexed: 10/02/2023]
Abstract
We have studied Danio rerio (Zebrafish) TRPA1 channel using a method that combines single channel electrophysiological and optical recordings to evaluate lateral mobility and channel gating simultaneously in single channels. TRPA1 channel activation by two distinct chemical ligands: allyl isothiocyanate (AITC) and TRPswitch B, results in substantial reduction of channel lateral mobility at the plasma membrane. Incubation with the cholesterol sequestering agent methyl-β-cyclodextrin (MβCD), prevents the reduction on lateral mobility induced by the two chemical agonists. This results strongly suggest that the open conformation of TRPA1 modulates channel lateral mobility probably by facilitating the insertion of the channel into cholesterol-enriched domains at the plasma membrane.
Collapse
Affiliation(s)
- Alicia Sampieri
- Instituto de Fisiología Celular. Departamento de Biología Celular y del desarrollo. Universidad Nacional Autónoma de México. México, CDMX 04510, Mexico
| | - Teresa Padilla-Flores
- Instituto de Fisiología Celular. Departamento de Biología Celular y del desarrollo. Universidad Nacional Autónoma de México. México, CDMX 04510, Mexico
| | - Aditya R Thawani
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 OBZ, United Kingdom
| | - Pui-Ying Lam
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 West Watertown Plank Rd., Milwaukee, Wisconsin 53226, USA; Neuroscience Research Center, Medical College of Wisconsin, 8701 West Watertown Plank Rd., Milwaukee, Wisconsin, 53226, USA
| | - Matthew J Fuchter
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 OBZ, United Kingdom
| | - Randall Peterson
- College of Pharmacy, University of Utah, 30 South 2000 East, Salt Lake City, Utah, 84112, USA
| | - Luis Vaca
- Instituto de Fisiología Celular. Departamento de Biología Celular y del desarrollo. Universidad Nacional Autónoma de México. México, CDMX 04510, Mexico.
| |
Collapse
|
30
|
Gorgojo JP, Carrica MDC, Baroli CM, Valdez HA, Alvarez Hayes J, Rodriguez ME. Adenylate cyclase toxin of Bordetella parapertussis disrupts the epithelial barrier granting the bacterial access to the intracellular space of epithelial cells. PLoS One 2023; 18:e0291331. [PMID: 38011105 PMCID: PMC10681170 DOI: 10.1371/journal.pone.0291331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/27/2023] [Indexed: 11/29/2023] Open
Abstract
B. parapertussis is one of the etiological agents of whooping cough. Once inhaled, the bacteria bind to the respiratory epithelium and start the infection. Little is known about this first step of host colonization and the role of the human airway epithelial barrier on B. parapertussis infection. We here investigated the outcome of the interaction of B. parapertussis with a polarized monolayer of respiratory epithelial cells. Our results show that B. parapertussis preferentially attaches to the intercellular boundaries, and causes the disruption of the tight junction integrity through the action of adenylate cyclase toxin (CyaA). We further found evidence indicating that this disruption enables the bacterial access to components of the basolateral membrane of epithelial cells to which B. parapertussis efficiently attaches and gains access to the intracellular location, where it can survive and eventually spread back into the extracellular environment. Altogether, these results suggest that the adenylate cyclase toxin enables B. parapertussis to overcome the epithelial barrier and eventually establish a niche of persistence within the respiratory epithelial cells.
Collapse
Affiliation(s)
- Juan Pablo Gorgojo
- CINDEFI (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mariela del Carmen Carrica
- CINDEFI (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carlos Manuel Baroli
- CINDEFI (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Hugo Alberto Valdez
- CINDEFI (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Jimena Alvarez Hayes
- CINDEFI (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Maria Eugenia Rodriguez
- CINDEFI (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
31
|
Johns SC, Gupta P, Lee YH, Friend J, Fuster MM. Glycocalyx transduces membrane leak in brain tumor cells exposed to sharp magnetic pulsing. Biophys J 2023; 122:4425-4439. [PMID: 37992690 PMCID: PMC10698326 DOI: 10.1016/j.bpj.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/23/2023] [Accepted: 10/19/2023] [Indexed: 11/24/2023] Open
Abstract
Mechanisms by which electric (E) or magnetic (B) fields might be harnessed to affect tumor cell behavior remain poorly defined, presenting a barrier to translation. We hypothesized in early studies that the glycocalyx of lung cancer cells might play a role in mediating plasma membrane leak by low-frequency pulsed magnetic fields (Lf-PMF) generated on a low-energy solenoid platform. In testing glioblastoma and neuroblastoma cells known to overexpress glycoproteins rich in modifications by the anionic glycan sialic acid (Sia), exposure of brain tumor cells on the same platform to a pulse train that included a 5 min 50Hz Lf-PMF (dB/dt ∼ 2 T/s at 10 ms pulse widths) induced a very modest but significant protease leak above that of control nonexposed cells (with modest but significant reductions in long-term tumor cell viability after the 5 min exposure). Using a markedly higher dB/dt system (80 T/s pulses, 70 μs pulse-width at 5.9 cm from a MagVenture coil source) induced markedly greater leak by the same cells, and eliminating Sia by treating cells with AUS sialidase immediately preexposure abrogated the effect entirely in SH-SY5Y neuroblastoma cells, and partially in T98G glioblastoma cells. The system demonstrated significant leak (including inward leak of propidium iodide), with reduced leak at lower dB/dt in a variety of tumor cells. The ability to abrogate Lf-PMF protease leak by pretreatment with sialidase in SH-SY5Y brain tumor cells or with heparin lyase in A549 lung tumor cells indicated the importance of heavy Sia or heparan sulfate glycosaminoglycan glycocalyx modifications as dominant glycan species mediating Lf-PMF membrane leak in respective tumor cells. This "first-physical" Lf-PMF tumor glycocalyx event, with downstream cell stress, may represent a critical and "tunable" transduction mechanism that depends on characteristic anionic glycans overexpressed by distinct malignant tumors.
