1
|
D'Aquila PS. Licking microstructure in response to novel rewards, reward devaluation and dopamine antagonists: Possible role of D1 and D2 medium spiny neurons in the nucleus accumbens. Neurosci Biobehav Rev 2024; 165:105861. [PMID: 39159734 DOI: 10.1016/j.neubiorev.2024.105861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/29/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Evidence on the effect of dopamine D1 and D2-like antagonists and of manipulations of reward value on licking microstructure is reanalysed considering recent findings on the role of nucleus accumbens (NAc) medium spiny neurons (MSNs) in the control of sugar intake. The results of this analysis suggest that D1 MSN activation, which is involved in the emission of licking bursts, might play a crucial role in response to novel rewards. D2 MSN activation, which results in reduction of burst size and suppression of licking, might mediate the response to reward devaluation. Elucidating the neural mechanisms underlying the licking response might lead to a better definition of its microstructural measures in behaviourally and psychologically meaningful functional terms. This could further support its use as a behavioural substrate in the study of the neural mechanisms of ingestive behaviour and motivation, as well as in animal models of pathological conditions such as eating disorders and obesity.
Collapse
Affiliation(s)
- Paolo S D'Aquila
- Dipartimento di Scienze Biomediche, Università di Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| |
Collapse
|
2
|
Hird EJ, Slanina-Davies A, Lewis G, Hamer M, Roiser JP. From movement to motivation: a proposed framework to understand the antidepressant effect of exercise. Transl Psychiatry 2024; 14:273. [PMID: 38961071 PMCID: PMC11222551 DOI: 10.1038/s41398-024-02922-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 03/28/2024] [Accepted: 05/10/2024] [Indexed: 07/05/2024] Open
Abstract
Depression is the leading cause of disability worldwide, exerting a profound negative impact on quality of life in those who experience it. Depression is associated with disruptions to several closely related neural and cognitive processes, including dopamine transmission, fronto-striatal brain activity and connectivity, reward processing and motivation. Physical activity, especially aerobic exercise, reduces depressive symptoms, but the mechanisms driving its antidepressant effects are poorly understood. Here we propose a novel hypothesis for understanding the antidepressant effects of exercise, centred on motivation, across different levels of explanation. There is robust evidence that aerobic exercise decreases systemic inflammation. Inflammation is known to reduce dopamine transmission, which in turn is strongly implicated in effort-based decision making for reward. Drawing on a broad range of research in humans and animals, we propose that by reducing inflammation and boosting dopamine transmission, with consequent effects on effort-based decision making for reward, exercise initially specifically improves 'interest-activity' symptoms of depression-namely anhedonia, fatigue and subjective cognitive impairment - by increasing propensity to exert effort. Extending this framework to the topic of cognitive control, we explain how cognitive impairment in depression may also be conceptualised through an effort-based decision-making framework, which may help to explain the impact of exercise on cognitive impairment. Understanding the mechanisms underlying the antidepressant effects of exercise could inform the development of novel intervention strategies, in particular personalised interventions and boost social prescribing.
Collapse
Affiliation(s)
- E J Hird
- Institute of Cognitive Neuroscience, University College London, London, UK.
| | - A Slanina-Davies
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - G Lewis
- Division of Psychiatry, University College London, London, UK
| | - M Hamer
- Institute of Sport, Exercise and Health, University College London, London, UK
| | - J P Roiser
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
3
|
D'Aquila PS. Dopamine, activation of ingestion and evaluation of response efficacy: a focus on the within-session time-course of licking burst number. Psychopharmacology (Berl) 2024; 241:1111-1124. [PMID: 38702473 PMCID: PMC11106101 DOI: 10.1007/s00213-024-06600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
RATIONALE Evidence on the effect of dopamine D1-like and D2-like receptor antagonists on licking microstructure and the forced swimming response led us to suggest that (i) dopamine on D1-like receptors plays a role in activating reward-directed responses and (ii) the level of response activation is reboosted based on a process of evaluation of response efficacy requiring dopamine on D2-like receptors. A main piece of evidence in support of this hypothesis is the observation that the dopamine D2-like receptor antagonist raclopride induces a within-session decrement of burst number occurring after the contact with the reward. The few published studies with a detailed analysis of the time-course of this measure were conducted in our laboratory. OBJECTIVES The aim of this review is to recapitulate and discuss the evidence in support of the analysis of the within-session burst number as a behavioural substrate for the study of the mechanisms governing ingestion, behavioural activation and the related evaluation processes, and its relevance in the analysis of drug effects on ingestion. CONCLUSIONS The evidence gathered so far suggests that the analysis of the within-session time-course of burst number provides an important behavioural substrate for the study of the mechanisms governing ingestion, behavioural activation and the related evaluation processes, and might provide decisive evidence in the analysis of the effects of drugs on ingestion. However, further evidence from independent sources is necessary to validate the use and the proposed interpretation of this measure.
