1
|
Yu M, Yin N, Feng B, Gao P, Yu K, Liu H, Liu H, Li Y, Ginnard OZ, Conde KM, Wang M, Fang X, Tu L, Bean JC, Liu Q, Deng Y, Yang Y, Han J, Jossy SV, Burt ML, Wong HZ, Yang Y, Arenkiel BR, He Y, Guo S, Gourdy P, Arnal JF, Lenfant F, Wang Z, Wang C, He Y, Xu Y. Identification of an ionic mechanism for ERα-mediated rapid excitation in neurons. SCIENCE ADVANCES 2024; 10:eadp0696. [PMID: 39356770 PMCID: PMC11446276 DOI: 10.1126/sciadv.adp0696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Abstract
The major female ovarian hormone, 17β-estradiol (E2), can alter neuronal excitability within milliseconds to regulate a variety of physiological processes. Estrogen receptor-α (ERα), classically known as a nuclear receptor, exists as a membrane-bound receptor to mediate this rapid action of E2, but the ionic mechanisms remain unclear. Here, we show that a membrane channel protein, chloride intracellular channel protein-1 (Clic1), can physically interact with ERα with a preference to the membrane-bound ERα. Clic1-mediated currents can be enhanced by E2 and reduced by its depletion. In addition, Clic1 currents are required to mediate the E2-induced rapid excitations in multiple brain ERα populations. Further, genetic disruption of Clic1 in hypothalamic ERα neurons blunts the regulations of E2 on female body weight balance. In conclusion, we identified the Clic1 chloride channel as a key mediator for E2-induced rapid neuronal excitation, which may have a broad impact on multiple neurobiological processes regulated by E2.
Collapse
Affiliation(s)
- Meng Yu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Na Yin
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Bing Feng
- Brain Glycemic and Metabolism Control Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Peiyu Gao
- Brain Glycemic and Metabolism Control Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Kaifan Yu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hesong Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hailan Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yongxiang Li
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Olivia Z Ginnard
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Kristine M Conde
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Mengjie Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xing Fang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Longlong Tu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jonathan C Bean
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Qingzhuo Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yue Deng
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yuxue Yang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Junying Han
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Sanika V Jossy
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Megan L Burt
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Huey Zhong Wong
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yongjie Yang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yang He
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shaodong Guo
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Pierre Gourdy
- I2MC, Inserm U1297, CHU de Toulouse and Université de Toulouse III, Toulouse, France
| | - Jean-Francois Arnal
- I2MC, Inserm U1048, CHU de Toulouse and Université de Toulouse III, Toulouse, France
| | - Francoise Lenfant
- I2MC, Inserm U1048, CHU de Toulouse and Université de Toulouse III, Toulouse, France
| | - Zhao Wang
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chunmei Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yanlin He
- Brain Glycemic and Metabolism Control Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
2
|
Lin W, Song H, Shen J, Wang J, Yang Y, Yang Y, Cao J, Xue L, Zhao F, Xiao T, Lin R. Functional role of skeletal muscle-derived interleukin-6 and its effects on lipid metabolism. Front Physiol 2023; 14:1110926. [PMID: 37555019 PMCID: PMC10405179 DOI: 10.3389/fphys.2023.1110926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
The detrimental impact of obesity on human health is increasingly evident with the rise in obesity-related diseases. Skeletal muscle, the crucial organ responsible for energy balance metabolism, plays a significant role as a secretory organ by releasing various myokines. Among these myokines, interleukin 6 (IL-6) is closely associated with skeletal muscle contraction. IL-6 triggers the process of lipolysis by mobilizing energy-storing adipose tissue, thereby providing energy for physical exercise. This phenomenon also elucidates the health benefits of regular exercise. However, skeletal muscle and adipose tissue maintain a constant interaction, both directly and indirectly. Direct interaction occurs through the accumulation of excess fat within skeletal muscle, known as ectopic fat deposition. Indirect interaction takes place when adipose tissue is mobilized to supply the energy for skeletal muscle during exercise. Consequently, maintaining a functional balance between skeletal muscle and adipose tissue becomes paramount in regulating energy metabolism and promoting overall health. IL-6, as a representative cytokine, participates in various inflammatory responses, including non-classical inflammatory responses such as adipogenesis. Skeletal muscle influences adipogenesis through paracrine mechanisms, primarily by secreting IL-6. In this research paper, we aim to review the role of skeletal muscle-derived IL-6 in lipid metabolism and other physiological activities, such as insulin resistance and glucose tolerance. By doing so, we provide valuable insights into the regulatory function of skeletal muscle-derived myokines in lipid metabolism.
Collapse
Affiliation(s)
- Weimin Lin
- *Correspondence: Weimin Lin, ; Ruiyi Lin,
| | | | | | | | | | | | | | | | | | | | - Ruiyi Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Skeletal Muscle-Derived Exosomal miR-146a-5p Inhibits Adipogenesis by Mediating Muscle-Fat Axis and Targeting GDF5-PPARγ Signaling. Int J Mol Sci 2023; 24:ijms24054561. [PMID: 36901991 PMCID: PMC10003660 DOI: 10.3390/ijms24054561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Skeletal muscle-fat interaction is essential for maintaining organismal energy homeostasis and managing obesity by secreting cytokines and exosomes, but the role of the latter as a new mediator in inter-tissue communication remains unclear. Recently, we discovered that miR-146a-5p was mainly enriched in skeletal muscle-derived exosomes (SKM-Exos), 50-fold higher than in fat exosomes. Here, we investigated the role of skeletal muscle-derived exosomes regulating lipid metabolism in adipose tissue by delivering miR-146a-5p. The results showed that skeletal muscle cell-derived exosomes significantly inhibited the differentiation of preadipocytes and their adipogenesis. When the skeletal muscle-derived exosomes co-treated adipocytes with miR-146a-5p inhibitor, this inhibition was reversed. Additionally, skeletal muscle-specific knockout miR-146a-5p (mKO) mice significantly increased body weight gain and decreased oxidative metabolism. On the other hand, the internalization of this miRNA into the mKO mice by injecting skeletal muscle-derived exosomes from the Flox mice (Flox-Exos) resulted in significant phenotypic reversion, including down-regulation of genes and proteins involved in adipogenesis. Mechanistically, miR-146a-5p has also been demonstrated to function as a negative regulator of peroxisome proliferator-activated receptor γ (PPARγ) signaling by directly targeting growth and differentiation factor 5 (GDF5) gene to mediate adipogenesis and fatty acid absorption. Taken together, these data provide new insights into the role of miR-146a-5p as a novel myokine involved in the regulation of adipogenesis and obesity via mediating the skeletal muscle-fat signaling axis, which may serve as a target for the development of therapies against metabolic diseases, such as obesity.