Collapse
Affiliation(s)
- Scott C Johns
- VA San Diego Healthcare System, San Diego, California; Veterans Medical Research Foundation, San Diego, California
| | - Purva Gupta
- VA San Diego Healthcare System, San Diego, California; Department of Medicine, Division of Pulmonary & Critical Care, University of California San Diego, La Jolla, California
| | - Yi-Hung Lee
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | - James Friend
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California
| | - Mark M Fuster
- VA San Diego Healthcare System, San Diego, California; Veterans Medical Research Foundation, San Diego, California; Department of Medicine, Division of Pulmonary & Critical Care, University of California San Diego, La Jolla, California; Glycobiology Research and Training Center, University of California San Diego, La Jolla, California.
| |
Collapse
|
32
|
Wolf B, Blaschke CRK, Mungaray S, Weselman BT, Stefanenko M, Fedoriuk M, Bai H, Rodgers J, Palygin O, Drake RR, Nowling TK. Metabolic Markers and Association of Biological Sex in Lupus Nephritis. Int J Mol Sci 2023; 24:16490. [PMID: 38003679 PMCID: PMC10671813 DOI: 10.3390/ijms242216490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Lupus nephritis (LN) is a serious complication for many patients who develop systemic lupus erythematosus, which primarily afflicts women. Our studies to identify biomarkers and the pathogenic mechanisms underlying LN will provide a better understanding of disease progression and sex bias, and lead to identification of additional potential therapeutic targets. The glycosphingolipid lactosylceramide (LacCer) and N-linked glycosylated proteins (N-glycans) were measured in urine and serum collected from LN and healthy control (HC) subjects (10 females and 10 males in each group). The sera from the LN and HC subjects were used to stimulate cytokine secretion and intracellular Ca2+ flux in female- and male-derived primary human renal mesangial cells (hRMCs). Significant differences were observed in the urine of LN patients compared to HCs. All major LacCers species were significantly elevated and differences between LN and HC were more pronounced in males. 72 individual N-glycans were altered in LN compared to HC and three N-glycans were significantly different between the sexes. In hRMCs, Ca2+ flux, but not cytokine secretion, was higher in response to LN sera compared to HC sera. Ca2+ flux, cytokine secretion, and glycosphingolipid levels were significantly higher in female-derived compared to male-derived hRMCs. Relative abundance of some LacCers and hexosylceramides were higher in female-derived compared to male-derived hRMCs. Urine LacCers and N-glycome could serve as definitive LN biomarkers and likely reflect renal disease activity. Despite higher sensitivity of female hRMCs, males may experience greater increases in LacCers, which may underscore worse disease in males. Elevated glycosphingolipid metabolism may poise renal cells to be more sensitive to external stimuli.
Collapse
Affiliation(s)
- Bethany Wolf
- Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon Street, Suite 303 MSC 835, Charleston, SC 29425, USA;
| | - Calvin R. K. Blaschke
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue Basic Science Building 358, Charleston, SC 29425, USA (B.T.W.); (H.B.); (R.R.D.)
| | - Sandy Mungaray
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA; (S.M.); (J.R.)
| | - Bryan T. Weselman
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue Basic Science Building 358, Charleston, SC 29425, USA (B.T.W.); (H.B.); (R.R.D.)
| | - Mariia Stefanenko
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Clinical Sciences Building, 96 Jonathan Lucas Street, Charleston, SC 29425, USA; (M.S.); (M.F.); (O.P.)
| | - Mykhailo Fedoriuk
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Clinical Sciences Building, 96 Jonathan Lucas Street, Charleston, SC 29425, USA; (M.S.); (M.F.); (O.P.)
| | - Hongxia Bai
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue Basic Science Building 358, Charleston, SC 29425, USA (B.T.W.); (H.B.); (R.R.D.)
| | - Jessalyn Rodgers
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA; (S.M.); (J.R.)
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Clinical Sciences Building, 96 Jonathan Lucas Street, Charleston, SC 29425, USA; (M.S.); (M.F.); (O.P.)
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue Basic Science Building 358, Charleston, SC 29425, USA (B.T.W.); (H.B.); (R.R.D.)
| | - Tamara K. Nowling
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA; (S.M.); (J.R.)
| |
Collapse
|
33
|
Meza U, Romero-Méndez C, Sánchez-Armáss S, Rodríguez-Menchaca AA. Role of rafts in neurological disorders. Neurologia 2023; 38:671-680. [PMID: 37858892 DOI: 10.1016/j.nrleng.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/01/2021] [Indexed: 10/21/2023] Open
Abstract
INTRODUCTION Rafts are protein-lipid structural nanodomains involved in efficient signal transduction and the modulation of physiological processes of the cell plasma membrane. Raft disruption in the nervous system has been associated with a wide range of disorders. DEVELOPMENT We review the concept of rafts, the nervous system processes in which they are involved, and their role in diseases such as Parkinson's disease, Alzheimer disease, and Huntington disease. CONCLUSIONS Based on the available evidence, preservation and/or reconstitution of rafts is a promising treatment strategy for a wide range of neurological disorders.
