1
|
Grunberger JW, Newton HS, Donohue D, Dobrovolskaia MA, Ghandehari H. Role of physicochemical properties in silica nanoparticle-mediated immunostimulation. Nanotoxicology 2024; 18:599-617. [PMID: 39460666 DOI: 10.1080/17435390.2024.2418088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/01/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024]
Abstract
Immunostimulation caused by nanoparticles may be beneficial or adverse depending on their intended application. Activation of immune cells is beneficial for indications targeting the immune system for therapeutic purposes, such as tumor microenvironment reprogramming, immunotherapy, and vaccines. When it is unwanted, however, immunostimulation may lead to excessive inflammation, cytokine storm, and hypersensitivity reactions. The increasing use of silica nanoparticles (SiNPs) for the delivery of drugs, imaging agents, and antigens warrants preclinical studies aimed at understanding carrier-mediated effects on the number, activation status, and function of immune cell subsets. Herein, we present an in vitro study utilizing primary human peripheral blood mononuclear cells (PBMC) to investigate the proinflammatory properties of four types of SiNPs varying in size and porosity. Cytokine analysis was performed in resting and LPS-primed PBMC cultures to understand the ability of silica nanoparticles to induce de novo and exaggerate preexisting inflammation, respectively. Changes in the number and activation status of lymphoid and myeloid cells were studied by flow cytometry to gain further insight into SiNP-mediated immunostimulation. Nonporous SiNPs were found to be more proinflammatory than mesoporous SiNPs, and larger-sized particles induced greater cytokine response. LPS-primed PBMC resulted in increased susceptibility to SiNPs. Immunophenotyping analysis of SiNP-treated PBMC resulted in T and B lymphocyte, natural killer cell, and dendritic cell activation. Additionally, a loss of regulatory T cells and an increase in γδ TCR T cell population were observed with all particles. These findings have implications for the utility of SiNPs for the delivery of drugs and imaging agents.
Collapse
Affiliation(s)
- Jason William Grunberger
- Utah Center for Nanomedicine, Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA
| | - Hannah S Newton
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Duncan Donohue
- Statistics Department, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
2
|
Han J, Mao K, Yang YG, Sun T. Impact of inorganic/organic nanomaterials on the immune system for disease treatment. Biomater Sci 2024; 12:4903-4926. [PMID: 39190428 DOI: 10.1039/d4bm00853g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The study of nanomaterials' nature, function, and biocompatibility highlights their potential in drug delivery, imaging, diagnostics, and therapeutics. Advancements in nanotechnology have fostered the development and application of diverse nanomaterials. These materials facilitate drug delivery and influence the immune system directly. Yet, understanding of their impact on the immune system is incomplete, underscoring the need to select materials to achieve desired outcomes carefully. In this review, we outline and summarize the distinctive characteristics and effector functions of inorganic nanomaterials and organic materials in inducing immune responses. We highlight the role and advantages of nanomaterial-induced immune responses in the treatment of immune-related diseases. Finally, we briefly discuss the current challenges and future opportunities for disease treatment and clinical translation of these nanomaterials.
Collapse
Affiliation(s)
- Jing Han
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Kuirong Mao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Tang C, Zhou K, Wu D, Zhu H. Nanoparticles as a Novel Platform for Cardiovascular Disease Diagnosis and Therapy. Int J Nanomedicine 2024; 19:8831-8846. [PMID: 39220195 PMCID: PMC11365508 DOI: 10.2147/ijn.s474888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular disease (CVD) is a major global health issue with high mortality and morbidity rates. With the advances in nanotechnology, nanoparticles are receiving increasing attention in diagnosing and treating CVD. Previous studies have explored the use of nanoparticles in noninvasive diagnostic technologies, such as magnetic resonance imaging and computed tomography. Nanoparticles have been extensively studied as drug carriers and prognostic factors, demonstrating synergistic efficacy. This review summarized the current applications of nanoparticles in CVD and discussed their opportunities and challenges for further exploration.
Collapse
Affiliation(s)
- Chuanyun Tang
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Kexun Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Di Wu
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
4
|
Huete-Carrasco J, Lynch RI, Ward RW, Lavelle EC. Rational design of polymer-based particulate vaccine adjuvants. Eur J Immunol 2024; 54:e2350512. [PMID: 37994660 DOI: 10.1002/eji.202350512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023]
Abstract
Vaccination is considered one of the major milestones in modern medicine, facilitating the control and eradication of life-threatening infectious diseases. Vaccine adjuvants are a key component of many vaccines, serving to steer antigen-specific immune responses and increase their magnitude. Despite major advances in the field of adjuvant research over recent decades, our understanding of their mechanism of action remains incomplete. This hinders our capacity to further improve these adjuvant technologies, so addressing how adjuvants induce and control the induction of innate and adaptive immunity is a priority. Investigating how adjuvant physicochemical properties, such as size and charge, exert immunomodulatory effects can provide valuable insights and serve as the foundation for the rational design of vaccine adjuvants. Most clinically applied adjuvants are particulate in nature and polymeric particulate adjuvants present advantages due to stability, biocompatibility profiles, and flexibility in terms of formulation. These properties can impact on antigen release kinetics and biodistribution, cellular uptake and targeting, and drainage to the lymphatics, consequently dictating the induction of innate, cellular, and humoral adaptive immunity. A current focus is to apply rational design principles to the development of adjuvants capable of eliciting robust cellular immune responses including CD8+ cytotoxic T-cell and Th1-biased CD4+ T-cell responses, which are required for vaccines against intracellular pathogens and cancer. This review highlights recent advances in our understanding of how particulate adjuvants, especially polymer-based particulates, modulate immune responses and how this can be used as a guide for improved adjuvant design.
Collapse
Affiliation(s)
- Jorge Huete-Carrasco
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Roisin I Lynch
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin, Ireland
| | - Ross W Ward
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Lamas B, Martins Breyner N, Malaisé Y, Wulczynski M, Galipeau HJ, Gaultier E, Cartier C, Verdu EF, Houdeau E. Evaluating the Effects of Chronic Oral Exposure to the Food Additive Silicon Dioxide on Oral Tolerance Induction and Food Sensitivities in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:27007. [PMID: 38380914 PMCID: PMC10880545 DOI: 10.1289/ehp12758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND The increasing prevalence of food sensitivities has been attributed to changes in gut microenvironment; however, ubiquitous environmental triggers such as inorganic nanoparticles (NPs) used as food additives have not been thoroughly investigated. OBJECTIVES We explored the impact of the NP-structured food-grade silicon dioxide (f g - SiO 2 ) on intestinal immune response involved in oral tolerance (OT) induction and evaluated the consequences of oral chronic exposure to this food-additive using a mouse model of OT to ovalbumin (OVA) and on gluten immunopathology in mice expressing the celiac disease risk gene, HLA-DQ8. METHODS Viability, proliferation, and cytokine production of mesenteric lymph node (MLN) cells were evaluated after exposure to f g - SiO 2 . C57BL/6J mice and a mouse model of OT to OVA were orally exposed to f g - SiO 2 or vehicle for 60 d. Fecal lipocalin-2 (Lcn-2), anti-OVA IgG, cytokine production, and immune cell populations were analyzed. Nonobese diabetic (NOD) mice expressing HLA-DQ8 (NOD/DQ8), exposed to f g - SiO 2 or vehicle, were immunized with gluten and immunopathology was investigated. RESULTS MLN cells exposed to f g - SiO 2 presented less proliferative T cells and lower secretion of interleukin 10 (IL-10) and transforming growth factor beta (TGF- β ) by T regulatory and CD 45 + CD 11 b + CD 103 + cells compared to control, two factors mediating OT. Mice given f g - SiO 2 exhibited intestinal Lcn-2 level and interferon gamma (IFN- γ ) secretion, showing inflammation and less production of IL-10 and TGF- β . These effects were also observed in OVA-tolerized mice exposed to f g - SiO 2 , in addition to a breakdown of OT and a lower intestinal frequency of T cells. In NOD/DQ8 mice immunized with gluten, the villus-to-crypt ratio was decreased while the CD 3 + intraepithelial lymphocyte counts and the Th1 inflammatory response were aggravated after f g - SiO 2 treatment. DISCUSSION Our results suggest that chronic oral exposure to f g - SiO 2 blocked oral tolerance induction to OVA, and worsened gluten-induced immunopathology in NOD/DQ8 mice. The results should prompt investigation on the link between SiO 2 exposure and food sensitivities in humans. https://doi.org/10.1289/EHP12758.
