1
|
Derry-Vick H. Writing tips for psychoneuroimmunology trainees: Lessons learned from Dr. Kiecolt-Glaser. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2024; 20:100258. [PMID: 39219689 PMCID: PMC11363997 DOI: 10.1016/j.cpnec.2024.100258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Psychoneuroimmunology (PNI) researchers can advance their careers and increase their scientific impact by prioritizing their writing skills. In addition to Dr. Kiecolt-Glaser's landmark research that inspired this special issue, her legacy is reflected in her prolific writing. Dr. Kiecolt-Glaser has the unique ability to convey her innovative research clearly and to diverse audiences. She also made writing mentorship a critical part of the training experience in her lab. In these ways, Dr. Kiecolt-Glaser's writing skills and mentorship have shaped both the PNI field and her trainees' careers. In this paper, I distill lessons learned about writing from Dr. Kiecolt-Glaser during my time as a graduate student in her Stress and Health Lab in the 2010s. I reflect on Dr. Kiecolt-Glaser's influence on her trainees' writing habits, summarize "writing pearls" inspired by her feedback/revisions, and provide observations on her writing mentorship habits. These tips are intended to help PNI trainees to clearly communicate their work and to help mentors reflect on ways they can prioritize and advance their trainees' writing skills. Finally, I reflect on how Dr. Kiecolt-Glaser's mentorship and scientific accomplishments had a tremendous impact on my own career development.
Collapse
Affiliation(s)
- Heather Derry-Vick
- Cancer Prevention Precision Control Institute, Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
- Hackensack Meridian School of Medicine, Nutley, NJ, USA
| |
Collapse
|
2
|
Malarkey WB. Psychoneuroimmunology and the research of Janice Kiecolt-Glaser: It informs self-care and the practice of medicine. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2024; 20:100260. [PMID: 39258160 PMCID: PMC11386094 DOI: 10.1016/j.cpnec.2024.100260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Dr. Janice Kiecolt-Glaser as an undergraduate obtained a major in psychology and a minor in biological sciences which was an early indication of her budding interest in how the brain talks to a variety of physiologic systems. Early in her research career Jan began to build a research team that eventually consisted of scientists with expertise in a variety of disciplines including virology, immunology, endocrinology, nutrition science, biostatistics, genetics, and the microbiome. Additionally, Jan enlisted the aid of a group of bright energetic pre- and post-doctoral graduate students, obtained numerous NIH grants, and utilized an excellent Clinical Research Center. Over many years Jan directed these teams to help with understanding some of the biologic consequences of common life stressors such as loneliness, academic examinations, marital discord, breast cancer survivorship, and dementia caregiving. In this survey of her accomplishments, I will present some of the highlights of her prolific contributions which have encouraged many to enter the field of psychoneuroimmunology.
Collapse
|
3
|
Mantadaki AE, Baliou S, Linardakis M, Vakonaki E, Tzatzarakis MN, Tsatsakis A, Symvoulakis EK. Quercetin Intake and Absolute Telomere Length in Patients with Type 2 Diabetes Mellitus: Novel Findings from a Randomized Controlled Before-and-After Study. Pharmaceuticals (Basel) 2024; 17:1136. [PMID: 39338301 PMCID: PMC11434860 DOI: 10.3390/ph17091136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Telomeres, the protective chromosomal ends, progressively shorten and potentially are implicated in the pathogenesis of age-related diseases. In type 2 diabetes (T2DM), telomere shortening may play an important role, but the whole 'picture' remains limited. From a therapeutic perspective, the phytonutrient quercetin appears to be clinically effective and safe for patients with T2DM. Considering the above, we aimed to examine whether quercetin could interfere with telomere length (TL) dynamics. One hundred patients with T2DM on non-insulin medications registered within a primary healthcare facility were stratified by age and sex and randomly assigned to either standard care or standard care plus quercetin (500 mg/day) for 12 weeks, succeeded by an 8-week washout period and another 12 weeks of supplementation. Of the 88 patients completing the trial, 82 consented to blood sampling for TL measurements. Health assessments and whole blood absolute TL measurements using quantitative polymerase chain reaction (qPCR) were conducted at baseline and study end, and the findings of this subcohort are presented. Quercetin supplementation was associated with a significant increase in mean TL (odds ratio ≥ 2.44; p < 0.05) with a strengthened association after full adjustment for potential confounders through multiple logistic regression analysis (odds ratio = 3.48; p = 0.026), suggesting it as a potentially promising supplementation option. Further studies are needed to confirm this finding, elucidating the underlying molecular mechanisms of quercetin.
Collapse
Affiliation(s)
- Aikaterini E Mantadaki
- Clinic of Social and Family Medicine, Department of Social Medicine, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Stella Baliou
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Manolis Linardakis
- Clinic of Social and Family Medicine, Department of Social Medicine, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Elena Vakonaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Manolis N Tzatzarakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Aristides Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Emmanouil K Symvoulakis
- Clinic of Social and Family Medicine, Department of Social Medicine, School of Medicine, University of Crete, 70013 Heraklion, Greece
| |
Collapse
|
4
|
Baliou S, Ioannou P, Apetroaei MM, Vakonaki E, Fragkiadaki P, Kirithras E, Tzatzarakis MN, Arsene AL, Docea AO, Tsatsakis A. The Impact of the Mediterranean Diet on Telomere Biology: Implications for Disease Management-A Narrative Review. Nutrients 2024; 16:2525. [PMID: 39125404 PMCID: PMC11313773 DOI: 10.3390/nu16152525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
INTRODUCTION Telomeres are nucleoprotein complexes at the ends of chromosomes that are under the control of genetic and environmental triggers. Accelerated telomere shortening is causally implicated in the increasing incidence of diseases. The Mediterranean diet has recently been identified as one that confers protection against diseases. This review aimed to identify the effect of each component of the Mediterranean diet on telomere length dynamics, highlighting the underlying molecular mechanisms. METHODS PubMed was searched to identify relevant studies to extract data for conducting a narrative review. RESULTS The Mediterranean diet alleviates clinical manifestations in many diseases. Focusing on autoimmune diseases, the Mediterranean diet can be protective by preventing inflammation, mitochondrial malfunction, and abnormal telomerase activity. Also, each Mediterranean diet constituent seems to attenuate aging through the sustenance or elongation of telomere length, providing insights into the underlying molecular mechanisms. Polyphenols, vitamins, minerals, and fatty acids seem to be essential in telomere homeostasis, since they inhibit inflammatory responses, DNA damage, oxidative stress, mitochondrial malfunction, and cell death and induce telomerase activation. CONCLUSIONS The Mediterranean diet is beneficial for maintaining telomere dynamics and alleviating age-related illnesses. This review provides a comprehensive overview of cross-sectional, observational, and randomized controlled trials regarding the beneficial impact of every constituent in the Mediterranean diet on telomere length and chronic disease management.
Collapse
Affiliation(s)
- Stella Baliou
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece; (S.B.); (E.V.); (P.F.); (E.K.); (M.N.T.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| | - Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Miruna-Maria Apetroaei
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (A.L.A.)
| | - Elena Vakonaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece; (S.B.); (E.V.); (P.F.); (E.K.); (M.N.T.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| | - Persefoni Fragkiadaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece; (S.B.); (E.V.); (P.F.); (E.K.); (M.N.T.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| | - Evangelos Kirithras
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece; (S.B.); (E.V.); (P.F.); (E.K.); (M.N.T.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| | - Manolis N. Tzatzarakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece; (S.B.); (E.V.); (P.F.); (E.K.); (M.N.T.); (A.T.)
| | - Andreea Letitia Arsene
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (A.L.A.)
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy, Petru Rares, 200349 Craiova, Romania
| | - Aristides Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece; (S.B.); (E.V.); (P.F.); (E.K.); (M.N.T.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| |
Collapse
|
5
|
Christian LM. Turning stress into success: A festschrift in honor of Janice Kiecolt-Glaser. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2024; 19:100251. [PMID: 39170082 PMCID: PMC11338126 DOI: 10.1016/j.cpnec.2024.100251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Affiliation(s)
- Lisa M. Christian
- Department of Psychiatry & Behavioral Health and the Institute for Behavioral Medicine Research and The Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
6
|
Park M, Lee DE, Hong Y, Suh JK, Lee JA, Kim M, Park HJ. Telomere Length in Adolescent and Young Adult Survivors of Childhood Cancer. Cancers (Basel) 2024; 16:2344. [PMID: 39001406 PMCID: PMC11240481 DOI: 10.3390/cancers16132344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
We examined the leukocyte relative telomere length (RTL) in Korean adolescent and young adult (AYA) survivors of childhood cancer and evaluated the association of leukocyte RTL with multiple factors, including malignancy type, cancer treatment, age, and chronic health conditions (CHCs). Eighty-eight AYA survivors of childhood cancer with a median follow-up period of 73 months were recruited. RTL in pediatric cancer survivors was not significantly shorter than the predicted value for age-matched references. Neither age at diagnosis nor duration of therapy influenced the RTL. Among the 43 patients with hematologic malignancies, those who underwent allogeneic hematopoietic stem cell transplantation (HSCT) showed a significant shortening of the RTL compared with those who did not (p = 0.039). Among the 15 patients who underwent allogeneic HSCT, those who developed acute graft-versus-host disease (GVHD) of grade II or higher had significantly shorter RTL than those who did not (p = 0.012). Patients with grade II CHCs had significantly shorter RTL than those without CHCs or with grade I CHCs (p = 0.001). Survivors with ≥2 CHCs also exhibited shorter RTL (p = 0.027). Overall, pediatric cancer survivors had similar telomere lengths compared to age-matched references. HSCT recipients and patients with severe or multiple CHCs had shorter telomeres. GVHD augmented telomere attrition in HSCT recipients.
Collapse
Affiliation(s)
- Meerim Park
- Department of Pediatrics, Center for Pediatric Cancer, National Cancer Center, Goyang 10408, Republic of Korea
| | - Dong-Eun Lee
- Biostatic Collaboration Team, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Yuna Hong
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jin Kyung Suh
- Department of Pediatrics, Center for Pediatric Cancer, National Cancer Center, Goyang 10408, Republic of Korea
| | - Jun Ah Lee
- Department of Pediatrics, Center for Pediatric Cancer, National Cancer Center, Goyang 10408, Republic of Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyeon Jin Park
- Department of Pediatrics, Center for Pediatric Cancer, National Cancer Center, Goyang 10408, Republic of Korea
| |
Collapse
|
7
|
Azzolino D, Bertoni C, De Cosmi V, Spolidoro GCI, Agostoni C, Lucchi T, Mazzocchi A. Omega-3 polyunsatured fatty acids and physical performance across the lifespan: a narrative review. Front Nutr 2024; 11:1414132. [PMID: 38966419 PMCID: PMC11223594 DOI: 10.3389/fnut.2024.1414132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/12/2024] [Indexed: 07/06/2024] Open
Abstract
Background and Aims Physical performance is a major contributor of mobility and independence during older life. Despite a progressive decline in musculoskeletal function starts from middle age, several factors acting during the life-course can negatively influence musculoskeletal functional capacities. Lifestyle interventions incorporating nutrition and physical exercise can help maximizing the muscle functional capacities in early life as well as preserving them later in life. Among various dietary compounds, omega-3 polyunsaturated fatty acids (PUFAs) are gaining growing attention for their potential effects on muscle membrane composition and muscle function. Indeed, several pathways are enhanced, such as an attenuation of pro-inflammatory oxidative stress, mitochondrial function, activation of the mammalian target of rapamycin (mTOR) signaling and reduction of insulin resistance. Methods We performed a narrative review to explore the existing literature on the relationship between omega-3 PUFAs and physical performance across the life-course. Results Growing evidence from randomized controlled trials (RCTs) suggests beneficial effects of omega-3 PUFAs on muscle function, including physical performance parameters in mid to later life. On the other hand, despite a direct association in early life is not available in literature, some mechanisms by which omega-3 PUFAs may contribute to improved adult physical performance could be hypothesized. Conclusion Omega-3 PUFAs are gaining growing attention for their positive effect on muscle function parameters. The integration of physical function measures in future studies would be of great interest to explore whether omega-3 PUFAs could contribute to improved muscle function, starting from early life and extending throughout the lifespan. However, larger and high-quality RCTs are needed to fully elucidate the beneficial effects of omega-3 PUFAs supplementation on muscle mass and function.
Collapse
Affiliation(s)
- Domenico Azzolino
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Camilla Bertoni
- Department of Veterinary Sciences for Health, Animal Production and Food Safety, University of Milan, Milan, Italy
| | - Valentina De Cosmi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità—Italian National Institute of Health, Rome, Italy
- Department of Clinical and Community Sciences, University of Milan, Milan, Italy
| | | | - Carlo Agostoni
- Department of Clinical and Community Sciences, University of Milan, Milan, Italy
- Pediatric Intermediate Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tiziano Lucchi
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Alessandra Mazzocchi
- Department of Clinical and Community Sciences, University of Milan, Milan, Italy
| |
Collapse
|
8
|
Ogłuszka M, Chen CY, Poławska E, Starzyński RR, Liput K, Siekierko U, Pareek CS, Pierzchała M, Kang JX. Elevated tissue status of omega-3 fatty acids protects against age-related telomere attrition in fat-1 transgenic mice. Clin Nutr 2024; 43:1488-1494. [PMID: 38718720 DOI: 10.1016/j.clnu.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/20/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND & AIMS Leukocyte telomere length (LTL) is a biomarker of aging that may be influenced by dietary factors. Omega-3 fatty acids (n-3 FA) have been suggested to affect LTL. However, research on this effect has been inconclusive. The aim of the study was to test the hypothesis about the positive effect of n-3 FA on LTL. METHODS Fat-1 transgenic mice, which can convert omega-6 fatty acids (n-6 FA) to n-3 FA and have elevated levels of endogenous n-3 FA in their tissues, were used to study the effects of n-3 FA on LTL at different ages. Blood samples from 10-month-old wild-type (WT) mice (n = 10) and fat-1 mice (n = 10) and 3-month-old WT mice (n = 5) and fat-1 mice (n = 5) were used to measure relative and absolute LTL. The levels of proteins critical for telomere maintenance were examined by Western blot analysis. RESULTS Fat-1 transgenic mice had longer leukocyte telomeres than their WT siblings, suggesting a slower rate of age-related telomere shortening in fat-1 mice. In animals aged 10 months, the LTL was significantly longer in fat-1 than in WT mice (mean ± SEM; relative LTL: WT = 1.00 ± 0.09 vs. fat-1: 1.25 ± 0.05, P = 0.031; absolute LTL: WT = 64.41 ± 6.50 vs. fat-1: 78.53 ± 3.86, P = 0.048). The difference in LTL observed in three-month-old mice was insignificant, however the mean LTL was still longer in fat-1 mice than in the WT mice. Fat-1 mice also had abundant levels of two shelterin proteins: TRF1 (27%, P = 0.028) and TRF2 (47%, P = 0.040) (telomeric repeat binding factor 1 and 2) compared to WT animals. CONCLUSION This study, for the first time in a unique animal model free of dietary confounders, has demonstrated that increased levels of n-3 FA in tissues can reduce telomere attrition. The data presented indicate the possibility of using omega-3 fatty acids to reduce accelerated telomere attrition and, consequently, counteract premature aging and reduce the risk of age-related diseases.