Collapse
Affiliation(s)
- Paolo S D'Aquila
- Dipartimento di Scienze Biomediche, Università di Sassari, Viale S. Pietro 43/b, Sassari, 07100, Italy.
| |
Collapse
|
4
|
Lopez-Cruz L, Phillips BU, Hailwood JM, Saksida LM, Heath CJ, Bussey TJ. Refining the study of decision-making in animals: differential effects of d-amphetamine and haloperidol in a novel touchscreen-automated Rearing-Effort Discounting (RED) task and the Fixed-Ratio Effort Discounting (FRED) task. Neuropsychopharmacology 2024; 49:422-432. [PMID: 37644210 PMCID: PMC10724152 DOI: 10.1038/s41386-023-01707-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
Effort-based decision-making is impaired in multiple psychopathologies leading to significant impacts on the daily life of patients. Preclinical studies of this important transdiagnostic symptom in rodents are hampered, however, by limitations present in currently available decision-making tests, including the presence of delayed reinforcement and off-target cognitive demands. Such possible confounding factors can complicate the interpretation of results in terms of decision-making per se. In this study we addressed this problem using a novel touchscreen Rearing-Effort Discounting (RED) task in which mice choose between two single-touch responses: rearing up to touch an increasingly higher positioned stimulus to obtain a High Reward (HR) or touching a lower stimulus to obtain a Low Reward (LR). To explore the putative advantages of this new approach, RED was compared with a touchscreen version of the well-studied Fixed Ratio-based Effort Discounting (FRED) task, in which multiple touches are required to obtain an HR, and a single response is required to obtain an LR. Results from dopaminergic (haloperidol and d-amphetamine), behavioral (changes in the order of effort demand; fixed-ratio schedule in FRED or response height in RED), and dietary manipulations (reward devaluation by pre-feeding) were consistent with the presence of variables that may complicate interpretation of conventional decision-making tasks, and demonstrate how RED appears to minimize such variables.
Collapse
Affiliation(s)
- Laura Lopez-Cruz
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | - Benjamin U Phillips
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
| | - Jonathan M Hailwood
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
| | - Lisa M Saksida
- Robarts Research Institute and Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Christopher J Heath
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Timothy J Bussey
- Robarts Research Institute and Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| |
Collapse
|
5
|
Berg M, Riehle M, Rief W, Lincoln T. Does partial blockade of dopamine D2 receptors with Amisulpride cause anhedonia? An experimental study in healthy volunteers. J Psychiatr Res 2023; 158:409-416. [PMID: 36680855 DOI: 10.1016/j.jpsychires.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/22/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
BACKGROUND Anhedonia is a frequent cause of functional impairment in psychosis. Although it is plausible that medication-induced D2 receptor blockade could diminish hedonic responding, there is little experimental research testing this hypothesis in humans. METHODS To inspect possible effects of partial D2 blockade on hedonic experiences, we administered 300 mg of Amisulpride or placebo to 85 participants in a randomized, double-blind, placebo-controlled trial. Participants were then subjected to an emotional evocation task utilizing standardized pictorial pleasant, neutral, and unpleasant stimuli. RESULTS We observed lower positivity ratings in the Amisulpride group compared to placebo across all stimulus categories (p = .026, f = 0.25) and no group differences in negativity or arousal ratings. The Amisulpride group also showed lower electrodermal responses across all stimulus categories compared to placebo (p = .017, f = 0.27). The electrodermal response was especially diminished for pleasant stimuli. CONCLUSION We interpret our findings as evidence that D2 blockade via Amisulpride can reduce at-the-moment hedonic responsivity in healthy volunteers. If these results can be confirmed in drug-naïve clinical samples, this would indicate that antipsychotic medication contributes to clinical anhedonia, probably via antagonistic effects at the dopamine D2 receptor.
Collapse
Affiliation(s)
- Max Berg
- Philipps-University of Marburg, Dept. of Psychology, Division of Clinical Psychology and Psychotherapy, Gutenbergstraße 18, D-35032, Marburg, Germany.
| | - Marcel Riehle
- Universität Hamburg, Dept. of Psychology, Clinical Psychology and Psychotherapy, Von-Melle-Park 5, D-20146, Hamburg, Germany
| | - Winfried Rief
- Philipps-University of Marburg, Dept. of Psychology, Division of Clinical Psychology and Psychotherapy, Gutenbergstraße 18, D-35032, Marburg, Germany
| | - Tania Lincoln
- Universität Hamburg, Dept. of Psychology, Clinical Psychology and Psychotherapy, Von-Melle-Park 5, D-20146, Hamburg, Germany
| |
Collapse
|
6
|
Babaev O, Cruces Solis H, Arban R. Dopamine modulating agents alter individual subdomains of motivation-related behavior assessed by touchscreen procedures. Neuropharmacology 2022; 211:109056. [DOI: 10.1016/j.neuropharm.2022.109056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022]
|
7
|
Influences of dopaminergic system dysfunction on late-life depression. Mol Psychiatry 2022; 27:180-191. [PMID: 34404915 PMCID: PMC8850529 DOI: 10.1038/s41380-021-01265-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Deficits in cognition, reward processing, and motor function are clinical features relevant to both aging and depression. Individuals with late-life depression often show impairment across these domains, all of which are moderated by the functioning of dopaminergic circuits. As dopaminergic function declines with normal aging and increased inflammatory burden, the role of dopamine may be particularly salient for late-life depression. We review the literature examining the role of dopamine in the pathogenesis of depression, as well as how dopamine function changes with aging and is influenced by inflammation. Applying a Research Domain Criteria (RDoC) Initiative perspective, we then review work examining how dopaminergic signaling affects these domains, specifically focusing on Cognitive, Positive Valence, and Sensorimotor Systems. We propose a unified model incorporating the effects of aging and low-grade inflammation on dopaminergic functioning, with a resulting negative effect on cognition, reward processing, and motor function. Interplay between these systems may influence development of a depressive phenotype, with an initial deficit in one domain reinforcing decline in others. This model extends RDoC concepts into late-life depression while also providing opportunities for novel and personalized interventions.
