1
|
Kaur T, Devi R, Negi R, Kumar S, Singh S, Rustagi S, Shreaz S, Rai AK, Kour D, Yadav AN. Microbial consortium with multifunctional attributes for the plant growth of eggplant (Solanum melongena L.). Folia Microbiol (Praha) 2024; 69:1255-1266. [PMID: 38668814 DOI: 10.1007/s12223-024-01168-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/17/2024] [Indexed: 10/17/2024]
Abstract
In the past few decades, the pressure of higher food production to satisfy the demand of ever rising population has inevitably increased the use synthetic agrochemicals which have deterioration effects. Biostimulants containing beneficial microbes (single inoculants and microbial consortium) were found as an ideal substitute of synthetic chemical fertilizers. In recent years, microbial consortium is known as a better bioinoculant in comparison to single inoculant bioformulation because of multifarious plant growth-promoting advantages. Looking at the advantageous effect of consortium, in present investigation, different bacteria were isolated from rhizospheric soil and plant samples collected from the Himalayan mountains on the green slopes of the Shivaliks, Himachal Pradesh. The isolated bacteria were screened for nitrogen (N) fixation, phosphorus (P) solubilization and potassium (K) solubilization plant growth promoting attributes, and efficient strains were identified through 16S rRNA gene sequencing and BLASTn analysis. The bacteria showing a positive effect in NPK uptake were developed as bacterial consortium for the growth promotion of eggplant crop. A total of 188 rhizospheric and endophytic bacteria were sorted out, among which 13 were exhibiting nitrogenase activity, whereas 43 and 31 were exhibiting P and K solubilization traits, respectively. The selected three efficient and potential bacterial strains were identified using 16S rRNA gene sequencing as Enterobacter ludwigii EU-BEN-22 (N-fixer; 35.68 ± 00.9 nmol C2H4 per mg protein per h), Micrococcus indicus EU-BRP-6 (P-solubilizer; 201 ± 0.004 mg/L), and Pseudomonas gessardii EU-BRK-55 (K-solubilizer; 51.3 ± 1.7 mg/mL), and they were used to develop a bacterial consortium. The bacterial consortium evaluation on eggplant resulted in the improvement of growth (root/shoot length and biomass) and physiological parameters (chlorophyll, carotenoids, total soluble sugar, and phenolic content) of the plants with respect to single culture inoculation, chemical fertilizer, and untreated control. A bacterial consortium having potential to promote plant growth could be used as bioinoculant for horticulture crops growing in hilly regions.
Collapse
Affiliation(s)
- Tanvir Kaur
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India
| | - Rubee Devi
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India
| | - Rajeshwari Negi
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India
| | - Sanjeev Kumar
- Faculty of Agricultural Sciences, GLA University, Mathura, Uttar Pradesh, India
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh, India
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Sheikh Shreaz
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885, 13109, Safat, Kuwait City, Kuwait
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, , Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India.
- Department of Biotechnology, Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN Putra, Nilai, 71800, Negeri Sembilan, Malaysia.
| |
Collapse
|
2
|
Batool S, Safdar M, Naseem S, Sami A, Saleem RSZ, Larrainzar E, Shahid I. A Novel Enterococcus-Based Nanofertilizer Promotes Seedling Growth and Vigor in Wheat ( Triticum aestivum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2875. [PMID: 39458822 PMCID: PMC11510893 DOI: 10.3390/plants13202875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Excessive use of chemical fertilizers poses significant environmental and health concerns. Microbial-based biofertilizers are increasingly being promoted as safe alternatives. However, they have limitations such as gaining farmers' trust, the need for technical expertise, and the variable performance of microbes in the field. The development of nanobiofertilizers as agro-stimulants and agro-protective agents for climate-smart and sustainable agriculture could overcome these limitations. In the present study, auxin-producing Enterococcus sp. SR9, based on its plant growth-promoting traits, was selected for the microbe-assisted synthesis of silver nanoparticles (AgNPs). These microbial-nanoparticles SR9AgNPs were characterized using UV/Vis spectrophotometry, scanning electron microscopy, and a size analyzer. To test the efficacy of SR9AgNPs compared to treatment with the SR9 isolate alone, the germination rates of cucumber (Cucumis sativus), tomato (Solanum lycopersicum), and wheat (Triticum aestivum L.) seeds were analyzed. The data revealed that seeds simultaneously treated with SR9AgNPs and SR9 showed better germination rates than untreated control plants. In the case of vigor, wheat showed the most positive response to the nanoparticle treatment, with a higher vigor index than the other crops analyzed. The toxicity assessment of SR9AgNPs demonstrated no apparent toxicity at a concentration of 100 ppm, resulting in the highest germination and biomass gain in wheat seedlings. This work represents the first step in the characterization of microbial-assisted SR9AgNPs and encourages future studies to extend these conclusions to other relevant crops under field conditions.
Collapse
Affiliation(s)
- Salma Batool
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, 1-Khayaban-e-Jinnah Road, Johar Town, Lahore 54782, Pakistan; (S.B.); (M.S.)
| | - Maryam Safdar
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, 1-Khayaban-e-Jinnah Road, Johar Town, Lahore 54782, Pakistan; (S.B.); (M.S.)
| | - Saira Naseem
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, 1-Khayaban-e-Jinnah Road, Johar Town, Lahore 54782, Pakistan;
| | - Abdul Sami
- H.A. Shah & Sons Group of Companies, Islamabad 46000, Pakistan;
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan;
| | - Estíbaliz Larrainzar
- Institute of Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre (UPNA), Campus Arrosadia, 31006 Pamplona, Spain;
| | - Izzah Shahid
- Institute of Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre (UPNA), Campus Arrosadia, 31006 Pamplona, Spain;
| |
Collapse
|
3
|
Haider S, Bibi K, Munyaneza V, Zhang H, Zhang W, Ali A, Ahmad IA, Mehran M, Xu F, Yang C, Yang J, Ding G. Drought-induced adaptive and ameliorative strategies in plants. CHEMOSPHERE 2024; 364:143134. [PMID: 39168385 DOI: 10.1016/j.chemosphere.2024.143134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/01/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Sharjeel Haider
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Khadija Bibi
- Department of Botany, Faculty of Sciences, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Venuste Munyaneza
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Hao Zhang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Wen Zhang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ayaz Ali
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Iftikhar Ali Ahmad
- Key Laboratory of Soil Health Diagnostic and Green Remediation, Ministry of Ecology and Environment, College of Resource and Environment, Huazhong Agricultural University, China
| | - Muhammad Mehran
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Fangsen Xu
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Chunlei Yang
- Hubei Academy of Tobacco Science, Wuhan, 430030, China.
| | - Jinpeng Yang
- Hubei Academy of Tobacco Science, Wuhan, 430030, China
| | - Guangda Ding
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
4
|
Gao L, Ma JB, Huang Y, Muhammad M, Lian HT, Shurigin V, Egamberdieva D, Li WJ, Li L. Insight into endophytic microbial diversity in two halophytes and plant beneficial attributes of Bacillus swezeyi. Front Microbiol 2024; 15:1447755. [PMID: 39268535 PMCID: PMC11391308 DOI: 10.3389/fmicb.2024.1447755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
This study utilized high-throughput sequencing to investigate endophytic bacteria diversity in halophytic plants Anabasis truncate (AT) and Anabasis eriopoda (AE) from the Aral Sea region. Following sequence processing, 356 Amplicon Sequence Variants (ASVs) were discovered. The abundance and variety of endophytic bacteria were higher in AT. Bacillota, Pseudomonadota, Actinomycetota, and Bacteroidota constituted the dominant in AE, whereas Pseudomonadota, Actinomycetota, Bacteroidota, and Chloroflexota constituted the dominant in AT. Biomarkers were identified through LEFSe analysis, showing host-specific patterns. PCoA indicated distinct bacterial community structures. Phylogenetic analysis revealed diverse endophytic bacteria, including potential novel taxa. PICRUSt2 predicted diverse functions for endophytic bacteria in halophytes, indicating recruitment of beneficial bacterial taxa to adapt to extreme hypersaline conditions, including plant growth-promoting, biocontrol, and halophilic/tolerant bacteria. Moreover, the evolutionary relationship, metabolic capabilities, and plant beneficial potentials of the Bacillus swezeyi strains, previously isolated from the above two halophytes, were analyzed using comparative genomic and physiological analysis. The B. swezeyi strains displayed versatile environmental adaptability, as shown by their ability to use a wide range of carbon sources and their salt tolerances. B. swezeyi possessed a wide range of enzymatic capabilities, including but not limited to proteases, cellulases, and chitinases. Comparative genomic analysis revealed that despite some variations, they shared genetic similarities and metabolic capabilities among the B. swezeyi strains. B. swezeyi strains also displayed outstanding plant-growth-promoting and antagonistic potentials, offering potential solutions to the global food crisis. This study enhances our understanding of microbial diversity in halophytes on saline-alkali land in the West Aral Sea, shedding light on the halophyte microbiome and its collaboration with hosts in highly hypersaline environments. This study also provides a scientific basis for developing high-quality microbial fertilizers and implementing sustainable agricultural practices.
Collapse
Affiliation(s)
- Lei Gao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Biao Ma
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Yin Huang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Murad Muhammad
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hai-Ting Lian
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Vyacheslav Shurigin
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Dilfuza Egamberdieva
- Faculty of Biology, National University of Uzbekistan, Tashkent, Uzbekistan
- Institute of Fundamental and Applied Research, National Research University TIIAME, Tashkent, Uzbekistan
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
5
|
Singh P, Mohanty SS, Mohanty K. Comprehensive assessment of microalgal-based treatment processes for dairy wastewater. Front Bioeng Biotechnol 2024; 12:1425933. [PMID: 39165401 PMCID: PMC11333367 DOI: 10.3389/fbioe.2024.1425933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/11/2024] [Indexed: 08/22/2024] Open
Abstract
The dairy industry is becoming one of the biggest sectors within the global food industry, and these industries use almost 34% of the water. The amount of water used is governed by the production process and the technologies employed in the plants. Consequently, the dairy industries generate almost 0.2-10 L of wastewater per liter of processed milk, which must be treated before being discharged into water bodies. The cultivation of microalgae in a mixotrophic regime using dairy wastewater enhances biomass growth, productivity, and the accumulation of value-added product. The generated biomass can be converted into biofuels, thus limiting the dependence on petroleum-based crude oil. To fulfill the algal biorefinery model, it is important to utilize every waste stream in a cascade loop. Additionally, the harvested water generated from algal biomass production can be recycled for further microalgal growth. Economic and sustainable wastewater management, along with proper reclamation of nutrients from dairy wastewater, is a promising approach to mitigate the problem of water scarcity. A bibliometric study revealing limited work on dairy wastewater treatment using microalgae for biofuel production. And, limited work is reported on the pretreatment of dairy wastewater via physicochemical methods before microalgal-based treatment. There are still significant gaps remains in large-scale cultivation processes. It is also crucial to discover robust strains that are highly compatible with the specific concentration of contaminants, as this will lead to increased yields and productivity for the targeted bio-product. Finally, research on reutilization of culture media in photobioreactor is necessary to augument the productivity of the entire process. Therefore, the incorporation of the microalgal biorefinery with the wastewater treatment concept has great potential for promoting ecological sustainability.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Satya Sundar Mohanty
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Kaustubha Mohanty
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
6
|
da Cunha ET, Pedrolo AM, Arisi ACM. Thermal and salt stress effects on the survival of plant growth-promoting bacteria Azospirillum brasilense in inoculants for maize cultivation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5360-5367. [PMID: 38324183 DOI: 10.1002/jsfa.13366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND The plant growth-promoting bacteria (PGPB) Azospirillum brasilense is widely used as an inoculant for important grass crops, providing numerous benefits to the plants. However, one limitation to develop viable commercial inoculants is the control of PGPB survival, requiring strategies that guarantee their survival during handling and field application. The application of sublethal stress appears to be a promising strategy to increase bacterial cells tolerance to adverse environmental conditions since previous stress induces the activation of physiological protection in bacterial cell. In this work, we evaluated the effects of thermal and salt stresses on the survival of inoculant containing A. brasilense Ab-V5 and Ab-V6 strains and we monitored A. brasilense viability in inoculated maize roots after stress treatment of inoculant. RESULTS Thermal stress application (> 35 °C) in isolated cultures for both strains, as well as salt stress [sodium chloride (NaCl) concentrations > 0.3 mol L-1], resulted in growth rate decline. The A. brasilense enumeration in maize roots obtained by propidium monoazide quantitative polymerase chain reaction (PMA-qPCR), for inoculated maize seedlings grown in vitro for 7 days, showed that there is an increased number of viable cells after the salt stress treatment, indicating that A. brasilense Ab-V5 and Ab-V6 strains are able to adapt to salt stress (0.3 mol L-1 NaCl) growth conditions. CONCLUSION Azospirillum brasilense Ab-V5 and Ab-V6 strains had potential for osmoadaptation and salt stress, resulting in increased cell survival after inoculation in maize plants. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Elisandra Triches da Cunha
- CAL CCA UFSC, Food Science and Technology Department, Agrarian Science Center, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Ana Marina Pedrolo
- CAL CCA UFSC, Food Science and Technology Department, Agrarian Science Center, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Ana Carolina Maisonnave Arisi
- CAL CCA UFSC, Food Science and Technology Department, Agrarian Science Center, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
7
|
Devi R, Kaur T, Negi R, Kour D, Kumar S, Yadav A, Singh S, Chaubey KK, Rai AK, Shreaz S, Yadav AN. Bioformulation of mineral solubilizing microbes as novel microbial consortium for the growth promotion of wheat ( Triticum aestivum) under the controlled and natural conditions. Heliyon 2024; 10:e33167. [PMID: 38948031 PMCID: PMC11211892 DOI: 10.1016/j.heliyon.2024.e33167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024] Open
Abstract
Microbes are a worthwhile organism of the earth that could be formulated as consortium which can be utilized as biofertilizers. Consortium-based bioinoculants or biofertilizers are superior to single strain-based inoculants for sustainable agricultural productivity and increased micronutrient content in yield. The aim of present study was to evaluate the effect of different combinations of beneficial bacteria that are more effective than single-based bioinoculants. The current work focuses on the isolation of rhizospheric microorganisms from various cereals and pseudocereal crops and the development of a single inoculum as well as a bacterial consortium which were evaluated on wheat crop. A total 214 rhizospheric bacteria were sorted out and, screened for mineral solubilizing attributes i.e., phosphorus, potassium, zinc and selenium solubilization. Among all the bacterial isolates, four potential strains exhibiting P, K, Zn and Se-solubilizing attributes were identified with the help of 16S rRNA gene sequencing as Rahnella aquatilis EU-A3Rb1, Erwinia aphidicola EU-A2RNL1, Brevibacillus brevis EU-C3SK2, and Bacillus mycoides EU-WRSe4, respectively. The identified strains formulated as a consortium which were found to improve the plant growth and physiological parameters in comparison to single culture inoculants and control. To the best of our knowledge, the present investigation is the first report that has developed the consortium from bacterial strains Rahnella aquatilis EU-A3Rb1, Erwinia aphidicola EU-A2RNL1, Brevibacillus brevis EU-C3SK2, and Bacillus mycoides EU-WRSe4. A combination of bacterial strains could be used as liquid inoculants for cereal crops growing in mountainous regions.