Collapse
Affiliation(s)
- Bruno Lamas
- Toxalim (Research Centre in Food Toxicology), Team Endocrinology and Toxicology of Intestinal Barrier, INRAE/ENVT/Paul Sabatier University, Toulouse, France
| | - Natalia Martins Breyner
- Toxalim (Research Centre in Food Toxicology), Team Endocrinology and Toxicology of Intestinal Barrier, INRAE/ENVT/Paul Sabatier University, Toulouse, France
| | - Yann Malaisé
- Toxalim (Research Centre in Food Toxicology), Team Endocrinology and Toxicology of Intestinal Barrier, INRAE/ENVT/Paul Sabatier University, Toulouse, France
| | - Mark Wulczynski
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Heather J. Galipeau
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Eric Gaultier
- Toxalim (Research Centre in Food Toxicology), Team Endocrinology and Toxicology of Intestinal Barrier, INRAE/ENVT/Paul Sabatier University, Toulouse, France
| | - Christel Cartier
- Toxalim (Research Centre in Food Toxicology), Team Endocrinology and Toxicology of Intestinal Barrier, INRAE/ENVT/Paul Sabatier University, Toulouse, France
| | - Elena F. Verdu
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Eric Houdeau
- Toxalim (Research Centre in Food Toxicology), Team Endocrinology and Toxicology of Intestinal Barrier, INRAE/ENVT/Paul Sabatier University, Toulouse, France
| |
Collapse
|
6
|
Viscidi RP, Rowley T, Bossis I. Bioengineered Bovine Papillomavirus L1 Protein Virus-like Particle (VLP) Vaccines for Enhanced Induction of CD8 T Cell Responses through Cross-Priming. Int J Mol Sci 2023; 24:9851. [PMID: 37372999 DOI: 10.3390/ijms24129851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Safe and effective T cell vaccines are needed for the treatment or prevention of cancers as well as infectious agents where vaccines for neutralizing antibodies have performed poorly. Recent research highlights an important role for tissue-resident memory T cells (TRM cells) in protective immunity and the role of a subset of dendritic cells that are capable of cross-priming for the induction of TRM cells. However, efficient vaccine technologies that operate through cross-priming and induce robust CD8+ T cell responses are lacking. We developed a platform technology by genetically engineering the bovine papillomavirus L1 major capsid protein to insert a polyglutamic acid/cysteine motif in place of wild-type amino acids in the HI loop. Virus-like particles (VLPs) are formed by self-assembly in insect cells infected with a recombinant baculovirus. Polyarginine/cysteine-tagged antigens are linked to the VLP by a reversible disulfide bond. The VLP possesses self-adjuvanting properties due to the immunostimulatory activity of papillomavirus VLPs. Polyionic VLP vaccines induce robust CD8+ T cell responses in peripheral blood and tumor tissues. A prostate cancer polyionic VLP vaccine was more efficacious than other vaccines and immunotherapies for the treatment of prostate cancer in a physiologically relevant murine model and successfully treated more advanced diseases than the less efficacious technologies. The immunogenicity of polyionic VLP vaccines is dependent on particle size, reversible linkage of the antigen to the VLP, and an interferon type 1 and Toll-like receptor (TLR)3/7-dependent mechanism.
Collapse
Affiliation(s)
- Raphael P Viscidi
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Treva Rowley
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Ioannis Bossis
- Department of Animal Production, School of Agricultural Sciences, Forestry & Natural Resources, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
7
|
Chen S, Su Y, Zhang M, Zhang Y, Xiu P, Luo W, Zhang Q, Zhang X, Liang H, Lee APW, Shao L, Xiu J. Insights into the toxicological effects of nanomaterials on atherosclerosis: mechanisms involved and influence factors. J Nanobiotechnology 2023; 21:140. [PMID: 37118804 PMCID: PMC10148422 DOI: 10.1186/s12951-023-01899-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/16/2023] [Indexed: 04/30/2023] Open
Abstract
Atherosclerosis is one of the most common types of cardiovascular disease and is driven by lipid accumulation and chronic inflammation in the arteries, which leads to stenosis and thrombosis. Researchers have been working to design multifunctional nanomedicines with the ability to target, diagnose, and treat atherosclerosis, but recent studies have also identified that nanomaterials can cause atherosclerosis. Therefore, this review aims to outline the molecular mechanisms and physicochemical properties of nanomaterials that promote atherosclerosis. By analyzing the toxicological effects of nanomaterials on cells involved in the pathogenesis of atherosclerosis such as vascular endothelial cells, vascular smooth muscle cells and immune cells, we aim to provide new perspectives for the prevention and treatment of atherosclerosis, and raise awareness of nanotoxicology to advance the clinical translation and sustainable development of nanomaterials.
Collapse
Affiliation(s)
- Siyu Chen
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuan Su
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, 528300, China
| | - Manjin Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Yulin Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Peiming Xiu
- Guangdong Medical University, Dongguan, 523808, China
| | - Wei Luo
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qiuxia Zhang
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xinlu Zhang
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hongbin Liang
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Alex Pui-Wai Lee
- Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Longquan Shao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Jiancheng Xiu
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
8
|
Singh N, Shi S, Goel S. Ultrasmall silica nanoparticles in translational biomedical research: Overview and outlook. Adv Drug Deliv Rev 2023; 192:114638. [PMID: 36462644 PMCID: PMC9812918 DOI: 10.1016/j.addr.2022.114638] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/06/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
The exemplary progress of silica nanotechnology has attracted extensive attention across a range of biomedical applications such as diagnostics and imaging, drug delivery, and therapy of cancer and other diseases. Ultrasmall silica nanoparticles (USNs) have emerged as a particularly promising class demonstrating unique properties that are especially suitable for and have shown great promise in translational and clinical biomedical research. In this review, we discuss synthetic strategies that allow precise engineering of USNs with excellent control over size and surface chemistry, functionalization, and pharmacokinetic and toxicological profiles. We summarize the current state-of-the-art in the biomedical applications of USNs with a particular focus on select clinical studies. Finally, we illustrate long-standing challenges in the translation of inorganic nanotechnology, particularly in the context of ultrasmall nanomedicines, and provide our perspectives on potential solutions and future opportunities in accelerating the translation and widespread adoption of USN technology in biomedical research.
Collapse
Affiliation(s)
- Neetu Singh
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112
| | - Sixiang Shi
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112,Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84112,Correspondence to ;
| | - Shreya Goel
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112,Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84112,Correspondence to ;
| |
Collapse
|
9
|
Bao L, Geng Z, Wang J, He L, Kang A, Song J, Huang X, Zhang Y, Liu Q, Jiang T, Pang Y, Niu Y, Zhang R. Attenuated T cell activation and rearrangement of T cell receptor β repertoire in silica nanoparticle-induced pulmonary fibrosis of mice. ENVIRONMENTAL RESEARCH 2022; 213:113678. [PMID: 35710025 DOI: 10.1016/j.envres.2022.113678] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Silica nanoparticles (SiNPs) cause pulmonary fibrosis through a complex immune response, but the underlying mechanisms by which SiNPs interact with T cells and affect their functions remain unclear. The T cell receptor (TCR) repertoire is closely related to T cell activation and proliferation and mediates innate and adaptive immunity. High-throughput sequencing of the TCR enables comprehensive monitoring of the immune microenvironment. Here, the role of the TCRβ repertoire was explored using a mouse model of SiNP-induced pulmonary fibrosis and a co-culture of RAW264.7 and CD4+ T cells. Our results demonstrated increased TCRβ expression and decreased CD25 and CD69 expression in CD4+ T cells from peripheral blood and lung collected 14 days after the induction of pulmonary fibrosis by SiNPs. Simultaneously, SiNPs significantly decreased CD25 and CD69 expression in CD4+ T cells in vitro via RAW264.7 cell presentation. Mechanistically, pLCK and pZap70 expression, involved in mediating T cell activation, were also decreased in the lung of mice with SiNP-induced pulmonary fibrosis. Furthermore, the profile of the TCRβ repertoire in mice with SiNP-induced pulmonary fibrosis showed that SiNPs markedly altered the usage of V genes, VJ gene combinations, and CDR3 amino acids in lung tissue. Collectively, our data suggested that SiNPs could interfere with T cell activation by macrophage presentation via the LCK/Zap70 pathway and rearrange the TCRβ repertoire for adaptive immunity and the pulmonary microenvironment.
