1
|
Mitchell TM, Burdick Sanchez NC, Carroll JA, Broadway PR, Legako JF, Bowen BM, Petry AL. Prenatal lipopolysaccharide stimulation modulates gastrointestinal immunity and oxidative status in weaned pigs. Am J Physiol Gastrointest Liver Physiol 2025; 328:G197-G205. [PMID: 39853237 DOI: 10.1152/ajpgi.00268.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Accepted: 01/09/2025] [Indexed: 01/26/2025]
Abstract
Gastrointestinal immunity and antioxidant defenses may be bolstered in young animals through prenatal immune stimulation (PIS), but this is largely uninvestigated in swine. This study tested the hypothesis that PIS could regulate offspring's gastrointestinal immune response and oxidative stress profile. To this end, a PIS model was utilized in sows, delivering low-dose lipopolysaccharide (LPS) during the final third of gestation to target the developing immune system. On day 78 ± 1.8 of gestation, 14 Camborough sows (parity = 2.6 ± 1.4) received either saline (Control, CON) or LPS from Escherichia coli O111:B4 (2.5 µg/kg of body wt). A subset of 34 weaned barrows (n = 17 CON, PIS), weaned at 21 ± 1.3 days, were anesthetized for subcutaneous temperature loggers and jugular catheter placement. Following recovery, all pigs received an intravenous injection of LPS (10 µg/kg·body wt) from E. coli O111:B4. Our findings demonstrate that PIS enhances the gut immune response by upregulating key inflammatory cytokines, indicative of a proinflammatory profile. Consistently across the jejunum and ileum, stem cell factor was modulated with heightened expression in PIS than CON (P ≤ 0.05). In the ileum alone, PIS exhibited heightened expression of proinflammatory cytokines and chemokines, including TNFα, IL-6, IL-1β, and CCL3L1, compared with CON (P ≤ 0.05). Exposure to PIS resulted in reduced systemic total antioxidant capacity at hours 2 and 4 postchallenge (P = 0.004). Piglets exposed to PIS had decreased jejunal tissue malondialdehyde concentrations (P = 0.049). Together, these data indicate that exposure to PIS alters the inflammatory profile of the gastrointestinal immune response and oxidative status in weaned pigs.NEW & NOTEWORTHY These studies represent novel investigations into the influence of prenatal immune stimulation (PIS) in swine on the gastrointestinal immune response and oxidative status of offspring following subsequent immune challenge. Notable alterations were observed in gut protein biomarkers, particularly the upregulation of proinflammatory cytokines TNFα, IL-6, and IL-1β in PIS-exposed pigs, but has variable effects on oxidative status. Altered intestinal immune development may contribute to an increased risk for inflammatory disease associated with prenatal immune stimulation.
Collapse
Affiliation(s)
- Ty M Mitchell
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, United States
| | - Nicole C Burdick Sanchez
- Livestock Issues Research Unit, Agriculture Research Service, United States Department of Agriculture, Lubbock, Texas, United States
| | - Jeff A Carroll
- Livestock Issues Research Unit, Agriculture Research Service, United States Department of Agriculture, Lubbock, Texas, United States
| | - Paul R Broadway
- Livestock Issues Research Unit, Agriculture Research Service, United States Department of Agriculture, Lubbock, Texas, United States
| | - Jerrad F Legako
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, Texas, United States
| | - Brooke M Bowen
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, Texas, United States
| | - Amy L Petry
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
2
|
Murphy SK, Pike MR, Lipner E, Maxwell SD, Cohn BA, Cirillo P, Krigbaum NY, Breen EC, Ellman LM. Contributions of maternal prenatal infection and antibiotic exposure to offspring infection and risk for allergic respiratory conditions through age 5. Brain Behav Immun Health 2024; 42:100892. [PMID: 39512604 PMCID: PMC11541876 DOI: 10.1016/j.bbih.2024.100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 11/15/2024] Open
Abstract
Objectives To determine if maternal prenatal infection increases risk of offspring postnatal infections through age 5 or diagnosis of respiratory allergy at age 5, independent of prenatal/postnatal antibiotic exposure. To evaluate if frequency of offspring infections mediates an association between prenatal infection and respiratory allergy at age 5. Study design Secondary data analyses were performed from the Child Health and Development Studies (CHDS), a prospective, longitudinal birth cohort that enrolled pregnant women from 1959 to 1966 (N = 19,044 live births). The sample included a subset of mother-offspring dyads (n = 2062) with abstracted medical record data from the prenatal period through age 5 that included information on antibiotic use, infection, and offspring respiratory allergy. Results Second trimester maternal infection was associated with an increased risk of offspring infection (IRR = 1.23; 95% CI = 1.09-1.39; p = 0.001). No significant direct associations were detected between prenatal infection and diagnosis of offspring respiratory allergy. Offspring infection (OR = 1.17; 95% CI = 1.13-1.20; p < 0.001) and antibiotic exposure (OR = 1.28; 95% CI = 1.22-1.33; p < 0.001) were significantly associated with a diagnosis of offspring respiratory allergy. Respiratory allergy diagnosis risk was greater with increasing offspring infection exposure and antibiotics. There was a significant indirect effect of second trimester maternal infection on offspring respiratory allergy, due to infections and not antibiotic use, via offspring infection, indicating a partially mediated effect. Conclusion Prenatal maternal infection may contribute to increase risk for early childhood infections, which in turn, may increase risk for allergic conditions.
Collapse
Affiliation(s)
- Shannon K. Murphy
- Temple University, Department of Psychology & Neuroscience, Philadelphia, PA, USA
| | - Madeline R. Pike
- Temple University, Department of Psychology & Neuroscience, Philadelphia, PA, USA
| | - Emily Lipner
- Temple University, Department of Psychology & Neuroscience, Philadelphia, PA, USA
| | - Seth D. Maxwell
- Temple University, Department of Psychology & Neuroscience, Philadelphia, PA, USA
| | - Barbara A. Cohn
- Child Health and Development Studies, Public Health Institute, Oakland, CA, USA
| | - Piera Cirillo
- Child Health and Development Studies, Public Health Institute, Oakland, CA, USA
| | | | - Elizabeth C. Breen
- Cousins Center for Psychoneuroimmunology, Dept. of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, USA
| | - Lauren M. Ellman
- Temple University, Department of Psychology & Neuroscience, Philadelphia, PA, USA
| |
Collapse
|
3
|
Hofsink N, Groenink L, Plösch T. The fetal programming effect of maternal immune activation (MIA) on the offspring's immune system. Semin Immunopathol 2024; 46:14. [PMID: 39212791 PMCID: PMC11364800 DOI: 10.1007/s00281-024-01023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
The first 1000 days of life is a critical period of development in which adverse circumstances can have long-term consequences for the child's health. Maternal immune activation is associated with increased risk of neurodevelopmental disorders in the child. Aberrant immune responses have been reported in individuals with neurodevelopmental disorders. Moreover, lasting effects of maternal immune activation on the offspring's immune system have been reported. Taken together, this indicates that the effect of maternal immune activation is not limited to the central nervous system. Here, we explore the impact of maternal immune activation on the immune system of the offspring. We first describe the development of the immune system and provide an overview of reported alterations in the cytokine profiles, immune cell profiles, immune cell function, and immune induction in pre-clinical models. Additionally, we highlight recent research on the impact of maternal COVID-19 exposure on the neonatal immune system and the potential health consequences for the child. Our review shows that maternal immune activation alters the offspring's immune system under certain conditions, but the reported effects are conflicting and inconsistent. In general, epigenetic modifications are considered the mechanism for fetal programming. The available data was insufficient to identify specific pathways that may contribute to immune programming. As a consequence of the COVID-19 pandemic, more research now focuses on the possible health effects of maternal immune activation on the offspring. Future research addressing the offspring's immune response to maternal immune activation can elucidate specific pathways that contribute to fetal immune programming and the long-term health effects for the offspring.
Collapse
Affiliation(s)
- Naomi Hofsink
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Lucianne Groenink
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Carl von Ossietzky Universität Oldenburg School VI - School of Medicine and Health Sciences, Department of Paediatrics, Section of Neonatology, and Research Centre Neurosensory Science, Oldenburg, Germany
| |
Collapse
|
4
|
Arenella M, Matuleviciute R, Tamouza R, Leboyer M, McAlonan G, Bralten J, Murphy D. Immunogenetics of autism spectrum disorder: A systematic literature review. Brain Behav Immun 2023; 114:488-499. [PMID: 37717669 DOI: 10.1016/j.bbi.2023.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023] Open
Abstract
The aetiology of autism spectrum disorder (ASD) is complex and, partly, accounted by genetic factors. Nonetheless, the genetic underpinnings of ASD are poorly defined. The presence of immune dysregulations in autistic individuals, and their families, supports a role of the immune system and its genetic regulators. Albeit immune responses belong either to the innate or adaptive arms, the overall immune system genetics is broad, and encompasses a multitude of functionally heterogenous pathways which may have different influences on ASD. Hence, to gain insights on the immunogenetic underpinnings of ASD, we conducted a systematic literature review of previous immune genetic and transcription studies in ASD. We defined a list of immune genes relevant to ASD and explored their neuro-immune function. Our review confirms the presence of immunogenetic variability in ASD, accounted by inherited variations of innate and adaptive immune system genes and genetic expression changes in the blood and post-mortem brain of autistic individuals. Besides their immune function, the identified genes control neurodevelopment processes (neuronal and synaptic plasticity) and are highly expressed in pre/peri-natal periods. Hence, our synthesis bolsters the hypothesis that perturbation in immune genes may contribute to ASD by derailing the typical trajectory of neurodevelopment. Our review also helped identifying some of the limitations of prior immunogenetic research in ASD. Thus, alongside clarifying the neurodevelopment role of immune genes, we outline key considerations for future work into the aetiology of ASD and possible novel intervention targets.
Collapse
Affiliation(s)
- Martina Arenella
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute of Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands.
| | - Rugile Matuleviciute
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Ryad Tamouza
- University Paris Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry Lab, AP-HP, Department of Addiction and Psychiatry (DMU IMPACT, FHU ADAPT), France; Fondation FondaMental, F-94010 Créteil, France
| | - Marion Leboyer
- University Paris Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry Lab, AP-HP, Department of Addiction and Psychiatry (DMU IMPACT, FHU ADAPT), France; Fondation FondaMental, F-94010 Créteil, France
| | - Grainne McAlonan
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute of Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Declan Murphy
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
5
|
Debnath M, Berk M. Is paternal immune activation just as important as maternal immune activation? Time to rethink the bi-parental immune priming of neurodevelopmental model of schizophrenia. Med Hypotheses 2023. [DOI: 10.1016/j.mehy.2023.111059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
6
|
Saccaro LF, Gasparini S, Rutigliano G. Applications of Mendelian randomization in psychiatry: a comprehensive systematic review. Psychiatr Genet 2022; 32:199-213. [PMID: 36354137 PMCID: PMC9648985 DOI: 10.1097/ypg.0000000000000327] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/31/2022] [Indexed: 11/11/2022]
Abstract
Psychiatric diseases exact a heavy socioeconomic toll, and it is particularly difficult to identify their risk factors and causative mechanisms due to their multifactorial nature, the limited physiopathological insight, the many confounding factors, and the potential reverse causality between the risk factors and psychiatric diseases. These characteristics make Mendelian randomization (MR) a precious tool for studying these disorders. MR is an analytical method that employs genetic variants linked to a certain risk factor, to assess if an observational association between that risk factor and a health outcome is compatible with a causal relationship. We report the first systematic review of all existing applications and findings of MR in psychiatric disorders, aiming at facilitating the identification of risk factors that may be common to different psychiatric diseases, and paving the way to transdiagnostic MR studies in psychiatry, which are currently lacking. We searched Web of Knowledge, Scopus, and Pubmed databases (until 3 May 2022) for articles on MR in psychiatry. The protocol was preregistered in PROSPERO (CRD42021285647). We included methodological details and results from 50 articles, mainly on schizophrenia, major depression, autism spectrum disorders, and bipolar disorder. While this review shows how MR can offer unique opportunities for unraveling causal links in risk factors and etiological elements of specific psychiatric diseases and transdiagnostically, some methodological flaws in the existing literature limit reliability of results and probably underlie their heterogeneity. We highlight perspectives and recommendations for future works on MR in psychiatry.
Collapse
Affiliation(s)
- Luigi F. Saccaro
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Campus Biotech, Geneva, Switzerland
- Department of Psychiatry, Geneva University Hospital, Geneva, Switzerland
| | - Simone Gasparini
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, Pisa, Italy
| | - Grazia Rutigliano
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
7
|
López DA, Apostol AC, Lebish EJ, Valencia CH, Romero-Mulero MC, Pavlovich PV, Hernandez GE, Forsberg EC, Cabezas-Wallscheid N, Beaudin AE. Prenatal inflammation perturbs murine fetal hematopoietic development and causes persistent changes to postnatal immunity. Cell Rep 2022; 41:111677. [PMID: 36417858 PMCID: PMC10184520 DOI: 10.1016/j.celrep.2022.111677] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/07/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
Adult hematopoietic stem and progenitor cells (HSPCs) respond directly to inflammation and infection, causing both acute and persistent changes to quiescence, mobilization, and differentiation. Here we show that murine fetal HSPCs respond to prenatal inflammation in utero and that the fetal response shapes postnatal hematopoiesis and immune cell function. Heterogeneous fetal HSPCs show divergent responses to maternal immune activation (MIA), including changes in quiescence, expansion, and lineage-biased output. Single-cell transcriptomic analysis of fetal HSPCs in response to MIA reveals specific upregulation of inflammatory gene profiles in discrete, transient hematopoietic stem cell (HSC) populations that propagate expansion of lymphoid-biased progenitors. Beyond fetal development, MIA causes the inappropriate expansion and persistence of fetal lymphoid-biased progenitors postnatally, concomitant with increased cellularity and hyperresponsiveness of fetal-derived innate-like lymphocytes. Our investigation demonstrates how inflammation in utero can direct the output and function of fetal-derived immune cells by reshaping fetal HSC establishment.