Collapse
Affiliation(s)
- Rubee Devi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour,173101, Himachal Pradesh, India
| | - Tanvir Kaur
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour,173101, Himachal Pradesh, India
| | - Rajeshwari Negi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour,173101, Himachal Pradesh, India
| | - Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Sanjeev Kumar
- Department of Genetics and Plant Breeding, Faculty of Agricultural Science, GLA university, Mathura, Uttar Pradesh, India
| | - Ashok Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh, India
| | - Kundan Kumar Chaubey
- Division of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Premnagar, Dehradun, Uttarakhand, 248007, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Kingdom of Saudi Arabia
| | - Sheikh Shreaz
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885, 13109, Safat, Kuwait
| | - Ajar Nath Yadav
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour,173101, Himachal Pradesh, India
| |
Collapse
|
8
|
Samantaray A, Chattaraj S, Mitra D, Ganguly A, Kumar R, Gaur A, Mohapatra PK, Santos-Villalobos SDL, Rani A, Thatoi H. Advances in microbial based bio-inoculum for amelioration of soil health and sustainable crop production. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100251. [PMID: 39165409 PMCID: PMC11334944 DOI: 10.1016/j.crmicr.2024.100251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
The adoption of sustainable agricultural practices is increasingly imperative in addressing global food security and environmental concerns, with microbial based bio-inoculums emerging as a promising approach for nurturing soil health and fostering sustainable crop production.This review article explores the potential of microbial based bio-inoculumsor biofertilizers as a transformative approach toenhance plant disease resistance and growth. It explores the commercial prospects of biofertilizers, highlighting their role in addressing environmental concerns associated with conventional fertilizers while meeting the growing demand for eco-friendly agricultural practices. Additionally, this review discusses the future prospects of biofertilizers, emphasizing the ongoing advancements in biotechnology and formulation techniques that are expected to enhance their efficacy and applicability. Furthermore, this article provides insights into strategies for the successful acceptance of biofertilizers among farmers, including the importance of quality control, assurance, and education initiatives to raise awareness about their benefits and overcome barriers to adoption. By synthesizing the current research findings and industrial developments, this review offers valuable guidance for stakeholders seeking to exploit the potential of biofertilizers or beneficial microbes to promote soil health, ensure sustainable crop production, and addressing the challenges of modern agriculture.
Collapse
Affiliation(s)
- Aurodeepa Samantaray
- Centre for Industrial Biotechnology Research, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan, Deemed to be University, Kalinga Nagar, Bhubaneswar, Odisha 751003, India
| | - Sourav Chattaraj
- Centre for Industrial Biotechnology Research, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan, Deemed to be University, Kalinga Nagar, Bhubaneswar, Odisha 751003, India
| | - Debasis Mitra
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Arindam Ganguly
- Department of Microbiology, Bankura Sammilani College, Bankura, West Bengal 722102, India
| | - Rahul Kumar
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Ashish Gaur
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Pradeep K.Das Mohapatra
- Department of Microbiology, Raiganj University, Uttar Dinajpur, Raiganj, West Bengal 733134, India
| | | | - Anju Rani
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Hrudayanath Thatoi
- Centre for Industrial Biotechnology Research, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan, Deemed to be University, Kalinga Nagar, Bhubaneswar, Odisha 751003, India
| |
Collapse
|
9
|
Nawaz T, Gu L, Fahad S, Saud S, Bleakley B, Zhou R. Exploring Sustainable Agriculture with Nitrogen-Fixing Cyanobacteria and Nanotechnology. Molecules 2024; 29:2534. [PMID: 38893411 PMCID: PMC11173783 DOI: 10.3390/molecules29112534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/21/2024] Open
Abstract
The symbiotic relationship between nitrogen-fixing cyanobacteria and plants offers a promising avenue for sustainable agricultural practices and environmental remediation. This review paper explores the molecular interactions between nitrogen-fixing cyanobacteria and nanoparticles, shedding light on their potential synergies in agricultural nanotechnology. Delving into the evolutionary history and specialized adaptations of cyanobacteria, this paper highlights their pivotal role in fixing atmospheric nitrogen, which is crucial for ecosystem productivity. The review discusses the unique characteristics of metal nanoparticles and their emerging applications in agriculture, including improved nutrient delivery, stress tolerance, and disease resistance. It delves into the complex mechanisms of nanoparticle entry into plant cells, intracellular transport, and localization, uncovering the impact on root-shoot translocation and systemic distribution. Furthermore, the paper elucidates cellular responses to nanoparticle exposure, emphasizing oxidative stress, signaling pathways, and enhanced nutrient uptake. The potential of metal nanoparticles as carriers of essential nutrients and their implications for nutrient-use efficiency and crop yield are also explored. Insights into the modulation of plant stress responses, disease resistance, and phytoremediation strategies demonstrate the multifaceted benefits of nanoparticles in agriculture. Current trends, prospects, and challenges in agricultural nanotechnology are discussed, underscoring the need for responsible and safe nanoparticle utilization. By harnessing the power of nitrogen-fixing cyanobacteria and leveraging the unique attributes of nanoparticles, this review paves the way for innovative, sustainable, and efficient agricultural practices.
Collapse
Affiliation(s)
- Taufiq Nawaz
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Liping Gu
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Shah Fahad
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Shah Saud
- College of Life Science, Linyi University, Linyi 276000, China
| | - Bruce Bleakley
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Ruanbao Zhou
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
10
|
Al-Kindi KM. Assessing the environmental factors affecting the sustainability of Aini Falaj system. PLoS One 2024; 19:e0301832. [PMID: 38743772 PMCID: PMC11093386 DOI: 10.1371/journal.pone.0301832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/27/2024] [Indexed: 05/16/2024] Open
Abstract
This study investigates the spatial distribution patterns and environmental factors influencing the Aini Falaj system in a specific study area. The research findings are presented through the lens of the following four categories: collinearity diagnostics, spatial autocorrelation analysis, kernel density (KD) findings, and multivariate geographically weighted regression (MGWR) analysis. The collinearity diagnostics were applied to examine the interrelationships among 18 independent environmental variables. The results indicate the absence of significant multicollinearity concerns, with most variables showing values below the critical threshold of five for variance inflation factors (VIFs). The selected variables indicate minimal intercorrelation, suggesting that researchers should be confident utilizing them in subsequent modelling or regression analyses. A spatial autocorrelation analysis using Moran's Index revealed positive spatial autocorrelation and significant clustering patterns in the distribution of live and non-functional Aini Falajs. High concentrations of live or dead Falajs tended to be surrounded by neighbouring areas with similar characteristics. These findings provide insights into the ecological preferences and habitat associations of Aini Falajs, thereby aiding conservation strategies and targeted studies. The kernel density (KD) analysis depicted distribution patterns of live and dry Aini Falajs through hotspots and cold spots. Specific regions exhibited high-density areas of live Falajs, indicating favourable environmental conditions or historical factors contributing to their concentrated distribution. Identifying these high-density zones can enhance our understanding of the spatial patterns and potential factors influencing the prevalence and sustainability of Aini Falajs. The multivariate geographically weighted regression (MGWR) models revealed strong associations between the live or dead status of Aini Falajs and environmental factors. The precipitation, topographic wetness index (TWI), aspect and slope exerted positive impacts on the live status, while evaporation, solar radiation, distance to drains and drain density exerted negative influences. Similar associations were observed for the dead status, emphasising the importance of controlling evaporation, shading mechanisms, proper drainage planning and sustainable land-use practices. This study provides valuable insights into the spatial distributions and factors influencing the live and dead status of Aini Falajs, thereby contributing to our understanding of their ecological dynamics and guiding conservation efforts and management strategies.
Collapse
Affiliation(s)
- Khalifa M. Al-Kindi
- UNESCO Chair of Aflaj Studies, Arco-hydrology, University of Nizwa, Nizwa, Oman
| |
Collapse
|
11
|
Bakki M, Banane B, Marhane O, Esmaeel Q, Hatimi A, Barka EA, Azim K, Bouizgarne B. Phosphate solubilizing Pseudomonas and Bacillus combined with rock phosphates promoting tomato growth and reducing bacterial canker disease. Front Microbiol 2024; 15:1289466. [PMID: 38765677 PMCID: PMC11100333 DOI: 10.3389/fmicb.2024.1289466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/26/2024] [Indexed: 05/22/2024] Open
Abstract
Nowadays, sustainable agriculture approaches are based on the use of biofertilizers and biopesticides. Tomato (Solanum lycopersicum L.) rhizosphere could provide rhizobacteria with biofertilizing and biopesticide properties. In this study, bacteria from the rhizosphere of tomato were evaluated in vitro for plant growth promotion (PGP) properties. Five Pseudomonas isolates (PsT-04c, PsT-94s, PsT-116, PsT-124, and PsT-130) and one Bacillus isolate (BaT-68s), with the highest ability to solubilize tricalcium phosphate (TCP) were selected for further molecular identification and characterization. Isolates showed phosphate solubilization up to 195.42 μg mL-1. All isolates showed phosphate solubilization by organic acid production. The six isolates improved seed germination and showed effective root colonization when tomato seeds were coated with isolates at 106 cfu g-1 in axenic soil conditions. Furthermore, the selected isolates were tested for beneficial effects on tomato growth and nutrient status in greenhouse experiments with natural rock phosphate (RP). The results showed that inoculated tomato plants in the presence of RP have a higher shoot and root lengths and weights compared with the control. After 60 days, significant increases in plant Ca, Na, P, protein, and sugar contents were also observed in inoculated seedlings. In addition, inoculated tomato seedlings showed an increase in foliar chlorophyll a and b and total chlorophyll, while no significant changes were observed in chlorophyll fluorescence. In greenhouse, two Pseudomonas isolates, PsT-04c and PsT-130, showed ability to trigger induced systemic resistance in inoculated tomato seedlings when subsequently challenged by Clavibacter michiganensis subsp. michiganensis, the causal agent of tomato bacterial canker. High protection rate (75%) was concomitant to an increase in the resistance indicators: total soluble phenolic compounds, phenylalanine-ammonia lyase, and H2O2. The results strongly demonstrated the effectiveness of phosphate-solubilizing bacteria adapted to rhizosphere as biofertilizers for tomato crops and biopesticides by inducing systemic resistance to the causal agent of tomato bacterial canker disease.
