1
|
Huang HB, Cheng PK, Siao CY, Lo YTC, Chou WC, Huang PC. Mediation effects of thyroid function in the associations between phthalate exposure and lipid metabolism in adults. Environ Health 2022; 21:61. [PMID: 35778735 PMCID: PMC9248169 DOI: 10.1186/s12940-022-00873-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Phthalates are a group of industrial chemicals widely used in everyday products including cosmetics, food packaging and containers, plastics, and building materials. Previous studies have indicated that urinary phthalate metabolites are associated with metabolic effects including those on lipid metabolism, but the results are mixed. Furthermore, whether thyroid function mediates the association between phthalate exposure and lipid metabolism remains unclear. In the present study, we explored whether changes in thyroid function markers mediate the associations between phthalate exposure and lipid metabolism indicators in Taiwanese adults. The cross-sectional data were obtained from the Taiwan Environmental Survey for Toxicants conducted in 2013. Levels of 11 urinary phthalate metabolites, levels of 5 thyroid hormones, and 8 indicators of lipid metabolism were assessed in 222 Taiwanese adults. The relationships of urinary phthalate metabolite levels with serum thyroid hormone levels and lipid metabolism indicators were explored using multiple regression models. Mediation analysis was conducted to evaluate the role of thyroid function in the association between phthalate exposure and lipid metabolism. The metabolite of di(- 2-ethylhexyl) phthalate (∑DEHPm) exhibited a significant positive association with the lipid metabolite indicator of high-density lipoprotein cholesterol (HDL-C; β = 0.059, 95% confidence interval [CI] = 0.009, 0.109) in adults, and the thyroid function indicator thyroxine (T4) had a significant negative association with the metabolite ∑DEHPm (β = - 0.059, 95% CI = - 0.101, - 0.016) and a significant negative association with HDL-C (β = - 0.284, 95% CI = - 0.440, - 0.128). The T4 indirect effect was 0.015 (95% CI = - 0.0087, 0.05), and the mediation effect was 32.2%. Our results support the assumption that exposure to phthalates influences the homeostasis of lipid metabolism by interfering with thyroid function.
Collapse
Affiliation(s)
- Han-Bin Huang
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Po-Keng Cheng
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
| | - Chi-Ying Siao
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Yuan-Ting C Lo
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Chun Chou
- Department of Environmental and Global Health, University of Florida, Gainesville, USA
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan.
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
2
|
Monteiro BL, Santos RAS, Mario EG, Araujo TS, Savergnini SSQ, Santiago AF, Muzzi RAL, Castro IC, Teixeira LG, Botion LM, Marinho BM, Santos SHS, Porto LCJ. Genetic deletion of Mas receptor in FVB/N mice impairs cardiac use of glucose and lipids. Peptides 2022; 151:170764. [PMID: 35151766 DOI: 10.1016/j.peptides.2022.170764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/18/2022] [Accepted: 02/08/2022] [Indexed: 11/20/2022]
Abstract
Angiotensin-(1-7) is a biologically active product of the renin-angiotensin system cascade and exerts inhibitory effects on inflammation, vascular and cellular growth mechanisms signaling through the G protein-coupled Mas receptor. The major purpose of the present study was to investigate the use of glucose and fatty acids by cardiac tissue in Mas knockout mice models. Serum levels of glucose, lipids, and insulin were measured in Mas-deficient and wild-type FVB/N mice. To investigate the cardiac use of lipids, the lipoprotein lipase, the gene expression of peroxisome proliferator-activated receptor alpha; carnitine palmitoyltransferase I and acyl-CoA oxidase were evaluated. To investigate the cardiac use of glucose, the insulin signaling through Akt/GLUT4 pathway, glucose-6-phosphate (G-6-P) and fructose-6-phosphate (F-6-P) glycolytic intermediates, in addition to ATP, lactate and the glycogen content were measured. Despite normal body weight, cholesterol and insulin, Mas-Knockout mice presented hyperglycemia and hypertriglyceridemia, impaired insulin signaling, through reduced phosphorylation of AKT and decreased translocation of GLUT4 in response to insulin, with subsequent decrease of the cardiac G-6-P and F-6-P. Lactate production and glycogen content were not altered in Mas-KO hearts. Mas-KO presented reduced cardiac lipoprotein lipase activity and decreased translocation of CD36 in response to insulin. The expression of peroxisome proliferator-activated receptor alpha and carnitine palmitoyltransferase I genes were lower in Mas-KO animals compared to wild-type animals. The ATP content of Mas-KO hearts was smaller than in wild-type. The present results suggest that genetic deletion of Mas produced a devastating effect on cardiac use of glucose and lipids, leading to lower energy efficiency in the heart.
Collapse
Affiliation(s)
- Brenda L Monteiro
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil.
| | - Robson A S Santos
- Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, Brazil.
| | - Erica G Mario
- Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, Brazil.
| | - Thiago S Araujo
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil.
| | - Silvia S Q Savergnini
- Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, Brazil.
| | - Andrezza F Santiago
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil.
| | - Ruthnea A L Muzzi
- Institute of Agricultural Sciences (ICA), Food Engineering, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil.
| | - Isabela C Castro
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil.
| | - Lilian G Teixeira
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil.
| | - Leida M Botion
- Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, Brazil.
| | - Barbhara M Marinho
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil.
| | - Sergio H S Santos
- Institute of Agricultural Sciences (ICA), Food Engineering, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil; Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil.
| | - Laura C J Porto
- Federal University of Lavras, Department of Nutrition, Av. Norte UFLA - Aquenta Sol, Lavras, MG, Brazil; Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
Dietary excess regulates absorption and surface of gut epithelium through intestinal PPARα. Nat Commun 2021; 12:7031. [PMID: 34857752 PMCID: PMC8639731 DOI: 10.1038/s41467-021-27133-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 11/05/2021] [Indexed: 02/08/2023] Open
Abstract
Intestinal surface changes in size and function, but what propels these alterations and what are their metabolic consequences is unknown. Here we report that the food amount is a positive determinant of the gut surface area contributing to an increased absorptive function, reversible by reducing daily food. While several upregulated intestinal energetic pathways are dispensable, the intestinal PPARα is instead necessary for the genetic and environment overeating-induced increase of the gut absorptive capacity. In presence of dietary lipids, intestinal PPARα knock-out or its pharmacological antagonism suppress intestinal crypt expansion and shorten villi in mice and in human intestinal biopsies, diminishing the postprandial triglyceride transport and nutrient uptake. Intestinal PPARα ablation limits systemic lipid absorption and restricts lipid droplet expansion and PLIN2 levels, critical for droplet formation. This improves the lipid metabolism, and reduces body adiposity and liver steatosis, suggesting an alternative target for treating obesity.
Collapse
|
4
|
Abstract
Legumes are an essential food source worldwide. Their high-quality proteins, complex carbohydrates, dietary fiber, and relatively low-fat content make these an important functional food. Known to possess a multitude of health benefits, legume consumption is associated with the prevention and treatment of cardiovascular diseases (CVD). Legume crude protein isolates and purified peptides possess many cardiopreventive properties. Here, we review selected economically valued legumes, their taxonomy and distribution, biochemical composition, and their protein components and the mechanism(s) of action associated with cardiovascular health. Most of the legume protein studies had shown upregulation of low-density lipoprotein (LDL) receptor leading to increased binding and uptake, in effect significantly reducing total lipid levels in the blood serum and liver. This is followed by decreased biosynthesis of cholesterol and fatty acids. To understand the relationship of identified genes from legume studies, we performed gene network analysis, pathway, and gene ontology (GO) enrichment. Results showed that the genes were functionally interrelated while enrichment and pathway analysis revealed involvement in lipid transport, fatty acid and triglyceride metabolic processes, and regulatory processes. This review is the first attempt to collate all known mechanisms of action of legume proteins associated with cardiovascular health. This also provides a snapshot of possible targets leading to systems-level approaches to further investigate the cardiometabolic potentials of legumes.
Collapse
|
5
|
Ochiai M. Evaluating the appropriate oral lipid tolerance test model for investigating plasma triglyceride elevation in mice. PLoS One 2020; 15:e0235875. [PMID: 33022003 PMCID: PMC7537863 DOI: 10.1371/journal.pone.0235875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
The oral lipid tolerance test (OLTT) has been known to assess intestinal fat metabolism and whole-body lipid metabolism, but rodent models for OLTT are not yet established. Differences in OLTT methodology preclude the generation of definitive results, which may cause some confusion about the anti-hypertriglyceridemia effects of the test materials. To standardize and generate more appropriate methodology for the OLTT, we examined the effects of mice strain, dietary lipid sources, fasting period, and gender on lipid-induced hypertriglyceridemia in mice. First, lipid-induced hypertriglyceridemia was more strongly observed in male ddY mice than in C57BL/6N or ICR mice. Second, the administration of olive and soybean oils remarkably represented lipid-induced hypertriglyceridemia. Third, fasting period before the OLTT largely affected the plasma triglyceride elevation. Fasting for 12 h, but less than 48 h, provoked lipid-induced hypertriglyceridemia. Fourth, we explored the suppressive effects of epigallocatechin gallate (EGCG), a green tea polyphenol, on lipid-induced hypertriglyceridemia. The administration of 100 mg/kg of EGCG suppressed lipid-induced hypertriglyceridemia and intestinal lipase activity. Fifth, EGCG-induced suppressive effects were observed after lipid-induced hypertriglyceridemia was observed in male mice, but not in female mice. Lastly, lipid-induced hypertriglyceridemia could be more effectively induced in mice fed a high-fat diet for 1 week before the OLTT. These findings indicate that male ddY mice after 12 h fasting displayed marked lipid-induced hypertriglyceridemia in response to soybean oil. Hence, the defined experiment condition may be a more appropriate OLTT model for evaluating lipid-induced hypertriglyceridemia.
Collapse
Affiliation(s)
- Masaru Ochiai
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
- * E-mail:
| |
Collapse
|
6
|
Dávalos-Salas M, Mariadason JM, Watt MJ, Montgomery MK. Molecular regulators of lipid metabolism in the intestine - Underestimated therapeutic targets for obesity? Biochem Pharmacol 2020; 178:114091. [PMID: 32535104 DOI: 10.1016/j.bcp.2020.114091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
The incidence of obesity and type 2 diabetes continues to rise across the globe necessitating the need to identify new therapeutic approaches to manage these diseases. In this review, we explore the potential for therapeutic interventions focussed on the intestinal epithelium, by targeting the role of this tissue in lipid uptake, lipid-mediated cross talk and lipid oxidation. We focus initially on ongoing strategies to manage obesity by targeting the essential role of the intestinal epithelium in lipid uptake, and in mediating tissue cross talk to regulate food intake. Subsequently, we explore a previously underestimated capacity of intestinal epithelial cells to oxidize fatty acids. In this context, we describe recent findings which have unveiled a key role for the peroxisome proliferator-activated receptor (PPAR) family of nuclear receptors and histone deacetylases (HDACs) in the regulation of lipid oxidation genes in enterocytes and how targeted genetic manipulation of these factors in enterocytes reduces weight gain, identifying intestinal PPARs and HDACs as potential therapeutic targets in the management of obesity.