Collapse
Affiliation(s)
- Diego A López
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - April C Apostol
- Quantitative and Systems Biology Graduate Program, University of California-Merced, Merced, CA, USA
| | - Eric J Lebish
- Department of Molecular and Cell Biology, University of California-Merced, Merced, CA, USA
| | - Clint H Valencia
- Quantitative and Systems Biology Graduate Program, University of California-Merced, Merced, CA, USA
| | | | - Polina V Pavlovich
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Gloria E Hernandez
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - E Camilla Forsberg
- Institute for the Biology of Stem Cells, University of California Santa Cruz, Santa Cruz, CA, USA
| | | | - Anna E Beaudin
- Departments of Internal Medicine and Pathology, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
8
|
Sertorio MN, César H, de Souza EA, Mennitti LV, Santamarina AB, De Souza Mesquita LM, Jucá A, Casagrande BP, Estadella D, Aguiar O, Pisani LP. Parental High-Fat High-Sugar Diet Intake Programming Inflammatory and Oxidative Parameters of Reproductive Health in Male Offspring. Front Cell Dev Biol 2022; 10:867127. [PMID: 35832794 PMCID: PMC9271829 DOI: 10.3389/fcell.2022.867127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/26/2022] [Indexed: 11/18/2022] Open
Abstract
Parental nutrition can impact the health of future generations, programming the offspring for the development of diseases. The developing germ cells of the offspring could be damaged by the maternal or the paternal environment. The germ cells in development and their function could be affected by nutritional adversity and therefore, harm the health of subsequent generations. The paternal or maternal intake of high-fat diets has been shown to affect the reproductive health of male offspring, leading to imbalance in hypothalamic-pituitary-gonadal axis, testicular oxidative stress, low testosterone production, and changes in sperm count, viability, motility, and morphology. There is a need for studies that address the combined effects of diets with a high-fat and high-sugar (H) content by both progenitors on male reproduction. In this context, our study evaluated epigenetic parameters and the inflammatory response that could be associated to oxidative stress in testis and epididymis of adult offspring. 90 days-old male rats were divided according to the combination of the parental diet: CD (control paternal and maternal diet), HP (H paternal diet and control maternal diet), HM (H maternal diet and control paternal diet) and HPM (H paternal and maternal diet).We evaluated serum levels of testosterone and FSH; testicular gene expression of steroidogenic enzymes Star and Hsd17b3 and epigenetic markers Dnmt1, Dnmt3a, Dnmt3b, and Mecp2; testicular and epididymal levels of TNF-α, IL-6, IL-10, and IL-1β; testicular and epididymal activity of SOD, CAT, and GST; the oxidative markers MDA and CP; the daily sperm production, sperm transit time, and sperm morphology. Testicular epigenetic parameter, inflammatory response, oxidative balance, and daily sperm production of the offspring were affected by the maternal diet; paternal diet influenced serum testosterone levels, and lower daily sperm production was exacerbated by the interaction effect of both parental intake of high-fat high-sugar diet in the testis. There was isolated maternal and paternal effect in the antioxidant enzyme activity in the cauda epididymis, and an interaction effect of both parents in protein oxidative marker. Maternal effect could also be observed in cytokine production of cauda epididymis, and no morphological effects were observed in the sperm. The potential programming effects of isolated or combined intake of a high-fat high-sugar diet by the progenitors could be observed at a molecular level in the reproductive health of male offspring in early adulthood.
Collapse
Affiliation(s)
| | - Helena César
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Santos, Brazil
| | - Esther Alves de Souza
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Santos, Brazil
| | - Laís Vales Mennitti
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Santos, Brazil
| | - Aline Boveto Santamarina
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Santos, Brazil
| | | | - Andréa Jucá
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Santos, Brazil
| | - Breno Picin Casagrande
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Santos, Brazil
| | - Debora Estadella
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Santos, Brazil
| | - Odair Aguiar
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Santos, Brazil
| | - Luciana Pellegrini Pisani
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Santos, Brazil
- *Correspondence: Luciana Pellegrini Pisani,
| |
Collapse
|
9
|
Wen X, Liu HX, Chen LZ, Qu W, Yan HY, Hou LF, Zhao WH, Feng YT, Ping J. Asthma susceptibility in prenatal nicotine-exposed mice attributed to β-catenin increase during CD4 + T cell development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113572. [PMID: 35533447 DOI: 10.1016/j.ecoenv.2022.113572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Cigarette smoke is a common global environmental pollutant. Asthma, the most frequent allergic airway disease, is related to maternal exposure to cigarette smoke. Our previous studies demonstrated that prenatal exposure to nicotine (PNE), the major active product of smoking, impairs fetal thymopoiesis and CD4+ T cell development after birth. This study aimed to investigate whether PNE contributes to asthma susceptibility through CD4+ T cell development alterations. First, A PNE model was established by administering 3 mg/kg/day nicotine to maternal mice, and then an ovalbumin-induced asthma model was established in the offspring. Further, β-catenin and downstream pathways were inhibited in vitro to confirm the molecular mechanisms underlying the phenotype observed during the in vivo phase. The results showed that PNE induced Th2 and Th17 biases at developmental checkpoints and aggravated asthma symptoms in the offspring. In fetuses, PNE up-regulated α7 nAChR, activated PI3K-AKT, promoted β-catenin level increase, and established potential Th2- and Th17-biased gene expression patterns during thymopoiesis, which persisted after birth. Similar results were also observed in 1 μM nicotine-treated thymocytes in vitro. Moreover, inhibiting PI3K-AKT by LY294002 abrogated nicotine-mediated β-catenin level increase and thymopoiesis abnormalities, and an α7 nAChR antagonist (α-btx) also reversed nicotine-induced PI3K-AKT activation. Our findings provide strong evidence that PNE is a risk factor for T cell deviation and postnatal asthma, and revealed that nicotine-induced β-catenin level increase induces thymopoiesis abnormalities.
Collapse
Affiliation(s)
- Xiao Wen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Han-Xiao Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Lan-Zhou Chen
- Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University School of Resource and Environmental Sciences, Wuhan 430079, China
| | - Wen Qu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Hui-Yi Yan
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Li-Fang Hou
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Wen-Hao Zhao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yi-Ting Feng
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Jie Ping
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| |
Collapse
|
10
|
Liu L, Wang D, Li X, Adetula AA, Khan A, Zhang B, Liu H, Yu Y, Chu Q. Long-lasting effects of lipopolysaccharide on the reproduction and splenic transcriptome of hens and their offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113527. [PMID: 35453024 DOI: 10.1016/j.ecoenv.2022.113527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/23/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Lipopolysaccharide (LPS) is ubiquitous in the environment and is released after the death of gram-negative bacteria, which may be related to inflammation and immunosuppression. However, its impact on the reproduction of animals and their offspring, especially the underlying mechanism need further elucidation. Here, we used laying hens as a model organism to investigate the effects of maternal exposure to LPS (LPS maternal stimulation) on animal and their offspring's immunity and reproductive performance, as well as the regulatory role of the transcriptome. We found that the LPS maternal stimulation could reduce the egg-laying rate of hens and their offspring, especially during the early and late laying stages. The transcriptome study of the spleen in F0, F1 and F2 generations showed that the maternal stimulation of the LPS affects the patterns of gene expression in laying hens, and this change has a long-lasting effect. Further analysis of DEGs and their enrichment pathways found that the LPS maternal stimulation mainly affects the reproduction and immunity of laying hens and their offspring. The DEGs such as AVD, HPS5, CATHL2, S100A12, EXFABP, RSFR, LY86, PKD4, XCL1, FOS, TREM2 and MST1 may play an essential role in the regulation of the immunity and egg-laying rate of hens. Furthermore, the MMR1L3, C3, F13A1, LY86 and GDPD2 genes with heritable effects are highly correlated with the egg-laying rate, may have an important reference value for further research. Our study reveals the profound implications of LPS exposure on immunity and reproduction of offspring, elaborating the impact of immune alteration on the egg-laying rate, emphasizing the regulatory role of intergenerational transmission of the transcriptome, implying that the environment parents being exposed to has an important impact on offspring.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Di Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xingzheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Adeyinka Abiola Adetula
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Adnan Khan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Bing Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100094, China
| | - Huagui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100094, China
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Qin Chu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100094, China.
| |
Collapse
|
11
|
Dunn GA, Mitchell AJ, Selby M, Fair DA, Gustafsson HC, Sullivan EL. Maternal diet and obesity shape offspring central and peripheral inflammatory outcomes in juvenile non-human primates. Brain Behav Immun 2022; 102:224-236. [PMID: 35217175 PMCID: PMC8995380 DOI: 10.1016/j.bbi.2022.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/21/2022] [Accepted: 02/19/2022] [Indexed: 12/30/2022] Open
Abstract
The obesity epidemic affects 40% of adults in the US, with approximately one-third of pregnant women classified as obese. Previous research suggests that children born to obese mothers are at increased risk for a number of health conditions. The mechanisms behind this increased risk are poorly understood. Increased exposure to in-utero inflammation induced by maternal obesity is proposed as an underlying mechanism for neurodevelopmental alterations in offspring. Utilizing a non-human primate model of maternal obesity, we hypothesized that maternal consumption of an obesogenic diet will predict offspring peripheral (e.g., cytokines and chemokines) and central (microglia number) inflammatory outcomes via the diet's effects on maternal adiposity and maternal inflammatory state during the third trimester. We used structural equation modeling to simultaneously examine the complex associations among maternal diet, metabolic state, adiposity, inflammation, and offspring central and peripheral inflammation. Four latent variables were created to capture maternal chemokines and pro-inflammatory cytokines, and offspring cytokine and chemokines. Model results showed that offspring microglia counts in the basolateral amygdala were associated with maternal diet (β = -0.622, p < 0.01), adiposity (β = 0.593, p < 0.01), and length of gestation (β = 0.164, p < 0.05) but not with maternal chemokines (β = 0.135, p = 0.528) or maternal pro-inflammatory cytokines (β = 0.083, p = 0.683). Additionally, we found that juvenile offspring peripheral cytokines (β = -0.389, p < 0.01) and chemokines (β = -0.298, p < 0.05) were associated with a maternal adiposity-induced decrease in maternal circulating chemokines during the third trimester (β = -0.426, p < 0.01). In summary, these data suggest that maternal diet and adiposity appear to directly predict offspring amygdala microglial counts while maternal adiposity influences offspring peripheral inflammatory outcomes via maternal inflammatory state.
Collapse
Affiliation(s)
| | - A J Mitchell
- Oregon Health & Science University, Department of Behavioral Neuroscience, USA; Oregon National Primate Research Center, Department of Neuroscience, USA
| | - Matthew Selby
- University of Oregon, Department of Human Physiology, USA
| | - Damien A Fair
- University of Minnesota School of Medicine, Masonic Institute of Child Development, USA
| | | | - Elinor L Sullivan
- University of Oregon, Department of Human Physiology, USA; Oregon Health & Science University, Department of Behavioral Neuroscience, USA; Oregon National Primate Research Center, Department of Neuroscience, USA; Oregon Health & Science University, Department of Psychiatry, USA.
| |
Collapse
|
12
|
Mendelian randomization of cytokines in schizophrenia and depression: What does this tell us about causal chains in these illnesses? Brain Behav Immun 2022; 99:130-131. [PMID: 34600087 DOI: 10.1016/j.bbi.2021.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 11/21/2022] Open
|
13
|
Maly IV, Morales MJ, Pletnikov MV. Astrocyte Bioenergetics and Major Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:173-227. [PMID: 34888836 DOI: 10.1007/978-3-030-77375-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ongoing research continues to add new elements to the emerging picture of involvement of astrocyte energy metabolism in the pathophysiology of major psychiatric disorders, including schizophrenia, mood disorders, and addictions. This review outlines what is known about the energy metabolism in astrocytes, the most numerous cell type in the brain, and summarizes the recent work on how specific perturbations of astrocyte bioenergetics may contribute to the neuropsychiatric conditions. The role of astrocyte energy metabolism in mental health and disease is reviewed on the organism, organ, and cell level. Data arising from genomic, metabolomic, in vitro, and neurobehavioral studies is critically analyzed to suggest future directions in research and possible metabolism-focused therapeutic interventions.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Michael J Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
14
|
Lewis EL, Tulina N, Anton L, Brown AG, Porrett PM, Elovitz MA. IFNγ-Producing γ/δ T Cells Accumulate in the Fetal Brain Following Intrauterine Inflammation. Front Immunol 2021; 12:741518. [PMID: 34675929 PMCID: PMC8524441 DOI: 10.3389/fimmu.2021.741518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/01/2021] [Indexed: 11/26/2022] Open
Abstract
Intrauterine inflammation impacts prenatal neurodevelopment and is linked to adverse neurobehavioral outcomes ranging from cerebral palsy to autism spectrum disorder. However, the mechanism by which a prenatal exposure to intrauterine inflammation contributes to life-long neurobehavioral consequences is unknown. To address this gap in knowledge, this study investigates how inflammation transverses across multiple anatomic compartments from the maternal reproductive tract to the fetal brain and what specific cell types in the fetal brain may cause long-term neuronal injury. Utilizing a well-established mouse model, we found that mid-gestation intrauterine inflammation resulted in a lasting neutrophil influx to the decidua in the absence of maternal systemic inflammation. Fetal immunologic changes were observed at 72-hours post-intrauterine inflammation, including elevated neutrophils and macrophages in the fetal liver, and increased granulocytes and activated microglia in the fetal brain. Through unbiased clustering, a population of Gr-1+ γ/δ T cells was identified as the earliest immune cell shift in the fetal brain of fetuses exposed to intrauterine inflammation and determined to be producing high levels of IFNγ when compared to γ/δ T cells in other compartments. In a case-control study of term infants, IFNγ was found to be elevated in the cord blood of term infants exposed to intrauterine inflammation compared to those without this exposure. Collectively, these data identify a novel cellular immune mechanism for fetal brain injury in the setting of intrauterine inflammation.