Collapse
Affiliation(s)
- Magdalena Ogłuszka
- Department of Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland.
| | - Chih-Yu Chen
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ewa Poławska
- Department of Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Rafał R Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Kamila Liput
- Department of Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Urszula Siekierko
- Department of Meat and Fat Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Poznań, Poland
| | - Chandra S Pareek
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Mariusz Pierzchała
- Department of Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Qian C, Wang Q, Qiao Y, Xu Z, Zhang L, Xiao H, Lin Z, Wu M, Xia W, Yang H, Bai J, Geng D. Arachidonic acid in aging: New roles for old players. J Adv Res 2024:S2090-1232(24)00180-2. [PMID: 38710468 DOI: 10.1016/j.jare.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Arachidonic acid (AA), one of the most ubiquitous polyunsaturated fatty acids (PUFAs), provides fluidity to mammalian cell membranes. It is derived from linoleic acid (LA) and can be transformed into various bioactive metabolites, including prostaglandins (PGs), thromboxanes (TXs), lipoxins (LXs), hydroxy-eicosatetraenoic acids (HETEs), leukotrienes (LTs), and epoxyeicosatrienoic acids (EETs), by different pathways. All these processes are involved in AA metabolism. Currently, in the context of an increasingly visible aging world population, several scholars have revealed the essential role of AA metabolism in osteoporosis, chronic obstructive pulmonary disease, and many other aging diseases. AIM OF REVIEW Although there are some reviews describing the role of AA in some specific diseases, there seems to be no or little information on the role of AA metabolism in aging tissues or organs. This review scrutinizes and highlights the role of AA metabolism in aging and provides a new idea for strategies for treating aging-related diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW As a member of lipid metabolism, AA metabolism regulates the important lipids that interfere with the aging in several ways. We present a comprehensivereviewofthe role ofAA metabolism in aging, with the aim of relieving the extreme suffering of families and the heavy economic burden on society caused by age-related diseases. We also collected and summarized data on anti-aging therapies associated with AA metabolism, with the expectation of identifying a novel and efficient way to protect against aging.
Collapse
Affiliation(s)
- Chen Qian
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Yusen Qiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Ze Xu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China
| | - Linlin Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China
| | - Haixiang Xiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Zhixiang Lin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Mingzhou Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Wenyu Xia
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China.
| |
Collapse
|
10
|
Córdova-Oriz I, Polonio AM, Cuadrado-Torroglosa I, Chico-Sordo L, Medrano M, García-Velasco JA, Varela E. Chromosome ends and the theory of marginotomy: implications for reproduction. Biogerontology 2024; 25:227-248. [PMID: 37943366 DOI: 10.1007/s10522-023-10071-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/21/2023] [Indexed: 11/10/2023]
Abstract
Telomeres are the protective structures located at the ends of linear chromosomes. They were first described in the 1930s, but their biology remained unexplored until the early 70s, when Alexey M. Olovnikov, a theoretical biologist, suggested that telomeres cannot be fully copied during DNA replication. He proposed a theory that linked this phenomenon with the limit of cell proliferation capacity and the "duration of life" (theory of marginotomy), and suggested a potential of telomere lenghthening for the prevention of aging (anti-marginotomy). The impact of proliferative telomere shortening on life expectancy was later confirmed. In humans, telomere shortening is counteracted by telomerase, an enzyme that is undetectable in most adult somatic cells, but present in cancer cells and adult and embryonic stem and germ cells. Although telomere length dynamics are different in male and female gametes during gametogenesis, telomere lengths are reset at the blastocyst stage, setting the initial length of the species. The role of the telomere pathway in reproduction has been explored for years, mainly because of increased infertility resulting from delayed childbearing. Short telomere length in ovarian somatic cells is associated to decreased fertility and higher aneuploidy rates in embryos. Consequently, there is a growing interest in telomere lengthening strategies, aimed at improving fertility. It has also been observed that lifestyle factors can affect telomere length and improve fertility outcomes. In this review, we discuss the implications of telomere theory in fertility, especially in oocytes, spermatozoa, and embryos, as well as therapies to enhance reproductive success.
Collapse
Affiliation(s)
- Isabel Córdova-Oriz
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Alba M Polonio
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Isabel Cuadrado-Torroglosa
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Lucía Chico-Sordo
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Marta Medrano
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Juan A García-Velasco
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- IVIRMA Global Research Alliance, IVIRMA Madrid, Madrid, Spain
- Department of Medical Specialties and Public Health, Edificio Departamental II, Rey Juan Carlos University, Av. de Atenas, s/n, 28922, Alcorcón, Madrid, Spain
| | - Elisa Varela
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain.
- Department of Medical Specialties and Public Health, Edificio Departamental II, Rey Juan Carlos University, Av. de Atenas, s/n, 28922, Alcorcón, Madrid, Spain.
| |
Collapse
|
11
|
Chen Y, Yang L, Wang K, An Y, Wang Y, Zheng Y, Zhou Y. Relationship between fatty acid intake and aging: a Mendelian randomization study. Aging (Albany NY) 2024; 16:5711-5739. [PMID: 38535988 PMCID: PMC11006485 DOI: 10.18632/aging.205674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Observational studies have previously shown a possible link between fatty acids and aging-related diseases, raising questions about its health implications. However, the causal relationship between the two remains uncertain. METHODS Univariable and multivariable Mendelian randomization (MR) was used to analyze the relationship between five types of fatty acids-polyunsaturated fatty acid (PUFA), monounsaturated fatty acid (MUFA), saturated fatty acid (SFA), Omega-6 fatty acid (Omega-6 FA), and Omega-3 fatty acid (Omega-3 FA) and three markers of aging: telomere length (TL), frailty index (FI), and facial aging (FclAg). The primary approach for Mendelian randomization (MR) analysis involved utilizing the inverse variance weighted (IVW) method, with additional supplementary methods employed. RESULTS Univariate MR analysis revealed that MUFA, PUFA, SFA, and Omega-6 fatty acids were positively associated with TL (MUFA OR: 1.019, 95% CI: 1.006-1.033; PUFA OR: 1.014, 95% CI: 1.002-1.026; SFA OR: 1.016, 95% CI: 1.002-1.031; Omega-6 FAs OR=1.031, 95% CI: 1.006-1.058). PUFA was also associated with a higher FI (OR: 1.033, 95% CI: 1.009-1.057). In multivariate MR analysis, after adjusting for mutual influences among the five fatty acids, MUFA and PUFA were positively independently associated with TL (MUFA OR: 1.1508, 95% CI = 1.0724-1.2350; PUFA OR: 1.1670, 95% CI = 1.0497-1.2973, while SFA was negatively correlated (OR: 0.8005, 95% CI: 0.7045-0.9096). CONCLUSIONS Our research presents compelling evidence of a causal association between certain fatty acids and indicators of the aging process. In particular, MUFA and PUFA may play a role in slowing down the aging process, while SFAs may contribute to accelerated aging. These findings could have significant implications for dietary recommendations aimed at promoting healthy aging.
Collapse
Affiliation(s)
- Yuhua Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Lian Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Kui Wang
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, Shanghai, China
| | - Yu An
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Ya Zheng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
12
|
Gao C. Investigating the association between blood metabolites and telomere length: A mendelian randomization study. PLoS One 2024; 19:e0298172. [PMID: 38457472 PMCID: PMC10923442 DOI: 10.1371/journal.pone.0298172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/19/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Telomere length refers to the protective cap at the end of chromosomes, and it plays a crucial role in many diseases. The objective of this study is to explore the relationship between blood metabolites and telomere length, aiming to identify novel biological factors that influence telomere length. METHODS In this study, we extracted genome-wide association study (GWAS) data for blood metabolites from a sample of 7824 Europeans. Additionally, GWAS data for telomere length were obtained from the Open GWAS database (GWAS ID: ieu-b-4879). The primary analysis of this study utilized the random inverse variance weighted (IVW) method. Complementary analyses were also conducted using the MR-Egger and weighted median approaches. Sensitivity analyses were performed to assess the robustness of the findings. These included the Cochran Q test, MR-Egger intercept test, MR-PRESSO, and leave-one-out analysis. To investigate the possibility of reverse causation, reverse MR analysis was conducted. Additionally, multivariable MR was utilized to evaluate the direct effect of metabolites on telomere length. RESULTS The results suggested a potential association between 15-methylpalmitate, taurocholate, levulinate, and X-12712 and telomere length. MVMR analysis further showed that 15-methylpalmitate, taurocholate, and levulinate can directly influence telomere length, regardless of other metabolites. CONCLUSIONS This study suggests that 15-methylpalmitate, taurocholate, and levulinate are likely factors correlated with telomere length. These findings will contribute to the development of strategies for protecting telomeres, preventing related diseases, and establishing a new biological foundation for achieving healthy aging.
Collapse
Affiliation(s)
- Chen Gao
- Head and Neck Surgeons, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian, China
| |
Collapse
|
13
|
Campisi M, Cannella L, Celik D, Gabelli C, Gollin D, Simoni M, Ruaro C, Fantinato E, Pavanello S. Mitigating cellular aging and enhancing cognitive functionality: visual arts-mediated Cognitive Activation Therapy in neurocognitive disorders. Front Aging Neurosci 2024; 16:1354025. [PMID: 38524114 PMCID: PMC10957554 DOI: 10.3389/fnagi.2024.1354025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/20/2024] [Indexed: 03/26/2024] Open
Abstract
The growing phenomenon of population aging is redefining demographic dynamics, intensifying age-related conditions, especially dementia, projected to triple by 2050 with an enormous global economic burden. This study investigates visual arts-mediated Cognitive Activation Therapy (CAT) as a non-pharmacological CAT intervention targets both biological aging [leukocyte telomere length (LTL), DNA methylation age (DNAmAge)] and cognitive functionality. Aligning with a broader trend of integrating non-pharmacological approaches into dementia care. The longitudinal study involved 20 patients with mild to moderate neurocognitive disorders. Cognitive and functional assessments, and biological aging markers -i.e., LTL and DNAmAge- were analyzed before and after CAT intervention. Change in LTL was positively correlated with days of treatment (p =0.0518). LTL significantly elongated after intervention (p =0.0269), especially in men (p =0.0142), correlating with younger age (p =0.0357), and higher education (p =0.0008). DNAmAge remained instead stable post-treatment. Cognitive and functional improvements were observed for Copy of complex geometric figure, Progressive Silhouettes, Position Discrimination, Communication Activities of Daily Living-Second edition, Direct Functional Status (p < 0.0001) and Object decision (p =0.0594), but no correlations were found between LTL and cognitive gains. Visual arts-mediated CAT effectively mitigates cellular aging, especially in men, by elongating LTL. These findings underscore the potential of non-pharmacological interventions in enhancing cognitive and functional status and general well-being in dementia care. Further research with larger and longer-term studies is essential for validation.
Collapse
Affiliation(s)
- Manuela Campisi
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Luana Cannella
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Dilek Celik
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Carlo Gabelli
- Regional Centre for the Aging Brain (CRIC), University Hospital of Padua, Padua, Italy
| | - Donata Gollin
- Regional Centre for the Aging Brain (CRIC), University Hospital of Padua, Padua, Italy
| | - Marco Simoni
- Regional Centre for the Aging Brain (CRIC), University Hospital of Padua, Padua, Italy
| | - Cristina Ruaro
- Regional Centre for the Aging Brain (CRIC), University Hospital of Padua, Padua, Italy
| | - Elena Fantinato
- Regional Centre for the Aging Brain (CRIC), University Hospital of Padua, Padua, Italy
| | - Sofia Pavanello
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
- University Hospital of Padua, Padua, Italy
| |
Collapse
|
14
|
Kim JS, Ma SF, Ma JZ, Huang Y, Bonham CA, Oldham JM, Adegunsoye A, Strek ME, Flaherty KR, Strickland E, Udofia I, Mooney JJ, Ghosh S, Maddipati K, Noth I. Associations of Plasma Omega-3 Fatty Acids With Progression and Survival in Pulmonary Fibrosis. Chest 2024; 165:621-631. [PMID: 37866772 PMCID: PMC10925547 DOI: 10.1016/j.chest.2023.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/22/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Preclinical experiments suggest protective effects of omega-3 fatty acids and their metabolites in lung injury and fibrosis. Whether higher intake of omega-3 fatty acids is associated with disease progression and survival in humans with pulmonary fibrosis is unknown. RESEARCH QUESTION What are the associations of plasma omega-3 fatty acid levels (a validated marker of omega-3 nutritional intake) with disease progression and transplant-free survival in pulmonary fibrosis? STUDY DESIGN AND METHODS Omega-3 fatty acid levels were measured from plasma samples of patients with clinically diagnosed pulmonary fibrosis from the Pulmonary Fibrosis Foundation Patient Registry (n = 150), University of Virginia (n = 58), and University of Chicago (n = 101) cohorts. The N-3 index (docosahexaenoic acid + eicosapentaenoic acid) was the primary exposure variable of interest. Linear-mixed effects models with random intercept and slope were used to examine associations of plasma omega-3 fatty acid levels with changes in FVC and diffusing capacity for carbon monoxide over a period of 12 months. Cox proportional hazards models were used to examine transplant-free survival. Stratified analyses by telomere length were performed in the University of Chicago cohort. RESULTS Most of the cohort were patients with idiopathic pulmonary fibrosis (88%) and male patients (74%). One-unit increment in log-transformed N-3 index plasma level was associated with a change in diffusing capacity for carbon monoxide of 1.43 mL/min/mm Hg per 12 months (95% CI, 0.46-2.41) and a hazard ratio for transplant-free survival of 0.44 (95% CI, 0.24-0.83). Cardiovascular disease history, smoking, and antifibrotic usage did not significantly modify associations. Omega-3 fatty acid levels were not significantly associated with changes in FVC. Higher eicosapentaenoic acid plasma levels were associated with longer transplant-free survival among University of Chicago participants with shorter telomere length (P value for interaction = .02). INTERPRETATION Further research is needed to investigate underlying biological mechanisms and whether omega-3 fatty acids are a potential disease-modifying therapy.