Collapse
Affiliation(s)
- Lei Bao
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Zihan Geng
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Juan Wang
- Department of Statistics, Hebei General Hospital, Shijiazhuang, Hebei, 050000, China
| | - Liyi He
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Aijuan Kang
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Jianshi Song
- School of Basic Medical, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Xiaoyan Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yaling Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Qingping Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Tao Jiang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yaxian Pang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China; Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Rong Zhang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China; Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
| |
Collapse
|
10
|
Liao Z, Huang J, Lo PC, Lovell JF, Jin H, Yang K. Self-adjuvanting cancer nanovaccines. J Nanobiotechnology 2022; 20:345. [PMID: 35883176 PMCID: PMC9316869 DOI: 10.1186/s12951-022-01545-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/04/2022] [Indexed: 11/12/2022] Open
Abstract
Nanovaccines, a new generation of vaccines that use nanoparticles as carriers and/or adjuvants, have been widely used in the prevention and treatment of various diseases, including cancer. Nanovaccines have sparked considerable interest in cancer therapy due to a variety of advantages, including improved access to lymph nodes (LN), optimal packing and presentation of antigens, and induction of a persistent anti-tumor immune response. As a delivery system for cancer vaccines, various types of nanoparticles have been designed to facilitate the delivery of antigens and adjuvants to lymphoid organs and antigen-presenting cells (APCs). Particularly, some types of nanoparticles are able to confer an immune-enhancing capability and can themselves be utilized for adjuvant-like effect for vaccines, suggesting a direction for a better use of nanomaterials and the optimization of cancer vaccines. However, this role of nanoparticles in vaccines has not been well studied. To further elucidate the role of self-adjuvanting nanovaccines in cancer therapy, we review the mechanisms of antitumor vaccine adjuvants with respect to nanovaccines with self-adjuvanting properties, including enhancing cross-presentation, targeting signaling pathways, biomimicking of the natural invasion process of pathogens, and further unknown mechanisms. We surveyed self-adjuvanting cancer nanovaccines in clinical research and discussed their advantages and challenges. In this review, we classified self-adjuvanting cancer nanovaccines according to the underlying immunomodulatory mechanism, which may provide mechanistic insights into the design of nanovaccines in the future.
Collapse
Affiliation(s)
- Zhiyun Liao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Huang
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
11
|
Jiménez-Cabello L, Utrilla-Trigo S, Barreiro-Piñeiro N, Pose-Boirazian T, Martínez-Costas J, Marín-López A, Ortego J. Nanoparticle- and Microparticle-Based Vaccines against Orbiviruses of Veterinary Importance. Vaccines (Basel) 2022; 10:vaccines10071124. [PMID: 35891288 PMCID: PMC9319458 DOI: 10.3390/vaccines10071124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Bluetongue virus (BTV) and African horse sickness virus (AHSV) are widespread arboviruses that cause important economic losses in the livestock and equine industries, respectively. In addition to these, another arthropod-transmitted orbivirus known as epizootic hemorrhagic disease virus (EHDV) entails a major threat as there is a conducive landscape that nurtures its emergence in non-endemic countries. To date, only vaccinations with live attenuated or inactivated vaccines permit the control of these three viral diseases, although important drawbacks, e.g., low safety profile and effectiveness, and lack of DIVA (differentiation of infected from vaccinated animals) properties, constrain their usage as prophylactic measures. Moreover, a substantial number of serotypes of BTV, AHSV and EHDV have been described, with poor induction of cross-protective immune responses among serotypes. In the context of next-generation vaccine development, antigen delivery systems based on nano- or microparticles have gathered significant attention during the last few decades. A diversity of technologies, such as virus-like particles or self-assembled protein complexes, have been implemented for vaccine design against these viruses. In this work, we offer a comprehensive review of the nano- and microparticulated vaccine candidates against these three relevant orbiviruses. Additionally, we also review an innovative technology for antigen delivery based on the avian reovirus nonstructural protein muNS and we explore the prospective functionality of the nonstructural protein NS1 nanotubules as a BTV-based delivery platform.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
| | - Natalia Barreiro-Piñeiro
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Tomás Pose-Boirazian
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - José Martínez-Costas
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06519, USA;
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
- Correspondence:
| |
Collapse
|
12
|
Exposure to nanoparticles and occupational allergy. Curr Opin Allergy Clin Immunol 2022; 22:55-63. [DOI: 10.1097/aci.0000000000000818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Abstract
A favorable outcome of the COVID-19 crisis might be achieved with massive vaccination. The proposed vaccines contain several different vaccine active principles (VAP), such as inactivated virus, antigen, mRNA, and DNA, which are associated with either standard adjuvants or nanomaterials (NM) such as liposomes in Moderna's and BioNTech/Pfizer's vaccines. COVID-19 vaccine adjuvants may be chosen among liposomes or other types of NM composed for example of graphene oxide, carbon nanotubes, micelles, exosomes, membrane vesicles, polymers, or metallic NM, taking inspiration from cancer nano-vaccines, whose adjuvants may share some of their properties with those of viral vaccines. The mechanisms of action of nano-adjuvants are based on the facilitation by NM of targeting certain regions of immune interest such as the mucus, lymph nodes, and zones of infection or blood irrigation, the possible modulation of the type of attachment of the VAP to NM, in particular VAP positioning on the NM external surface to favor VAP presentation to antigen presenting cells (APC) or VAP encapsulation within NM to prevent VAP degradation, and the possibility to adjust the nature of the immune response by tuning the physico-chemical properties of NM such as their size, surface charge, or composition. The use of NM as adjuvants or the presence of nano-dimensions in COVID-19 vaccines does not only have the potential to improve the vaccine benefit/risk ratio, but also to reduce the dose of vaccine necessary to reach full efficacy. It could therefore ease the overall spread of COVID-19 vaccines within a sufficiently large portion of the world population to exit the current crisis.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France. .,Nanobacterie SARL, 36 Boulevard Flandrin, 75116, Paris, France.,Institute of Anatomy, UZH University of Zurich, Instiute of Anatomy, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
14
|
|
15
|
Feray A, Guillet E, Szely N, Hullo M, Legrand FX, Brun E, Rabilloud T, Pallardy M, Biola-Vidamment A. Synthetic amorphous silica nanoparticles promote human dendritic cell maturation and CD4 + T-lymphocyte activation. Toxicol Sci 2021; 185:105-116. [PMID: 34633463 DOI: 10.1093/toxsci/kfab120] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Innate immune cells such as dendritic cells (DCs) sense and engulf nanomaterials potentially leading to an adverse immune response. Indeed, as described for combustion-derived particles, nanomaterials could be sensed as danger signals, enabling DCs to undergo a maturation process, migrate to regional lymph nodes and activate naive T-lymphocytes. Synthetic amorphous silica nanoparticles (SAS-NPs) are widely used as food additives, cosmetics, and construction materials. This work aimed to evaluate in vitro the effects of manufactured SAS-NPs, produced by thermal or wet routes, on human DCs functions and T-cell activation. Human monocyte-derived DCs (moDCs) were exposed for 16 hours to three endotoxin-free test materials: fumed silica NPs from Sigma-Aldrich (#S5505) or the JRC Nanomaterial Repository (NM-202) and colloidal Ludox®TMA NPs. Cell viability, phenotypical changes, cytokines production, internalization, and allogeneic CD4+ T-cells proliferation were evaluated. Our results showed that all SAS-NPs significantly upregulated the surface expression of CD86 and CD83 activation markers. Secretions of pro-inflammatory cytokines (CXCL-8 and CXCL-12) were significantly enhanced in a dose-dependent manner in the moDCs culture supernatants by all SAS-NPs tested. In an allogeneic co-culture, fumed silica-activated moDCs significantly increased T-lymphocyte proliferation at all T-cell:DC ratios compared to unloaded moDCs. Moreover, analysis of co-culture supernatants regarding the production of T-cell-derived cytokines showed a significant increase of IL-9 and IL-17A and F, as well as an upregulation of IL-5, consistent with the pro-inflammatory phenotype of treated-moDCs. Taken together, these results suggest that SAS-NPs could induce functional moDCs maturation and play a role in the immunization process against environmental antigens.