Collapse
Affiliation(s)
- U Meza
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| | - C Romero-Méndez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| | - S Sánchez-Armáss
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| | - A A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| |
Collapse
|
34
|
LaGuardia JS, Shariati K, Bedar M, Ren X, Moghadam S, Huang KX, Chen W, Kang Y, Yamaguchi DT, Lee JC. Convergence of Calcium Channel Regulation and Mechanotransduction in Skeletal Regenerative Biomaterial Design. Adv Healthc Mater 2023; 12:e2301081. [PMID: 37380172 PMCID: PMC10615747 DOI: 10.1002/adhm.202301081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/20/2023] [Indexed: 06/30/2023]
Abstract
Cells are known to perceive their microenvironment through extracellular and intracellular mechanical signals. Upon sensing mechanical stimuli, cells can initiate various downstream signaling pathways that are vital to regulating proliferation, growth, and homeostasis. One such physiologic activity modulated by mechanical stimuli is osteogenic differentiation. The process of osteogenic mechanotransduction is regulated by numerous calcium ion channels-including channels coupled to cilia, mechanosensitive and voltage-sensitive channels, and channels associated with the endoplasmic reticulum. Evidence suggests these channels are implicated in osteogenic pathways such as the YAP/TAZ and canonical Wnt pathways. This review aims to describe the involvement of calcium channels in regulating osteogenic differentiation in response to mechanical loading and characterize the fashion in which those channels directly or indirectly mediate this process. The mechanotransduction pathway is a promising target for the development of regenerative materials for clinical applications due to its independence from exogenous growth factor supplementation. As such, also described are examples of osteogenic biomaterial strategies that involve the discussed calcium ion channels, calcium-dependent cellular structures, or calcium ion-regulating cellular features. Understanding the distinct ways calcium channels and signaling regulate these processes may uncover potential targets for advancing biomaterials with regenerative osteogenic capabilities.
Collapse
Affiliation(s)
- Jonnby S. LaGuardia
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Kaavian Shariati
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Meiwand Bedar
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Xiaoyan Ren
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Shahrzad Moghadam
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Kelly X. Huang
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Wei Chen
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Youngnam Kang
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Dean T. Yamaguchi
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Justine C. Lee
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
- Department of Orthopaedic Surgery, Los Angeles, CA, 90095, USA
- UCLA Molecular Biology Institute, Los Angeles, CA, 90095, USA
| |
Collapse
|
35
|
Obis E, Sol J, Andres-Benito P, Martín-Gari M, Mota-Martorell N, Galo-Licona JD, Piñol-Ripoll G, Portero-Otin M, Ferrer I, Jové M, Pamplona R. Lipidomic Alterations in the Cerebral Cortex and White Matter in Sporadic Alzheimer's Disease. Aging Dis 2023; 14:1887-1916. [PMID: 37196109 PMCID: PMC10529741 DOI: 10.14336/ad.2023.0217] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/17/2023] [Indexed: 05/19/2023] Open
Abstract
Non-targeted LC-MS/MS-based lipidomic analysis was conducted in post-mortem human grey matter frontal cortex area 8 (GM) and white matter of the frontal lobe centrum semi-ovale (WM) to identify lipidome fingerprints in middle-aged individuals with no neurofibrillary tangles and senile plaques, and cases at progressive stages of sporadic Alzheimer's disease (sAD). Complementary data were obtained using RT-qPCR and immunohistochemistry. The results showed that WM presents an adaptive lipid phenotype resistant to lipid peroxidation, characterized by a lower fatty acid unsaturation, peroxidizability index, and higher ether lipid content than the GM. Changes in the lipidomic profile are more marked in the WM than in GM in AD with disease progression. Four functional categories are associated with the different lipid classes affected in sAD: membrane structural composition, bioenergetics, antioxidant protection, and bioactive lipids, with deleterious consequences affecting both neurons and glial cells favoring disease progression.
Collapse
Affiliation(s)
- Elia Obis
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| | - Joaquim Sol
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
- Catalan Institute of Health (ICS), Lleida, Spain, Research Support Unit (USR), Fundació Institut Universitari per a la Recerca en Atenció Primària de Salut Jordi Gol i Gurina (IDIAP JGol), Lleida, Spain.
| | - Pol Andres-Benito
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.
- Bellvitge University Hospital-Bellvitge Biomedical Research Institute (IDIBELL), E-08907 Hospitalet de Llobregat, Barcelona, Spain.
| | - Meritxell Martín-Gari
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| | - Natàlia Mota-Martorell
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| | - José Daniel Galo-Licona
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Clinical Neuroscience Research, Santa Maria University Hospital, IRBLleida, Lleida, Spain.
| | - Manuel Portero-Otin
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| | - Isidro Ferrer
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.
- Bellvitge University Hospital-Bellvitge Biomedical Research Institute (IDIBELL), E-08907 Hospitalet de Llobregat, Barcelona, Spain.