Collapse
Affiliation(s)
- Mercedes Dávalos-Salas
- Olivia Newton John Cancer Research Institute, Melbourne, Victoria, Australia; La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - John M Mariadason
- Olivia Newton John Cancer Research Institute, Melbourne, Victoria, Australia; La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Matthew J Watt
- Department of Physiology, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Magdalene K Montgomery
- Department of Physiology, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
7
|
Perng W, Kasper NM, Watkins DJ, Sanchez BN, Meeker JD, Cantoral A, Solano-González M, Tellez-Rojo MM, Peterson K. Exposure to Endocrine-Disrupting Chemicals During Pregnancy Is Associated with Weight Change Through 1 Year Postpartum Among Women in the Early-Life Exposure in Mexico to Environmental Toxicants Project. J Womens Health (Larchmt) 2020; 29:1419-1426. [PMID: 32233978 DOI: 10.1089/jwh.2019.8078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: The postpartum period may be a vulnerable life stage for a woman's cardiometabolic health. We examined associations of exposure to common endocrine-disrupting chemicals (EDCs) during pregnancy with weight from delivery through 1 year postpartum among 199 women in Mexico City. Materials and Methods: During each trimester of pregnancy, we collected a urine sample to assay bisphenol A (BPA), mono-n-butyl phthalate (MnBP), mono-isobutyl phthalate (MiBP), monobenzyl phthalate (MBzP), mono-3-carboxypropyl phthalate (MCPP), mono-2-ethyl-5-carboxypentyl phthalate (MECPP), mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP), mono-2-ethylhexyl phthalate (MEHP), mono-2-ethyl-5-oxohexyl phthalate (MEOHP), and monoethyl phthalate (MEP). We calculated summary scores for di-2-ethylhexyl phthalate metabolites (ΣDEHP) and dibutyl phthalate metabolites (ΣDBP). We calculated the geometric mean of each EDC across pregnancy for use in the analysis. At delivery and three additional times during the first year postpartum, we measured the women's weight. We used mixed-effects linear regression models to estimate associations of each EDC with weight at delivery (kg) and weight change (kg/year) from delivery through 1 year postpartum. Covariates included urinary specific gravity, maternal age, parity, height, first trimester body mass index, and gestational age at enrollment. Results: Mean ± standard deviation weight change during the first postpartum year was -0.49 ± 4.04 kg. The EDCs were inversely associated with weight at delivery, but positively associated with weight change through 1 year postpartum. For example, each interquartile range of urinary ΣDEHP corresponded with 1.38 (95% confidence interval: 0.44-2.33) kg lower weight at delivery and 1.01 (0.41--1.61) kg/year slower rate of weight loss. We observed similar associations for other EDCs. Conclusions: Prenatal exposure to EDCs is associated with lower weight at delivery, but slower rate of weight loss through the first postpartum year.
Collapse
Affiliation(s)
- Wei Perng
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Nicole M Kasper
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Brisa N Sanchez
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, Pennsylvania, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Alejandra Cantoral
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico, USA
| | - Maritsa Solano-González
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico, USA
| | - Martha Maria Tellez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico, USA
| | - Karen Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA.,Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Bittel AJ, Bittel DC, Mittendorfer B, Patterson BW, Okunade AL, Yoshino J, Porter LC, Abumrad NA, Reeds DN, Cade WT. A single bout of resistance exercise improves postprandial lipid metabolism in overweight/obese men with prediabetes. Diabetologia 2020; 63:611-623. [PMID: 31873788 PMCID: PMC7002271 DOI: 10.1007/s00125-019-05070-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS Prediabetes is associated with postprandial hypertriacylglycerolaemia. Resistance exercise acutely lowers postprandial plasma triacylglycerol (TG); however, the changes in lipid metabolism that mediate this reduction are poorly understood. The aim of this study was to identify the constitutive metabolic mechanisms underlying the changes in postprandial lipid metabolism after resistance exercise in obese men with prediabetes. METHODS We evaluated the effect of a single bout of whole-body resistance exercise (seven exercises, three sets, 10-12 repetitions at 80% of one-repetition maximum) on postprandial lipid metabolism in ten middle-aged (50 ± 9 years), overweight/obese (BMI: 33 ± 3 kg/m2), sedentary men with prediabetes (HbA1c >38 but <48 mmol/mol [>5.7% but <6.5%]), or fasting plasma glucose >5.6 mmol/l but <7.0 mmol/l or 2 h OGTT glucose >7.8 mmol/l but <11.1 mmol/l). We used a randomised, crossover design with a triple-tracer mixed meal test (ingested [(13C4)3]tripalmitin, i.v. [U-13C16]palmitate and [2H5]glycerol) to evaluate chylomicron-TG and total triacylglycerol-rich lipoprotein (TRL)-TG kinetics. We used adipose tissue and skeletal muscle biopsies to evaluate the expression of genes regulating lipolysis and lipid oxidation, skeletal muscle respirometry to evaluate oxidative capacity, and indirect calorimetry to assess whole-body lipid oxidation. RESULTS The single bout of resistance exercise reduced the lipaemic response to a mixed meal in obese men with prediabetes without changing chylomicron-TG or TRL-TG fractional clearance rates. However, resistance exercise reduced endogenous and meal-derived fatty acid incorporation into chylomicron-TG and TRL-TG. Resistance exercise also increased whole-body lipid oxidation, skeletal muscle mitochondrial respiration, oxidative gene expression in skeletal muscle, and the expression of key lipolysis genes in adipose tissue. CONCLUSIONS/INTERPRETATION A single bout of resistance exercise improves postprandial lipid metabolism in obese men with prediabetes, which may mitigate the risk for cardiovascular disease and type 2 diabetes.
Collapse
Affiliation(s)
- Adam J Bittel
- Program in Physical Therapy, Washington University, St Louis, Campus Box 8502, 4444 Forest Park Ave., St Louis, MO, 63110, USA.
| | - Daniel C Bittel
- Program in Physical Therapy, Washington University, St Louis, Campus Box 8502, 4444 Forest Park Ave., St Louis, MO, 63110, USA
| | - Bettina Mittendorfer
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Bruce W Patterson
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Adewole L Okunade
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Jun Yoshino
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Lane C Porter
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Nada A Abumrad
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Dominic N Reeds
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - W Todd Cade
- Program in Physical Therapy, Washington University, St Louis, Campus Box 8502, 4444 Forest Park Ave., St Louis, MO, 63110, USA
| |
Collapse
|
9
|
Zhu Q, Hou J, Yin W, Ye F, Xu T, Cheng J, Yu Z, Wang L, Yuan J. Associations of a mixture of urinary phthalate metabolites with blood lipid traits: A repeated-measures pilot study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113509. [PMID: 31767236 DOI: 10.1016/j.envpol.2019.113509] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/05/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
Evidence is available about the associations of phthalates or their metabolites with blood lipids, however, the mixture effects of multiple phthalate metabolites on blood lipid traits remain largely unknown. In this pilot study, 106 individuals at three age groups of <18, 18- and ≥60 years were recruited from the residents (n = 1240) who were randomly selected from two communities in Wuhan city, China. The participants completed the questionnaire survey and physical examination as well as provided urine samples in the winter of 2014 and the summer of 2015. We measured urinary levels of nine phthalate metabolites using a high-performance liquid chromatography-tandem mass spectrometry. We estimated the associations of individual phthalate metabolite with blood lipid traits by linear mixed effect (LME) models, and assessed the overall association of the mixture of nine phthalate metabolites with blood lipid traits using Bayesian kernel machine regression (BKMR) models. LME models revealed the negative association of urinary mono-2-ethylhexyl phthalate (MEHP) with total cholesterol (TC) as well as of urinary mono-benzyl phthalate or urinary MEHP with low density lipoprotein cholesterol (LDL-C). BKMR models revealed the negative overall association of the mixture of nine phthalate metabolites with TC or LDL-C, and DEHP metabolites (especially MEHP) had a greater contribution to TC or LDL-C levels than non-DEHP metabolites. The findings indicated the negative overall association of the mixture of nine phthalate metabolites with TC or LDL-C. Among nine phthalate metabolites, MEHP was the most important component for the changes of TC or LDL-C levels, implying that phthalates exposure may disrupt lipid metabolism in the body.
Collapse
Affiliation(s)
- Qingqing Zhu
- Department of Occupational and Environmental Health, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Jian Hou
- Department of Occupational and Environmental Health, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Wenjun Yin
- Department of Occupational and Environmental Health, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Fang Ye
- Department of Occupational and Environmental Health, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Tian Xu
- Department of Occupational and Environmental Health, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Juan Cheng
- Department of Occupational and Environmental Health, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Lin Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China.
| | - Jing Yuan
- Department of Occupational and Environmental Health, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China.
| |
Collapse
|
10
|
Dávalos-Salas M, Montgomery MK, Reehorst CM, Nightingale R, Ng I, Anderton H, Al-Obaidi S, Lesmana A, Scott CM, Ioannidis P, Kalra H, Keerthikumar S, Tögel L, Rigopoulos A, Gong SJ, Williams DS, Yoganantharaja P, Bell-Anderson K, Mathivanan S, Gibert Y, Hiebert S, Scott AM, Watt MJ, Mariadason JM. Deletion of intestinal Hdac3 remodels the lipidome of enterocytes and protects mice from diet-induced obesity. Nat Commun 2019; 10:5291. [PMID: 31757939 PMCID: PMC6876593 DOI: 10.1038/s41467-019-13180-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Histone deacetylase 3 (Hdac3) regulates the expression of lipid metabolism genes in multiple tissues, however its role in regulating lipid metabolism in the intestinal epithelium is unknown. Here we demonstrate that intestine-specific deletion of Hdac3 (Hdac3IKO) protects mice from diet induced obesity. Intestinal epithelial cells (IECs) from Hdac3IKO mice display co-ordinate induction of genes and proteins involved in mitochondrial and peroxisomal β-oxidation, have an increased rate of fatty acid oxidation, and undergo marked remodelling of their lipidome, particularly a reduction in long chain triglycerides. Many HDAC3-regulated fatty oxidation genes are transcriptional targets of the PPAR family of nuclear receptors, Hdac3 deletion enhances their induction by PPAR-agonists, and pharmacological HDAC3 inhibition induces their expression in enterocytes. These findings establish a central role for HDAC3 in co-ordinating PPAR-regulated lipid oxidation in the intestinal epithelium, and identify intestinal HDAC3 as a potential therapeutic target for preventing obesity and related diseases. Histone deacetylase 3 (HDAC3) is a regulator of lipid homeostasis in several tissues, however, its role in intestinal lipid metabolism was not yet known. Here the authors study intestine specific HDAC3 knock out mice and report that these animals have increased fatty acid oxidation and undergo remodeling of the intestinal epithelial cell lipidome.
