1
|
Schaer R, Mueller FS, Notter T, Weber-Stadlbauer U, Meyer U. Intrauterine position effects in a mouse model of maternal immune activation. Brain Behav Immun 2024; 120:391-402. [PMID: 38897330 DOI: 10.1016/j.bbi.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/27/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024] Open
Abstract
Rodent models of maternal immune activation (MIA) are increasingly used as experimental tools in preclinical research of immune-mediated neurodevelopmental disorders and mental illnesses. Using a viral-like MIA model that is based on prenatal poly(I:C) exposure in mice, we have recently identified the existence of subgroups of MIA-exposed offspring that show dissociable behavioral, transcriptional, brain network and inflammatory profiles even under conditions of genetic homogeneity and identical MIA. Here, we tested the hypothesis that the intrauterine positions of fetuses, which are known to shape individual variability in litter-bearing mammals through variations in fetal hormone exposure, may contribute to the variable outcomes of MIA in mice. MIA was induced by maternal administration of poly(I:C) on gestation day 12 in C57BL/6N mice. Determining intrauterine positions using delivery by Cesarean section (C-section), we found that MIA-exposed offspring developing between female fetuses only (0M-MIA offspring) displayed significant deficits in sociability and sensorimotor gating at adult age, whereas MIA-exposed offspring developing between one or two males in utero (1/2M-MIA offspring) did not show the same deficits. These intrauterine position effects similarly emerged in male and female offspring. Furthermore, while MIA elevated fetal brain levels of pro- and anti-inflammatory cytokines independently of the precise intrauterine position and sex of adjacent fetuses during the acute phase, fetal brain levels of TNF-α remained elevated in 0M-MIA but not 1/2M-MIA offspring until the post-acute phase in late gestation. As expected, 1/2M offspring generally showed higher testosterone levels in the fetal brain during late gestation as compared to 0M offspring, confirming the transfer of testosterone from male fetuses to adjacent male or female fetuses. Taken together, our findings identify a novel source of within-litter variability contributing to heterogeneous outcomes of short- and long-term effects in a mouse model of MIA. In broader context, our findings highlight that individual differences in fetal exposure to hormonal and inflammatory signals may be a perinatal factor that shapes risk and resilience to MIA.
Collapse
Affiliation(s)
- Ron Schaer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Flavia S Mueller
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Tina Notter
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Urs Meyer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Su Y, Li T, He X, Sun H, Li J. PI3K/AKT pathway modulation and cold acclimation alleviation concerning apoptosis and necroptosis in broiler thymus. Poult Sci 2024; 103:103634. [PMID: 38537409 PMCID: PMC10987937 DOI: 10.1016/j.psj.2024.103634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/07/2024] Open
Abstract
Moderate cold stimulation regulates the thymus's growth and function and facilitates cold acclimatization in broilers. However, the underlying mechanism remains unknown. To explore the possible mechanism of the thymus in cold-acclimated broilers against cold stress, 240 one-day-old Arbor Acres (AA) broilers were assigned to 2 groups randomly. The control group (C) was housed at conventional temperatures. The temperature during the first week was 33°C to 34°C. Between the ages of 8 and 32 d, the temperature was lowered by 1°C every 2 d, i.e., gradually from 32°C to 20°C, and then maintained at 20°C until 42 d of age. The cold-acclimated group (C-3) was housed at the same temperature as C from 1 to 7 d after birth. Between 8 and 42 d, the temperature of C-3 was 3°C colder than C. After 24 h exposure to acute cold stress (ACS) at 42 d, C and C-3 were named as S and S-3. The results showed that ACS was able to induce oxidation stress, modulate PI3K/AKT signal, and cause necroptosis and apoptosis in broiler thymus. By contrast, cold acclimation could alleviate apoptosis and necroptosis induced by cold stress via alleviating oxidative stress, efficiently activating the PI3K/AKT signal, as well as decreasing apoptotic and necrotic genes' levels. This study offers a novel theoretical basis for cold acclimation to improve the body's cold tolerance.
Collapse
Affiliation(s)
- Yingying Su
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Tingting Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xinyue He
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Hanqing Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, China.
| |
Collapse
|
3
|
Ju S, Shin Y, Han S, Kwon J, Choi TG, Kang I, Kim SS. The Gut-Brain Axis in Schizophrenia: The Implications of the Gut Microbiome and SCFA Production. Nutrients 2023; 15:4391. [PMID: 37892465 PMCID: PMC10610543 DOI: 10.3390/nu15204391] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Schizophrenia, a severe mental illness affecting about 1% of the population, manifests during young adulthood, leading to abnormal mental function and behavior. Its multifactorial etiology involves genetic factors, experiences of adversity, infection, and gene-environment interactions. Emerging research indicates that maternal infection or stress during pregnancy may also increase schizophrenia risk in offspring. Recent research on the gut-brain axis highlights the gut microbiome's potential influence on central nervous system (CNS) function and mental health, including schizophrenia. The gut microbiota, located in the digestive system, has a significant role to play in human physiology, affecting immune system development, vitamin synthesis, and protection against pathogenic bacteria. Disruptions to the gut microbiota, caused by diet, medication use, environmental pollutants, and stress, may lead to imbalances with far-reaching effects on CNS function and mental health. Of interest are short-chain fatty acids (SCFAs), metabolic byproducts produced by gut microbes during fermentation. SCFAs can cross the blood-brain barrier, influencing CNS activity, including microglia and cytokine modulation. The dysregulation of neurotransmitters produced by gut microbes may contribute to CNS disorders, including schizophrenia. This review explores the potential relationship between SCFAs, the gut microbiome, and schizophrenia. Our aim is to deepen the understanding of the gut-brain axis in schizophrenia and to elucidate its implications for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Songhyun Ju
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoonhwa Shin
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Juhui Kwon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Tae Gyu Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Vancolen S, Ayash T, Allard MJ, Sébire G. Sex-Specific Dysconnective Brain Injuries and Neuropsychiatric Conditions such as Autism Spectrum Disorder Caused by Group B Streptococcus-Induced Chorioamnionitis. Int J Mol Sci 2023; 24:14090. [PMID: 37762401 PMCID: PMC10531534 DOI: 10.3390/ijms241814090] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Global health efforts have increased against infectious diseases, but issues persist with pathogens like Group B Streptococcus (GBS). Preclinical studies have elaborated on the mechanistic process of GBS-induced chorioamnionitis and its impact on the fetal programming of chronic neuropsychiatric diseases. GBS inoculation in rodents demonstrated the following: (i) silent and self-limited placental infection, similar to human chorioamnionitis; (ii) placental expression of chemokines attracting polymorphonuclear (PMN) cells; (iii) in vitro cytokine production; (iv) PMN infiltration in the placenta (histologic hallmark of human chorioamnionitis), linked to neurobehavioral impairments like cerebral palsy and autism spectrum disorders (ASD); (v) upregulation of interleukin-1β (IL-1β) in the placenta and fetal blood, associated with higher ASD risk in humans; (vi) sex-specific effects, with higher IL-1β release and PMN recruitment in male placenta; (vii) male offspring exhibiting ASD-like traits, while female offspring displayed attention deficit and hyperactivity disorder (ADHD)-like traits; (viii) IL-1 and/or NF-kB blockade alleviate placental and fetal inflammation, as well as subsequent neurobehavioral impairments. These findings offer potential therapeutic avenues, including sex-adapted anti-inflammatory treatment (e.g., blocking IL-1; repurposing of FDA-approved IL-1 receptor antagonist (IL-1Ra) treatment). Blocking the IL-1 pathway offers therapeutic potential to alleviate chorioamnionitis-related disabilities, presenting an opportunity for a human phase II RCT that uses IL-1 blockade added to the classic antibiotic treatment of chorioamnionitis.
Collapse
Affiliation(s)
- Seline Vancolen
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada;
- Department of Pediatrics, Research Institute of the McGill University Health Center, Montreal, QC H3G 1Y6, Canada
| | - Taghreed Ayash
- Department of Pediatrics, Research Institute of the McGill University Health Center, Montreal, QC H3G 1Y6, Canada
| | - Marie-Julie Allard
- Department of Pediatrics, Research Institute of the McGill University Health Center, Montreal, QC H3G 1Y6, Canada
| | - Guillaume Sébire
- Department of Pediatrics, Research Institute of the McGill University Health Center, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
5
|
Dumitriu D, Baldwin E, Coenen RJ, Hammond LA, Peterka DS, Heilbrun L, Frye RE, Palmer R, Norrman HN, Fridell A, Remnelius KL, Isaksson J, Austin C, Curtin P, Bölte S, Arora M. Deciduous tooth biomarkers reveal atypical fetal inflammatory regulation in autism spectrum disorder. iScience 2023; 26:106247. [PMID: 36926653 PMCID: PMC10011823 DOI: 10.1016/j.isci.2023.106247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/17/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Atypical regulation of inflammation has been proposed in the etiology of autism spectrum disorder (ASD); however, measuring the temporal profile of fetal inflammation associated with future ASD diagnosis has not been possible. Here, we present a method to generate approximately daily profiles of prenatal and early childhood inflammation as measured by developmentally archived C-reactive protein (CRP) in incremental layers of deciduous tooth dentin. In our discovery population, a group of Swedish twins, we found heightened inflammation in the third trimester in children with future ASD diagnosis relative to controls (n = 66; 14 ASD cases; critical window: -90 to -50 days before birth). In our replication study, in the US, we observed a similar increase in CRP in ASD cases during the third trimester (n = 47; 23 ASD cases; -128 to -21 days before birth). Our results indicate that the third trimester is a critical period of atypical fetal inflammatory regulation in ASD.
Collapse
Affiliation(s)
- Dani Dumitriu
- Departments of Neuroscience and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Departments of Pediatrics and Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian Morgan Stanley Children’s Hospital, New York, NY 10032, USA
| | - Elena Baldwin
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Roozie J.J. Coenen
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Luke A. Hammond
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Darcy S. Peterka
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Lynne Heilbrun
- Family and Community Medicine, School of Medicine, University of Texas Health Sciences Center, San Antonio, TX 78229, USA
| | - Richard E. Frye
- Department of Neurology, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Raymond Palmer
- Family and Community Medicine, School of Medicine, University of Texas Health Sciences Center, San Antonio, TX 78229, USA
| | - Hjalmar Nobel Norrman
- Center of Neurodevelopmental Disorder (KIND), Division of Neuropsychiatry, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Anna Fridell
- Center of Neurodevelopmental Disorder (KIND), Division of Neuropsychiatry, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm 171 77, Sweden
- Child and Adolescent Psychiatry Research Center, Center for Psychiatry Research, Region Stockholm, Stockholm 104 31, Sweden
| | - Karl Lundin Remnelius
- Center of Neurodevelopmental Disorder (KIND), Division of Neuropsychiatry, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Johan Isaksson
- Center of Neurodevelopmental Disorder (KIND), Division of Neuropsychiatry, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm 171 77, Sweden
- Department of Medical Sciences, Child and Adolescent Psychiatry Unit, Uppsala University, Uppsala 751 85, Sweden
| | - Christine Austin
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Linus Biotechnology Inc., New York, NY 10013, USA
| | - Paul Curtin
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Linus Biotechnology Inc., New York, NY 10013, USA
| | - Sven Bölte
- Center of Neurodevelopmental Disorder (KIND), Division of Neuropsychiatry, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm 171 77, Sweden
- Child and Adolescent Psychiatry Research Center, Center for Psychiatry Research, Region Stockholm, Stockholm 104 31, Sweden
- Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Perth, WA 6102, Australia
| | - Manish Arora
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Linus Biotechnology Inc., New York, NY 10013, USA
| |
Collapse
|
6
|
Hoprekstad GE, Kjelby E, Gjestad R, Fathian F, Larsen TK, Reitan SK, Rettenbacher M, Torsvik A, Skrede S, Johnsen E, Kroken RA. Depression trajectories and cytokines in schizophrenia spectrum disorders - A longitudinal observational study. Schizophr Res 2023; 252:77-87. [PMID: 36634451 DOI: 10.1016/j.schres.2022.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/01/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023]
Abstract
Depression occurs frequently in all phases of schizophrenia spectrum disorders. Altered activity in the immune system is seen in both depression and schizophrenia. We aimed to uncover depressive trajectories in a sample of 144 adult individuals with schizophrenia spectrum disorders followed for one year, in order to identify possible cytokine profile differences. Patients were assessed longitudinally with the Positive and Negative Syndrome Scale (PANSS) and the Calgary Depression Scale for Schizophrenia (CDSS), where a score above 6 predicts depression. The serum cytokine concentrations for tumor necrosis factor (TNF)-alpha, interferon (IFN)-gamma, interleukin (IL)-1beta, IL-2, IL-4, IL-6, IL-10, IL-12p70 and IL-17A were measured using immunoassays. Latent growth curve models, multilevel models and latent class growth analysis (LCGA) were applied. The LCGA model supported three latent classes (trajectories) with differing CDSS profiles during the one-year follow-up: a high CDSS group (40.8 % of participants), a moderate CDSS group (43.9 %) and a low CDSS group (15.3 %). Five single PANSS items predicted affiliation to depressive trajectory: hallucinations, difficulty in abstract thinking, anxiety, guilt feelings and tension. In the high CDSS group, despite diminishing psychotic symptoms, depressive symptoms persisted throughout one year. The pro-inflammatory cytokines IFN-γ, IL-1β and TNF-α were differentially distributed between the depressive trajectories, although levels remained remarkably stable throughout 12 months. Significant changes were found for the anti-inflammatory cytokine IL-10 at baseline with an accompanying difference in change over time. More research is required to optimize future treatment stratification and investigate the contribution of inflammation in depressed patients with schizophrenia spectrum disorders.