- Department of Pathology and Experimental Therapeutics, University of Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain.
| | - Mariona Jové
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| | - Reinald Pamplona
- Department of Experimental Medicine, Lleida University (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain.
| |
Collapse
|
36
|
Wang W, Sherry T, Cheng X, Fan Q, Cornell R, Liu J, Xiao Z, Pocock R. An intestinal sphingolipid confers intergenerational neuroprotection. Nat Cell Biol 2023; 25:1196-1207. [PMID: 37537365 PMCID: PMC10415181 DOI: 10.1038/s41556-023-01195-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/27/2023] [Indexed: 08/05/2023]
Abstract
In animals, maternal diet and environment can influence the health of offspring. Whether and how maternal dietary choice impacts the nervous system across multiple generations is not well understood. Here we show that feeding Caenorhabditis elegans with ursolic acid, a natural plant product, improves axon transport and reduces adult-onset axon fragility intergenerationally. Ursolic acid provides neuroprotection by enhancing maternal provisioning of sphingosine-1-phosphate, a bioactive sphingolipid. Intestine-to-oocyte sphingosine-1-phosphate transfer is required for intergenerational neuroprotection and is dependent on the RME-2 lipoprotein yolk receptor. Sphingosine-1-phosphate acts intergenerationally by upregulating the transcription of the acid ceramidase-1 (asah-1) gene in the intestine. Spatial regulation of sphingolipid metabolism is critical, as inappropriate asah-1 expression in neurons causes developmental axon outgrowth defects. Our results show that sphingolipid homeostasis impacts the development and intergenerational health of the nervous system. The ability of specific lipid metabolites to act as messengers between generations may have broad implications for dietary choice during reproduction.
Collapse
Affiliation(s)
- Wenyue Wang
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Tessa Sherry
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Xinran Cheng
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Qi Fan
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Rebecca Cornell
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Jie Liu
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Zhicheng Xiao
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
37
|
Ogunmowo TH, Jing H, Raychaudhuri S, Kusick GF, Imoto Y, Li S, Itoh K, Ma Y, Jafri H, Dalva MB, Chapman ER, Ha T, Watanabe S, Liu J. Membrane compression by synaptic vesicle exocytosis triggers ultrafast endocytosis. Nat Commun 2023; 14:2888. [PMID: 37210439 PMCID: PMC10199930 DOI: 10.1038/s41467-023-38595-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 05/09/2023] [Indexed: 05/22/2023] Open
Abstract
Compensatory endocytosis keeps the membrane surface area of secretory cells constant following exocytosis. At chemical synapses, clathrin-independent ultrafast endocytosis maintains such homeostasis. This endocytic pathway is temporally and spatially coupled to exocytosis; it initiates within 50 ms at the region immediately next to the active zone where vesicles fuse. However, the coupling mechanism is unknown. Here, we demonstrate that filamentous actin is organized as a ring, surrounding the active zone at mouse hippocampal synapses. Assuming the membrane area conservation is due to this actin ring, our theoretical model suggests that flattening of fused vesicles exerts lateral compression in the plasma membrane, resulting in rapid formation of endocytic pits at the border between the active zone and the surrounding actin-enriched region. Consistent with model predictions, our data show that ultrafast endocytosis requires sufficient compression by exocytosis of multiple vesicles and does not initiate when actin organization is disrupted, either pharmacologically or by ablation of the actin-binding protein Epsin1. Our work suggests that membrane mechanics underlie the rapid coupling of exocytosis to endocytosis at synapses.
Collapse
Affiliation(s)
- Tyler H Ogunmowo
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Biochemistry, Cellular and Molecular Biology graduate program, Johns Hopkins University, Baltimore, MD, US
| | - Haoyuan Jing
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
| | - Sumana Raychaudhuri
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
| | - Grant F Kusick
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Biochemistry, Cellular and Molecular Biology graduate program, Johns Hopkins University, Baltimore, MD, US
| | - Yuuta Imoto
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
| | - Shuo Li
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Department of Ophthalmology, School of Medicine, Stanford University, Palo Alto, CA, US
| | - Kie Itoh
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US
| | - Ye Ma
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, US
| | - Haani Jafri
- Department of Neuroscience and Jefferson Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA, US
| | - Matthew B Dalva
- Department of Neuroscience and Jefferson Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA, US
- Department of Cell and Molecular Biology and the Tulane Brain Institute, Tulane University, New Orleans, LA, US
| | - Edwin R Chapman
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, US
- Howard Hughes Medical Institute, Madison, WI, US
| | - Taekjip Ha
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, US
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, US
- Howard Hughes Medical Institute, Baltimore, MD, US
| | - Shigeki Watanabe
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US.
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US.
- Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, US.
| | - Jian Liu
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, US.
- Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, US.