Collapse
Affiliation(s)
- Emma L Lewis
- Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, PA, United States
| | - Natalia Tulina
- Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, PA, United States
| | - Lauren Anton
- Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, PA, United States
| | - Amy G Brown
- Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, PA, United States
| | - Paige M Porrett
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, PA, United States
| | - Michal A Elovitz
- Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, PA, United States.,Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
15
|
Hameete BC, Fernández-Calleja JM, de Groot MW, Oppewal TR, Tiemessen MM, Hogenkamp A, de Vries RB, Groenink L. The poly(I:C)-induced maternal immune activation model; a systematic review and meta-analysis of cytokine levels in the offspring. Brain Behav Immun Health 2021; 11:100192. [PMID: 34589729 PMCID: PMC8474626 DOI: 10.1016/j.bbih.2020.100192] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022] Open
Abstract
The maternal polyinosinic:polycytidylic acid (poly(I:C)) animal model is frequently used to study how maternal immune activation may impact neuro development in the offspring. Here, we present the first systematic review and meta-analysis on the effects of maternal poly(I:C) injection on immune mediators in the offspring and provide an openly accessible systematic map of the data including methodological characteristics. Pubmed and EMBASE were searched for relevant publications, yielding 45 unique papers that met inclusion criteria. We extracted data on immune outcomes and methodological characteristics, and assessed the risk of bias. The descriptive summary showed that most studies reported an absence of effect, with an equal number of studies reporting an increase or decrease in the immune mediator being studied. Meta-analysis showed increased IL-6 concentrations in the offspring of poly(I:C) exposed mothers. This effect appeared larger prenatally than post-weaning. Furthermore, poly(I:C) administration during mid-gestation was associated with higher IL-6 concentrations in the offspring. Maternal poly(I:C) induced changes in IL-1β, Il-10 and TNF-α concentrations were small and could not be associated with age of offspring, gestational period or sampling location. Finally, quality of reporting of potential measures to minimize bias was low, which stresses the importance of adherence to publication guidelines. Since neurodevelopmental disorders in humans tend to be associated with lifelong changes in cytokine concentrations, the absence of these effects as identified in this systematic review may suggest that combining the model with other etiological factors in future studies may provide further insight in the mechanisms through which maternal immune activation affects neurodevelopment. Long-term effects of maternal poly(I:C) on immune mediators in the offspring appear limited. Prenatal measurements and mid gestation poly(I:C) injection are associated with increases in IL-6 concentrations. Variety in methodological conduct hampers identification of key elements that affect cytokine concentrations. The quality of reporting of potential measures to minimize bias is poor.
Collapse
Affiliation(s)
- Bart C. Hameete
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, the Netherlands
| | - José M.S. Fernández-Calleja
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, the Netherlands
| | - Martje W.G.D.M. de Groot
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, the Netherlands
| | - Titia Rixt Oppewal
- University College Utrecht (UCU), Campusplein 1, Utrecht, 3584 ED, the Netherlands
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, the Netherlands
| | - Machteld M. Tiemessen
- Research & Innovation, GCoE Immunology, Danone Nutricia Research, Uppsalalaan 12, Utrecht, 3584 CT, the Netherlands
| | - Astrid Hogenkamp
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, the Netherlands
| | - Rob B.M. de Vries
- SYstematic Review Center for Laboratory (Animal) Experimentation, Department for Health Evidence, Radboud University Medical Center, Geert Grooteplein zuid 10, Nijmegen, 6525 GA, the Netherlands
| | - Lucianne Groenink
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, the Netherlands
- Corresponding author.
| |
Collapse
|
16
|
Banerjee S, Huang Z, Wang Z, Nakashima A, Saito S, Sharma S, Cheng S. Etiological Value of Sterile Inflammation in Preeclampsia: Is It a Non-Infectious Pregnancy Complication? Front Cell Infect Microbiol 2021; 11:694298. [PMID: 34485175 PMCID: PMC8415471 DOI: 10.3389/fcimb.2021.694298] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/30/2021] [Indexed: 12/25/2022] Open
Abstract
Understanding of sterile inflammation and its associated biological triggers and diseases is still at the elementary stage. This becomes more warranted in cases where infections are not associated with the pathology. Detrimental effects of bacterial and viral infections on the immune responses at the maternal-fetal interface as well as pregnancy outcomes have been well documented. However, an infection-induced etiology is not thought to be a major contributing component to severe pregnancy complications such as preeclampsia (PE) and gestational diabetes. How is then an inflammatory signal thought to be associated with these pregnancy complications? It is not clear what type of inflammation is involved in the onset of PE-like features. We opine that sterile inflammation regulated by the inflammasome-gasdermins-caspase-1 axis is a contributory factor to the onset of PE. We hypothesize that increased production and release of damage-associated molecular patterns (DAMPs) or Alarmins such as high-mobility group box1 (HMGB1), cell-free fetal DNA, uric acid, the NOD-like receptor pyrin-containing receptor 3 (NLRP3) inflammasome, IL-1β and IL-18 occur in the PE placenta. Some of these molecules have already been observed in the placenta from women with PE. Mechanistically, emerging evidence has demonstrated that excessive placental endoplasmic reticulum (ER) stress, impaired autophagy and gasdermine D (GSDMD)-mediated intrinsic pyroptosis are key events that contribute to systemic sterile inflammation in patients with PE, especially early-onset PE (e-PE). In this review, we highlight the advances on the roles of sterile inflammation and inflammatory signaling cascades involving ER stress, autophagy deficiency and pyroptosis in PE pathophysiology. Deciphering the mechanisms underlying these inflammatory pathways may provide potential diagnostic biomarkers and facilitate the development of therapeutic strategies to treat this devastating disease.
Collapse
Affiliation(s)
- Sayani Banerjee
- Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Zheping Huang
- Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Zhengke Wang
- Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Shigeru Saito
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Surendra Sharma
- Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Shibin Cheng
- Department of Pediatrics, Women and Infants Hospital-Warren Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
17
|
Maternal effects in mammals: Broadening our understanding of offspring programming. Front Neuroendocrinol 2021; 62:100924. [PMID: 33992652 DOI: 10.1016/j.yfrne.2021.100924] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/18/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
The perinatal period is a sensitive time in mammalian development that can have long-lasting consequences on offspring phenotype via maternal effects. Maternal effects have been most intensively studied with respect to two major conditions: maternal diet and maternal stress. In this review, we shift the focus by discussing five major additional maternal cues and their influence on offspring phenotype: maternal androgen levels, photoperiod (melatonin), microbiome, immune regulation, and milk composition. We present the key findings for each of these topics in mammals, their mechanisms of action, and how they interact with each other and with the maternal influences of diet and stress. We explore their impacts in the contexts of both predictive adaptive responses and the developmental origins of disease, identify knowledge gaps and research opportunities in the field, and place a particular emphasis on the application and consideration of these effects in non-model species and natural ecological systems.
Collapse
|
18
|
Impact of prenatal maternal cytokine exposure on sex differences in brain circuitry regulating stress in offspring 45 years later. Proc Natl Acad Sci U S A 2021; 118:2014464118. [PMID: 33876747 DOI: 10.1073/pnas.2014464118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Stress is associated with numerous chronic diseases, beginning in fetal development with in utero exposures (prenatal stress) impacting offspring's risk for disorders later in life. In previous studies, we demonstrated adverse maternal in utero immune activity on sex differences in offspring neurodevelopment at age seven and adult risk for major depression and psychoses. Here, we hypothesized that in utero exposure to maternal proinflammatory cytokines has sex-dependent effects on specific brain circuitry regulating stress and immune function in the offspring that are retained across the lifespan. Using a unique prenatal cohort, we tested this hypothesis in 80 adult offspring, equally divided by sex, followed from in utero development to midlife. Functional MRI results showed that exposure to proinflammatory cytokines in utero was significantly associated with sex differences in brain activity and connectivity during response to negative stressful stimuli 45 y later. Lower maternal TNF-α levels were significantly associated with higher hypothalamic activity in both sexes and higher functional connectivity between hypothalamus and anterior cingulate only in men. Higher prenatal levels of IL-6 were significantly associated with higher hippocampal activity in women alone. When examined in relation to the anti-inflammatory effects of IL-10, the ratio TNF-α:IL-10 was associated with sex-dependent effects on hippocampal activity and functional connectivity with the hypothalamus. Collectively, results suggested that adverse levels of maternal in utero proinflammatory cytokines and the balance of pro- to anti-inflammatory cytokines impact brain development of offspring in a sexually dimorphic manner that persists across the lifespan.
Collapse
|
19
|
Bangarusamy DK, Lakshmanan AP, Al-Zaidan S, Alabduljabbar S, Terranegra A. Nutri-epigenetics: the effect of maternal diet and early nutrition on the pathogenesis of autoimmune diseases. Minerva Pediatr (Torino) 2021; 73:98-110. [PMID: 33880901 DOI: 10.23736/s2724-5276.20.06166-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Autoimmune diseases comprise a wide group of diseases involving a self-response of the immune system against the host. The etiopathogenesis is very complex involving disease-specific factors but also environmental factors, among which the diet. Maternal diet during pregnancy as well as early nutrition recently attracted the interest of the scientists as contributing to the immune programming. In this paper, we reviewed the most recent literature on the effect of maternal diet and early nutrition in modulating the immune system in a selected subset of autoimmune diseases: type 1 diabetes, celiac disease, inflammatory bowel disease, juvenile idiopathic arthritis and rheumatoid arthritis. Particularly, we focused our narrative on the role of maternal and perinatal nutrition in the epigenetic mechanisms underlying the auto-immune response. Maternal diet during pregnancy as well as breastfeeding and early nutrition play a big role in many epigenetic mechanisms. Most of the nutrients consumed by the mother and the infant are known exerting epigenetic functions, such as folate, methionine, zinc, vitamins B12 and D, fibers, casein and gliadin, and they were linked to gene expression changes in the immune pathways. Despite the common role of maternal diet, breastfeeding and early nutrition in almost all the autoimmune diseases, each disease seems to have specific diet-driver epigenetic mechanisms that require further investigations. The research in this field is opening new routes to establishing a precision nutrition approach to the auto-immune diseases.
Collapse
Affiliation(s)
- Dhinoth K Bangarusamy
- Unit of Maternal and Child Health, Department of Research, Sidra Medicine, Doha, Qatar
| | - Arun P Lakshmanan
- Unit of Maternal and Child Health, Department of Research, Sidra Medicine, Doha, Qatar
| | - Sara Al-Zaidan
- Unit of Maternal and Child Health, Department of Research, Sidra Medicine, Doha, Qatar
| | - Shaikha Alabduljabbar
- Unit of Maternal and Child Health, Department of Research, Sidra Medicine, Doha, Qatar
| | - Annalisa Terranegra
- Unit of Maternal and Child Health, Department of Research, Sidra Medicine, Doha, Qatar -
| |
Collapse
|
20
|
Kim YS, Choi J, Yoon BE. Neuron-Glia Interactions in Neurodevelopmental Disorders. Cells 2020; 9:cells9102176. [PMID: 32992620 PMCID: PMC7601502 DOI: 10.3390/cells9102176] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Recent studies have revealed synaptic dysfunction to be a hallmark of various psychiatric diseases, and that glial cells participate in synapse formation, development, and plasticity. Glial cells contribute to neuroinflammation and synaptic homeostasis, the latter being essential for maintaining the physiological function of the central nervous system (CNS). In particular, glial cells undergo gliotransmission and regulate neuronal activity in tripartite synapses via ion channels (gap junction hemichannel, volume regulated anion channel, and bestrophin-1), receptors (for neurotransmitters and cytokines), or transporters (GLT-1, GLAST, and GATs) that are expressed on glial cell membranes. In this review, we propose that dysfunction in neuron-glia interactions may contribute to the pathogenesis of neurodevelopmental disorders. Understanding the mechanisms of neuron-glia interaction for synapse formation and maturation will contribute to the development of novel therapeutic targets of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yoo Sung Kim
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea; (Y.S.K.); (J.C.)
| | - Juwon Choi
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea; (Y.S.K.); (J.C.)
| | - Bo-Eun Yoon
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea; (Y.S.K.); (J.C.)
- Department of Nanobiomedical science, Dankook University, Cheonan 31116, Korea
- Correspondence: ; Tel.: +82-41-529-6085
| |
Collapse
|
21
|
Maternal Immune Activation Causes Schizophrenia-like Behaviors in the Offspring through Activation of Immune-Inflammatory, Oxidative and Apoptotic Pathways, and Lowered Antioxidant Defenses and Neuroprotection. Mol Neurobiol 2020; 57:4345-4361. [PMID: 32720073 DOI: 10.1007/s12035-020-02028-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022]
Abstract
Schizophrenia is a complex neuropsychiatric disorder, influenced by a combined action of genes and environmental factors. The neurodevelopmental origin is one of the most widely recognized etiological models of this heterogeneous disorder. Environmental factors, especially infections during gestation, appear to be a major risk determinant of neurodevelopmental basis of schizophrenia. Prenatal infection may cause maternal immune activation (MIA) and enhance risk of schizophrenia in the offspring. However, the precise mechanistic basis through which MIA causes long-lasting schizophrenia-like behavioral deficits in offspring remains inadequately understood. Herein, we aimed to delineate whether prenatal infection-induced MIA causes schizophrenia-like behaviors through its long-lasting effects on immune-inflammatory and apoptotic pathways, oxidative stress toxicity, and antioxidant defenses in the brain of offspring. Sprague-Dawley rats were divided into three groups (n = 15/group) and were injected with poly (I:C), LPS, and saline at gestational day (GD)-12. Except IL-1β, plasma levels of IL-6, TNF-α, and IL-17A assessed after 24 h were significantly elevated in both the poly (I:C)- and LPS-treated pregnant rats, indicating MIA. The rats born to dams treated with poly (I:C) and LPS displayed increased anxiety-like behaviors and significant deficits in social behaviors. Furthermore, the hippocampus of the offspring rats of both the poly (I:C)- and LPS-treated groups showed increased signs of lipid peroxidation, diminished total antioxidant content, and differentially upregulated expression of inflammatory (TNFα, IL6, and IL1β), and apoptotic (Bax, Cas3, and Cas9) genes but decreased expression of neuroprotective (BDNF and Bcl2) genes. The results suggest long-standing effects of prenatal infections on schizophrenia-like behavioral deficits, which are mediated by immune-inflammatory and apoptotic pathways, increased oxidative stress toxicity, and lowered antioxidant and neuroprotective defenses. The findings suggest that prenatal infections may underpin neurodevelopmental aberrations and neuroprogression and subsequently schizophrenia-like symptoms.