Collapse
Affiliation(s)
- Alexia Feray
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290, Châtenay-Malabry, France
| | - Eléonore Guillet
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290, Châtenay-Malabry, France
| | - Natacha Szely
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290, Châtenay-Malabry, France
| | - Marie Hullo
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290, Châtenay-Malabry, France
| | - François-Xavier Legrand
- Université Paris-Saclay, CNRS, Institut Galien Paris Saclay, 92296, Châtenay-Malabry, France
| | - Emilie Brun
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405, Orsay, France
| | - Thierry Rabilloud
- UMR CNRS 5249, Laboratoire de Chimie et Biologie des Métaux, CEA-Grenoble, 17 avenue des Martyrs, 38 054 Grenoble Cedex 09, France
| | - Marc Pallardy
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290, Châtenay-Malabry, France
| | - Armelle Biola-Vidamment
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 92290, Châtenay-Malabry, France
| |
Collapse
|
16
|
Surface chemistry modification of silica nanoparticles alters the activation of monocytes. Ther Deliv 2021; 12:443-459. [PMID: 33902308 DOI: 10.4155/tde-2021-0006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: Nanoparticles (NPs) interaction with immune system is a growing topic of study. Materials & methods: Bare and amine grafted silica NPs effects on monocytes/macrophages cells were analyzed by flow cytometry, MTT test and LIVE/DEAD® viability/cytotoxicity assay. Results: Bare silica NPs inhibited proliferation and induced monocyte/macrophages activation (increasing CD40/CD80 expression besides pro-inflammatory cytokines and nitrite secretion). Furthermore, silica NPs increased cell membrane damage and reduced the number of living cells. In contrast, amine grafted silica NPs did not alter these parameters. Conclusion: Cell activation properties of bare silica NPs could be hindered after grafting with amine moieties. This strategy is useful to tune the immune system stimulation by NPs or to design NPs suitable to transport therapeutic molecules.
Collapse
|
17
|
Pei M, Xu R, Zhang C, Wang X, Li C, Hu Y. Mannose-functionalized antigen nanoparticles for targeted dendritic cells, accelerated endosomal escape and enhanced MHC-I antigen presentation. Colloids Surf B Biointerfaces 2021; 197:111378. [DOI: 10.1016/j.colsurfb.2020.111378] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/09/2023]
|
18
|
Thakur N, Thakur S, Chatterjee S, Das J, Sil PC. Nanoparticles as Smart Carriers for Enhanced Cancer Immunotherapy. Front Chem 2020; 8:597806. [PMID: 33409265 PMCID: PMC7779678 DOI: 10.3389/fchem.2020.597806] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy for the treatment of many forms of cancer by stimulating body's own immune system. This therapy not only eradicates tumor cells by inducing strong anti-tumor immune response but also prevent their recurrence. The clinical cancer immunotherapy faces some insurmountable challenges including high immune-mediated toxicity, lack of effective and targeted delivery of cancer antigens to immune cells and off-target side effects. However, nanotechnology offers some solutions to overcome those limitations, and thus can potentiate the efficacy of immunotherapy. This review focuses on the advancement of nanoparticle-mediated delivery of immunostimulating agents for efficient cancer immunotherapy. Here we have outlined the use of the immunostimulatory nanoparticles as a smart carrier for effective delivery of cancer antigens and adjuvants, type of interactions between nanoparticles and the antigen/adjuvant as well as the factors controlling the interaction between nanoparticles and the receptors on antigen presenting cells. Besides, the role of nanoparticles in targeting/activating immune cells and modulating the immunosuppressive tumor microenvironment has also been discussed extensively. Finally, we have summarized some theranostic applications of the immunomodulatory nanomaterials in treating cancers based on the earlier published reports.
Collapse
Affiliation(s)
- Neelam Thakur
- Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, India
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, India
| | - Saloni Thakur
- Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, India
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | | | - Joydeep Das
- Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, India
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, India
| | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
19
|
Hong X, Zhong X, Du G, Hou Y, Zhang Y, Zhang Z, Gong T, Zhang L, Sun X. The pore size of mesoporous silica nanoparticles regulates their antigen delivery efficiency. SCIENCE ADVANCES 2020; 6:eaaz4462. [PMID: 32596445 PMCID: PMC7304990 DOI: 10.1126/sciadv.aaz4462] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 05/08/2020] [Indexed: 05/19/2023]
Abstract
Subunit vaccines generally proceed through a 4-step in vivo cascade-the DUMP cascade-to generate potent cell-mediated immune responses: (1) drainage to lymph nodes; (2) uptake by dendritic cells (DCs); (3) maturation of DCs; and (4) Presentation of peptide-MHC I complexes to CD8+ T cells. How the physical properties of vaccine carriers such as mesoporous silica nanoparticles (MSNs) influence this cascade is unclear. We fabricated 80-nm MSNs with different pore sizes (7.8 nm, 10.3 nm, and 12.9 nm) and loaded them with ovalbumin antigen. Results demonstrated these MSNs with different pore sizes were equally effective in the first three steps of the DUMP cascade, but those with larger pores showed higher cross-presentation efficiency (step 4). Consistently, large-pore MSNs loaded with B16F10 tumor antigens yielded the strongest antitumor effects. These results demonstrate the promise of our lymph node-targeting large-pore MSNs as vaccine-delivery vehicles for immune activation and cancer vaccination.
Collapse
Affiliation(s)
- Xiaoyu Hong
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaofang Zhong
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yingying Hou
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yunting Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ling Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
Lamas B, Martins Breyner N, Houdeau E. Impacts of foodborne inorganic nanoparticles on the gut microbiota-immune axis: potential consequences for host health. Part Fibre Toxicol 2020; 17:19. [PMID: 32487227 PMCID: PMC7268708 DOI: 10.1186/s12989-020-00349-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In food toxicology, there is growing interest in studying the impacts of foodborne nanoparticles (NPs, originating from food additives, food supplements or food packaging) on the intestinal microbiome due to the important and complex physiological roles of these microbial communities in host health. Biocidal activities, as described over recent years for most inorganic and metal NPs, could favour chronic changes in the composition and/or metabolic activities of commensal bacteria (namely, intestinal dysbiosis) with consequences on immune functions. Reciprocally, direct interactions of NPs with the immune system (e.g., inflammatory responses, adjuvant or immunosuppressive properties) may in turn have effects on the gut microbiota. Many chronic diseases in humans are associated with alterations along the microbiota-immune system axis, such as inflammatory bowel diseases (IBD) (Crohn's disease and ulcerative colitis), metabolic disorders (e.g., obesity) or colorectal cancer (CRC). This raises the question of whether chronic dietary exposure to inorganic NPs may be viewed as a risk factor facilitating disease onset and/or progression. Deciphering the variety of effects along the microbiota-immune axis may aid the understanding of how daily exposure to inorganic NPs through various foodstuffs may potentially disturb the intricate dialogue between gut commensals and immunity, hence increasing the vulnerability of the host. In animal studies, dose levels and durations of oral treatment are key factors for mimicking exposure conditions to which humans are or may be exposed through the diet on a daily basis, and are needed for hazard identification and risk assessment of foodborne NPs. This review summarizes relevant studies to support the development of predictive toxicological models that account for the gut microbiota-immune axis. CONCLUSIONS The literature indicates that, in addition to evoking immune dysfunctions in the gut, inorganic NPs exhibit a moderate to extensive impact on intestinal microbiota composition and activity, highlighting a recurrent signature that favours colonization of the intestine by pathobionts at the expense of beneficial bacterial strains, as observed in IBD, CRC and obesity. Considering the long-term exposure via food, the effects of NPs on the gut microbiome should be considered in human health risk assessment, especially when a nanomaterial exhibits antimicrobial properties.