Collapse
Affiliation(s)
- Mercedes Dávalos-Salas
- Olivia Newton John Cancer Research Institute, Melbourne, Victoria, Australia.,La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Magdalene K Montgomery
- Department of Physiology, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Camilla M Reehorst
- Olivia Newton John Cancer Research Institute, Melbourne, Victoria, Australia.,La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Rebecca Nightingale
- Olivia Newton John Cancer Research Institute, Melbourne, Victoria, Australia.,La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Irvin Ng
- Olivia Newton John Cancer Research Institute, Melbourne, Victoria, Australia.,La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Holly Anderton
- Olivia Newton John Cancer Research Institute, Melbourne, Victoria, Australia
| | - Sheren Al-Obaidi
- Olivia Newton John Cancer Research Institute, Melbourne, Victoria, Australia
| | - Analia Lesmana
- Olivia Newton John Cancer Research Institute, Melbourne, Victoria, Australia
| | - Cameron M Scott
- Olivia Newton John Cancer Research Institute, Melbourne, Victoria, Australia
| | - Paul Ioannidis
- Olivia Newton John Cancer Research Institute, Melbourne, Victoria, Australia
| | - Hina Kalra
- La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Shivakumar Keerthikumar
- La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Lars Tögel
- Olivia Newton John Cancer Research Institute, Melbourne, Victoria, Australia.,La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Angela Rigopoulos
- Olivia Newton John Cancer Research Institute, Melbourne, Victoria, Australia.,La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Sylvia J Gong
- Olivia Newton John Cancer Research Institute, Melbourne, Victoria, Australia
| | - David S Williams
- Olivia Newton John Cancer Research Institute, Melbourne, Victoria, Australia.,La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia.,Department of Pathology, Austin Health, Melbourne, Victoria, Australia
| | | | - Kim Bell-Anderson
- Faculty of Science, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Suresh Mathivanan
- La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Yann Gibert
- Department of Medicine, Deakin University, Geelong, Victoria, Australia
| | | | - Andrew M Scott
- Olivia Newton John Cancer Research Institute, Melbourne, Victoria, Australia.,La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Matthew J Watt
- Department of Physiology, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia.
| | - John M Mariadason
- Olivia Newton John Cancer Research Institute, Melbourne, Victoria, Australia. .,La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia. .,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
11
|
Liu H, Qi X, Yu K, Lu A, Lin K, Zhu J, Zhang M, Sun Z. AMPK activation is involved in hypoglycemic and hypolipidemic activities of mogroside-rich extract from Siraitia grosvenorii (Swingle) fruits on high-fat diet/streptozotocin-induced diabetic mice. Food Funct 2019; 10:151-162. [DOI: 10.1039/c8fo01486h] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AMPK is involved in hypoglycemic and hypolipidemic activities of mogrosides from Siraitia grosvenorii (Swingle) fruits on diabetic mice.
Collapse
Affiliation(s)
- Hesheng Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Biological and Environmental Sciences
- Zhejiang Wanli University
- Ningbo 315100
- P. R. China
| | - Xiangyang Qi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Biological and Environmental Sciences
- Zhejiang Wanli University
- Ningbo 315100
- P. R. China
| | - Keke Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Biological and Environmental Sciences
- Zhejiang Wanli University
- Ningbo 315100
- P. R. China
| | - Anjie Lu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Biological and Environmental Sciences
- Zhejiang Wanli University
- Ningbo 315100
- P. R. China
| | - Kaifeng Lin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Biological and Environmental Sciences
- Zhejiang Wanli University
- Ningbo 315100
- P. R. China
| | - Jiajing Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Biological and Environmental Sciences
- Zhejiang Wanli University
- Ningbo 315100
- P. R. China
| | - Min Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Biological and Environmental Sciences
- Zhejiang Wanli University
- Ningbo 315100
- P. R. China
| | - Zhida Sun
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
| |
Collapse
|
12
|
Regulatory Efficacy of Spirulina platensis Protease Hydrolyzate on Lipid Metabolism and Gut Microbiota in High-Fat Diet-Fed Rats. Int J Mol Sci 2018; 19:ijms19124023. [PMID: 30551559 PMCID: PMC6320850 DOI: 10.3390/ijms19124023] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
Lipid metabolism disorder (LMD) is a public health issue. Spirulina platensis is a widely used natural weight-reducing agent and Spirulina platensis is a kind of protein source. In the present study, we aimed to evaluate the effect of Spirulina platensis protease hydrolyzate (SPPH) on the lipid metabolism and gut microbiota in high-fat diet (HFD)-fed rats. Our study showed that SPPH decreased the levels of triglyceride (TG), total cholesterol (TC), low-density-lipoprotein cholesterol (LDL-c), alanine transaminase (ALT), and aspartate transaminase (AST), but increased the level of high-density-lipoprotein cholesterol (HDL-c) in serum and liver. Moreover, SPPH had a hypolipidemic effect as indicated by the down-regulation of sterol regulatory element-binding transcription factor-1c (SREBP-1c), acetyl CoA carboxylase (ACC), SREBP-1c, and peroxisome proliferator-activated receptor-γ (PPARγ) and the up-regulation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and peroxisome proliferator-activated receptorα (PPARα) at the mRNA level in liver. SPPH treatment enriched the abundance of beneficial bacteria. In conclusion, our study showed that SPPH might be produce glucose metabolic benefits in rats with diet-induced LMD. The mechanisms underlying the beneficial effects of SPPH on the metabolism remain to be further investigated. Collectively, the above-mentioned findings illustrate that Spirulina platensis peptides have the potential to ameliorate lipid metabolic disorders, and our data provides evidence that SPPH might be used as an adjuvant therapy and functional food in obese and diabetic individuals.
Collapse
|
13
|
Guo WL, Pan YY, Li L, Li TT, Liu B, Lv XC. Ethanol extract of Ganoderma lucidum ameliorates lipid metabolic disorders and modulates the gut microbiota composition in high-fat diet fed rats. Food Funct 2018; 9:3419-3431. [PMID: 29877551 DOI: 10.1039/c8fo00836a] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The objective of this study was to investigate the effects of ethanol extract of Ganoderma lucidum (GL95) on hyperlipidaemia and gut microbiota, and its regulation mechanism in Wistar rats fed on a high-fat diet (HFD). UPLC-QTOF MS indicated that GL95 was enriched with triterpenoids, especially ganoderic acids. The results of the animal experiment showed that oral administration of GL95 markedly alleviated the dyslipidemia through decreasing the levels of serum total triglyceride (TG), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), and inhibiting hepatic lipid accumulation and steatosis. Furthermore, GL95 supplementation altered the composition of gut microbiota, in particular modulating the relative abundance of functionally relevant enterotypes compared with the HFD group. The Spearman's correlation analysis revealed that Alistipes, Defluviitalea, Peptococcaceae and Alloprevotella were negatively correlated with serum and hepatic lipid profiles. Meanwhile, the GL95 treatment regulated the mRNA expression levels of the genes involved in lipid and cholesterol metabolism. The findings above illustrate that Ganoderma triterpenoids have the potential to ameliorate lipid metabolic disorders, in part through modulating specific gut microbiota and regulating the genes involved in lipid and cholesterol metabolism, suggesting Ganoderma triterpenoids as a potential novel functional food for the treatment or prevention of hyperlipidaemia.
Collapse
Affiliation(s)
- Wei-Ling Guo
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China.
| | | | | | | | | | | |
Collapse
|
14
|
Arunima S, Rajamohan T. Lauric Acid Beneficially Modulates Apolipoprotein Secretion and Enhances Fatty Acid Oxidation via PPARα-dependent Pathways in Cultured Rat Hepatocytes. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2018; 3:1-11. [DOI: 10.14218/jerp.2017.00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Liu B, Yang T, Luo Y, Zeng L, Shi L, Wei C, Nie Y, Cheng Y, Lin Q, Luo F. Oat β-glucan inhibits adipogenesis and hepatic steatosis in high fat diet-induced hyperlipidemic mice via AMPK signaling. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
16
|
Mangat R, Borthwick F, Haase T, Jacome M, Nelson R, Kontush A, Vine DF, Proctor SD. Intestinal lymphatic HDL miR‐223 and ApoA‐I are reduced during insulin resistance and restored with niacin. FASEB J 2018; 32:1602-1612. [DOI: 10.1096/fj.201600298rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Rabban Mangat
- Metabolic and Cardiovascular Diseases Laboratory, Group on the Molecular Cell Biology of Lipids University of Alberta Edmonton Alberta Canada
- Alberta Diabetes Institute University of Alberta Edmonton Alberta Canada
- Mazankowski Alberta Heart Institute University of Alberta Edmonton Alberta Canada
| | - Faye Borthwick
- Metabolic and Cardiovascular Diseases Laboratory, Group on the Molecular Cell Biology of Lipids University of Alberta Edmonton Alberta Canada
- Alberta Diabetes Institute University of Alberta Edmonton Alberta Canada
- Mazankowski Alberta Heart Institute University of Alberta Edmonton Alberta Canada
| | - Tina Haase
- Metabolic and Cardiovascular Diseases Laboratory, Group on the Molecular Cell Biology of Lipids University of Alberta Edmonton Alberta Canada
- Alberta Diabetes Institute University of Alberta Edmonton Alberta Canada
- Mazankowski Alberta Heart Institute University of Alberta Edmonton Alberta Canada
| | - Miriam Jacome
- Metabolic and Cardiovascular Diseases Laboratory, Group on the Molecular Cell Biology of Lipids University of Alberta Edmonton Alberta Canada
- Alberta Diabetes Institute University of Alberta Edmonton Alberta Canada
- Mazankowski Alberta Heart Institute University of Alberta Edmonton Alberta Canada
| | - Randy Nelson
- Metabolic and Cardiovascular Diseases Laboratory, Group on the Molecular Cell Biology of Lipids University of Alberta Edmonton Alberta Canada
- Alberta Diabetes Institute University of Alberta Edmonton Alberta Canada
- Mazankowski Alberta Heart Institute University of Alberta Edmonton Alberta Canada
| | - Anatol Kontush
- National Institute for Health and Medical Research University of Pierre and Marie Curie, Salpétrière University Hospital Paris France
| | - Donna F. Vine
- Metabolic and Cardiovascular Diseases Laboratory, Group on the Molecular Cell Biology of Lipids University of Alberta Edmonton Alberta Canada
- Alberta Diabetes Institute University of Alberta Edmonton Alberta Canada
- Mazankowski Alberta Heart Institute University of Alberta Edmonton Alberta Canada
| | - Spencer D. Proctor
- Metabolic and Cardiovascular Diseases Laboratory, Group on the Molecular Cell Biology of Lipids University of Alberta Edmonton Alberta Canada
- Alberta Diabetes Institute University of Alberta Edmonton Alberta Canada
- Mazankowski Alberta Heart Institute University of Alberta Edmonton Alberta Canada
| |
Collapse
|
17
|
Hung YH, Carreiro AL, Buhman KK. Dgat1 and Dgat2 regulate enterocyte triacylglycerol distribution and alter proteins associated with cytoplasmic lipid droplets in response to dietary fat. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:600-614. [PMID: 28249764 PMCID: PMC5503214 DOI: 10.1016/j.bbalip.2017.02.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/31/2017] [Accepted: 02/24/2017] [Indexed: 12/16/2022]
Abstract
Enterocytes, the absorptive cells of the small intestine, mediate efficient absorption of dietary fat (triacylglycerol, TAG). The digestive products of dietary fat are taken up by enterocytes, re-esterified into TAG, and packaged on chylomicrons (CMs) for secretion into blood or temporarily stored within cytoplasmic lipid droplets (CLDs). Altered enterocyte TAG distribution impacts susceptibility to high fat diet associated diseases, but molecular mechanisms directing TAG toward these fates are unclear. Two enzymes, acyl CoA: diacylglycerol acyltransferase 1 (Dgat1) and Dgat2, catalyze the final, committed step of TAG synthesis within enterocytes. Mice with intestine-specific overexpression of Dgat1 (Dgat1Int) or Dgat2 (Dgat2Int), or lack of Dgat1 (Dgat1-/-), were previously found to have altered intestinal TAG secretion and storage. We hypothesized that varying intestinal Dgat1 and Dgat2 levels alters TAG distribution in subcellular pools for CM synthesis as well as the morphology and proteome of CLDs. To test this we used ultrastructural and proteomic methods to investigate intracellular TAG distribution and CLD-associated proteins in enterocytes from Dgat1Int, Dgat2Int, and Dgat1-/- mice 2h after a 200μl oral olive oil gavage. We found that varying levels of intestinal Dgat1 and Dgat2 altered TAG pools involved in CM assembly and secretion, the number or size of CLDs present in enterocytes, and the enterocyte CLD proteome. Overall, these results support a model where Dgat1 and Dgat2 function coordinately to regulate the process of dietary fat absorption by preferentially synthesizing TAG for incorporation into distinct subcellular TAG pools in enterocytes.