Collapse
Affiliation(s)
- John S Kim
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA; Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY.
| | - Shwu-Fan Ma
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Jennie Z Ma
- Department of Public Health, University of Virginia School of Medicine, Charlottesville, VA
| | - Yong Huang
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Catherine A Bonham
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Justin M Oldham
- Department of Medicine, University of Michigan, Ann Arbor, MI
| | | | - Mary E Strek
- Department of Medicine, University of Chicago, Chicago, IL
| | | | - Emma Strickland
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | | | | | - Shrestha Ghosh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; Department of Immunology, Harvard Medical School, Boston, MA
| | | | - Imre Noth
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
15
|
Mostafa H, Gutierrez-Tordera L, Mateu-Fabregat J, Papandreou C, Bulló M. Dietary fat, telomere length and cognitive function: unravelling the complex relations. Curr Opin Lipidol 2024; 35:33-40. [PMID: 38018863 DOI: 10.1097/mol.0000000000000900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
PURPOSE OF REVIEW The review aims to explore the recent evidence on the associations between different dietary fat intake and cognitive function, and to understand the role of telomere length in this relationship. RECENT FINDINGS Clinical and preclinical studies included in this review suggest that dietary fat intake is associated with cognitive function and telomere length. High intake of saturated fats and trans fats, commonly found in ultra-processed foods, appears to have negative effects on cognitive function and telomere length, while other dietary fats, such as omega-3 polyunsaturated fatty acids and monounsaturated fatty acids are associated with improved cognitive performance and reduced telomere attrition. Controversial results related to omega-6 polyunsaturated fatty acids intake and its impact on cognitive function were found. Dietary fats may affect telomere length and cognition through oxidative stress, inflammation, and insulin resistance. SUMMARY The current review illustrated the relationship between dietary fat and cognitive function by focusing on the role of telomere length as a potential intermediator. More future studies are required, however, in order to develop targeted interventions aimed at preserving cognitive well-being throughout life.
Collapse
Affiliation(s)
- Hamza Mostafa
- Nutrition and Metabolic Health Research Group (NuMeH), Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV)
- Institute of Health Pere Virgili (IISPV)
- Center of Environmental, Food and Toxicological Technology - TecnATox, Rovira i Virgili University
| | - Laia Gutierrez-Tordera
- Nutrition and Metabolic Health Research Group (NuMeH), Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV)
- Institute of Health Pere Virgili (IISPV)
- Center of Environmental, Food and Toxicological Technology - TecnATox, Rovira i Virgili University
| | - Javier Mateu-Fabregat
- Nutrition and Metabolic Health Research Group (NuMeH), Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV)
- Institute of Health Pere Virgili (IISPV)
- Center of Environmental, Food and Toxicological Technology - TecnATox, Rovira i Virgili University
| | - Christopher Papandreou
- Nutrition and Metabolic Health Research Group (NuMeH), Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV)
- Institute of Health Pere Virgili (IISPV)
- Center of Environmental, Food and Toxicological Technology - TecnATox, Rovira i Virgili University
| | - Mònica Bulló
- Nutrition and Metabolic Health Research Group (NuMeH), Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV)
- Institute of Health Pere Virgili (IISPV)
- Center of Environmental, Food and Toxicological Technology - TecnATox, Rovira i Virgili University
- CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
16
|
Sublette ME, Daray FM, Ganança L, Shaikh SR. The role of polyunsaturated fatty acids in the neurobiology of major depressive disorder and suicide risk. Mol Psychiatry 2024; 29:269-286. [PMID: 37993501 DOI: 10.1038/s41380-023-02322-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/19/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
Long-chain polyunsaturated fatty acids (LC-PUFAs) are obtained from diet or derived from essential shorter-chain fatty acids, and are crucial for brain development and functioning. Fundamentally, LC-PUFAs' neurobiological effects derive from their physicochemical characteristics, including length and double bond configuration, which differentiate LC-PUFA species and give rise to functional differences between n(omega)-3 and n-6 LC-PUFAs. LC-PUFA imbalances are implicated in psychiatric disorders, including major depression and suicide risk. Dietary intake and genetic variants in enzymes involved in biosynthesis of LC-PUFAs from shorter chain fatty acids influence LC-PUFA status. Domains impacted by LC-PUFAs include 1) cell signaling, 2) inflammation, and 3) bioenergetics. 1) As major constituents of lipid bilayers, LC-PUFAs are determinants of cell membrane properties of viscosity and order, affecting lipid rafts, which play a role in regulation of membrane-bound proteins involved in cell-cell signaling, including monoaminergic receptors and transporters. 2) The n-3:n-6 LC-PUFA balance profoundly influences inflammation. Generally, metabolic products of n-6 LC-PUFAs (eicosanoids) are pro-inflammatory, while those of n-3 LC-PUFAs (docosanoids) participate in the resolution of inflammation. Additionally, n-3 LC-PUFAs suppress microglial activation and the ensuing proinflammatory cascade. 3) N-3 LC-PUFAs in the inner mitochondrial membrane affect oxidative stress, suppressing production of and scavenging reactive oxygen species (ROS), with neuroprotective benefits. Until now, this wealth of knowledge about LC-PUFA biomechanisms has not been adequately tapped to develop translational studies of LC-PUFA clinical effects in humans. Future studies integrating neurobiological mechanisms with clinical outcomes may suggest ways to identify depressed individuals most likely to respond to n-3 LC-PUFA supplementation, and mechanistic research may generate new treatment strategies.
Collapse
Affiliation(s)
- M Elizabeth Sublette
- Department of Psychiatry, Columbia University, New York, NY, USA.
- Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA.
| | - Federico Manuel Daray
- University of Buenos Aires, School of Medicine, Institute of Pharmacology, Buenos Aires, Argentina
- National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Licínia Ganança
- Clínica Universitária de Psiquiatria e Psicologia Médica, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Psiquiatria e Saúde Mental, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Saame Raza Shaikh
- Nutritional Obesity Research Center, Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
17
|
Fenech MF, Bull CF, Van Klinken BJW. Protective Effects of Micronutrient Supplements, Phytochemicals and Phytochemical-Rich Beverages and Foods Against DNA Damage in Humans: A Systematic Review of Randomized Controlled Trials and Prospective Studies. Adv Nutr 2023; 14:1337-1358. [PMID: 37573943 PMCID: PMC10721466 DOI: 10.1016/j.advnut.2023.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
Accumulation of deoxyribonucleic acid (DNA) damage diminishes cellular health, increases risk of developmental and degenerative diseases, and accelerates aging. Optimizing nutrient intake can minimize accrual of DNA damage. The objectives of this review are to: 1) assemble and systematically analyze high-level evidence for the effect of supplementation with micronutrients and phytochemicals on baseline levels of DNA damage in humans, and 2) use this knowledge to identify which of these essential micronutrients or nonessential phytochemicals promote DNA integrity in vivo in humans. We conducted systematic literature searches of the PubMed database to identify interventional, prospective, cross-sectional, or in vitro studies that explored the association between nutrients and established biomarkers of DNA damage associated with developmental and degenerative disease risk. Biomarkers included lymphocyte chromosome aberrations, lymphocyte and buccal cell micronuclei, DNA methylation, lymphocyte/leukocyte DNA strand breaks, DNA oxidation, telomere length, telomerase activity, and mitochondrial DNA mutations. Only randomized, controlled interventions and uncontrolled longitudinal intervention studies conducted in humans were selected for evaluation and data extraction. These studies were ranked for the quality of their study design. In all, 96 of the 124 articles identified reported studies that achieved a quality assessment score ≥ 5 (from a maximum score of 7) and were included in the final review. Based on these studies, nutrients associated with protective effects included vitamin A and its precursor β-carotene, vitamins C, E, B1, B12, folate, minerals selenium and zinc, and phytochemicals such as curcumin (with piperine), lycopene, and proanthocyanidins. These findings highlight the importance of nutrients involved in (i) DNA metabolism and repair (folate, vitamin B12, and zinc) and (ii) prevention of oxidative stress and inflammation (vitamins A, C, E, lycopene, curcumin, proanthocyanidins, selenium, and zinc). Supplementation with certain micronutrients and their combinations may reduce DNA damage and promote cellular health by improving the maintenance of genome integrity.
Collapse
Affiliation(s)
- Michael F Fenech
- Molecular Diagnostics Solutions, CSIRO Health & Biosecurity, Adelaide, South Australia, Australia; Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, South Australia, Australia; Genome Health Foundation, North Brighton, South Australia, Australia.
| | - Caroline F Bull
- Molecular Diagnostics Solutions, CSIRO Health & Biosecurity, Adelaide, South Australia, Australia; School of Molecular and Biomedical Sciences, University of Adelaide, North Terrace, Adelaide, South Australia, Australia.
| | - B Jan-Willem Van Klinken
- GSK Consumer Healthcare (now named Haleon), Warren, New Jersey, USA; Brightseed, San Francisco, CA, United States.
| |
Collapse
|
18
|
Martinez S, Jones JD. A pilot study examining the relationship between chronic heroin use and telomere length among individuals of African ancestry. Pharmacol Biochem Behav 2023; 231:173631. [PMID: 37689117 PMCID: PMC10545475 DOI: 10.1016/j.pbb.2023.173631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND Prior research has suggested a possible link between heroin use and shortened telomere length (TL), a marker of cellular aging and genomic stability. We sought to replicate these findings by examining the relationship between TL and heroin use among individuals of African ancestry. METHODS This cross-sectional study examined TL among 57 participants [17.5 % female; mean age 48.0 (±6.80) years] of African ancestry with Opioid Use Disorder (OUD) and a mean heroin use duration of 18.2 (±10.7) years. Quantitative polymerase chain reaction (qPCR) was used to calculate TL as the ratio between telomere repeat copy number (T) and a single-copy gene, copy number (S). The primary dependent variable was TL (T/S Ratio) measured in kilobase pairs. Covariates included heroin use years and personality traits. Using a hybrid approach, multiple linear regression and Bayesian linear regression examined the association of chronological age, heroin use years and personality traits with TL. RESULTS The multiple linear regression model fit the data well, R2 = 0.265, F(7,49) = 2.53, p < .026. Chronological age (β = -0.36, p = .017), neuroticism (β = 0.46, p = .044), and conscientiousness (β = 0.52, p = .040) were significant predictors of TL. Bayesian linear regression provided moderate support for the alternate hypothesis that chronological age and TL are associated, BF10 = 5.77, R2 = 0.120. The posterior summary of the coefficient was M = 0.719 (SD = 0.278, 95 % credible interval [-1.28, -0.163]). CONCLUSIONS Contrary to prior studies, these findings suggest that heroin use duration may not be significantly associated with TL among individuals of African ancestry, highlighting the need for more rigorous research to elucidate the complexity of this relationship.
Collapse
Affiliation(s)
- Suky Martinez
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA.
| | - Jermaine D Jones
- Division on Substance Use Disorders, Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
19
|
Hartnett KB, Ferguson BJ, Hecht PM, Schuster LE, Shenker JI, Mehr DR, Fritsche KL, Belury MA, Scharre DW, Horwitz AJ, Kille BM, Sutton BE, Tatum PE, Greenlief CM, Beversdorf DQ. Potential Neuroprotective Effects of Dietary Omega-3 Fatty Acids on Stress in Alzheimer's Disease. Biomolecules 2023; 13:1096. [PMID: 37509132 PMCID: PMC10377362 DOI: 10.3390/biom13071096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND A large number of individual potentially modifiable factors are associated with risk for Alzheimer's disease (AD). However, less is known about the interactions between the individual factors. METHODS In order to begin to examine the relationship between a pair of factors, we performed a pilot study, surveying patients with AD and controls for stress exposure and dietary omega-3 fatty acid intake to explore their relationship for risk of AD. RESULTS For individuals with the greatest stress exposure, omega-3 fatty acid intake was significantly greater in healthy controls than in AD patients. There was no difference among those with low stress exposure. CONCLUSIONS These initial results begin to suggest that omega-3 fatty acids may mitigate AD risk in the setting of greater stress exposure. This will need to be examined with larger populations and other pairs of risk factors to better understand these important relationships. Examining how individual risk factors interact will ultimately be important for learning how to optimally decrease the risk of AD.