| |
Collapse
|
38
|
Bergen J, Karasova M, Bileck A, Pignitter M, Marko D, Gerner C, Del Favero G. Exposure to dietary fatty acids oleic and palmitic acid alters structure and mechanotransduction of intestinal cells in vitro. Arch Toxicol 2023; 97:1659-1675. [PMID: 37117602 PMCID: PMC10182945 DOI: 10.1007/s00204-023-03495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/04/2023] [Indexed: 04/30/2023]
Abstract
Intestinal cells are continuously exposed to food constituents while adapting to peristaltic movement and fluid shear stress. Oleic acid (OA) and palmitic acid (PA) are among the most prevalent fatty acids with respect to dietary lipids. Despite the central importance of dietary lipids for a balanced diet, awareness about potential detrimental effects related to excessive consumption is increasing; this includes toxicity, metabolic deregulation, and, particularly for cancer cells, a benefit from the uptake of fatty acids related to promotion of metastasis. Expanding on this, we started elucidating the effects of OA and PA (25-500 µM) on non-transformed human intestinal epithelial cells (HCEC-1CT) in comparison to colon carcinoma cells (HCT116), with regard to the mechanosensory apparatus. Hence, intestinal cells' motility is on the one side essential to ensure adaption to peristaltic movement and barrier function, but also to enable metastatic progression. Incubation with both OA and PA (≥ 25 µM) significantly decreased membrane fluidity of HCT116 cells, whereas the effect on HCEC-1CT was more limited. Application of rhodamine-labelled PA demonstrated that the fatty acid is incorporated into the plasma membrane of HCT116, which could not be observed in the non-tumorigenic cell line. Down-streaming into the intracellular compartment, a pronounced rearrangement of actin cytoskeleton was evident in both cell lines (OA and PA; 25 and 100 µM). This was accompanied by a variation of translocation efficiency of the mechanosensitive co-transcription factor YAP1, albeit with a stronger effect seen for PA and the cancer cells. Untargeted proteomic analysis confirmed that exposure to OA and PA could alter the response capacity of HCT116 cells to fluid shear stress. Taken together, OA and PA were able to functionally modulate the mechanosensory apparatus of intestinal cells, implying a novel role for dietary fatty acids in the regulation of intestinal pathophysiology.
Collapse
Affiliation(s)
- Janice Bergen
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
| | - Martina Karasova
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
- Joint Metabolome Facility, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Marc Pignitter
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria
- Joint Metabolome Facility, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria.
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währingerstr. 38-42, 1090, Vienna, Austria.
| |
Collapse
|
39
|
Fei W, Yan J, Wu X, Yang S, Zhang X, Wang R, Chen Y, Xu J, Zheng C. Perturbing plasma membrane lipid: a new paradigm for tumor nanotherapeutics. Theranostics 2023; 13:2471-2491. [PMID: 37215569 PMCID: PMC10196822 DOI: 10.7150/thno.82189] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Cancer is generally considered a result of genetic mutations that cause epigenetic changes, leading to anomalous cellular behavior. Since 1970s, an increasing understanding of the plasma membrane and specifically the lipid alterations in tumor cells have provided novel insights for cancer therapy. Moreover, the advances in nanotechnology offer a potential opportunity to target the tumor plasma membrane while minimizing side effects on normal cells. To further develop membrane lipid perturbing tumor therapy, the first section of this review demonstrates the association between plasma membrane physicochemical properties and tumor signaling, metastasis, and drug resistance. The second section highlights existing nanotherapeutic strategies for membrane disruption, including lipid peroxide accumulation, cholesterol regulation, membrane structure disruption, lipid raft immobilization, and energy-mediated plasma membrane perturbation. Finally, the third section evaluates the prospects and challenges of plasma membrane lipid perturbing therapy as a therapeutic strategy for cancers. The reviewed membrane lipid perturbing tumor therapy strategies are expected to bring about necessary changes in tumor therapy in the coming decades.
Collapse
Affiliation(s)
- Weidong Fei
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jingjing Yan
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiaodong Wu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Shan Yang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiao Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Rong Wang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yue Chen
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Junjun Xu
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| |
Collapse
|
40
|
Bryson A, Gonzalez G, Al-Atoom N, Nashar N, Smith JR, Nashar T. Extracellular vesicles are conduits for E. coli heat-labile enterotoxin (LT) and the B-subunits of LT and cholera toxin in immune cell-to-cell communication. Microb Pathog 2023; 177:106038. [PMID: 36841487 PMCID: PMC10065948 DOI: 10.1016/j.micpath.2023.106038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/04/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023]
Abstract
Several pathogens excrete their toxins either directly into the host or through extracellular vesicles. Enterotoxigenic E. coli is capable of secreting heat-labile toxin LT in extracellular vesicles (EVs) which are delivered to mammalian cells. LT and its B-subunit, LTB, and their structurally and functionally related toxin from Vibrio cholerae, CT and CTB, are potent immunogens and adjuvants. However, despite their reported remarkable effects on immune cells, the mechanisms by which they mediate their immunological properties are still unclear. We show that B cells incubated with LT or LTB secreted EVs in the cell culture medium. However, compared to unstimulated cells, EVs and their internal protein content were significantly reduced in recipient B cells. Analysis of protein markers of the vesicles secreted by B cells were found to be enriched in exosomes of endosomal origin. B cells incubated with FITC-CTB secreted CTB in EVs which were taken up by recipient B and T cells. FITC-CTB transfected into exosomes from mouse dendritic cells were also taken up by recipient B cells. Moreover, B cells incubated with FITC-CTB secreted CTB in EVs which increased the number of recipient B cells expressing higher levels of CD25 and CD86. These results suggest that EVs from B cells are conduits for the enterotoxins, and play an important role in the enterotoxins immune cell-to-cell communication. This is the first report which looked at EVs as a mean to deliver these proteins from and to immune cells.