Collapse
Affiliation(s)
- Yu-Han Hung
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Alicia L Carreiro
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Kimberly K Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
18
|
Moreno-Indias I, Tinahones FJ, Clemente-Postigo M, Castellano-Castillo D, Fernández-García JC, Macias-Gonzalez M, Queipo-Ortuño MI, Cardona F. Molecular effect of fenofibrate on PBMC gene transcription related to lipid metabolism in patients with metabolic syndrome. Clin Endocrinol (Oxf) 2017; 86:784-790. [PMID: 28251701 DOI: 10.1111/cen.13320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/08/2017] [Accepted: 02/25/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND Both fasting and postprandial hypertriglyceridaemia are considered independent risk factors for atherosclerosis. Treatment of hypertriglyceridaemia is based on fibrates, which activate the peroxisome proliferator-activated receptor alpha (PPARα). However, the metabolic pathways that activate or inhibit fibrates, and how the postprandial triglyceride levels are modified, have not yet been fully described. Accordingly, the aim of this study was to determine the feasibility of peripheral blood mononuclear cells (PBMC) to study the effects of fenofibrate in patients with the metabolic syndrome. MATERIALS AND METHODS A fat overload was given to 50 patients before and after treatment with fenofibrate for 3 months. Anthropometric and biochemical variables as well as gene expression in PBMC were analysed. RESULTS After treatment with fenofibrate, we observed a decrease in both baseline and postprandial (3 h after the fat overload) levels of serum triglycerides, cholesterol and uric acid and an increase in HDL cholesterol and apolipoprotein AI levels. After treatment, there was also a rise in PPARα and RXRα expression and changes in genes regulated by PPARα, both baseline and postprandial. Furthermore, in vitro experiments showed that a PPARα agonist changed the expression of genes related with lipid metabolism. CONCLUSION Treatment with fenofibrate reduced fasting and postprandial serum triglyceride levels, possibly through a mechanism related with an increase in the expression of RXRα and PPARα, by activating the pathways involved in the uptake and degradation of triglycerides and increasing the synthesis of apolipoprotein. These results suggest that PBMC may be useful for the easy study of fenofibrate actions.
Collapse
Affiliation(s)
- I Moreno-Indias
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), CB06/03, Instituto de Salud Carlos III, Madrid, Spain
- Unidad Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Hospital Clinico Universitario Virgen de la Victoria, Universidad de Malaga, Malaga, Spain
| | - F J Tinahones
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), CB06/03, Instituto de Salud Carlos III, Madrid, Spain
- Unidad Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Hospital Clinico Universitario Virgen de la Victoria, Universidad de Malaga, Malaga, Spain
| | - M Clemente-Postigo
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), CB06/03, Instituto de Salud Carlos III, Madrid, Spain
- Unidad Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Hospital Clinico Universitario Virgen de la Victoria, Universidad de Malaga, Malaga, Spain
| | - D Castellano-Castillo
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), CB06/03, Instituto de Salud Carlos III, Madrid, Spain
- Unidad Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Hospital Clinico Universitario Virgen de la Victoria, Universidad de Malaga, Malaga, Spain
| | - J C Fernández-García
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), CB06/03, Instituto de Salud Carlos III, Madrid, Spain
- Unidad Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Hospital Clinico Universitario Virgen de la Victoria, Universidad de Malaga, Malaga, Spain
| | - M Macias-Gonzalez
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), CB06/03, Instituto de Salud Carlos III, Madrid, Spain
- Unidad Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Hospital Clinico Universitario Virgen de la Victoria, Universidad de Malaga, Malaga, Spain
| | - M I Queipo-Ortuño
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), CB06/03, Instituto de Salud Carlos III, Madrid, Spain
- Unidad Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Hospital Clinico Universitario Virgen de la Victoria, Universidad de Malaga, Malaga, Spain
| | - F Cardona
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), CB06/03, Instituto de Salud Carlos III, Madrid, Spain
- Unidad Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Hospital Clinico Universitario Virgen de la Victoria, Universidad de Malaga, Malaga, Spain
| |
Collapse
|
19
|
Perng W, Watkins DJ, Cantoral A, Mercado-García A, Meeker JD, Téllez-Rojo MM, Peterson KE. Exposure to phthalates is associated with lipid profile in peripubertal Mexican youth. ENVIRONMENTAL RESEARCH 2017; 154:311-317. [PMID: 28152472 PMCID: PMC5465958 DOI: 10.1016/j.envres.2017.01.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/04/2017] [Accepted: 01/25/2017] [Indexed: 05/02/2023]
Abstract
Animal models indicate that endocrine disrupting chemicals (EDCs) affect circulating lipid concentrations by interfering with hepatic fatty acid oxidation. Little is known of the relationship between EDC exposure and lipid profile in humans. We measured bisphenol A (BPA) and 9 phthalate metabolites in maternal urine collected at up to three time points during pregnancy as a measure of in utero exposure, and in the child's urine at 8-14 years as a measure of concurrent, peripubertal exposure among 248 participants of a Mexico City pre-birth cohort. We used linear regression to examine relations of BPA and phthalate exposure with peripubertal serum lipids, while also adjusting for child age, sex, and specific gravity. While in utero EDC exposure was not associated with lipid profile, higher concurrent levels of mono-3-carboxypropyl phthalate (MCPP), monoethyl phthalate (MEP), and dibutyl phthalate metabolites (DBP) corresponded with lower total cholesterol and low-density lipoprotein (LDL-C) in boys; e.g., an interquartile range increment in MCPP corresponded with 7.4% (2.0%, 12.8%) lower total cholesterol and 12.7% (3.8%, 21.6%) lower LDL-C. In girls, higher urinary di-2-ethylhexyl phthalate metabolites (ΣDEHP) correlated with lower LDL-C (-7.9% [-15.4%, -0.4%]). Additional longitudinal research is needed to determine whether these associations persist beyond adolescence.
Collapse
Affiliation(s)
- Wei Perng
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | - Deborah J Watkins
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Alejandra Cantoral
- Center for Nutrition and Health Research, National Institute of Public Health, Mexico City, MX
| | - Adriana Mercado-García
- Center for Nutrition and Health Research, National Institute of Public Health, Mexico City, MX
| | - John D Meeker
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, USA; Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
20
|
Takei K, Nakagawa Y, Wang Y, Han SI, Satoh A, Sekiya M, Matsuzaka T, Shimano H. Effects of K-877, a novel selective PPARα modulator, on small intestine contribute to the amelioration of hyperlipidemia in low-density lipoprotein receptor knockout mice. J Pharmacol Sci 2017; 133:214-222. [PMID: 28366492 DOI: 10.1016/j.jphs.2017.02.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/26/2017] [Accepted: 02/06/2017] [Indexed: 11/18/2022] Open
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a well-known therapeutic target for treating hyperlipidemia. K-877 is a novel selective PPARα modulator (SPPARMα) that enhances PPARα transcriptional activity with high selectivity and potency, resulting in reduced plasma lipid levels. This study aimed to evaluate the effects of K-877 on hyperlipidemia in low-density lipoprotein receptor knockout (Ldlr-/-) mice, a mouse model of atherosclerosis. We revealed that K-877 administration significantly decreased plasma triglyceride (TG) and total cholesterol (TC) levels and increased plasma high-density lipoprotein cholesterol (HDL-C) levels in Ldlr-/- mice. K-877 administration to Ldlr-/- mice efficiently increased the gene expression of PPARα and its target genes related to fatty acid oxidation in the liver and small intestine. The same treatment significantly increased ATP-binding cassette a1 gene expression in the liver and small intestine and reduced Niemann Pick C1-like 1 gene expression in the small intestine, suggesting that K-877 administration induced HDL-C production in the liver and small intestine and reduced cholesterol absorption in the small intestine. In conclusion, K-877 administration had pronounced effects on the liver and small intestine in Ldlr-/- mice. K-877 is an attractive PPARα-modulating drug for treating hyperlipidemia that works equally well in both the liver and small intestine.
Collapse
Affiliation(s)
- Kenta Takei
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoshimi Nakagawa
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Yunong Wang
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Song-Iee Han
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Aoi Satoh
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Motohiro Sekiya
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan; Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
21
|
Marino JS, Stechschulte LA, Stec DE, Nestor-Kalinoski A, Coleman S, Hinds TD. Glucocorticoid Receptor β Induces Hepatic Steatosis by Augmenting Inflammation and Inhibition of the Peroxisome Proliferator-activated Receptor (PPAR) α. J Biol Chem 2016; 291:25776-25788. [PMID: 27784782 DOI: 10.1074/jbc.m116.752311] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/11/2016] [Indexed: 01/01/2023] Open
Abstract
Glucocorticoids (GCs) regulate energy supply in response to stress by increasing hepatic gluconeogenesis during fasting. Long-term GC treatment induces hepatic steatosis and weight gain. GC signaling is coordinated via the GC receptor (GR) GRα, as the GRβ isoform lacks a ligand-binding domain. The roles of the GR isoforms in the regulation of lipid accumulation is unknown. The purpose of this study was to determine whether GRβ inhibits the actions of GCs in the liver, or enhances hepatic lipid accumulation. We show that GRβ expression is increased in adipose and liver tissues in obese high-fat fed mice. Adenovirus-mediated delivery of hepatic GRβ overexpression (GRβ-Ad) resulted in suppression of gluconeogenic genes and hyperglycemia in mice on a regular diet. Furthermore, GRβ-Ad mice had increased hepatic lipid accumulation and serum triglyceride levels possibly due to the activation of NF-κB signaling and increased tumor necrosis factor α (TNFα) and inducible nitric-oxide synthase expression, indicative of enhanced M1 macrophages and the development of steatosis. Consequently, GRβ-Ad mice had increased glycogen synthase kinase 3β (GSK3β) activity and reduced hepatic PPARα and fibroblast growth factor 21 (FGF21) expression and lower serum FGF21 levels, which are two proteins known to increase during fasting to enhance the burning of fat by activating the β-oxidation pathway. In conclusion, GRβ antagonizes the GC-induced signaling during fasting via GRα and the PPARα-FGF21 axis that reduces fat burning. Furthermore, hepatic GRβ increases inflammation, which leads to hepatic lipid accumulation.