Collapse
Affiliation(s)
- Mohamed Bakki
- Laboratory of Plant Biotechnology “Biotechnologies Végétales”, Faculty of Sciences, University Ibn Zohr (UIZ), Agadir, Morocco
| | - Badra Banane
- Laboratory of Plant Biotechnology “Biotechnologies Végétales”, Faculty of Sciences, University Ibn Zohr (UIZ), Agadir, Morocco
| | - Omaima Marhane
- Laboratory of Plant Biotechnology “Biotechnologies Végétales”, Faculty of Sciences, University Ibn Zohr (UIZ), Agadir, Morocco
| | - Qassim Esmaeel
- Unité de Recherche Résistance Induite et Bio Protection des Plantes, EA 4707 – USC INRAe1488, UFR Sciences Exactes et Naturelles, Moulin de la Housse, University of Reims Champagne-Ardenne, Reims, France
| | - Abdelhakim Hatimi
- Laboratory of Plant Biotechnology “Biotechnologies Végétales”, Faculty of Sciences, University Ibn Zohr (UIZ), Agadir, Morocco
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et Bio Protection des Plantes, EA 4707 – USC INRAe1488, UFR Sciences Exactes et Naturelles, Moulin de la Housse, University of Reims Champagne-Ardenne, Reims, France
| | - Khalid Azim
- Integrated Crop Production Research Unit, Regional Center of Agricultural Research of Agadir, National Institute of Agricultural Research, Rabat, Morocco
| | - Brahim Bouizgarne
- Laboratory of Plant Biotechnology “Biotechnologies Végétales”, Faculty of Sciences, University Ibn Zohr (UIZ), Agadir, Morocco
| |
Collapse
|
12
|
Alshammari WB, Alshammery K, Lotfi S, Altamimi H, Alshammari A, Al-Harbi NA, Jakovljević D, Alharbi MH, Moustapha ME, Abd El-Moneim D, Abdelaal K. Improvement of morphophysiological and anatomical attributes of plants under abiotic stress conditions using plant growth-promoting bacteria and safety treatments. PeerJ 2024; 12:e17286. [PMID: 38708356 PMCID: PMC11067897 DOI: 10.7717/peerj.17286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024] Open
Abstract
Drought and salinity are the major abiotic stress factors negatively affecting the morphophysiological, biochemical, and anatomical characteristics of numerous plant species worldwide. The detrimental effects of these environmental factors can be seen in leaf and stem anatomical structures including the decrease in thickness of cell walls, palisade and spongy tissue, phloem and xylem tissue. Also, the disintegration of grana staking, and an increase in the size of mitochondria were observed under salinity and drought conditions. Drought and salt stresses can significantly decrease plant height, number of leaves and branches, leaf area, fresh and dry weight, or plant relative water content (RWC%) and concentration of photosynthetic pigments. On the other hand, stress-induced lipid peroxidation and malondialdehyde (MDA) production, electrolyte leakage (EL%), and production of reactive oxygen species (ROS) can increase under salinity and drought conditions. Antioxidant defense systems such as catalase, peroxidase, glutathione reductase, ascorbic acid, and gamma-aminobutyric acid are essential components under drought and salt stresses to protect the plant organelles from oxidative damage caused by ROS. The application of safe and eco-friendly treatments is a very important strategy to overcome the adverse effects of drought and salinity on the growth characteristics and yield of plants. It is shown that treatments with plant growth-promoting bacteria (PGPB) can improve morphoanatomical characteristics under salinity and drought stress. It is also shown that yeast extract, mannitol, proline, melatonin, silicon, chitosan, α-Tocopherols (vitamin E), and biochar alleviate the negative effects of drought and salinity stresses through the ROS scavenging resulting in the improvement of plant attributes and yield of the stressed plants. This review discusses the role of safety and eco-friendly treatments in alleviating the harmful effects of salinity and drought associated with the improvement of the anatomical, morphophysiological, and biochemical features in plants.
Collapse
Affiliation(s)
| | - Kholoud Alshammery
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Salwa Lotfi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Haya Altamimi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Abeer Alshammari
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Nadi Awad Al-Harbi
- Biology Department, University College of Tayma, University of Tabuk, Tabuk, Saudi Arabia
| | - Dragana Jakovljević
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragu-jevac, Serbia
| | - Mona Hajed Alharbi
- Department of Biology, College of Scince and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Moustapha Eid Moustapha
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Diaa Abd El-Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Khaled Abdelaal
- EPCRS Excellence Center, Plant Pathology and Biotechnology Lab, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
13
|
Alotaibi MM, Aljuaid A, Alsudays IM, Aloufi AS, AlBalawi AN, Alasmari A, Alghanem SMS, Albalawi BF, Alwutayd KM, Gharib HS, Awad-Allah MMA. Effect of Bio-Fertilizer Application on Agronomic Traits, Yield, and Nutrient Uptake of Barley ( Hordeum vulgare) in Saline Soil. PLANTS (BASEL, SWITZERLAND) 2024; 13:951. [PMID: 38611480 PMCID: PMC11013266 DOI: 10.3390/plants13070951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024]
Abstract
Under salinity conditions, growth and productivity of grain crops decrease, leading to inhibition and limited absorption of water and elements necessary for plant growth, osmotic imbalance, ionic stress, and oxidative stress. Microorganisms in bio-fertilizers have several mechanisms to provide benefits to crop plants and reduce the harmful effect of salinity. They can be effective in dissolving phosphate, fixing nitrogen, promoting plant growth, and can have a combination of all these qualities. During two successful agricultural seasons, two field experiments were conducted to evaluate the effect of bio-fertilizer applications, including phosphate solubilizing bacteria (PSB), nitrogen fixation bacteria and a mix of phosphate-solubilizing bacteria and nitrogen fixation bacteria with three rates, 50, 75 and 100% NPK, of the recommended dose of minimal fertilizer on agronomic traits, yield and nutrient uptake of barley (Hordeum vulgare) under saline condition in Village 13, Farafra Oasis, New Valley Governorate, Egypt. The results showed that the application of Microbein + 75% NPK recorded the highest values of plant height, spike length, number of spikes/m2, grain yield (Mg ha-1), straw yield (Mg ha-1), biological yield (Mg ha-1), protein content %, nitrogen (N), phosphorus (P), potassium (K) uptakes in grain and straw (kg ha-1), available nitrogen (mg/kg soil), available phosphorus (mg/kg soil), total microbial count of soil, antioxidant activity of soil (AOA), dehydrogenase, nitrogen fixers, and PSB counts. The application of bio-fertilizers led to an increase in plant tolerance to salt stress, plant growth, grain yield, and straw yield, in addition to the application of the bio-fertilizers, which resulted in a 25% saving in the cost of mineral fertilizers used in barley production.
Collapse
Affiliation(s)
- Mashael M. Alotaibi
- Biology Department, College of Science and Humanities, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Alya Aljuaid
- Biology Department, College of Science and Humanities, Shaqra University, Shaqra 11961, Saudi Arabia
| | | | - Abeer S. Aloufi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Aisha Nawaf AlBalawi
- Biology Department, University College of Haqel, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Abdulrahman Alasmari
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | | | - Bedur Faleh Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hany S. Gharib
- Department of Agronomy, Faculty of Agriculture, University of Kafrelsheikh, Kafrelsheikh 33516, Egypt
| | | |
Collapse
|
14
|
Zhang S, Zhang X. Fiscal agricultural expenditures' impact on sustainable agricultural economic development: Dynamic marginal effects and impact mechanism. PLoS One 2024; 19:e0299070. [PMID: 38422033 PMCID: PMC10903798 DOI: 10.1371/journal.pone.0299070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/03/2024] [Indexed: 03/02/2024] Open
Abstract
Sustainable agricultural economic development is the core task for achieving the objective of rural revitalization strategy in China, which cannot be separated from the support and guidance of fiscal policy, and agricultural industry integration is a key path for the fiscal promotion of sustainable agricultural economic development. This paper systematically examines the interaction mechanism between fiscal agricultural expenditures and sustainable agricultural economic development by using 31 provincial panel data in China from 2008 to 2020 and adopting a two-way fixed effect model, a panel quantile model, and a mediating effect model, respectively. The results show that the impact of fiscal agricultural expenditures on sustainable agricultural economic development is significantly positive, and appears a dynamic increasing trend with the agricultural development stage upgrading. Moreover, heterogeneity analysis shows that the effect of fiscal agricultural expenditures is more obvious for the samples in the central region and with a high share of primary industry. Further, a mediating effect test finds that agricultural industry integration plays a mediating mechanism between fiscal agricultural expenditures and sustainable agricultural economic development. Therefore, this paper proposes constructing a long-term investment mechanism for fiscal agricultural expenditures, formulating differentiated fiscal support policies for agriculture, and prioritizing support for agricultural industry integration, which provides theoretical support and policy inspiration for promoting sustainable agricultural economic development.
Collapse
Affiliation(s)
- Shengfang Zhang
- School of Public Finance and Taxation, Dongbei University of Finance and Economics, Dalian, Liaoning, China
| | - Xiaodong Zhang
- Department of Public Works, Yantai Huangbohai New District Construction and Transport Bureau, Yantai, Shandong, China
| |
Collapse
|
15
|
Dal’Rio I, Lopes EDS, Santaren KCF, Rosado AS, Seldin L. Co-inoculation of the endophytes Bacillus thuringiensis CAPE95 and Paenibacillus polymyxa CAPE238 promotes Tropaeolum majus L. growth and enhances its root bacterial diversity. Front Microbiol 2024; 15:1356891. [PMID: 38585693 PMCID: PMC10996857 DOI: 10.3389/fmicb.2024.1356891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/12/2024] [Indexed: 04/09/2024] Open
Abstract
Tropaeolum majus L. is a versatile edible plant that is widely explored due to its medicinal properties and as a key element in intercropping systems. Its growth could be improved by the use of biofertilizers that can enhance nutrient uptake by the plant or provide tolerance to different abiotic and biotic stresses. In a previous study, 101 endophytes isolated from T. majus roots showed more than three plant growth-promoting (PGP) features in vitro, such as phosphate mineralization/solubilization, production of siderophores, antimicrobial substances and indole-related compounds, and presence of the nifH gene. To provide sustainable alternatives for biofertilization, the genomes of two promising endophytes-CAPE95 and CAPE238-were sequenced to uncover metabolic pathways related to biofertilization. Greenhouse experiments were conducted with 216 seeds and 60 seedlings, half co-inoculated with the endophytes (treatment) and half inoculated with 1X PBS (control), and the impact of the co-inoculation on the plant's bacteriome was accessed through 16S rRNA gene metabarcoding. The strains CAPE95 and CAPE238 were taxonomically assigned as Bacillus thuringiensis and Paenibacillus polymyxa, respectively. Metabolic pathways related to the enhancement of nutrient availability (nitrogen fixation, sulfate-sulfur assimilation), biosynthesis of phytohormones (indole-3-acetic acid precursors) and antimicrobial substances (bacilysin, paenibacillin) were found in their genomes. The in vivo experiments showed that treated seeds exhibited faster germination, with a 20.3% higher germination index than the control on the eleventh day of the experiment. Additionally, treated seedlings showed significantly higher plant height and leaf diameters (p < 0.05). The bacterial community of the treated plants was significantly different from that of the control plants (p < 0.001) and showed a higher richness and diversity of species (Chao and Shannon indexes, p < 0.001). A higher relative abundance of potential synergistic PGP bacteria was also shown in the bacteriome of the treated plants, such as Lysinibacillus and Geobacter. For the first time, co-inoculation of B. thuringiensis and P. polymyxa was shown to have great potential for application as a biofertilizer to T. majus plants. The bacterial consortium used here could also be explored in other plant species in the future.