Collapse
Affiliation(s)
- Andreya Bryson
- Tuskegee University, College of Veterinary Medicine, Department of Pathobiology, Tuskegee, AL, AL 36088, USA
| | - Gabrielle Gonzalez
- Tuskegee University, College of Veterinary Medicine, Department of Pathobiology, Tuskegee, AL, AL 36088, USA
| | - Nadia Al-Atoom
- Tuskegee University, College of Veterinary Medicine, Department of Pathobiology, Tuskegee, AL, AL 36088, USA
| | - Nijad Nashar
- The University at Buffalo, School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, 14215, USA
| | - Ja R'eika Smith
- Tuskegee University, College of Veterinary Medicine, Department of Pathobiology, Tuskegee, AL, AL 36088, USA
| | - Toufic Nashar
- Tuskegee University, College of Veterinary Medicine, Department of Pathobiology, Tuskegee, AL, AL 36088, USA.
| |
Collapse
|
41
|
Samovski D, Jacome-Sosa M, Abumrad NA. Fatty Acid Transport and Signaling: Mechanisms and Physiological Implications. Annu Rev Physiol 2023; 85:317-337. [PMID: 36347219 DOI: 10.1146/annurev-physiol-032122-030352] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Long-chain fatty acids (FAs) are components of plasma membranes and an efficient fuel source and also serve as metabolic regulators through FA signaling mediated by membrane FA receptors. Impaired tissue FA uptake has been linked to major complications of obesity, including insulin resistance, cardiovascular disease, and type 2 diabetes. Fatty acid interactions with a membrane receptor and the initiation of signaling can modify pathways related to nutrient uptake and processing, cell proliferation or differentiation, and secretion of bioactive factors. Here, we review the major membrane receptors involved in FA uptake and FA signaling. We focus on two types of membrane receptors for long-chain FAs: CD36 and the G protein-coupled FA receptors FFAR1 and FFAR4. We describe key signaling pathways and metabolic outcomes for CD36, FFAR1, and FFAR4 and highlight the parallels that provide insight into FA regulation of cell function.
Collapse
Affiliation(s)
- Dmitri Samovski
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Miriam Jacome-Sosa
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Nada A Abumrad
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA; .,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
42
|
Roy A, Patra SK. Lipid Raft Facilitated Receptor Organization and Signaling: A Functional Rheostat in Embryonic Development, Stem Cell Biology and Cancer. Stem Cell Rev Rep 2023; 19:2-25. [PMID: 35997871 DOI: 10.1007/s12015-022-10448-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 01/29/2023]
Abstract
Molecular views of plasma membrane organization and dynamics are gradually changing over the past fifty years. Dynamics of plasma membrane instigate several signaling nexuses in eukaryotic cells. The striking feature of plasma membrane dynamics is that, it is internally transfigured into various subdomains of clustered macromolecules. Lipid rafts are nanoscale subdomains, enriched with cholesterol and sphingolipids, reside as floating entity mostly on the exoplasmic leaflet of the lipid bilayer. In terms of functionality, lipid rafts are unique among other membrane subdomains. Herein, advances on the roles of lipid rafts in cellular physiology and homeostasis are discussed, precisely, on how rafts dynamically harbor signaling proteins, including GPCRs, catalytic receptors, and ionotropic receptors within it and orchestrate multiple signaling pathways. In the developmental proceedings signaling are designed for patterning of overall organism and they differ from the somatic cell physiology and signaling of fully developed organisms. Some of the developmental signals are characteristic in maintenance of stemness and activated during several types of tumor development and cancer progression. The harmony between extracellular signaling and lineage specific transcriptional programs are extremely important for embryonic development. The roles of plasma membrane lipid rafts mediated signaling in lineage specificity, early embryonic development, stem cell maintenance are emerging. In view of this, we have highlighted and analyzed the roles of lipid rafts in receptor organization, cell signaling, and gene expression during embryonic development; from pre-implantation through the post-implantation phase, in stem cell and cancer biology.
Collapse
Affiliation(s)
- Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
43
|
Effects of periodic mechanical stress on cytoskeleton dependent lipid raft-induced integrin ɑ1 activation in rat nucleus pulposus cells. J Mol Histol 2023; 54:67-75. [PMID: 36719565 PMCID: PMC9908706 DOI: 10.1007/s10735-023-10112-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/05/2023] [Indexed: 02/01/2023]
Abstract
Extracellular matrix (ECM) production and nucleus pulposus (NP) cell migration increase under periodic mechanical stress (PMS), but the underpinning regulatory mechanism remains unclear. This work aimed to examine the regulatory effects of cytoskeleton-lipid raft-integrin α1 signaling in NP cells exposed to PMS. Briefly, In NP cells, cytoskeleton rearrangement, lipid raft aggregation and integrin α1 expression in the stress and control groups were assessed by immunofluorescent staining and immunoblot. In addition, cell migration and ECM gene expression were detected by a scratch test and quantitative reverse transcription polymerase chain reaction (qRT‑PCR), respectively. As a result, PMS up-regulated ECM gene expression and enhanced NP cell migration (both P < 0.05), accompanied by increased integrin α1, lipid raft, caveolin-3, F-actin and β-tubulin amounts. Pretreatment with the lipid raft inhibitor methyl-β-cyclodextrin (MβCD) or small interfering RNA (siRNA) targeting caveolin-3 resulted in decreased ECM mRNA synthesis and cell migration induced by PMS (both P < 0.05); meanwhile, integrin α1 expression was also reduced. F-actin and β-tubulin inhibition by cytochalasin D and colchicine, respectively, not only reduced ECM mRNA synthesis and cell migration (both P < 0.05), but also disrupted lipid raft and caveolin-3 amount increases induced by PMS in NP cells. In conclusion, PMS promotes ECM mRNA up-regulation and cell migration through the cytoskeleton-lipid raft-integrin α1 signaling pathway, inhibiting cytoskeleton and lipid rafts could block the cellular effects.