Collapse
|
22
|
Bridge-Comer PE, Plows JF, Ramzan F, Patel R, Ganapathy TP, Stanley JL, Vickers MH, Reynolds CM. Interleukin 1 Receptor 1 Knockout and Maternal High Fat Diet Exposure Induces Sex-Specific Effects on Adipose Tissue Adipogenic and Inflammatory Gene Expression in Adult Mouse Offspring. Front Physiol 2020; 11:601. [PMID: 32655404 PMCID: PMC7324782 DOI: 10.3389/fphys.2020.00601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/14/2020] [Indexed: 12/17/2022] Open
Abstract
Background: The global incidence of obesity continues to rise, increasing the prevalence of metabolic diseases such as insulin resistance, dyslipidemia, and type 2 diabetes mellitus. Low-grade chronic inflammation, associated with the obese state, also contributes to the development of these metabolic comorbidities. Interleukin-1-receptor-1 (IL-1R1), a pro-inflammatory mediator, bridges the metabolic and inflammatory systems. In young male mice, deficiency of IL-1R1 (IL-1R1-/-) paired with a high-fat diet (HFD) offered beneficial metabolic effects, however in female mice, the same pairing led to metabolic dysfunction. Therefore, we examined the contribution of maternal HFD in combination with IL1R1-/- to metabolic health in adult offspring. Methods: Female C57BL/6 and IL-1R1-/- mice were randomly assigned to a control diet (10% kcal from fat) or HFD (45% kcal from fat) 10 days prior to mating and throughout gestation and lactation. Male and female offspring were housed in same-sex pairs post-weaning and maintained on control diets until 16 weeks old. At 15 weeks, an oral glucose tolerance test (OGTT) was performed to assess glucose tolerance. Histological analysis was carried out to assess adipocyte size and gene expression of adipogenic and inflammatory markers were examined. Results: IL-1R1-/- contributed to increased body weight in male and female adult offspring, irrespective of maternal diet. IL-1R1-/- and maternal HFD increased adipocyte size in the gonadal fat depot of female, but not male offspring. In female offspring, there was reduced expression of genes involved in adipogenesis and lipid metabolism in response to IL1R1-/- and maternal HFD. While there was an increase in inflammatory gene expression in response to maternal HFD, this appeared to be reversed in IL1R1-/- female offspring. In male offspring, there was no significant impact on adipogenic or lipid metabolism pathways. There was an increase in inflammatory gene expression in IL1R1-/- male offspring from HFD-fed mothers. Conclusion: This study suggests that IL-1R1 plays a complex and important role in the metabolic health of offspring, impacting adipogenesis, lipogenesis, and inflammation in a sex-specific manner.
Collapse
Affiliation(s)
- Pania E Bridge-Comer
- Developmental Programming Research Group, The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Jasmine F Plows
- Developmental Programming Research Group, The Liggins Institute, The University of Auckland, Auckland, New Zealand.,Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Farha Ramzan
- Developmental Programming Research Group, The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Rachna Patel
- Developmental Programming Research Group, The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Thashma P Ganapathy
- Developmental Programming Research Group, The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Joanna L Stanley
- Developmental Programming Research Group, The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Mark H Vickers
- Developmental Programming Research Group, The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Clare M Reynolds
- Developmental Programming Research Group, The Liggins Institute, The University of Auckland, Auckland, New Zealand.,UCD School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,Conway Institute/Institute of Food and Health, University College Dublin, Dublin, Ireland
| |
Collapse
|
23
|
Gerlinskaya LA, Litvinova EA, Kontsevaya GV, Feofanova NA, Achasova KM, Anisimova MV, Maslennikova SO, Zolotykh MA, Moshkin YM, Moshkin MP. Phenotypic variations in transferred progeny due to genotype of surrogate mother. Mol Hum Reprod 2020; 25:88-99. [PMID: 30445548 DOI: 10.1093/molehr/gay052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/15/2018] [Indexed: 11/15/2022] Open
Abstract
STUDY QUESTION Does the genotype of the surrogate mother modulate the body composition and immunity of her offspring? SUMMARY ANSWER C57BL/6J (B6) progenies carried by immunodeficient NOD SCID (NS) mothers had increased adaptive but decreased innate, immune responsiveness in comparison with the same genotype offspring carried by immunocompetent mothers, B6 and BALB/c (C); the B6 progenies carried by the same genotype mothers also showed higher body fat than the others. WHAT IS KNOWN ALREADY Differences in the major histocompatibility complex (MHC) genes between mother and foetus is considered as an important factor in prenatal embryo development, whereas the impact of such dissimilarity on the phenotype of the mature progeny is unclear. STUDY DESIGN, SIZE, DURATION Transplantation of two-cell mouse embryos into recipient females of the different MHC (H2) genotypes was used as an approach to simulate three variants of the immunogenic mother-foetus interaction: (i) bidirectional immunogenic dialogue between B6 (H2b haplotype) embryos and C (H2d haplotype) surrogate mother; (ii) one-way immunogenic interaction between B6 embryos and immunodeficient NS (H2g7 haplotype) surrogate mother and (iii) reduced immunogenetic dialogue between embryos and surrogate mother of the same H2b haplotype resulting in only a maternal response to HY antigens of male foetuses. Delivered by Caesarean section, pups were fostered by lactating B6 females and weighed after weaning (n = 171). Body mass and composition and innate and adaptive immunity were assessed in selected progeny groups at 9-11 weeks of age. PARTICIPANTS/MATERIALS, SETTING, METHODS The study was performed on the specific pathogen-free mouse, inbred strains C57BL/6J, NOD SCID and BALB/c. Plasma progesterone in pregnant females was measured by enzyme-linked immunosorbent assay (ELISA). Body composition was determined by magnetic resonance spectroscopy using a low-field NMR spectrometer (EchoMRI, USA). To assess peritoneal macrophage responses (innate immunity) to anthrax, lactate dehydrogenase (LDH) and interleukin-1 (IL-1β) were measured in a culture medium 24 h after the addition of both anthrax-lethal factor and anthrax-protective antigen. To assess adaptive immunity, 9-10 males in experimental groups were infected with Helicobacter hepaticus. Faeces collected 2 and 4 weeks after infection was used for quantitative assessment of the H. hepaticus DNA by real-time polymerase chain reaction. IgA, interferon (IFN-γ), tumour necrosis factor (TNFα), interleukin-17 (IL-17) and interleukin-10 (IL-10) in colon tissue and IgG in serum were determined in samples collected 4 weeks after gavage with H. hepaticus using ELISA. For statistical analyses, ANCOVA, post hoc least significant difference (LSD) test, Student's t-test, Spearman rank correlations and χ2 test were performed. P-value <0.05 was considered as a statistically significant difference. MAIN RESULTS AND THE ROLE OF CHANCE ANCOVA with litter size and age as covariates revealed significant effects of the surrogate mother genotype on body mass and percent of fat in their adult progeny (F2149 = 15.60, P < 0.001 and F2149 = 5.02, P = 0.007, respectively). Adult B6 mice carried by B6 surrogate mothers were characterized by a higher percentage of body fat in comparison with offspring that were carried by NS and C females. In comparison with the male offspring carried by the B6 and C mothers, male B6 progenies carried by immunodeficient NS mothers had a higher humoral immune response (serum IgG) against oral infection with H. hepaticus, but lower in vitro macrophage IL-1β reaction to the anthrax. Four weeks after the infection of offspring, concentrations of serum IgG and colon IL-10 correlated positively with maternal progesterone on Day 4 after embryo transfer and negatively with DNA of H. hepaticus. One-way ANOVA confirmed a statistically significant impact of surrogate mother genotype on adaptive (IgG) and innate (IL-1β) immunity (F2.26 = 26.39, P < 0.001 and F2.27 = 5.89, P = 0.008, respectively). LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The main limitation of our study is the number of combinations of mother and foetus interactions, in particular, transfer of only one embryo genotype was used. Also, it is a descriptive study, which requires further analysis of the epigenetic mechanisms of the observed phenotypic effects of surrogate mother genotype. WIDER IMPLICATIONS OF THE FINDINGS Our experimental data demonstrate that the transfer of inbred embryos to surrogate mothers of the different genotypes is a prospective experimental model for the study of epigenetic effects of the immunogenetic interactions between mother and foetus. The experimental approach tested in our study will be in demand for the development of criteria for choosing surrogate mothers. In particular, immunocompetence of the surrogate mother along with genetic distance of her MHC alleles to the transferred embryos have a significant impact on offspring development. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Russian FPI (6/099/2017), budget projects (0324-2016-0002 and 0324-2018-0016) and implemented using the equipment of the Centre for Genetic Resources of Laboratory Animals at ICG SB RAS, supported by the Ministry of Education and Science of Russia (Unique project identifier RFMEFI62117X0015). The authors report no conflicts of interest.
Collapse
Affiliation(s)
- Ludmila A Gerlinskaya
- Department of Experimental Animal Genetic Resources, Laboratory of the Genetics of Experimental Animals, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Ekaterina A Litvinova
- Department of Experimental Animal Genetic Resources, Laboratory of the Genetics of Experimental Animals, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Galina V Kontsevaya
- Department of Experimental Animal Genetic Resources, Laboratory of the Genetics of Experimental Animals, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Natalia A Feofanova
- Department of Experimental Animal Genetic Resources, Laboratory of the Genetics of Experimental Animals, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.,Laboratory of clinical immunopathology, Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Ksenia M Achasova
- Department of Experimental Animal Genetic Resources, Laboratory of the Genetics of Experimental Animals, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Margarita V Anisimova
- Department of Experimental Animal Genetic Resources, Laboratory of the Genetics of Experimental Animals, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Svetlana O Maslennikova
- Department of Experimental Animal Genetic Resources, Laboratory of the Genetics of Experimental Animals, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Maria A Zolotykh
- Department of Experimental Animal Genetic Resources, Laboratory of the Genetics of Experimental Animals, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Yuri M Moshkin
- Department of Experimental Animal Genetic Resources, Laboratory of the Genetics of Experimental Animals, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Mikhail P Moshkin
- Department of Experimental Animal Genetic Resources, Laboratory of the Genetics of Experimental Animals, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| |
Collapse
|
24
|
The Role of Microbiome, Dietary Supplements, and Probiotics in Autism Spectrum Disorder. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082647. [PMID: 32290635 PMCID: PMC7215504 DOI: 10.3390/ijerph17082647] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorder (ASD) is a serious neurodevelopmental disorder characterized by the impairment of the cognitive function of a child. Studies suggested that the intestinal microbiota has a critical role in the function and regulation of the central nervous system, neuroimmune system and neuroendocrine system. Any adverse changes in the gut–brain axis may cause serious disease. Food preferences and dietary patterns are considered as key in influencing the factors of ASD development. Several recent reviews narrated the importance of dietary composition on controlling or reducing the ASD symptoms. It has been known that the consumption of probiotics confers several health benefits by positive amendment of gut microbiota. The influence of probiotic intervention in children with ASD has also been reported and it has been considered as an alternative and complementary therapeutic supplement for ASD. The present manuscript discusses the role of microbiota and diet in the development of ASD. It also summarizes the recent updates on the influence of dietary supplements and the beneficial effect of probiotics on ASD symptoms. An in-depth literature survey suggested that the maternal diet and lifestyle are greatly associated with the development of ASD and other neurodevelopmental disorders. Mounting evidences have confirmed the alteration in the gut microbial composition in children suffering from ASD. However, the unique profile of microbiome has not yet been fully characterized due to the heterogeneity of patients. The supplementation of probiotics amended the symptoms associated with ASD but the results are inconclusive. The current study recommends further detailed research considering the role of microbiome, diet and probiotics in the development and control of ASD.
Collapse
|
25
|
Subbanna M, Shivakumar V, Venugopal D, Narayanaswamy JC, Berk M, Varambally S, Venkatasubramanian G, Debnath M. Impact of antipsychotic medication on IL-6/STAT3 signaling axis in peripheral blood mononuclear cells of drug-naive schizophrenia patients. Psychiatry Clin Neurosci 2020; 74:64-69. [PMID: 31587436 DOI: 10.1111/pcn.12938] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/04/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022]
Abstract
AIM Immunopathogenesis remains a widely appreciated etiopathological model of schizophrenia. Persistent efforts have aimed to identify schizophrenia biomarkers indexing immune system abnormalities and also immuno-dampening effects of antipsychotic medications. Although data arising from published reports are encouraging, such studies are limited to a few immune parameters and not focused on a specific pathway. Th17 cells-mediated immuno-inflammatory responses have emerged as a potential mechanism in various neuropsychiatric conditions, including schizophrenia. The Th17 pathway is distinctly regulated through a coordinated action of multiple cytokines and transcription factors. In this study, we explored whether antipsychotic medication has any effect on the cytokines and transcription factors of the Th17 pathway. METHODS A total of 27 drug-naive schizophrenia patients were recruited and followed up for 3 months after initiation of antipsychotic medication. Lymphocyte gene expression levels of two transcription factors (STAT3 and RORC) and one of their upstream regulators, IL6, were quantified before and after treatment. Plasma levels of cytokines, such as interleukin (IL)-1β, IL-6, IL-17A, IL-23, and IL-33, were also analyzed before and after treatment. RESULTS Treatment with antipsychotic medication for 3 months resulted in significant downregulation of STAT3 gene expression as well as reduction in plasma levels of IL-1β, IL-6, and IL-17A. Significant reduction in total scores for the Scale for Assessment of Positive Symptoms and the Scale for Assessment of Negative Symptoms was also observed in schizophrenia patients after 3 months of antipsychotic treatment. CONCLUSION Our findings suggest possible immuno-modulatory effects of antipsychotic medication on the critical regulators, such as IL-6 and STAT3, of the Th17 pathway in schizophrenia patients. The IL-6/STAT3 signaling axis involved in the transcriptional regulation of Th17 cells might appear as an important target of antipsychotic treatment in schizophrenia patients. Alternatively, irrespective of the effect of antipsychotic drugs, the IL-6/STAT3 signaling axis might be crucially involved in ameliorating psychotic symptoms.