Collapse
|
8
|
Fry BR, Pence NT, McLocklin A, Johnson AW. Disruptions in effort-based decision-making following acute optogenetic stimulation of ventral tegmental area dopamine cells. Learn Mem 2021; 28:104-108. [PMID: 33723029 PMCID: PMC7970740 DOI: 10.1101/lm.053082.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/20/2021] [Indexed: 11/24/2022]
Abstract
The dopamine system has been implicated in decision-making particularly when associated with effortful behavior. We examined acute optogenetic stimulation of dopamine cells in the ventral tegmental area (VTA) as mice engaged in an effort-based decision-making task. Tyrosine hydroxylase-Cre mice were injected with Cre-dependent ChR2 or eYFP control virus in the VTA. While eYFP control mice showed effortful discounting, stimulation of dopamine cells in ChR2 mice disrupted effort-based decision-making by reducing choice toward the lever associated with a preferred outcome and greater effort. Surprisingly, disruptions in effortful discounting were observed in subsequent test sessions conducted in the absence of optogenetic stimulation, however during these sessions ChR2 mice displayed enhanced high choice responding across trial blocks. These findings suggest increases in VTA dopamine cell activity can disrupt effort-based decision-making in distinct ways dependent on the timing of optogenetic stimulation.
Collapse
Affiliation(s)
- Benjamin R Fry
- Department of Psychology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Nathan T Pence
- Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, USA
| | - Andrew McLocklin
- Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, USA
| | - Alexander W Johnson
- Department of Psychology, Michigan State University, East Lansing, Michigan 48824, USA
- Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
9
|
D'Aquila PS. Microstructure analysis of the effects of the cannabinoid agents HU-210 and rimonabant in rats licking for sucrose. Eur J Pharmacol 2020; 887:173468. [DOI: 10.1016/j.ejphar.2020.173468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
|
10
|
Knauss ZT, Filipovic M, Smith KA, Queener MM, Lubera JA, Bolden-Hall NM, Smith JP, Goldsmith RS, Bischoff JE, Miller MK, Cromwell HC. Effort-reward balance and work motivation in rats: Effects of context and order of experience. Behav Processes 2020; 181:104239. [PMID: 32966870 DOI: 10.1016/j.beproc.2020.104239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/10/2020] [Accepted: 08/28/2020] [Indexed: 12/28/2022]
Abstract
Being motivated means exerting effort toward a goal. The 'law of least work' emphasizes a preference for exerting relatively less effort. The law crosses boundaries among species and between physical and mental work. Organisms should be highly sensitive to shifts in effort-reward balance (ERB) in order to make optimal choices. We used a free operant-foraging task to investigate changes in ERB on choice between options requiring more or less effort. Results showed a consistent preference for the option with less effort and insensitivity to shifts in ERB. A second aim explored the influence of order of experience on effort choice. Choice for the more effortful option significantly increased after experiencing an equal effort-reward relationship during the initial free operant-foraging session. This relative increase in choice for the effortful option persisted even after effort-reward imbalance. The findings highlight the importance of contextual factors such as order of experience when examining the impact of shifting effort-reward associations. Instead of ignoring or reducing order effects, the sequence of experience (e.g. for shifts in ERB) could be manipulated to enhance or reduce value of outcomes or effort itself.