Collapse
Affiliation(s)
- Isabella Dal’Rio
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Bioscience, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Eliene dos Santos Lopes
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Alexandre Soares Rosado
- Bioscience, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Lucy Seldin
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Jain S, Tembhurkar AR. Optimizing nutrients from fly ash-amended soil through microbial-assisted phytoremediation using response surface methodology. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:145. [PMID: 38214830 DOI: 10.1007/s10661-023-12273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024]
Abstract
Nutrients are vital ingredients to boost plant health. The availability of nutrients is limited in fly ash (FA) waste to properly implement phytoremediation. The research explored the integration of microbes and treated wastewater irrigation in phytoremediation to provide the necessary nutrients for plant growth in fly ash-amended soils. The Box-Behnken method was used to design the experimental layout for the pot study. Response surface methodology (RSM) was applied as the optimization approach to model predictions for nutrient accumulation. The implemented pot study attained the highest morphological indicators with a plastochron index of 33.40, an absolute growth rate of 2.63 cm/day, and a leaf area of 2681.68 cm2 and attained maximum biomass of 24.91 g for the treatments that included a mid-range of the variables. The combination of FA 14.98%, microbial dose 4.07 mL, and treated wastewater as the irrigation source was found to be the optimized combination for nitrogen and phosphorus accumulation of 212.4 and 8.867 mg/L.
Collapse
Affiliation(s)
- Sandeep Jain
- Civil Engineering Department, Visvesvaraya National Institute of Technology, Nagpur, 440010, India.
| | - Ajay R Tembhurkar
- Civil Engineering Department, Visvesvaraya National Institute of Technology, Nagpur, 440010, India
| |
Collapse
|
17
|
Jiao H, Wang R, Qin W, Yang J. Screening of rhizosphere nitrogen fixing, phosphorus and potassium solubilizing bacteria of Malus sieversii (Ldb.) Roem. and the effect on apple growth. JOURNAL OF PLANT PHYSIOLOGY 2024; 292:154142. [PMID: 38134508 DOI: 10.1016/j.jplph.2023.154142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/06/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023]
Abstract
Nitrogen, phosphorus and potassium inorganic fertilizers are commonly used when growing apples, but their excessive application has resulted in a decline in soil fertility and therefore an inability to maintain sustainable cultivation systems. It is possible to compensate for this with biofertilizers. Nitrogen-fixing, phosphorus solubilizing, and potassium solubilizing bacteria are biofertilizers with a broad range of possible uses. In this study, beneficial microorganisms were screened from the rhizosphere soil of the apple tree, Malus sieversii (Ldb.) Roem., which is rich in microbial diversity in natural environments. It was essential to investigate their effects on the growth of apple seedlings. Eight populations of organic phosphorus solubilizing bacteria (56), inorganic phosphorus solubilizing bacteria (13), nitrogen-fixing bacteria (22), and potassium solubilizing bacteria (24) were isolated from eight populations of Xinjiang wild apple rhizosphere in Ili by medium culture. Their morphological characteristics were recorded and their activity was determined. The most active strains were Pseudomonas migulae, Pseudomonas poae, and Pseudomonas extremaustralis, which was determined by physiological and biochemical properties and 16S rDNA sequence analysis. The L16 (45) orthogonal experiment, which used the three strains as testing materials, was created to assess the effects of the strains on apple physiological indicators, soil nutrients, leaf nutrients, and biomass, as well as to identify the ideal combination, concentration, timing, and application method. The results indicated that the peroxidase (POD) and catalase (CAT) activities of apple seedlings increased significantly under the 10 treatment, and the (SOD) activities of the 0 (control) and 1 (inorganic fertilizer only) treatments were significantly lower than the other treatments; soluble sugar, soluble protein and chlorophyll contents increased in all treatments compared to 0 and 1, while malondialdehyde and proline contents increased or decreased compared to 0 and 1; apple seedlings in treatment 10 had the highest soil N, P, and K content, leaf N, P, and K content and biomass were also all highest in treatment 10. In summary, the strains screened for the test can be used as biofertilizers and the optimum application was determined for treatment 10, meaning that the results also provide a theoretical basis for their application in artificially grown orchards.
Collapse
Affiliation(s)
- Huiying Jiao
- Faculty of Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Ruizhe Wang
- Faculty of Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Wei Qin
- Faculty of Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Jiaxin Yang
- Faculty of Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|
18
|
Bullergahn VB, Menezes KMS, Veloso TGR, da Luz JMR, Castanheira LF, Pereira LL, da Silva MDCS. Diversity of potential nitrogen-fixing bacteria from rhizosphere of the Coffea arabica L. and Coffea canephora L. 3 Biotech 2024; 14:27. [PMID: 38173824 PMCID: PMC10758376 DOI: 10.1007/s13205-023-03875-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Coffea arabica L. and Coffea canephora L. are coffee species most consumed and marketed in the world. The coffee crop requires a large amount of nitrogen, which shows the importance of knowledge of the population of nitrogen-fixing bacteria (NFB) from the rhizosphere of these crops. These microorganisms may help the reduction of nitrogen fertilizing. However, there is no production of NFB inoculum in the coffee. Therefore, our objective was to evaluate the diversity of potential nitrogen-fixing bacteria (PNFB) in the rhizosphere of C. arabica and C. canephora. The microbial DNA of the soil was extracted, amplified through PCR, and sequenced at the Illumina Miseq. platform. The PNFB prediction was performed using the program PICRUSt2. Three hundred and thirty-seven amplicon sequence variants (ASVs) were identified as PNFB in two coffee species. Xanthobacteraceae, Rhizobium multhospitiium, Rhizobium mesosinicum, and Bradyrhizobium sp. were detected in all samples and main components of the core microbiota of the coffee plant rhizosphere. Some ASVs are exclusive from one of the coffee farms, showing that the coffee specie cultivated may influence the PNFB communities. However, edaphoclimatic factors and soil chemical attributes can also influence the distribution of ASVs in coffee soil. In the C. canephora, the PNFB diversity was influenced by the altitude and the soil chemical attributes, while the altitude and the phosphorus content influenced the PNFB population in C. arabica. Our results are important to the understanding of the PNFB dynamic in coffee soil and for the agricultural inputs bioprospecting to coffee.
Collapse
Affiliation(s)
| | | | | | | | | | - Lucas Louzada Pereira
- Federal Institute of Espírito Santo, Venda Nova do Imigrante, Espírito Santo, Brazil
| | | |
Collapse
|
19
|
Arakkal Thaiparambil N, Radhakrishnan V. Role of formulated bacterial consortia in biofortifying tomato fruits with nutrients: A nutritional, genomic and metagenomic analysis. Saudi J Biol Sci 2023; 30:103851. [PMID: 38020222 PMCID: PMC10661436 DOI: 10.1016/j.sjbs.2023.103851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Nutrient deficiencies are a major problem that is prone to affect millions of people around the globe. Biofortification, a process of enriching nutrients in staple food crops is an effective method to tackle this malnutrition-associated disorder. Tomato (Solanum lycopersicum) is a globally consumed crop and therefore is a suitable candidate for biofortification. Many plant growth-promoting bacteria are reported to have the ability to enhance nutrient content in plants. In the present study, we have investigated the ability of two bacterial consortia (consortia-1 -co-culturing Lysinibacillus sp. strain VITKC-5 and Acinetobacter Sp. strain VITKC_6; and consortia-2 -co-culturing Lysinibacillus sp. strain VITKC-5 and Enterobacter sp. strain VITVLC-4) in the nutrient enrichment of tomato fruits. The results were then correlated with the elevated expression of nutrient transporter genes. Furthermore, the effect of these bacterial formulations on the indigenous microbiome has also been evaluated through metagenomic analysis. The application of bacterial formulations significantly improved the nutrient content when compared to the control (untreated) group. These findings advocate that PGPB-assisted biofortification has the potential to alleviate nutrient deficiency in humans.
Collapse
Affiliation(s)
- Naveen Arakkal Thaiparambil
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India
| | - Vidya Radhakrishnan
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India
| |
Collapse
|
20
|
Ammar EE, Rady HA, Khattab AM, Amer MH, Mohamed SA, Elodamy NI, Al-Farga A, Aioub AAA. A comprehensive overview of eco-friendly bio-fertilizers extracted from living organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113119-113137. [PMID: 37851256 PMCID: PMC10663222 DOI: 10.1007/s11356-023-30260-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 09/30/2023] [Indexed: 10/19/2023]
Abstract
Currently, sustainable agriculture involves ecofriendly techniques, which include biofertilization. Biofertilizers increase plant productivity by improving soil fertility and nutrient content. A wide range of living organisms can be applied as biofertilizers and increase soil fertility without causing pollution due to their biodegradability. The organisms can be microorganisms like bacteria, microalgae, and micro fungi or macro organisms like macroalgae, macro fungi, and higher plants. Biofertilizers extracted from living organisms or their residues will be increasingly used rather than chemical fertilizers, which cause heavy metal accumulation in soil. Biofertilizer use aims for sustainable development in agriculture by maintaining the soil. This will mitigate climate change and related impacts and will also lower many serious diseases resulting from pollution such as cancer, liver and renal failure, and immune diseases. This review is a comprehensive overview of biofertilizers extracted from a range of living organisms from the Kingdoms Monera to Plantae and included bacteria, algae, fungi, and higher plants. Organisms that play a vital role in elevating soil nutrients in a safe, cheap, and ecofriendly manner are included in the review to promote their potential commercial application.
Collapse
Affiliation(s)
- Esraa E Ammar
- Plant Ecology, Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Hadeer A Rady
- Biotechnology, Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Ahmed M Khattab
- Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11675, Egypt
| | - Mohamed H Amer
- Biotechnology, Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sohila A Mohamed
- Biotechnology, Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Nour I Elodamy
- Biotechnology, Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Ammar Al-Farga
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ahmed A A Aioub
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
21
|
Gao F, Ye L, Mu X, Xu L, Shi Z, Luo Y. Synergistic effects of earthworms and cow manure under reduced chemical fertilization modified microbial community structure to mitigate continuous cropping effects on Chinese flowering cabbage. Front Microbiol 2023; 14:1285464. [PMID: 37954241 PMCID: PMC10637444 DOI: 10.3389/fmicb.2023.1285464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
The substitution of chemical fertilizers with organic fertilizers is a viable strategy to enhance crop yield and soil quality. In this study, the aim was to investigate the changes in soil microorganisms, soil chemical properties, and growth of Chinese flowering cabbage under different fertilization treatments involving earthworms and cow manure. Compared with the control (100% chemical fertilizer), CE (30% reduction in chemical fertilizer + earthworms) and CFE (30% reduction in chemical fertilizer + cow dung + earthworms) treatments at soil pH 8.14 and 8.07, respectively, and CFC (30% reduction in chemical fertilizer + cow manure) and CFE treatments increased soil organic matter (SOM), total nitrogen (TN), available nitrogen (AN), and available potassium (AK) contents. Earthworms and cow manure promoted the abundance of Bacillus and reduced that of the pathogens Plectosphaerella and Gibberella. The mantle test revealed that pH was not correlated with the microbial community. Random forest analysis verified that AN, SOM, and TN were important factors that jointly influenced bacterial and fungal diversity. Overall, the synergistic effect of earthworms and cow manure increased soil fertility and microbial diversity, thereby promoting the growth and development of Chinese flowering cabbage. This study enhanced the understanding of how bioregulation affects the growth and soil quality of Chinese flowering cabbage, and thus provided a guidance for the optimization of fertilization strategies to maximize the yield and quality of Chinese flowering cabbage while reducing environmental risks.