Collapse
Affiliation(s)
- Gunnhild E Hoprekstad
- Division of Psychiatry, Haukeland University Hospital, Box 1400, 5021 Bergen, Norway; Department of Clinical Medicine, University of Bergen, P.O. Box 7804, 5020 Bergen, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Haukeland University Hospital, Box 1400, 5021 Bergen, Norway.
| | - Eirik Kjelby
- Division of Psychiatry, Haukeland University Hospital, Box 1400, 5021 Bergen, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Haukeland University Hospital, Box 1400, 5021 Bergen, Norway
| | - Rolf Gjestad
- Division of Psychiatry, Haukeland University Hospital, Box 1400, 5021 Bergen, Norway; Centre for Research and Education in Forensic Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Farivar Fathian
- Division of Psychiatry, Haukeland University Hospital, Box 1400, 5021 Bergen, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Haukeland University Hospital, Box 1400, 5021 Bergen, Norway
| | - Tor K Larsen
- Department of Clinical Medicine, University of Bergen, P.O. Box 7804, 5020 Bergen, Norway; The TIPS-center, Stavanger University Hospital, Stavanger, Norway
| | - Solveig K Reitan
- St. Olav's University Hospital, Department of Mental Health, Trondheim, Norway; Norwegian University of Science and Technology, Department of Mental Health, Trondheim, Norway
| | | | - Anja Torsvik
- Norwegian Centre for Mental Disorders Research (NORMENT), Haukeland University Hospital, Box 1400, 5021 Bergen, Norway; Department of Clinical Science, University of Bergen, P.O. Box 7804, 5020 Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Silje Skrede
- Department of Clinical Science, University of Bergen, P.O. Box 7804, 5020 Bergen, Norway; Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Box 1400, 5021 Bergen, Norway
| | - Erik Johnsen
- Division of Psychiatry, Haukeland University Hospital, Box 1400, 5021 Bergen, Norway; Department of Clinical Medicine, University of Bergen, P.O. Box 7804, 5020 Bergen, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Haukeland University Hospital, Box 1400, 5021 Bergen, Norway
| | - Rune A Kroken
- Division of Psychiatry, Haukeland University Hospital, Box 1400, 5021 Bergen, Norway; Department of Clinical Medicine, University of Bergen, P.O. Box 7804, 5020 Bergen, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Haukeland University Hospital, Box 1400, 5021 Bergen, Norway
| |
Collapse
|
7
|
Abstract
BACKGROUND Dysregulation of inflammatory processes is linked to perinatal complications yet a comprehensive description of cytokine levels throughout the perinatal period is lacking. We report prospective, serial levels of 29 unique cytokines measured in maternal blood during pregnancy, in the cord blood at birth, and in the neonatal blood. METHODS Pregnant women (n = 140) for recruited from a Midwest tertiary medical center. Blood was obtained at five timepoints: 12-20 weeks, 24-28 weeks, and at labor in the women, umbilical cord at birth, 24-72 h in the newborn. Cytokine levels were analyzed using an electrochemiluminescence-based immunoassay. RESULTS Levels for 29 cytokines were measured. The data were separated into two groups: pregnancies with (n = 82) and without major complications (n = 53) (preterm birth, preeclampsia, diabetes mellitus). Eighteen cytokines showed significant changes over time (p < .002). The majority of the cytokines were highest in the newborn. No differences in cytokine levels between complication groups were noted at any timepoint. CONCLUSIONS This is the first known study to report prospective, serial cytokine levels throughout the perinatal period for pregnancies with/without complications. No differences in maternal cytokine levels between those with/without complications were detected; studies with a larger sample size would be needed to validate our current findings. Results also suggest cytokine dysregulation may be more localized to the placenta making it difficult to measure and predict during pregnancy using maternal systemic blood specimens.
Collapse
Affiliation(s)
- Tiffany A. Moore
- College of Nursing, University of Nebraska Medical Center, Omaha, NE, USA
| | - Adam J. Case
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
8
|
Naudé PJW, Pariante C, Hoffman N, Koopowitz SM, Donald KA, Zar HJ, Stein DJ. Antenatal maternal depression, early life inflammation and neurodevelopment in a South African birth cohort. Brain Behav Immun 2022; 105:160-168. [PMID: 35803482 DOI: 10.1016/j.bbi.2022.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/07/2022] [Accepted: 07/03/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Antenatal exposure to maternal psychological adversity, including depression, increases the risk of impaired neurodevelopment in children. The underlying biological mechanisms remain unclear, especially in early life during critical windows of development and maturation. This study investigated the association of antenatal maternal depression, maternal and early life inflammatory markers and neurodevelopmental outcomes in children at 2 years of age. METHODS A subgroup of mothers and their children (n = 255) that were enrolled in a South African birth cohort study, the Drakenstein Child Health Study, were followed from the antenatal period through to 2 years of child age. Maternal depressive symptoms were measured by the Beck Depression Inventory (BDI-II) at 26 weeks gestation. Serum inflammatory markers [granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon-γ (IFN-γ), interleukin IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12p70, IL-13, tumour necrosis factor-α (TNF-α), neutrophil gelatinase-associated lipocalin (NGAL) and metalloproteinase-9 (MMP-9)] were measured in mothers at enrolment and in their children at 6-10 weeks and at 2 years. Neurodevelopment was assessed at 2 years using the Bayley Scales of Infant and Toddler Development III. RESULTS Antenatal depressive symptoms (present in 25% of the mothers) were significantly associated with higher levels of IL-7 (p = 0.008), IL-8 (p = 0.019) and TNF-α (p = 0.031) in the mothers after correcting for sociodemographic and lifestyle factors. Serum IL-1β and NGAL levels were significantly elevated over time in children born to mothers with depressive symptoms compared to those without depression, after controlling for maternal and child health and sociodemographic factors. Elevated infant IL-1β at 6-10 weeks of age partially mediated the association of maternal depressive symptoms with poorer language scores at 2 years. CONCLUSION Alterations in early life immunity, as reflected by elevated IL-1β, is a potential pathway through which antenatal maternal depressive symptoms may impact language development in young children.
Collapse
Affiliation(s)
- Petrus J W Naudé
- Department of Psychiatry and Mental Health, University of Cape Town, South Africa; Neuroscience Institute, University of Cape Town, South Africa.
| | - Carmine Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Nadia Hoffman
- Department of Psychiatry and Mental Health, University of Cape Town, South Africa
| | | | - Kirsten A Donald
- Neuroscience Institute, University of Cape Town, South Africa; Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, South Africa; SA-MRC Unit on Child and Adolescent Health, University of Cape Town, South Africa
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, South Africa; Neuroscience Institute, University of Cape Town, South Africa; SU/UCT MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, South Africa
| |
Collapse
|
9
|
Angrand L, Masson JD, Rubio-Casillas A, Nosten-Bertrand M, Crépeaux G. Inflammation and Autophagy: A Convergent Point between Autism Spectrum Disorder (ASD)-Related Genetic and Environmental Factors: Focus on Aluminum Adjuvants. TOXICS 2022; 10:toxics10090518. [PMID: 36136483 PMCID: PMC9502677 DOI: 10.3390/toxics10090518] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 05/10/2023]
Abstract
Autism spectrum disorder (ASD), schizophrenia, and bipolar disorder are genetically complex and heterogeneous neurodevelopmental disorders (NDDs) resulting from genetic factors and gene-environment (GxE) interactions for which onset occurs in early brain development. Recent progress highlights the link between ASD and (i) immunogenetics, neurodevelopment, and inflammation, and (ii) impairments of autophagy, a crucial neurodevelopmental process involved in synaptic pruning. Among various environmental factors causing risk for ASD, aluminum (Al)-containing vaccines injected during critical periods have received special attention and triggered relevant scientific questions. The aim of this review is to discuss the current knowledge on the role of early inflammation, immune and autophagy dysfunction in ASD as well as preclinical studies which question Al adjuvant impacts on brain and immune maturation. We highlight the most recent breakthroughs and the lack of epidemiological, pharmacokinetic and pharmacodynamic data constituting a "scientific gap". We propose additional research, such as genetic studies that could contribute to identify populations at genetic risk, improving diagnosis, and potentially the development of new therapeutic tools.
Collapse
Affiliation(s)
- Loïc Angrand
- Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France; (L.A.); (J.-D.M.)
- Ecole Nationale Vétérinaire d’Alfort IMRB, F-94700 Maisons-Alfort, France
- INSERM UMR-S 1270, 75005 Paris, France;
- Sorbonne Université, Campus Pierre et Marie Curie, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Jean-Daniel Masson
- Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France; (L.A.); (J.-D.M.)
- Ecole Nationale Vétérinaire d’Alfort IMRB, F-94700 Maisons-Alfort, France
| | - Alberto Rubio-Casillas
- Biology Laboratory, Autlán Regional Preparatory School, University of Guadalajara, Autlán 48900, Jalisco, Mexico;
- Autlán Regional Hospital, Health Secretariat, Autlán 48900, Jalisco, Mexico
| | - Marika Nosten-Bertrand
- INSERM UMR-S 1270, 75005 Paris, France;
- Sorbonne Université, Campus Pierre et Marie Curie, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Guillemette Crépeaux
- Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France; (L.A.); (J.-D.M.)