Collapse
Affiliation(s)
- Joseph S Marino
- From the Department of Kinesiology, Laboratory of Systems Physiology, University of North Carolina, Charlotte, North Carolina 28223
| | | | - David E Stec
- the Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi 39216, and
| | | | - Sydni Coleman
- the University of Cincinnati, College of Medicine, Cincinnati, Ohio 45220
| | - Terry D Hinds
- Center for Hypertension and Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine, Toledo, Ohio 43614,
| |
Collapse
|
22
|
Hinds TD, Adeosun SO, Alamodi AA, Stec DE. Does bilirubin prevent hepatic steatosis through activation of the PPARα nuclear receptor? Med Hypotheses 2016; 95:54-57. [PMID: 27692168 PMCID: PMC5433619 DOI: 10.1016/j.mehy.2016.08.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/05/2016] [Accepted: 08/31/2016] [Indexed: 12/15/2022]
Abstract
Several large population studies have demonstrated a negative correlation between serum bilirubin levels and the development of obesity, hepatic steatosis, and cardiovascular disease. Despite the strong correlative data demonstrating the protective role of bilirubin, the mechanism by which bilirubin can protect against these pathologies remains unknown. Bilirubin has long been known as a powerful antioxidant and also has anti-inflammatory actions, each of which may contribute to the protection afforded by increased levels. We have recently described a novel function of bilirubin as a ligand for the peroxisome proliferator-activated receptor-alpha (PPARα), which we show specifically binds to the nuclear receptor. Bilirubin may function as a selective PPAR modulator (SPPARM) to control lipid accumulation and blood glucose. However, it is not known to what degree bilirubin activation of PPARα is responsible for the protection afforded to reduce hepatic steatosis. We hypothesize that bilirubin, acting as a novel SPPARM, increases hepatic fatty acid metabolism through a PPARα-dependent mechanism which reduces hepatic lipid accumulation and protects against hepatic steatosis and non-alcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Terry D Hinds
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Samuel O Adeosun
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State St, Jackson, MS 39216, USA
| | - Abdulhadi A Alamodi
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State St, Jackson, MS 39216, USA
| | - David E Stec
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State St, Jackson, MS 39216, USA.
| |
Collapse
|
23
|
Nido SA, Shituleni SA, Mengistu BM, Liu Y, Khan AZ, Gan F, Kumbhar S, Huang K. Effects of Selenium-Enriched Probiotics on Lipid Metabolism, Antioxidative Status, Histopathological Lesions, and Related Gene Expression in Mice Fed a High-Fat Diet. Biol Trace Elem Res 2016; 171:399-409. [PMID: 26546553 DOI: 10.1007/s12011-015-0552-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/21/2015] [Indexed: 12/16/2022]
Abstract
A total of 80 female albino mice were randomly allotted into five groups (n = 16) as follows: (A) normal control, (B) high-fat diet (HFD),; (C) HFD + probiotics (P), (D) HFD + sodium selenite (SS), and (E) HFD + selenium-enriched probiotics (SP). The selenium content of diets in groups A, B, C, D, and E was 0.05, 0.05, 0.05, 0.3, and 0.3 μg/g, respectively. The amount of probiotics contained in groups C and E was similar (Lactobacillus acidophilus 0.25 × 10(11)/mL and Saccharomyces cerevisiae 0.25 × 10(9)/mL colony-forming units (CFU)). The high-fat diet was composed of 15 % lard, 1 % cholesterol, 0.3 % cholic acid, and 83.7 % basal diet. At the end of the 4-week experiment, blood and liver samples were collected for the measurements of lipid metabolism, antioxidative status, histopathological lesions, and related gene expressions. The result shows that HFD significantly increased the body weights and liver damages compared to control, while P, SS, or SP supplementation attenuated the body weights and liver damages in mice. P, SS, or SP supplementation also significantly reversed the changes of alanine aminotransferase (AST), aspartate aminotransferase (ALT), total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), total protein (TP), high-density lipoprotein (HDL), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalasa (CAT), and malondialdehyde (MDA) levels induced by HFD. Generally, adding P, SS, or SP up-regulated mRNA expression of carnitine palmitoyltransferase-I (CPT1), carnitine palmitoyltransferase II (CPT2), acetyl-CoA acetyltransferase II (ACAT2), acyl-coenzyme A oxidase (ACOX2), and peroxisome proliferator-activated receptor alpha (PPARα) and down-regulated mRNA expression of fatty acid synthase (FAS), lipoprotein lipase (LPL), peroxisome proliferator-activated receptor gamma (PPARγ), and sterol regulatory element-binding protein-1 (SREBP1) involved in lipid metabolism. Among the group, adding SP has a maximum effect in improving lipid metabolism, antioxidative status, histopathological lesions, and related gene expression in mice fed a HFD.
Collapse
Affiliation(s)
- Sonia Agostinho Nido
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowl, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Departamento de Ciências Naturais e Matemática, Universidade Pedagógica de Moçambique, Campus Universitarios de Chiuaula, P. O. Box 4, Delegação de Niassa, Lichinga, Moçambique
| | - Shituleni Andreas Shituleni
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowl, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Berhe Mekonnen Mengistu
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowl, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yunhuan Liu
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowl, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Alam Zeb Khan
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowl, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Fang Gan
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowl, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Shahnawaz Kumbhar
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowl, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Kehe Huang
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowl, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
24
|
D'Aquila T, Hung YH, Carreiro A, Buhman KK. Recent discoveries on absorption of dietary fat: Presence, synthesis, and metabolism of cytoplasmic lipid droplets within enterocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:730-47. [PMID: 27108063 DOI: 10.1016/j.bbalip.2016.04.012] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/16/2016] [Accepted: 04/16/2016] [Indexed: 02/07/2023]
Abstract
Dietary fat provides essential nutrients, contributes to energy balance, and regulates blood lipid concentrations. These functions are important to health, but can also become dysregulated and contribute to diseases such as obesity, diabetes, cardiovascular disease, and cancer. Within enterocytes, the digestive products of dietary fat are re-synthesized into triacylglycerol, which is either secreted on chylomicrons or stored within cytoplasmic lipid droplets (CLDs). CLDs were originally thought to be inert stores of neutral lipids, but are now recognized as dynamic organelles that function in multiple cellular processes in addition to lipid metabolism. This review will highlight recent discoveries related to dietary fat absorption with an emphasis on the presence, synthesis, and metabolism of CLDs within this process.
Collapse
Affiliation(s)
- Theresa D'Aquila
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Yu-Han Hung
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Alicia Carreiro
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Kimberly K Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
25
|
Nakamura F, Ishida Y, Sawada D, Ashida N, Sugawara T, Sakai M, Goto T, Kawada T, Fujiwara S. Fragmented Lactic Acid Bacterial Cells Activate Peroxisome Proliferator-Activated Receptors and Ameliorate Dyslipidemia in Obese Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2549-2559. [PMID: 26927959 DOI: 10.1021/acs.jafc.5b05827] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recent studies suggest that peroxisome proliferator-activated receptor (PPAR) activation ameliorates metabolic disorders, including dyslipidemia. To identify an effective PPAR agonist, we screened the in vitro PPARα/γ activation ability of organic solvent extracts from food-oriented bacterial strains belonging to 5 genera and 32 species, including lactic acid bacteria, and of these, Lactobacillus amylovorus CP1563 demonstrated the highest PPARα/γ agonist activity. We also found that physical fragmentation of the strain could substitute organic solvent extraction for the expression of CP1563 activity in vitro. For functional food manufacturing, we selected the fragmented CP1563 and conducted subsequent animal experiments. In an obese mouse model, we found that treatment with fragmented CP1563 for 12 weeks decreased the levels of low-density lipoprotein (LDL)-cholesterol and triglyceride in plasma, significantly decreased the atherosclerosis index, and increased the plasma high-density lipoprotein (HDL)-cholesterol level. Thus, we conclude that fragmented CP1563 may be a candidate for the prevention and treatment of dyslipidemia.
Collapse
Affiliation(s)
- Futoshi Nakamura
- Research & Development Center, Asahi Group Holdings, Ltd. , 5-11-10 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-0206, Japan
| | - Yu Ishida
- Research & Development Center, Asahi Group Holdings, Ltd. , 5-11-10 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-0206, Japan
| | - Daisuke Sawada
- Research & Development Center, Asahi Group Holdings, Ltd. , 5-11-10 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-0206, Japan
| | - Nobuhisa Ashida
- Research & Development Center, Asahi Group Holdings, Ltd. , 5-11-10 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-0206, Japan
| | - Tomonori Sugawara
- Research & Development Center, Asahi Group Holdings, Ltd. , 5-11-10 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-0206, Japan
| | - Manami Sakai
- Laboratory of Molecular Function of Food Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University , Gokasho, Uji, Kyoto 611-0011, Japan
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University , Gokasho, Uji, Kyoto 611-0011, Japan
| | - Teruo Kawada
- Laboratory of Molecular Function of Food Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University , Gokasho, Uji, Kyoto 611-0011, Japan
| | - Shigeru Fujiwara
- Research & Development Center, Asahi Group Holdings, Ltd. , 5-11-10 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-0206, Japan
| |
Collapse
|
26
|
Eicosapentaenoic acid inhibits intestinal β-carotene absorption by downregulation of lipid transporter expression via PPAR-α dependent mechanism. Arch Biochem Biophys 2016; 590:118-124. [DOI: 10.1016/j.abb.2015.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 12/11/2022]
|
27
|
Stinkens R, Goossens GH, Jocken JWE, Blaak EE. Targeting fatty acid metabolism to improve glucose metabolism. Obes Rev 2015; 16:715-57. [PMID: 26179344 DOI: 10.1111/obr.12298] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/23/2015] [Accepted: 05/10/2015] [Indexed: 12/15/2022]
Abstract
Disturbances in fatty acid metabolism in adipose tissue, liver, skeletal muscle, gut and pancreas play an important role in the development of insulin resistance, impaired glucose metabolism and type 2 diabetes mellitus. Alterations in diet composition may contribute to prevent and/or reverse these disturbances through modulation of fatty acid metabolism. Besides an increased fat mass, adipose tissue dysfunction, characterized by an altered capacity to store lipids and an altered secretion of adipokines, may result in lipid overflow, systemic inflammation and excessive lipid accumulation in non-adipose tissues like liver, skeletal muscle and the pancreas. These impairments together promote the development of impaired glucose metabolism, insulin resistance and type 2 diabetes mellitus. Furthermore, intrinsic functional impairments in either of these organs may contribute to lipotoxicity and insulin resistance. The present review provides an overview of fatty acid metabolism-related pathways in adipose tissue, liver, skeletal muscle, pancreas and gut, which can be targeted by diet or food components, thereby improving glucose metabolism.