Collapse
Affiliation(s)
- Bruno Lamas
- INRAE Toxalim UMR 1331 (Research Center in Food Toxicology), Team Endocrinology and Toxicology of the Intestinal Barrier, INRAE, Toulouse University, ENVT, INP-Purpan, UPS, 180 Chemin de Tournefeuille, 31027, Toulouse cedex 3, France.
| | - Natalia Martins Breyner
- INRAE Toxalim UMR 1331 (Research Center in Food Toxicology), Team Endocrinology and Toxicology of the Intestinal Barrier, INRAE, Toulouse University, ENVT, INP-Purpan, UPS, 180 Chemin de Tournefeuille, 31027, Toulouse cedex 3, France
| | - Eric Houdeau
- INRAE Toxalim UMR 1331 (Research Center in Food Toxicology), Team Endocrinology and Toxicology of the Intestinal Barrier, INRAE, Toulouse University, ENVT, INP-Purpan, UPS, 180 Chemin de Tournefeuille, 31027, Toulouse cedex 3, France.
| |
Collapse
|
21
|
Nanoparticle mediated cancer immunotherapy. Semin Cancer Biol 2020; 69:307-324. [PMID: 32259643 DOI: 10.1016/j.semcancer.2020.03.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/09/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022]
Abstract
The versatility and nanoscale size have helped nanoparticles (NPs) improve the efficacy of conventional cancer immunotherapy and opened up exciting approaches to combat cancer. This review first outlines the tumor immune evasion and the defensive tumor microenvironment (TME) that hinders the activity of host immune system against tumor. Then, a detailed description on how the NP based strategies have helped improve the efficacy of conventional cancer vaccines and overcome the obstacles led by TME. Sustained and controlled drug delivery, enhanced cross presentation by immune cells, co-encapsulation of adjuvants, inhibition of immune checkpoints and intrinsic adjuvant like properties have aided NPs to improve the therapeutic efficacy of cancer vaccines. Also, NPs have been efficient modulators of TME. In this context, NPs facilitate better penetration of the chemotherapeutic drug by dissolution of the inhibitory meshwork formed by tumor associated cells, blood vessels, soluble mediators and extra cellular matrix in TME. NPs achieve this by suppression, modulation, or reprogramming of the immune cells and other mediators localised in TME. This review further summarizes the applications of NPs used to enhance the efficacy of cancer vaccines and modulate the TME to improve cancer immunotherapy. Finally, the hurdles faced in commercialization and translation to clinic have been discussed and intriguingly, NPs owe great potential to emerge as clinical formulations for cancer immunotherapy in near future.
Collapse
|
22
|
Pielenhofer J, Sohl J, Windbergs M, Langguth P, Radsak MP. Current Progress in Particle-Based Systems for Transdermal Vaccine Delivery. Front Immunol 2020; 11:266. [PMID: 32174915 PMCID: PMC7055421 DOI: 10.3389/fimmu.2020.00266] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/03/2020] [Indexed: 12/31/2022] Open
Abstract
Transcutaneous immunization (TCI) via needle-free and non-invasive drug delivery systems is a promising approach for overcoming the current limitations of conventional parenteral vaccination methods. The targeted access to professional antigen-presenting cell (APC) populations within the skin, such as Langerhans cells (LCs), various dermal dendritic cells (dDCs), macrophages, and others makes the skin an ideal vaccination site to specifically shape immune responses as required. The stratum corneum (SC) of the skin is the main penetration barrier that needs to be overcome by the vaccine components in a coordinated way to achieve optimal access to dermal APC populations that induce priming of T-cell or B-cell responses for protective immunity. While there are numerous approaches to penetrating the SC, such as electroporation, sono- or iontophoresis, barrier and ablative methods, jet and powder injectors, and microneedle-mediated transport, we will focus this review on the recent progress made in particle-based systems for TCI. This particular approach delivers vaccine antigens together with adjuvants to perifollicular APCs by diffusion and deposition in hair follicles. Different delivery systems including nanoparticles and lipid-based systems, for example, solid nano-emulsions, and their impact on immune cells and generation of a memory effect are discussed. Moreover, challenges for TCI are addressed, including timely and targeted delivery of antigens and adjuvants to APCs within the skin as well as a deeper understanding of the ill-defined mechanisms leading to the induction of effective memory responses.
Collapse
Affiliation(s)
- Jonas Pielenhofer
- Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg-University, Mainz, Germany
| | - Julian Sohl
- Third Department of Medicine - Hematology, Oncology, Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology, Buchmann Institute for Molecular Life Sciences, Goethe-University, Frankfurt, Germany
| | - Peter Langguth
- Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg-University, Mainz, Germany
| | - Markus P Radsak
- Third Department of Medicine - Hematology, Oncology, Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
23
|
Hewitt RE, Chappell HF, Powell JJ. Small and dangerous? Potential toxicity mechanisms of common exposure particles and nanoparticles. CURRENT OPINION IN TOXICOLOGY 2020; 19:93-98. [PMID: 32566804 DOI: 10.1016/j.cotox.2020.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We are continuously exposed to large numbers of non-biological, persistent particulates through dermal, oral and inhalation routes. At sizes perfect for cell interactions, such modern particle exposures are derived from human engineering either purposefully (e.g. additives/excipients) or inadvertently (e.g. pollution). Whether oral or dermal exposure to common particles has significantly adverse effects is not yet known. However, relationships between increased morbidity or mortality and airborne particle exposure are well established. Large nanoparticles and microparticles adsorb environmental molecules, including antigens and allergens, and deliver them to cells potentially with an adjuvant effect. Smaller nanoparticles may have enhanced redox activity due to increased surface areas or band gap effects. Under some circumstances, ultrasmall nanoparticles can ligate cellular receptors or interact with other cell machinery and drive distinct cell signalling. These, as well as the potential for inflammasome activation, are discussed as feasible pathways to understanding or de-bunking particle toxicity.
Collapse
Affiliation(s)
- Rachel E Hewitt
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Helen F Chappell
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Jonathan J Powell
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| |
Collapse
|
24
|
Roach KA, Stefaniak AB, Roberts JR. Metal nanomaterials: Immune effects and implications of physicochemical properties on sensitization, elicitation, and exacerbation of allergic disease. J Immunotoxicol 2019; 16:87-124. [PMID: 31195861 PMCID: PMC6649684 DOI: 10.1080/1547691x.2019.1605553] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 03/15/2019] [Accepted: 04/05/2019] [Indexed: 12/25/2022] Open
Abstract
The recent surge in incorporation of metallic and metal oxide nanomaterials into consumer products and their corresponding use in occupational settings have raised concerns over the potential for metals to induce size-specific adverse toxicological effects. Although nano-metals have been shown to induce greater lung injury and inflammation than their larger metal counterparts, their size-related effects on the immune system and allergic disease remain largely unknown. This knowledge gap is particularly concerning since metals are historically recognized as common inducers of allergic contact dermatitis, occupational asthma, and allergic adjuvancy. The investigation into the potential for adverse immune effects following exposure to metal nanomaterials is becoming an area of scientific interest since these characteristically lightweight materials are easily aerosolized and inhaled, and their small size may allow for penetration of the skin, which may promote unique size-specific immune effects with implications for allergic disease. Additionally, alterations in physicochemical properties of metals in the nano-scale greatly influence their interactions with components of biological systems, potentially leading to implications for inducing or exacerbating allergic disease. Although some research has been directed toward addressing these concerns, many aspects of metal nanomaterial-induced immune effects remain unclear. Overall, more scientific knowledge exists in regards to the potential for metal nanomaterials to exacerbate allergic disease than to their potential to induce allergic disease. Furthermore, effects of metal nanomaterial exposure on respiratory allergy have been more thoroughly-characterized than their potential influence on dermal allergy. Current knowledge regarding metal nanomaterials and their potential to induce/exacerbate dermal and respiratory allergy are summarized in this review. In addition, an examination of several remaining knowledge gaps and considerations for future studies is provided.
Collapse
Affiliation(s)
- Katherine A Roach
- a Allergy and Clinical Immunology Branch (ACIB) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
- b School of Pharmacy , West Virginia University , Morgantown , WV , USA
| | - Aleksandr B Stefaniak
- c Respiratory Health Division (RHD) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Jenny R Roberts
- a Allergy and Clinical Immunology Branch (ACIB) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| |
Collapse
|
25
|
Crecente-Campo J, Virgilio T, Morone D, Calviño-Sampedro C, Fernández-Mariño I, Olivera A, Varela-Calvino R, González SF, Alonso MJ. Design of polymeric nanocapsules to improve their lympho-targeting capacity. Nanomedicine (Lond) 2019; 14:3013-3033. [PMID: 31696773 DOI: 10.2217/nnm-2019-0206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To design lympho-targeted nanocarriers with the capacity to enhance the activity of associated drugs/antigens whose target is within the lymphatic system. Materials & methods: Inulin (INU)-based nanocapsules (NCs), negatively charged and positively charged chitosan NCs were prepared by the solvent displacement techniques. The NCs were produced in two sizes: small (70 nm) and medium (170-250 nm). Results: In vitro results indicated that small NCs interacted more efficiently with dendritic cells than the larger ones. The study of the NCs biodistribution in mice, using 3D reconstruction of the popliteal lymph node, showed that small INU NCs have the greatest access and uniform accumulation in different subsets of resident immune cells. Conclusion: Small and negatively charged INU NCs have a potential as lympho-targeted antigen/drug nanocarriers.