- Ecole Nationale Vétérinaire d’Alfort IMRB, F-94700 Maisons-Alfort, France
- Correspondence:
| |
Collapse
|
10
|
de Oliveira PG, de Sousa JM, Assunção DGF, de Araujo EKS, Bezerra DS, Dametto JFDS, Ribeiro KDDS. Impacts of Consumption of Ultra-Processed Foods on the Maternal-Child Health: A Systematic Review. Front Nutr 2022; 9:821657. [PMID: 35634416 PMCID: PMC9136982 DOI: 10.3389/fnut.2022.821657] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/20/2022] [Indexed: 12/17/2022] Open
Abstract
Background and Aims Changes in eating patterns have been leading to an increase in the consumption of ultra-processed foods (UPF), negatively impacting the quality of the diet and generating risk of harm to the health of the adult population, however, there is no systematized evidence of the impact of UPF in maternal-child health. Thus, in this study we aimed to evaluated the association between UPF consumption and health outcomes in the maternal-child population. Methods Systematic review registered on the International Prospective Register of Systematic Reviews (PROSPERO) (CRD42021236633), conducted according to the PRISMA diagram in the following databases: PubMed, Medline, Scopus, Web of Science, Scielo, and CAPES thesis and dissertation directory. We included original cross-sectional, case-control and cohort studies in any language. Eligibility criteria were (a) food consumption assessment by the NOVA classification, (b) health outcome (nutritional or diseases), and (c) maternal-child population (pregnant, lactating women and infants/children). All data were analyzed and extracted to a spreadsheet structured by two independent reviewers. We evaluated the methodological quality of the studies included using the Newcastle-Otawa Scale and RoB 2. Results Searches retrieved 7,801 studies and 15 contemplated the eligibility criteria. Most studies included were cohort studies (n = 8, 53%), had children as their population (n = 9, 60%) and only one study evaluated UPF consumption in infants and lactating women. Panoramically, we observed that a higher participation of UPF in children’s diet has been associated with different maternal-child outcomes, such as increase of weight gain, adiposity measures, overweight, early weaning, lower diet quality, metabolic alterations, diseases, and consumption of plastic originated from packaging. Only one of the studies included did not present high methodological quality. Conclusion Despite the limited literature on UPF consumption and health outcomes in the maternal-child population, the highest UPF consumption negatively impacted nutrition and disease development indicators in pregnant, lactating women and children. Considering the expressive participation of these foods in the diet, other studies should be conducted to further investigate the impact of UPF consumption on different health indicators, especially in the lactation phase for this was the one to present the most important knowledge gap. Systematic Review Registration [https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021236633], identifier [CRD42021236633].
Collapse
Affiliation(s)
| | - Juliana Morais de Sousa
- Post Graduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | - Danielle Soares Bezerra
- Health Sciences College of Trairi, Federal University of Rio Grande do Norte, Santa Cruz, Brazil
| | | | - Karla Danielly da Silva Ribeiro
- Post Graduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil
- *Correspondence: Karla Danielly da Silva Ribeiro,
| |
Collapse
|
11
|
Rocha-Gomes A, Teixeira AE, Santiago CMO, Oliveira DGD, Silva AAD, Lacerda ACR, Riul TR, Mendonça VA, Rocha-Vieira E, Leite HR. Prenatal LPS exposure increases hippocampus IL-10 and prevents short-term memory loss in the male adolescent offspring of high-fat diet fed dams. Physiol Behav 2022; 243:113628. [PMID: 34695488 DOI: 10.1016/j.physbeh.2021.113628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022]
Abstract
Lipopolysaccharide (LPS) tolerance can reduce the neuroinflammation caused by high fat maternal diets; however, there are no reports that have evaluated the effects of prenatal LPS exposure on the memories of the offspring of high-fat diet fed dams. This study evaluated the effects of prenatal LPS exposure on the inflammatory parameters and redox status in the brain, as well as the object recognition memory of adolescent offspring of Wistar rat dams that were treated with a high-fat diet during gestation and lactation. Female pregnant Wistar rats randomly received a standard diet (17.5% fat) or a high-fat diet (45.0% fat) during gestation and lactation. On gestation days 8, 10, and 12, half of the females in each group were intraperitoneally treated with LPS (0.1 mg.kg-1). After weaning, the male offspring were placed in cages in standard conditions, and at 6 weeks old, animals underwent the novel object recognition test (for short- and long-term memory). The offspring of the high-fat diet fed dams showed increased hippocampus IL-6 levels (21-days-old) and impaired short-term memories. These effects were avoided in the offspring of high-fat diet fed dams submitted to prenatal LPS exposure, which showed greater hippocampus IL-10 levels (at 21- and 50-days-old), increased antioxidant activity (50-days-old) in the hippocampus and prefrontal cortex, without memory impairments (short- and long-term memory). IL-6 has been consistently implicated in memory deficits and as an endogenous mechanism for limiting plasticity, while IL-10 regulates glial activation and has a strong association with improvements in cognitive function. Prenatal LPS exposure preventing the increase of IL-6 in the hippocampus and the impairment to short-term object recognition memory caused by the high-fat maternal diet.
Collapse
Affiliation(s)
- Arthur Rocha-Gomes
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil; Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil.
| | - Amanda Escobar Teixeira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Camilla Mainy Oliveira Santiago
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Dalila Gomes de Oliveira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Alexandre Alves da Silva
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Ana Cristina Rodrigues Lacerda
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil
| | - Tania Regina Riul
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Vanessa Amaral Mendonça
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil
| | - Etel Rocha-Vieira
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil
| | - Hércules Ribeiro Leite
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil; Departamento de Fisioterapia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901 Brasil.
| |
Collapse
|
12
|
Rocha-Gomes A, Teixeira AE, de Oliveira DG, Santiago CMO, da Silva AA, Riul TR, Lacerda ACR, Mendonça VA, Rocha-Vieira E, Leite HR. LPS tolerance prevents anxiety-like behavior and amygdala inflammation of high-fat-fed dams' adolescent offspring. Behav Brain Res 2021; 411:113371. [PMID: 34019914 DOI: 10.1016/j.bbr.2021.113371] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/15/2021] [Accepted: 05/15/2021] [Indexed: 02/04/2023]
Abstract
Maternal high-fat diets (HFD) can generate inflammation in the offspring's amygdala, which can lead to anxiety-like behaviors. Conversely, lipopolysaccharide (LPS) tolerance can reduce neuroinflammation in the offspring caused by maternal high-fat diets. This study evaluated the combination of LPS tolerance and high-fat maternal diet on amygdala's inflammatory parameters and the anxiety-like behavior in adolescent offspring. Female pregnant Wistar rats received randomly a standard diet or a high-fat diet during gestation and lactation. On gestation days 8, 10, and 12, half of the females in each group were intraperitonially injected with LPS (0.1 mg.kg-1). After weaning, the male offspring (n = 96) were placed in individual boxes in standard conditions, and when 6 weeks-old, the animals underwent: Open-Field, Light/Dark Box, Elevated Plus-Maze, and Rotarod tests. When 50 days-old the offspring were euthanized and the amygdala removed for cytokine and redox status analysis. The offspring in the HFD group showed lower amygdala IL-10 levels, high IL-6/IL-10 ratio, and anxiety-like behaviors. These effects were attenuated in the HFD offspring submitted to LPS tolerance, which showed an anti-inflammatory compensatory response in the amygdala. Also, this group showed a higher activity of the enzyme catalase in the amygdala. In addition, receiving the combination of LPS tolerance and maternal HFD did not lead to anxiety-like behavior in the offspring. The results suggest that LPS tolerance attenuated amygdala inflammation through an anti-inflammatory compensatory response besides preventing anxiety-like behavior caused by the high-fat maternal diet.
Collapse
Affiliation(s)
- Arthur Rocha-Gomes
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Amanda Escobar Teixeira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Dalila Gomes de Oliveira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Camilla Mainy Oliveira Santiago
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Alexandre Alves da Silva
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Tania Regina Riul
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Ana Cristina Rodrigues Lacerda
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Vanessa Amaral Mendonça
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Etel Rocha-Vieira
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Faculdade de Medicina do Campus JK, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Hércules Ribeiro Leite
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Programa de Pós Graduação em Ciências da Reabilitação, Universidade Federal de Minas Gerais, Diamantina, MG, Brazil.
| |
Collapse
|
13
|
Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG. The role of the gut microbiome in the development of schizophrenia. Schizophr Res 2021; 234:4-23. [PMID: 32336581 DOI: 10.1016/j.schres.2020.02.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a heterogeneous neurodevelopmental disorder involving the convergence of a complex and dynamic bidirectional interaction of genetic expression and the accumulation of prenatal and postnatal environmental risk factors. The development of the neural circuitry underlying social, cognitive and emotional domains requires precise regulation from molecular signalling pathways, especially during critical periods or "windows", when the brain is particularly sensitive to the influence of environmental input signalling. Many of the brain regions involved, and the molecular substrates sub-serving these domains are responsive to life-long microbiota-gut-brain (MGB) axis signalling. This intricate microbial signalling system communicates with the brain via the vagus nerve, immune system, enteric nervous system, enteroendocrine signalling and production of microbial metabolites, such as short-chain fatty acids. Preclinical data has demonstrated that MGB axis signalling influences neurotransmission, neurogenesis, myelination, dendrite formation and blood brain barrier development, and modulates cognitive function and behaviour patterns, such as, social interaction, stress management and locomotor activity. Furthermore, preliminary clinical studies suggest altered gut microbiota profiles in schizophrenia. Unravelling MGB axis signalling in the context of an evolving dimensional framework in schizophrenia may provide a more complete understanding of the neurobiological architecture of this complex condition and offers the possibility of translational interventions.
Collapse
Affiliation(s)
- John R Kelly
- Department of Psychiatry, Trinity College Dublin, Ireland
| | - Chiara Minuto
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Timothy G Dinan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
14
|
Kvichansky AA, Tret'yakova LV, Volobueva MN, Manolova AO, Stepanichev MY, Onufriev MV, Moiseeva YV, Lazareva NA, Bolshakov AP, Gulyaeva NV. Neonatal Proinflammatory Stress and Expression of Neuroinflammation-Associated Genes in the Rat Hippocampus. BIOCHEMISTRY (MOSCOW) 2021; 86:693-703. [PMID: 34225592 DOI: 10.1134/s0006297921060079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Differential effect of the neonatal proinflammatory stress (NPS) on the development of neuroinflammation in the hippocampus and induction of the depressive-like behavior in juvenile and adult male and female rats was studied. NPS induction by bacterial lipopolysaccharide in the neonatal period upregulated expression of the Il6 and Tnf mRNAs accompanied by the development of depressive-like behavior in the adult male rats. NPS increased expression of the mRNAs for fractalkine and its receptor in the ventral hippocampus of the juvenile male rats, but did not affect expression of mRNAs for the proinflammatory cytokines and soluble form of fractalkine. NPS downregulated expression of fractalkine mRNA in the dorsal hippocampus of juvenile males. No significant effects of NPS were found in the female rats. Therefore, the NPS induces long-term changes in the expression of neuroinflammation-associated genes in different regions of the hippocampus, which ultimately leads to the induction of neuroinflammation and development of depressive-like behavior in male rats.
Collapse
Affiliation(s)
- Alexey A Kvichansky
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.
| | - Liya V Tret'yakova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Maria N Volobueva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Anna O Manolova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Mikhail Yu Stepanichev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Mikhail V Onufriev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Yulia V Moiseeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Natalia A Lazareva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Alexey P Bolshakov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| |
Collapse
|
15
|
Maternal effects in mammals: Broadening our understanding of offspring programming. Front Neuroendocrinol 2021; 62:100924. [PMID: 33992652 DOI: 10.1016/j.yfrne.2021.100924] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/18/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
The perinatal period is a sensitive time in mammalian development that can have long-lasting consequences on offspring phenotype via maternal effects. Maternal effects have been most intensively studied with respect to two major conditions: maternal diet and maternal stress. In this review, we shift the focus by discussing five major additional maternal cues and their influence on offspring phenotype: maternal androgen levels, photoperiod (melatonin), microbiome, immune regulation, and milk composition. We present the key findings for each of these topics in mammals, their mechanisms of action, and how they interact with each other and with the maternal influences of diet and stress. We explore their impacts in the contexts of both predictive adaptive responses and the developmental origins of disease, identify knowledge gaps and research opportunities in the field, and place a particular emphasis on the application and consideration of these effects in non-model species and natural ecological systems.