Collapse
|
44
|
Pacheco J, Bohórquez-Hernández A, Méndez-Acevedo KM, Sampieri A, Vaca L. Roles of Cholesterol and PtdIns(4,5)P 2 in the Regulation of STIM1-Orai1 Channel Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:305-326. [PMID: 36988886 DOI: 10.1007/978-3-031-21547-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Calcium is one of the most prominent second messengers. It is involved in a wide range of functions at the single-cell level but also in modulating regulatory mechanisms in the entire organism. One process mediating calcium signaling involves hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) by the phospholipase-C (PLC). Thus, calcium and PtdIns(4,5)P2 are intimately intertwined two second-messenger cascades that often depend on each other. Another relevant lipid associated with calcium signaling is cholesterol. Both PtdIns(4,5)P2 and cholesterol play key roles in the formation and maintenance of specialized signaling nanodomains known as lipid rafts. Lipid rafts are particularly important in calcium signaling by concentrating and localizing calcium channels such as the Orai1 channel. Depletion of internal calcium stores is initiated by the production of inositol-1,4,5-trisphosphate (IP3). Calcium depletion from the ER induces the oligomerization of STIM1, which binds Orai1 and initiates calcium influx into the cell. In the present review, we analyzed the complex interactions between cholesterol, PtdIns(4,5)P2, and the complex formed by the Orai1 channel and the signaling molecule STIM1. We explore some of the complex mechanisms governing calcium homeostasis and phospholipid metabolism, as well as the interaction between these two apparently independent signaling cascades.
Collapse
Affiliation(s)
- Jonathan Pacheco
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Kevin M Méndez-Acevedo
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- ZHK, German Center for Cardiovascular Research, Partner Site, Berlin, Germany
| | - Alicia Sampieri
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | - Luis Vaca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México.
| |
Collapse
|
45
|
Zhang T, Song C, Li H, Zheng Y, Zhang Y. Different Extracellular β-Amyloid (1-42) Aggregates Differentially Impair Neural Cell Adhesion and Neurite Outgrowth through Differential Induction of Scaffold Palladin. Biomolecules 2022; 12:biom12121808. [PMID: 36551236 PMCID: PMC9775237 DOI: 10.3390/biom12121808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular amyloid β-protein (1-42) (Aβ42) aggregates have been recognized as toxic agents for neural cells in vivo and in vitro. The aim of this study was to investigate the cytotoxic effects of extracellular Aβ42 aggregates in soluble (or suspended, SAβ42) and deposited (or attached, DAβ42) forms on cell adhesion/re-adhesion, neurite outgrowth, and intracellular scaffold palladin using the neural cell lines SH-SY5Y and HT22, and to elucidate the potential relevance of these effects. The effect of extracellular Aβ42 on neural cell adhesion was directly associated with their neurotrophic or neurotoxic activity, with SAβ42 aggregates reducing cell adhesion and associated live cell de-adherence more than DAβ42 aggregates, while causing higher mortality. The reduction in cell adhesion due to extracellular Aβ42 aggregates was accompanied by the impairment of neurite outgrowth, both in length and number, and similarly, SAβ42 aggregates impaired the extension of neurites more severely than DAβ42 aggregates. Further, the disparate changes of intracellular palladin induced by SAβ42 and DAβ42 aggregates, respectively, might underlie their aforementioned effects on target cells. Further, the use of anti-oligomeric Aβ42 scFv antibodies revealed that extracellular Aβ42 aggregates, especially large DAβ42 aggregates, had some independent detrimental effects, including physical barrier effects on neural cell adhesion and neuritogenesis in addition to their neurotoxicity, which might be caused by the rigid C-terminal clusters formed between adjacent Aβ42 chains in Aβ42 aggregates. Our findings, concerning how scaffold palladin responds to extracellular Aβ42 aggregates, and is closely connected with declines in cell adhesion and neurite outgrowth, provide new insights into the cytotoxicity of extracellular Aβ42 aggregates in Alzheimer disease.
Collapse
Affiliation(s)
- Tianyu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Chuli Song
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - He Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Yanru Zheng
- School of Life Science, Jilin University, Changchun 130012, China
| | - Yingjiu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
- School of Life Science, Jilin University, Changchun 130012, China
- Correspondence:
| |
Collapse
|
46
|
Jiang F, Liu J, Du Z, Liu X, Shang X, Yu Y, Zhang T. Soybean meal peptides regulated membrane phase of giant unilamellar vesicles: A key role for bilayer amphipathic region localization. Food Res Int 2022; 162:111924. [DOI: 10.1016/j.foodres.2022.111924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022]
|
47
|
Amyloid β, Lipid Metabolism, Basal Cholinergic System, and Therapeutics in Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms232012092. [PMID: 36292947 PMCID: PMC9603563 DOI: 10.3390/ijms232012092] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 12/05/2022] Open
Abstract
The presence of insoluble aggregates of amyloid β (Aβ) in the form of neuritic plaques (NPs) is one of the main features that define Alzheimer’s disease. Studies have suggested that the accumulation of these peptides in the brain significantly contributes to extensive neuronal loss. Furthermore, the content and distribution of cholesterol in the membrane have been shown to have an important effect on the production and subsequent accumulation of Aβ peptides in the plasma membrane, contributing to dysfunction and neuronal death. The monomeric forms of these membrane-bound peptides undergo several conformational changes, ranging from oligomeric forms to beta-sheet structures, each presenting different levels of toxicity. Aβ peptides can be internalized by particular receptors and trigger changes from Tau phosphorylation to alterations in cognitive function, through dysfunction of the cholinergic system. The goal of this review is to summarize the current knowledge on the role of lipids in Alzheimer’s disease and their relationship with the basal cholinergic system, as well as potential disease-modifying therapies.