Collapse
Affiliation(s)
- José Crecente-Campo
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), School of Pharmacy, Universidade de Santiago de Compostela, Campus Vida, 15706 Santiago de Compostela, Spain
| | - Tommaso Virgilio
- Institute for Research in Biomedicine, Università della Svizzera Italiana, via Vincenzo Vela 6, 6500 Bellinzona, Switzerland.,Graduate School of Cellular and Biomedical Sciences, Faculty of Medicine, University of Bern, 3012 Bern, Switzerland
| | - Diego Morone
- Institute for Research in Biomedicine, Università della Svizzera Italiana, via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Cristina Calviño-Sampedro
- Department of Biochemistry & Molecular Biology, School of Pharmacy, Universidade de Santiago de Compostela, Campus Vida s/n, 15782 Santiago, A Coruña, Spain
| | - Iago Fernández-Mariño
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), School of Pharmacy, Universidade de Santiago de Compostela, Campus Vida, 15706 Santiago de Compostela, Spain
| | - Ana Olivera
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), School of Pharmacy, Universidade de Santiago de Compostela, Campus Vida, 15706 Santiago de Compostela, Spain
| | - Rubén Varela-Calvino
- Department of Biochemistry & Molecular Biology, School of Pharmacy, Universidade de Santiago de Compostela, Campus Vida s/n, 15782 Santiago, A Coruña, Spain
| | - Santiago F González
- Institute for Research in Biomedicine, Università della Svizzera Italiana, via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - María J Alonso
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), School of Pharmacy, Universidade de Santiago de Compostela, Campus Vida, 15706 Santiago de Compostela, Spain
| |
Collapse
|
26
|
Eleftheriadis T, Pissas G, Zarogiannis S, Liakopoulos V, Stefanidis I. Crystalline silica activates the T-cell and the B-cell antigen receptor complexes and induces T-cell and B-cell proliferation. Autoimmunity 2019; 52:136-143. [PMID: 31119949 DOI: 10.1080/08916934.2019.1614171] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Silicosis is an occupational fibrotic lung disease, which is associated with an increased incidence of autoimmune diseases. The effect of crystalline silica on the immune system is thought to be mediated by the antigen presenting cells. However, the direct effect of silica on T-cells and B-cells has not been evaluated adequately. For this purpose, CD4(+)T-cells and B-cells from 10 healthy individuals were isolated and cultured with or without Min-U-Sil 5. Cell proliferation was assessed with BrdU assay. In cell proliferation experiments, tacrolimus, an inhibitor of the signal transduction derived from the activation of the T-cell or the B-cell antigen receptor (BCR) complex, was also used. The levels of phosphorylated zeta and phosphorylated Igα, indicative of the T-cell and BCR complex activation respectively, and of the transcription factor c-Myc, required for cell proliferation, were assessed by Western blotting. Crystalline silica triggered CD4(+)T-cell and B-cell proliferation, while tacrolimus significantly decreased the silica-induced proliferation in both cell types. Crystalline silica enhanced the level of phosphorylated zeta and phosphorylated Igα in CD4(+)T-cells and B-cells, respectively. In both cell types, treatment with silica increased c-Myc expression. Thus, crystalline silica may induce T-cell and B-cell proliferation by activating T-cell and BCR complexes. It is likely that the direct activation of CD4(+)T-cells and B-cells by silica crystals detected in this study circumvents many self-tolerance check-points and offers a mechanistic explanation for the crystalline silica-induced autoimmune diseases.
Collapse
Affiliation(s)
| | - Georgios Pissas
- a Department of Nephrology, Faculty of Medicine , University of Thessaly , Larissa , Greece
| | - Sotirios Zarogiannis
- a Department of Nephrology, Faculty of Medicine , University of Thessaly , Larissa , Greece
| | - Vassilios Liakopoulos
- a Department of Nephrology, Faculty of Medicine , University of Thessaly , Larissa , Greece
| | - Ioannis Stefanidis
- a Department of Nephrology, Faculty of Medicine , University of Thessaly , Larissa , Greece
| |
Collapse
|
27
|
Cordeiro AS, Crecente-Campo J, Bouzo BL, González SF, de la Fuente M, Alonso MJ. Engineering polymeric nanocapsules for an efficient drainage and biodistribution in the lymphatic system. J Drug Target 2019; 27:646-658. [DOI: 10.1080/1061186x.2018.1561886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ana Sara Cordeiro
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS) Health Research Institute of Santiago de Compostela (IDIS), School of Pharmacy, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain
| | - José Crecente-Campo
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS) Health Research Institute of Santiago de Compostela (IDIS), School of Pharmacy, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain
| | - Belén L. Bouzo
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS) Health Research Institute of Santiago de Compostela (IDIS), School of Pharmacy, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain
- Nano-Oncology Unit, Translational Medical Oncology Group, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), CIBERONC, Santiago de Compostela, Spain
| | - Santiago F. González
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - María de la Fuente
- Nano-Oncology Unit, Translational Medical Oncology Group, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), CIBERONC, Santiago de Compostela, Spain
| | - María José Alonso
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS) Health Research Institute of Santiago de Compostela (IDIS), School of Pharmacy, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain
| |
Collapse
|
28
|
Vis B, Hewitt RE, Faria N, Bastos C, Chappell H, Pele L, Jugdaohsingh R, Kinrade SD, Powell JJ. Non-Functionalized Ultrasmall Silica Nanoparticles Directly and Size-Selectively Activate T Cells. ACS NANO 2018; 12:10843-10854. [PMID: 30346692 DOI: 10.1021/acsnano.8b03363] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Sub-micron-sized silica nanoparticles, even as small as 10-20 nm in diameter, are well-known for their activation of mononuclear phagocytes. In contrast, the cellular impact of those <10 nm [ i.e., ultrasmall silica nanoparticles (USSN)] is not well-established for any cell type despite anticipated human exposure. Here, we synthesized discrete populations of USSN with volume median diameters between 1.8 to 16 nm and investigated their impact on the mixed cell population of human primary peripheral mononuclear cells. USSN 1.8-7.6 nm in diameter, optimally 3.6-5.1 nm in diameter, induced dose-dependent CD4 and CD8 T-cell activation in terms of cell surface CD25 and CD69 up-regulation at concentrations above 150 μM Sitotal (∼500 nM particles). Induced activation with only ∼2.4 μM particles was (a) equivalent to that observed with typical positive control levels of Staphylococcal enterotoxin B (SEB) and (b) evident in antigen presenting cell-deplete cultures as well as in a pure T-cell line (Jurkat) culture. In the primary mixed-cell population, USSN induced IFN-γ secretion but failed to induce T-cell proliferation or the secretion of IL-2, IL-10, or IL-4. Collectively, these data indicate that USSN initiate activation, with Th1 polarization, of T cells via direct particle-cell interaction. Finally, similarly sized iron hydroxide particles did not induce the expression of T-cell activation markers, indicating some selectivity of the ultrasmall particle type. Given that humans may be exposed to ultrasmall particles and that these materials have emerging bioclinical applications, their off-target immunomodulatory effects via direct T-cell activation should be carefully considered.