Collapse
|
16
|
Borge TC, Biele G, Papadopoulou E, Andersen LF, Jacka F, Eggesbø M, Caspersen IH, Aase H, Meltzer HM, Brantsæter AL. The associations between maternal and child diet quality and child ADHD - findings from a large Norwegian pregnancy cohort study. BMC Psychiatry 2021; 21:139. [PMID: 33685413 PMCID: PMC7941947 DOI: 10.1186/s12888-021-03130-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Attention Deficit Hyperactivity Disorder (ADHD) is a prevalent neurodevelopmental disorder. Effective long-term treatment options are limited, which warrants increased focus on potential modifiable risk factors. The aim of this study was to investigate associations between maternal diet quality during pregnancy and child diet quality and child ADHD symptoms and ADHD diagnosis. METHODS This study is based on the Norwegian Mother, Father and Child Cohort Study (MoBa). We assessed maternal diet quality with the Prenatal Diet Quality Index (PDQI) and Ultra-Processed Food Index (UPFI) around mid-gestation, and child diet quality using the Diet Quality Index (CDQI) at 3 years. ADHD symptoms were assessed at child age 8 years using the Parent Rating Scale for Disruptive Behaviour Disorders. ADHD diagnoses were retrieved from the Norwegian Patient Registry. RESULTS In total, 77,768 mother-child pairs were eligible for studying ADHD diagnoses and 37,787 for ADHD symptoms. Means (SD) for the PDQI, UPFI and CDQI were 83.1 (9.3), 31.8 (9.7) and 60.3 (10.6), respectively. Mean (SD) ADHD symptom score was 8.4 (7.1) and ADHD diagnosis prevalence was 2.9% (male to female ratio 2.6:1). For one SD increase in maternal diet index scores, we saw a change in mean (percent) ADHD symptom score of - 0.28 (- 3.3%) (CI: - 0.41, - 0.14 (- 4.8, - 1.6%)) for PDQI scores and 0.25 (+ 3.0%) (CI: 0.13, 0.38 (1.5, 4.5%)) for UPFI scores. A one SD increase in PDQI score was associated with a relative risk of ADHD diagnosis of 0.87 (CI: 0.79, 0.97). We found no reliable associations with either outcomes for the CDQI, and no reliable change in risk of ADHD diagnosis for the UPFI. CONCLUSIONS We provide evidence that overall maternal diet quality during pregnancy is associated with a small decrease in ADHD symptom score at 8 years and lower risk for ADHD diagnosis, with more robust findings for the latter outcome. Consumption of ultra-processed foods was only associated with increased ADHD symptom score of similar magnitude as for overall maternal diet quality, and we found no associations between child diet quality and either outcome. No causal inferences should be made based on these results, due to potential unmeasured confounding.
Collapse
Affiliation(s)
- Tiril Cecilie Borge
- Department of Child Health and Development, Norwegian Institute of Public Health, P.O. Box 222, Skøyen, 0213, Oslo, Norway.
| | - Guido Biele
- Department of Child Health and Development, Norwegian Institute of Public Health, P.O. Box 222, Skøyen, 0213, Oslo, Norway
| | - Eleni Papadopoulou
- Department of Environmental Health, Section of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, P.O. Box 222, Skøyen, 0213, Oslo, Norway
| | - Lene Frost Andersen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1046, Blindern, 0317, Oslo, Norway
| | - Felice Jacka
- Food & Mood Centre, IMPACT, Deakin University, Geelong, VIC, Australia
- Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Black Dog Institute, Randwick, NSW, Australia
- James Cook University, Townsville, Qld, Australia
| | - Merete Eggesbø
- Department of Environmental Health, Section of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, P.O. Box 222, Skøyen, 0213, Oslo, Norway
| | - Ida Henriette Caspersen
- Department of Environmental Health, Section of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, P.O. Box 222, Skøyen, 0213, Oslo, Norway
| | - Heidi Aase
- Department of Child Health and Development, Norwegian Institute of Public Health, P.O. Box 222, Skøyen, 0213, Oslo, Norway
| | - Helle Margrete Meltzer
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, P.O. Box 222, Skøyen, 0213, Oslo, Norway
| | - Anne Lise Brantsæter
- Department of Environmental Health, Section of Environmental Exposure and Epidemiology, Norwegian Institute of Public Health, P.O. Box 222, Skøyen, 0213, Oslo, Norway
| |
Collapse
|
17
|
Matelski L, Morgan RK, Grodzki AC, Van de Water J, Lein PJ. Effects of cytokines on nuclear factor-kappa B, cell viability, and synaptic connectivity in a human neuronal cell line. Mol Psychiatry 2021; 26:875-887. [PMID: 31965031 PMCID: PMC7371517 DOI: 10.1038/s41380-020-0647-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/12/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022]
Abstract
Maternal infection during pregnancy is associated with increased risk of psychiatric and neurodevelopmental disorders (NDDs). Experimental animal models demonstrate that maternal immune activation (MIA) elevates inflammatory cytokine levels in the maternal and fetal compartments and causes behavioral changes in offspring. Individual cytokines have been shown to modulate neurite outgrowth and synaptic connectivity in cultured rodent neurons, but whether clinically relevant cytokine mixtures similarly modulate neurodevelopment in human neurons is not known. To address this, we quantified apoptosis, neurite outgrowth, and synapse number in the LUHMES human neuronal cell line exposed to varying concentrations of: (1) a mixture of 12 cytokines and chemokines (EMA) elevated in mid-gestational serum samples from mothers of children with autism and intellectual disability; (2) an inflammatory cytokine mixture (ICM) comprised of five cytokines elevated in experimental MIA models; or (3) individual cytokines in ICM. At concentrations that activated nuclear factor-kappa B (NF-κB) in LUHMES cells, EMA and ICM induced caspase-3/7 activity. ICM altered neurite outgrowth, but only at concentrations that also reduced cell viability, whereas ICM reduced synapse number independent of changes in cell viability. Individual cytokines in ICM phenocopied the effects of ICM on NF-κB activation and synaptic connectivity, but did not completely mimic the effects of ICM on apoptosis. These results demonstrate that clinically relevant cytokine mixtures modulate apoptosis and synaptic density in developing human neurons. Given the relevance of these neurodevelopmental processes in NDDs, our findings support the hypothesis that cytokines contribute to the adverse effects of MIA on children.
Collapse
Affiliation(s)
- Lauren Matelski
- Department of Internal Medicine, University of California, Davis,Department of Molecular Biosciences, University of California, Davis
| | - Rhianna K. Morgan
- Department of Molecular Biosciences, University of California, Davis
| | | | | | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis
| |
Collapse
|
18
|
Seiffe A, Ramirez MF, Barrios CD, Albarrán MM, Depino AM. Early estradiol exposure masculinizes disease-relevant behaviors in female mice. Eur J Neurosci 2021; 53:2483-2499. [PMID: 33497491 DOI: 10.1111/ejn.15130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 11/29/2022]
Abstract
Most psychiatric disorders show a sex bias in incidence, symptomatology, and/or response to treatment. Males are more susceptible to neurodevelopmental disorders including autism spectrum disorder and attention-deficit activity disorder, while women are more prone to major depressive disorder and anxiety disorders after puberty. A striking difference between males and females in humans and other mammals is that males undergo a process of brain masculinization due to the early exposure to gonadal hormones. In rodents, this developmental organization of the brain is essential for adult males to express the appropriate sexual behaviors in the presence of a receptive female. Our goal was to determine whether this process of brain masculinization influences behaviors relevant to psychiatric disorders. To this aim, we studied sex differences and the effect of neonatal 17β-estradiol benzoate treatment of female mice on different disease-relevant behaviors. Our analysis includes postnatal behavior, juvenile play, and adult tests for sociability, repetitive behaviors, anxiety, and depression. Our results show that the sex differences observed in exploration, repetitive behaviors, and depression-related behaviors are largely reduced when females are neonatally treated with 17β-estradiol benzoate. These results suggest a role of neonatal sex steroids in the development of disease-relevant behaviors and provide evidence supporting a role for perinatal exposure to estrogens and androgens on the development and manifestation of psychiatric disorders.
Collapse
Affiliation(s)
- Araceli Seiffe
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mauro Federico Ramirez
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Claudio Darío Barrios
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Milagros Albarrán
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Amaicha Mara Depino
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
19
|
Goh JY, O'Sullivan SE, Shortall SE, Zordan N, Piccinini AM, Potter HG, Fone KCF, King MV. Gestational poly(I:C) attenuates, not exacerbates, the behavioral, cytokine and mTOR changes caused by isolation rearing in a rat 'dual-hit' model for neurodevelopmental disorders. Brain Behav Immun 2020; 89:100-117. [PMID: 32485291 DOI: 10.1016/j.bbi.2020.05.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Many psychiatric illnesses have a multifactorial etiology involving genetic and environmental risk factors that trigger persistent neurodevelopmental impairments. Several risk factors have been individually replicated in rodents, to understand disease mechanisms and evaluate novel treatments, particularly for poorly-managed negative and cognitive symptoms. However, the complex interplay between various factors remains unclear. Rodent dual-hit neurodevelopmental models offer vital opportunities to examine this and explore new strategies for early therapeutic intervention. This study combined gestational administration of polyinosinic:polycytidylic acid (poly(I:C); PIC, to mimic viral infection during pregnancy) with post-weaning isolation of resulting offspring (to mirror adolescent social adversity). After in vitro and in vivo studies required for laboratory-specific PIC characterization and optimization, we administered 10 mg/kg i.p. PIC potassium salt to time-mated Lister hooded dams on gestational day 15. This induced transient hypothermia, sickness behavior and weight loss in the dams, and led to locomotor hyperactivity, elevated striatal cytokine levels, and increased frontal cortical JNK phosphorylation in the offspring at adulthood. Remarkably, instead of exacerbating the well-characterized isolation syndrome, gestational PIC exposure actually protected against a spectrum of isolation-induced behavioral and brain regional changes. Thus isolation reared rats exhibited locomotor hyperactivity, impaired associative memory and reversal learning, elevated hippocampal and frontal cortical cytokine levels, and increased mammalian target of rapamycin (mTOR) activation in the frontal cortex - which were not evident in isolates previously exposed to gestational PIC. Brains from adolescent littermates suggest little contribution of cytokines, mTOR or JNK to early development of the isolation syndrome, or resilience conferred by PIC. But notably hippocampal oxytocin, which can protect against stress, was higher in adolescent PIC-exposed isolates so might contribute to a more favorable outcome. These findings have implications for identifying individuals at risk for disorders like schizophrenia who may benefit from early therapeutic intervention, and justify preclinical assessment of whether adolescent oxytocin manipulations can modulate disease onset or progression.
Collapse
Affiliation(s)
- Jen-Yin Goh
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Saoirse E O'Sullivan
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK
| | - Sinead E Shortall
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Nicole Zordan
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Anna M Piccinini
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Harry G Potter
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Kevin C F Fone
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Madeleine V King
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
20
|
Soch A, Sominsky L, Younesi S, De Luca SN, Gunasekara M, Bozinovski S, Spencer SJ. The role of microglia in the second and third postnatal weeks of life in rat hippocampal development and memory. Brain Behav Immun 2020; 88:675-687. [PMID: 32360602 DOI: 10.1016/j.bbi.2020.04.082] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/31/2022] Open
Abstract
Microglia are resident immune cells of the central nervous system (CNS). In adulthood they are involved in surveillance and responses to pathogens and injury and prenatally they play a role in brain development. However, the role of microglia during the early postnatal period and how they impact development long-term remains poorly understood. Here, to investigate the specific role of microglia in postnatal development, we used a Cx3cr1-Dtr transgenic Wistar rat model to acutely ablate microglia from either postnatal day (P) 7 or 14. We specifically assessed how transient microglial ablation affected astrocytes and neurons acutely, during the juvenile period, and in adulthood. Hippocampal microglial numbers remained low at P21 in the P7-ablated animals and complexity remained reduced after P14-ablation. This protracted effect on these key immune cells led to a small but significant increase in CA1 mature neuron numbers and a significant increase in astrocyte density in the subgranular dentate gyrus in adults that had their microglia ablated at P14. However, these histological differences were small, and spatial and recognition memory in novel objection and place recognition tests were not affected. Overall, our data reveal for the first time that the transient depletion of microglia during the neonatal period impacts briefly on the brain but that the long-lasting effects are minimal. Neonatal microglia may be dispensable in the establishment of hippocampal brain function. These data also imply that novel therapeutic anti-inflammatories that cross the blood-brain barrier to inhibit microglia are unlikely to have long-term negative consequences if administered in the neonatal period.