Collapse
Affiliation(s)
| | - Lin Ye
- College of Wine and Horticulture, Ningxia University, Yinchuan, China
| | | | | | | | | |
Collapse
|
22
|
Suraby EJ, Agisha VN, Dhandapani S, Sng YH, Lim SH, Naqvi NI, Sarojam R, Yin Z, Park BS. Plant growth promotion under phosphate deficiency and improved phosphate acquisition by new fungal strain, Penicillium olsonii TLL1. Front Microbiol 2023; 14:1285574. [PMID: 37965551 PMCID: PMC10642178 DOI: 10.3389/fmicb.2023.1285574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/28/2023] [Indexed: 11/16/2023] Open
Abstract
Microbiomes in soil ecosystems play a significant role in solubilizing insoluble inorganic and organic phosphate sources with low availability and mobility in the soil. They transfer the phosphate ion to plants, thereby promoting plant growth. In this study, we isolated an unidentified fungal strain, POT1 (Penicillium olsonii TLL1) from indoor dust samples, and confirmed its ability to promote root growth, especially under phosphate deficiency, as well as solubilizing activity for insoluble phosphates such as AlPO4, FePO4·4H2O, Ca3(PO4)2, and hydroxyapatite. Indeed, in vermiculite containing low and insoluble phosphate, the shoot fresh weight of Arabidopsis and leafy vegetables increased by 2-fold and 3-fold, respectively, with POT1 inoculation. We also conducted tests on crops in Singapore's local soil, which contains highly insoluble phosphate. We confirmed that with POT1, Bok Choy showed a 2-fold increase in shoot fresh weight, and Rice displayed a 2-fold increase in grain yield. Furthermore, we demonstrated that plant growth promotion and phosphate solubilizing activity of POT1 were more effective than those of four different Penicillium strains such as Penicillium bilaiae, Penicillium chrysogenum, Penicillium janthinellum, and Penicillium simplicissimum under phosphate-limiting conditions. Our findings uncover a new fungal strain, provide a better understanding of symbiotic plant-fungal interactions, and suggest the potential use of POT1 as a biofertilizer to improve phosphate uptake and use efficiency in phosphate-limiting conditions.
Collapse
Affiliation(s)
- Erinjery Jose Suraby
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | | | - Savitha Dhandapani
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Yee Hwui Sng
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Shi Hui Lim
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Naweed I. Naqvi
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Rajani Sarojam
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Zhongchao Yin
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Bong Soo Park
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| |
Collapse
|
23
|
Ansari M, Devi BM, Sarkar A, Chattopadhyay A, Satnami L, Balu P, Choudhary M, Shahid MA, Jailani AAK. Microbial Exudates as Biostimulants: Role in Plant Growth Promotion and Stress Mitigation. J Xenobiot 2023; 13:572-603. [PMID: 37873814 PMCID: PMC10594471 DOI: 10.3390/jox13040037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/25/2023] Open
Abstract
Microbes hold immense potential, based on the fact that they are widely acknowledged for their role in mitigating the detrimental impacts of chemical fertilizers and pesticides, which were extensively employed during the Green Revolution era. The consequence of this extensive use has been the degradation of agricultural land, soil health and fertility deterioration, and a decline in crop quality. Despite the existence of environmentally friendly and sustainable alternatives, microbial bioinoculants encounter numerous challenges in real-world agricultural settings. These challenges include harsh environmental conditions like unfavorable soil pH, temperature extremes, and nutrient imbalances, as well as stiff competition with native microbial species and host plant specificity. Moreover, obstacles spanning from large-scale production to commercialization persist. Therefore, substantial efforts are underway to identify superior solutions that can foster a sustainable and eco-conscious agricultural system. In this context, attention has shifted towards the utilization of cell-free microbial exudates as opposed to traditional microbial inoculants. Microbial exudates refer to the diverse array of cellular metabolites secreted by microbial cells. These metabolites enclose a wide range of chemical compounds, including sugars, organic acids, amino acids, peptides, siderophores, volatiles, and more. The composition and function of these compounds in exudates can vary considerably, depending on the specific microbial strains and prevailing environmental conditions. Remarkably, they possess the capability to modulate and influence various plant physiological processes, thereby inducing tolerance to both biotic and abiotic stresses. Furthermore, these exudates facilitate plant growth and aid in the remediation of environmental pollutants such as chemicals and heavy metals in agroecosystems. Much like live microbes, when applied, these exudates actively participate in the phyllosphere and rhizosphere, engaging in continuous interactions with plants and plant-associated microbes. Consequently, they play a pivotal role in reshaping the microbiome. The biostimulant properties exhibited by these exudates position them as promising biological components for fostering cleaner and more sustainable agricultural systems.
Collapse
Affiliation(s)
- Mariya Ansari
- Department of Mycology and Plant Pathology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; (M.A.); (A.S.); (L.S.)
| | - B. Megala Devi
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Ankita Sarkar
- Department of Mycology and Plant Pathology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; (M.A.); (A.S.); (L.S.)
| | - Anirudha Chattopadhyay
- Pulses Research Station, S.D. Agricultural University, Sardarkrushinagar 385506, Gujarat, India;
| | - Lovkush Satnami
- Department of Mycology and Plant Pathology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; (M.A.); (A.S.); (L.S.)
| | - Pooraniammal Balu
- Department of Biotechnology, Sastra Deemed University, Thanjavur 613401, Tamil Nadu, India;
| | - Manoj Choudhary
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA;
| | - Muhammad Adnan Shahid
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL 32351, USA;
| | - A. Abdul Kader Jailani
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA;
- Plant Pathology Department, North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA
| |
Collapse
|
24
|
Zayed O, Hewedy OA, Abdelmoteleb A, Ali M, Youssef MS, Roumia AF, Seymour D, Yuan ZC. Nitrogen Journey in Plants: From Uptake to Metabolism, Stress Response, and Microbe Interaction. Biomolecules 2023; 13:1443. [PMID: 37892125 PMCID: PMC10605003 DOI: 10.3390/biom13101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Plants uptake and assimilate nitrogen from the soil in the form of nitrate, ammonium ions, and available amino acids from organic sources. Plant nitrate and ammonium transporters are responsible for nitrate and ammonium translocation from the soil into the roots. The unique structure of these transporters determines the specificity of each transporter, and structural analyses reveal the mechanisms by which these transporters function. Following absorption, the nitrogen metabolism pathway incorporates the nitrogen into organic compounds via glutamine synthetase and glutamate synthase that convert ammonium ions into glutamine and glutamate. Different isoforms of glutamine synthetase and glutamate synthase exist, enabling plants to fine-tune nitrogen metabolism based on environmental cues. Under stressful conditions, nitric oxide has been found to enhance plant survival under drought stress. Furthermore, the interaction between salinity stress and nitrogen availability in plants has been studied, with nitric oxide identified as a potential mediator of responses to salt stress. Conversely, excessive use of nitrate fertilizers can lead to health and environmental issues. Therefore, alternative strategies, such as establishing nitrogen fixation in plants through diazotrophic microbiota, have been explored to reduce reliance on synthetic fertilizers. Ultimately, genomics can identify new genes related to nitrogen fixation, which could be harnessed to improve plant productivity.
Collapse
Affiliation(s)
- Omar Zayed
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 9250, USA;
- Genetics Department, Faculty of Agriculture, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Omar A. Hewedy
- Genetics Department, Faculty of Agriculture, Menoufia University, Shebin El-Kom 32511, Egypt;
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Ali Abdelmoteleb
- Botany Department, Faculty of Agriculture, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Mohammed Ali
- Maryout Research Station, Genetic Resources Department, Desert Research Center, 1 Mathaf El-Matarya St., El-Matareya, Cairo 11753, Egypt;
| | - Mohamed S. Youssef
- Botany and Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ahmed F. Roumia
- Department of Agricultural Biochemistry, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514, Egypt;
| | - Danelle Seymour
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 9250, USA;
| | - Ze-Chun Yuan
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| |
Collapse
|
25
|
Koczorski P, Furtado BU, Baum C, Weih M, Ingvarsson P, Hulisz P, Hrynkiewicz K. Large effect of phosphate-solubilizing bacteria on the growth and gene expression of Salix spp. at low phosphorus levels. FRONTIERS IN PLANT SCIENCE 2023; 14:1218617. [PMID: 37705708 PMCID: PMC10495996 DOI: 10.3389/fpls.2023.1218617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/28/2023] [Indexed: 09/15/2023]
Abstract
Phosphorus is one of the most important nutrients required for plant growth and development. However, owing to its low availability in the soil, phosphorus is also one of the most difficult elements for plants to acquire. Phosphorus released into the soil from bedrock quickly becomes unavailable to plants, forming poorly soluble complexes. Phosphate-solubilizing bacteria (PSB) can solubilize unavailable phosphorus-containing compounds into forms in which phosphorus is readily available, thus promoting plant growth. In this study, two willow species, Salix dasyclados cv. Loden and Salix schwerinii × Salix viminalis cv. Tora, were inoculated with two selected bacterial strains, Pantoea agglomerans and Paenibacillus spp., to evaluate the plant growth parameters and changes in gene expression in the presence of different concentrations of tricalcium phosphate: 0 mM (NP), 1 mM (LP), and 2 mM (HP). Inoculation with PSB increased root, shoot and leaf biomass, and for the HP treatment, significant changes in growth patterns were observed. However, the growth responses to plant treatments tested depended on the willow species. Analysis of the leaf transcriptomes of the phosphate-solubilizing bacterium-inoculated plants showed a large variation in gene expression between the two willow species. For the Tora willow species, upregulation of genes was observed, particularly for those involved in pathways related to photosynthesis, and this effect was strongly influenced by bacterial phosphate solubilization. The Loden willow species was characterized by a general downregulation of genes involved in pathway activity that included ion transport, transcription regulation and chromosomes. The results obtained in this study provide an improved understanding of the dynamics of Salix growth and gene expression under the influence of PSB, contributing to an increase in yield and phosphorus-use efficiency.
Collapse
Affiliation(s)
- Piotr Koczorski
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland
| | - Bliss Ursula Furtado
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland
| | - Christel Baum
- Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Martin Weih
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Pär Ingvarsson
- Linnean Centre for Plant Biology, Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Science, Uppsala, Sweden
| | - Piotr Hulisz
- Department of Soil Science and Landscape Management, Faculty of Earth Sciences and Spatial Management, Nicolaus Copernicus University, Torun, Poland
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
26
|
Wahab A, Muhammad M, Munir A, Abdi G, Zaman W, Ayaz A, Khizar C, Reddy SPP. Role of Arbuscular Mycorrhizal Fungi in Regulating Growth, Enhancing Productivity, and Potentially Influencing Ecosystems under Abiotic and Biotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3102. [PMID: 37687353 PMCID: PMC10489935 DOI: 10.3390/plants12173102] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) form symbiotic relationships with the roots of nearly all land-dwelling plants, increasing growth and productivity, especially during abiotic stress. AMF improves plant development by improving nutrient acquisition, such as phosphorus, water, and mineral uptake. AMF improves plant tolerance and resilience to abiotic stressors such as drought, salt, and heavy metal toxicity. These benefits come from the arbuscular mycorrhizal interface, which lets fungal and plant partners exchange nutrients, signalling molecules, and protective chemical compounds. Plants' antioxidant defence systems, osmotic adjustment, and hormone regulation are also affected by AMF infestation. These responses promote plant performance, photosynthetic efficiency, and biomass production in abiotic stress conditions. As a result of its positive effects on soil structure, nutrient cycling, and carbon sequestration, AMF contributes to the maintenance of resilient ecosystems. The effects of AMFs on plant growth and ecological stability are species- and environment-specific. AMF's growth-regulating, productivity-enhancing role in abiotic stress alleviation under abiotic stress is reviewed. More research is needed to understand the molecular mechanisms that drive AMF-plant interactions and their responses to abiotic stresses. AMF triggers plants' morphological, physiological, and molecular responses to abiotic stress. Water and nutrient acquisition, plant development, and abiotic stress tolerance are improved by arbuscular mycorrhizal symbiosis. In plants, AMF colonization modulates antioxidant defense mechanisms, osmotic adjustment, and hormonal regulation. These responses promote plant performance, photosynthetic efficiency, and biomass production in abiotic stress circumstances. AMF-mediated effects are also enhanced by essential oils (EOs), superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), hydrogen peroxide (H2O2), malondialdehyde (MDA), and phosphorus (P). Understanding how AMF increases plant adaptation and reduces abiotic stress will help sustain agriculture, ecosystem management, and climate change mitigation. Arbuscular mycorrhizal fungi (AMF) have gained prominence in agriculture due to their multifaceted roles in promoting plant health and productivity. This review delves into how AMF influences plant growth and nutrient absorption, especially under challenging environmental conditions. We further explore the extent to which AMF bolsters plant resilience and growth during stress.