Collapse
Affiliation(s)
- Kaitlyn B Hartnett
- School of Medicine, University of Missouri-Columbia, Columbia, MO 65212, USA
| | - Bradley J Ferguson
- Interdisciplinary Neuroscience Program, University of Missouri-Columbia, Columbia, MO 65212, USA
- Department of Health Psychology, University of Missouri-Columbia, Columbia, MO 65212, USA
- Department of Neurology, University of Missouri-Columbia, Columbia, MO 65212, USA
| | - Patrick M Hecht
- Interdisciplinary Neuroscience Program, University of Missouri-Columbia, Columbia, MO 65212, USA
| | - Luke E Schuster
- School of Medicine, University of Kansas, Kansas City, KS 66160, USA
| | - Joel I Shenker
- Department of Neurology, University of Missouri-Columbia, Columbia, MO 65212, USA
| | - David R Mehr
- Family & Community Medicine, University of Missouri-Columbia, Columbia, MO 65212, USA
| | - Kevin L Fritsche
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Martha A Belury
- Department of Human Sciences, Ohio State University, Columbus, OH 43210, USA
| | - Douglas W Scharre
- Department of Neurology, Ohio State University, Columbus, OH 43210, USA
| | | | | | - Briann E Sutton
- College of Osteopathic Medicine, William Carey University, Hattiesburg, MS 39401, USA
| | - Paul E Tatum
- Division of Palliative Medicine; Washington University. St. Louis, MO 63110, USA
| | | | - David Q Beversdorf
- Interdisciplinary Neuroscience Program, University of Missouri-Columbia, Columbia, MO 65212, USA
- Department of Neurology, University of Missouri-Columbia, Columbia, MO 65212, USA
- Department of Radiology, University of Missouri, Columbia, MO 65212, USA
- Psychological Sciences, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
20
|
Madison AA, Kiecolt-Glaser JK, Malarkey WB, Belury MA. Omega-3 fatty acids reduce depressive symptoms only among the socially stressed: A corollary of the social signal transduction theory of depression. Health Psychol 2023; 42:448-459. [PMID: 37261751 PMCID: PMC10330456 DOI: 10.1037/hea0001301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
OBJECTIVE There is mixed evidence about whether omega-3 fatty acids reduce depressive symptoms. We previously reported that 4 months of omega-3 supplementation reduced inflammatory responsivity to a lab-based social stressor. In another study, we showed that those with exaggerated inflammatory responsivity to a social stressor had the greatest depressive symptom increases over time, especially if they experienced frequent social stress. Here we tested whether omega-3 supplementation reduced subthreshold depressive symptoms among those who experienced frequent social stress. METHOD Healthy, sedentary, generally overweight middle-aged and older adults (N = 138) were randomly assigned to 4 months of pill placebo (n = 46), 1.25 grams per day (g/d) omega-3 (n = 46), or 2.5 g/d omega-3 (n = 46). At a baseline visit and monthly follow-up visits, they reported depressive symptoms and had their blood drawn to assess plasma levels of omega-3 fatty acids. Participants completed the Trier Inventory of Chronic Stress at Visit 2 and the Test of Negative Social Exchange at Visit 3. RESULTS Among those who were overweight or obese, both doses of omega-3 reduced depressive symptoms only in the context of frequent hostile interactions and social tension, and 2.5 g/d of omega-3 lowered depressive symptoms among those with less social recognition or more performance pressure (ps < .05). Findings were largely corroborated with plasma omega-3 fatty acids. No other social stress or work stress measure moderated omega-3 fatty acids' relationship with depressive symptoms (ps > .05). CONCLUSIONS Omega-3 fatty acids' antidepressant effect may be most evident among those who experience frequent social stress, perhaps because omega-3 fatty acids reduce inflammatory reactivity to social stressors. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Annelise A. Madison
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine
- Department of Psychology, The Ohio State University
| | - Janice K. Kiecolt-Glaser
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine
- Department of Psychiatry and Behavioral Health, The Ohio State University College of Medicine
| | - William B. Malarkey
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine
- Department of Internal Medicine, The Ohio State University College of Medicine
| | - Martha A. Belury
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University
| |
Collapse
|
21
|
Kim JS, Manichaikul AW, Hoffman EA, Balte P, Anderson MR, Bernstein EJ, Madahar P, Oelsner EC, Kawut SM, Wysoczanski A, Laine AF, Adegunsoye A, Ma JZ, Taub MA, Mathias RA, Rich SS, Rotter JI, Noth I, Garcia CK, Barr RG, Podolanczuk AJ. MUC5B, telomere length and longitudinal quantitative interstitial lung changes: the MESA Lung Study. Thorax 2023; 78:566-573. [PMID: 36690926 PMCID: PMC9899287 DOI: 10.1136/thorax-2021-218139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 07/11/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND The MUC5B promoter variant (rs35705950) and telomere length are linked to pulmonary fibrosis and CT-based qualitative assessments of interstitial abnormalities, but their associations with longitudinal quantitative changes of the lung interstitium among community-dwelling adults are unknown. METHODS We used data from participants in the Multi-Ethnic Study of Atherosclerosis with high-attenuation areas (HAAs, Examinations 1-6 (2000-2018)) and MUC5B genotype (n=4552) and telomere length (n=4488) assessments. HAA was defined as the per cent of imaged lung with attenuation of -600 to -250 Hounsfield units. We used linear mixed-effects models to examine associations of MUC5B risk allele (T) and telomere length with longitudinal changes in HAAs. Joint models were used to examine associations of longitudinal changes in HAAs with death and interstitial lung disease (ILD). RESULTS The MUC5B risk allele (T) was associated with an absolute change in HAAs of 2.60% (95% CI 0.36% to 4.86%) per 10 years overall. This association was stronger among those with a telomere length below an age-adjusted percentile of 5% (p value for interaction=0.008). A 1% increase in HAAs per year was associated with 7% increase in mortality risk (rate ratio (RR)=1.07, 95% CI 1.02 to 1.12) for overall death and 34% increase in ILD (RR=1.34, 95% CI 1.20 to 1.50). Longer baseline telomere length was cross-sectionally associated with less HAAs from baseline scans, but not with longitudinal changes in HAAs. CONCLUSIONS Longitudinal increases in HAAs were associated with the MUC5B risk allele and a higher risk of death and ILD.
Collapse
Affiliation(s)
- John S Kim
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Ani W Manichaikul
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Eric A Hoffman
- Department of Radiology, University of Iowa, Iowa City, Iowa, USA
| | - Pallavi Balte
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Michaela R Anderson
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Elana J Bernstein
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Purnema Madahar
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Elizabeth C Oelsner
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Steven M Kawut
- Department of Medicine, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics and Epidemiology, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Artur Wysoczanski
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Andrew F Laine
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | | | - Jennie Z Ma
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Margaret A Taub
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Rasika A Mathias
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stephen S Rich
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jerome I Rotter
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California, USA
- The Institute for Translational Genomics and Population Sciences, The Lundquist Institute, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Imre Noth
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Christine Kim Garcia
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - R Graham Barr
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Anna J Podolanczuk
- Division of Pulmonary and Critical Care, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
22
|
Suneson K, Ängeby F, Lindahl J, Söderberg G, Tjernberg J, Lindqvist D. Efficacy of eicosapentaenoic acid in inflammatory depression: study protocol for a match-mismatch trial. BMC Psychiatry 2022; 22:801. [PMID: 36536364 PMCID: PMC9761617 DOI: 10.1186/s12888-022-04430-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Most antidepressant treatment studies have included patients strictly based on the Diagnostic and Statistical Manual of Mental Disorders definition of Major Depressive Disorder (MDD). Given the heterogeneity of MDD, this approach may have obscured inter-patient differences and hampered the development of novel and targeted treatment strategies. An alternative strategy is to use biomarkers to delineate endophenotypes of depression and test if these can be targeted via mechanism-based interventions. Several lines of evidence suggest that "inflammatory depression" is a clinically meaningful subtype of depression. Preliminary data indicate that omega-3 fatty acids, with their anti-inflammatory and neuroprotective properties, may be efficacious in this subtype of depression, and this study aims to test this hypothesis. METHOD We conduct a match-mismatch-trial to test if add-on omega-3 fatty acid eicosapentaenoic acid (EPA) reduces depressive symptoms in patients with MDD and systemic low-grade inflammation. MDD patients on a stable antidepressant treatment are stratified at baseline on high sensitivity-C-reactive protein (hs-CRP) levels to a high-inflammation group (hs-CRP ≥ 3 mg/L) or a low-inflammation group (hs-CRP < 3 mg/L). Both groups receive add-on EPA (2 g per day) for 8 weeks with three study visits, all including blood draws. Patients and raters are blind to inflammation status. Primary outcome measure is change in Hamilton Depression Rating Scale score between baseline and week 8. We hypothesize that the inflammation group has a superior antidepressant response to EPA compared to the non-inflammation group. Secondary outcomes include a composite score of "inflammatory depressive symptoms", quality of life, anxiety, anhedonia, sleep disturbances, fatigue, cognitive performance and change in biomarkers relating to inflammation, oxidative stress, metabolomics and cellular aging. DISCUSSION In this study we will, for the first time using a match-mismatch trial design, test if omega-3 is an efficacious treatment for inflammatory depression. If our study is successful, it could add to the field of precision psychiatry. TRIAL REGISTRATION This trial was registered May 8, 2017 on clinicaltrials.gov under the reference number NCT03143075.
Collapse
Affiliation(s)
- Klara Suneson
- Department of Clinical Sciences Lund, Psychiatry, Faculty of Medicine, Lund University, 221 85, Lund, Sweden. .,Office for Psychiatry and Habilitation, Psychiatric Clinic Helsingborg, Region Skåne, 252 23, Helsingborg, Sweden.
| | - Filip Ängeby
- grid.426217.40000 0004 0624 3273Office for Psychiatry and Habilitation, Psychiatric Clinic Lund, Region Skåne, 221 85 Lund, Sweden
| | - Jesper Lindahl
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Lund, Psychiatry, Faculty of Medicine, Lund University, 221 85 Lund, Sweden ,grid.426217.40000 0004 0624 3273Office for Psychiatry and Habilitation, Psychiatric Clinic Lund, Region Skåne, 221 85 Lund, Sweden
| | - Gustav Söderberg
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Lund, Psychiatry, Faculty of Medicine, Lund University, 221 85 Lund, Sweden ,grid.411843.b0000 0004 0623 9987Department of Gastroenterology, Skåne University Hospital, 205 02 Malmö, Sweden
| | - Johanna Tjernberg
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Lund, Psychiatry, Faculty of Medicine, Lund University, 221 85 Lund, Sweden ,grid.426217.40000 0004 0624 3273Office for Psychiatry and Habilitation, Psychiatric Clinic Lund, Region Skåne, 221 85 Lund, Sweden
| | - Daniel Lindqvist
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Lund, Psychiatry, Faculty of Medicine, Lund University, 221 85 Lund, Sweden ,grid.426217.40000 0004 0624 3273Office for Psychiatry and Habilitation, Psychiatry Research Skåne, Region Skåne, 221 85 Lund, Sweden
| |
Collapse
|
23
|
Seo B, Yang K, Kahe K, Qureshi AA, Chan AT, De Vivo I, Cho E, Giovannucci EL, Nan H. Association of omega-3 and omega-6 fatty acid intake with leukocyte telomere length in US males. Am J Clin Nutr 2022; 116:1759-1766. [PMID: 36130216 PMCID: PMC9761772 DOI: 10.1093/ajcn/nqac263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/19/2022] [Accepted: 09/15/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Omega-3 (n-3) and omega-6 (n-6) fatty acids may contribute to oxidative stress and inflammation, which are related to telomere shortening. Evidence supporting an association between intake of n-3 or n-6 fatty acids and leukocyte telomere length (LTL) in males has been limited. OBJECTIVES We conducted a cross-sectional study to examine the associations of total or individual n-3 or total n-6 fatty acid intake with LTL in US males. METHODS We included 2,494 US males with LTL measurement from 4 nested case-control studies within the Health Professionals Follow-Up Study. Individuals with previous histories of cancers, diabetes, and cardiovascular diseases at or before blood collection were excluded. Blood collection was performed between 1993 and 1995, and relevant information including n-3 and n-6 intake was collected in 1994 by questionnaire. The LTL was log-transformed and Z scores of the LTL were calculated for statistical analyses by standardizing the LTL in comparison with the mean within each selected nested case-control study. RESULTS We found that consumption of DHA (22:6n-3) was positively associated with LTL. In the multivariable-adjusted model, compared with individuals who had the lowest intake of DHA (i.e., first quartile group), the percentage differences (95% CIs) of LTL were -3.7 (-13.7, 7.5), 7.0 (-4.3, 19.7), and 8.2 (-3.5, 21.3) for individuals in the second, third, and fourth quartiles of consumption, respectively (P-trend = 0.0498). We did not find significant associations between total n-3 or total n-6 fatty acid intakes and LTL. In addition, we found that males who consumed canned tuna had longer LTL than those who did not; in the multivariable-adjusted model, the percentage difference of LTL was 10.5 (95% CI: 1.3, 20.4) (P = 0.02). CONCLUSIONS Our results suggest that higher intakes of DHA and canned tuna consumption are associated with longer LTL.
Collapse
Affiliation(s)
- Bojung Seo
- Department of Epidemiology, Richard M Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
| | - Keming Yang
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Ka Kahe
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Abrar A Qureshi
- Department of Dermatology, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Eunyoung Cho
- Department of Dermatology, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Edward L Giovannucci
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Hongmei Nan
- Department of Epidemiology, Richard M Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
- Department of Global Health, Richard M Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
24
|
Sharma R, Diwan B, Sharma A, Witkowski JM. Emerging cellular senescence-centric understanding of immunological aging and its potential modulation through dietary bioactive components. Biogerontology 2022; 23:699-729. [PMID: 36261747 PMCID: PMC9581456 DOI: 10.1007/s10522-022-09995-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/12/2022] [Indexed: 12/13/2022]
Abstract
Immunological aging is strongly associated with the observable deleterious effects of human aging. Our understanding of the causes, effects, and therapeutics of aging immune cells has long been considered within the sole purview of immunosenescence. However, it is being progressively realized that immunosenescence may not be the only determinant of immunological aging. The cellular senescence-centric theory of aging proposes a more fundamental and specific role of immune cells in regulating senescent cell (SC) burden in aging tissues that has augmented the notion of senescence immunotherapy. Now, in addition, several emerging studies are suggesting that cellular senescence itself may be prevalent in aging immune cells, and that senescent immune cells exhibiting characteristic markers of cellular senescence, similar to non-leucocyte cells, could be among the key drivers of various facets of physiological aging. The present review integrates the current knowledge related to immunosenescence and cellular senescence in immune cells per se, and aims at providing a cohesive overview of these two phenomena and their significance in immunity and aging. We present evidence and rationalize that understanding the extent and impact of cellular senescence in immune cells vis-à-vis immunosenescence is necessary for truly comprehending the notion of an 'aged immune cell'. In addition, we also discuss the emerging significance of dietary factors such as phytochemicals, probiotic bacteria, fatty acids, and micronutrients as possible modulators of immunosenescence and cellular senescence. Evidence and opportunities related to nutritional bioactive components and immunological aging have been deliberated to augment potential nutrition-oriented immunotherapy during aging.