Collapse
Affiliation(s)
- R Stinkens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - G H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J W E Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
28
|
Abstract
Olive oil is considered to be one of the most healthy dietary fats. However, several types of olive oils are present in the market. A key question for the consumer is: What of the olive oils is the best when concerning nutritional purposes? With the data available at present, the answer is: the Virgin Olive Oil (VOO), rich in phenolic compounds. On November 2011, the European Food Safety Authority released a claim concerning the benefits of daily ingestion of olive oil rich in phenolic compounds, such as VOO. In this review, we summarised the key work that has provided the evidence of the benefits of VOO consumption on other types of edible oils, even olive oils. We focused on data from randomised, controlled human studies, which are capable of providing the evidence of Level I that is required for performing nutritional recommendations at population level.
Collapse
|
29
|
Robertson CL, Srivastava J, Siddiq A, Gredler R, Emdad L, Rajasekaran D, Akiel M, Shen XN, Corwin F, Sundaresan G, Zweit J, Croniger C, Gao X, Ghosh S, Hylemon PB, Subler MA, Windle JJ, Fisher PB, Sarkar D. Astrocyte Elevated Gene-1 (AEG-1) Regulates Lipid Homeostasis. J Biol Chem 2015; 290:18227-18236. [PMID: 26070567 DOI: 10.1074/jbc.m115.661801] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Indexed: 12/14/2022] Open
Abstract
Astrocyte elevated gene-1 (AEG-1), also known as MTDH (metadherin) or LYRIC, is an established oncogene. However, the physiological function of AEG-1 is not known. To address this question, we generated an AEG-1 knock-out mouse (AEG-1KO) and characterized it. Although AEG-1KO mice were viable and fertile, they were significantly leaner with prominently less body fat and lived significantly longer compared with wild type (WT). When fed a high fat and cholesterol diet (HFD), WT mice rapidly gained weight, whereas AEG-1KO mice did not gain weight at all. This phenotype of AEG-1KO mice is due to decreased fat absorption from the intestines, not because of decreased fat synthesis or increased fat consumption. AEG-1 interacts with retinoid X receptor (RXR) and inhibits RXR function. In enterocytes of AEG-1KO mice, we observed increased activity of RXR heterodimer partners, liver X receptor and peroxisome proliferator-activated receptor-α, key inhibitors of intestinal fat absorption. Inhibition of fat absorption in AEG-1KO mice was further augmented when fed an HFD providing ligands to liver X receptor and peroxisome proliferator-activated receptor-α. Our studies reveal a novel role of AEG-1 in regulating nuclear receptors controlling lipid metabolism. AEG-1 may significantly modulate the effects of HFD and thereby function as a unique determinant of obesity.
Collapse
Affiliation(s)
- Chadia L Robertson
- Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298; Departments of Biochemistry, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Jyoti Srivastava
- Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Ayesha Siddiq
- Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Rachel Gredler
- Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Luni Emdad
- Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Devaraja Rajasekaran
- Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Maaged Akiel
- Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Xue-Ning Shen
- Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Frank Corwin
- Departments of Radiology, Virginia Commonwealth University, Richmond, Virginia 23298
| | | | - Jamal Zweit
- Departments of Radiology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Colleen Croniger
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106
| | - Xiaoli Gao
- Institutional Mass Spectrometry Laboratory, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Shobha Ghosh
- Departments of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Philip B Hylemon
- Departments of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Mark A Subler
- Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Jolene J Windle
- Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298; Departments of VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Paul B Fisher
- Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298; Departments of VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298; VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Devanand Sarkar
- Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298; Departments of VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298; VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia 23298.
| |
Collapse
|
30
|
Hung YH, Linden MA, Gordon A, Rector RS, Buhman KK. Endurance exercise training programs intestinal lipid metabolism in a rat model of obesity and type 2 diabetes. Physiol Rep 2015; 3:3/1/e12232. [PMID: 25602012 PMCID: PMC4387752 DOI: 10.14814/phy2.12232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Endurance exercise has been shown to improve metabolic outcomes in obesity and type 2 diabetes; however, the physiological and molecular mechanisms for these benefits are not completely understood. Although endurance exercise has been shown to decrease lipogenesis, promote fatty acid oxidation (FAO), and increase mitochondrial biosynthesis in adipose tissue, muscle, and liver, its effects on intestinal lipid metabolism remain unknown. The absorptive cells of the small intestine, enterocytes, mediate the highly efficient absorption and processing of nutrients, including dietary fat for delivery throughout the body. We investigated how endurance exercise altered intestinal lipid metabolism in obesity and type 2 diabetes using Otsuka Long‐Evans Tokushima Fatty (OLETF) rats. We assessed mRNA levels of genes associated with intestinal lipid metabolism in nonhyperphagic, sedentary Long‐Evans Tokushima Otsuka (LETO) rats (L‐Sed), hyperphagic, sedentary OLETF rats (O‐Sed), and endurance exercised OLETF rats (O‐EndEx). O‐Sed rats developed hyperphagia‐induced obesity (HIO) and type 2 diabetes compared with L‐Sed rats. O‐EndEx rats gained significantly less weight and fat pad mass, and had improved serum metabolic parameters without change in food consumption compared to O‐Sed rats. Endurance exercise resulted in dramatic up‐regulation of a number of genes in intestinal lipid metabolism and mitochondrial content compared with sedentary rats. Overall, this study provides evidence that endurance exercise programs intestinal lipid metabolism, likely contributing to its role in improving metabolic outcomes in obesity and type 2 diabetes. Endurance exercise has been shown to improve metabolic outcomes in obesity and type 2 diabetes; however, the physiological and molecular mechanisms for these benefits are not completely understood. Although endurance exercise has been shown to decrease lipogenesis, promote fatty acid oxidation (FAO), and increase mitochondrial biosynthesis in adipose tissue, muscle, and liver, its effects on intestinal lipid metabolism remain unknown. Endurance exercise resulted in dramatic up‐regulation of a number of genes in intestinal lipid metabolism and mitochondrial content compared with sedentary rats. Overall, this study provides evidence that endurance exercise programs intestinal lipid metabolism, likely contributing to its role in improving metabolic outcomes in obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Yu-Han Hung
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana
| | - Melissa A Linden
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Alicia Gordon
- Department of Clinical Medicine, University of Dublin, Dublin, Ireland School of Biological Sciences, Dublin Institute of Technology, Dublin, Ireland
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, Missouri Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Kimberly K Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana
| |
Collapse
|
31
|
Novel genomic signals of recent selection in an Ethiopian population. Eur J Hum Genet 2014; 23:1085-92. [PMID: 25370040 DOI: 10.1038/ejhg.2014.233] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 09/17/2014] [Accepted: 09/26/2014] [Indexed: 12/31/2022] Open
Abstract
The recent feasibility of genome-wide studies of adaptation in human populations has provided novel insights into biological pathways that have been affected by adaptive pressures. However, only a few African populations have been investigated using these genome-wide approaches. Here, we performed a genome-wide analysis for evidence of recent positive selection in a sample of 120 individuals of Wolaita ethnicity belonging to Omotic-speaking people who have inhabited the mid- and high-land areas of southern Ethiopia for millennia. Using the 11 HapMap populations as the comparison group, we found Wolaita-specific signals of recent positive selection in several human leukocyte antigen (HLA) loci. Notably, the selected loci overlapped with HLA regions that we previously reported to be associated with podoconiosis-a geochemical lymphedema of the lower legs common in the Wolaita area. We found selection signals in PPARA, a gene involved in energy metabolism during prolonged food deficiency. This finding is consistent with the dietary use of enset, a crop with high-carbohydrate and low-fat and -protein contents domesticated in Ethiopia subsequent to food deprivation 10 000 years ago, and with metabolic adaptation to high-altitude hypoxia. We observed novel selection signals in CDKAL1 and NEGR1, well-known diabetes and obesity susceptibility genes. Finally, the SLC24A5 gene locus known to be associated with skin pigmentation was in the top selection signals in the Wolaita, and the alleles of single-nucleotide polymorphisms rs1426654 and rs1834640 (SLC24A5) associated with light skin pigmentation in Eurasian populations were of high frequency (47.9%) in this Omotic-speaking indigenous Ethiopian population.
Collapse
|
32
|
Yamazaki T, Kadokura M, Mutoh Y, Sakamoto T, Okazaki M, Mitsumoto A, Kawashima Y, Kudo N. Inducing effect of clofibric acid on stearoyl-CoA desaturase in intestinal mucosa of rats. Lipids 2014; 49:1203-14. [PMID: 25362535 DOI: 10.1007/s11745-014-3965-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/16/2014] [Indexed: 10/24/2022]
Abstract
Fibrates have been reported to elevate the hepatic proportion of oleic acid (18:1n-9) through inducing stearoyl-CoA desaturase (SCD). Despite abundant studies on the regulation of SCD in the liver, little is known about this issue in the small intestine. The present study aimed to investigate the effect of clofibric acid on the fatty acid profile, particularly monounsaturated fatty acids (MUFA), and the SCD expression in intestinal mucosa. Treatment of rats with a diet containing 0.5% (w/w) clofibric acid for 7 days changed the MUFA profile of total lipids in intestinal mucosa; the proportion of 18:1n-9 was significantly increased, whereas those of palmitoleic (16:1n-7) and cis-vaccenic (18:1n-7) acids were not changed. Upon the treatment with clofibric acid, SCD was induced and the gene expression of SCD1, SCD2, and fatty acid elongase (Elovl) 6 was up-regulated, but that of Elovl5 was unaffected. Fat-free diet feeding for 28 days increased the proportions of 16:1n-7 and 18:1n-7, but did not effectively change that of 18:1n-9, in intestinal mucosa. Fat-free diet feeding up-regulated the gene expression of SCD1, but not that of SCD2, Elovl6, or Elovl5. These results indicate that intestinal mucosa significantly changes its MUFA profile in response to challenges by clofibric acid and a fat-free diet and suggest that up-regulation of the gene expression of SCD along with Elovl6 is indispensable to elevate the proportion of 18:1n-9 in intestinal mucosa.
Collapse
Affiliation(s)
- Tohru Yamazaki
- School of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bartness TJ, Liu Y, Shrestha YB, Ryu V. Neural innervation of white adipose tissue and the control of lipolysis. Front Neuroendocrinol 2014; 35:473-93. [PMID: 24736043 PMCID: PMC4175185 DOI: 10.1016/j.yfrne.2014.04.001] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/10/2014] [Accepted: 04/04/2014] [Indexed: 01/22/2023]
Abstract
White adipose tissue (WAT) is innervated by the sympathetic nervous system (SNS) and its activation is necessary for lipolysis. WAT parasympathetic innervation is not supported. Fully-executed SNS-norepinephrine (NE)-mediated WAT lipolysis is dependent on β-adrenoceptor stimulation ultimately hinging on hormone sensitive lipase and perilipin A phosphorylation. WAT sympathetic drive is appropriately measured electrophysiologically and neurochemically (NE turnover) in non-human animals and this drive is fat pad-specific preventing generalizations among WAT depots and non-WAT organs. Leptin-triggered SNS-mediated lipolysis is weakly supported, whereas insulin or adenosine inhibition of SNS/NE-mediated lipolysis is strongly supported. In addition to lipolysis control, increases or decreases in WAT SNS drive/NE inhibit and stimulate white adipocyte proliferation, respectively. WAT sensory nerves are of spinal-origin and sensitive to local leptin and increases in sympathetic drive, the latter implicating lipolysis. Transsynaptic viral tract tracers revealed WAT central sympathetic and sensory circuits including SNS-sensory feedback loops that may control lipolysis.