Collapse
Affiliation(s)
- Bradley Vis
- Biomineral Research Group, Department of Veterinary Medicine , University of Cambridge , Madingley Road , Cambridge CB3 0ES , United Kingdom
- Biomineral Research Group, Department of Mineral Science and Technology , MRC Elsie Widdowson Laboratory , Fulbourn Road , Cambridge CB1 9NL , United Kingdom
- Department of Chemistry , Lakehead University , Thunder Bay , Ontario P7B 5E1 , Canada
| | - Rachel E Hewitt
- Biomineral Research Group, Department of Veterinary Medicine , University of Cambridge , Madingley Road , Cambridge CB3 0ES , United Kingdom
- Biomineral Research Group, Department of Mineral Science and Technology , MRC Elsie Widdowson Laboratory , Fulbourn Road , Cambridge CB1 9NL , United Kingdom
| | - Nuno Faria
- Biomineral Research Group, Department of Veterinary Medicine , University of Cambridge , Madingley Road , Cambridge CB3 0ES , United Kingdom
- Biomineral Research Group, Department of Mineral Science and Technology , MRC Elsie Widdowson Laboratory , Fulbourn Road , Cambridge CB1 9NL , United Kingdom
| | - Carlos Bastos
- Biomineral Research Group, Department of Veterinary Medicine , University of Cambridge , Madingley Road , Cambridge CB3 0ES , United Kingdom
- Biomineral Research Group, Department of Mineral Science and Technology , MRC Elsie Widdowson Laboratory , Fulbourn Road , Cambridge CB1 9NL , United Kingdom
| | - Helen Chappell
- Biomineral Research Group, Department of Mineral Science and Technology , MRC Elsie Widdowson Laboratory , Fulbourn Road , Cambridge CB1 9NL , United Kingdom
- School of Food Science and Nutrition , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , United Kingdom
| | - Laetitia Pele
- Biomineral Research Group, Department of Veterinary Medicine , University of Cambridge , Madingley Road , Cambridge CB3 0ES , United Kingdom
- Biomineral Research Group, Department of Mineral Science and Technology , MRC Elsie Widdowson Laboratory , Fulbourn Road , Cambridge CB1 9NL , United Kingdom
| | - Ravin Jugdaohsingh
- Biomineral Research Group, Department of Veterinary Medicine , University of Cambridge , Madingley Road , Cambridge CB3 0ES , United Kingdom
- Biomineral Research Group, Department of Mineral Science and Technology , MRC Elsie Widdowson Laboratory , Fulbourn Road , Cambridge CB1 9NL , United Kingdom
| | - Stephen D Kinrade
- Department of Chemistry , Lakehead University , Thunder Bay , Ontario P7B 5E1 , Canada
| | - Jonathan J Powell
- Biomineral Research Group, Department of Veterinary Medicine , University of Cambridge , Madingley Road , Cambridge CB3 0ES , United Kingdom
- Biomineral Research Group, Department of Mineral Science and Technology , MRC Elsie Widdowson Laboratory , Fulbourn Road , Cambridge CB1 9NL , United Kingdom
| |
Collapse
|
29
|
Chen L, Liu J, Zhang Y, Zhang G, Kang Y, Chen A, Feng X, Shao L. The toxicity of silica nanoparticles to the immune system. Nanomedicine (Lond) 2018; 13:1939-1962. [PMID: 30152253 DOI: 10.2217/nnm-2018-0076] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Silicon-based materials and their oxides are widely used in drug delivery, dietary supplements, implants and dental fillers. Silica nanoparticles (SiNPs) interact with immunocompetent cells and induce immunotoxicity. However, the toxic effects of SiNPs on the immune system have been inadequately reviewed. The toxicity of SiNPs to the immune system depends on their physicochemical properties and the cell type. Assessments of immunotoxicity include determining cell dysfunctions, cytotoxicity and genotoxicity. This review focuses on the immunotoxicity of SiNPs and investigates the underlying mechanisms. The main mechanisms were proinflammatory responses, oxidative stress and autophagy. Considering the toxicity of SiNPs, surface and shape modifications may mitigate the toxic effects of SiNPs, providing a new way to produce these nanomaterials with less toxic impaction.
Collapse
Affiliation(s)
- Liangjiao Chen
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, PR China
| | - Jia Liu
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Yanli Zhang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Guilan Zhang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Yiyuan Kang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Aijie Chen
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Xiaoli Feng
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| |
Collapse
|
30
|
Wang C, Zhu W, Luo Y, Wang BZ. Gold nanoparticles conjugating recombinant influenza hemagglutinin trimers and flagellin enhanced mucosal cellular immunity. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1349-1360. [PMID: 29649593 DOI: 10.1016/j.nano.2018.03.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/09/2018] [Accepted: 03/31/2018] [Indexed: 01/13/2023]
Abstract
The immunogenicity of subunit vaccines can be augmented by formulating them into nanoparticles. We conjugated recombinant trimetric influenza A/Aichi/2/68(H3N2) hemagglutinin (HA) onto functionalized gold nanoparticle (AuNP) surfaces in a repetitive, oriented configuration. To further improve the immunogenicity, we generated Toll-like receptor 5 (TLR5) agonist flagellin (FliC)-coupled AuNPs as particulate adjuvants. Intranasal immunizations with an AuNP-HA and AuNP-FliC particle mixture elicited strong mucosal and systemic immune responses that protected hosts against lethal influenza challenges. Compared with the AuNP-HA alone group, the addition of AuNP-FliC improved mucosal B cell responses as characterized by elevated influenza specific IgA and IgG levels in nasal, tracheal, and lung washes. AuNP-HA/AuNP-FliC also stimulated antigen-specific interferon-γ (IFN-γ)-secreting CD4+ cell proliferation and induced strong effector CD8+ T cell activation. Our results indicate that intranasal co-delivery of antigen and adjuvant-displaying AuNPs enhanced vaccine efficacy by inducing potent cellular immune responses.
Collapse
Affiliation(s)
- Chao Wang
- Center for Inflammation, Immunity & infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, USA
| | - Wandi Zhu
- Center for Inflammation, Immunity & infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, USA
| | - Yuan Luo
- Center for Inflammation, Immunity & infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, USA.
| |
Collapse
|
31
|
Dacoba TG, Olivera A, Torres D, Crecente-Campo J, Alonso MJ. Modulating the immune system through nanotechnology. Semin Immunol 2017; 34:78-102. [PMID: 29032891 PMCID: PMC5774666 DOI: 10.1016/j.smim.2017.09.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022]
Abstract
Nowadays, nanotechnology-based modulation of the immune system is presented as a cutting-edge strategy, which may lead to significant improvements in the treatment of severe diseases. In particular, efforts have been focused on the development of nanotechnology-based vaccines, which could be used for immunization or generation of tolerance. In this review, we highlight how different immune responses can be elicited by tuning nanosystems properties. In addition, we discuss specific formulation approaches designed for the development of anti-infectious and anti-autoimmune vaccines, as well as those intended to prevent the formation of antibodies against biologicals.
Collapse
Affiliation(s)
- Tamara G Dacoba
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Ana Olivera
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Dolores Torres
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - José Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| |
Collapse
|
32
|
Meldrum K, Guo C, Marczylo EL, Gant TW, Smith R, Leonard MO. Mechanistic insight into the impact of nanomaterials on asthma and allergic airway disease. Part Fibre Toxicol 2017; 14:45. [PMID: 29157272 PMCID: PMC5697410 DOI: 10.1186/s12989-017-0228-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/10/2017] [Indexed: 01/02/2023] Open
Abstract
Asthma is a chronic respiratory disease known for its high susceptibility to environmental exposure. Inadvertent inhalation of engineered or incidental nanomaterials is a concern for human health, particularly for those with underlying disease susceptibility. In this review we provide a comprehensive analysis of those studies focussed on safety assessment of different nanomaterials and their unique characteristics on asthma and allergic airway disease. These include in vivo and in vitro approaches as well as human and population studies. The weight of evidence presented supports a modifying role for nanomaterial exposure on established asthma as well as the development of the condition. Due to the variability in modelling approaches, nanomaterial characterisation and endpoints used for assessment in these studies, there is insufficient information for how one may assign relative hazard potential to individual nanoscale properties. New developments including the adoption of standardised models and focussed in vitro and in silico approaches have the potential to more reliably identify properties of concern through comparative analysis across robust and select testing systems. Importantly, key to refinement and choice of the most appropriate testing systems is a more complete understanding of how these materials may influence disease at the cellular and molecular level. Detailed mechanistic insight also brings with it opportunities to build important population and exposure susceptibilities into models. Ultimately, such approaches have the potential to more clearly extrapolate relevant toxicological information, which can be used to improve nanomaterial safety assessment for human disease susceptibility.
Collapse
Affiliation(s)
- Kirsty Meldrum
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Chang Guo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Emma L Marczylo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Timothy W Gant
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Rachel Smith
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Martin O Leonard
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK.
| |
Collapse
|
33
|
Combined Action of Human Commensal Bacteria and Amorphous Silica Nanoparticles on the Viability and Immune Responses of Dendritic Cells. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00178-17. [PMID: 28835358 DOI: 10.1128/cvi.00178-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/13/2017] [Indexed: 11/20/2022]
Abstract
Dendritic cells (DCs) regulate the host-microbe balance in the gut and skin, tissues likely exposed to nanoparticles (NPs) present in drugs, food, and cosmetics. We analyzed the viability and the activation of DCs incubated with extracellular media (EMs) obtained from cultures of commensal bacteria (Escherichia coli, Staphylococcus epidermidis) or pathogenic bacteria (Pseudomonas aeruginosa, Staphylococcus aureus) in the presence of amorphous silica nanoparticles (SiO2 NPs). EMs and NPs synergistically increased the levels of cytotoxicity and cytokine production, with different nanoparticle dose-response characteristics being found, depending on the bacterial species. E. coli and S. epidermidis EMs plus NPs at nontoxic doses stimulated the secretion of interleukin-1β (IL-1β), IL-12, IL-10, and IL-6, while E. coli and S. epidermidis EMs plus NPs at toxic doses stimulated the secretion of gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), IL-4, and IL-5. On the contrary, S. aureus and P. aeruginosa EMs induced cytokines only when they were combined with NPs at toxic concentrations. The induction of maturation markers (CD86, CD80, CD83, intercellular adhesion molecule 1, and major histocompatibility complex class II) by commensal bacteria but not by pathogenic ones was improved in the presence of noncytotoxic SiO2 NP doses. DCs consistently supported the proliferation and differentiation of CD4+ and CD8+ T cells secreting IFN-γ and IL-17A. The synergistic induction of CD86 was due to nonprotein molecules present in the EMs from all bacteria tested. At variance with this finding, the synergistic induction of IL-1β was prevalently mediated by proteins in the case of E. coli EMs and by nonproteins in the case of S. epidermidis EMs. A bacterial costimulus did not act on DCs after adsorption on SiO2 NPs but rather acted as an independent agonist. The inflammatory and immune actions of DCs stimulated by commensal bacterial agonists might be altered by the simultaneous exposure to engineered or environmental NPs.