Collapse
|
4
|
Abstract
Regular physical activity has an impact on all human organ systems and mediates multiple beneficial effects on overall health. Physical activity alone is a poor strategy for weight loss; however, physical activity is of crucial importance for weight loss maintenance. The role of exercise in maintaining a stable body weight is not clear but might be related to better appetite regulation and food preference. In relation to exercise, muscle secretes myokines and other factors that can influence the metabolism in other organs, not least fat and brain tissues. Thereby, physical activity reduces the risk of obesity-associated diseases, such as type 2 diabetes and cardiovascular diseases, independently of weight loss and BMI. Therefore, physical activity should always be included in weight loss strategies and as a tool to maintain a healthy weight, despite its modest effect on energy expenditure and overall body weight.
Collapse
Affiliation(s)
- Claus Brandt
- Centre of Inflammation and Metabolism/Centre for Physical Activity Research (CIM/CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bente Klarlund Pedersen
- Centre of Inflammation and Metabolism/Centre for Physical Activity Research (CIM/CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Isaac AR, Lima-Filho RAS, Lourenco MV. How does the skeletal muscle communicate with the brain in health and disease? Neuropharmacology 2021; 197:108744. [PMID: 34363812 DOI: 10.1016/j.neuropharm.2021.108744] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/12/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023]
Abstract
Endocrine mechanisms have been largely associated with metabolic control and tissue cross talk in mammals. Classically, myokines comprise a class of signaling proteins released in the bloodstream by the skeletal muscle, which mediate physiological and metabolic responses in several tissues, including the brain. Recent exciting evidence suggests that myokines (e.g. cathepsin B, FNDC5/irisin, interleukin-6) act to control brain functions, including learning, memory, and mood, and may mediate the beneficial actions of physical exercise in the brain. However, the intricate mechanisms connecting peripherally released molecules to brain function are not fully understood. Accumulating findings further indicates that impaired skeletal muscle homeostasis impacts brain metabolism and physiology. Here we review recent findings that suggest that muscle-borne signals are essential for brain physiology and discuss perspectives on how these signals vary in response to exercise or muscle diseases. Understanding the complex interactions between skeletal muscle and brain may result in more effective therapeutic strategies to expand healthspan and to prevent brain disease.
Collapse
Affiliation(s)
- Alinny R Isaac
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Brazil
| | - Ricardo A S Lima-Filho
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Brazil
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Foright RM, Johnson GC, Kahn D, Charleston CA, Presby DM, Bouchet CA, Wellberg EA, Sherk VD, Jackman MR, Greenwood BN, MacLean PS. Compensatory eating behaviors in male and female rats in response to exercise training. Am J Physiol Regul Integr Comp Physiol 2020; 319:R171-R183. [PMID: 32551825 PMCID: PMC7473893 DOI: 10.1152/ajpregu.00259.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 04/29/2020] [Accepted: 06/09/2020] [Indexed: 12/22/2022]
Abstract
Exercise is often used as a strategy for weight loss maintenance. In preclinical models, we have shown that exercise may be beneficial because it counters the biological drive to regain weight. However, our studies have demonstrated sex differences in the response to exercise in this context. In the present study, we sought to better understand why females and males exhibit different compensatory food eating behaviors in response to regular exercise. Using a forced treadmill exercise paradigm, we measured weight gain, energy expenditure, food intake in real time, and the anorectic effects of leptin. The 4-wk exercise training resulted in reduced weight gain in males and sustained weight gain in females. In male rats, exercise decreased intake, whereas it increased food intake in females. Our results suggest that the anorectic effects of leptin were not responsible for these sex differences in appetite in response to exercise. If these results translate to the human condition, they may reveal important information for the use and application of regular exercise programs.
Collapse
Affiliation(s)
- Rebecca M Foright
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ginger C Johnson
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Darcy Kahn
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Catherine A Charleston
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David M Presby
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Courtney A Bouchet
- Department of Psychology, University of Colorado Denver, Denver, Colorado
| | - Elizabeth A Wellberg
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Vanessa D Sherk
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Matthew R Jackman
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Paul S MacLean
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
7
|
Abstract
Obesity is associated with a chronic state of low-grade inflammation and progressive tissue infiltration by immune cells and increased expression of inflammatory cytokines. It is established that interleukin 6 (IL6) regulates multiple aspects of metabolism, including glucose disposal, lipolysis, oxidative metabolism, and energy expenditure. IL6 is secreted by many tissues, but the role of individual cell types is unclear. We tested the role of specific cells using a mouse model with conditional expression of the Il6 gene. We found that IL6 derived from adipocytes increased, while IL6 derived from myeloid cells and muscle suppressed, macrophage infiltration of adipose tissue. These opposite actions were associated with a switch of IL6 signaling from a canonical mode (myeloid cells) to a noncanonical trans-signaling mode (adipocytes and muscle) with increased expression of the ADAM10/17 metalloprotease that promotes trans-signaling by the soluble IL6 receptor α. Collectively, these data demonstrate that the source of IL6 production plays a major role in the physiological regulation of metabolism.
Collapse
|
8
|
Impact of skeletal muscle IL-6 on subcutaneous and visceral adipose tissue metabolism immediately after high- and moderate-intensity exercises. Pflugers Arch 2019; 472:217-233. [PMID: 31781893 DOI: 10.1007/s00424-019-02332-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/23/2019] [Accepted: 11/13/2019] [Indexed: 12/28/2022]
Abstract
White adipose tissue is a major energy reserve for the body and is essential for providing fatty acids for other tissues when needed. Skeletal muscle interleukin-6 (IL-6) has been shown to be secreted from the working muscle and has been suggested to signal to adipose tissue and enhance lipolysis. The aim of the present study was to investigate the role of skeletal muscle IL-6 in visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) lipolysis and glyceroneogenesis with prolonged moderate-intensity exercise and high-intensity exercise in mice. Female inducible muscle-specific IL-6 knockout (IL-6 iMKO) mice and littermate control (Floxed) mice performed a single exercise bout for either 120 min at 16 m/min and 10° slope (moderate intensity) or 30 min at 20 m/min and 10° slope (high intensity), or they remained rested (rest). Visceral and subcutaneous adipose tissues, quadriceps muscles, and blood were quickly obtained. Plasma IL-6 increased in Floxed mice but not in IL-6 iMKO mice with high-intensity exercise. VAT signal transducer and activator of transcription (STAT)3Tyr705 phosphorylation was lower, and VAT hormone-sensitive lipase (HSL)Ser563 phosphorylation was higher in IL-6 iMKO mice than in Floxed mice at rest. Furthermore, HSLSer563 and HSLSer660 phosphorylation increased in VAT and phosphoenolpyruvate carboxykinase protein decreased in SAT with moderate-intensity exercise in both genotypes. On the other hand, both exercise protocols increased pyruvate dehydrogenaseSer232 phosphorylation in VAT only in IL-6 iMKO mice and decreased tumor necrosis factor-α messenger RNA in SAT and VAT only in Floxed mice. In conclusion, the present findings suggest that skeletal muscle IL-6 regulates markers of lipolysis in VAT in the basal state and pyruvate availability for glyceroneogenesis in VAT with exercise. Moreover, skeletal muscle IL-6 may contribute to exercise-induced anti-inflammatory effects in SAT and VAT.