Collapse
Affiliation(s)
- Manjula Subbanna
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India.,Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Venkataram Shivakumar
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India.,Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Deepthi Venugopal
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India.,Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Janardhanan C Narayanaswamy
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India.,Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Michael Berk
- School of Medicine, IMPACT Strategic Research Centre, Barwon Health, Geelong, Australia.,Orygen, Centre of Excellence in Youth Mental Health, Department of Psychiatry and Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Shivarama Varambally
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India.,Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India.,Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
26
|
Barke TL, Money KM, Du L, Serezani A, Gannon M, Mirnics K, Aronoff DM. Sex modifies placental gene expression in response to metabolic and inflammatory stress. Placenta 2019; 78:1-9. [PMID: 30955704 PMCID: PMC6461364 DOI: 10.1016/j.placenta.2019.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/25/2019] [Accepted: 02/18/2019] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Metabolic stress (e.g., gestational diabetes mellitus (GDM) and obesity) and infections are common during pregnancy, impacting fetal development and the health of offspring. Such antenatal stresses can differentially impact male and female offspring. We sought to determine how metabolic stress and maternal immune activation (MIA), either alone or in combination, alters inflammatory gene expression within the placenta and whether the effects exhibited sexual dimorphism. METHODS Female C57BL/6 J mice were fed a normal diet or a high fat diet for 6 weeks prior to mating, with the latter diet inducing a GDM phenotype during pregnancy. Dams within each diet group at gestational day (GD) 12.5 received either an intraperitoneal injection of the viral mimic, polyinosinic:polycytidylic acid (poly(I:C)) or saline. Three hours post injection; placentae were collected and analyzed for changes in the expression of 248 unique immune genes. RESULTS Placental immune gene expression was significantly altered by GDM, MIA and the combination of the two (GDM+MIA). mRNA expression was generally lower in placentae of mice exposed to GDM alone compared with the other experimental groups, while mice exposed to MIA exhibited the highest transcript levels. Notably, fetal/placental sex influenced the responses of many immune genes to both metabolic and inflammatory stress. DISCUSSION GDM and MIA provoke inflammatory responses within the placenta and such effects exhibit sexual dimorphism. The combination of these stressors impacts the placenta differently than either condition alone. These findings may help explain sexual dimorphism observed in adverse pregnancy outcomes in human offspring exposed to similar stressors.
Collapse
Affiliation(s)
- Theresa L Barke
- Graduate Program in Microbiology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Kelli M Money
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Liping Du
- Center for Quantitative Sciences, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ana Serezani
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Maureen Gannon
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Karoly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - David M Aronoff
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
27
|
Inhibition of thymocyte autophagy-associated CD4 +T thymopoiesis is involved in asthma susceptibility in mice exposed to caffeine prenatally. Arch Toxicol 2019; 93:1323-1335. [PMID: 30805671 DOI: 10.1007/s00204-019-02418-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/21/2019] [Indexed: 12/19/2022]
Abstract
Our previous studies demonstrated that prenatal caffeine exposure (PCE) caused thymopoiesis inhibition, immune disorders, and airway remodeling in offspring, which raises the question of whether PCE is a risk factor for postnatal asthma. Meanwhile, the mechanism of PCE-induced thymopoiesis inhibition is not clear yet. Considering caffeine's pro-autophagy effects (lacking evidence in thymus) and the important role of autophagy in maintaining thymopoiesis, this study aimed to investigate whether PCE contributes to asthma susceptibility, and further explore the molecular mechanisms of thymopoiesis inhibition from the perspective of pro-autophagy effects of caffeine both in vivo and in vitro. The PCE mouse model was established by 96 mg/kg/day caffeine administration from gestational day (GD) 9-GD 18, and an asthma model was established on the offspring by ovalbumin sensitization and challenge. The results confirmed our hypothesis that PCE could suppress pulmonary CD4+T development and aggravate allergen-induced asthma symptoms in the offspring. In fetuses, PCE significantly suppressed A2AR-PKA signaling, upregulated Beclin1-LC3II autophagy, promoted Bcl10 degradation, reduced A20 expression, and inhibited CD4+T thymopoiesis. Similar results were also observed in 4 µM caffeine-treated thymocytes in vitro. Moreover, inhibiting A2AR by antagonist (SCH 58261) performed the same downstream biological effects as caffeine treatment, and autophagy inhibitor (BafilomycinA1) clearly abolished the caffeine-induced Bcl10 degradation and A20 suppression. In conclusion, our findings, for the first time, showed that PCE could attenuate CD4+T thymopoiesis and suppress pulmonary CD4+T development by directly enhancing autophagy in thymocytes, and provided a firm experimental evidence that PCE is a risk factor for postnatal asthma.
Collapse
|
28
|
Conway F, Brown AS. Maternal Immune Activation and Related Factors in the Risk of Offspring Psychiatric Disorders. Front Psychiatry 2019; 10:430. [PMID: 31316403 PMCID: PMC6611212 DOI: 10.3389/fpsyt.2019.00430] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/31/2019] [Indexed: 12/25/2022] Open
Abstract
Maternal immune activation (MIA) at the time of gestation has been linked to increased risk of neurodevelopmental psychiatric disorders. Animal and human models have been used to evaluate the relationship between MIA and these outcomes. Given that each of these two disciplines of study have their benefits and limitations, a translational perspective is expected to illuminate more than by the use of any single approach. In this article, we discuss this translational framework and explore how it may be enhanced by the utilization of epigenetic studies and by investigating the microbiome. In this perspectives piece, we focus on the impact of epidemiologic studies, animal models, and preclinical studies in the literature on MIA as well as the potential for greater integration between fields.
Collapse
Affiliation(s)
- Fiona Conway
- New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States
| | - Alan S Brown
- New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
29
|
Nhidza AF, Naicker T, Stray-Pedersen B, Chisango TJ, Sibanda EP, Ismail A, Bandason T, Makaza C, Duri K, Mduluza T. Immune response to asymptomatic infections by Entamoeba histolytica and other enteric pathogens in pregnant women and their infants in a high HIV burdened setting in Zimbabwe. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2018; 53:612-621. [PMID: 30583941 DOI: 10.1016/j.jmii.2018.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 10/21/2018] [Accepted: 11/13/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Asymptomatic Entamoeba histolytica infections in pregnant women puts infants at risk of infection through vertical transmission or transmission during breastfeeding in high HIV prevalence areas. The study aimed at investigating the immune response to asymptomatic E.histolytica infection in pregnant women and their infants in a high HIV burdened setting in Harare, Zimbabwe. METHODOLOGY Serum samples from 39 predominantly breastfeeding mother-infant pairs were analyzed for inflammatory cytokine and immunoglobulin profiles using BIOPLEX. The infants' ages ranged from 10 days to 14 weeks. RESULTS IL-1r, IL-4, IL-9, IL-12p70, IL-17a, G-CSF and PDGF-BB were significantly raised in E. histolytica infected compared to non-infected lactating mothers (p < 0.05). Carriage of any form of enteric infection such as Non-lactose fermenters (NLFs) including E. histolytica significantly increased concentration levels of IL-1r, IL-4, IL-9, IL-10, IL-12p70, IL17a, G-CSF, GM-CSF, IFN-γ, PDGF-BB and TNF-α cytokines (p < 0.05) but no significant differences in immunoglobulin levels among the mothers. Anti-inflammatory cytokines (IL-1r, IL-2, IL-4, IL-5, IL-6), pro-inflammatory cytokines (IL-9, IL-12-p70, IL-15, IL-17a, TNF-α) and growth factors (FGF-β, G-CSF, GM-CSF, PDGF-bb) were significantly raised in HIV-uninfected mothers and not HIV-infected mothers during E. histolytica infection (p < 0.05). In infants, E. histolytica carriage and HIV exposure had no significant impact on the cytokine and immunoglobulin concentrations. CONCLUSION Pro-inflammatory cytokines and chemokines are highly raised in lactating mothers with asymptomatic enteric pathogens hence there is need to check cytokine profiles in pregnant women and their infants to assist in decision making linked to treatment and prevention in times of pandemics.
Collapse
Affiliation(s)
- Agness Farai Nhidza
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa; Biomedical Research and Training Institute, Harare, Zimbabwe.
| | - Thajasvarie Naicker
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | | | - Tawanda Jonathan Chisango
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - Edson Panganayi Sibanda
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - Aziah Ismail
- Institute of Research and Molecular Medicine (INFORMI), Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Tsitsi Bandason
- Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Curtis Makaza
- Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Kerina Duri
- Immunology Department, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Takafira Mduluza
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa; Biochemistry Department, University of Zimbabwe, Harare, Zimbabwe
| |
Collapse
|
30
|
Gestational diabetes exacerbates maternal immune activation effects in the developing brain. Mol Psychiatry 2018; 23:1920-1928. [PMID: 28948973 PMCID: PMC6459194 DOI: 10.1038/mp.2017.191] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/04/2017] [Accepted: 07/13/2017] [Indexed: 11/09/2022]
Abstract
Maternal inflammation and diabetes increase the risk for psychiatric disorders in offspring. We hypothesized that these co-occurring risk factors may potentiate each other. To test this, we maternally exposed developing mice in utero to gestational diabetes mellitus (GDM) and/or maternal immune activation (MIA). Fetal mouse brains were exposed to either vehicle, GDM, MIA or GDM+MIA. At gestational day (GD) 12.5, GDM produced a hyperglycemic, hyperleptinemic maternal state, whereas MIA produced significant increases in proinflammatory cytokines and chemokines. Each condition alone resulted in an altered, inflammatory and neurodevelopmental transcriptome profile. In addition, GDM+MIA heightened the maternal inflammatory state and gave rise to a new, specific transcriptional response. This exacerbated response was associated with pathways implicated in psychiatric disorders, including dopamine neuron differentiation and innate immune response. Based on these data, we hypothesize that children born to GDM mothers and exposed to midgestation infections have an increased vulnerability to psychiatric disorder later in life, and this should be tested in follow-up epidemiological studies.
Collapse
|
31
|
Jouda J, Wöhr M, Del Rey A. Immunity and ultrasonic vocalization in rodents. Ann N Y Acad Sci 2018; 1437:68-82. [PMID: 30062701 DOI: 10.1111/nyas.13931] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 12/14/2022]
Abstract
Ultrasonic vocalizations (USVs) serve important communicative functions in rodents. Different types of USVs can be triggered in the sender, for example, by maternal separation, social interactions, or exposure to predators, and they evoke affiliative or alarming behaviors in recipients. This review focusses on studies evaluating possible links between immunity and USVs. Most studies have been performed in a murine model of maternal immune activation and subsequent evaluation of effects in the offspring. This model has received large attention in recent years because it mimics behavioral abnormalities observed in certain human neuropsychiatric disorders, including autism spectrum disorder. Although there is still some controversy, the results indicate that stimulation of the immune system of mice and rats during pregnancy affects ultrasonic calling in pups. Few studies are available on immunization during adulthood and USVs. In most cases, immune stimulation led to disease, complicating conclusions about a possible direct link between vocalization and immunity. Although much work is still needed, this is certainly a rather new and promising aspect of interactions between the immune system and behavior.
Collapse
Affiliation(s)
- Jamela Jouda
- Department of Biology, College of Science, Al-Mustansiriyah University, Baghdad, Iraq
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-University of Marburg, Marburg, Germany
| | - Adriana Del Rey
- Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University of Marburg, Marburg, Germany
| |
Collapse
|
32
|
Sheu A, Chan Y, Ferguson A, Bakhtyari MB, Hawke W, White C, Chan YF, Bertolino PJ, Woon HG, Palendira U, Sierro F, Lau SM. A proinflammatory CD4 + T cell phenotype in gestational diabetes mellitus. Diabetologia 2018; 61:1633-1643. [PMID: 29691600 DOI: 10.1007/s00125-018-4615-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 03/15/2018] [Indexed: 12/30/2022]
Abstract
AIMS/HYPOTHESIS Numerous adaptations of the maternal immune system are necessary during pregnancy to maintain immunological tolerance to the semi-allogeneic fetus. Several complications of pregnancy have been associated with dysregulation of these adaptive mechanisms. While gestational diabetes mellitus (GDM) has been associated with upregulation of circulating inflammatory factors linked to innate immunity, polarisation of the adaptive immune system has not been extensively characterised in this condition. We aimed to characterise pro- and anti-inflammatory CD4+ (T helper [Th]) T cell subsets in women with GDM vs women without GDM (of similar BMI), during and after pregnancy, and examine the relationship between CD4+ subsets and severity of GDM. METHODS This is a prospective longitudinal case-control study of 55 women with GDM (cases) and 65 women without GDM (controls) at a tertiary maternity hospital. Quantification of proinflammatory (Th17, Th17.1, Th1) and anti-inflammatory (regulatory T cell [Treg]) CD4+ T cell subsets was performed on peripheral blood at 37 weeks gestation and 7 weeks postpartum, and correlated with clinical characteristics and measures of blood glucose. RESULTS Women with GDM had a significantly greater percentage of Th17 (median 2.49% [interquartile range 1.62-4.60] vs 1.85% [1.13-2.98], p = 0.012) and Th17.1 (3.06% [1.30-4.33] vs 1.55% [0.65-3.13], p = 0.006) cells compared with the control group of women without GDM. Women with GDM also had higher proinflammatory cell ratios (Th17:Treg, Th17.1:Treg and Th1:Treg) in pregnancy compared with the control group of women without GDM. In the control group, there was a statistically significant independent association between 1 h glucose levels in the GTT and Th17 cell percentages, and also between 2 h glucose levels and percentage of Th17 cells. The percentage of Th17 cells and the Th17:Treg ratio declined significantly after delivery in women with GDM, whereas this was not the case with the control group of women. Nevertheless, a milder inflammatory phenotype persisted after delivery (higher Th17:Treg ratio) in women with GDM vs women without. CONCLUSIONS/INTERPRETATION Dysregulation of adaptive immunity supports a novel paradigm of GDM that extends beyond hyperglycaemia and altered innate immunity.