Collapse
Affiliation(s)
- Rohit Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India.
| | - Bhawna Diwan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland.
| |
Collapse
|
25
|
Ali S, Aiello A, Zotti T, Accardi G, Cardinale G, Vito P, Calabrò A, Ligotti ME, Intrieri M, Corbi G, Caruso C, Candore G, Scapagnini G, Davinelli S. Age-associated changes in circulatory fatty acids: new insights on adults and long-lived individuals. GeroScience 2022; 45:781-796. [PMID: 36449220 PMCID: PMC9886696 DOI: 10.1007/s11357-022-00696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Long-lived individuals (LLIs) are considered an ideal model to study healthy human aging. Blood fatty acid (FA) profile of a cohort of LLIs (90-111 years old, n = 49) from Sicily was compared to adults (18-64 years old, n = 69) and older adults (65-89 years old, n = 54) from the same area. Genetic variants in key enzymes related to FA biosynthesis and metabolism were also genotyped to investigate a potential genetic predisposition in determining the FA profile. Gas chromatography was employed to determine the FA profile, and genotyping was performed using high-resolution melt (HRM) analysis. Blood levels of total polyunsaturated FA (PUFA) and total trans-FA decreased with age, while the levels of saturated FA (SFA) remained unchanged. Interestingly, distinctively higher circulatory levels of monounsaturated FA (MUFA) in LLIs compared to adults and older adults were observed. In addition, among LLIs, rs174537 in the FA desaturase 1/2 (FADS1/2) gene was associated with linoleic acid (LA, 18:2n-6) and docosatetraenoic acid (DTA, 22:4n-6) levels, and the rs953413 in the elongase of very long FA 2 (ELOVL2) was associated with DTA levels. We further observed that rs174579 and rs174626 genotypes in FADS1/2 significantly affect delta-6 desaturase (D6D) activity. In conclusion, our results suggest that the LLIs have a different FA profile characterized by high MUFA content, which indicates reduced peroxidation while maintaining membrane fluidity.
Collapse
Affiliation(s)
- Sawan Ali
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via De Sanctis 1, Campobasso, Italy
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Tiziana Zotti
- Dipartimento Di Scienze E Tecnologie, Università Degli Studi del Sannio, Benevento, Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | | | - Pasquale Vito
- Dipartimento Di Scienze E Tecnologie, Università Degli Studi del Sannio, Benevento, Italy
| | - Anna Calabrò
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via De Sanctis 1, Campobasso, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via De Sanctis 1, Campobasso, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via De Sanctis 1, Campobasso, Italy.
| | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via De Sanctis 1, Campobasso, Italy
| |
Collapse
|
26
|
Wu Y, Zhang Y, Jiao J. The relationship between n-3 polyunsaturated fatty acids and telomere: A review on proposed nutritional treatment against metabolic syndrome and potential signaling pathways. Crit Rev Food Sci Nutr 2022; 64:4457-4476. [PMID: 36330807 DOI: 10.1080/10408398.2022.2142196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Metabolic syndrome (MetS), a cluster of metabolic abnormalities composed of central obesity, elevated blood pressure, glucose disturbances, hypercholesterolemia and dyslipidaemia, has increasingly become a public health problem in the 21st century worldwide. The dysfunction of telomeres, the repetitive DNA with highly conserved sequences (5'-TTAGGG-3'), is remarkably correlated with organismal aging, even suggesting a causal relationship with metabolic disorders. The health benefits of n-3 polyunsaturated fatty acids (PUFAs) in multiple disorders are associated with telomere length in evidence, which have recently drawn wide attention. However, functional targets and pathways for the associations of n-3 PUFAs and telomere with MetS remain scare. Few studies have summarized the role of n-3 PUFAs in DNA damage repair pathways, anti-inflammatory pathways, and redox balance, linking with telomere biology, and other potential telomere-related signaling pathways. This review aims to (i) elucidate how n-3 PUFAs ameliorate telomere attrition in the context of anti-oxidation and anti-inflammation; (ii) unravel the role of n-3 PUFAs in modulating telomere-related neuron dysfunction and regulating the neuro-endocrine-immunological network in MetS; (iii) epidemiologically implicate the associations of metabolic disorders and n-3 PUFAs with telomere length; and (iv) suggest promising biochemical approaches and advancing methodologies to overcome the inter-variation problem helpful for future research.
Collapse
Affiliation(s)
- Yuqi Wu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
27
|
Scarfò G, Piccarducci R, Daniele S, Franzoni F, Martini C. Exploring the Role of Lipid-Binding Proteins and Oxidative Stress in Neurodegenerative Disorders: A Focus on the Neuroprotective Effects of Nutraceutical Supplementation and Physical Exercise. Antioxidants (Basel) 2022; 11:2116. [PMID: 36358488 PMCID: PMC9686611 DOI: 10.3390/antiox11112116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 07/29/2023] Open
Abstract
The human brain is primarily composed of lipids, and their homeostasis is crucial to carry on normal neuronal functions. In order to provide an adequate amount of lipid transport in and out of the central nervous system, organisms need a set of proteins able to bind them. Therefore, alterations in the structure or function of lipid-binding proteins negatively affect brain homeostasis, as well as increase inflammation and oxidative stress with the consequent risk of neurodegeneration. In this regard, lifestyle changes seem to be protective against neurodegenerative processes. Nutraceutical supplementation with antioxidant molecules has proven to be useful in proving cognitive functions. Additionally, regular physical activity seems to protect neuronal vitality and increases antioxidant defenses. The aim of the present review was to investigate mechanisms that link lipid-binding protein dysfunction and oxidative stress to cognitive decline, also underlining the neuroprotective effects of diet and exercise.
Collapse
Affiliation(s)
- Giorgia Scarfò
- Department of Clinical and Experimental Medicine, Division of General Medicine, University of Pisa, 56126 Pisa, Italy
- Center for Rehabilitative Medicine “Sport and Anatomy”, University of Pisa, 56126 Pisa, Italy
| | | | - Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Ferdinando Franzoni
- Department of Clinical and Experimental Medicine, Division of General Medicine, University of Pisa, 56126 Pisa, Italy
- Center for Rehabilitative Medicine “Sport and Anatomy”, University of Pisa, 56126 Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
28
|
Dighriri IM, Alsubaie AM, Hakami FM, Hamithi DM, Alshekh MM, Khobrani FA, Dalak FE, Hakami AA, Alsueaadi EH, Alsaawi LS, Alshammari SF, Alqahtani AS, Alawi IA, Aljuaid AA, Tawhari MQ. Effects of Omega-3 Polyunsaturated Fatty Acids on Brain Functions: A Systematic Review. Cureus 2022; 14:e30091. [DOI: 10.7759/cureus.30091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 11/07/2022] Open
|
29
|
Van Ravensteijn MM, Timmerman MF, Brouwer EAG, Slot DE. The effect of omega-3 fatty acids on active periodontal therapy: A systematic review and meta-analysis. J Clin Periodontol 2022; 49:1024-1037. [PMID: 35713248 PMCID: PMC9795982 DOI: 10.1111/jcpe.13680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/06/2022] [Accepted: 06/04/2022] [Indexed: 12/30/2022]
Abstract
AIM "Host modulatory therapy" (HMT) with ω-3 fatty acids aims at reducing inflammation. With HMT as an adjunct, a better result of periodontal therapy is expected. The aim of this systematic review and meta-analysis (MA) was to examine the additional effect of ω-3 fatty acids to non-surgical periodontal therapy (SRP) on the probing pocket depth (PPD) and the clinical attachment level (CAL). MATERIALS AND METHODS MEDLINE-PubMed and Cochrane-CENTRAL libraries were searched up to January 2021 for randomized controlled trials in patients with chronic periodontitis, treated with SRP/placebo as controls and SRP/ω-3 fatty acids as the test group. RESULTS The search identified 173 unique abstracts, and screening resulted in 10 eligible publications. Descriptive analysis showed a significant effect on the PPD and CAL in favour of the groups with ω-3 fatty acids in the majority of comparisons. MA revealed that adjunctive use of ω-3 fatty acids to SRP resulted in 0.39 mm more PPD reduction (95% CI: -0.58; -0.21) and 0.41 mm more CAL gain (95% CI: -0.63; -0.19) than SRP alone. CONCLUSIONS In patients with periodontitis, dietary supplementation with ω-3 fatty acids as an adjunct to SRP is more effective in reducing the PPD and improving the CAL than SRP alone. If SRP is indicated, the use of ω-3 fatty acids can be considered for a moderate extra added effect on PPD reduction and CAL gain. The strength of this recommendation is moderate.
Collapse
Affiliation(s)
| | | | | | - Dagmar Else Slot
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
30
|
Valera-Gran D, Prieto-Botella D, Hurtado-Pomares M, Baladia E, Petermann-Rocha F, Sánchez-Pérez A, Navarrete-Muñoz EM. The Impact of Foods, Nutrients, or Dietary Patterns on Telomere Length in Childhood and Adolescence: A Systematic Review. Nutrients 2022; 14:nu14193885. [PMID: 36235538 PMCID: PMC9570627 DOI: 10.3390/nu14193885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Environmental factors such as diet can affect telomere length (TL) dynamics. However, the role that children’s and adolescents’ diets play in maintaining TL is not well understood. Thus, we conducted a systematic review to examine the association between the intake of nutrients, foods, food groups, and/or dietary patterns and TL in childhood and adolescence. Following the PRISMA guidelines, we searched MEDLINE via PubMed, Embase, and Cochrane databases and additional registers and methods. The five selected studies were cross-sectional and conducted in children and adolescents aged 2 to 18 years. The main results suggest that a higher consumption of fish, nuts and seeds, fruits and vegetables, green leafy and cruciferous vegetables, olives, legumes, polyunsaturated fatty acids, and an antioxidant-rich diet might positively affect TL. On the contrary, a higher intake of dairy products, simple sugar, sugar-sweetened beverages, cereals, especially white bread, and a diet high in glycaemic load were factors associated with TL shortening. To our knowledge, this is the first systematic review examining the impact of dietary intake factors on TL in childhood and adolescence. Although limited, these results are consistent with previous studies in different adult populations. Further research is needed to ascertain potential nutritional determinants of TL in childhood and adolescence.
Collapse
Affiliation(s)
- Desirée Valera-Gran
- Grupo de Investigación en Terapia Ocupacional (InTeO), Department of Surgery and Pathology, Miguel Hernández University, 03550 Alicante, Spain
- Correspondence: (D.V.-G.); (A.S.-P.); Tel.: +34-965-233-705 (D.V.-G.)
| | - Daniel Prieto-Botella
- Grupo de Investigación en Terapia Ocupacional (InTeO), Department of Surgery and Pathology, Miguel Hernández University, 03550 Alicante, Spain
| | - Miriam Hurtado-Pomares
- Grupo de Investigación en Terapia Ocupacional (InTeO), Department of Surgery and Pathology, Miguel Hernández University, 03550 Alicante, Spain
| | - Eduard Baladia
- Centro de Análisis de la Evidencia Científica, Academia Española de Nutrición y Dietética, 08007 Barcelona, Spain
| | - Fanny Petermann-Rocha
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad Diego Portales, Santiago 8370109, Chile
| | - Alicia Sánchez-Pérez
- Grupo de Investigación en Terapia Ocupacional (InTeO), Department of Surgery and Pathology, Miguel Hernández University, 03550 Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), 03010 Alicante, Spain
- Correspondence: (D.V.-G.); (A.S.-P.); Tel.: +34-965-233-705 (D.V.-G.)
| | - Eva-María Navarrete-Muñoz
- Grupo de Investigación en Terapia Ocupacional (InTeO), Department of Surgery and Pathology, Miguel Hernández University, 03550 Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), 03010 Alicante, Spain
| |
Collapse
|
31
|
Ogłuszka M, Lipiński P, Starzyński RR. Effect of Omega-3 Fatty Acids on Telomeres-Are They the Elixir of Youth? Nutrients 2022; 14:nu14183723. [PMID: 36145097 PMCID: PMC9504755 DOI: 10.3390/nu14183723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Telomeres are complexes consisting of tandem repeat DNA combined with associated proteins that play a key role in protecting the ends of chromosomes and maintaining genome stability. They are considered a biological clock, as they shorten in parallel with aging. Furthermore, short telomeres are associated with several age-related diseases. However, the variability in telomere shortening independent of chronological age suggests that it is a modifiable factor. In fact, it is regulated inter alia by genetic damage, cell division, aging, oxidative stress, and inflammation. A key question remains: how can we prevent accelerated telomere attrition and subsequent premature replicative senescence? A number of studies have explored the possible impact of omega-3 fatty acids on telomere shortening. This review summarizes published cross-sectional studies, randomized controlled trials, and rodent studies investigating the role of omega-3 fatty acids in telomere biology. It also covers a broad overview of the mechanism, currently favored in the field, that explains the impact of omega-3 fatty acids on telomeres—the food compound’s ability to modulate oxidative stress and inflammation. Although the results of the studies performed to date are not consistent, the vast majority indicate a beneficial effect of omega-3 fatty acids on telomere length.
Collapse
Affiliation(s)
- Magdalena Ogłuszka
- Department of Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Rafał R. Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
- Correspondence:
| |
Collapse
|
32
|
Cole RM, Angelotti A, Sparagna GC, Ni A, Belury MA. Linoleic Acid-Rich Oil Alters Circulating Cardiolipin Species and Fatty Acid Composition in Adults: A Randomized Controlled Trial. Mol Nutr Food Res 2022; 66:e2101132. [PMID: 35596730 PMCID: PMC9540417 DOI: 10.1002/mnfr.202101132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/07/2022] [Indexed: 11/08/2022]
Abstract
SCOPE Higher circulating linoleic acid (LA) and muscle-derived tetralinoleoyl-cardiolipin (LA4 CL) are each associated with decreased cardiometabolic disease risk. Mitochondrial dysfunction occurs with low LA4 CL. Whether LA-rich oil fortification can increase LA4 CL in humans is unknown. The aims of this study are to determine whether dietary fortification with LA-rich oil for 2 weeks increases: 1) LA in plasma, erythrocytes, and peripheral blood mononuclear cells (PBMC); and 2) LA4 CL in PBMC in adults. METHODS AND RESULTS In this randomized controlled trial, adults are instructed to consume one cookie per day delivering 10 g grapeseed (LA-cookie, N = 42) or high oleate (OA) safflower (OA-cookie, N = 42) oil. In the LA-cookie group, LA increases in plasma, erythrocyte, and PBMC by 6%, 7%, and 10% respectively. PBMC and erythrocyte OA increase by 7% and 4% in the OA-cookie group but is unchanged in the plasma. PBMC LA4 CL increases (5%) while LA3 OA1 CL decreases (7%) in the LA-cookie group but are unaltered in the OA-cookie group. CONCLUSIONS LA-rich oil fortification increases while OA-oil has no effect on LA4 CL in adults. Because LA-rich oil fortification reduces cardiometabolic disease risk and increases LA4 CL, determining whether mitochondrial dysfunction is repaired through dietary fortification is warranted.