Collapse
|
9
|
Henstridge DC, Abildgaard J, Lindegaard B, Febbraio MA. Metabolic control and sex: A focus on inflammatory-linked mediators. Br J Pharmacol 2019; 176:4193-4207. [PMID: 30820935 DOI: 10.1111/bph.14642] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/05/2018] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
Men and women have many differing biological and physiological characteristics. Thus, it is no surprise that the control of metabolic processes and the mechanisms underlying metabolic-related diseases have sex-specific components. There is a clear metabolic sexual dimorphism in that up until midlife, men have a far greater likelihood of acquiring cardio-metabolic disease than women. Following menopause, however, this difference is reduced, suggestive of a protective role of the female sex hormones. Inflammatory processes have been implicated in the pathogenesis of cardio-metabolic disease with human studies correlating metabolic disease acquisition or risk with levels of various inflammatory markers. Rodent studies employing genetic modifications or novel pharmacological approaches have provided mechanistic insight into the role of these inflammatory mediators. Sex differences impact inflammatory processes and the subsequent biological response. As a consequence, this may affect how inflammation alters metabolic processes between the sexes. Recently, some of our work in the field of inflammatory genes and metabolic control identified a sexual dimorphism in a preclinical model and caused us to question the frequency and scale of such findings in the literature. This review concentrates on inflammatory-related signalling in relation to obesity, insulin resistance, and type 2 diabetes and highlights the differences observed between males and females. Differences in the activation and signalling of various inflammatory genes and proteins present another reason why studying both male and female patients or animals is important in the context of understanding and finding therapeutics for metabolic-related disease. LINKED ARTICLES: This article is part of a themed section on The Importance of Sex Differences in Pharmacology Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.21/issuetoc.
Collapse
Affiliation(s)
- Darren C Henstridge
- Molecular Metabolism & Aging Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Julie Abildgaard
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Lindegaard
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Pulmonary and Infectious Diseases, Nordsjaellands Hospital, Hillerød, Denmark
| | - Mark A Febbraio
- Division of Diabetes & Metabolism, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,Drug Discover Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Knudsen JG, Bertholdt L, Gudiksen A, Gerbal-Chaloin S, Rasmussen MK. Skeletal Muscle Interleukin-6 Regulates Hepatic Cytochrome P450 Expression: Effects of 16-Week High-Fat Diet and Exercise. Toxicol Sci 2019; 162:309-317. [PMID: 29177473 DOI: 10.1093/toxsci/kfx258] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
High-fat diet (HFD) induces several changes to the pathways regulating energy homeostasis and changes the expression of the hepatic cytochrome p450 (Cyp) enzyme-system. Despite these pervious findings, it is still unclear how the effects of HFD and especially HFD in combination with treadmill running affect hepatic Cyp expression. In this study, we investigated the mRNA and protein expression of selected Cyp's in mice subjected to 16 weeks of HFD and treadmill running. To understand the regulatory mechanisms behind the exercise-induced reversion of the HFD-induced changes in Cyp expression, we used a model in which the exercise-induced myokine and known regulator of hepatic Cyp's, interleukin-6 (IL-6), were knocked out specifically in skeletal muscle. We found that HFD increased the mRNA expression of Cyp1a1 and Cyp4a10, and decreased the expression of Cyp2a4, Cyp2b10, Cyp2e1, and Cyp3a11. HFD in combination with treadmill running reversed the HFD increase in Cyp4a10 mRNA expression. In addition, we observed increased Cyp1a and Cyp3a protein expression as an effect of exercise, whereas Cyp2b expression was lowered as an effect of HFD. IL-6 effected the response in Cyp3a11 and Cyp1a expression. We observed no changes in the content of the aryl hydrocarbon receptor, constitutive androstane receptor, pregnane X receptor, or peroxisome proliferation activator receptor alpha. In conclusion, we show that both HFD and exercise in HFD-fed animals can regulate hepatic Cyp expression and that changes in Cyp3a in response to HFD and exercise are dependent on skeletal muscular IL-6.
Collapse
Affiliation(s)
- Jakob G Knudsen
- Department of Biology, Copenhagen University, DK-2200 Copenhagen, Denmark
| | - Lærke Bertholdt
- Department of Biology, Copenhagen University, DK-2200 Copenhagen, Denmark
| | - Anders Gudiksen
- Department of Biology, Copenhagen University, DK-2200 Copenhagen, Denmark
| | | | | |
Collapse
|
11
|
Abstract
Sex differences exist in the regulation of energy homeostasis. Better understanding of the underlying mechanisms for sexual dimorphism in energy balance may facilitate development of gender-specific therapies for human diseases, e.g. obesity. Multiple organs, including the brain, liver, fat and muscle, play important roles in the regulations of feeding behavior, energy expenditure and physical activity, which therefore contribute to the maintenance of energy balance. It has been increasingly appreciated that this multi-organ system is under different regulations in male vs. female animals. Much of effort has been focused on roles of sex hormones (including androgens, estrogens and progesterone) and sex chromosomes in this sex-specific regulation of energy balance. Emerging evidence also indicates that other factors (not sex hormones/receptors and not encoded by the sex chromosomes) exist to regulate energy homeostasis differentially in males vs. females. In this review, we summarize factors and signals that have been shown to regulate energy homeostasis in a sexually dimorphic fashion and propose a framework where these factors and signals may be integrated to mediate sex differences in energy homeostasis.
Collapse
Affiliation(s)
- Chunmei Wang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030
| | - Yong Xu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030
| |
Collapse
|
12
|
Fernández-Gayol O, Sanchis P, Aguilar K, Navarro-Sempere A, Comes G, Molinero A, Giralt M, Hidalgo J. Different Responses to a High-Fat Diet in IL-6 Conditional Knockout Mice Driven by Constitutive GFAP-Cre and Synapsin 1-Cre Expression. Neuroendocrinology 2019; 109:113-130. [PMID: 30636247 DOI: 10.1159/000496845] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/12/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Interleukin-6 (IL-6) is a major cytokine controlling body weight and metabolism, at least in part through actions in the central nervous system (CNS) from local sources. METHODS We herewith report results obtained in conditional IL-6 KO mice for brain cells (Il6ΔGfap and Il6ΔSyn). RESULTS The reporter RiboTag mouse line demonstrated specific astrocytic expression of GFAP-dependent Cre in the hypothalamus but not in other brain areas, whereas that of synapsin 1-dependent Cre was specific for neurons. Feeding a high-fat diet (HFD) or a control diet showed that Il6ΔGfap and Il6ΔSyn mice were more prone and resistant, respectively, to HFD-induced obesity. Energy intake was not altered in HFD experiments, but it was reduced in Il6ΔSyn male mice following a 24-h fast. HFD increased circulating insulin, leptin, and cholesterol levels, decreased triglycerides, and caused impaired responses to the insulin and glucose tolerance tests. In Il6ΔGfap mice, the only significant difference observed was an increase in insulin levels of females, whereas in Il6ΔSyn mice the effects of HFD were decreased. Hypothalamic Agrp expression was significantly decreased by HFD, further decreased in Il6ΔGfap, and increased in Il6ΔSyn female mice. Hypothalamic Il-6 mRNA levels were not decreased in Il6ΔSyn mice and even increased in Il6ΔGfapmale mice. Microarray analysis of hypothalamic RNA showed that female Il6ΔGfap mice had increased interferon-related pathways and affected processes in behavior, modulation of chemical synaptic transmission, learning, and memory. CONCLUSION The present results demonstrate that brain production of IL-6 regulates body weight in the context of caloric excess and that the cellular source is critical.