Collapse
Affiliation(s)
- Angela Sheu
- Department of Diabetes and Endocrinology, Prince of Wales Hospital, Barker Street, Randwick, NSW, 2031, Australia
| | - Yixian Chan
- Department of Diabetes and Endocrinology, Prince of Wales Hospital, Barker Street, Randwick, NSW, 2031, Australia
| | - Angela Ferguson
- Human Viral and Cancer Immunology, Centenary Institute, Camperdown, NSW, Australia
| | - Mohammad B Bakhtyari
- Department of Diabetes and Endocrinology, Prince of Wales Hospital, Barker Street, Randwick, NSW, 2031, Australia
| | - Wendy Hawke
- The Royal Hospital for Women, Randwick, NSW, Australia
| | - Chris White
- Department of Diabetes and Endocrinology, Prince of Wales Hospital, Barker Street, Randwick, NSW, 2031, Australia
- The Royal Hospital for Women, Randwick, NSW, Australia
- Prince of Wales Clinical School, UNSW, Randwick, NSW, Australia
| | - Yuk Fun Chan
- Department of Diabetes and Endocrinology, Prince of Wales Hospital, Barker Street, Randwick, NSW, 2031, Australia
| | - Patrick J Bertolino
- Liver Immunology, Centenary Institute, Camperdown, NSW, Australia
- Immunology, Central Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Heng G Woon
- Human Viral and Cancer Immunology, Centenary Institute, Camperdown, NSW, Australia
| | - Umaimainthan Palendira
- Human Viral and Cancer Immunology, Centenary Institute, Camperdown, NSW, Australia
- Immunology, Central Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Frederic Sierro
- Vascular Immunology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
- Human Health, Nuclear Science & Technology and Landmark Infrastructure (NSTLI), Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Sue Mei Lau
- Department of Diabetes and Endocrinology, Prince of Wales Hospital, Barker Street, Randwick, NSW, 2031, Australia.
- The Royal Hospital for Women, Randwick, NSW, Australia.
- Prince of Wales Clinical School, UNSW, Randwick, NSW, Australia.
| |
Collapse
|
33
|
Mandelbaum DE, Arsenault A, Stonestreet BS, Kostadinov S, de la Monte SM. Neuroinflammation-Related Encephalopathy in an Infant Born Preterm Following Exposure to Maternal Diabetic Ketoacidosis. J Pediatr 2018; 197:286-291.e2. [PMID: 29555093 PMCID: PMC6091875 DOI: 10.1016/j.jpeds.2018.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/01/2017] [Accepted: 01/18/2018] [Indexed: 11/30/2022]
Abstract
A pregnant woman with new-onset type 1 diabetes and ketoacidosis delivered an infant at 28 weeks of gestation who died with multiple organ failure and severe cerebral vasculopathy with extensive hemorrhage, diffuse microgliosis, and edema. This illustrates that antenatal metabolic and inflammatory stressors may be associated with neonatal encephalopathy and cerebral hemorrhage.
Collapse
Affiliation(s)
- David E Mandelbaum
- Alpert Medical School of Brown University, Providence, RI; Department of Neurology, Hasbro Children's Hospital, Providence, RI; Department of Pediatrics, Hasbro Children's Hospital, Providence, RI
| | - Amanda Arsenault
- Alpert Medical School of Brown University, Providence, RI; Department of Pediatrics, Women and Infants Hospital of Rhode Island, Providence, RI
| | - Barbara S Stonestreet
- Alpert Medical School of Brown University, Providence, RI; Department of Pediatrics, Women and Infants Hospital of Rhode Island, Providence, RI
| | - Stefan Kostadinov
- Alpert Medical School of Brown University, Providence, RI; Department of Pathology at the Women and Infants Hospital of Rhode Island, Providence, RI
| | - Suzanne M de la Monte
- Alpert Medical School of Brown University, Providence, RI; Division of Neuropathology, Rhode Island Hospital, Providence, RI; Department of Pathology, Rhode Island Hospital, Providence, RI; Department of Neurology, Rhode Island Hospital, Providence, RI; Department of Neurosurgery, Rhode Island Hospital, Providence, RI.
| |
Collapse
|
34
|
Lesh TA, Careaga M, Rose DR, McAllister AK, Van de Water J, Carter CS, Ashwood P. Cytokine alterations in first-episode schizophrenia and bipolar disorder: relationships to brain structure and symptoms. J Neuroinflammation 2018; 15:165. [PMID: 29803226 PMCID: PMC5970482 DOI: 10.1186/s12974-018-1197-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/10/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Over the past 30 years, evidence has been accumulating for an immunological component to schizophrenia etiology, including genetic links to the major histocompatibility complex, microglia activation, and dysregulated cytokine profiles. However, the degree of similarity in cytokine profiles for schizophrenia and bipolar disorder, as well as the relationship between cytokine levels and brain structure, is less well understood. METHODS To address this, we recruited 69 first-episode schizophrenia-spectrum patients, 16 first-episode bipolar patients with psychotic features, and 53 healthy controls, from the UC Davis EDAPT clinic. Blood plasma was collected and analyzed for all participants with a subset of participants that also underwent structural MRI on a 1.5T GE scanner. RESULTS Plasma levels of interleukin (IL)-1β, IL-2, IL-6, and interferon (IFN)-γ were elevated in schizophrenia patients compared to those in controls. Patients with bipolar disorder had elevated plasma IL-10 levels compared to controls, and the two patient groups did not differ significantly on any immunological measure. Percent whole-brain gray matter was inversely correlated with IFN-γ and IL-12 levels in patients with schizophrenia, with a trend relationship between IFN-γ and IL-12 and prefrontal cortical thickness. Furthermore, psychotic symptoms were positively related to IL-1β levels in individuals with schizophrenia. CONCLUSIONS These data suggest a partially overlapping pattern of elevated blood cytokine levels in patients with first-episode schizophrenia and bipolar disorder with psychotic features. Furthermore, our findings suggest that elevated pro-inflammatory cytokines may be particularly involved in schizophrenia etiology, given evidence of cytokine-related decreases in total gray matter.
Collapse
Affiliation(s)
- Tyler A Lesh
- Department of Psychiatry and Behavioral Sciences, University of California at Davis, Sacramento, USA
| | - Milo Careaga
- Department of Psychiatry and Behavioral Sciences, University of California at Davis, Sacramento, USA.,MIND Institute, University of California at Davis, 2805, 50th Street, Sacramento, CA, 95817, USA
| | - Destanie R Rose
- Department of Medical Microbiology and Immunology, University of California at Davis, 3146 Tupper Hall, 1 Shields Avenue, Davis, CA, 95616, USA.,MIND Institute, University of California at Davis, 2805, 50th Street, Sacramento, CA, 95817, USA
| | | | - Judy Van de Water
- MIND Institute, University of California at Davis, 2805, 50th Street, Sacramento, CA, 95817, USA.,Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, University of California at Davis, Sacramento, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California at Davis, 3146 Tupper Hall, 1 Shields Avenue, Davis, CA, 95616, USA. .,MIND Institute, University of California at Davis, 2805, 50th Street, Sacramento, CA, 95817, USA.
| |
Collapse
|
35
|
Deng Y, Song L, Nie X, Shou W, Li X. Prenatal inflammation exposure-programmed cardiovascular diseases and potential prevention. Pharmacol Ther 2018; 190:159-172. [PMID: 29803628 DOI: 10.1016/j.pharmthera.2018.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, the rapid development of medical and pharmacological interventions has led to a steady decline in certain noncommunicable chronic diseases (NCDs), such as cancer. However, the overall incidence of cardiovascular diseases (CVDs) has not seemed to decline. CVDs have become even more prevalent in many countries and represent a global health threat and financial burden. An increasing number of epidemiological and experimental studies have demonstrated that maternal insults not only can result in birth defects but also can cause developmental functional defects that contribute to adult NCDs. In the current review, we provide an overview of evidence from both epidemiological investigations and experimental animal studies supporting the concept of developmental reprogramming of adult CVDs in offspring that have experienced prenatal inflammation exposure (PIE) during fetal development (PIE-programmed CVDs), a disease-causing event that has not been effectively controlled. This review describes the epidemiological observations, data from animal models, and related mechanisms for the pathogenesis of PIE-programmed CVDs. In addition, the potential therapeutic interventions of PIE-programmed CVDs are discussed. Finally, we also deliberate the need for future mechanistic studies and biomarker screenings in this important field, which creates a great opportunity to combat the global increase in CVDs by managing the adverse effects of inflammation for prepregnant and pregnant individuals who are at risk for PIE-programmed CVDs.
Collapse
Affiliation(s)
- Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China; Center of Translational Medicine, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China.
| | - Liang Song
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China; Center of Translational Medicine, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China
| | - Xuqiang Nie
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China; Center of Translational Medicine, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China
| | - Weinian Shou
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China; Center of Translational Medicine, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China; Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4 W302D, Indianapolis, IN 46202, USA
| | - Xiaohui Li
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China; Center of Translational Medicine, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China.
| |
Collapse
|
36
|
Bove RM. Why monkeys do not get multiple sclerosis (spontaneously): An evolutionary approach. EVOLUTION MEDICINE AND PUBLIC HEALTH 2018; 2018:43-59. [PMID: 29492266 PMCID: PMC5824939 DOI: 10.1093/emph/eoy002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022]
Abstract
The goal of this review is to apply an evolutionary lens to understanding the origins of multiple sclerosis (MS), integrating three broad observations. First, only humans are known to develop MS spontaneously. Second, humans have evolved large brains, with characteristically large amounts of metabolically costly myelin. This myelin is generated over long periods of neurologic development—and peak MS onset coincides with the end of myelination. Third, over the past century there has been a disproportionate increase in the rate of MS in young women of childbearing age, paralleling increasing westernization and urbanization, indicating sexually specific susceptibility in response to changing exposures. From these three observations about MS, a life history approach leads us to hypothesize that MS arises in humans from disruption of the normal homeostatic mechanisms of myelin production and maintenance, during our uniquely long myelination period. This review will highlight under-explored areas of homeostasis in brain development, that are likely to shed new light on the origins of MS and to raise further questions about the interactions between our ancestral genes and modern environments.
Collapse
Affiliation(s)
- Riley M Bove
- Department of Neurology, UCSF, San Francisco, CA, USA
| |
Collapse
|
37
|
Yang Y, Tian J, Yang B. Targeting gut microbiome: A novel and potential therapy for autism. Life Sci 2017; 194:111-119. [PMID: 29277311 DOI: 10.1016/j.lfs.2017.12.027] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/12/2017] [Accepted: 12/21/2017] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorder (ASD) is a severely neurodevelopmental disorder that impairs a child's ability to communicate and interact with others. Children with neurodevelopmental disorder, including ASD, are regularly affected by gastrointestinal problems and dysbiosis of gut microbiota. On the other hand, humans live in a co-evolutionary association with plenty of microorganisms that resident on the exposed and internal surfaces of our bodies. The microbiome, refers to the collection of microbes and their genetic material, confers a variety of physiologic benefits to the host in many key aspects of life as well as being responsible for some diseases. A large body of preclinical literature indicates that gut microbiome plays an important role in the bidirectional gut-brain axis that communicates between the gut and central nervous system. Moreover, accumulating evidences suggest that the gut microbiome is involved in the pathogenesis of ASD. The present review introduces the increasing evidence suggesting the reciprocal interaction network among microbiome, gut and brain. It also discusses the possible mechanisms by which gut microbiome influences the etiology of ASD via altering gut-brain axis. Most importantly, it highlights the new findings of targeting gut microbiome, including probiotic treatment and fecal microbiota transplant, as novel and potential therapeutics for ASD diseases.
Collapse
Affiliation(s)
- Yongshou Yang
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.
| | - Jinhu Tian
- Department of Food Science and Nutrition, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province 310058, PR China
| | - Bo Yang
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|
38
|
Zhou C, Ibanez G, Miramont V, Steinecker M, Baiz N, Banerjee S, Just J, Annesi-Maesano I, Chastang J. Prenatal maternal depression related to allergic rhinoconjunctivitis in the first 5 years of life in children of the EDEN mother-child cohort study. ALLERGY & RHINOLOGY 2017; 8:132-138. [PMID: 29070270 PMCID: PMC5662538 DOI: 10.2500/ar.2017.8.0213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Backgroud: Evidence about the relationship between prenatal maternal depression and the development of childhood asthma and allergies in early life is scarce. We aimed to examine this relationship by using data set of EDEN mother-child cohort study. A total of 1139 children were followed-up until the age of 5 years. METHODS Prenatal maternal depression was self-reported by using the Centre for Epidemiological Studies-Depression scale (CES-D) questionnaire and was classified into binary variable (maternal depression [CES-D score of ≥16] and no maternal depression [CES-D score of <16]). Asthma and allergies in the first 5 years were assessed by using the questionnaire of the International Study of Asthma and Allergies in Childhood (ISAAC). Adjusted odds ratio (aOR) was estimated for the relationship between prenatal maternal depression and early life asthma and allergies by marginal models through the method of generalized estimating equation (GEE) when adjusting for the confounders. RESULTS In our study population, 13.67 % of the mothers had clinical significant depression (the total scores for CES-D ≥16) during pregnancy. For children ages 5 years, the prevalence of wheezing, physician-diagnosed asthma, physician-diagnosed eczema and allergic rhinoconjunctivitis were 46.78, 20.99, 29.17, and 22.54%, respectively. Prenatal maternal depression was associated with ever allergic rhinoconjunctivitis (aOR 1.87 [95% confidence interval {CI}, 1.33-2.62]). No significant relationships were found between prenatal maternal depression and wheezing, physician-diagnosed asthma and physician-diagnosed eczema (aOR 1.12 [95% CI, 0.91-1.39], aOR 1.23 [95% CI, 0.81-1.85] and aOR 1.17 [95% CI, 0.86-1.61], respecitvely). CONCLUSION Prenatal maternal depression was related to ever allergic rhinoconjunctivitis in the first 5 years of life in children of EDEN mother-child cohort study.