Collapse
Affiliation(s)
- Alita Soch
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Luba Sominsky
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Simin Younesi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Simone N De Luca
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Maneesha Gunasekara
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia; ARC Centre of Excellence for Nanoscale Biophotonics, RMIT University, Melbourne, Vic., Australia.
| |
Collapse
|
21
|
Luca M, Chattipakorn SC, Sriwichaiin S, Luca A. Cognitive-Behavioural Correlates of Dysbiosis: A Review. Int J Mol Sci 2020; 21:4834. [PMID: 32650553 PMCID: PMC7402132 DOI: 10.3390/ijms21144834] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
Evidence suggests an association between an altered gut microbiota (dysbiosis), cognitive performance and behaviour. This paper provides an overview of the current literature regarding the cognitive-behavioural correlates of dysbiosis, with special attention on the clinical and biochemical mechanisms underlying the association between dysbiosis, cognition (mild cognitive impairment and dementia) and behaviour (depression, schizophrenia, addiction). After providing an overview of the evidence, the review discusses the molecular aspects that could account for the cognitive-behavioural correlates of dysbiosis. Shedding light on this topic could provide insights regarding the pathogenesis of these burdening neuropsychiatric disorders and even suggest future therapeutic strategies.
Collapse
Affiliation(s)
- Maria Luca
- Department of Medical and Surgical Sciences and Advanced Technologies, “GF Ingrassia”, University of Catania, 95123 Catania, Italy;
| | - Siriporn C. Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.C.C.); (S.S.)
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirawit Sriwichaiin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.C.C.); (S.S.)
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Antonina Luca
- Department of Medical and Surgical Sciences and Advanced Technologies, “GF Ingrassia”, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
22
|
Maternal Immune Activation in Mice Only Partially Recapitulates the Autism Spectrum Disorders Symptomatology. Neuroscience 2020; 445:109-119. [PMID: 32445939 DOI: 10.1016/j.neuroscience.2020.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/03/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
Prenatal viral/bacterial infections are considered risk factors for autism spectrum disorders (ASD) and rodent models of maternal immune activation (MIA) have been developed and extensively used in preclinical studies. Poly inosinic-cytidylic acid (Poly I:C) was injected in C57BL6/J dams to mimic a viral infection on gestational day 12.5; the experimental design includes 10/12 litters in each treatment group and data were analysed always considering the litter-effect; neonatal (spontaneous motor behaviour and ultrasonic vocalizations) and adult [open field, marble burying, social approach, fear conditioning, prepulse inhibition (PPI)] offspring of both sexes were tested. In vivo magnetic resonance imaging/spectroscopy (MRI-MRS) and high-performance liquid chromatography (HPLC) to quantify both aminoacid and/or neurotransmitter concentration in cortical and striatal regions were also carried out. In both sexes high levels of repetitive motor responses and sensory gating deficits in PPI were the more striking effects of Poly I:C, whereas no alteration of social responses were evidenced. Poly I:C treatment did not affect mean values, but, intriguingly, increased variability in the levels of four aminoacids (aspartate glycine and GABA) selectively in males. As a whole prenatal Poly I:C induced relevant long-term alterations in explorative-stereotyped motor responses and in sensory gating, sparing cognitive and social competences. When systematically assessing differences between male and female siblings within each litter, no significant sex differences were evident except for increased variability of four aminoacid levels in male brains. As a whole, prenatal Poly I:C paradigms appear to be a useful tool to investigate the profound and translationally-relevant effects of developmental immune activation on brain and behavioural development, not necessarily recapitulating the full ASD symptomatology.
Collapse
|
23
|
Mora S, Martín-González E, Flores P, Moreno M. Neuropsychiatric consequences of childhood group A streptococcal infection: A systematic review of preclinical models. Brain Behav Immun 2020; 86:53-62. [PMID: 30818033 DOI: 10.1016/j.bbi.2019.02.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 12/21/2018] [Accepted: 02/22/2019] [Indexed: 12/14/2022] Open
Abstract
In recent years, clinical studies have shown strong epidemiological evidence of an increased risk of developing neuropsychiatric disorders after childhood exposure to streptococcal infection, including the Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal infection (PANDAS). New preclinical studies on group A streptococcus (GAS) exposure investigate how to disentangle the influences of immune activation to induce long-term neurobehavioral effects associated with neuropsychiatric disorders such as obsessive-compulsive disorder, schizophrenia or autism. The present systematic review collects neurobehavioral evidence regarding the use of GAS exposure in animal models to study the vulnerability to different neuropsychiatric disorders, improving our understanding of its possible causes and consequences, and compares its contribution with other preclinical models of immune activation in a variety of paradigms. Specifically, we reviewed the effects of postnatal GAS exposure, in comparison with post- and prenatal exposure to Lipopolysaccharide (LPS) and Polyinosinic:polycytidylic acid (Poly I:C), on the long-term effects concerning psychomotor, cognition and socioemotional outcomes in rodents. GAS exposure in animal models has revealed different behavioral alterations such as reduced locomotion and motor coordination, a deficit in sensorimotor gating, learning, working memory, altered social behavior, and increased anxiety and stereotyped behavior. Most of the results found are in accordance with other immune activation models -LPS and Poly I:C-, with some discrepancies. The systematic review of the literature supports the preclinical model of GAS exposure as a valid model for studying the neurobehavioral consequences of streptococcal infections. Future studies on streptococcal infection could contribute increasing our knowledge on preventive actions or treatments for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Santiago Mora
- Department of Psychology, University of Almería, Campus de Excelencia Internacional Agroalimentario CeiA3, Almería, Spain
| | - Elena Martín-González
- Department of Psychology, University of Almería, Campus de Excelencia Internacional Agroalimentario CeiA3, Almería, Spain
| | - Pilar Flores
- Department of Psychology, University of Almería, Campus de Excelencia Internacional Agroalimentario CeiA3, Almería, Spain
| | - Margarita Moreno
- Department of Psychology, University of Almería, Campus de Excelencia Internacional Agroalimentario CeiA3, Almería, Spain.
| |
Collapse
|
24
|
|
25
|
Borge TC, Brantsæter AL, Caspersen IH, Meltzer HM, Brandlistuen RE, Aase H, Biele G. Estimating the Strength of Associations Between Prenatal Diet Quality and Child Developmental Outcomes: Results From a Large Prospective Pregnancy Cohort Study. Am J Epidemiol 2019; 188:1902-1912. [PMID: 31375821 PMCID: PMC6825833 DOI: 10.1093/aje/kwz166] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 12/15/2022] Open
Abstract
Our aim in this study was to estimate the strength of associations between prenatal diet quality and child behavioral, language, and motor functions in the Norwegian Mother and Child Cohort Study (1999-2008). We created a prenatal diet quality index (PDQI) based on adherence to Norwegian dietary guidelines. Child outcomes were defined as sum scores on the Child Behavior Checklist, the Ages and Stages Questionnaire, and the Child Development Index at ages 18, 36, and 60 months. Using a longitudinal cohort study design and Bayesian hierarchical modeling, we estimated association strengths using inverse probability weighting to account for selection bias. In total, 27,529 mother-child pairs were eligible for inclusion. A 1-standard-deviation increase in PDQI score was associated with an absolute reduction in outcome sum scores of 0.02-0.21 and a 3%-7% relative decrease, with larger decreases seen for language and motor functions than for behavioral functions. PDQI scores were inversely associated with all child functions, but the estimated strength of each association was low. The results indicate that the observed variations in PDQI scores in an industrialized Western society may not profoundly influence the child functions studied.
Collapse
Affiliation(s)
- Tiril Cecilie Borge
- Correspondence to Tiril Cecilie Borge, Department of Child Health and Development, Norwegian Institute of Public Health, P.O. Box 222, Skøyen, 0213 Oslo, Norway (e-mail: )
| | | | | | | | | | | | | |
Collapse
|
26
|
Mueller FS, Richetto J, Hayes LN, Zambon A, Pollak DD, Sawa A, Meyer U, Weber-Stadlbauer U. Influence of poly(I:C) variability on thermoregulation, immune responses and pregnancy outcomes in mouse models of maternal immune activation. Brain Behav Immun 2019; 80:406-418. [PMID: 30980948 DOI: 10.1016/j.bbi.2019.04.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/04/2019] [Accepted: 04/06/2019] [Indexed: 12/24/2022] Open
Abstract
Maternal immune activation (MIA) models that are based on administration of the viral mimetic, poly(I:C), are widely used as experimental tools to study neuronal and behavioral dysfunctions in relation to immune-mediated neurodevelopmental disorders and mental illnesses. Evidence from investigations in non-pregnant rodents suggests that different poly(I:C) products can vary in terms of their immunogenicity, even if they are obtained from the same vendor. The present study aimed at extending these findings to pregnant mice, while also controlling various poly(I:C) products for potential contamination with lipopolysaccharide (LPS). We found significant variability between different batches of poly(I:C) potassium salt obtained from the same vendor (Sigma-Aldrich) in terms of the relative amount of dsRNA fragments in the high molecular weight range (1000-6000 nucleotides long) and with regards to their effects on maternal thermoregulation and immune responses in maternal plasma, placenta and fetal brain. Batches of poly(I:C) potassium salt containing larger amounts of high molecular weight fragments induced more extensive effects on thermoregulation and immune responses compared to batches with minimal amounts of high molecular weight fragments. Consistent with these findings, poly(I:C) enriched for high molecular weight dsRNA (HMW) caused larger maternal and placental immune responses compared to low molecular weight (LMW) poly(I:C). These variable effects were unrelated to possible LPS contamination. Finally, we found marked variability between different batches of the poly(I:C) potassium salt in terms of their effects on spontaneous abortion rates. This batch-to-batch variability was confirmed by three independent research groups using distinct poly(I:C) administration protocols in mice. Taken together, the present data confirm that different poly(I:C) products can induce varying immune responses and can differentially affect maternal physiology and pregnancy outcomes. It is therefore pivotal that researchers working with poly(I:C)-based MIA models ascertain and consider the precise molecular composition and immunogenicity of the product in use. We recommend the establishment of reference databases that combine phenotype data with empirically acquired quality information, which can aid the design, implementation and interpretation of poly(I:C)-based MIA models.
Collapse
Affiliation(s)
- Flavia S Mueller
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland
| | - Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland
| | - Lindsay N Hayes
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Alice Zambon
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Akira Sawa
- Departments of Psychiatry, Neuroscience, and Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, USA; Department of Mental Health, Johns Hopkins University, Baltimore, USA; Bloomberg School of Medicine, Johns Hopkins Hospital and Medical Institutions, Baltimore, USA
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich - Vetsuisse, Zurich, Switzerland
| |
Collapse
|
27
|
Weber-Stadlbauer U, Meyer U. Challenges and opportunities of a-priori and a-posteriori variability in maternal immune activation models. Curr Opin Behav Sci 2019. [DOI: 10.1016/j.cobeha.2019.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Sex-specific maternofetal innate immune responses triggered by group B Streptococci. Sci Rep 2019; 9:8587. [PMID: 31197179 PMCID: PMC6565749 DOI: 10.1038/s41598-019-45029-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/29/2019] [Indexed: 01/27/2023] Open
Abstract
Group B Streptococcus (GBS) is one of the most common bacteria isolated in human chorioamnionitis, which is a major risk factor for premature birth and brain injuries. Males are at greater risk than females for developing lifelong neurobehavioural disorders, although the origins of this sex bias remain poorly understood. We previously showed that end-gestational inflammation triggered by GBS led to early neurodevelopmental impairments mainly in the male rat progeny. Identifying key inflammatory players involved in maternofetal immune activation by specific pathogens is critical to develop appropriate novel therapeutic interventions. We aimed to map out the GBS-induced profile of innate immune biomarkers in the maternal-placental-fetal axis, and to compare this immune profile between male and female tissues. We describe here that the GBS-induced immune signalling involved significantly higher levels of interleukin (IL)-1β, cytokine-induced neutrophil chemoattractant-1 (CINC-1/CXCL1) and polymorphonuclear cells (PMNs) infiltration in male compared to female maternofetal tissues. Although male - but not female - fetuses presented increased levels of IL-1β, fetuses from both sexes in-utero exposed to GBS had increased levels of TNF-α in their circulation. Levels of IL-1β detected in fetal sera correlated positively with the levels found in maternal circulation. Here, we report for the first time that the maternofetal innate immune signalling induced by GBS presents a sexually dichotomous profile, with more prominent inflammation in males than females. These sex-specific placental and fetal pro-inflammatory responses are in keeping with the higher susceptibility of the male population for preterm birth, brain injuries and neurodevelopmental disorders such as cerebral palsy and autism spectrum disorders.