Collapse
Affiliation(s)
- Olaya Fernández-Gayol
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Paula Sanchis
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Kevin Aguilar
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alicia Navarro-Sempere
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gemma Comes
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Amalia Molinero
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mercedes Giralt
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Hidalgo
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain,
| |
Collapse
|
13
|
Nylén C, Aoi W, Abdelmoez AM, Lassiter DG, Lundell LS, Wallberg-Henriksson H, Näslund E, Pillon NJ, Krook A. IL6 and LIF mRNA expression in skeletal muscle is regulated by AMPK and the transcription factors NFYC, ZBTB14, and SP1. Am J Physiol Endocrinol Metab 2018; 315:E995-E1004. [PMID: 29688769 DOI: 10.1152/ajpendo.00398.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) controls glucose and lipid metabolism and modulates inflammatory responses to maintain metabolic and inflammatory homeostasis during low cellular energy levels. The AMPK activator 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR) interferes with inflammatory pathways in skeletal muscle, but the mechanisms are undefined. We hypothesized that AMPK activation reduces cytokine mRNA levels by blocking transcription through one or several transcription factors. Three skeletal muscle models were used to study AMPK effects on cytokine mRNA: human skeletal muscle strips obtained from healthy men incubated in vitro, primary human muscle cells, and rat L6 cells. In all three skeletal muscle systems, AICAR acutely reduced cytokine mRNA levels. In L6 myotubes treated with the transcriptional blocker actinomycin D, AICAR addition did not further reduce Il6 or leukemia inhibitory factor ( Lif) mRNA, suggesting that AICAR modulates cytokine expression through regulating transcription rather than mRNA stability. A cross-species bioinformatic approach identified novel transcription factors that may regulate LIF and IL6 mRNA. The involvement of these transcription factors was studied after targeted gene-silencing by siRNA. siRNA silencing of the transcription factors nuclear transcription factor Y subunit c ( Nfyc), specificity protein 1 ( Sp1), and zinc finger and BTB domain containing 14 ( Zbtb14), or AMPK α1/α2 subunits, increased constitutive levels of Il6 and Lif. Our results identify novel candidates in the regulation of skeletal muscle cytokine expression and identify AMPK, Nfyc, Sp1, and Zbtb14 as novel regulators of immunometabolic signals from skeletal muscle.
Collapse
Affiliation(s)
- Carolina Nylén
- Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet , Stockholm , Sweden
| | - Wataru Aoi
- Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm , Sweden
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences Kyoto Prefectural University , Kyoto , Japan
| | - Ahmed M Abdelmoez
- Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm , Sweden
| | - David G Lassiter
- Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet , Stockholm , Sweden
| | - Leonidas S Lundell
- Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm , Sweden
| | - Harriet Wallberg-Henriksson
- Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm , Sweden
| | - Erik Näslund
- Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet , Stockholm , Sweden
| | - Nicolas J Pillon
- Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm , Sweden
| | - Anna Krook
- Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
14
|
García MDC, Pazos P, Lima L, Diéguez C. Regulation of Energy Expenditure and Brown/Beige Thermogenic Activity by Interleukins: New Roles for Old Actors. Int J Mol Sci 2018; 19:E2569. [PMID: 30158466 PMCID: PMC6164446 DOI: 10.3390/ijms19092569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 12/16/2022] Open
Abstract
Obesity rates and the burden of metabolic associated diseases are escalating worldwide Energy burning brown and inducible beige adipocytes in human adipose tissues (ATs) have attracted considerable attention due to their therapeutic potential to counteract the deleterious metabolic effects of nutritional overload and overweight. Recent research has highlighted the relevance of resident and recruited ATs immune cell populations and their signalling mediators, cytokines, as modulators of the thermogenic activity of brown and beige ATs. In this review, we first provide an overview of the developmental, cellular and functional heterogeneity of the AT organ, as well as reported molecular switches of its heat-producing machinery. We also discuss the key contribution of various interleukins signalling pathways to energy and metabolic homeostasis and their roles in the biogenesis and function of brown and beige adipocytes. Besides local actions, attention is also drawn to their influence in the central nervous system (CNS) networks governing energy expenditure.
Collapse
Affiliation(s)
- María Del Carmen García
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO)), C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain.
| | - Patricia Pazos
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO)), C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain.
| | - Luis Lima
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
| | - Carlos Diéguez
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO)), C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain.
| |
Collapse
|
15
|
Impact of skeletal muscle IL-6 on regulation of liver and adipose tissue metabolism during fasting. Pflugers Arch 2018; 470:1597-1613. [PMID: 30069669 DOI: 10.1007/s00424-018-2185-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/21/2018] [Accepted: 07/12/2018] [Indexed: 01/05/2023]
Abstract
The liver and adipose tissue are important tissues in whole-body metabolic regulation during fasting. Interleukin 6 (IL-6) is a cytokine shown to be secreted from contracting muscle in humans and suggested to signal to the liver and adipose tissue. Furthermore, skeletal muscle IL-6 has been proposed to play a role during fasting. Therefore the aim of the present study was to investigate the role of skeletal muscle IL-6 in the regulation of substrate production in the liver and adipose tissue during fasting. Male skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice and littermate floxed (control) mice fasted for 6 or 18 h (6 h fasting or 18 h fasting) with corresponding fed control groups (6 h fed or 18 h fed) and liver and adipose tissue were quickly obtained. Plasma β-hydroxybutyrate increased and hepatic glucose, lactate and glycogen decreased with fasting. In addition, fasting increased phosphoenolpyruvate carboxykinase protein and phosphorylation of pyruvate dehydrogenase (PDH) in the liver as well as hormone-sensitive lipase (HSL)Ser660 and HSLSer563 phosphorylation, PDH phosphorylation, adipose triglyceride lipase phosphorylation and perilipin phosphorylation and protein content in adipose tissue without any effect of lack of skeletal muscle IL-6. In conclusion, fasting induced regulation of enzymes in adipose tissue lipolysis and glyceroneogenesis as well as regulation of hepatic gluconeogenic capacity and hepatic substrate utilization in mice. However, skeletal muscle IL-6 was not required for these fasting-induced effects, but had minor effects on markers of lipolysis and glyceroneogenesis in adipose tissue as well as markers of hepatic gluconeogenesis in the fed state.