Collapse
Affiliation(s)
- Cailiang Zhou
- From the Division of Statistics, Measurement and Evaluation of sport, College of Sport Science, Bejing Sport University, Beijing, China
| | - Gladys Ibanez
- Sorbonne Universités, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Epidemiology of Allergic and Respiratory Disease Department, Paris, France
| | - Vincent Miramont
- Sorbonne Universités, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Epidemiology of Allergic and Respiratory Disease Department, Paris, France
| | - Magali Steinecker
- Sorbonne Universités, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Epidemiology of Allergic and Respiratory Disease Department, Paris, France
| | - Nour Baiz
- Sorbonne Universités, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Epidemiology of Allergic and Respiratory Disease Department, Paris, France
| | - Soutrik Banerjee
- Sorbonne Universités, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Epidemiology of Allergic and Respiratory Disease Department, Paris, France
| | - Jocelyne Just
- Sorbonne Universités, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Epidemiology of Allergic and Respiratory Disease Department, Paris, France
| | - Isabella Annesi-Maesano
- Sorbonne Universités, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Epidemiology of Allergic and Respiratory Disease Department, Paris, France
| | - Julie Chastang
- Sorbonne Universités, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Epidemiology of Allergic and Respiratory Disease Department, Paris, France
| |
Collapse
|
39
|
Nansook P, Naidoo RN, Ramkaran P, Phulukdaree A, Muttoo S, Asharam K, Chuturgoon AA. IL-1β haplotype influences the effect of NO x exposure on gestational age in the South African MACE birth cohort. Hum Exp Toxicol 2017; 37:679-689. [PMID: 28875725 DOI: 10.1177/0960327117728386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Cytokines, molecules within the immune system that affect either a pro- or anti-inflammatory response, have previously been shown to influence birth outcomes. The maternal cytokine gene-environment interactions are thought to alter their expression, potentially influencing susceptibility to adverse birth outcomes. The aim of this study was to determine the association between the maternal interleukin-1β (IL-1β) haplotype and expression variation with oxides of nitrogen (NOx) levels, and thereafter investigate the IL-1β haplotype-specific effects of NOx exposure levels, IL-1β mRNA expression and other variables on gestational age. MATERIAL AND METHODS Using the prospective Mother and Child in the Environment (MACE) birth cohort in Durban, South Africa, 335 participants were genotyped for the IL-1β haplotype. Previous studies showed that three single nucleotide polymorphisms (SNPs), IL-1β-1464G/C, -511C/T and -31C/T, constitute the IL-1β functional haplotype. These SNPs were genotyped using a restriction fragment length polymorphism assay, while IL-1β mRNA expression was measured using a quantitative real-time polymerase chain reaction assay. Individual estimates of NOx exposure were obtained by land use regression modelling. A multivariate linear regression analysis was employed to test for significant effects on gestational age. RESULTS IL-1β mRNA expression was found to possess a haplotype-dependent effect ( p = 0.0001) and its expression levels positively correlated with NOx levels ( r = 0.34; p = 0.006). In the high haplotype model, a unit increase in NOx exposure level was associated with a decrease in gestational age by 1 week ( p = 0.02). Furthermore, gestational age decreased by 0.9 weeks for every unit increase of IL-1β mRNA expression level ( p = 0.025). HIV-1 positivity was associated with a 0.2-week decrease in gestational age ( p = 0.035) in the intermediate haplotype model and a 0.4-week decrease in the high haplotype model ( p = 0.044). CONCLUSION These data have implications for better understanding the effect of prenatal NOx exposure on gestational age and demonstrate the role of the IL-1β haplotype in modulating the effects of NOx exposure.
Collapse
Affiliation(s)
- P Nansook
- 1 Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - R N Naidoo
- 2 Department of Occupational and Environmental Health, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - P Ramkaran
- 1 Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - A Phulukdaree
- 1 Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - S Muttoo
- 2 Department of Occupational and Environmental Health, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - K Asharam
- 2 Department of Occupational and Environmental Health, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - A A Chuturgoon
- 1 Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
40
|
Mouihate A, Al-Hashash H, Rakhshani-Moghadam S, Kalakh S. Impact of prenatal immune challenge on the demyelination injury during adulthood. CNS Neurosci Ther 2017; 23:724-735. [PMID: 28718218 DOI: 10.1111/cns.12718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 12/24/2022] Open
Abstract
AIM Brain inflammation is associated with several brain diseases such as multiple sclerosis (MS), a disease characterized by demyelination. Whether prenatal immune challenge affects demyelination-induced inflammation in the white matter during adulthood is unclear. In the present study, we used a well-established experimental model of focal demyelination to assess whether prenatal immune challenge affects demyelination-induced inflammation. METHODS Pregnant rats were injected with either lipopolysaccharide (100 μg/kg, ip) or pyrogen-free saline. A 2 μL solution of the gliotoxin ethidium bromide (0.04%) was stereotaxically infused into the corpus callosum of adult male offspring. The extent of demyelination lesion was assessed using Luxol fast blue (LFB) staining. Oligodendrocyte precursor cells, mature oligodendrocytes, markers of cellular gliosis, and inflammation were monitored in the vicinity of the demyelination lesion area. RESULTS Prenatal lipopolysaccharide reduced the size of the demyelination lesion during adulthood. This reduced lesion was associated with enhanced density of mature oligodendrocytes and reduced density of microglial cells in the vicinity of the demyelination lesion. Such reduction in microglial cell density was accompanied by a reduced activation of the nuclear factor κB signaling pathway. CONCLUSION These data strongly suggest that prenatal immune challenge dampens the extent of demyelination during adulthood likely by reprogramming the local brain inflammatory response to demyelinating insults.
Collapse
Affiliation(s)
- Abdeslam Mouihate
- Faculty of Medicine, Department of Physiology, Kuwait University, Safat, Kuwait
| | - Hessah Al-Hashash
- Faculty of Medicine, Department of Physiology, Kuwait University, Safat, Kuwait
| | | | - Samah Kalakh
- Faculty of Medicine, Department of Physiology, Kuwait University, Safat, Kuwait
| |
Collapse
|
41
|
Rose DR, Careaga M, Van de Water J, McAllister K, Bauman MD, Ashwood P. Long-term altered immune responses following fetal priming in a non-human primate model of maternal immune activation. Brain Behav Immun 2017; 63:60-70. [PMID: 27876552 PMCID: PMC5432383 DOI: 10.1016/j.bbi.2016.11.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/09/2016] [Accepted: 11/18/2016] [Indexed: 01/18/2023] Open
Abstract
Infection during pregnancy can lead to activation of the maternal immune system and has been associated with an increased risk of having an offspring later diagnosed with a neurodevelopmental disorders (NDD) such as autism spectrum disorder (ASD) or schizophrenia (SZ). Most maternal immune activation (MIA) studies to date have been in rodents and usually involve the use of lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (poly I:C). However, since NDD are based on behavioral changes, a model of MIA in non-human primates could potentially provide data that helps illuminate complex behavioral and immune outputs in human NDD. In this study twenty-one pregnant rhesus macaques were either given three injections over 72 hours of poly I:C-LC, a double stranded RNA analog (viral mimic), or saline as a control. Injections were given near the end of the first trimester or near the end of the second trimester to determine if there were differences in immune output due to the timing of MIA.An additional three non-treated animals were used as controls. The offspring were followed until 4 years of age, with blood collected at the end of their first (year 1) and fourth (year 4) years to assess dynamic cellular immune function. Induced responses from peripheral immune cells were measured using multiplex assays.At one year of age, MIA exposed offspring displayed elevated production of innate inflammatory cytokines including: interleukin (IL)-1β, IL-6, IL-12p40, and tumor necrosis factor (TNF)α at baseline and following stimulation. At four years of age, the MIA exposed offspring continued to display elevated IL-1β, and there was also a pattern of an increased production of T-cell helper type (TH)-2 cytokines, IL-4 and IL-13. Throughout this time period, the offspring of MIA treated dams exhibited altered behavioral phenotypes including increased stereotyped behaviors. During the first two years, stereotyped behaviors were associated with innate cytokine production. Self-directed behaviors were associated with TH2 cytokine production at year 4. Data from this study suggests long-term behavioral and immune activation was present in offspring following MIA. This novel non-human primate model of MIA may provide a relevant clinically translational model to help further elucidate the role between immune dysfunction and complex behavioral outputs following MIA.
Collapse
Affiliation(s)
- Destanie R. Rose
- Department of Medical Microbiology and Immunology, University of California Davis, CA, USA,MIND Institute, University of California Davis, University of California, Davis, CA, USA
| | - Milo Careaga
- Department of Medical Microbiology and Immunology, University of California Davis, CA, USA,MIND Institute, University of California Davis, University of California, Davis, CA, USA
| | - Judy Van de Water
- MIND Institute, University of California Davis, University of California, Davis, CA, USA,Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, University of California, Davis, CA, USA
| | - Kim McAllister
- MIND Institute, University of California Davis, University of California, Davis, CA, USA,Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California Davis, University of California, Davis, CA, USA
| | - Melissa D. Bauman
- MIND Institute, University of California Davis, University of California, Davis, CA, USA,Department of Psychiatry and Behavioral Sciences, University of California Davis, University of California, Davis, CA, USA,California National Primate Research Center, University of California Davis, University of California, Davis, CA, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California Davis; CA, USA; MIND Institute, University of California, Davis, CA, USA.
| |
Collapse
|
42
|
Graves JS, Chitnis T, Weinstock-Guttman B, Rubin J, Zelikovitch AS, Nourbakhsh B, Simmons T, Waltz M, Casper TC, Waubant E. Maternal and Perinatal Exposures Are Associated With Risk for Pediatric-Onset Multiple Sclerosis. Pediatrics 2017; 139:e20162838. [PMID: 28562303 PMCID: PMC5369674 DOI: 10.1542/peds.2016-2838] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/26/2017] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To determine if prenatal, pregnancy, or postpartum-related environmental factors are associated with multiple sclerosis (MS) risk in children. METHODS This is a case-control study of children with MS or clinically isolated syndrome and healthy controls enrolled at 16 clinics participating in the US Network of Pediatric MS Centers. Parents completed a comprehensive environmental questionnaire, including the capture of pregnancy and perinatal factors. Case status was confirmed by a panel of 3 pediatric MS specialists. Multivariable logistic regression analyses were used to determine association of these environmental factors with case status, adjusting for age, sex, race, ethnicity, US birth region, and socioeconomic status. RESULTS Questionnaire responses were available for 265 eligible cases (median age 15.7 years, 62% girls) and 412 healthy controls (median age 14.6, 54% girls). In the primary multivariable analysis, maternal illness during pregnancy was associated with 2.3-fold increase in odds to have MS (95% confidence interval [CI] 1.20-4.21, P = .01) and cesarean delivery with 60% reduction (95% CI 0.20-0.82, P = .01). In a model adjusted for these variables, maternal age and BMI, tobacco smoke exposure, and breastfeeding were not associated with odds to have MS. In the secondary analyses, after adjustment for age, sex, race, ethnicity, and socioeconomic status, having a father who worked in a gardening-related occupation (odds ratio [OR] 2.18, 95% CI 1.14-4.16, P = .02) or any use in household of pesticide-related products (OR 1.73, 95% CI 1.06-2.81, P = .03) were both associated with increased odds to have pediatric MS. CONCLUSION Cesarean delivery and maternal health during pregnancy may influence risk for pediatric-onset MS. We report a new possible association of pesticide-related environmental exposures with pediatric MS that warrants further investigation and replication.