Collapse
Affiliation(s)
- Rachel M. Cole
- Program of Human Nutrition, The Department of Human SciencesThe Ohio State UniversityColumbusOH43210USA
| | - Austin Angelotti
- Program of Human Nutrition, The Department of Human SciencesThe Ohio State UniversityColumbusOH43210USA
| | - Genevieve C. Sparagna
- Division of CardiologyThe Department of MedicineUniversity of Colorado Anschutz Medical CenterAuroraCO80045USA
| | - Ai Ni
- Division of BiostatisticsCollege of Public HealthThe Ohio State UniversityColumbusOH43210USA
| | - Martha A. Belury
- Program of Human Nutrition, The Department of Human SciencesThe Ohio State UniversityColumbusOH43210USA
| |
Collapse
|
33
|
da Silva A, Silveira BKS, Hermsdorff HHM, da Silva W, Bressan J. Effect of omega-3 fatty acid supplementation on telomere length and telomerase activity: A systematic review of clinical trials. Prostaglandins Leukot Essent Fatty Acids 2022; 181:102451. [PMID: 35661999 DOI: 10.1016/j.plefa.2022.102451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/26/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022]
Abstract
Evidence suggests antioxidant and anti-inflammatory properties of omega-3 polyunsaturated fatty acids (n-3 PUFA). However, the effect of supplementation of this fatty acid profile on the telomere length and the telomerase enzyme activity was not revised yet. The PubMed and Embase® databases were used to search for clinical trials. A total of six clinical trials were revised. Omega-3 PUFA supplementation did not statistically affect telomere length in three out of three studies but affected telomerase activity in two out of four studies. The supplementation increased telomerase enzyme activity in subjects with first-episode schizophrenia. Besides, it decreased telomerase enzyme activity without modulating the effects of Pro12Ala polymorphism on the PPARγ gene in type 2 diabetes subjects. The methodological differences between the studies and the limited number of studies on the theme suggest that further studies are needed to elucidate the effects of n-3 PUFA supplementation on telomere length and telomerase enzyme activity in humans.
Collapse
Affiliation(s)
- Alessandra da Silva
- Laboratory of Energy Metabolism and Body Composition. Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Brenda Kelly Souza Silveira
- Laboratory of Energy Metabolism and Body Composition. Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Helen Hermana Miranda Hermsdorff
- Laboratory of Energy Metabolism and Body Composition. Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Walmir da Silva
- Laboratory of Animal Biotechnology. Animal Science Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Josefina Bressan
- Laboratory of Energy Metabolism and Body Composition. Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
34
|
Semeraro MD, Almer G, Renner W, Gruber HJ, Herrmann M. Influences of Long-Term Exercise and High-Fat Diet on Age-Related Telomere Shortening in Rats. Cells 2022; 11:1605. [PMID: 35626642 PMCID: PMC9139508 DOI: 10.3390/cells11101605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/22/2022] Open
Abstract
(1) Obesity and exercise are believed to modify age-related telomere shortening by regulating telomerase and shelterins. Existing studies are inconsistent and limited to peripheral blood mononuclear cells (PBMCs) and selected solid tissues. (2) Female Sprague Dawley (SD) rats received either standard diet (ND) or high-fat diet (HFD). For 10 months, half of the animals from both diet groups performed 30 min running at 30 cm/s on five consecutive days followed by two days of rest (exeND, exeHFD). The remaining animals served as sedentary controls (coND, coHFD). Relative telomere length (RTL) and mRNA expression of telomerase (TERT) and the shelterins TERF-1 and TERF-2 were mapped in PBMCs and nine solid tissues. (3) At study end, coND and coHFD animals showed comparable RTL in most tissues with no systematic differences in TERT, TERF-1 and TERF-2 expression. Only visceral fat of coHFD animals showed reduced RTL and lower expression of TERT, TERF-1 and TERF-2. Exercise had heterogeneous effects on RTL in exeND and exeHFD animals with longer telomeres in aorta and large intestine, but shorter telomeres in PBMCs and liver. Telomere-regulating genes showed inconsistent expression patterns. (4) In conclusion, regular exercise or HFD cannot systematically modify RTL by regulating the expression of telomerase and shelterins.
Collapse
Affiliation(s)
| | | | | | - Hans-Jürgen Gruber
- Clinical Institute of Medical and Chemical Laboratory Diagnostics (CIMCL), Medical University of Graz, 8036 Graz, Austria; (M.D.S.); (G.A.); (W.R.); (M.H.)
| | | |
Collapse
|
35
|
Ng GYQ, Hande V, Ong MH, Wong BWX, Loh ZWL, Ho WD, Handison LB, Tan IMSP, Fann DY, Arumugam TV, Hande MP. Effects of dietary interventions on telomere dynamics. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 876-877:503472. [PMID: 35483787 DOI: 10.1016/j.mrgentox.2022.503472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Telomeres play a critical role in maintaining cellular fate through tight regulation of cell division and DNA damage or repair. Over the years, it is established that biological ageing is defined by a gradual derangement in functionality, productivity, and robustness of biological processes. The link between telomeres and ageing is highlighted when derangement in telomere biology often leads to premature ageing and concomitant accompaniment of numerous age-associated diseases. Unfortunately, given that ageing is a biologically complicated intricacy, measures to reduce morbidity and improve longevity are still largely in the infancy stage. Recently, it was discovered that dietary habits and interventions might play a role in promoting successful healthy ageing. The intricate relationship between dietary components and its potential to protect the integrity of telomeres may provide unprecedented health benefits and protection against age-related pathologies. However, more focused prospective and follow-up studies with and without interventions are needed to unequivocally link dietary interventions with telomere maintenance in humans. This review aims to summarise recent findings that investigate the roles of nutrition on telomere biology and provide enough evidence for further studies to consider the topic of nutrigenomics and its contributions toward healthy ageing and concomitant strategy against age-associated diseases.
Collapse
Affiliation(s)
- Gavin Yong-Quan Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Varsha Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Min Hui Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Beverly Wen-Xin Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zachary Wai-Loon Loh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei D Ho
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lionel B Handison
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - David Y Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System (NUHS), Singapore
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea; Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - M Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Vellore Institute of Technology, Vellore, India; Mangalore University, Mangalore, India.
| |
Collapse
|
36
|
Beurel E, Medina-Rodriguez EM, Jope RS. Targeting the Adaptive Immune System in Depression: Focus on T Helper 17 Cells. Pharmacol Rev 2022; 74:373-386. [PMID: 35302045 PMCID: PMC8973514 DOI: 10.1124/pharmrev.120.000256] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There is a vital need to understand mechanisms contributing to susceptibility to depression to improve treatments for the 11% of Americans who currently suffer from this debilitating disease. The adaptive immune system, comprising T and B cells, has emerged as a potential contributor to depression, as demonstrated in the context of lymphopenic mice. Overall, patients with depression have reduced circulating T and regulatory B cells, "immunosuppressed" T cells, and alterations in the relative abundance of T cell subtypes. T helper (Th) cells have the capacity to differentiate to various lineages depending on the cytokine environment, antigen stimulation, and costimulation. Regulatory T cells are decreased, and the Th1/Th2 ratio and the Th17 cells are increased in patients with depression. Evidence for changes in each Th lineage has been reported to some extent in patients with depression. However, the evidence is strongest for the association of depression with changes in Th17 cells. Th17 cells produce the inflammatory cytokine interleukin (IL)-17A, and the discovery of Th17 cell involvement in depression evolved from the well established link that IL-6, which is required for Th17 cell differentiation, contributes to the onset, and possibly maintenance, of depression. One intriguing action of Th17 cells is their participation in the gut-brain axis to mediate stress responses. Although the mechanisms of action of Th17 cells in depression remain unclear, neutralization of IL-17A by anti-IL-17A antibodies, blocking stress-induced production, or release of gut Th17 cells represent feasible therapeutic approaches and might provide a new avenue to improve depression symptoms. SIGNIFICANCE STATEMENT: Th17 cells appear as a promising therapeutic target for depression, for which efficacious therapeutic options are limited. The use of neutralizing antibodies targeting Th17 cells has provided encouraging results in depressed patients with comorbid autoimmune diseases.
Collapse
Affiliation(s)
- Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences (E.B., E.M.M.-R., R.S.J.) and Department of Biochemistry and Molecular Biology Miller School of Medicine (E.B., R.S.J.), University of Miami, Miami, Florida and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida (E.M.M.-R., R.S.J.)
| | - Eva M Medina-Rodriguez
- Department of Psychiatry and Behavioral Sciences (E.B., E.M.M.-R., R.S.J.) and Department of Biochemistry and Molecular Biology Miller School of Medicine (E.B., R.S.J.), University of Miami, Miami, Florida and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida (E.M.M.-R., R.S.J.)
| | - Richard S Jope
- Department of Psychiatry and Behavioral Sciences (E.B., E.M.M.-R., R.S.J.) and Department of Biochemistry and Molecular Biology Miller School of Medicine (E.B., R.S.J.), University of Miami, Miami, Florida and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida (E.M.M.-R., R.S.J.)
| |
Collapse
|
37
|
Riveros ME, Ávila A, Schruers K, Ezquer F. Antioxidant Biomolecules and Their Potential for the Treatment of Difficult-to-Treat Depression and Conventional Treatment-Resistant Depression. Antioxidants (Basel) 2022; 11:540. [PMID: 35326190 PMCID: PMC8944633 DOI: 10.3390/antiox11030540] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/23/2022] Open
Abstract
Major depression is a devastating disease affecting an increasing number of people from a young age worldwide, a situation that is expected to be worsened by the COVID-19 pandemic. New approaches for the treatment of this disease are urgently needed since available treatments are not effective for all patients, take a long time to produce an effect, and are not well-tolerated in many cases; moreover, they are not safe for all patients. There is solid evidence showing that the antioxidant capacity is lower and the oxidative damage is higher in the brains of depressed patients as compared with healthy controls. Mitochondrial disfunction is associated with depression and other neuropsychiatric disorders, and this dysfunction can be an important source of oxidative damage. Additionally, neuroinflammation that is commonly present in the brain of depressive patients highly contributes to the generation of reactive oxygen species (ROS). There is evidence showing that pro-inflammatory diets can increase depression risk; on the contrary, an anti-inflammatory diet such as the Mediterranean diet can decrease it. Therefore, it is interesting to evaluate the possible role of plant-derived antioxidants in depression treatment and prevention as well as other biomolecules with high antioxidant and anti-inflammatory potential such as the molecules paracrinely secreted by mesenchymal stem cells. In this review, we evaluated the preclinical and clinical evidence showing the potential effects of different antioxidant and anti-inflammatory biomolecules as antidepressants, with a focus on difficult-to-treat depression and conventional treatment-resistant depression.
Collapse
Affiliation(s)
- María Eugenia Riveros
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago 7710162, Chile
| | - Alba Ávila
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago 7710162, Chile;
| | - Koen Schruers
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Center, 6229 Maastricht, The Netherlands;
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago 7710162, Chile;
| |
Collapse
|
38
|
Semeraro MD, Almer G, Renner W, Gruber HJ, Herrmann M. Telomere length in leucocytes and solid tissues of young and aged rats. Aging (Albany NY) 2022; 14:1713-1728. [PMID: 35220278 PMCID: PMC8908913 DOI: 10.18632/aging.203922] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/22/2022] [Indexed: 11/25/2022]
Abstract
Background: Telomeres are protective nucleoprotein structures at the end of chromosomes that shorten with age. Telomere length (TL) in peripheral blood mononuclear cells (PBMCs) has been proposed as surrogate marker for TL in the entire organism. Solid evidence that supports this concept is lacking. Methods: Relative TL (RTL) was measured in PBMCS and multiple solid tissues from 24 young (4 months) and 24 aged (14 months) Sprague-Dawley (SD) rats. The mRNA expression of telomerase (TERT) and shelterin proteins TERF-1 and TERF-2 was also measured. Results: Mean RTL in PBMCs and solid tissues of young rats ranged from 0.64 ± 0.26 in large intestine to 1.07 ± 0.22 in skeletal muscle. RTL in PBMCs correlated with that in kidney (r = 0.315, p = 0.008), skeletal muscle (r = 0.276, p = 0.022), liver (r = 0.269, p = 0.033), large intestine (r = −0.463, p = 7.035E-5) and aorta (r = −0.273, p = 0.028). A significant difference of RTL between young and aged animals was only observed in aorta (0.98 ± 0.15 vs. 0.76 ± 0.11, p = 1.987E-6), lung (0.76 ± 0.14 vs. 0.85 ± 0.14, p = 0.024) and visceral fat (0.83 ± 0.14 vs. 0.92 ± 0.15, p = 0.44). The expression of TERT significantly differed between the tested organs with highest levels in liver and kidney. Age-related differences in TERT expression were found in PBMCs, skeletal muscle, and visceral fat. mRNA expression of TERF-1 and TERF-2 was tissue-specific with the highest levels in liver. Age-related differences in TERF-1 and TERF-2 expression were inconsistent. Conclusions: The present study questions the utility of RTL in PBMCs as a biomarker for the individual assessment of aging.