Collapse
|
29
|
Lang L, Xu B, Li SZ, Guo W, Yuan J, Zang S, Chen Y, Yang HM, Lian S. Rno-miR-425-5p targets the DLST and SLC16A1 genes to reduce liver damage caused by excessive energy mobilization under cold stress. J Anim Physiol Anim Nutr (Berl) 2019; 103:1251-1262. [PMID: 31087708 DOI: 10.1111/jpn.13100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/24/2019] [Accepted: 03/20/2019] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRNAs) are a class of single-stranded non-coding small RNA molecules, which participate in the regulation of many physiological processes, and play a crucial role in cancer, metabolism and other processes. Rno-miR-425-5p has been shown to play a role in the response to cold stress. To explore the mechanism by which rno-miR-425-5p regulates the response to cold stress, we analysed the candidate target genes of rno-miR-425-5p. After verification in rat hepatocyte BRL cells and in rat liver tissue, we identified several target genes that were altered in expression in response to cold stress. In rat liver tissue, the expression of rno-miR-425-5p was significantly increased and the expression levels of target genes DLST and SLC16A1 were decreased under cold stress. The miRNA and mRNA levels were analysed by quantitative real-time PCR and the protein levels were detected by Western blot analysis. Combined with the results of bioinformatic analysis, we concluded that rno-miR-425-5p reduced the expression of DLST and SLC16A1, inhibiting energy release from the tricarboxylic acid cycle and preventing the liver from being injured by excessive energy mobilization.
Collapse
Affiliation(s)
- Limin Lang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shi-Ze Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wenjin Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jianbin Yuan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shucheng Zang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yan Chen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Huan-Min Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
30
|
Causal role of group B Streptococcus-induced acute chorioamnionitis in intrauterine growth retardation and cerebral palsy-like impairments. J Dev Orig Health Dis 2019; 10:595-602. [PMID: 30626456 DOI: 10.1017/s2040174418001083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chorioamnionitis and intrauterine growth retardation (IUGR) are risk factors for cerebral palsy (CP). Common bacteria isolated in chorioamnionitis include group B Streptococcus (GBS) serotypes Ia and III. Little is known about the impact of placental inflammation induced by different bacteria, including different GBS strains. We aimed to test the impact of chorioamnionitis induced by two common GBS serotypes (GBSIa and GBSIII) on growth and neuromotor outcomes in the progeny. Dams were exposed at the end of gestation to either saline, inactivated GBSIa or GBSIII. Inactivated GBS bacteria invaded placentas and triggered a chorioamnionitis featured by massive polymorphonuclear cell infiltrations. Offspring exposed to GBSIII - but not to GBSIa - developed IUGR, persisting beyond adolescent age. Male rats in utero exposed to GBSIII traveled a lower distance in the Open Field test, which was correlating with their level of IUGR. GBSIII-exposed rats presented decreased startle responses to acoustic stimuli beyond adolescent age. GBS-exposed rats displayed a dysmyelinated white matter in the corpus callosum adjacent to thinner primary motor cortices. A decreased density of microglial cells was detected in the mature corpus callosum of GBSIII-exposed males - but not females - which was correlating positively with the primary motor cortex thickness. Altogether, our results demonstrate a causal link between pathogen-induced acute chorioamnionitis and (1) IUGR, (2) serotype- and sex-specific neuromotor impairments and (3) abnormal development of primary motor cortices, dysmyelinated white matter and decreased density of microglial cells.
Collapse
|
31
|
McCarthy MM. Sex differences in neuroimmunity as an inherent risk factor. Neuropsychopharmacology 2019; 44:38-44. [PMID: 29977075 PMCID: PMC6235925 DOI: 10.1038/s41386-018-0138-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 12/12/2022]
Abstract
Identifying and understanding the sources of inherent risk to neurodevelopmental disorders is a fundamental goal of neuroscience. Being male or being exposed to inflammation early in life are two known risk factors, but they are only infrequently associated with each other. Cellular and molecular mechanisms mediating the masculinization of the brain in animal models reveal a consistent role for inflammatory signaling molecules and immune cells in the healthy male brain. Why this is so remains in the realm of speculation but may have its origins in the maternal immune system. Masculinization of the brain occurs during a restricted critical period that begins in utero and overlaps with the sensitive period during which maternal immune activation negatively impacts the developing brain. The convergence of maleness and early life inflammation as risk factors for neuropsychiatric disorders compels us to consider whether sexual differentiation of the brain in males creates an inherent and greater risk than that experienced by females.
Collapse
Affiliation(s)
- Margaret M. McCarthy
- 0000 0001 2175 4264grid.411024.2Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, 655W. Baltimore St., Baltimore, MD 21201 USA
| |
Collapse
|
32
|
Adverse neuropsychiatric development following perinatal brain injury: from a preclinical perspective. Pediatr Res 2019; 85:198-215. [PMID: 30367160 DOI: 10.1038/s41390-018-0222-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 02/06/2023]
Abstract
Perinatal brain injury is a leading cause of death and disability in young children. Recent advances in obstetrics, reproductive medicine and neonatal intensive care have resulted in significantly higher survival rates of preterm or sick born neonates, at the price of increased prevalence of neurological, behavioural and psychiatric problems in later life. Therefore, the current focus of experimental research shifts from immediate injury processes to the consequences for brain function in later life. The aetiology of perinatal brain injury is multi-factorial involving maternal and also labour-associated factors, including not only placental insufficiency and hypoxia-ischaemia but also exposure to high oxygen concentrations, maternal infection yielding excess inflammation, genetic factors and stress as important players, all of them associated with adverse long-term neurological outcome. Several animal models addressing these noxious stimuli have been established in the past to unravel the underlying molecular and cellular mechanisms of altered brain development. In spite of substantial efforts to investigate short-term consequences, preclinical evaluation of the long-term sequelae for the development of cognitive and neuropsychiatric disorders have rarely been addressed. This review will summarise and discuss not only current evidence but also requirements for experimental research providing a causal link between insults to the developing brain and long-lasting neurodevelopmental disorders.
Collapse
|
33
|
Kentner AC, Bilbo SD, Brown AS, Hsiao EY, McAllister AK, Meyer U, Pearce BD, Pletnikov MV, Yolken RH, Bauman MD. Maternal immune activation: reporting guidelines to improve the rigor, reproducibility, and transparency of the model. Neuropsychopharmacology 2019; 44:245-258. [PMID: 30188509 PMCID: PMC6300528 DOI: 10.1038/s41386-018-0185-7] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/04/2018] [Accepted: 08/02/2018] [Indexed: 01/16/2023]
Abstract
The 2017 American College of Neuropychopharmacology (ACNP) conference hosted a Study Group on 4 December 2017, Establishing best practice guidelines to improve the rigor, reproducibility, and transparency of the maternal immune activation (MIA) animal model of neurodevelopmental abnormalities. The goals of this session were to (a) evaluate the current literature and establish a consensus on best practices to be implemented in MIA studies, (b) identify remaining research gaps warranting additional data collection and lend to the development of evidence-based best practice design, and (c) inform the MIA research community of these findings. During this session, there was a detailed discussion on the importance of validating immunogen doses and standardizing the general design (e.g., species, immunogenic compound used, housing) of our MIA models both within and across laboratories. The consensus of the study group was that data does not currently exist to support specific evidence-based model selection or methodological recommendations due to lack of consistency in reporting, and that this issue extends to other inflammatory models of neurodevelopmental abnormalities. This launched a call to establish a reporting checklist focusing on validation, implementation, and transparency modeled on the ARRIVE Guidelines and CONSORT (scientific reporting guidelines for animal and clinical research, respectively). Here we provide a summary of the discussions in addition to a suggested checklist of reporting guidelines needed to improve the rigor and reproducibility of this valuable translational model, which can be adapted and applied to other animal models as well.
Collapse
Affiliation(s)
- Amanda C. Kentner
- 0000 0001 0021 3995grid.416498.6School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA USA
| | - Staci D. Bilbo
- 000000041936754Xgrid.38142.3cDepartment of Pediatrics, Harvard Medical School, Boston, MA USA ,0000 0004 0386 9924grid.32224.35Lurie Center for Autism, Massachusetts General Hospital for Children, Boston, MA USA
| | - Alan S. Brown
- 0000000419368729grid.21729.3fDepartment of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY USA ,0000 0000 8499 1112grid.413734.6New York State Psychiatric Institute, New York, NY USA
| | - Elaine Y. Hsiao
- 0000 0000 9632 6718grid.19006.3eDepartment of Integrative Biology and Physiology, University of California, Los Angeles, USA
| | - A. Kimberley McAllister
- 0000 0004 1936 9684grid.27860.3bCenter for Neuroscience, University of California Davis, Davis, CA USA
| | - Urs Meyer
- 0000 0004 1937 0650grid.7400.3Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Winterthurerstrasse, Zurich, Switzerland ,0000 0004 1937 0650grid.7400.3Neuroscience Centre Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Brad D. Pearce
- 0000 0001 0941 6502grid.189967.8Department of Epidemiology, Rollins School of Public Health, and Graduate Division of Biological and Biomedical Sciences, Neuroscience Program, Emory University, Atlanta, GA USA
| | - Mikhail V. Pletnikov
- 0000 0001 2171 9311grid.21107.35Department of Psychiatry and Behavioral Sciences, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Robert H. Yolken
- 0000 0001 2171 9311grid.21107.35Department of Pediatrics, Stanley Division of Developmental Neurovirology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Melissa D. Bauman
- 0000 0004 1936 9684grid.27860.3bThe UC Davis MIND Institute, Department of Psychiatry and Behavioral Sciences, California National Primate Research Center, University of California, Davis, USA
| |
Collapse
|
34
|
Novak CM, Lee JY, Ozen M, Tsimis ME, Kucirka LM, McLane MW, Xie L, Kelleher M, Xie H, Jia B, Lei J, Burd I. Increased placental T cell trafficking results in adverse neurobehavioral outcomes in offspring exposed to sub-chronic maternal inflammation. Brain Behav Immun 2019; 75:129-136. [PMID: 30261304 DOI: 10.1016/j.bbi.2018.09.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/17/2018] [Accepted: 09/24/2018] [Indexed: 11/28/2022] Open
Abstract
Interleukin-1 beta (IL-1β) is a cytokine mediator of perinatal brain injury. The effect of sub-chronic systemic IL-1β exposure in perinatal and offspring outcomes is unclear. The aim of this study was to examine the effects of maternal IL-1β exposure on pregnancy and offspring outcomes. At E15, CD1 dams were allocated to receive intraperitoneal injection of phosphate buffered saline or mouse recombinant IL-1β (1 mcg) for four consecutive days. We analyzed pup survivaland neurobehavioral status. At E18, placental H&E staining and fetal brain Nissl staining was performed. Placental gene expression was analyzed by qPCR and T cell infiltration was analyzed by flow cytometry. Effects of inflammation on feto-placental blood flow were analyzed by Doppler ultrasonography. IL-1β decreased pup survival (P < .0001) and adversely affected offspring performance on neurodevelopmental tests (P < .05). Placentas of exposed dams exhibited significant thinning of maternal and fetal sides, and fetal brain exhibited cortical thinning. Placental qPCR analysis revealed significant upregulation of NFκB2 (P = .0021) and CXCL11 (P = .0401). While maternal IL-1β exposure did not affect feto-placental blood flow, placental flow cytometry showed an increase in placental infiltration of CD4+ T cells at 24 h post-injection (hpi, P < .0001) and CD8+ T cells at 72 hpi (P = .0217). Maternal sub-chronic, systemic inflammation with IL-1β decreased pup survival and played a key role in perinatal brain injury. The mechanisms behind these outcomes may involve immune system activation and alterations in placental T cell trafficking.