Collapse
Affiliation(s)
- Zackery T Knauss
- Department of Psychology and John Paul Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, United States
| | - Marko Filipovic
- Department of Psychology and John Paul Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, United States
| | - Kylee A Smith
- Department of Psychology and John Paul Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, United States
| | - Melanie M Queener
- Department of Psychology and John Paul Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, United States
| | - Joseph A Lubera
- Department of Psychology and John Paul Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, United States
| | - Najae M Bolden-Hall
- Department of Psychology and John Paul Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, United States
| | - Jasmine P Smith
- Department of Psychology and John Paul Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, United States
| | - Robert S Goldsmith
- Department of Psychology and John Paul Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, United States
| | - Jacob E Bischoff
- Department of Psychology and John Paul Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, United States
| | - Melissa K Miller
- Department of Psychology and John Paul Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, United States
| | - Howard C Cromwell
- Department of Psychology and John Paul Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, United States.
| |
Collapse
|
11
|
Yang JH, Presby RE, Rotolo RA, Quiles T, Okifo K, Zorda E, Fitch RH, Correa M, Salamone JD. The dopamine depleting agent tetrabenazine alters effort-related decision making as assessed by mouse touchscreen procedures. Psychopharmacology (Berl) 2020; 237:2845-2854. [PMID: 32561947 DOI: 10.1007/s00213-020-05578-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022]
Abstract
RATIONALE Effort-based decision-making tasks allow animals to choose between preferred reinforcers that require high effort to obtain vs. low-effort/low reward options. Mesolimbic dopamine (DA) and related neural systems regulate effort-based choice. Tetrabenazine (TBZ) is a vesicular monoamine transport type-2 inhibitor that blocks DA storage and depletes DA. In humans, TBZ induces motivational dysfunction and depression. TBZ has been shown reliably to induce a low-effort bias in rats, but there are fewer mouse studies. OBJECTIVES The present studies used touchscreen operant procedures (Bussey-Saksida chambers) to assess the effects of TBZ on effort-based choice in mice. METHODS C57BL6 mice were trained to press an elevated lit panel on the touchscreen on a fixed ratio 1 schedule reinforced by strawberry milkshake, vs. approaching and consuming a concurrently available but less preferred food pellets (Bio-serv). RESULTS TBZ (2.0-8.0 mg/kg IP) shifted choice, producing a dose-related decrease in panel pressing but an increase in pellet intake. In contrast, reinforcer devaluation by pre-feeding substantially decreased both panel pressing and pellet intake. In free-feeding choice tests, mice strongly preferred the milkshake vs. the pellets, and TBZ had no effect on milkshake intake or preference, indicating that the TBZ-induced low-effort bias was not due to changes in primary food motivation or preference. TBZ significantly decreased tissue levels of nucleus accumbens DA. CONCLUSION The DA depleting agent TBZ induced an effort-related motivational dysfunction in mice, which may have clinical relevance for assessing novel drug targets for their potential use as therapeutic agents in patients with motivation impairments.
Collapse
Affiliation(s)
- Jen-Hau Yang
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Rose E Presby
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Renee A Rotolo
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Taina Quiles
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Kevin Okifo
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Emma Zorda
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Roslyn Holly Fitch
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Mercè Correa
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA.,Area de Psicobiologia, Universitat Jaume I, Castelló, Spain
| | - John D Salamone
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
12
|
Yang JH, Presby RE, Cayer S, Rotolo RA, Perrino PA, Fitch RH, Correa M, Chesler EJ, Salamone JD. Effort-related decision making in humanized COMT mice: Effects of Val 158Met polymorphisms and possible implications for negative symptoms in humans. Pharmacol Biochem Behav 2020; 196:172975. [PMID: 32593787 DOI: 10.1016/j.pbb.2020.172975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/05/2020] [Accepted: 06/21/2020] [Indexed: 01/05/2023]
Abstract
Catechol-o-methyltransferase (COMT) is an enzyme that metabolizes catecholamines, and is crucial for clearance of dopamine (DA) in prefrontal cortex. Val158Met polymorphism, which causes a valine (Val) to methionine (Met) substitution at codon 158, is reported to be associated with human psychopathologies in some studies. The Val/Val variant of the enzyme results in higher dopamine metabolism, which results in reduced dopamine transmission. Thus, it is important to investigate the relation between Val158Met polymorphisms using rodent models of psychiatric symptoms, including negative symptoms such as motivational dysfunction. In the present study, humanized COMT transgenic mice with two genotype groups (Val/Val (Val) and Met/Met (Met) homozygotes) and wild-type (WT) mice from the S129 background were tested using a touchscreen effort-based choice paradigm. Mice were trained to choose between delivery of a preferred liquid diet that reinforced panel pressing on various fixed ratio (FR) schedules (high-effort alternative), vs. intake of pellets concurrently available in the chamber (low-effort alternative). Panel pressing requirements were controlled by varying the FR levels (FR1, 2, 4, 8, 16) in ascending and descending sequences across weeks of testing. All mice were able to acquire the initial touchscreen operant training, and there was an inverse relationship between the number of reinforcers delivered by panel pressing and pellet intake across different FR levels. There was a significant group x FR level interaction in the ascending limb, with panel presses in the Val group being significantly lower than the WT group in FR1-8, and lower than Met in FR4. These findings indicate that the humanized Val allele in mice modulates FR/pellet-choice performance, as marked by lower levels of panel pressing in the Val group when the ratio requirement was moderately high. These studies may contribute to the understanding of the role of COMT polymorphisms in negative symptoms such as motivational dysfunctions in schizophrenic patients.