Collapse
|
16
|
Knudsen JG, Gudiksen A, Bertholdt L, Overby P, Villesen I, Schwartz CL, Pilegaard H. Skeletal muscle IL-6 regulates muscle substrate utilization and adipose tissue metabolism during recovery from an acute bout of exercise. PLoS One 2017; 12:e0189301. [PMID: 29253016 PMCID: PMC5734691 DOI: 10.1371/journal.pone.0189301] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/23/2017] [Indexed: 12/13/2022] Open
Abstract
An acute bout of exercise imposes a major challenge on whole-body metabolism and metabolic adjustments are needed in multiple tissues during recovery to reestablish metabolic homeostasis. It is currently unresolved how this regulation is orchestrated between tissues. This study was undertaken to clarify the role of skeletal muscle derived interleukin 6 (IL-6) in the coordination of the metabolic responses during recovery from acute exercise. Skeletal muscle specific IL-6 knockout (IL-6 MKO) and littermate Control mice were rested or ran on a treadmill for 2h. Plasma, skeletal muscle, liver and adipose tissue were obtained after 6 and 10h of recovery. Non-exercised IL-6 MKO mice had higher plasma lactate and lower plasma non-esterified fatty acids than Controls. The activity of pyruvate dehydrogenase in the active form was, in skeletal muscle, higher in IL-6 MKO mice than Controls in non-exercised mice and 6h after exercise. IL-6 MKO mice had lower glucose transporter 4 protein content in inguinal adipose tissue (WAT) than Control in non-exercised mice and 10h after treadmill running. Epididymal WAT hormone sensitive lipase phosphorylation and inguinal WAT mitogen activated kinase P38 phosphorylation were higher in IL-6 MKO than Control mice 6h after exercise. These findings indicate that skeletal muscle IL-6 may play an important role in the regulation of substrate utilization in skeletal muscle, basal and exercise-induced adaptations in adipose tissue glucose uptake and lipolysis during recovery from exercise. Together this indicates that skeletal muscle IL-6 contributes to reestablishing metabolic homeostasis during recovery from exercise by regulating WAT and skeletal muscle metabolism.
Collapse
Affiliation(s)
- Jakob G. Knudsen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (JGK); (HP)
| | - Anders Gudiksen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lærke Bertholdt
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Overby
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Villesen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Camilla L. Schwartz
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Pilegaard
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (JGK); (HP)
| |
Collapse
|
17
|
Islam H, Townsend LK, McKie GL, Medeiros PJ, Gurd BJ, Hazell TJ. Potential involvement of lactate and interleukin-6 in the appetite-regulatory hormonal response to an acute exercise bout. J Appl Physiol (1985) 2017; 123:614-623. [PMID: 28684587 PMCID: PMC5625078 DOI: 10.1152/japplphysiol.00218.2017] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/12/2017] [Accepted: 07/02/2017] [Indexed: 01/06/2023] Open
Abstract
This study examines the involvement of two potential mechanisms (lactate and IL-6) that may explain the intensity-dependent effects of acute exercise on appetite-related parameters. Our findings support a clear intensity-dependent paradigm for appetite-regulation following exercise, as highlighted by the change in acylated ghrelin and the suppression of appetite and energy intake after vigorous exercise (continuous and intermittent). Further, our findings extend previous work in animal/cell models by providing evidence for the potential role of lactate and IL-6 in mediating changes in appetite-related parameters following exercise in humans. High-intensity exercise suppresses appetite partly through changes in peripheral appetite-regulating hormones. Lactate and IL-6 mediate the release of these hormones in animal/cell models and may provide a mechanistic link between exercise intensity and appetite regulation. The current study examined changes in appetite-regulating hormones, lactate, and IL-6 after different intensities of running. Eight males completed four experimental sessions: 1) moderate-intensity continuous training (MICT; 65% V̇o2max); 2) vigorous-intensity continuous training (VICT; 85% V̇o2max); 3) sprint interval training (SIT; repeated “all-out” sprints); and 4) Control (CTRL; no exercise). Acylated ghrelin, active glucagon-like peptide-1 (GLP-1), total peptide YY (PYY), lactate, IL-6, and appetite perceptions were measured pre-, immediately postexercise, 30 min postexercise, and 90 min postexercise. Energy intake was recorded over 3 days. VICT and SIT suppressed ghrelin (P < 0.001), although SIT elicited a greater (P = 0.016 vs. MICT) and more prolonged (P < 0.001 vs. all sessions) response. GLP-1 increased immediately after MICT (P < 0.001) and 30 min after VICT (P < 0.001) and SIT (P < 0.002), while VICT elicited a greater postexercise increase in PYY vs. MICT (P = 0.027). Postexercise changes in blood lactate and IL-6 correlated with the area under the curve values for ghrelin (r = −0.60, P < 0.001) and GLP-1 (r = 0.42, P = 0.017), respectively. Appetite was suppressed after exercise (P < 0.001), although more so after VICT (P < 0.027) and SIT (P < 0.001) vs. MICT, and energy intake was reduced on the day after VICT (P < 0.017 vs. MICT and CTRL) and SIT (P = 0.049 vs. MICT). These findings support an intensity-dependent paradigm for appetite regulation following exercise and highlight the potential involvement of lactate and IL-6. NEW & NOTEWORTHY This study examines the involvement of two potential mechanisms (lactate and IL-6) that may explain the intensity-dependent effects of acute exercise on appetite-related parameters. Our findings support a clear intensity-dependent paradigm for appetite regulation following exercise, as highlighted by the change in acylated ghrelin and the suppression of appetite and energy intake after vigorous exercise (continuous and intermittent). Further, our findings extend previous work in animal/cell models by providing evidence for the potential role of lactate and IL-6 in mediating changes in appetite-related parameters following exercise in humans.
Collapse
Affiliation(s)
- Hashim Islam
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Logan K Townsend
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Greg L McKie
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Philip J Medeiros
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada; and
| | - Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Tom J Hazell
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada;
| |
Collapse
|
18
|
Role of muscle IL-6 in gender-specific metabolism in mice. PLoS One 2017; 12:e0173675. [PMID: 28319140 PMCID: PMC5358764 DOI: 10.1371/journal.pone.0173675] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/25/2017] [Indexed: 12/15/2022] Open
Abstract
The aim of the present work was to further explore the physiological roles of muscle-derived IL-6. Adult-floxed and conditional skeletal muscle IL-6 knock out male and female mice were used to study energy expenditure (indirect calorimetry at rest and during treadmill exercise, and body temperature cycle during the light phase) and energy intake (response to fast/refeeding). We also evaluated the responses to leptin and the activity of the insulin signalling pathway in skeletal muscle and liver by phosphorylation of Akt at Ser 473. The stress response was also studied. Results indicate a relevant role of muscle IL-6 in maintaining energy homeostasis, especially in males. Absence of muscle IL-6 in male mice results in lower core body temperature in the light phase, increased respiratory exchange ratio (RER) both at rest and during exercise, increased expression of TCA cycle marked gene, citrate synthase in muscle, reduced fat storage and decreased body weight and food consumption in response to leptin. In females, muscle IL-6 deficiency increases VO2 and CO2 levels similarly. Also in contrast to males, energy expenditure (EE) measured over 48h reveals a significant elevation in female mice with muscle IL-6 deficiency; moreover, they show a modified response to fasting-refeeding and to restraint stress. The present results contribute to the understanding of the role of muscle IL-6 in male and female mouse metabolism, not only during exercise but also in the basal state and in situations where energy balance is altered.