Collapse
Affiliation(s)
- Christopher M Novak
- Department of Gynecology and Obstetrics, Division of Maternal Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Ji Yeon Lee
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Maide Ozen
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael E Tsimis
- Department of Gynecology and Obstetrics, Division of Maternal Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lauren M Kucirka
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael W McLane
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Li Xie
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meredith Kelleher
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Han Xie
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Prenatal and Hereditary Disease Diagnosis, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Bei Jia
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Gynecology and Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Jun Lei
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Irina Burd
- Department of Gynecology and Obstetrics, Division of Maternal Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
35
|
Gustafsson HC, Sullivan EL, Nousen EK, Sullivan CA, Huang E, Rincon M, Nigg JT, Loftis JM. Maternal prenatal depression predicts infant negative affect via maternal inflammatory cytokine levels. Brain Behav Immun 2018; 73:470-481. [PMID: 29920327 PMCID: PMC6129422 DOI: 10.1016/j.bbi.2018.06.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022] Open
Abstract
Maternal depressive symptoms during pregnancy are associated with risk for offspring emotional and behavioral problems, but the mechanisms by which this association occurs are not known. Infant elevated negative affect (increased crying, irritability, fearfulness, etc.) is a key risk factor for future psychopathology, so understanding its determinants has prevention and early intervention potential. An understudied yet promising hypothesis is that maternal mood affects infant mood via maternal prenatal inflammatory mechanisms, but this has not been prospectively examined in humans. Using data from a pilot study of women followed from the second trimester of pregnancy through six months postpartum (N = 68) our goal was to initiate a prospective study as to whether maternal inflammatory cytokines mediate the association between maternal depressive symptoms and infant offspring negative affect. The study sample was designed to examine a broad range of likely self-regulation and mood-regulation problems in offspring; to that end we over-selected women with a family history or their own history of elevated symptoms of attention-deficit/hyperactivity disorder. Results supported the hypothesis: maternal pro-inflammatory cytokines during the third trimester (indexed using a latent variable that included plasma interleukin-6, tumor necrosis factor-alpha and monocyte chemoattractant protein-1 concentrations as indicators) mediated the effect, such that higher maternal depressive symptoms were associated with higher maternal inflammation, and this mediated the effect on maternal report of infant negative affect (controlling for maternal affect during the infant period). This is the first human study to demonstrate that maternal inflammatory cytokines mediate the association between prenatal depression and infant outcomes, and the first to demonstrate a biological mechanism through which depressive symptoms impact infant temperament.
Collapse
Affiliation(s)
- Hanna C Gustafsson
- Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA.
| | - Elinor L Sullivan
- Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA; Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR, USA; University of Oregon, 1585 E 13th Ave, Eugene, OR, USA.
| | - Elizabeth K Nousen
- Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA.
| | - Ceri A Sullivan
- Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA.
| | - Elaine Huang
- Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR, USA.
| | - Monica Rincon
- Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA.
| | - Joel T Nigg
- Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA.
| | - Jennifer M Loftis
- Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, USA; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR, USA.
| |
Collapse
|
36
|
Sominsky L, Ong LK, Ziko I, Dickson PW, Spencer SJ. Neonatal overfeeding increases capacity for catecholamine biosynthesis from the adrenal gland acutely and long-term in the male rat. Mol Cell Endocrinol 2018; 470:295-303. [PMID: 29183807 DOI: 10.1016/j.mce.2017.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 12/22/2022]
Abstract
A poor nutritional environment during early development has long been known to increase disease susceptibility later in life. We have previously shown that rats that are overfed as neonates (i.e. suckled in small litters (4 pups) relative to control conditions (12 pups)) show dysregulated hypothalamic-pituitary-adrenal axis responses to immune stress in adulthood, particularly due to an altered capacity of the adrenal to respond to an immune challenge. Here we hypothesised that neonatal overfeeding similarly affects the sympathomedullary system, testing this by investigating the biochemical function of tyrosine hydroxylase (TH), the first rate-limiting enzyme in the catecholamine synthesis. We also examined changes in adrenal expression of the leptin receptor and in mitogen-activated protein kinase (MAPK) signalling. During the neonatal period, we saw age-dependent changes in TH activity and phosphorylation, with neonatal overfeeding stimulating increased adrenal TH specific activity at postnatal days 7 and 14, along with a compensatory reduction in total TH protein levels. This increased TH activity was maintained into adulthood where neonatally overfed rats exhibited increased adrenal responsiveness 30 min after an immune challenge with lipopolysaccharide, evident in a concomitant increase in TH protein levels and specific activity. Neonatal overfeeding significantly reduced the expression of the leptin receptor in neonatal adrenals at postnatal day 7 and in adult adrenals, but did not affect MAPK signalling. These data suggest neonatal overfeeding alters the capacity of the adrenal to synthesise catecholamines, both acutely and long term, and these effects may be independent of leptin signalling.
Collapse
Affiliation(s)
- Luba Sominsky
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia.
| | - Lin Kooi Ong
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, NSW, Australia
| | - Ilvana Ziko
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Phillip W Dickson
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, NSW, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| |
Collapse
|
37
|
Lian S, Wang D, Xu B, Guo W, Wang L, Li W, Ji H, Wang J, Kong F, Zhen L, Li S, Zhang L, Guo J, Yang H. Prenatal cold stress: Effect on maternal hippocampus and offspring behavior in rats. Behav Brain Res 2018; 346:1-10. [DOI: 10.1016/j.bbr.2018.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 01/08/2023]
|
38
|
Kvichansky AA, Volobueva MN, Manolova AO, Bolshakov AP, Gulyaeva NV. The Influence of Neonatal Pro-Inflammatory Stress on the Expression of Genes Associated with Stress in the Brains of Juvenile Rats: Septo-Temporal Specificity. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418020083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
39
|
Luan W, Hammond LA, Vuillermot S, Meyer U, Eyles DW. Maternal Vitamin D Prevents Abnormal Dopaminergic Development and Function in a Mouse Model of Prenatal Immune Activation. Sci Rep 2018; 8:9741. [PMID: 29950608 PMCID: PMC6021387 DOI: 10.1038/s41598-018-28090-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/13/2018] [Indexed: 12/24/2022] Open
Abstract
Dysfunction in dopamine (DA) systems is a prominent feature in schizophrenia patients and may result from the abnormal development of mesencephalic (mes)DA systems. Maternal immune activation (MIA) and developmental vitamin D (DVD)-deficiency both induce schizophrenia-relevant dopaminergic abnormalities in adult offspring. In this study, we investigated whether maternal administration of the vitamin D hormone (1,25OHD, VITD) could prevent MIA-induced abnormalities in DA-related behaviors and mesDA development. We administrated the viral mimetic polyriboinosinic-polyribocytidylic (poly (I:C)) simultaneously with 1,25OHD and/or their vehicles, to pregnant mouse dams at gestational day 9. Maternal treatment with VITD prevented MIA-induced hypersensitivity to acute DA stimulation induced by amphetamine, whereas it failed to block prepulse inhibition deficiency in MIA-exposed offspring. MIA and VITD both reduced fetal mesDA progenitor (Lmx1a + Sox2+) cells, while VITD treatment increased the number of mature (Nurr1 + TH+) mesDA neurons. Single-cell quantification of protein expression showed that VITD treatment increased the expression of Lmx1a, Nurr1 and TH in individual mesDA cells and restored normal mesDA positioning. Our data demonstrate that VITD prevents abnormal dopaminergic phenotypes in MIA offspring possibly via its early neuroprotective actions on fetal mesDA neurons. Maternal supplementation with the dietary form of vitamin D, cholecalciferol may become a valuable strategy for the prevention of MIA-induced neurodevelopmental abnormalities.
Collapse
Affiliation(s)
- Wei Luan
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | | | | | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
- Neuroscience Centre Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Darryl Walter Eyles
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
- Queensland Centre for Mental Health Research, Brisbane, QLD, Australia.
| |
Collapse
|
40
|
Hyperactive behavior in female rats in utero-exposed to group B Streptococcus-induced inflammation. Int J Dev Neurosci 2018; 69:17-22. [PMID: 29920305 DOI: 10.1016/j.ijdevneu.2018.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 11/20/2022] Open
Abstract
Group B Streptococcus (GBS) is one the most common bacterium responsible of maternal infections during pregnancy. Offspring in utero-exposed to GBS-induced placental inflammation displayed sex-specific forebrain injuries. Sex differences have been reported in several neuropsychiatric disorders. Hence, we hypothesized that female rats in utero-exposed to GBS may present sex-specific neurobehavioral impairments. Lewis rats were injected intraperitoneally every 12 h from gestational day (G) 19 to G22 with either saline (controls) or inactivated serotype Ia GBS (109 CFU). Before puberty, no difference in terms of spontaneous motor activity, exploratory or anxiety-related behaviors was noticed between experimental conditions. During puberty, GBS-exposed females - but not males - performed worse than same-sex controls in a forced motor task. During adulthood, GBS-exposed females - but not males - displayed increased spontaneous locomotor activity and decreased inhibition. In conclusion, our findings show for the first time that adult females - but not males - in utero-exposed to GBS-induced inflammation presented a hyperactive and disinhibited phenotype emerging after puberty.
Collapse
|
41
|
Epigenetic Programming of Synthesis, Release, and/or Receptor Expression of Common Mediators Participating in the Risk/Resilience for Comorbid Stress-Related Disorders and Coronary Artery Disease. Int J Mol Sci 2018; 19:ijms19041224. [PMID: 29670001 PMCID: PMC5979500 DOI: 10.3390/ijms19041224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023] Open
Abstract
Corticotrophin releasing factor, vasopressin, oxytocin, natriuretic hormones, angiotensin, neuregulins, some purinergic substances, and some cytokines contribute to the long-term modulation and restructuring of cardiovascular regulation networks and, at the same time, have relevance in situations of comorbid abnormal stress responses. The synthesis, release, and receptor expression of these mediators seem to be under epigenetic control since early stages of life, possibly underlying the comorbidity to coronary artery disease (CAD) and stress-related disorders (SRD). The exposure to environmental conditions, such as stress, during critical periods in early life may cause epigenetic programming modifying the development of pathways that lead to stable and long-lasting alterations in the functioning of these mediators during adulthood, determining the risk of or resilience to CAD and SRD. However, in contrast to genetic information, epigenetic marks may be dynamically altered throughout the lifespan. Therefore, epigenetics may be reprogrammed if the individual accepts the challenge to undertake changes in their lifestyle. Alternatively, epigenetics may remain fixed and/or even be inherited in the next generation. In this paper, we analyze some of the common neuroendocrine functions of these mediators in CAD and SRD and summarize the evidence indicating that they are under early programming to put forward the theoretical hypothesis that the comorbidity of these diseases might be epigenetically programmed and modified over the lifespan of the individual.
Collapse
|
42
|
Thompson JR, Gustafsson HC, DeCapo M, Takahashi DL, Bagley JL, Dean TA, Kievit P, Fair DA, Sullivan EL. Maternal Diet, Metabolic State, and Inflammatory Response Exert Unique and Long-Lasting Influences on Offspring Behavior in Non-Human Primates. Front Endocrinol (Lausanne) 2018; 9:161. [PMID: 29740395 PMCID: PMC5924963 DOI: 10.3389/fendo.2018.00161] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/27/2018] [Indexed: 12/15/2022] Open
Abstract
Nutritional status influences brain health and gestational exposure to metabolic disorders (e.g. obesity and diabetes) increases the risk of neuropsychiatric disorders. The aim of the present study was to further investigate the role of maternal Western-style diet (WSD), metabolic state, and inflammatory factors in the programming of Japanese macaque offspring behavior. Utilizing structural equation modeling, we investigated the relationships between maternal diet, prepregnancy adiposity, third trimester insulin response, and plasma cytokine levels on 11-month-old offspring behavior. Maternal WSD was associated with greater reactive and ritualized anxiety in offspring. Maternal adiposity and third trimester macrophage-derived chemokine (MDC) exerted opposing effects on offspring high-energy outbursts. Elevated levels of this behavior were associated with low maternal MDC and increased prepregnancy adiposity. This is the first study to show that maternal MDC levels influence offspring behavior. We found no evidence suggesting maternal peripheral inflammatory response mediated the effect of maternal diet and metabolic state on aberrant offspring behavior. Additionally, the extent of maternal metabolic impairment differentially influenced chemokine response. Elevated prepregnancy adiposity suppressed third trimester chemokines, while obesity-induced insulin resistance augmented peripheral chemokine levels. WSD also directly increased maternal interleukin-12. This is the first non-human primate study to delineate the effects of maternal diet and metabolic state on gestational inflammatory environment and subsequent offspring behavior. Our findings give insight to the complex mechanisms by which diet, metabolic state, and inflammation during pregnancy exert unique influences on offspring behavioral regulation.