Collapse
Affiliation(s)
- M Donatella Semeraro
- Clinical Institute of Medical and Chemical Laboratory Diagnostics (CIMCL), Medical University of Graz, Graz 8036, Austria
| | - Gunter Almer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics (CIMCL), Medical University of Graz, Graz 8036, Austria
| | - Wilfried Renner
- Clinical Institute of Medical and Chemical Laboratory Diagnostics (CIMCL), Medical University of Graz, Graz 8036, Austria
| | - Hans-Jürgen Gruber
- Clinical Institute of Medical and Chemical Laboratory Diagnostics (CIMCL), Medical University of Graz, Graz 8036, Austria
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics (CIMCL), Medical University of Graz, Graz 8036, Austria
| |
Collapse
|
39
|
Ali S, Scapagnini G, Davinelli S. Effect of omega-3 fatty acids on the telomere length: A mini meta-analysis of clinical trials. Biomol Concepts 2022; 13:25-33. [DOI: 10.1515/bmc-2021-0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/24/2022] [Indexed: 01/22/2023] Open
Abstract
Abstract
Telomeres are protective caps at the end of eukaryotic chromosomes, whose length is correlated with health and lifespan. Telomere attrition is a common feature of the aging process and can be accelerated by oxidative stress and chronic inflammation. Various nutrients influence the telomere length, partially due to their antioxidant and anti-inflammatory properties. The aim of this review was to meta-analytically assess the effect of omega-3 fatty acids on the telomere length. We searched four databases (PubMed, Web of Sciences, Scopus, and the Cochrane Library) from inception until November 2021. Of 573 records, a total of 5 clinical trials were included for the quantitative meta-analysis, comprising a total of 337 participants. The results revealed an overall beneficial effect of omega-3 fatty acids on the telomere length (mean difference = 0.16; 95% CI, 0.02, 0.30; p = 0.02). Despite a limited number of studies, the available evidence suggests that omega-3 fatty acids may positively affect the telomere length. However, larger clinical trials are needed to confirm our findings, along with studies aimed to clarify the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Sawan Ali
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise , Via V. De Sanctis, s.n.c. , Campobasso , Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise , Via V. De Sanctis, s.n.c. , Campobasso , Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise , Via V. De Sanctis, s.n.c. , Campobasso , Italy
| |
Collapse
|
40
|
Liu X, Shi Q, Fan X, Chen H, Chen N, Zhao Y, Qi K. Associations of Maternal Polyunsaturated Fatty Acids With Telomere Length in the Cord Blood and Placenta in Chinese Population. Front Nutr 2022; 8:779306. [PMID: 35155512 PMCID: PMC8831827 DOI: 10.3389/fnut.2021.779306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/30/2021] [Indexed: 12/26/2022] Open
Abstract
Few studies have investigated the correlation between maternal polyunsaturated fatty acids (PUFAs) and telomeres in offspring, and the underlying influential mechanisms. In this study, we assessed the associations of maternal PUFAs with telomere length (TL) and DNA methylation of the telomerase reverse transcriptase (TERT) promoter in the cord blood and the placenta. A total of 274 pregnant women and their newborn babies were enrolled in this study. Maternal blood before delivery, the cord blood, and the placenta at birth were collected. Fatty acids in maternal erythrocytes and cord blood cells were measured by gas chromatography (GC). TL in the cord blood and the placenta was determined using real-time quantitative PCR (qPCR) by calculating the product ratio of telomeric DNA to the single-copy gene β-globin. The TERT promoter methylation was analyzed by DNA bisulfite sequencing. The associations of maternal fatty acids with TL were analyzed by univariate and multivariate regression. We found that low concentrations of docosapentaenoci acid (DPA, C22: 5n-3) and total n-3 PUFAs, adrenic acid (ADA, C22: 4n-6), and osbond acid (OA, C22: 5n-6) and high concentrations of linoleic acid (LA, C18: 2n-6) in maternal erythrocytes were associated with the shortened TL in cord blood cells (estimated difference in univariate analysis −0.36 to −0.46 for extreme quintile compared with middle quintile), and that low concentrations of cord blood docosahexaenoic acid (DHA, C22: 6n-3) were related to the shortened TL in cord blood cells. Differently, high concentrations of α-linolenic acid (LNA, C18: 3n-3), eicosatrienoic acid (EA, C20: 3n-3), DHA, and γ-linoleic acid (GLA, C18:3n-6) in maternal erythrocytes were associated with the shortened TL in the placenta (estimated difference in univariate analysis −0.36 to −0.45 for higher quintiles compared with the middle quintile). Further examination demonstrated that the concentrations of DHA and total n-3 PUFAs in maternal erythrocytes had positive associations with DNA methylation of the TERT promoter in the cord blood instead of the placenta. These data suggest that maternal PUFAs are closely correlated to infant TL and the TERT promoter methylation, which are differently affected by maternal n-3 PUFAs between the cord blood and the placenta. Therefore, keeping higher levels of maternal n-3 PUFAs during pregnancy may help to maintain TL in the offspring, which is beneficial to long-term health.
Collapse
Affiliation(s)
- Xuanyi Liu
- Key Laboratory of Major Diseases in Children, Laboratory of Nutrition and Development, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Qiaoyu Shi
- Key Laboratory of Major Diseases in Children, Laboratory of Nutrition and Development, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiuqin Fan
- Key Laboratory of Major Diseases in Children, Laboratory of Nutrition and Development, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Hang Chen
- Department of Obstetrics and Gynecology, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Na Chen
- Department of Obstetrics and Gynecology, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Yurong Zhao
- Department of Obstetrics and Gynecology, Fuxing Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yurong Zhao
| | - Kemin Qi
- Key Laboratory of Major Diseases in Children, Laboratory of Nutrition and Development, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Kemin Qi
| |
Collapse
|
41
|
Leitão C, Mignano A, Estrela M, Fardilha M, Figueiras A, Roque F, Herdeiro MT. The Effect of Nutrition on Aging-A Systematic Review Focusing on Aging-Related Biomarkers. Nutrients 2022; 14:nu14030554. [PMID: 35276919 PMCID: PMC8838212 DOI: 10.3390/nu14030554] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/08/2023] Open
Abstract
Despite the increasing life expectancy, an individual’s later years tends to be accompanied by a decrease in the quality of life. Though biological changes that occur through the natural process of aging cannot be controlled, the risk factors associated with lifestyle can. Thus, the main goal of this systematic review was to evaluate how nutrition can modulate aging. For this purpose, thirty-six studies were selected on (i) the efficiency of nutrition’s effect on aging, (ii) the evaluation of biomarkers that promote healthy aging, and (iii) how to increase longevity through nutrition, and their quality was assessed. The results showed that choosing low carbohydrate diets or diets rich in vegetables, fruits, nuts, cereals, fish, and unsaturated fats, containing antioxidants, potassium, and omega-3 decreased cardiovascular diseases and obesity risk, protected the brain from aging, reduced the risk of telomere shortening, and promoted an overall healthier life. With this study, the conclusion is that since the biological processes of aging cannot be controlled, changing one’s nutritional patterns is crucial to prevent the emergence and development of diseases, boost longevity, and, mostly, to enhance one’s quality of life and promote healthy aging.
Collapse
Affiliation(s)
- Catarina Leitão
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (A.M.); (M.E.); (M.F.)
- Correspondence: (C.L.); (F.R.); (M.T.H.); Tel.: +351-915-468-330 (C.L.); +351-965-577-778 (F.R.); +351-917-739-799 (M.T.H.)
| | - Anna Mignano
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (A.M.); (M.E.); (M.F.)
| | - Marta Estrela
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (A.M.); (M.E.); (M.F.)
| | - Margarida Fardilha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (A.M.); (M.E.); (M.F.)
| | - Adolfo Figueiras
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28001 Madrid, Spain;
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Fátima Roque
- Research Unit for Inland Development, Polytechnic of Guarda (UDI-IPG), 6300-559 Guarda, Portugal
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal
- Correspondence: (C.L.); (F.R.); (M.T.H.); Tel.: +351-915-468-330 (C.L.); +351-965-577-778 (F.R.); +351-917-739-799 (M.T.H.)
| | - Maria Teresa Herdeiro
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (A.M.); (M.E.); (M.F.)
- Correspondence: (C.L.); (F.R.); (M.T.H.); Tel.: +351-915-468-330 (C.L.); +351-965-577-778 (F.R.); +351-917-739-799 (M.T.H.)
| |
Collapse
|
42
|
Wijayabahu AT, Mickle AM, Mai V, Garvan C, Glover TL, Cook RL, Zhao J, Baum MK, Fillingim RB, Sibille KT. Associations between Vitamin D, Omega 6:Omega 3 Ratio, and Biomarkers of Aging in Individuals Living with and without Chronic Pain. Nutrients 2022; 14:266. [PMID: 35057447 PMCID: PMC8779718 DOI: 10.3390/nu14020266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 02/01/2023] Open
Abstract
Elevated inflammatory cytokines and chronic pain are associated with shorter leukocyte telomere length (LTL), a measure of cellular aging. Micronutrients, such as 25-hydroxyvitamin D (vitamin D) and omega 3, have anti-inflammatory properties. Little is known regarding the relationships between vitamin D, omega 6:3 ratio, LTL, inflammation, and chronic pain. We investigate associations between vitamin D, omega 6:3 ratio, LTL, and C-reactive protein (CRP) in people living with/without chronic pain overall and stratified by chronic pain status. A cross-sectional analysis of 402 individuals (63% women, 79.5% with chronic pain) was completed. Demographic and health information was collected. Chronic pain was assessed as pain experienced for at least three months. LTL was measured in genomic DNA isolated from blood leukocytes, and micronutrients and CRP were measured in serum samples. Data were analyzed with general linear regression. Although an association between the continuous micronutrients and LTL was not observed, a positive association between omega 6:3 ratio and CRP was detected. In individuals with chronic pain, based on clinical categories, significant associations between vitamin D, omega 6:3 ratio, and CRP were observed. Findings highlight the complex relationships between anti-inflammatory micronutrients, inflammation, cellular aging, and chronic pain.
Collapse
Affiliation(s)
- Akemi T. Wijayabahu
- Department of Epidemiology, College of Public Health and Health Professions, and College of Medicine, University of Florida, Gainesville, FL 32610, USA; (A.T.W.); (V.M.); (R.L.C.); (J.Z.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Angela M. Mickle
- Department of Physical Medicine & Rehabilitation and Aging & Geriatric Research, University of Florida, Gainesville, FL 32610, USA;
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL 32610, USA;
| | - Volker Mai
- Department of Epidemiology, College of Public Health and Health Professions, and College of Medicine, University of Florida, Gainesville, FL 32610, USA; (A.T.W.); (V.M.); (R.L.C.); (J.Z.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Cynthia Garvan
- Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Toni L. Glover
- School of Nursing, Oakland University, Rochester, MI 48309, USA;
| | - Robert L. Cook
- Department of Epidemiology, College of Public Health and Health Professions, and College of Medicine, University of Florida, Gainesville, FL 32610, USA; (A.T.W.); (V.M.); (R.L.C.); (J.Z.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health and Health Professions, and College of Medicine, University of Florida, Gainesville, FL 32610, USA; (A.T.W.); (V.M.); (R.L.C.); (J.Z.)
| | - Marianna K. Baum
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33174, USA;
| | - Roger B. Fillingim
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL 32610, USA;
| | - Kimberly T. Sibille
- Department of Physical Medicine & Rehabilitation and Aging & Geriatric Research, University of Florida, Gainesville, FL 32610, USA;
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL 32610, USA;
- Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
43
|
Chan J, Eide IA, Tannæs TM, Waldum-Grevbo B, Jenssen T, Svensson M. Marine n-3 Polyunsaturated Fatty Acids and Cellular Senescence Markers in Incident Kidney Transplant Recipients: The Omega-3 Fatty Acids in Renal Transplantation (ORENTRA) Randomized Clinical Trial. Kidney Med 2021; 3:1041-1049. [PMID: 34939013 PMCID: PMC8664741 DOI: 10.1016/j.xkme.2021.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Rationale & Objective Deterioration of kidney graft function is associated with accelerated cellular senescence. Marine n-3 polyunsaturated fatty acids (PUFAs) have favorable properties that may counteract cellular senescence development and damage caused by the senescence-associated secretory phenotype (SASP) secretome. Our objective was to investigate the potential effects of marine n-3 PUFA supplementation on the SASP secretome in kidney transplant recipients. Study Design Exploratory substudy of the Omega-3 Fatty Acids in Renal Transplantation trial. Setting & Participants Adult kidney transplant recipients with a functional kidney graft (defined as having an estimated glomerular filtration rate of >30 mL/min/1.73 m2) 8 weeks after engraftment were included in this study conducted in Norway. Analytical Approach The intervention consisted of 2.6 g of a marine n-3 PUFA or olive oil (placebo) daily for 44 weeks. The outcome was a predefined panel of SASP components in the plasma and urine. Results A total of 132 patients were enrolled in the Omega-3 Fatty Acids in Renal Transplantation trial, and 66 patients were allocated to receive either the study drug or placebo. The intervention with the marine n-3 PUFA was associated with reduced plasma levels of granulocyte colony-stimulating factor, interleukin 1α, macrophage inflammatory protein 1α, matrix metalloproteinase (MMP)-1, and MMP-13 compared with the intervention in the control group. Limitations Post hoc analysis. Conclusions The results suggest that marine n-3 PUFA supplementation has mitigating effects on the plasma SASP components granulocyte colony-stimulating factor, interleukin 1α, macrophage inflammatory protein 1α, MMP-1, and MMP-13 in kidney transplant recipients. Future studies with kidney transplant recipients in maintenance phase, combined with an evaluation of cellular senescence markers in kidney transplant biopsies, are needed to further elucidate the potential antisenescent effect of marine n-3 PUFAs. This trial is registered as NCT01744067.
Collapse
Affiliation(s)
- Joe Chan
- Department of Renal Medicine, Akershus University Hospital, Lørenskog.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo
| | - Ivar A Eide
- Department of Renal Medicine, Akershus University Hospital, Lørenskog.,Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo
| | - Tone M Tannæs
- Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital and University of Oslo, Lørenskog
| | - Bård Waldum-Grevbo
- Department of Nephrology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Trond Jenssen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo.,Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo
| | - My Svensson
- Department of Renal Medicine, Akershus University Hospital, Lørenskog.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo
| |
Collapse
|
44
|
Binge eating among young adults: association with sociodemographic factors, nutritional intake, dietary n-6: n-3 ratio and impulsivity. Br J Nutr 2021; 126:1431-1440. [PMID: 33441196 DOI: 10.1017/s0007114521000118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Binge eating behaviour (BE) is the major symptom of binge eating disorder (BED). This study aimed to compare the nutritional intake in the presence or absence of BE, with a particular focus on dietary n-6:n-3 ratio, to assess the association between BE and impulsivity and the mediating effect of BMI on this association. A total of 450 university students (age 18-28 years) participated. The self-administered questionnaires were a semi-quantitative FFQ and the UPPS-P Impulsive Behavior Scale and the binge eating scale. The average BE score was 11·6 (se 7·388), and 20 % of the total participants scored above the cut-off of 17, thus presenting BE with 95 % CI of 16·3, 23·7 %. Our study revealed that greater BMI, higher total energy intake, greater negative urgency and positive urgency scores were significantly associated with BE. Participants with high value of dietary n-6:n-3 ratio were 1·335 more at risk to present a BE compared with those with a lower value of this ratio (P = 0·017). The relationship between BE score and UPPS domains score was not mediated by the BMI. This is the first study reporting a link between high dietary n-6:n-3 ratio and BE as well as the fact that BE was linked to both, negative and positive urgencies, and that the association between BE and impulsivity was not mediated by BMI. These findings can help to deal more efficiently with people suffering from BE, a symptom that can precede the development of BED.