Collapse
Affiliation(s)
- Abdul Wahab
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Murad Muhammad
- University of Chinese Academy of Sciences, Beijing 100049, China;
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Asma Munir
- Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan;
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran;
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
| | - Chandni Khizar
- Institute of Molecular Biology and Biochemistry, University of the Lahore, Lahore 51000, Pakistan;
| | | |
Collapse
|
27
|
Youssef SM, Shaaban A, Abdelkhalik A, Abd El Tawwab AR, Abd Al Halim LR, Rabee LA, Alwutayd KM, Ahmed RMM, Alwutayd R, Hemida KA. Compost and Phosphorus/Potassium-Solubilizing Fungus Effectively Boosted Quinoa's Physio-Biochemical Traits, Nutrient Acquisition, Soil Microbial Community, and Yield and Quality in Normal and Calcareous Soils. PLANTS (BASEL, SWITZERLAND) 2023; 12:3071. [PMID: 37687318 PMCID: PMC10489913 DOI: 10.3390/plants12173071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/12/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Calcareous soil had sufficient phosphorus and potassium (PK) in different forms due to the high contents of PK-bearing minerals; however, the available PK state was reduced due to its PK-fixation capacity. Compost, coupled with high PK solubilization capacity microbes, is a sustainable solution for bioorganic fertilization of plants grown in calcareous soil. A 2-year field experiment was conducted to investigate the effect of compost (20 t ha-1) with Aspergillus niger through soil drenching (C-AN) along with partial substitution of PK fertilization on quinoa performance in normal and calcareous soils. Treatments included PK100% (72 kg P2O5 ha-1 + 60 kg K2O ha-1 as conventional rate), PK100%+C-AN, PK75%+C-AN, PK50%+C-AN, PK25%+C-AN, and only C-AN in normal and calcareous soils. Results showed that C-AN and reduced PK fertilization (up to 75 or 50%) increased photosynthetic pigments and promoted nutrient acquisition in quinoa grown in calcareous soil. Reduced PK fertilization to 75 or 50% plus C-AN in calcareous soil increased osmoprotectants, nonenzymatic antioxidants, and DPPH scavenging activity of quinoa's leaves compared to the PK0%+C-AN treatment. The integrative application of high PK levels and C-AN enhanced the quinoa's seed nutritional quality (i.e., lipids, carbohydrates, mineral contents, total phenolics, total flavonoids, half maximal inhibitory concentration, and antiradical power) in calcareous soil. At reduced PK fertilization (up to 75 or 50%), application of compost with Aspergillus niger through soil drenching increased plant dry weight by 38.7 or 53.2%, hectoliter weight by 3.0 or 2.4%, seed yield by 49.1 or 39.5%, and biological yield by 43.4 or 33.6%, respectively, compared to PK0%+C-AN in calcareous soil. The highest P-solubilizing microorganism's population was found at PK0%+C-AN in calcareous soil, while the highest Azotobacter sp. population was observed under high PK levels + C-AN in normal soil. Our study recommends that compost with Aspergillus niger as a bioorganic fertilization treatment can partially substitute PK fertilization and boost quinoa's tolerance to salt calcareous-affected soil.
Collapse
Affiliation(s)
- Samah M. Youssef
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (S.M.Y.); (A.A.)
| | - Ahmed Shaaban
- Agronomy Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Abdelsattar Abdelkhalik
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (S.M.Y.); (A.A.)
| | - Ahmed R. Abd El Tawwab
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (A.R.A.E.T.); (R.M.M.A.)
| | - Laila R. Abd Al Halim
- Agricultural Microbiology Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt;
| | - Laila A. Rabee
- Department of Food Science and Technology, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt;
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Reda M. M. Ahmed
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (A.R.A.E.T.); (R.M.M.A.)
| | - Rahaf Alwutayd
- Department of Information Technology, College of Computer and Information Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Khaulood A. Hemida
- Botany Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt;
| |
Collapse
|
28
|
Lopes MM, Oliveira-Paiva CAD, Farinas CS. Modification of pectin/starch-based beads with additives to improve Bacillus subtilis encapsulation for agricultural applications. Int J Biol Macromol 2023; 246:125646. [PMID: 37394222 DOI: 10.1016/j.ijbiomac.2023.125646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
The use of Bacillus as biofertilizer is a sustainable strategy to increase agricultural productivity, but it still requires the development of formulations to protect cells from stressful conditions. Ionotropic gelation using a pectin/starch matrix is a promising encapsulation strategy to achieve this goal. By incorporating additives such as montmorillonite (MMT), attapulgite (ATP), polyethylene glycol (PEG), and carboxymethyl cellulose (CMC), the properties of these encapsulated products could be further improved. In this study, we investigated the influence of these additives on the properties of pectin/starch-based beads for the encapsulation of Bacillus subtilis. FTIR analysis indicated pectin and Ca2+ ions interactions, while the XRD showed good dispersion of clays in the materials. SEM and X-ray microtomography revealed differences in the morphology of the beads due to the use of the additives. The viabilities at the encapsulation were higher than 1010 CFU g-1 for all formulations, with differences in the release profiles. In terms of cell protection, the pectin/starch, pectin/starch-MMT and pectin/starch-CMC formulations showed the highest cell viability after exposure to fungicide, while the pectin/starch-ATP beads showed the best performance after UV exposure. Moreover, all formulations maintained more than 109 CFU g-1 after six months of storage, which meets values required for microbial inoculants.
Collapse
Affiliation(s)
- Marina Momesso Lopes
- National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentation, 13560-970 São Carlos, SP, Brazil; Graduate Program of Biotechnology, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | | | - Cristiane Sanchez Farinas
- National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentation, 13560-970 São Carlos, SP, Brazil; Graduate Program of Biotechnology, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil; Graduate Program of Chemical Engineering, Federal University of São Carlos, 13565-905 Sao Carlos, SP, Brazil.
| |
Collapse
|
29
|
Manzano-Gómez LA, Rincón-Rosales R, Flores-Felix JD, Gen-Jimenez A, Ruíz-Valdiviezo VM, Ventura-Canseco LMC, Rincón-Molina FA, Villalobos-Maldonado JJ, Rincón-Molina CI. Cost-Effective Cultivation of Native PGPB Sinorhizobium Strains in a Homemade Bioreactor for Enhanced Plant Growth. Bioengineering (Basel) 2023; 10:960. [PMID: 37627845 PMCID: PMC10451550 DOI: 10.3390/bioengineering10080960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The implementation of bioreactor systems for the production of bacterial inoculants as biofertilizers has become very important in recent decades. However, it is essential to know the bacterial growth optimal conditions to optimize the production and efficiency of bioinoculants. The aim of this work was to identify the best nutriment and mixing conditions to improve the specific cell growth rates (µ) of two PGPB (plant growth-promoting bacteria) rhizobial strains at the bioreactor level. For this purpose, the strains Sinorhizobium mexicanum ITTG-R7T and Sinorhizobium chiapanecum ITTG-S70T were previously reactivated in a PY-Ca2+ (peptone casein, yeast extract, and calcium) culture medium. Afterward, a master cell bank (MCB) was made in order to maintain the viability and quality of the strains. The kinetic characterization of each bacterial strain was carried out in s shaken flask. Then, the effect of the carbon and nitrogen sources and mechanical agitation was evaluated through a factorial design and response surface methodology (RSM) for cell growth optimization, where µ was considered a response variable. The efficiency of biomass production was determined in a homemade bioreactor, taking into account the optimal conditions obtained during the experiment conducted at the shaken flask stage. In order to evaluate the biological quality of the product obtained in the bioreactor, the bacterial strains were inoculated in common bean (Phaseolus vulgaris var. Jamapa) plants under bioclimatic chamber conditions. The maximum cell growth rate in both PGPB strains was obtained using a Y-Ca2+ (yeast extract and calcium) medium and stirred at 200 and 300 rpm. Under these growth conditions, the Sinorhizobium strains exhibited a high nitrogen-fixing capacity, which had a significant (p < 0.05) impact on the growth of the test plants. The bioreactor system was found to be an efficient alternative for the large-scale production of PGPB rhizobial bacteria, which are intended for use as biofertilizers in agriculture.
Collapse
Affiliation(s)
- Luis Alberto Manzano-Gómez
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez 29050, Chiapas, Mexico; (L.A.M.-G.); (R.R.-R.); (A.G.-J.); (V.M.R.-V.); (L.M.C.V.-C.); (F.A.R.-M.); (J.J.V.-M.)
- Departamento de Investigación y Desarrollo, 3R Biotec SA de CV, Tuxtla Gutiérrez 29000, Chiapas, Mexico
| | - Reiner Rincón-Rosales
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez 29050, Chiapas, Mexico; (L.A.M.-G.); (R.R.-R.); (A.G.-J.); (V.M.R.-V.); (L.M.C.V.-C.); (F.A.R.-M.); (J.J.V.-M.)
| | | | - Adriana Gen-Jimenez
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez 29050, Chiapas, Mexico; (L.A.M.-G.); (R.R.-R.); (A.G.-J.); (V.M.R.-V.); (L.M.C.V.-C.); (F.A.R.-M.); (J.J.V.-M.)
| | - Víctor Manuel Ruíz-Valdiviezo
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez 29050, Chiapas, Mexico; (L.A.M.-G.); (R.R.-R.); (A.G.-J.); (V.M.R.-V.); (L.M.C.V.-C.); (F.A.R.-M.); (J.J.V.-M.)
| | - Lucia María Cristina Ventura-Canseco
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez 29050, Chiapas, Mexico; (L.A.M.-G.); (R.R.-R.); (A.G.-J.); (V.M.R.-V.); (L.M.C.V.-C.); (F.A.R.-M.); (J.J.V.-M.)
| | - Francisco Alexander Rincón-Molina
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez 29050, Chiapas, Mexico; (L.A.M.-G.); (R.R.-R.); (A.G.-J.); (V.M.R.-V.); (L.M.C.V.-C.); (F.A.R.-M.); (J.J.V.-M.)
| | - Juan José Villalobos-Maldonado
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez 29050, Chiapas, Mexico; (L.A.M.-G.); (R.R.-R.); (A.G.-J.); (V.M.R.-V.); (L.M.C.V.-C.); (F.A.R.-M.); (J.J.V.-M.)
| | - Clara Ivette Rincón-Molina
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez 29050, Chiapas, Mexico; (L.A.M.-G.); (R.R.-R.); (A.G.-J.); (V.M.R.-V.); (L.M.C.V.-C.); (F.A.R.-M.); (J.J.V.-M.)
| |
Collapse
|
30
|
Nasuelli M, Novello G, Gamalero E, Massa N, Gorrasi S, Sudiro C, Hochart M, Altissimo A, Vuolo F, Bona E. PGPB and/or AM Fungi Consortia Affect Tomato Native Rhizosphere Microbiota. Microorganisms 2023; 11:1891. [PMID: 37630451 PMCID: PMC10458106 DOI: 10.3390/microorganisms11081891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Tomatoes are one of the most important crops worldwide and also play a central role in the human diet. Microbial consortia are microorganism associations, often employed as bioinoculants, that can interact with the native rhizosphere microbiota. The aim of this study was to evaluate the impact of a bacterial-based biostimulant (Pseudomonas fluorescens and Bacillus amyloliquefaciens) (PSBA) in combination, or not, with a commercial inoculum Micomix (Rhizoglomus irregulare, Funnelliformis mosseae, Funnelliformis caledonium, Bacillus licheniformis, Bacillus mucilaginosus) (MYC) on the native rhizosphere communities and on tomato production. The trial was carried out using Solanum lycopersicum in an open field as follows: control full NPK (CFD), control reduced NPK (CRD), MYC, PSBA, PSBA + MYC. Bacterial population in the different samples were characterized using a next generation sequencing approach. The bioinocula effect on the native rhizosphere microbiota resulted in significant variation both in alpha and beta diversity and in a specific signature associated with the presence of biostimulants, especially in the presence of co-inoculation (PSBA + MYC). In particular, the high initial biodiversity shifts in the community composition occurred and consisted in the increase in the abundance of genera correlated to the soil acidification and in an enhanced density of nitrogen-fixing microbes. The results also highlighted the well-known rhizosphere effect.