Collapse
|
19
|
Bertholdt L, Gudiksen A, Schwartz CL, Knudsen JG, Pilegaard H. Lack of skeletal muscle IL-6 influences hepatic glucose metabolism in mice during prolonged exercise. Am J Physiol Regul Integr Comp Physiol 2017; 312:R626-R636. [PMID: 28122718 DOI: 10.1152/ajpregu.00373.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 01/06/2023]
Abstract
The liver is essential in maintaining and regulating glucose homeostasis during prolonged exercise. IL-6 has been shown to be secreted from skeletal muscle during exercise and has been suggested to signal to the liver. Therefore, the aim of this study was to investigate the role of skeletal muscle IL-6 on hepatic glucose regulation and substrate choice during prolonged exercise. Skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice (age, 12-14 wk) and littermate lox/lox (Control) mice were either rested (Rest) or completed a single bout of exercise for 10, 60, or 120 min, and the liver was quickly obtained. Hepatic IL-6 mRNA was higher at 60 min of exercise, and hepatic signal transducer and activator of transcription 3 was higher at 120 min of exercise than at rest in both genotypes. Hepatic glycogen was higher in IL-6 MKO mice than control mice at rest, but decreased similarly during exercise in the two genotypes, and hepatic glucose content was lower in IL-6 MKO than control mice at 120 min of exercise. Hepatic phosphoenolpyruvate carboxykinase mRNA and protein increased in both genotypes at 120 min of exercise, whereas hepatic glucose 6 phosphatase protein remained unchanged. Furthermore, IL-6 MKO mice had higher hepatic pyruvate dehydrogenase (PDH)Ser232 and PDHSer300 phosphorylation than control mice at rest. In conclusion, hepatic gluconeogenic capacity in mice is increased during prolonged exercise independent of muscle IL-6. Furthermore, Skeletal muscle IL-6 influences hepatic substrate regulation at rest and hepatic glucose metabolism during prolonged exercise, seemingly independent of IL-6 signaling in the liver.
Collapse
Affiliation(s)
- Lærke Bertholdt
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Gudiksen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Jakob G Knudsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
20
|
Manso Y, Comes G, López-Ramos JC, Belfiore M, Molinero A, Giralt M, Carrasco J, Adlard PA, Bush AI, Delgado-García JM, Hidalgo J. Overexpression of Metallothionein-1 Modulates the Phenotype of the Tg2576 Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2016; 51:81-95. [PMID: 26836194 DOI: 10.3233/jad-151025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is the most commonly diagnosed dementia, where signs of neuroinflammation and oxidative stress are prominent. In this study we intend to further characterize the roles of the antioxidant, anti-inflammatory, and heavy metal binding protein, metallothionein-1 (MT-1), by crossing Mt1 overexpressing mice with a well-known mouse model of AD, Tg2576 mice, which express the human amyloid-β protein precursor (hAβPP) with the Swedish K670N/M671L mutations. Mt1 overexpression increased overall perinatal survival, but did not affect significantly hAβPP-induced mortality and weight loss in adult mice. Amyloid plaque burden in ∼14-month-old mice was increased by Mt1 overexpression in the hippocampus but not the cortex. Despite full length hAβPP levels and amyloid plaques being increased by Mt1 overexpression in the hippocampus of both sexes, oligomeric and monomeric forms of Aβ, which may contribute more to toxicity, were decreased in the hippocampus of females and increased in males. Several behavioral traits such as exploration, anxiety, and learning were altered in Tg2576 mice to various degrees depending on the age and the sex. Mt1 overexpression ameliorated the effects of hAβPP on exploration in young females, and potentiated those on anxiety in old males, and seemed to improve the rate of spatial learning (Morris water maze) and the learning elicited by a classical conditioning procedure (eye-blink test). These results clearly suggest that MT-1 may be involved in AD pathogenesis.
Collapse
Affiliation(s)
- Yasmina Manso
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Gemma Comes
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | - Mónica Belfiore
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Amalia Molinero
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Mercedes Giralt
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Javier Carrasco
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Paul A Adlard
- The Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Parkville, Victoria, Australia
| | | | - Juan Hidalgo
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
21
|
Taylor LE, Sullivan JC. Sex differences in obesity-induced hypertension and vascular dysfunction: a protective role for estrogen in adipose tissue inflammation? Am J Physiol Regul Integr Comp Physiol 2016; 311:R714-R720. [PMID: 27511280 PMCID: PMC5142161 DOI: 10.1152/ajpregu.00202.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/07/2016] [Indexed: 12/12/2022]
Abstract
Obesity is a potent predictor of cardiovascular disease and associated risk factors, including hypertension. Systemic inflammation has been suggested by a number of studies to be an important link between excess adiposity and hypertension, yet the majority of the studies have been conducted exclusively in males. This is problematic since women represent ∼53% of hypertensive cases and are more likely than men to be obese. There is a growing body of literature supporting a central role for immune cell activation in numerous experimental models of hypertension, and both the sex of the subject and the sex of the T cell have been shown to impact blood pressure (BP) responses to hypertensive stimuli. Moreover, sex steroid hormones play an important role in energy homeostasis, as well as in the regulation of immune responses; estrogen, in particular, has a well-known impact on both cardiovascular and metabolic disorders. Therefore, the purpose of this review is to examine whether sex or sex hormones regulate the role of the immune system in the development of hypertension and related vascular dysfunction in response to metabolic changes and stimuli, including a high-fat diet.
Collapse
Affiliation(s)
- Lia E Taylor
- Department of Physiology, Augusta University, Augusta, Georgia
| | | |
Collapse
|
22
|
Knudsen JG, Joensen E, Bertholdt L, Jessen H, van Hauen L, Hidalgo J, Pilegaard H. Skeletal muscle IL-6 and regulation of liver metabolism during high-fat diet and exercise training. Physiol Rep 2016; 4:4/9/e12788. [PMID: 27185906 PMCID: PMC4873637 DOI: 10.14814/phy2.12788] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/15/2016] [Indexed: 02/06/2023] Open
Abstract
Interleukin (IL)‐6 is released from skeletal muscle (SkM) during exercise and has been shown to affect hepatic metabolism. It is, however, unknown whether SkM IL‐6 is involved in the regulation of exercise training‐induced counteraction of changes in carbohydrate and lipid metabolism in the liver in response to high‐fat diet (HFD) feeding. Male SkM‐specific IL‐6 KO (MKO) and Floxed mice were subjected to Chow diet, HFD or HFD combined with exercise training (HFD ExTr) for 16 weeks. Hepatic phosphoenolpyruvate carboxykinase (PEPCK) protein content decreased with both HFD and HFD ExTr in Floxed mice, but increased in IL‐6 MKO mice on HFD. In addition, the intrahepatic glucose concentration was in IL‐6 MKO mice higher in HFD than chow. Within HFD ExTr mice, hepatic glucose‐6‐phosphatase (G6Pase) 36 kDa protein content was higher in IL‐6 MKO than Floxed mice. Hepatic pyruvate dehydrogenase kinase (PDK) 4 and PDK2 protein content was in Floxed mice lower in HFD ExTr than Chow. In addition, hepatic ACC1‐phosphorylation was higher and ACC1 protein lower in HFD. Together this suggests that SkM IL‐6 regulates hepatic glucose metabolism, but does not seem to be of major importance for the regulation of oxidative capacity or lipogenesis in liver during HFD or HFD combined with exercise training.