Collapse
Affiliation(s)
- Jacqueline R. Thompson
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Hanna C. Gustafsson
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, United States
| | - Madison DeCapo
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Diana L. Takahashi
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Jennifer L. Bagley
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Tyler A. Dean
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Damien A. Fair
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, United States
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Elinor L. Sullivan
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, United States
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, United States
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
- *Correspondence: Elinor L. Sullivan,
| |
Collapse
|
43
|
De Luca SN, Ziko I, Dhuna K, Sominsky L, Tolcos M, Stokes L, Spencer SJ. Neonatal overfeeding by small-litter rearing sensitises hippocampal microglial responses to immune challenge: Reversal with neonatal repeated injections of saline or minocycline. J Neuroendocrinol 2017; 29. [PMID: 28983991 DOI: 10.1111/jne.12540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/22/2017] [Accepted: 10/01/2017] [Indexed: 01/08/2023]
Abstract
The early-life period is extremely vulnerable to programming effects from the environment, many of which persist into adulthood. We have previously demonstrated that adult rats overfed as neonates have hypothalamic microglia that are hyper-responsive to an immune challenge, as well as hippocampal microglia that respond less efficiently to learning. We therefore hypothesised that neonatal overfeeding would alter the ability of hippocampal microglia to respond to an immune challenge with lipopolysaccharide (LPS) and that concomitant minocycline, a tetracycline antibiotic that suppresses microglial activity, could restore these responses. We induced neonatal overfeeding by manipulating the litter sizes in which Wistar rat pups were raised, so the pups were suckled in litters of four (neonatally overfed) or 12 (control-fed). We then examined the hippocampal microglial profiles 24 hour after an immune challenge with LPS and found that the neonatally overfed rats had dramatically increased microglial numbers in the hippocampus after immune challenge compared to control-fed rats. Attempts to reverse these effects with minocycline revealed repeated that neonatal injections, whether with minocycline or with saline, markedly suppressed microglial number and density throughout the hippocampus and abolished the difference between the groups in their responses to LPS. These data suggest that neonatal overfeeding not only can have lasting effects on hippocampal immune responses, but also that neonatal exposure to a protocol of repeated injections, irrespective of treatment, has a pronounced long-term impact, highlighting the importance of considering these effects when interpreting experimental data.
Collapse
Affiliation(s)
- S N De Luca
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - I Ziko
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - K Dhuna
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - L Sominsky
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - M Tolcos
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - L Stokes
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - S J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
44
|
Kelley KW. To Boldly Go Where One Has Gone Before. Brain Behav Immun 2017; 66:1-8. [PMID: 28818559 DOI: 10.1016/j.bbi.2017.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 10/19/2022] Open
Abstract
Americans are suffering from a culture of taking pills. Six out of ten Americans utilize at least one prescription drug, and more than one in ten use five or more prescription medicines. Although this torrent of taking pills is already high, drug use in the USA has not yet crested. Prescription drugs have specific targets, but often they adversely affect other tissues and organs. In keeping with the mission of the National Institutes of Health, Brain, Behavior, and Immunity searches for the underlying cause and potential efficacy of both drug and non-drug interventions. When the journal was first published in 1987, it challenged the scientific tidal wave that emphasized specialization in a single, specific discipline such as molecular biology, neuroscience or immunology. The focus of the journal was to support and extend biomedical research by publishing cutting edge findings in psychoneuroimmunology. Brain, Behavior, and Immunity began serving as the official journal of the Psychoneuroimmunology Research Society (PNIRS) in 2000. During its first 16years of existence, Brain, Behavior, and Immunity published 600 papers. During the subsequent 15years, there has been a steep, linear rise in publications that continues to this day, amounting to the publication of nearly 2500 articles in psychoneuroimmunology. Some of the current and hottest topics in the field are investigating ancient health practices such as mindfulness-based meditation, Tai Chi, exercise, perinatal health and the gut microbiome. As such, Brain, Behavior, and Immunity continues to advance biomedical research by boldly going forward. Just as it originally challenged the specialization philosophy that is so prevalent in medicine, it is now exploring the integrative physiological events that underlie century-old health practices. This approach has revealed that some age-old interventions are just as efficacious as prescription drugs. A world in which century-old therapies meet modern technologies could well be the best medicine for all of us.
Collapse
Affiliation(s)
- Keith W Kelley
- Department of Pathology, College of Medicine and Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, IL 61801-3873, USA.
| |
Collapse
|
45
|
Zhang J, Jing Y, Zhang H, Bilkey DK, Liu P. Maternal immune activation leads to increased nNOS immunoreactivity in the brain of postnatal day 2 rat offspring. Synapse 2017; 72. [PMID: 28921679 DOI: 10.1002/syn.22011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/29/2017] [Accepted: 09/11/2017] [Indexed: 01/10/2023]
Abstract
Neuronal nitric oxide synthase (nNOS) is a key arginine metabolising enzyme in the brain, and nNOS-derived nitric oxide (NO) plays an important role in regulating glutamatergic neurotransmission. NO and its related molecules are involved in the pathogenesis of schizophrenia, and human genetic studies have identified schizophrenia risk genes encoding nNOS. This study systematically investigated how maternal immune activation (MIA; a risk factor for schizophrenia) induced by polyinosinic:polycytidylic acid affected nNOS-immunoreactivity in the brain of the resulting male and female offspring at the age of postnatal day (PND) 2. Immunohistochemistry revealed a markedly increased intensity of nNOS-positive cells in the CA3 and dentate gyrus subregions of the hippocampus, the somatosensory cortex, and the striatum, but not the frontal cortex and hippocampal CA1 region, in the MIA offspring when compared to control group animals. There were no sex differences in the effect. Given the role of nNOS in glutamatergic neurotransmission and its functional relationship with glutamate NMDA receptors, increased nNOS immunoreactivity may indicate the up-regulation of NMDA receptor function in MIA rat offspring at an early postnatal age. Future research is required to determine whether these changes contribute to the neuronal and behavioral dysfunction observed in both juvenile and adult MIA rat offspring.
Collapse
Affiliation(s)
- Jiaxian Zhang
- Department of Anatomy, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Yu Jing
- Department of Anatomy, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Hu Zhang
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - David K Bilkey
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Ping Liu
- Department of Anatomy, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
46
|
Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG. Cross Talk: The Microbiota and Neurodevelopmental Disorders. Front Neurosci 2017; 11:490. [PMID: 28966571 PMCID: PMC5605633 DOI: 10.3389/fnins.2017.00490] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/17/2017] [Indexed: 12/11/2022] Open
Abstract
Humans evolved within a microbial ecosystem resulting in an interlinked physiology. The gut microbiota can signal to the brain via the immune system, the vagus nerve or other host-microbe interactions facilitated by gut hormones, regulation of tryptophan metabolism and microbial metabolites such as short chain fatty acids (SCFA), to influence brain development, function and behavior. Emerging evidence suggests that the gut microbiota may play a role in shaping cognitive networks encompassing emotional and social domains in neurodevelopmental disorders. Drawing upon pre-clinical and clinical evidence, we review the potential role of the gut microbiota in the origins and development of social and emotional domains related to Autism spectrum disorders (ASD) and schizophrenia. Small preliminary clinical studies have demonstrated gut microbiota alterations in both ASD and schizophrenia compared to healthy controls. However, we await the further development of mechanistic insights, together with large scale longitudinal clinical trials, that encompass a systems level dimensional approach, to investigate whether promising pre-clinical and initial clinical findings lead to clinical relevance.
Collapse
Affiliation(s)
- John R Kelly
- Department of Psychiatry and Neurobehavioural Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Chiara Minuto
- Department of Psychiatry and Neurobehavioural Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College CorkCork, Ireland.,Department of Anatomy and Neuroscience, University College CorkCork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Timothy G Dinan
- Department of Psychiatry and Neurobehavioural Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| |
Collapse
|
47
|
Mottahedin A, Ardalan M, Chumak T, Riebe I, Ek J, Mallard C. Effect of Neuroinflammation on Synaptic Organization and Function in the Developing Brain: Implications for Neurodevelopmental and Neurodegenerative Disorders. Front Cell Neurosci 2017; 11:190. [PMID: 28744200 PMCID: PMC5504097 DOI: 10.3389/fncel.2017.00190] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/20/2017] [Indexed: 12/27/2022] Open
Abstract
The brain is a plastic organ where both the intrinsic CNS milieu and extrinsic cues play important roles in shaping and wiring neural connections. The perinatal period constitutes a critical time in central nervous system development with extensive refinement of neural connections, which are highly sensitive to fetal and neonatal compromise, such as inflammatory challenges. Emerging evidence suggests that inflammatory cells in the brain such as microglia and astrocytes are pivotal in regulating synaptic structure and function. In this article, we will review the role of glia cells in synaptic physiology and pathophysiology, including microglia-mediated elimination of synapses. We propose that activation of the immune system dynamically affects synaptic organization and function in the developing brain. We will discuss the role of neuroinflammation in altered synaptic plasticity following perinatal inflammatory challenges and potential implications for neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Amin Mottahedin
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Maryam Ardalan
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Tetyana Chumak
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Ilse Riebe
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Joakim Ek
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Carina Mallard
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| |
Collapse
|
48
|
Ziko I, Sominsky L, Nguyen TX, Yam KY, De Luca S, Korosi A, Spencer SJ. Hyperleptinemia in Neonatally Overfed Female Rats Does Not Dysregulate Feeding Circuitry. Front Endocrinol (Lausanne) 2017; 8:287. [PMID: 29123503 PMCID: PMC5662871 DOI: 10.3389/fendo.2017.00287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/11/2017] [Indexed: 12/03/2022] Open
Abstract
Neonatal overfeeding during the first weeks of life in male rats is associated with a disruption in the peripheral and central leptin systems. Neonatally overfed male rats have increased circulating leptin in the first 2 weeks of life, which corresponds to an increase in body weight compared to normally fed counterparts. These effects are associated with a short-term disruption in the connectivity of neuropeptide Y (NPY), agouti-related peptide (AgRP), and pro-opiomelanocortin (POMC) neurons within the regions of the hypothalamus responsible for control of energy balance and food intake. Female rats that are overfed during the first weeks of their life experience similar changes in circulating leptin levels as well as in their body weight. However, it has not yet been studied whether these metabolic changes are associated with the same central effects as observed in males. Here, we hypothesized that hyperleptinemia associated with neonatal overfeeding would lead to changes in central feeding circuitry in females as it does in males. We assessed hypothalamic NPY, AgRP, and POMC gene expression and immunoreactivity at 7, 12, or 14 days of age, as well as neuronal activation in response to exogenous leptin in neonatally overfed and control female rats. Neonatally overfed female rats were hyperleptinemic and were heavier than controls. However, these metabolic changes were not mirrored centrally by changes in hypothalamic NPY, AGRP, and POMC fiber density. These findings are suggestive of sex differences in the effects of neonatal overfeeding and of differences in the ability of the female and male central systems to respond to changes in the early life nutritional environment.
Collapse
Affiliation(s)
- Ilvana Ziko
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia
| | - Luba Sominsky
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia
| | - Thai-Xinh Nguyen
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia
| | - Kit-Yi Yam
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Simone De Luca
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Sarah J. Spencer
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia
- *Correspondence: Sarah J. Spencer,
| |
Collapse
|