Collapse
Affiliation(s)
- Jen-Hau Yang
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut, Storrs, CT, USA; Present address: Dept. of Psychiatry, Yale University, New Haven, CT, USA
| | - Rose E Presby
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut, Storrs, CT, USA
| | - Suzanne Cayer
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut, Storrs, CT, USA
| | - Renee A Rotolo
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut, Storrs, CT, USA
| | - Peter A Perrino
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut, Storrs, CT, USA
| | - R Holly Fitch
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut, Storrs, CT, USA
| | - Merce Correa
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut, Storrs, CT, USA; Area de Psicobiologia, Universitat Jaume I, Castelló, Spain
| | | | - John D Salamone
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
13
|
Pharmacological studies of effort-related decision making using mouse touchscreen procedures: effects of dopamine antagonism do not resemble reinforcer devaluation by removal of food restriction. Psychopharmacology (Berl) 2020; 237:33-43. [PMID: 31392358 DOI: 10.1007/s00213-019-05343-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/25/2019] [Indexed: 01/14/2023]
Abstract
RATIONALE Effort-based decision-making tasks offer animals choices between preferred reinforcers that require high effort to obtain vs. low effort/low reward options. The neural mechanisms of effort-based choice are widely studied in rats, and evidence indicates that mesolimbic dopamine (DA) and related neural systems play a key role. Fewer studies of effort-based choice have been performed in mice. OBJECTIVES The present studies used touchscreen operant procedures (Bussey-Saksida boxes) to assess effort-based choice in mice. METHODS CD1 mice were assessed on a concurrent fixed ratio 1 panel pressing/choice procedure. Mice were allowed to choose between rearing to press an elevated panel on the touchscreen for a preferred food (strawberry milkshake) vs. consuming a concurrently available less preferred alternative (high carbohydrate pellets). RESULTS The DA D2 antagonist haloperidol (0.05-0.15 mg/kg IP) produced a dose-related decrease in panel pressing. Intake of food pellets was not reduced by haloperidol, and in fact, there was a significant quadratic trend, indicating a tendency for pellet intake to increase at low/moderate doses. In contrast, reinforcer devaluation by removing food restriction substantially decreased both panel pressing and pellet intake. In free-feeding choice tests, mice strongly preferred milkshake vs. pellets. Haloperidol did not affect food intake or preference. CONCLUSION Haloperidol reduced the tendency to work for food, but this reduction was not due to decreases in primary food motivation or preference. Mouse touchscreen procedures demonstrate effects of haloperidol that are similar but not identical to those shown in rats. These rodent studies may be relevant for understanding motivational dysfunctions in humans.
Collapse
|
14
|
Fry BR, Russell N, Gifford R, Robles CF, Manning CE, Sawa A, Niwa M, Johnson AW. Assessing Reality Testing in Mice Through Dopamine-Dependent Associatively Evoked Processing of Absent Gustatory Stimuli. Schizophr Bull 2020; 46:54-67. [PMID: 31150554 PMCID: PMC6942166 DOI: 10.1093/schbul/sbz043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Impairments in reality testing are core features of numerous neuropsychiatric conditions. However, relatively few animal models have been developed to assess this critical facet of neuropsychiatric illness, thus impeding our understanding of the underlying central systems and circuits. Using mice in which dominant-negative Disrupted-in-Schizophrenia-1 is expressed throughout central nervous system circuitry (DN-DISC1-PrP), the capacity for an auditory conditioned stimulus (CS) to evoke perceptual processing of an absent sucrose solution was examined. At test, during CS presentations, DN-DISC1-PrP mice consumed more water and displayed a licking profile that is more typically revealed while ingesting a sweet-tasting solution. DN-DISC1-PrP mice also displayed greater c-fos expression in the insular (gustatory) cortex when consuming water in the presence of the CS. This capacity for the CS to more readily substitute for the taste features of the absent sucrose solution in DN-DISC1-PrP mice was attenuated following systemic treatment with the antipsychotic haloperidol. Conversely, social isolation during adolescence promoted the manifestation of these effects. These results provide strong validation for using associative learning procedures to examine dopamine-mediated reality testing associated with insular cortex activation.