Collapse
Affiliation(s)
- Martina Nasuelli
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica (DISSTE), Università del Piemonte Orientale, 13100 Vercelli, Italy;
| | - Giorgia Novello
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, 15121 Alessandria, Italy; (E.G.); (N.M.)
| | - Elisa Gamalero
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, 15121 Alessandria, Italy; (E.G.); (N.M.)
| | - Nadia Massa
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, 15121 Alessandria, Italy; (E.G.); (N.M.)
| | - Susanna Gorrasi
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, 01100 Viterbo, Italy;
| | - Cristina Sudiro
- Landlab S.r.l., 36050 Quinto Vicentino, Italy; (C.S.); (M.H.); (A.A.)
| | - Marie Hochart
- Landlab S.r.l., 36050 Quinto Vicentino, Italy; (C.S.); (M.H.); (A.A.)
| | - Adriano Altissimo
- Landlab S.r.l., 36050 Quinto Vicentino, Italy; (C.S.); (M.H.); (A.A.)
| | | | - Elisa Bona
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica (DISSTE), Università del Piemonte Orientale, 13100 Vercelli, Italy;
- Center on Autoimmune and Allergic Diseases (CAAD), Università del Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
31
|
Yu C, Jiang X, Xu H, Ding G. Trichoderma longibrachiatum Inoculation Improves Drought Resistance and Growth of Pinus massoniana Seedlings through Regulating Physiological Responses and Soil Microbial Community. J Fungi (Basel) 2023; 9:694. [PMID: 37504683 PMCID: PMC10381829 DOI: 10.3390/jof9070694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/17/2023] [Accepted: 06/18/2023] [Indexed: 07/29/2023] Open
Abstract
Drought stress poses a serious threat to Pinus massoniana seedling growth in southern China. Trichoderma species, as beneficial microorganisms, have been widely used in agriculture to enhance plant growth and drought tolerance, but the interaction mechanisms remain unclear. To investigate the effect of drought-resistant Trichoderma longibrachiatum inoculation on P. massoniana growth under drought stress, the plant physiological indicators and rhizosphere microbiome diversity were measured to identify Trichoderma-activated mechanisms. Trichoderma longibrachiatum inoculation significantly promoted P. massoniana growth under drought treatment, and enhanced nitrogen, phosphorus, and potassium absorption compared with those of non-inoculated seedlings. Trichoderma longibrachiatum treatment alleviated the damage to cell membranes and needle tissue structure, and significantly increased antioxidant enzyme activities, osmotic substance contents, and photosynthesis in P. massoniana in response to drought stress. Soil nutrient contents, activities of sucrase, phosphatase, and urease as well as the relative abundances of the dominant genera Burkholderia, Rhodanobacter, and Trichoderma were elevated in the rhizosphere soil of P. massoniana inoculated with T. longibrachiatum under drought stress. A network analysis showed that certain crucial dominant taxa driven by T. longibrachiatum inoculation, including Penicillium, Trichoderma, Simplicillium, Saitozyma, Burkholderia, Bradyrhizobium, Sinomonas, and Mycobacterium, had more correlations with other microorganisms in the soil. Trichoderma longibrachiatum enhanced P. massoniana seedling growth under drought stress by regulating physiological responses and soil microbial community.
Collapse
Affiliation(s)
- Cun Yu
- College of Forestry, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xian Jiang
- College of Forestry, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hongyun Xu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Guijie Ding
- College of Forestry, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
32
|
Kour D, Kour H, Khan SS, Khan RT, Bhardwaj M, Kailoo S, Kumari C, Rasool S, Yadav AN, Sharma YP. Biodiversity and Functional Attributes of Rhizospheric Microbiomes: Potential Tools for Sustainable Agriculture. Curr Microbiol 2023; 80:192. [PMID: 37101055 DOI: 10.1007/s00284-023-03300-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/11/2023] [Indexed: 04/28/2023]
Abstract
The quest for increasing agricultural yield due to increasing population pressure and demands for healthy food has inevitably led to the indiscriminate use of chemical fertilizers. On the contrary, the exposure of the crops to abiotic stress and biotic stress interferes with crop growth further hindering the productivity. Sustainable agricultural practices are of major importance to enhance production and feed the rising population. The use of plant growth promoting (PGP) rhizospheric microbes is emerging as an efficient approach to ameliorate global dependence on chemicals, improve stress tolerance of plants, boost up growth and ensure food security. Rhizosphere associated microbiomes promote the growth by enhancing the uptake of the nutrients, producing plant growth regulators, iron chelating complexes, shaping the root system under stress conditions and decreasing the levels of inhibitory ethylene concentrations and protecting plants from oxidative stress. Plant growth-promoting rhizospheric microbes belong to diverse range of genera including Acinetobacter, Achromobacter, Aspergillus, Bacillus, Burkholderia, Flavobacterium, Klebsiella, Micrococcus, Penicillium, Pseudomonas, Serratia and Trichoderma. Plant growth promoting microbes are an interesting aspect of research for scientific community and a number of formulations of beneficial microbes are also commercially available. Thus, recent progress in our understanding on rhizospheric microbiomes along with their major roles and mechanisms of action under natural and stressful conditions should facilitate their application as a reliable component in the management of sustainable agricultural system. This review highlights the diversity of plant growth promoting rhizospheric microbes, their mechanisms of plant growth promotion, their role under biotic and abiotic stress and status of biofertilizers. The article further focuses on the role of omics approaches in plant growth promoting rhizospheric microbes and draft genome of PGP microbes.
Collapse
Affiliation(s)
- Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India
| | - Harpreet Kour
- Department of Botany, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| | - Sofia Shareif Khan
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Rabiya Tabbassum Khan
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Mansavi Bhardwaj
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Swadha Kailoo
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Chandresh Kumari
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Vill-Bhajhol Solan, 173229, Himachal Pradesh, India
| | - Shafaq Rasool
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, Himachal Pradesh, India.
- INTI International University, Persiaran Perdana BBN Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia.
| | - Yash Pal Sharma
- Department of Botany, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| |
Collapse
|
33
|
Cao TND, Mukhtar H, Le LT, Tran DPH, Ngo MTT, Pham MDT, Nguyen TB, Vo TKQ, Bui XT. Roles of microalgae-based biofertilizer in sustainability of green agriculture and food-water-energy security nexus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161927. [PMID: 36736400 DOI: 10.1016/j.scitotenv.2023.161927] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
For years, agrochemical fertilizers have been used in agriculture for crop production. However, intensive utilization of chemical fertilizers is not an ecological and environmental choice since they are destroying soil health and causing an emerging threat to agricultural production on a global scale. Under the circumstances of the increasing utilization of chemical fertilizers, cultivating microalgae to produce biofertilizers would be a wise solution since desired environmental targets will be obtained including (1) replacing chemical fertilizer while improving crop yields and soil health; (2) reducing the harvest of non-renewable elements from limited natural resources for chemical fertilizers production, and (3) mitigating negative influences of climate change through CO2 capture through microalgae cultivation. Recent improvements in microalgae-derived-biofertilizer-applied agriculture will be summarized in this review article. At last, the recent challenges of applying biofertilizers will be discussed as well as the perspective regarding the concept of circular bio-economy and sustainable development goals (SDGs).
Collapse
Affiliation(s)
- Thanh Ngoc-Dan Cao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Hussnain Mukhtar
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Linh-Thy Le
- Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City (UMP), Ward 11, District 5, Ho Chi Minh city 72714, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Duyen Phuc-Hanh Tran
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan, ROC; Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - My Thi Tra Ngo
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Mai-Duy-Thong Pham
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNUT.HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan, ROC
| | - Thi-Kim-Quyen Vo
- Faculty of Biology and Environment, Ho Chi Minh City University of Food Industry (HUFI), 140 Le Trong Tan street, Tan Phu district, Ho Chi Minh city 700000, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNUT.HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
34
|
Kaur T, Devi R, Negi R, Kour D, Yadav AN. Mutualistic Effect of Macronutrients Availing Microbes on the Plant Growth Promotion of Finger Millet (Eleusine coracana L.). Curr Microbiol 2023; 80:186. [PMID: 37071197 DOI: 10.1007/s00284-023-03255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/04/2023] [Indexed: 04/19/2023]
Abstract
Globally, man-made agrochemicals plays crucial role in plant growth promotion and boost crop yield. The agrochemicals overuse leaves the detrimental damage on the environment and humans. Biostimulants developed from single or multiple microbes (archaea, bacteria, and fungi) could be the appropriate alternative of agrochemical which sustains the agriculture as well as environment. In the present investigation, 93 beneficial bacteria associated with rhizospheric and endophytic region were isolated using diverse growth media. The isolated bacteria were screened for macronutrients availing traits including dinitrogen fixation, phosphorus and potassium solubilization. The bacterial consortium was developed using selected bacteria with multifunctional attributes and evaluated for the growth promotion of finger millet crop. Three potent NPK strains were identified as Erwinia rhapontici EU-FMEN-9 (N-fixer), Paenibacillus tylopili EU-FMRP-14 (P-solubilizer) and Serratia marcescens EU-FMRK-41 (K-solubilizer) using 16S rRNA gene sequencing and BLAST analysis. The developed bacterial consortium inoculation on finger millet resulted in the improvement of growth and physiological parameters with respect to chemical fertilizer and control. The compatible mixture of bacteria was found to have more ability to increase the growth of finger millet and it might be utilized as biostimulants for nutri-cereal crops growing in hilly regions.
Collapse
Affiliation(s)
- Tanvir Kaur
- Department of Biotechnology, Microbial Biotechnology Laboratory, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Rubee Devi
- Department of Biotechnology, Microbial Biotechnology Laboratory, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Rajeshwari Negi
- Department of Biotechnology, Microbial Biotechnology Laboratory, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Ajar Nath Yadav
- Department of Biotechnology, Microbial Biotechnology Laboratory, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India.
| |
Collapse
|
35
|
da Cunha ET, Pedrolo AM, Arisi ACM. Effects of sublethal stress application on the survival of bacterial inoculants: a systematic review. Arch Microbiol 2023; 205:190. [PMID: 37055599 DOI: 10.1007/s00203-023-03542-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
The use of commercial bacterial inoculants formulated with plant-growth promoting bacteria (PGPB) in agriculture has shown significant prominence in recent years due to growth-promotion benefits provided to plants through different mechanisms. However, the survival and viability of bacterial cells in inoculants are affected during use and may decrease their effectiveness. Physiological adaptation strategies have attracted attention to solve the viability problem. This review aims to provide an overview of research on selecting sublethal stress strategies to increase the effectiveness of bacterial inoculants. The searches were performed in November 2021 using Web of Science, Scopus, PubMed, and Proquest databases. The keywords "nitrogen-fixing bacteria", "plant growth-promoting rhizobacteria", "azospirillum", "pseudomonas", "rhizobium", "stress pre-conditioning", "adaptation", "metabolic physiological adaptation", "cellular adaptation", "increasing survival", "protective agent" and "protective strategy" were used in the searches. A total of 2573 publications were found, and 34 studies were selected for a deeper study of the subject. Based on the studies analysis, gaps and potential applications related to sublethal stress were identified. The most used strategies included osmotic, thermal, oxidative, and nutritional stress, and the primary cell response mechanism to stress was the accumulation of osmolytes, phytohormones, and exopolysaccharides (EPS). Under sublethal stress, the inoculant survival showed positive increments after lyophilization, desiccation, and long-term storage processes. The effectiveness of inoculant-plants interaction also had positive increments after sublethal stress, improving plant development, disease control, and tolerance to environmental stresses compared to unappealed inoculants.
Collapse
Affiliation(s)
- Elisandra Triches da Cunha
- CAL CCA UFSC, Food Science and Technology Department, Federal University of Santa Catarina, Rod. Admar Gonzaga, 1346, Florianópolis, SC, 88034-001, Brazil
| | - Ana Marina Pedrolo
- CAL CCA UFSC, Food Science and Technology Department, Federal University of Santa Catarina, Rod. Admar Gonzaga, 1346, Florianópolis, SC, 88034-001, Brazil
| | - Ana Carolina Maisonnave Arisi
- CAL CCA UFSC, Food Science and Technology Department, Federal University of Santa Catarina, Rod. Admar Gonzaga, 1346, Florianópolis, SC, 88034-001, Brazil.
| |
Collapse
|
36
|
Comparison of the effects of biological and electrical stimulation on the growth of Zea mays. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
37
|
He Z, Cui K, Wang R, Xu T, Zhang Z, Wang X, Chen Y, Zhu Y. Multi-omics joint analysis reveals how Streptomyces albidoflavus OsiLf-2 assists Camellia oleifera to resist drought stress and improve fruit quality. Front Microbiol 2023; 14:1152632. [PMID: 37007482 PMCID: PMC10063849 DOI: 10.3389/fmicb.2023.1152632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
Camellia oleifera (C. oleifera) is a unique edible oil crop in China cultivated in the hilly southern mountains. Although C. oleifera is classified as a drought-tolerant tree species, drought remains the main factor limiting the growth of C. oleifera in summer and autumn. Using endophytes to improve crop drought tolerance is one effective strategy to meet our growing food crop demand. In this study, we showed that endophyte Streptomyces albidoflavus OsiLf-2 could mitigate the negative impact of drought stress on C. oleifera, thus improving seed, oil, and fruit quality. Microbiome analysis revealed that OsiLf-2 treatment significantly affected the microbial community structure in the rhizosphere soil of C. oleifera, decreasing both the diversity and abundance of the soil microbe. Likewise, transcriptome and metabolome analyses found that OsiLf-2 protected plant cells from drought stress by reducing root cell water loss and synthesizing osmoregulatory substances, polysaccharides, and sugar alcohols in roots. Moreover, we observed that OsiLf-2 could induce the host to resist drought stress by increasing its peroxidase activity and synthesizing antioxidants such as cysteine. A multi-omics joint analysis of microbiomes, transcriptomes, and metabolomes revealed OsiLf-2 assists C. oleifera in resisting drought stress. This study provides theoretical and technical support for future research on endophytes application to enhance the drought resistance, yield, and quality of C. oleifera.