Collapse
Affiliation(s)
- Timothy J Bartness
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA; Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA.
| | - Yang Liu
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA; Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA; Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yogendra B Shrestha
- Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vitaly Ryu
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA; Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA; Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
34
|
Kimura R, Takahashi N, Goto T, Murota K, Kawada T. Activation of peroxisome proliferator-activated receptor-α (PPARα) in proximal intestine improves postprandial lipidemia in obese diabetic KK-Ay mice. Obes Res Clin Pract 2014; 7:e353-60. [PMID: 24455763 DOI: 10.1016/j.orcp.2013.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Postprandial lipidemia is a risk factor for cardiovascular diseases. Thus, the suppression of postprandial lipidemia is valuable for disease management. Peroxisome proliferator-activated receptor- (PPAR ) is a key regulator in the lipid metabolism of peripheral tissues such as the liver and skeletal muscle, whose activation enhances fatty acid oxidation and decreases circulating lipid level. Recently, we have shown that bezafibrate, an agonistic compound for PPAR , suppresses post-prandial lipidemia by enhancing fatty acid oxidation in intestinal epithelial cells under physiological conditions. However, it was not elucidated whether the effect of PPAR on postprandial lipidemia is also observed under obese conditions, which change lipid metabolisms in various tissues and cells. Here, we observed that bezafibrate enhanced fatty acid oxidation in intestinal epithelial cells of obese diabetic KK-Ay mice. Bezafibrate treatment increased the mRNA expression levels of fatty acid oxidation-related genes, which are targets of PPAR , and enhanced CO2 production from [14C]-palmitic acid. The bezafibrate-treated mice showed the suppression of increasing serum triacylglyceride level after the oral administration of olive oil. Moreover, the effects of bezafibrate on mRNA expression and fatty acid oxidation were shown in only the proximal intestinal epithelial cells. These findings indicate that PPAR activation suppresses postprandial lipidemia under obese conditions through the enhancement of fatty acid oxidation, and that only the proximal intestine con-tributes to the effects in mice, suggesting that intestinal PPAR can be a target for prevention of obese-induced postprandial lipidemia.
Collapse
|
35
|
Influence of virgin coconut oil-enriched diet on the transcriptional regulation of fatty acid synthesis and oxidation in rats - a comparative study. Br J Nutr 2014; 111:1782-90. [PMID: 24513138 DOI: 10.1017/s000711451400004x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present study was carried out to evaluate the effects of virgin coconut oil (VCO) compared with copra oil, olive oil and sunflower-seed oil on the synthesis and oxidation of fatty acids and the molecular regulation of fatty acid metabolism in normal rats. Male Sprague-Dawley rats were fed the test oils at 8 % for 45 d along with a synthetic diet. Dietary supplementation of VCO decreased tissue lipid levels and reduced the activity of the enzymes involved in lipogenesis, namely acyl CoA carboxylase and fatty acid synthase (FAS) (P< 0·05). Moreover, VCO significantly (P< 0·05) reduced the de novo synthesis of fatty acids by down-regulating the mRNA expression of FAS and its transcription factor, sterol regulatory element-binding protein-1c, compared with the other oils. VCO significantly (P< 0·05) increased the mitochondrial and peroxisomal β-oxidation of fatty acids, which was evident from the increased activities of carnitine palmitoyl transferase I, acyl CoA oxidase and the enzymes involved in mitochondrial β-oxidation; this was accomplished by up-regulating the mRNA expression of PPARα and its target genes involved in fatty acid oxidation. In conclusion, the present results confirmed that supplementation of VCO has beneficial effects on lipid parameters by reducing lipogenesis and enhancing the rate of fatty acid catabolism; this effect was mediated at least in part via PPARα-dependent pathways. Thus, dietary VCO reduces the risk for CHD by beneficially modulating the synthesis and degradation of fatty acids.
Collapse
|
36
|
Rodrigues T, Matafome P, Seiça R. A vascular piece in the puzzle of adipose tissue dysfunction: mechanisms and consequences. Arch Physiol Biochem 2014; 120:1-11. [PMID: 24063516 DOI: 10.3109/13813455.2013.838971] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In the last years, several studies unravelled many aspects of adipose tissue pathophysiology in metabolic diseases. Some studies suggested hypoxia as one of such aspects, despite the exact mechanisms and pathophysiological significance is still partially unknown. Adipose tissue was shown to be hypoxic in obesity, mainly resulting from adipocyte hypertrophy, leading to increased activation of inflammatory pathways. In animal and cell models, hypoxia-induced inflammation was shown to lead to endocrine alterations and dysmetabolism. However, recent evidences suggest that instead of a simple low oxygenation theory, adipose tissue microvasculature may be regulated by a series of factors, including vasoactive factors like angiotensin II, angiogenesis and glycation, among others. This review summarizes the current knowledge about the role of these factors in the regulation of adipose tissue irrigation and the functional consequences of adipose tissue microvascular dysfunction.
Collapse
Affiliation(s)
- Tiago Rodrigues
- Laboratory of Physiology, Faculty of Medicine, Institute of Biomedical Imaging and Life Sciences (IBILI), University of Coimbra , Portugal
| | | | | |
Collapse
|
37
|
Kimura R, Takahashi N, Lin S, Goto T, Murota K, Nakata R, Inoue H, Kawada T. DHA attenuates postprandial hyperlipidemia via activating PPARα in intestinal epithelial cells. J Lipid Res 2013; 54:3258-68. [PMID: 24133194 DOI: 10.1194/jlr.m034942] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
It is known that peroxisome proliferator-activated receptor (PPAR)α, whose activation reduces hyperlipidemia, is highly expressed in intestinal epithelial cells. Docosahexaenoic acid (DHA) could improve postprandial hyperlipidemia, however, its relationship with intestinal PPARα activation is not revealed. In this study, we investigated whether DHA can affect postprandial hyperlipidemia by activating intestinal PPARα using Caco-2 cells and C57BL/6 mice. The genes involved in fatty acid (FA) oxidation and oxygen consumption rate were increased, and the secretion of triacylglyceride (TG) and apolipoprotein B (apoB) was decreased in DHA-treated Caco-2 cells. Additionally, intestinal FA oxidation was induced, and TG and apoB secretion from intestinal epithelial cells was reduced, resulting in the attenuation of plasma TG and apoB levels after oral administration of olive oil in DHA-rich oil-fed mice compared with controls. However, no increase in genes involved in FA oxidation was observed in the liver. Furthermore, the effects of DHA on intestinal lipid secretion and postprandial hyperlipidemia were abolished in PPARα knockout mice. In conclusion, the present work suggests that DHA can inhibit the secretion of TG from intestinal epithelial cells via PPARα activation, which attenuates postprandial hyperlipidemia.
Collapse
Affiliation(s)
- Rino Kimura
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Manning PJ, Sutherland WHF, Manning AE, de Jong SA, Berry EA. Ingestion of thermally oxidized sunflower oil decreases postprandial lipemia mainly in younger individuals. Nutr Res 2013; 33:711-8. [PMID: 24034570 DOI: 10.1016/j.nutres.2013.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 06/26/2013] [Accepted: 06/28/2013] [Indexed: 11/27/2022]
Abstract
Animal studies have shown that diets rich in thermally oxidized fat increase glucose and decrease insulin and triglyceride (TG) concentrations in the blood. We hypothesized that ingestion of a potato meal rich in thermally oxidized sunflower oil (TOSO) would decrease postprandial concentrations of insulin, incretins, and TG and increase plasma glucose concentrations. Twenty healthy subjects aged 22 to 70 years consumed meals rich in TOSO or unheated sunflower oil and containing paracetamol (1.5 g) in a randomized, crossover trial. Blood samples were taken at baseline and 10, 20, 30, 60, 90, and 120 minutes after the meals and glucose, insulin, TG, nonesterified fatty acids, glucagon-like polypeptide-1, glucose-independent polypeptide, and paracetamol (as a marker of gastric emptying) were measured in plasma or serum. The incremental areas under the curve of glucose, insulin, nonesterified fatty acid, incretins, and paracetamol levels were not significantly different between the meals. Plasma TG incremental area under the curve was 44% lower after the TOSO meal at a marginal level of significance (P = .06) in the total study population and was significantly (P = .04) and 61% lower in those of median age and younger (n = 11). These data suggest that ingestion of TOSO may acutely decrease plasma TG mainly in younger individuals and does not acutely affect glucose and insulin metabolism or gastric emptying in healthy subjects.
Collapse
Affiliation(s)
- Patrick J Manning
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
39
|
Uchida A, Slipchenko MN, Eustaquio T, Leary JF, Cheng JX, Buhman KK. Intestinal acyl-CoA:diacylglycerol acyltransferase 2 overexpression enhances postprandial triglyceridemic response and exacerbates high fat diet-induced hepatic triacylglycerol storage. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1377-85. [PMID: 23643496 DOI: 10.1016/j.bbalip.2013.04.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/24/2013] [Accepted: 04/25/2013] [Indexed: 02/06/2023]
Abstract
Intestinal acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2) is important in the cellular and physiological responses to dietary fat. To determine the effect of increased intestinal DGAT2 on cellular and physiological responses to acute and chronic dietary fat challenges, we generated mice with intestine-specific overexpression of DGAT2 and compared them with intestine-specific overexpression of DGAT1 and wild-type (WT) mice. We found that when intestinal DGAT2 is present in excess, triacylglycerol (TG) secretion from enterocytes is enhanced compared to WT mice; however, TG storage within enterocytes is similar compared to WT mice. We found that when intestinal DGAT2 is present in excess, mRNA levels of genes involved in fatty acid oxidation were reduced. This result suggests that reduced fatty acid oxidation may contribute to increased TG secretion by overexpression of DGAT2 in intestine. Furthermore, this enhanced supply of TG for secretion in Dgat2(Int) mice may be a significant contributing factor to the elevated fasting plasma TG and exacerbated hepatic TG storage in response to a chronic HFD. These results highlight that altering fatty acid and TG metabolism within enterocytes has the capacity to alter systemic delivery of dietary fat and may serve as an effective target for preventing and treating metabolic diseases such as hepatic steatosis.