Collapse
Affiliation(s)
- Benjamin R Fry
- Department of Psychology, Michigan State University, East Lansing, MI
| | - Nicollette Russell
- Department of Psychology, Michigan State University, East Lansing, MI,Neuroscience Program, Michigan State University, East Lansing, MI
| | - Ryan Gifford
- Department of Psychology, Michigan State University, East Lansing, MI
| | - Cindee F Robles
- Department of Psychology, Michigan State University, East Lansing, MI
| | - Claire E Manning
- Neuroscience Program, Michigan State University, East Lansing, MI
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Neuroscience, Biomedical Engineering, and Genetic Medicine, Johns Hopkins University School of Medicine. Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Minae Niwa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD,Present address: Department of Psychiatry and Behavioral Neurobiology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL
| | - Alexander W Johnson
- Department of Psychology, Michigan State University, East Lansing, MI,Neuroscience Program, Michigan State University, East Lansing, MI,To whom correspondence should be addressed; tel: +1-517-432-8446; fax: +1-517-432-4744, e-mail:
| |
Collapse
|
15
|
Kao KC, Hisatsune T. Differential effects of dopamine D1-like and D2-like receptor agonists on water drinking behaviour under thirsty conditions in mice with reduced dopamine secretion. Eur J Neurosci 2019; 51:584-597. [PMID: 31472080 DOI: 10.1111/ejn.14568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/08/2019] [Accepted: 08/27/2019] [Indexed: 11/27/2022]
Abstract
The mesolimbic dopamine system is important for reward-oriented behaviours, such as drinking and eating. However, the precise involvement of dopaminergic neurons and dopamine receptors in water drinking behaviour remains unclear. Here, we generated triple transgenic mice harbouring Slc6a3(DAT)-icre/ERT2, Camk2a-loxP-STOP-loxP-tetracycline transactivator and tetO-tetanus toxin constructs, in which the release of dopamine is blocked by tetanus toxin. These mice, referred to as dopamine secretion interference mice, had reduced dopamine secretion in the striatum (61.4%) and the nucleus accumbens (54.5%). They showed adequate limb strength and food consumption, similarly to control mice, but exhibited motor control impairment in a challenging rotarod test. Dopamine secretion interference mice made fewer licks and had fewer bursts than control mice during a licking test under thirsty conditions. To elucidate the influence of dopamine receptors in the altered drinking behaviour, a dopamine D1 or D2/D3 receptor agonist (A68930 or ropinirole, respectively) was administered prior to the licking microstructure analysis. Treatment with the D1 agonist restored the total number of licks but not the burst number in dopamine secretion interference mice. By contrast, the D2/3 agonist impeded water drinking behaviour in both transgenic and control mice. The present findings indicate that D1 receptor activation partially ameliorates the altered drinking behaviour of the dopamine secretion interference mice and suggest that D1 receptor activity impacts drinking under thirsty conditions.
Collapse
Affiliation(s)
- Kung-Chun Kao
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Tatsuhiro Hisatsune
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
16
|
Smith T, Panfil K, Bailey C, Kirkpatrick K. Cognitive and behavioral training interventions to promote self-control. JOURNAL OF EXPERIMENTAL PSYCHOLOGY. ANIMAL LEARNING AND COGNITION 2019; 45:259-279. [PMID: 31070430 PMCID: PMC6716382 DOI: 10.1037/xan0000208] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This review article discusses various cognitive and behavioral interventions that have been developed with the goal of promoting self-controlled responding. Self-control can exert a significant impact on human health and impulsive behaviors are associated with a wide range of diseases and disorders, leading to the suggestion that impulsivity is a trans-disease process. The self-control interventions include effort exposure, reward discrimination, reward bundling, interval schedules of reinforcement, impulse control training, and mindfulness training. Most of the interventions have been consistently shown to increase self-control, except for mindfulness training. Some of the successful interventions are long-lasting, whereas others may be transient. Most interventions are domain-specific, targeting specific cognitive and behavioral processes that relate to self-control rather than targeting overall self-control. For example, effort exposure appears to primarily increase effort tolerance, which in turn can improve self-control. Similarly, interval schedules primarily target interval timing, which promotes self-controlled responses. A diagram outlining a proposed set of intervention effects on self-control is introduced to motivate further research in this area. The diagram suggests that the individual target processes of the interventions may potentially summate to produce general self-control, or perhaps even produce synergistic effects. In addition, it is suggested that developing a self-control profile may be advantageous for aligning specific interventions to mitigate specific deficits. Overall, the results indicate that interventions are a promising avenue for promoting self-control and may help to contribute to changing health outcomes associated with a wide variety of diseases and disorders. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
|
17
|
Cooper JA, Arulpragasam AR, Treadway MT. Anhedonia in depression: biological mechanisms and computational models. Curr Opin Behav Sci 2018; 22:128-135. [PMID: 29503842 DOI: 10.1016/j.cobeha.2018.01.024] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Anhedonia is a severe condition that describes a near-complete absence of enjoyment, motivation, and interest. A core feature of depression, clinical manifestations of anhedonia can include deficits in experiencing pleasure, approach-related motivated behavior, and learning how to match expectations to the environment. To date, the precise neurobiological mechanisms of anhedonia in major depression are still poorly understood. We have previously argued that contradictory findings and the inability to identify specific neurobiological substrates for anhedonic symptoms may result from sample heterogeneity, suboptimal methods of assessment, and the challenge of dissociating between different components of anhedonia. Recently, however, computational advances to the operationalization of psychiatric symptoms have enhanced the ability to evaluate the neurobiology of constituent elements of this symptom domain. In this paper, we review (1) advances in behavioral and computational methods of assessing reward processing and motivation and (2) the development of new self-report, neurological, and biological methods of subtyping that may be useful in future pursuits to expand our understanding of the neurobiology of anhedonia in depression.