Collapse
|
45
|
Shortened leukocyte telomere length in young adults who use methamphetamine. Transl Psychiatry 2021; 11:519. [PMID: 34628468 PMCID: PMC8502172 DOI: 10.1038/s41398-021-01640-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 04/08/2021] [Accepted: 04/16/2021] [Indexed: 12/23/2022] Open
Abstract
Methamphetamine (METH) use, most prevalent in young adults, has been associated with high rates of morbidity and mortality. The relationship between METH use and accelerated biological aging, which can be measured using leukocyte telomere length (LTL), remains unclear. We examined whether young adult METH users have shorter LTL and explored the relationship between characteristics of METH use and LTL by using Mendelian randomization (MR) analysis. We compared the LTL for 187 METH users and 159 healthy individuals aged between 25 and 34 years and examined the relationship of LTL with METH use variables (onset age, duration, and maximum frequency of METH use) by using regression analyses. In addition, 2-stage-least-squares (2SLS) MR was also performed to possibly avoid uncontrolled confounding between characteristics of METH use and LTL. We found METH users had significantly shorter LTL compared to controls. Multivariate regression analysis showed METH use was negatively associated with LTL (β = -0.36, P < .001). Among METH users, duration of METH use was negatively associated with LTL after adjustment (β = -0.002, P = .01). We identified a single nucleotide polymorphism (SNP) rs6585206 genome-wide associated with duration of METH use. This SNP was used as an instrumental variable to avoid uncontrolled confounding for the relationship between the use duration and LTL shortening. In conclusion, we show that young adult METH users may have shorter LTL compared with controls and longer duration of METH use was significantly associated with telomere shortening. These observations suggest that METH use may accelerate biological senescence.
Collapse
|
46
|
Schroder JD, de Araújo JB, de Oliveira T, de Moura AB, Fries GR, Quevedo J, Réus GZ, Ignácio ZM. Telomeres: the role of shortening and senescence in major depressive disorder and its therapeutic implications. Rev Neurosci 2021; 33:227-255. [PMID: 34388328 DOI: 10.1515/revneuro-2021-0070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/17/2021] [Indexed: 11/15/2022]
Abstract
Major depressive disorder (MDD) is one of the most prevalent and debilitating psychiatric disorders, with a large number of patients not showing an effective therapeutic response to available treatments. Several biopsychosocial factors, such as stress in childhood and throughout life, and factors related to biological aging, may increase the susceptibility to MDD development. Included in critical biological processes related to aging and underlying biological mechanisms associated with MDD is the shortening of telomeres and changes in telomerase activity. This comprehensive review discusses studies that assessed the length of telomeres or telomerase activity and function in peripheral blood cells and brain tissues of MDD individuals. Also, results from in vitro protocols and animal models of stress and depressive-like behaviors were included. We also expand our discussion to include the role of telomere biology as it relates to other relevant biological mechanisms, such as the hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, inflammation, genetics, and epigenetic changes. In the text and the discussion, conflicting results in the literature were observed, especially considering the size of telomeres in the central nervous system, on which there are different protocols with divergent results in the literature. Finally, the context of this review is considering cell signaling, transcription factors, and neurotransmission, which are involved in MDD and can be underlying to senescence, telomere shortening, and telomerase functions.
Collapse
Affiliation(s)
- Jessica Daniela Schroder
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Rodovia SC 484 - Km 02, Fronteira Sul, Postal Code: 89815-899Chapecó, SC, Brazil
| | - Julia Beatrice de Araújo
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Rodovia SC 484 - Km 02, Fronteira Sul, Postal Code: 89815-899Chapecó, SC, Brazil
| | - Tacio de Oliveira
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Rodovia SC 484 - Km 02, Fronteira Sul, Postal Code: 89815-899Chapecó, SC, Brazil
| | - Airam Barbosa de Moura
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av. Universitária, 1105 - Bairro Universitário Postal Code: 88806-000Criciúma, SC, Brazil
| | - Gabriel Rodrigo Fries
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, Translational Psychiatry Program, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road BBSB 3142, Houston77054, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, BBSB 3142, Houston77054, TX, USA.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 1941 East Road, BBSB 3142, Houston77054, TX, USA
| | - João Quevedo
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av. Universitária, 1105 - Bairro Universitário Postal Code: 88806-000Criciúma, SC, Brazil.,Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, Translational Psychiatry Program, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road BBSB 3142, Houston77054, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, BBSB 3142, Houston77054, TX, USA.,Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, Center of Excellence on Mood Disorders, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, BBSB 3142, Houston77054, TX, USA
| | - Gislaine Zilli Réus
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av. Universitária, 1105 - Bairro Universitário Postal Code: 88806-000Criciúma, SC, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Rodovia SC 484 - Km 02, Fronteira Sul, Postal Code: 89815-899Chapecó, SC, Brazil.,Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av. Universitária, 1105 - Bairro Universitário Postal Code: 88806-000Criciúma, SC, Brazil
| |
Collapse
|
47
|
Madison AA, Belury MA, Andridge R, Renna ME, Shrout MR, Malarkey WB, Lin J, Epel ES, Kiecolt-Glaser JK. Omega-3 supplementation and stress reactivity of cellular aging biomarkers: an ancillary substudy of a randomized, controlled trial in midlife adults. Mol Psychiatry 2021; 26:3034-3042. [PMID: 33875799 PMCID: PMC8510994 DOI: 10.1038/s41380-021-01077-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/05/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
Higher levels of omega-3 track with longer telomeres, lower inflammation, and blunted sympathetic and cardiovascular stress reactivity. Whether omega-3 supplementation alters the stress responsivity of telomerase, cortisol, and inflammation is unknown. This randomized, controlled trial examined the impact of omega-3 supplementation on cellular aging-related biomarkers following a laboratory speech stressor. In total, 138 sedentary, overweight, middle-aged participants (n = 93 women, n = 45 men) received either 2.5 g/d of omega-3, 1.25 g/d of omega-3, or a placebo for 4 months. Before and after the trial, participants underwent the Trier Social Stress Test. Saliva and blood samples were collected once before and repeatedly after the stressor to measure salivary cortisol, telomerase in peripheral blood lymphocytes, and serum anti-inflammatory (interleukin-10; IL-10) and pro-inflammatory (interleukin-6; IL-6, interleukin-12, tumor necrosis factor-alpha) cytokines. Adjusting for pre-supplementation reactivity, age, sagittal abdominal diameter, and sex, omega-3 supplementation altered telomerase (p = 0.05) and IL-10 (p = 0.05) stress reactivity; both supplementation groups were protected from the placebo group's 24% and 26% post-stress declines in the geometric means of telomerase and IL-10, respectively. Omega-3 also reduced overall cortisol (p = 0.03) and IL-6 (p = 0.03) throughout the stressor; the 2.5 g/d group had 19% and 33% lower overall cortisol levels and IL-6 geometric mean levels, respectively, compared to the placebo group. By lowering overall inflammation and cortisol levels during stress and boosting repair mechanisms during recovery, omega-3 may slow accelerated aging and reduce depression risk. ClinicalTrials.gov identifier: NCT00385723.
Collapse
Affiliation(s)
- Annelise A. Madison
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine,Department of Psychology, The Ohio State University
| | - Martha A. Belury
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine,Department of Human Sciences, College of Education and Human Ecology, The Ohio State University
| | - Rebecca Andridge
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine,College of Public Health, The Ohio State University
| | - Megan E. Renna
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine
| | - M. Rosie Shrout
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine
| | - William B. Malarkey
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine,Department of Internal Medicine, The Ohio State University College of Medicine
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco
| | - Elissa S. Epel
- Department of Psychiatry, University of California, San Francisco
| | - Janice K. Kiecolt-Glaser
- Institute for Behavioral Medicine Research, The Ohio State University College of Medicine,Department of Psychiatry and Behavioral Health, The Ohio State University College of Medicine
| |
Collapse
|
48
|
Hansen MW, Ørn S, Erevik CB, Bjørkavoll-Bergseth MF, Skadberg Ø, Melberg TH, Aakre KM, Kleiven Ø. Regular consumption of cod liver oil is associated with reduced basal and exercise-induced C-reactive protein levels; a prospective observational trial : A NEEDED (The North Sea Race Endurance Exercise Study) 2014 sub-study. J Int Soc Sports Nutr 2021; 18:51. [PMID: 34183020 PMCID: PMC8240263 DOI: 10.1186/s12970-021-00437-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 04/29/2021] [Indexed: 12/31/2022] Open
Abstract
Background Dietary supplement use among recreational athletes is common, with the intention of reducing inflammation and improving recovery. We aimed to describe the relationship between omega-3 fatty acid supplement use and inflammation induced by strenuous exercise. Methods C-reactive protein (CRP) concentrations were measured in 1002 healthy recreational athletes before and 24 h after a 91-km bicycle race. The use of omega-3 fatty acid supplements was reported in 856 out of 1002 recreational athletes, and the association between supplement use and the exercise-induced CRP response was assessed. Results Two hundred seventy-four subjects reported regular use of omega-3 fatty acid supplements. One hundred seventy-three of these used cod liver oil (CLO). Regular users of omega-3 fatty acid supplements had significantly lower basal and exercise-induced CRP levels as compared to non-users (n = 348, p < 0.001). Compared to non-users, regular users had a 27% (95% confidence interval (CI): 14–40) reduction in Ln CRP response (unadjusted model, p < 0.001) and 16% (95% CI: 5–28, p = 0.006) reduction after adjusting for age, sex, race duration, body mass index, delta creatine kinase, MET hours per week, resting heart rate and higher education. CLO was the primary driver of this response with a 34% (95% CI: 19–49) reduction (unadjusted model, p < 0.001) compared to non-users. Corresponding numbers in the adjusted model were 24% (95% CI: 11–38, p < 0.001). Conclusion Basal CRP levels were reduced, and the exercise-induced CRP response was attenuated in healthy recreational cyclists who used omega-3 fatty acid supplements regularly. This effect was only present in regular users of CLO. Trial registration NCT02166216, registered June 18, 2014 – Retrospectively registered. Supplementary Information The online version contains supplementary material available at 10.1186/s12970-021-00437-1.
Collapse
Affiliation(s)
- Mette Wærstad Hansen
- Cardiology Department, Stavanger University Hospital, PO 8400, 4068, Stavanger, Norway
| | - Stein Ørn
- Cardiology Department, Stavanger University Hospital, PO 8400, 4068, Stavanger, Norway.,Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| | - Christine B Erevik
- Cardiology Department, Stavanger University Hospital, PO 8400, 4068, Stavanger, Norway
| | | | - Øyvind Skadberg
- Department of Biochemistry, Stavanger University Hospital, Stavanger, Norway
| | - Tor H Melberg
- Cardiology Department, Stavanger University Hospital, PO 8400, 4068, Stavanger, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kristin M Aakre
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway.,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Øyunn Kleiven
- Cardiology Department, Stavanger University Hospital, PO 8400, 4068, Stavanger, Norway.
| |
Collapse
|
49
|
Jacczak B, Rubiś B, Totoń E. Potential of Naturally Derived Compounds in Telomerase and Telomere Modulation in Skin Senescence and Aging. Int J Mol Sci 2021; 22:6381. [PMID: 34203694 PMCID: PMC8232155 DOI: 10.3390/ijms22126381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Proper functioning of cells-their ability to divide, differentiate, and regenerate-is dictated by genomic stability. The main factors contributing to this stability are the telomeric ends that cap chromosomes. Telomere biology and telomerase activity have been of interest to scientists in various medical science fields for years, including the study of both cancer and of senescence and aging. All these processes are accompanied by telomere-length modulation. Maintaining the key levels of telomerase component (hTERT) expression and telomerase activity that provide optimal telomere length as well as some nontelomeric functions represents a promising step in advanced anti-aging strategies, especially in dermocosmetics. Some known naturally derived compounds contribute significantly to telomere and telomerase metabolism. However, before they can be safely used, it is necessary to assess their mechanisms of action and potential side effects. This paper focuses on the metabolic potential of natural compounds to modulate telomerase and telomere biology and thus prevent senescence and skin aging.
Collapse
Affiliation(s)
| | | | - Ewa Totoń
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznań, Poland; (B.J.); (B.R.)
| |
Collapse
|
50
|
Minimal changes in telomere length after a 12-week dietary intervention with almonds in mid-age to older, overweight and obese Australians: results of a randomised clinical trial. Br J Nutr 2021; 127:872-884. [PMID: 33971995 DOI: 10.1017/s0007114521001549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Diet is a modifiable risk factor for chronic disease and a potential modulator of telomere length (TL). The study aim was to investigate associations between diet quality and TL in Australian adults after a 12-week dietary intervention with an almond-enriched diet (AED). Participants (overweight/obese, 50-80 years) were randomised to an AED (n 62) or isoenergetic nut-free diet (NFD, n 62) for 12 weeks. Diet quality was assessed using a Dietary Guideline Index (DGI), applied to weighed food records, that consists of ten components reflecting adequacy, variety and quality of core food components and discretionary choices within the diet. TL was measured by quantitative PCR in samples of lymphocytes, neutrophils, and whole blood. There were no significant associations between DGI scores and TL at baseline. Diet quality improved with AED and decreased with NFD after 12 weeks (change from baseline AED + 9·8 %, NFD - 14·3 %; P < 0·001). TL increased in neutrophils (+9·6 bp, P = 0·009) and decreased in whole blood, to a trivial extent (-12·1 bp, P = 0·001), and was unchanged in lymphocytes. Changes did not differ between intervention groups. There were no significant relationships between changes in diet quality scores and changes in lymphocyte, neutrophil or whole blood TL. The inclusion of almonds in the diet improved diet quality scores but had no impact on TL mid-age to older Australian adults. Future studies should investigate the impact of more substantial dietary changes over longer periods of time.
Collapse
|