Collapse
|
34
|
Song W, Musetti SN, Huang L. Nanomaterials for cancer immunotherapy. Biomaterials 2017; 148:16-30. [PMID: 28961532 DOI: 10.1016/j.biomaterials.2017.09.017] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/07/2017] [Accepted: 09/17/2017] [Indexed: 02/08/2023]
Abstract
Cancer immunotherapy is quickly growing to be the fourth most important cancer therapy, after surgery, radiation therapy, and chemotherapy. Immunotherapy is the most promising cancer management strategy because it orchestrates the body's own immune system to target and eradicate cancer cells, which may result in durable antitumor responses and reduce metastasis and recurrence more than traditional treatments. Nanomaterials hold great promise in further improving the efficiency of cancer immunotherapy - in many cases, they are even necessary for effective delivery. In this review, we briefly summarize the basic principles of cancer immunotherapy and explain why and where to apply nanomaterials in cancer immunotherapy, with special emphasis on cancer vaccines and tumor microenvironment modulation.
Collapse
Affiliation(s)
- Wantong Song
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Sara N Musetti
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
35
|
Gause KT, Wheatley AK, Cui J, Yan Y, Kent SJ, Caruso F. Immunological Principles Guiding the Rational Design of Particles for Vaccine Delivery. ACS NANO 2017; 11:54-68. [PMID: 28075558 DOI: 10.1021/acsnano.6b07343] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Despite the immense public health successes of immunization over the past century, effective vaccines are still lacking for globally important pathogens such as human immunodeficiency virus, malaria, and tuberculosis. Exciting recent advances in immunology and biotechnology over the past few decades have facilitated a shift from empirical to rational vaccine design, opening possibilities for improved vaccines. Some of the most important advancements include (i) the purification of subunit antigens with high safety profiles, (ii) the identification of innate pattern recognition receptors (PRRs) and cognate agonists responsible for inducing immune responses, and (iii) developments in nano- and microparticle fabrication and characterization techniques. Advances in particle engineering now allow highly tunable physicochemical properties of particle-based vaccines, including composition, size, shape, surface characteristics, and degradability. Enhanced collaborative efforts between researchers in immunology and materials science are expected to rise to next-generation vaccines. This process will be significantly aided by a greater understanding of the immunological principles guiding vaccine antigenicity, immunogenicity, and efficacy. With specific emphasis on PRR-targeted adjuvants and particle physicochemical properties, this review aims to provide an overview of the current literature to guide and focus rational particle-based vaccine design efforts.
Collapse
Affiliation(s)
- Katelyn T Gause
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Adam K Wheatley
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity , Parkville, Victoria 3010, Australia
| | - Jiwei Cui
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Yan Yan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Stephen J Kent
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity , Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
36
|
Toda T, Yoshino S. Enhancement of ovalbumin-specific Th1, Th2, and Th17 immune responses by amorphous silica nanoparticles. Int J Immunopathol Pharmacol 2016; 29:408-20. [PMID: 27343242 DOI: 10.1177/0394632016656192] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/01/2016] [Indexed: 12/24/2022] Open
Abstract
Nanomaterials present in cosmetics and food additives are used for industrial applications. However, their safety profile is unclear. Amorphous silica nanoparticles (nSPs) are a widely used nanomaterial and have been shown to induce inflammatory cytokines following intratracheal administration in mice. The current study investigated the adjuvant effect of nSP30 (nSP with a diameter of 33 nm) on T helper (Th)1, Th2, and Th17 immune responses as well as immunoglobulin (Ig) levels in mice. BALB/c mice were intraperitoneally administered ovalbumin (OVA) with or without varying doses and varying sizes of nSPs. The adjuvant effect of nSPs was investigated by measuring OVA-specific IgG antibodies in sera, OVA-specific proliferative responses of splenocytes, and the production of Th1, Th2, and Th17 cytokines. Aluminum hydroxide was used as a positive adjuvant control. Anti-OVA IgG production, splenocyte proliferative responses, and secretion of IFN-γ, IL-2, IL-4, IL-5, and IL-17 were increased significantly in mice receiving a combined injection of nSP30 (30 or 300 µg) with OVA compared with OVA alone or a combined injection with nSP30 (3 µg). The responses were nSP30 dose-dependent. When different sized nSPs were used (with 30, 100, and 1000 nm diameters), the responses to OVA were enhanced and were size-dependent. The smaller sized nSP particles had a greater adjuvant effect. nSPs appear to exert a size-dependent adjuvant effect for Th1, Th2, and Th17 immune responses. Understanding the mechanisms of nSP adjuvanticity might lead to the development of novel vaccine adjuvants and therapies for allergic diseases caused by environmental factors.
Collapse
Affiliation(s)
- Tsuguto Toda
- Department of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan Research Laboratory for Development, Shionogi & Co., Ltd, Osaka, Japan
| | - Shin Yoshino
- Department of Pharmacology, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
37
|
Toda T, Yoshino S. Amorphous nanosilica particles block induction of oral tolerance in mice. J Immunotoxicol 2016; 13:723-8. [PMID: 27086695 DOI: 10.3109/1547691x.2016.1171266] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mucosal immune system is exposed to non-self antigens in food and the gut microbiota. Therefore, the recognition of orally ingested non-self antigens is suppressed in healthy individuals to avoid excessive immune responses in a process called "oral tolerance". The breakdown of oral tolerance has been cited as a possible cause of food allergy, and amorphous silica nanoparticles (nSP) have been implicated in this breakdown. As nSP are widely used in foodstuffs and other products, exposure to them is increasing; thus, investigations of any effects of nSP on oral tolerance are urgent. This study evaluated the effects of nSP30 (particle diameter = 39 nm) on immunological unresponsiveness induced in mice with oral ovalbumin (OVA). Specifically, production of OVA-specific antibodies, splenocyte proliferation in response to OVA, and effects on T-helper (TH)-1, TH2, and TH17 responses (in terms of cytokine and IgG/IgE subclass expression) were evaluated. nSP30 increased the levels of OVA-specific IgG in OVA-tolerized mice and induced the proliferation of OVA-immunized splenocytes in response to OVA in a dose-related manner. nSP30 also increased the expression of OVA-specific IgG1, IgE, and IgG2a, indicating stimulation of the TH1 and TH2 responses. The expression of interferon (IFN)-γ (TH1), interleukin (IL)-4 and IL-5 (TH2), and IL-17 (TH17) was also stimulated in a dose-related manner by nSP30 in splenocytes stimulated ex vivo with OVA. The induction of tolerance by OVA, the production of anti-OVA IgG antibodies, and proliferation of splenocytes in response to OVA was inhibited by nSP30 in conjunction with OVA and was dose-related. The nSP30 enhanced TH1 and TH2 responses that might prevent the induction of oral tolerance. Overall, this study showed that the abrogation of OVA-induced oral tolerance in mice by exposure to nSP30 was dose-related and that nSP30 stimulated TH1, TH2, and TH17 responses.
Collapse
Affiliation(s)
- Tsuguto Toda
- a Department of Pharmacology , Kobe Pharmaceutical University , Kobe , Japan ;,b Drug Developmental Research Laboratories , Shionogi & Co., Ltd. , Osaka , Japan
| | - Shin Yoshino
- a Department of Pharmacology , Kobe Pharmaceutical University , Kobe , Japan
| |
Collapse
|