Collapse
Affiliation(s)
- Jakob G Knudsen
- Centre for Inflammation and Metabolism, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ella Joensen
- Centre for Inflammation and Metabolism, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lærke Bertholdt
- Centre for Inflammation and Metabolism, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Jessen
- Centre for Inflammation and Metabolism, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Line van Hauen
- Centre for Inflammation and Metabolism, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Juan Hidalgo
- Universidad de Autonoma de Barcelona, Catalunya, Spain
| | - Henriette Pilegaard
- Centre for Inflammation and Metabolism, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Knudsen JG, Bertholdt L, Joensen E, Lassen SB, Hidalgo J, Pilegaard H. Skeletal muscle interleukin-6 regulates metabolic factors in iWAT during HFD and exercise training. Obesity (Silver Spring) 2015; 23:1616-24. [PMID: 26109166 PMCID: PMC6084358 DOI: 10.1002/oby.21139] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/01/2015] [Accepted: 04/05/2015] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To investigate the role of skeletal muscle (SkM) interleukin (IL)-6 in the regulation of adipose tissue metabolism. METHODS Muscle-specific IL-6 knockout (IL-6 MKO) and IL-6(loxP/loxP) (Floxed) mice were subjected to standard rodent diet (Chow), high-fat diet (HFD), or HFD in combination with exercise training (HFD ExTr) for 16 weeks. RESULTS Total fat mass increased (P < 0.05) in both genotypes with HFD. However, HFD IL-6 MKO mice had lower (P < 0.05) inguinal adipose tissue (iWAT) mass than HFD Floxed mice. Accordingly, iWAT glucose transporter 4 (GLUT4) protein content, 5'AMP activated protein kinase (AMPK)(Thr172) phosphorylation, and fatty acid synthase (FAS) mRNA content were lower (P < 0.05) in IL-6 MKO than Floxed mice on Chow. In addition, iWAT AMPK(Thr172) and hormone-sensitive lipase (HSL)(Ser565) phosphorylation as well as perilipin protein content was higher (P < 0.05) in HFD IL-6 MKO than HFD Floxed mice, and pyruvate dehydrogenase E1α (PDH-E1α) protein content was higher (P < 0.05) in HFD ExTr IL-6 MKO than HFD ExTr Floxed mice. CONCLUSIONS These findings indicate that SkM IL-6 affects iWAT mass through regulation of glucose uptake capacity as well as lipogenic and lipolytic factors.
Collapse
Affiliation(s)
- Jakob G. Knudsen
- Department of BiologyCentre for Inflammation and Metabolism, The August Krogh Centre, University of CopenhagenCopenhagenDenmark
| | - Lærke Bertholdt
- Department of BiologyCentre for Inflammation and Metabolism, The August Krogh Centre, University of CopenhagenCopenhagenDenmark
| | - Ella Joensen
- Department of BiologyCentre for Inflammation and Metabolism, The August Krogh Centre, University of CopenhagenCopenhagenDenmark
| | - Signe B. Lassen
- Department of BiologyCentre for Inflammation and Metabolism, The August Krogh Centre, University of CopenhagenCopenhagenDenmark
| | - Juan Hidalgo
- Departamento die Biología Celular y FisiologíaUniversidad De Autonoma De BarcelonaBarcelonaSpain
| | - Henriette Pilegaard
- Department of BiologyCentre for Inflammation and Metabolism, The August Krogh Centre, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
24
|
Muscular interleukin-6 differentially regulates skeletal muscle adaptation to high-fat diet in a sex-dependent manner. Cytokine 2015; 74:145-51. [PMID: 25982555 DOI: 10.1016/j.cyto.2015.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 12/25/2022]
Abstract
Interleukin-6 (IL-6) is now known to be not only a major cytokine controlling the immune system but also basic physiological variables such as body weight and metabolism. We recently reported that muscle-specific interleukin-6 deletion influences body weight and body fat in a sex-dependent manner in mice. When compared with littermate floxed controls, males gained less weight whereas females gained more weight after a 12-week high-fat diet treatment (HFD). We herewith report gender-differences of HFD treatment on fast and slow skeletal muscle in muscle-specific IL-6 deficient mice. While gross muscle architecture was normal, in males, HFD resulted in an increased proportion of medium-large size myofibers which was prevented by muscle IL-6 deletion. No modifications of fiber size were observed in females. HFD induced a fiber-type switching in tibialis muscle, increasing the proportion of fast-oxidative fibers and decreasing the fast-glycolytic fibers in female mice which were dependent on muscle IL-6. No changes of fiber types were detected in males. Finally, HFD was associated with increased collagen deposition in both sexes and muscle types. However, this effect was only associated to the presence of muscular IL-6 only on the slow soleus muscle in males. The results demonstrate sex-dependent effects of both HFD and muscle IL-6 deficiency in skeletal muscle.
Collapse
|
25
|
Brandt C, Hansen RH, Hansen JB, Olsen CH, Galle P, Mandrup-Poulsen T, Gehl J, Pedersen BK, Hojman P. Over-expression of Follistatin-like 3 attenuates fat accumulation and improves insulin sensitivity in mice. Metabolism 2015; 64:283-95. [PMID: 25456456 DOI: 10.1016/j.metabol.2014.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 09/21/2014] [Accepted: 10/08/2014] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Follistatin-like 3 (fstl3), a natural inhibitor of members of the TGF-β family, increases during resistance training in human plasma. Fstl3 primarily binds myostatin and activin A, and thereby inhibits their functions. We hypothesize that blocking myostatin and activin A signalling through systemic fstl3 over-expression protects against diet-induced obesity and insulin resistance. METHODS Fstl3 was over-expressed by DNA electrotransfer in tibialis anterior, quadriceps and gastrocnemius muscles in female C57BL/C mice, and the mice were subsequently randomized to chow or high-fat feeding. Body weight, food intake, fat accumulation by MR scanning, and glucose, insulin and glucagon tolerance were evaluated, as was the response in body weight and metabolic parameters to 24h fasting. Effects of fstl3 on pancreatic insulin and glucagon content, and pancreatic islet morphology were determined. RESULTS Fstl3 over-expression reduced fat accumulation during high-fat feeding by 16%, and liver fat by 50%, as determined by MRI. No changes in body weight were observed, while the weight of the transfected muscles increased by 10%. No transcriptional changes were found in the subcutaneous adipose tissue. Fstl3 mice displayed improved insulin sensitivity and muscle insulin signalling. In contrast, glucose tolerance was impaired in high-fat fed fstl3 mice, which was explained by increased hepatic glucagon sensitivity and glucose output, as well as a decrease in the pancreatic insulin/glucagon ratio. Accordingly, fstl3 transfection improved counter-regulation to 24h fasting. CONCLUSION Fstl3 over-expression regulates insulin and glucagon sensitivities through increased muscular insulin action, as well as increased hepatic glucagon sensitivity and pancreatic glucagon content.