Collapse
Affiliation(s)
| | | | - Michael T Treadway
- Department of Psychology, Emory University, Atlanta, GA 30322.,Department of Psychiatry, Emory School of Medicine, Emory University, Atlanta, GA 30322
| |
Collapse
|
18
|
Phillips BU, Lopez-Cruz L, Hailwood J, Heath CJ, Saksida LM, Bussey TJ. Translational approaches to evaluating motivation in laboratory rodents: conventional and touchscreen-based procedures. Curr Opin Behav Sci 2018. [DOI: 10.1016/j.cobeha.2017.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Salamone JD, Correa M, Yang JH, Rotolo R, Presby R. Dopamine, Effort-Based Choice, and Behavioral Economics: Basic and Translational Research. Front Behav Neurosci 2018; 12:52. [PMID: 29628879 PMCID: PMC5876251 DOI: 10.3389/fnbeh.2018.00052] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/28/2018] [Indexed: 01/14/2023] Open
Abstract
Operant behavior is not only regulated by factors related to the quality or quantity of reinforcement, but also by the work requirements inherent in performing instrumental actions. Moreover, organisms often make effort-related decisions involving economic choices such as cost/benefit analyses. Effort-based decision making is studied using behavioral procedures that offer choices between high-effort options leading to relatively preferred reinforcers vs. low effort/low reward choices. Several neural systems, including the mesolimbic dopamine (DA) system and other brain circuits, are involved in regulating effort-related aspects of motivation. Considerable evidence indicates that mesolimbic DA transmission exerts a bi-directional control over exertion of effort on instrumental behavior tasks. Interference with DA transmission produces a low-effort bias in animals tested on effort-based choice tasks, while increasing DA transmission with drugs such as DA transport blockers tends to enhance selection of high-effort options. The results from these pharmacology studies are corroborated by the findings from recent articles using optogenetic, chemogenetic and physiological techniques. In addition to providing important information about the neural regulation of motivated behavior, effort-based choice tasks are useful for developing animal models of some of the motivational symptoms that are seen in people with various psychiatric and neurological disorders (e.g., depression, schizophrenia, Parkinson’s disease). Studies of effort-based decision making may ultimately contribute to the development of novel drug treatments for motivational dysfunction.
Collapse
Affiliation(s)
- John D Salamone
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Merce Correa
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States.,Area de Psicobiologia, Universitat de Jaume I, Castelló, Spain
| | - Jen-Hau Yang
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Renee Rotolo
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Rose Presby
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
20
|
Johnson AW. Examining the influence of CS duration and US density on cue-potentiated feeding through analyses of licking microstructure. LEARNING AND MOTIVATION 2018; 61:85-96. [PMID: 30082927 PMCID: PMC6075650 DOI: 10.1016/j.lmot.2017.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the current study, groups of mice were trained with either short (20 s) or long (120 s) conditioned stimulus (CS) durations associated with different rates of sucrose unconditioned stimulus (US) delivery, to examine whether different behavioral forms of cue-potentiated feeding in sated mice would be evoked. In training mice received presentations of an auditory CS for 20 s during which a sucrose US was delivered at a density of 1/9 s (Group-20-s). A second group of mice received an auditory CS for 120 s and a US density of 1/49 s (Group-120-s). During training, a shorter CS duration and higher rate of US delivery resulted in greater acquisition of food cup responding, and during the test stage Group-20-s mice also displayed higher CS evoked lick rates, though all mice showed cue-potentiated feeding. An analysis of licking microstructure also revealed that Group-120-s mice displayed CS evoked licking behavior that reflected an increase in the perceived palatability of the sucrose US. These findings are discussed with respect to the influence of CS interval and US density on associatively activated sensory and affective representations of a US, and contrast mediated effects resulting from presentation of excitatory and inhibitory conditioned stimuli.
Collapse
Affiliation(s)
- Alexander W Johnson
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI, 48864, USA
| |
Collapse
|
21
|
Johnson AW. Characterizing ingestive behavior through licking microstructure: Underlying neurobiology and its use in the study of obesity in animal models. Int J Dev Neurosci 2018; 64:38-47. [PMID: 28684308 PMCID: PMC6063358 DOI: 10.1016/j.ijdevneu.2017.06.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/24/2017] [Accepted: 06/30/2017] [Indexed: 12/19/2022] Open
Abstract
Ingestive behavior is controlled by multiple distinct peripheral and central physiological mechanisms that ultimately determine whether a particular food should be accepted or avoided. As rodents consume a fluid they display stereotyped rhythmic tongue movements, and by analyzing the temporal distribution of pauses of licking, it is possible through analyses of licking microstructure to uncover dissociable evaluative and motivational variables that contribute to ingestive behavior. The mean number of licks occurring within each burst of licking (burst and cluster size) reflects the palatability of the consumed solution, whereas the frequency of initiating novel bouts of licking behavior (burst and cluster number) is dependent upon the degree of gastrointestinal inhibition that accrues through continued fluid ingestion. This review describes the analysis of these measures within a context of the behavioral variables that come to influence the acceptance or avoidance of a fluid, and the neurobiological mechanisms that underlie alterations in the temporal distribution of pauses of licks. The application of these studies to models of obesity in animals is also described.