Collapse
|
48
|
Critical Sites on Ostreolysin Are Responsible for Interaction with Cytoskeletal Proteins. Biomedicines 2022; 10:biomedicines10102442. [PMID: 36289704 PMCID: PMC9598724 DOI: 10.3390/biomedicines10102442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
We explored the structural features of recombinant ostreolysin A (rOlyA), a protein produced by Pleurotus ostreatus and responsible for binding to α/β-tubulin. We found that rOlyA cell internalization is essential for the induction of adipocyte-associated activity, which is mediated by the interaction of rOlyA and microtubule proteins. We created different point mutations at conserved tryptophan (W) sites in rOlyA and analyzed their biological activity in HIB-1B preadipocytes. We demonstrated that the protein’s cell-internalization ability and the differentiated phenotype induced, such as small lipid-droplet formation and gene expression of mitogenesis activity, were impaired in point-mutated proteins W96A and W28A, where W was converted to alanine (A). We also showed that an rOlyA homologue, OlyA6 complexed with mCherry, cannot bind to β-tubulin and does not induce mitochondrial biosynthesis-associated markers, suggesting that the OlyA6 region masked by mCherry is involved in β-tubulin binding. Protein–protein docking simulations were carried out to investigate the binding mode of rOlyA with β-tubulin. Taken together, we identified functional sites in rOlyA that are essential for its binding to β-tubulin and its adipocyte-associated biological activity.
Collapse
|
49
|
Tang R, Liang J, Jing X, Liu T. Discrepancy in Sterol Usage between Two Polyphagous Caterpillars, Mythimna separata and Spodoptera frugiperda. INSECTS 2022; 13:876. [PMID: 36292826 PMCID: PMC9604351 DOI: 10.3390/insects13100876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Insects are sterol auxotrophs and typically obtain sterols from food. However, the sterol demand and metabolic capacity vary greatly among species, even for closely related species. The low survival of many insects on atypical sterols, such as cholestanol and cholestanone, raises the possibility of using sterol-modified plants to control insect herbivore pests. In this study, we evaluated two devastating migratory crop pests, Mythimna separata and Spodoptera frugiperda, in response to atypical sterols and explored the reasons that caused the divergences in sterol nutritional biology between them. Contrary to M. separata, S. frugiperda had unexpectedly high survival on cholestanone, and nearly 80% of the individuals pupated. Comparative studies, including insect response to multiple diets and larval body sterol/steroids analysis, were performed to explain their differences in cholestanone usage. Our results showed that, in comparison to M. separata, the superiority of S. frugiperda on cholestanone can be attributed to its higher efficiency of converting ketone into available stanol and its lower demand for sterols, which resulted in a better survival when cholesterol was unavailable. This research will help us to better understand insect sterol nutritional biology and the potential of using atypical sterols to control herbivorous insect pests.
Collapse
Affiliation(s)
| | | | - Xiangfeng Jing
- Correspondence: (X.J.); (T.L.); Tel.: +86-18220806257 (X.J.); +86-29-87092663 (T.L.)
| | - Tongxian Liu
- Correspondence: (X.J.); (T.L.); Tel.: +86-18220806257 (X.J.); +86-29-87092663 (T.L.)
| |
Collapse
|
50
|
Li L, Hu J, Różycki B, Ji J, Song F. Interplay of receptor-ligand binding and lipid domain formation during cell adhesion. Front Mol Biosci 2022; 9:1019477. [PMID: 36203878 PMCID: PMC9531914 DOI: 10.3389/fmolb.2022.1019477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
Cell adhesion involved in biological processes such as cell migration, immune responses, and cancer metastasis, is mediated by the specific binding of receptor and ligand proteins. Some of these proteins exhibit affinity for nanoscale lipid clusters in cell membranes. A key question is how these nanoscale lipid clusters influence and react to the receptor-ligand binding during cell adhesion. In this article, we review recent computational studies that shed new light on the interplay of the receptor-ligand binding and the formation of lipid domains in adhering membranes. These studies indicate that the receptor-ligand binding promotes coalescence of lipid clusters into mesoscale domains, which, in turn, enhances both the affinity and cooperativity of the receptor-ligand binding in cell-cell adhesion with mobile ligands. In contrast, in the case of cell-extracellular matrix adhesion with immobile ligands, the receptor-ligand binding and the lipid cluster coalescence can be correlated or anti-correlated, depending strongly on the ligand distribution. These findings deepen our understanding of correlations between cell adhesion and membrane heterogeneities.
Collapse
Affiliation(s)
- Long Li
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing, China
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Jinglei Hu
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing, China
- *Correspondence: Jinglei Hu, ; Bartosz Różycki, ; Jing Ji,
| | - Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
- *Correspondence: Jinglei Hu, ; Bartosz Różycki, ; Jing Ji,
| | - Jing Ji
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- *Correspondence: Jinglei Hu, ; Bartosz Różycki, ; Jing Ji,
| | - Fan Song
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|