Collapse
Affiliation(s)
- Claus Brandt
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Rasmus Hvass Hansen
- Research Group, Dept. of Radiology, Copenhagen University Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - Jakob Bondo Hansen
- Immunoendocrinology lab, Section of Endocrinological Research, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Caroline Holkmann Olsen
- Department of Pathology, Copenhagen University Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - Pia Galle
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Thomas Mandrup-Poulsen
- Immunoendocrinology lab, Section of Endocrinological Research, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna, SE-171 76, Stockholm, Sweden
| | - Julie Gehl
- Department of Oncology, Copenhagen University Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - Bente Klarlund Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Pernille Hojman
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
26
|
Straub RH. Insulin resistance, selfish brain, and selfish immune system: an evolutionarily positively selected program used in chronic inflammatory diseases. Arthritis Res Ther 2014; 16 Suppl 2:S4. [PMID: 25608958 PMCID: PMC4249495 DOI: 10.1186/ar4688] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Insulin resistance (IR) is a general phenomenon of many physiological states, disease states, and diseases. IR has been described in diabetes mellitus, obesity, infection, sepsis, trauma, painful states such as postoperative pain and migraine, schizophrenia, major depression, chronic mental stress, and others. In arthritis, abnormalities of glucose homeostasis were described in 1920; and in 1950 combined glucose and insulin tests unmistakably demonstrated IR. The phenomenon is now described in rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis, polymyalgia rheumatica, and others. In chronic inflammatory diseases, cytokine-neutralizing strategies normalize insulin sensitivity. This paper delineates that IR is either based on inflammatory factors (activation of the immune/ repair system) or on the brain (mental activation via stress axes). Due to the selfishness of the immune system and the selfishness of the brain, both can induce IR independent of each other. Consequently, the immune system can block the brain (for example, by sickness behavior) and the brain can block the immune system (for example, stress-induced immune system alterations). Based on considerations of evolutionary medicine, it is discussed that obesity per se is not a disease. Obesity-related IR depends on provoking factors from either the immune system or the brain. Chronic inflammation and/or stress axis activation are thus needed for obesity-related IR. Due to redundant pathways in stimulating IR, a simple one factor-neutralizing strategy might help in chronic inflammatory diseases (inflammation is the key), but not in obesity-related IR. The new considerations towards IR are interrelated to the published theories of IR (thrifty genotype, thrifty phenotype, and others).
Collapse
Affiliation(s)
- Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Division of Rheumatology, Department of Internal Medicine, University Hospital, 93042 Regensburg, Germany
| |
Collapse
|
27
|
Navia B, Ferrer B, Giralt M, Comes G, Carrasco J, Molinero A, Quintana A, Leclerc J, Viollet B, Señarís RM, Hidalgo J. Interleukin-6 deletion in mice driven by aP2-Cre-ERT2 prevents against high-fat diet-induced gain weight and adiposity in female mice. Acta Physiol (Oxf) 2014; 211:585-96. [PMID: 24934978 DOI: 10.1111/apha.12328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 06/10/2014] [Accepted: 06/10/2014] [Indexed: 12/21/2022]
Abstract
AIM Interleukin-6 (IL-6) is a major cytokine controlling body weight and metabolism, but because many types of cells can synthesize and respond to IL-6 considerable uncertainty still exists about the mechanisms underlying IL-6 effects. Therefore, the aim of this study was to analyse the effects of tissue-specific deletion of IL-6 using a fatty acid binding protein (aP2) promoter-Cre inducible system (aP2-Cre-ERT2). METHODS Tissue-specific IL-6 KO mice (aP2-IL-6 KO mice) were produced upon tamoxifen administration and were fed a high-fat diet (HFD, 58.4% kcal from fat) or a control diet (18%) for 14 weeks. RESULTS aP2-IL-6 KO female mice on a HFD gained less weight and adiposity than littermate wild-type mice, but these effects were not observed in males. Hypothalamic factors such as NPY and AgRP showed a pattern of expression consistent with this sex-specific phenotype. PGC-1α expression was increased in several tissues in aP2-IL-6 KO female mice, which is compatible with increased energy expenditure. Serum leptin, insulin, glucose, cholesterol and triglycerides levels were increased by HFD, and in females IL-6 deficiency reversed this effect in the case of insulin and cholesterol. HFD induced impaired responses to insulin and glucose tolerance tests, but no significant differences between genotypes were observed. CONCLUSION The present results demonstrate that deletion of IL-6 driven by aP2-Cre regulates body weight, body fat and metabolism in a sex-specific fashion.
Collapse
Affiliation(s)
- B. Navia
- Department of Physiology; Faculty of Medicine; University of Santiago de Compostela; Santiago de Compostela Spain
| | - B. Ferrer
- Department of Cellular Biology, Physiology and Immunology; Faculty of Biosciences; Institute of Neurosciences; Universitat Autònoma de Barcelona; Bellaterra Spain
| | - M. Giralt
- Department of Cellular Biology, Physiology and Immunology; Faculty of Biosciences; Institute of Neurosciences; Universitat Autònoma de Barcelona; Bellaterra Spain
| | - G. Comes
- Department of Cellular Biology, Physiology and Immunology; Faculty of Biosciences; Institute of Neurosciences; Universitat Autònoma de Barcelona; Bellaterra Spain
| | - J. Carrasco
- Department of Cellular Biology, Physiology and Immunology; Faculty of Biosciences; Institute of Neurosciences; Universitat Autònoma de Barcelona; Bellaterra Spain
| | - A. Molinero
- Department of Cellular Biology, Physiology and Immunology; Faculty of Biosciences; Institute of Neurosciences; Universitat Autònoma de Barcelona; Bellaterra Spain
| | - A. Quintana
- Department of Cellular Biology, Physiology and Immunology; Faculty of Biosciences; Institute of Neurosciences; Universitat Autònoma de Barcelona; Bellaterra Spain
| | - J. Leclerc
- Institut National de la Santé et de la Recherche Medicale (INSERM), U1016; Institut Cochin; Paris France
- CNRS UMR8104; Paris France
- Sorbonne Paris Cité; Université Paris Descartes; Paris France
| | - B. Viollet
- Institut National de la Santé et de la Recherche Medicale (INSERM), U1016; Institut Cochin; Paris France
- CNRS UMR8104; Paris France
- Sorbonne Paris Cité; Université Paris Descartes; Paris France
| | - R. M. Señarís
- Department of Physiology; Faculty of Medicine; University of Santiago de Compostela; Santiago de Compostela Spain
| | - J. Hidalgo
- Department of Cellular Biology, Physiology and Immunology; Faculty of Biosciences; Institute of Neurosciences; Universitat Autònoma de Barcelona; Bellaterra Spain
| |
Collapse
|