Collapse
Affiliation(s)
- Alexander W Johnson
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI, 48864, USA.
| |
Collapse
|
22
|
Georgiou P, Zanos P, Bhat S, Tracy JK, Merchenthaler IJ, McCarthy MM, Gould TD. Dopamine and Stress System Modulation of Sex Differences in Decision Making. Neuropsychopharmacology 2018; 43:313-324. [PMID: 28741626 PMCID: PMC5729565 DOI: 10.1038/npp.2017.161] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/30/2017] [Accepted: 07/18/2017] [Indexed: 12/18/2022]
Abstract
Maladaptive decision making is associated with several neuropsychiatric disorders, including problem gambling and suicidal behavior. The prevalence of these disorders is higher in men vs women, suggesting gender-dependent regulation of their pathophysiology underpinnings. We assessed sex differences in decision making using the rat version of the Iowa gambling task. Female rats identified the most optimal choice from session 1, whereas male rats from session 5. Male, but not female rats, progressively improved their advantageous option responding and surpassed females. Estrus cycle phase did not affect decision making. To test whether pharmacological manipulations targeting the dopaminergic and stress systems affect decision making in a sex-dependent manner, male and female rats received injections of a dopamine D2 receptor (D2R) antagonist (eticlopride), D2R agonist (quinpirole), corticotropin-releasing factor 1 (CRF1) antagonist (antalarmin), and α2-adrenergic receptor antagonist (yohimbine; used as a pharmacological stressor). Alterations in mRNA levels of D2R and CRF1 were also assessed. Eticlopride decreased advantageous responding in male, but not female rats, whereas quinpirole decreased advantageous responding specifically in females. Yohimbine dose-dependently decreased advantageous responding in female rats, whereas decreased advantageous responding was only observed at higher doses in males. Antalarmin increased optimal choice responding only in female rats. Higher Drd2 and Crhr1 expression in the amygdala were observed in female vs male rats. Higher amygdalar Crhr1 expression was negatively correlated with advantageous responding specifically in females. This study demonstrates the relevance of dopaminergic- and stress-dependent sex differences to maladaptive decision making.
Collapse
Affiliation(s)
- Polymnia Georgiou
- Departments of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Panos Zanos
- Departments of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Shambhu Bhat
- Departments of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - J Kathleen Tracy
- Departments of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, MD, USA,Maryland Center of Excellence on Problem Gambling University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Istvan J Merchenthaler
- Departments of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, MD, USA,Departments of Anatomy & Neurobiology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Margaret M McCarthy
- Departments of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, USA,Departments of Physiology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Todd D Gould
- Departments of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA,Departments of Anatomy & Neurobiology, School of Medicine, University of Maryland, Baltimore, MD, USA,Departments of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, USA,Department of Psychiatry, University of Maryland School of Medicine, MSTF 936; 685 W. Baltimore St., Baltimore, MD 21201, USA, Tel: +1 (410) 706-5585, E-mail:
| |
Collapse
|
23
|
Within-session decrement of the emission of licking bursts following reward devaluation in rats licking for sucrose. PLoS One 2017; 12:e0177705. [PMID: 28493981 PMCID: PMC5426716 DOI: 10.1371/journal.pone.0177705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/02/2017] [Indexed: 11/19/2022] Open
Abstract
We previously observed that dopamine D2-like receptor blockade in rats licking for sucrose produced a within-session decrement of the emission of licking bursts similar to the effect of either reward devaluation, or neuroleptics, on operant responding for different rewards, which, accordingly, we interpreted as an extinction-like effect. This implies that exposing animals to reward devaluation would result in a drop of burst number taking place only after the contact with the devalued reward. To test this prediction, we compared the difference in the within-session time course of burst number in response to high (10%) versus low (2%) concentration sucrose solutions, either in a condition of reward devaluation (exposure to 2% after daily 10%), or in a condition which does not involve changes in the reward value (two groups of subjects each repeatedly exposed to only one of the two concentrations). Reward devaluation resulted in a within-session decrement of the burst number, with the response rate dropping only after the contact with the devalued reward, as predicted. This response pattern was reliably observed only in subjects at their first devaluation experience. In contrast, exposure of separate groups of animals to the two different concentrations yielded lower levels of burst number in the low concentration group apparent since the beginning of the session, as previously observed with dopamine D1-like receptor blockade. These results show that the analysis of burst number, but not of burst size, reveals a specific activation pattern in response to reward devaluation, which differs from the pattern observed comparing the response to two different sucrose concentrations in separate groups of subjects, i.e. in a condition not involving reward devaluation. Finally, the characterisation of the experimental measures of the analysis of licking microstructure in behaviourally (and psychologically) meaningful functional terms, might be relevant for the investigation of the mechanisms underlying behavioural activation and the related evaluation processes.
Collapse
|