Collapse
Affiliation(s)
- Aki Uchida
- Purdue University, West Lafayette, IN, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Zhang X, Wu C, Wu H, Sheng L, Su Y, Zhang X, Luan H, Sun G, Sun X, Tian Y, Ji Y, Guo P, Xu X. Anti-hyperlipidemic effects and potential mechanisms of action of the caffeoylquinic acid-rich Pandanus tectorius fruit extract in hamsters fed a high fat-diet. PLoS One 2013; 8:e61922. [PMID: 23613974 PMCID: PMC3628350 DOI: 10.1371/journal.pone.0061922] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 03/15/2013] [Indexed: 12/20/2022] Open
Abstract
Hyperlipidemia is considered to be one of the greatest risk factors contributing to the prevalence and severity of cardiovascular diseases. In this work, we investigated the anti-hyperlipidemic effect and potential mechanism of action of the Pandanus tectorius fruit extract in hamsters fed a high fat-diet (HFD). The n-butanol fraction of the P. tectorius fruit ethanol extract (PTF-b) was rich in caffeoylquinic acids (CQAs). Administration of PTF-b for 4 weeks effectively decreased retroperitoneal fat and the serum levels of total cholesterol (TC), triglycerides (TG) and low density lipoprotein-cholesterol (LDL-c) and hepatic TC and TG. The lipid signals (fatty acids, and cholesterol) in the liver as determined by nuclear magnetic resonance (NMR) were correspondingly reduced. Realtime quantitative PCR showed that the mRNA levels of PPARα and PPARα-regulated genes such as ACO, CPT1, LPL and HSL were largely enhanced by PTF-b. The transcription of LDLR, CYP7A1, and PPARγ was also upregulated. Treatment with PTF-b significantly stimulated the activation of AMP-activated protein kinase (AMPK) as well as the activity of serum and hepatic lipoprotein lipase (LPL). Together, these results suggest that administration of the PTF-b enriched in CQAs moderates hyperlipidemia and improves the liver lipid profile. These effects may be caused, at least in part, by increasing the expression of PPARα and its downstream genes and by upregulation of LPL and AMPK activities.
Collapse
Affiliation(s)
- Xiaopo Zhang
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chongming Wu
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Haifeng Wu
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | | | - Yan Su
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Research Centre on Life Sciences and Environment Sciences, Harbin University of Commerce, Harbin, China
| | - Xue Zhang
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Research Centre on Life Sciences and Environment Sciences, Harbin University of Commerce, Harbin, China
| | - Hong Luan
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Research Centre on Life Sciences and Environment Sciences, Harbin University of Commerce, Harbin, China
| | - Guibo Sun
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaobo Sun
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yu Tian
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yubin Ji
- Research Centre on Life Sciences and Environment Sciences, Harbin University of Commerce, Harbin, China
| | - Peng Guo
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- * E-mail: (PG); (XX)
| | - Xudong Xu
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- * E-mail: (PG); (XX)
| |
Collapse
|
41
|
Obrowsky S, Chandak PG, Patankar JV, Povoden S, Schlager S, Kershaw EE, Bogner-Strauss JG, Hoefler G, Levak-Frank S, Kratky D. Adipose triglyceride lipase is a TG hydrolase of the small intestine and regulates intestinal PPARα signaling. J Lipid Res 2012; 54:425-35. [PMID: 23220585 PMCID: PMC3541705 DOI: 10.1194/jlr.m031716] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme mediating
triglyceride (TG) hydrolysis. The lack of ATGL results in TG accumulation in
multiple tissues, underscoring the critical role of ATGL in maintaining lipid
homeostasis. Recent evidence suggests that ATGL affects TG metabolism via
activation of peroxisome proliferator-activated receptor α (PPARα).
To investigate specific effects of intestinal ATGL on lipid metabolism we
generated mice lacking ATGL exclusively in the intestine (ATGLiKO). We found
decreased TG hydrolase activity and increased intracellular TG content in
ATGLiKO small intestines. Intragastric administration of
[3H]trioleate resulted in the accumulation of radioactive TG in the
intestine, whereas absorption into the systemic circulation was unchanged.
Intraperitoneally injected [3H]oleate also accumulated within TG in
ATGLiKO intestines, indicating that ATGL mobilizes fatty acids from the systemic
circulation absorbed by the basolateral side from the blood. Down-regulation of
PPARα target genes suggested modulation of cholesterol absorption by
intestinal ATGL. Accordingly, ATGL deficiency in the intestine resulted in
delayed cholesterol absorption. Importantly, this study provides evidence that
ATGL has no impact on intestinal TG absorption but hydrolyzes TGs taken up from
the intestinal lumen and systemic circulation. Our data support the role of ATGL
in modulating PPARα-dependent processes also in the small intestine.
Collapse
Affiliation(s)
- Sascha Obrowsky
- Institute of Molecular Biology, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Goto T, Kim YI, Takahashi N, Kawada T. Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors. Mol Nutr Food Res 2012. [DOI: 10.1002/mnfr.201200522] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tsuyoshi Goto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology; Graduate School of Agriculture, Kyoto University; Uji Japan
- Research Unit for Physiological Chemistry; the Center for the Promotion of Interdisciplinary Education and Research; Kyoto University; Kyoto Japan
| | - Young-Il Kim
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology; Graduate School of Agriculture, Kyoto University; Uji Japan
| | - Nobuyuki Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology; Graduate School of Agriculture, Kyoto University; Uji Japan
- Research Unit for Physiological Chemistry; the Center for the Promotion of Interdisciplinary Education and Research; Kyoto University; Kyoto Japan
| | - Teruo Kawada
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology; Graduate School of Agriculture, Kyoto University; Uji Japan
- Research Unit for Physiological Chemistry; the Center for the Promotion of Interdisciplinary Education and Research; Kyoto University; Kyoto Japan
| |
Collapse
|
43
|
Goichon A, Chan P, Lecleire S, Coquard A, Cailleux AF, Walrand S, Lerebours E, Vaudry D, Déchelotte P, Coëffier M. An enteral leucine supply modulates human duodenal mucosal proteome and decreases the expression of enzymes involved in fatty acid beta-oxidation. J Proteomics 2012; 78:535-44. [PMID: 23142318 DOI: 10.1016/j.jprot.2012.10.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/10/2012] [Accepted: 10/29/2012] [Indexed: 01/10/2023]
Abstract
Leucine is well known to regulate protein metabolism in muscle. We recently reported that enteral leucine infusion decreased proteasome activity in human duodenal mucosa and enhanced intestinal cell proliferation, but its effects on gut proteome remain unknown. Therefore, we aimed to assess the effects of an enteral leucine infusion on the whole proteome of duodenal mucosa. In this work, 5 healthy volunteers received for 5h, on 2 occasions and in random order, an enteral supply of maltodextrins (0.25 g kg(-1) h(-1)) or maltodextrins supplemented with leucine (0.035 g kg(-1) h(-1)). At the end of infusion, endoscopic duodenal biopsy samples were collected and analyzed by 2D-PAGE. Eleven protein spots were differentially and significantly (P<0.05) expressed in response to the leucine-supplemented maltodextrins compared with maltodextrins alone. Forty percent of identified proteins by mass spectrometry were located in mitochondria. Four proteins were involved in lipid metabolism: HADHA, ACADVL and CPT2 expressions were reduced, whereas FABP1 expression was increased. In addition, the expression of DHA kinase involved in glycerol metabolism was also downregulated. Finally, leucine supplementation altered the duodenal mucosal proteome by regulating the expression of several enzymes mainly involved in lipid metabolism. These results suggest that leucine supplementation may slowdown fatty acid beta-oxidation in human duodenal mucosa.
Collapse
|
44
|
Colin S, Briand O, Touche V, Wouters K, Baron M, Pattou F, Hanf R, Tailleux A, Chinetti G, Staels B, Lestavel S. Activation of intestinal peroxisome proliferator-activated receptor-α increases high-density lipoprotein production. Eur Heart J 2012; 34:2566-74. [PMID: 22843443 DOI: 10.1093/eurheartj/ehs227] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIMS Peroxisome proliferator-activated receptor (PPAR)-α is a transcription factor controlling lipid metabolism in liver, heart, muscle, and macrophages. Peroxisome proliferator-activated receptor-α activation increases plasma HDL cholesterol and exerts hypotriglyceridaemic actions via the liver. However, the intestine expresses PPAR-α, produces HDL and chylomicrons, and is exposed to diet-derived PPAR-α ligands. Therefore, we examined the effects of PPAR-α activation on intestinal lipid and lipoprotein metabolism. METHODS AND RESULTS The impact of PPAR-α activation was evaluated in term of HDL-related gene expression in mice, ex vivo in human jejunal biopsies and in Caco-2/TC7 cells. Apolipoprotein-AI/HDL secretion, cholesterol esterification, and trafficking were also studied in vitro. In parallel to improving plasma lipid profiles and increasing liver and intestinal expression of fatty acid oxidation genes, treatment with the dual PPAR-α/δ ligand GFT505 resulted in a more pronounced increase in plasma HDL compared with fenofibrate in mice. GFT505, but not fenofibrate, increased the expression of HDL production genes such as apolipoprotein-AI and ATP-binding cassette A1 transporter in murine intestines. A similar increase was observed upon PPAR-α activation of human biopsies and Caco-2/TC7 cells. Additionally, HDL secretion by Caco-2/TC7 cells increased. Moreover, PPAR-α activation decreased the cholesterol esterification capacity of Caco-2/TC7 cells, modified cholesterol trafficking, and reduced apolipoprotein-B secretion. CONCLUSION Peroxisome proliferator-activated receptor-α activation reduces cholesterol esterification, suppresses chylomicron, and increases HDL secretion by enterocytes. These results identify the intestine as a target organ of PPAR-α ligands with entero-hepatic tropism to reduce atherogenic dyslipidaemia.
Collapse
Affiliation(s)
- Sophie Colin
- Université Lille Nord de France, Lille F-59000, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Uchida A, Whitsitt MC, Eustaquio T, Slipchenko MN, Leary JF, Cheng JX, Buhman KK. Reduced triglyceride secretion in response to an acute dietary fat challenge in obese compared to lean mice. Front Physiol 2012; 3:26. [PMID: 22375122 PMCID: PMC3285805 DOI: 10.3389/fphys.2012.00026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 02/03/2012] [Indexed: 11/13/2022] Open
Abstract
Obesity results in abnormally high levels of triglyceride (TG) storage in tissues such as liver, heart, and muscle, which disrupts their normal functions. Recently, we found that lean mice challenged with high levels of dietary fat store TGs in cytoplasmic lipid droplets in the absorptive cells of the intestine, enterocytes, and that this storage increases and then decreases over time after an acute dietary fat challenge. The goal of this study was to investigate the effects of obesity on intestinal TG metabolism. More specifically we asked whether TG storage in and secretion from the intestine are altered in obesity. We investigated these questions in diet-induced obese (DIO) and leptin-deficient (ob/ob) mice. We found greater levels of TG storage in the intestine of DIO mice compared to lean mice in the fed state, but similar levels of TG storage after a 6-h fast. In addition, we found similar TG storage in the intestine of lean and DIO mice at multiple time points after an acute dietary fat challenge. Surprisingly, we found remarkably lower TG secretion from both DIO and ob/ob mice compared to lean controls in response to an acute dietary fat challenge. Furthermore, we found altered mRNA levels for genes involved in regulation of intestinal TG metabolism in lean and DIO mice at 6 h fasting and in response to an acute dietary fat challenge. More specifically, we found that many of the genes related to TG synthesis, chylomicron synthesis, TG storage, and lipolysis were induced in response to an acute dietary fat challenge in lean mice, but this induction was not observed in DIO mice. In fact, we found a significant decrease in intestinal mRNA levels of genes related to lipolysis and fatty acid oxidation in DIO mice in response to an acute dietary fat challenge. Our findings demonstrate altered TG handling by the small intestine of obese compared to lean mice.
Collapse
Affiliation(s)
- Aki Uchida
- Interdisciplinary Life Science Program, Purdue University West Lafayette, IN, USA
| | | | | | | | | | | | | |
Collapse
|