Collapse
Affiliation(s)
- Jennifer S Graves
- Pediatric Multiple Sclerosis Center, University of California San Francisco, San Francisco, California;
| | - Tanuja Chitnis
- Partners Pediatric Multiple Sclerosis Center, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Jennifer Rubin
- Lurie Children's Hospital of Chicago, Chicago, Illinois; and
| | | | - Bardia Nourbakhsh
- Pediatric Multiple Sclerosis Center, University of California San Francisco, San Francisco, California
| | - Timothy Simmons
- Data Coordinating and Analysis Center, University of Utah, Salt Lake City, Utah
| | - Michael Waltz
- Data Coordinating and Analysis Center, University of Utah, Salt Lake City, Utah
| | - T Charles Casper
- Data Coordinating and Analysis Center, University of Utah, Salt Lake City, Utah
| | - Emmanuelle Waubant
- Pediatric Multiple Sclerosis Center, University of California San Francisco, San Francisco, California
| |
Collapse
|
43
|
A Neurophysiological Perspective on a Preventive Treatment against Schizophrenia Using Transcranial Electric Stimulation of the Corticothalamic Pathway. Brain Sci 2017; 7:brainsci7040034. [PMID: 28350371 PMCID: PMC5406691 DOI: 10.3390/brainsci7040034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/11/2017] [Accepted: 03/24/2017] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia patients are waiting for a treatment free of detrimental effects. Psychotic disorders are devastating mental illnesses associated with dysfunctional brain networks. Ongoing brain network gamma frequency (30–80 Hz) oscillations, naturally implicated in integrative function, are excessively amplified during hallucinations, in at-risk mental states for psychosis and first-episode psychosis. So, gamma oscillations represent a bioelectrical marker for cerebral network disorders with prognostic and therapeutic potential. They accompany sensorimotor and cognitive deficits already present in prodromal schizophrenia. Abnormally amplified gamma oscillations are reproduced in the corticothalamic systems of healthy humans and rodents after a single systemic administration, at a psychotomimetic dose, of the glutamate N-methyl-d-aspartate receptor antagonist ketamine. These translational ketamine models of prodromal schizophrenia are thus promising to work out a preventive noninvasive treatment against first-episode psychosis and chronic schizophrenia. In the present essay, transcranial electric stimulation (TES) is considered an appropriate preventive therapeutic modality because it can influence cognitive performance and neural oscillations. Here, I highlight clinical and experimental findings showing that, together, the corticothalamic pathway, the thalamus, and the glutamatergic synaptic transmission form an etiopathophysiological backbone for schizophrenia and represent a potential therapeutic target for preventive TES of dysfunctional brain networks in at-risk mental state patients against psychotic disorders.
Collapse
|
44
|
Vuong HE, Hsiao EY. Emerging Roles for the Gut Microbiome in Autism Spectrum Disorder. Biol Psychiatry 2017; 81:411-423. [PMID: 27773355 PMCID: PMC5285286 DOI: 10.1016/j.biopsych.2016.08.024] [Citation(s) in RCA: 345] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/28/2016] [Accepted: 08/18/2016] [Indexed: 01/16/2023]
Abstract
Autism spectrum disorder (ASD) is a serious neurodevelopmental disorder that affects one in 45 children in the United States, with a similarly striking prevalence in countries around the world. However, mechanisms underlying its etiology and manifestations remain poorly understood. Although ASD is diagnosed based on the presence and severity of impaired social communication and repetitive behavior, immune dysregulation and gastrointestinal issues are common comorbidities. The microbiome is an integral part of human physiology; recent studies show that changes in the gut microbiota can modulate gastrointestinal physiology, immune function, and even behavior. Links between particular bacteria from the indigenous gut microbiota and phenotypes relevant to ASD raise the important question of whether microbial dysbiosis plays a role in the development or presentation of ASD symptoms. Here we review reports of microbial dysbiosis in ASD. We further discuss potential effects of the microbiota on ASD-associated symptoms, drawing on signaling mechanisms for reciprocal interactions among the microbiota, immunity, gut function, and behavior. In addition, we discuss recent findings supporting a role for the microbiome as an interface between environmental and genetic risk factors that are associated with ASD. These studies highlight the integration of pathways across multiple body systems that together can impact brain and behavior and suggest that changes in the microbiome may contribute to symptoms of neurodevelopmental disease.
Collapse
Affiliation(s)
- Helen E. Vuong
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elaine Y. Hsiao
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA,Correspondence to: ; 610 Charles E. Young Drive MSB 3825A; Los Angeles CA 90095; 310-825-0228
| |
Collapse
|
45
|
Rakers F, Rupprecht S, Dreiling M, Bergmeier C, Witte OW, Schwab M. Transfer of maternal psychosocial stress to the fetus. Neurosci Biobehav Rev 2017; 117:S0149-7634(16)30719-9. [PMID: 28237726 DOI: 10.1016/j.neubiorev.2017.02.019] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/14/2017] [Accepted: 02/20/2017] [Indexed: 12/18/2022]
Abstract
Psychosocial maternal stress experienced during different vulnerable periods throughout gestation is thought to increase the individual's risk to develop neuropsychiatric, cardiovascular and metabolic disease in later life. Cortisol has generally been identified as the major mediator of maternal stress transfer to the fetus. Its lipophilic nature allows a trans-placental passage and thus excessive maternal cortisol could persistently impair the development of the fetal hypothalamic-pituitary-adrenal axis (HPAA). However, cortisol alone cannot fully explain all effects of maternal stress especially during early to mid pregnancy before maturation of the fetal HPAA has even begun and expression of fetal glucocorticoid receptors is limited. This review focuses on mediators of maternal fetal stress transfer that in addition to cortisol have been proposed as transmitters of maternal stress: catecholamines, cytokines, serotonin/tryptophan, reactive-oxygen-species and the maternal microbiota. We propose that the effects of psychosocial maternal stress on fetal development and health and disease in later life are not a consequence of a single pathway but are mediated by multiple stress-transfer mechanisms acting together in a synergistic manner.
Collapse
Affiliation(s)
- Florian Rakers
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Sven Rupprecht
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Michelle Dreiling
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Christoph Bergmeier
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Matthias Schwab
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| |
Collapse
|
46
|
Rajasekaran A, Shivakumar V, Kalmady SV, Narayanaswamy JC, Subbana M, Venugopal D, Amaresha AC, Venkatasubramanian G, Debnath M. The impact of IL10 polymorphisms and sHLA-G levels on the risk of schizophrenia. Asian J Psychiatr 2016; 23:39-43. [PMID: 27969076 DOI: 10.1016/j.ajp.2016.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/21/2016] [Accepted: 06/26/2016] [Indexed: 01/08/2023]
Abstract
Early life immune aberrations have strongly been associated with the risk of schizophrenia. Amongst them, inflammation induced neurodevelopmental origin has emerged as one of the widely recognized underlying mechanisms. Interleukin-10 (IL-10) is an important anti-inflammatory and immunoregulatory cytokine. It modulates the expression of another immuno-inhibitory molecule, Human Leukocyte Antigen-G (HLA-G), predominantly expressed at the feto-maternal interface. Under physiological conditions, IL-10 and HLA-G molecules regulate the feto-maternal immune homeostasis by limiting the inflammatory states and influence the outcome of pregnancy. The aberrant expression of these molecules can cause pregnancy complications, which are known to confer strong risk to schizophrenia in the offspring. However, there is a considerable lack of information on the effect of the functional interactions between IL-10 and HLA-G on the risk of schizophrenia. We therefore examined the impact of possible correlation between IL-10 genetic variations and the plasma levels of soluble HLA-G (sHLA-G) on schizophrenia risk. Genotyping of IL10 (-592 C>A, -1082 A>G) single nucleotide polymorphisms (SNPs) was performed by PCR-RFLP method in 219 schizophrenia patients and 197 healthy subjects and levels of sHLA-G were estimated by ELISA in 46 patients and 44 healthy subjects. There was no significant difference in the genotype and allele frequencies between the groups for both the IL10 SNPs analyzed. However, we observed a correlation between IL10 genetic variation and plasma levels of sHLA-G in schizophrenia patients. Patients carrying CC genotype of IL10 -592C>A polymorphism had significantly lower sHLA-G levels compared to CA and AA genotypes. Our findings suggest the impact of possible correlation between IL-10 and HLA-G on schizophrenia risk.
Collapse
Affiliation(s)
- Ashwini Rajasekaran
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Venkataram Shivakumar
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India; Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sunil V Kalmady
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India; Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Janardhanan C Narayanaswamy
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India; Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Manjula Subbana
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Deepthi Venugopal
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Anekal C Amaresha
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India; Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India.
| |
Collapse
|
47
|
Abu-Raya B, Smolen KK, Willems F, Kollmann TR, Marchant A. Transfer of Maternal Antimicrobial Immunity to HIV-Exposed Uninfected Newborns. Front Immunol 2016; 7:338. [PMID: 27630640 PMCID: PMC5005931 DOI: 10.3389/fimmu.2016.00338] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/22/2016] [Indexed: 11/13/2022] Open
Abstract
The transfer of maternal immune factors to the newborn is critical for protection from infectious disease in early life. Maternally acquired passive immunity provides protection until the infant is beyond early life's increased susceptibility to severe infections or until active immunity is achieved following infant's primary immunization. However, as reviewed here, human immunodeficiency virus (HIV) infection alters the transfer of immune factors from HIV-infected mothers to the HIV-exposed newborns and young infants. This may relate to the immune activation in HIV-infected pregnant women, associated with the production of inflammatory cytokines at the maternofetal interface associated with inflammatory responses in the newborn. We also summarize mother-targeting interventions to improve the health of infants born to HIV-infected women, such as immunization during pregnancy and reduction of maternal inflammation. Maternal immunization offers the potential to compensate for the decreased transplacentally transferred maternal antibodies observed in HIV-exposed infants. Current data suggest reduced immunogenicity of vaccines in HIV-infected pregnant women, possibly reducing the protective impact of maternal immunization for HIV-exposed infants. Fortunately, levels of antibodies appear preserved in the breast milk of HIV-infected women, which supports the recommendation to breast-feed during antiretroviral treatment to protect HIV-exposed infants.
Collapse
Affiliation(s)
- Bahaa Abu-Raya
- Department of Pediatrics, Division of Infectious Diseases, University of British Columbia , Vancouver, BC , Canada
| | - Kinga K Smolen
- Institute for Medical Immunology, Université Libre de Bruxelles , Charleroi , Belgium
| | - Fabienne Willems
- Institute for Medical Immunology, Université Libre de Bruxelles , Charleroi , Belgium
| | - Tobias R Kollmann
- Department of Pediatrics, Division of Infectious Diseases, University of British Columbia , Vancouver, BC , Canada
| | - Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles , Charleroi , Belgium
| |
Collapse
|
48
|
Antenatal endogenous and exogenous glucocorticoids and their impact on immune ontogeny and long-term immunity. Semin Immunopathol 2016; 38:739-763. [DOI: 10.1007/s00281-016-0575-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 05/30/2016] [Indexed: 12/13/2022]
|
49
|
Gilman SE, Cherkerzian S, Buka SL, Hahn J, Hornig M, Goldstein JM. Prenatal immune programming of the sex-dependent risk for major depression. Transl Psychiatry 2016; 6:e822. [PMID: 27244231 PMCID: PMC5545649 DOI: 10.1038/tp.2016.91] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/23/2015] [Accepted: 01/14/2016] [Indexed: 01/01/2023] Open
Abstract
Maternal immune functioning during pregnancy contributes to sex-dependent deficits in neurodevelopment and to behaviors associated with affective traits in preclinical studies, and has been indirectly associated with offspring depression in epidemiologic studies. We therefore investigated the association between immune activity during pregnancy and the risk of depression among male and female offspring. We conducted a case-control study of depression (n=484 cases and n=774 controls) using data from the New England Family Study, a pregnancy cohort enrolled between 1959 and 1966 that assessed psychiatric outcomes in adult offspring (mean age=39.7 years). We assayed concentrations of three pro-inflammatory cytokines, interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α, and the anti-inflammatory cytokine, IL-10, in maternal serum collected at the end of the second and beginning of the third trimesters. High maternal TNF-α was associated with reduced odds of depression among both male and female offspring (odds ratio (OR)=0.68; confidence interval (CI)=0.48, 0.98). However, when considering the TNF-α to IL-10 ratio, a measure of the ratio of pro- to anti-inflammatory loading, maternal immune effects on offspring depression differed significantly by sex (χ(2)=13.9, degrees of freedom=4, P=0.008). Among females, higher maternal TNF-α:IL-10 was associated with reduced odds of depression (OR=0.51; CI=0.32, 0.81), whereas, among males, high maternal TNF-α:IL-10 was associated with elevated odds of depression (OR=1.86; CI=1.02, 3.39). Thus, the balance between TNF-α and IL-10 in maternal prenatal serum was associated with depression in a sex-dependent manner. These findings are consistent with the role of TNF-α in the maturation of the sexually dimorphic fetal brain circuitry that regulates stress and affective responses, and support a prenatal stress-immune model of depression pathogenesis.
Collapse
Affiliation(s)
- S E Gilman
- Health Behavior Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockville, MD, USA,Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA,Health Behavior Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6100 Executive Boulevard, Room 7B13M, Rockville, MD 20852, USA. E-mail
| | - S Cherkerzian
- Connors Center for Women’s Health and Gender Biology, Boston, MA, USA,Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA
| | - S L Buka
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - J Hahn
- Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - M Hornig
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, USA,Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - J M Goldstein
- Connors Center for Women’s Health and Gender Biology, Boston, MA, USA,Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA,Division of Psychiatric Neuroscience, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
50
|
Association Between Prenatal Exposure to Maternal Infection and Offspring Mood Disorders: A Review of the Literature. Curr Probl Pediatr Adolesc Health Care 2015; 45:325-64. [PMID: 26476880 DOI: 10.1016/j.cppeds.2015.06.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 06/14/2015] [Indexed: 01/19/2023]
Abstract
The purpose of this article is to provide a systematic review of studies that have examined the association between prenatal exposure to maternal infection and development of mood disorders across the life course. Drawing from both human- and animal-based studies, we give an overview of hypothesized biological mechanisms by which exposure to maternal infection during critical periods of gestation may contribute to fetal programming of mood disorders in offspring. We discuss studies examining the association between prenatal exposure to maternal infection with pathogens including influenza as well as other respiratory viruses, herpesviruses, hepatitis viruses, and Toxoplasma gondii and mood disorders in human populations. Moreover, we outline strengths and limitations of the current body of evidence and make recommendations for future research. We also discuss findings in the context of well-documented gender and socioeconomic disparities in the prevalence and severity of mood disorders, particularly major depression, and the role that early exposure to infection may play in explaining the perpetuation of such disparities across generations. Overall, this review of the current knowledge on this topic has important implications for determining future research directions, designing interventions as well as prenatal care guidelines targeted at prevention or treatment of infection during pregnancy, and clinical practice for the identification of individuals that may be at increased risk for mood disorders beginning early in life. Importantly, such efforts may not only lower the overall burden of mood disorders but also serve to address social disparities in these adverse mental health conditions in the U.S.
Collapse
|