Collapse
Affiliation(s)
- Zhilong He
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
- National Engineering Research Center for Oil Tea Camellia, Changsha, China
| | - Kunpeng Cui
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Rui Wang
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
- National Engineering Research Center for Oil Tea Camellia, Changsha, China
| | - Ting Xu
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
- National Engineering Research Center for Oil Tea Camellia, Changsha, China
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Zhen Zhang
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
- National Engineering Research Center for Oil Tea Camellia, Changsha, China
| | - Xiangnan Wang
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
- National Engineering Research Center for Oil Tea Camellia, Changsha, China
| | - Yongzhong Chen
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
- National Engineering Research Center for Oil Tea Camellia, Changsha, China
- *Correspondence: Yongzhong Chen, ; Yonghua Zhu,
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
- *Correspondence: Yongzhong Chen, ; Yonghua Zhu,
| |
Collapse
|
38
|
Bouizgarne B, Bakki M, Boutasknit A, Banane B, El Ouarrat H, Ait El Maalem S, Amenzou A, Ghousmi A, Meddich A. Phosphate and potash solubilizing bacteria from Moroccan phosphate mine showing antagonism to bacterial canker agent and inducing effective tomato growth promotion. FRONTIERS IN PLANT SCIENCE 2023; 14:970382. [PMID: 36968412 PMCID: PMC10030999 DOI: 10.3389/fpls.2023.970382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Most agricultural soils are facing limited phosphorus availability that challenges modern agriculture. Phosphate solubilizing microbia (PSM) has been explored extensively as potential biofertilizers for plant growth and nutrition, and harnessing phosphate rich areas could provide such beneficial microorganisms. Isolation of PSM from Moroccan rock phosphate led to the selection of two bacterial isolates, Bg22c and Bg32c, showing high solubilization potential. The two isolates were also tested for other in vitro PGPR effects and compared to a non-phosphate solubilizing bacterium Bg15d. In addition to phosphates, Bg22c and Bg32c were able to solubilize insoluble potassium and zinc forms (P, K, and Zn solubilizers) and produce indole-acetic acid (IAA). Mechanisms of solubilization involved production of organic acids as demonstrated by HPLC. In vitro, the isolates Bg22c and Bg15d were able to antagonize the phytopathogenic bacteria Clavibacter michiganensis subsp. michiganensis, causal agent of tomato bacterial canker disease. Phenotypic and molecular identification by 16S rDNA sequencing demonstrated delineation of Bg32c and Bg15d as members of the genus Pseudomonas and Bg22c as member of the genus Serratia. The two isolates Bg22c and Bg32c were further tested either alone or in a consortium and compared to the non-P, K, and Zn solubilizing Pseudomonas strain Bg15d for their efficacy to promote tomato growth and yield. They were also compared to treatment with a conventional NPK fertilizer. Under greenhouse conditions, Pseudomonas strain Bg32c remarkably improved the growth of whole plant height, root length, shoot and root weight, number of leaves and fruits, as well as fruit fresh weight. This strain also induced stomatal conductance enhancement. The strain also improved total soluble phenolic compounds, total sugars, protein, phosphorus and phenolic compounds contents compared to the negative control. All increases were more pronounced in plants inoculated with strain Bg32c in comparison with control and strain Bg15d. The strain Bg32c could be considered a potential candidate for formulation of a biofertilizer in order to improve tomato growth.
Collapse
Affiliation(s)
- B. Bouizgarne
- Laboratory of Plant Biotechnology, Department of Biology, Faculty of Sciences, Ibn Zohr University (UIZ), Agadir, Morocco
| | - M. Bakki
- Laboratory of Plant Biotechnology, Department of Biology, Faculty of Sciences, Ibn Zohr University (UIZ), Agadir, Morocco
| | - A. Boutasknit
- Laboratory of Agro-Food, Biotechnologies & Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
| | - B. Banane
- Laboratory of Plant Biotechnology, Department of Biology, Faculty of Sciences, Ibn Zohr University (UIZ), Agadir, Morocco
| | - H. El Ouarrat
- Laboratory of Plant Biotechnology, Department of Biology, Faculty of Sciences, Ibn Zohr University (UIZ), Agadir, Morocco
| | - S. Ait El Maalem
- Laboratory of Plant Biotechnology, Department of Biology, Faculty of Sciences, Ibn Zohr University (UIZ), Agadir, Morocco
| | - A. Amenzou
- Laboratory of Plant Biotechnology, Department of Biology, Faculty of Sciences, Ibn Zohr University (UIZ), Agadir, Morocco
| | - A. Ghousmi
- Laboratory of Plant Biotechnology, Department of Biology, Faculty of Sciences, Ibn Zohr University (UIZ), Agadir, Morocco
| | - A. Meddich
- Laboratory of Agro-Food, Biotechnologies & Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
| |
Collapse
|
39
|
Phosphate-Solubilizing Capacity of Paecilomyces lilacinus PSF7 and Optimization Using Response Surface Methodology. Microorganisms 2023; 11:microorganisms11020454. [PMID: 36838419 PMCID: PMC9962588 DOI: 10.3390/microorganisms11020454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Phosphorus-solubilizing microorganisms release organic acids that can chelate mineral ions or reduce the pH to solubilize insoluble phosphates for use by plants; it is important to study potential phosphorus-solubilizing microorganisms for use in agriculture. In this study, PSF7 was isolated from the soil of the Wengfu Phosphorus Tailings Dump in Fuquan City, Guizhou Province, China. PSF7 was identified as Paecilomyces lilacinus, based on morphological characterization and ITS sequencing analysis. The relationship between the phosphorus-solubilizing capacity and pH variation of PSF7 under liquid fermentation was studied. The results showed that there was a significant negative correlation (-0.784) between the soluble phosphorus content of PSF7 and the pH value. When PSF7 was placed under low phosphorus stress, eight organic acids were determined from fermentation broth using HPLC, of which tartaric acid and formic acid were the main organic acids. Different optimization parameters of medium components were analyzed using response surface methodology. The optimized medium components were 23.50 g/L sucrose, 1.64 g/L ammonium sulfate and soybean residue, 1.07 g/L inorganic salts, and 9.16 g/L tricalcium phosphate, with a predicted soluble phosphorus content of 123.89 mg/L. Under the optimum medium composition, the actual phosphorus-solubilizing content of PSF7 reached 122.17 mg/L. Moreover, scanning electron microscopy analysis of the sample was carried out to characterize the phosphate-solubilizing efficiency of PSF7 on mineral phosphate. The results provide useful information for the future application of PSF7 as a biological fertilizer.
Collapse
|
40
|
Osorio-Reyes JG, Valenzuela-Amaro HM, Pizaña-Aranda JJP, Ramírez-Gamboa D, Meléndez-Sánchez ER, López-Arellanes ME, Castañeda-Antonio MD, Coronado-Apodaca KG, Gomes Araújo R, Sosa-Hernández JE, Melchor-Martínez EM, Iqbal HMN, Parra-Saldivar R, Martínez-Ruiz M. Microalgae-Based Biotechnology as Alternative Biofertilizers for Soil Enhancement and Carbon Footprint Reduction: Advantages and Implications. Mar Drugs 2023; 21:md21020093. [PMID: 36827134 PMCID: PMC9958754 DOI: 10.3390/md21020093] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/21/2023] [Accepted: 01/21/2023] [Indexed: 02/01/2023] Open
Abstract
Due to the constant growth of the human population and anthropological activity, it has become necessary to use sustainable and affordable technologies that satisfy the current and future demand for agricultural products. Since the nutrients available to plants in the soil are limited and the need to increase the yields of the crops is desirable, the use of chemical (inorganic or NPK) fertilizers has been widespread over the last decades, causing a nutrient shortage due to their misuse and exploitation, and because of the uncontrolled use of these products, there has been a latent environmental and health problem globally. For this reason, green biotechnology based on the use of microalgae biomass is proposed as a sustainable alternative for development and use as soil improvers for crop cultivation and phytoremediation. This review explores the long-term risks of using chemical fertilizers for both human health (cancer and hypoxia) and the environment (eutrophication and erosion), as well as the potential of microalgae biomass to substitute current fertilizer using different treatments on the biomass and their application methods for the implementation on the soil; additionally, the biomass can be a source of carbon mitigation and wastewater treatment in agro-industrial processes.
Collapse
Affiliation(s)
| | | | | | - Diana Ramírez-Gamboa
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | | | - Ma. Dolores Castañeda-Antonio
- Centro de Investigaciones en Ciencias Microbiológicas del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72490, Mexico
| | - Karina G. Coronado-Apodaca
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Rafael Gomes Araújo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Elda M. Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
- Correspondence: (R.P.-S.); (M.M.-R.)
| | - Manuel Martínez-Ruiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
- Correspondence: (R.P.-S.); (M.M.-R.)
| |
Collapse
|
41
|
Characterization of the volatile compounds in white radishes under different organic fertilizer treatments by
HS‐GC‐IMS
with
PCA. FLAVOUR FRAG J 2023. [DOI: 10.1002/ffj.3726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
42
|
Meena M, Yadav G, Sonigra P, Nagda A, Mehta T, Swapnil P, Marwal A, Zehra A. Advantageous features of plant growth-promoting microorganisms to improve plant growth in difficult conditions. PLANT-MICROBE INTERACTION - RECENT ADVANCES IN MOLECULAR AND BIOCHEMICAL APPROACHES 2023:279-296. [DOI: 10.1016/b978-0-323-91876-3.00019-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
43
|
Allouzi MMA, Allouzi SMA, Keng ZX, Supramaniam CV, Singh A, Chong S. Liquid biofertilizers as a sustainable solution for agriculture. Heliyon 2022; 8:e12609. [PMID: 36619398 PMCID: PMC9813699 DOI: 10.1016/j.heliyon.2022.e12609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
This paper provides a mini review of liquid biofertilizers, which have been proven to perform better than the other forms in lasting for longer periods of time, improving crop quality, and requiring less amounts for application. The production of liquid biofertilizers, types of liquid inoculants, and their effect on plant growth are covered in this review. Liquid biofertilizers can be made from wastes and by-products of several industries, making zero or near-zero discharge possible and thus gearing towards circular economy. Despite their usefulness in enhancing crop quality and eco-friendliness, in order to compete with chemical fertilizers, there are a number of challenges to overcome, such as extending the shelf life, making them more susceptible to seasonal climate conditions and soil types, and development of suitable machineries for production and application. More field trials, cost-benefit analysis and long-term studies should also be evaluated for commercialization purposes.
Collapse
Affiliation(s)
- Mintallah Mousa A. Allouzi
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham, Broga Road, 43500 Selangor, Malaysia
| | - Safa Mousa A. Allouzi
- Department of Medicine, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, 42610 Jenjarom, Selangor, Malaysia
| | - Zi Xiang Keng
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham, Broga Road, 43500 Selangor, Malaysia
| | - Christina Vimala Supramaniam
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham, Broga Road, 43500 Selangor, Malaysia
| | - Ajit Singh
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham, Broga Road, 43500 Selangor, Malaysia,Corresponding author.
| | - Siewhui Chong
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham, Broga Road, 43500 Selangor, Malaysia,Corresponding author.
| |
Collapse
|
44
|
Guardiola-Márquez CE, Santos-Ramírez MT, Segura-Jiménez ME, Figueroa-Montes ML, Jacobo-Velázquez DA. Fighting Obesity-Related Micronutrient Deficiencies through Biofortification of Agri-Food Crops with Sustainable Fertilization Practices. PLANTS (BASEL, SWITZERLAND) 2022; 11:3477. [PMID: 36559589 PMCID: PMC9784404 DOI: 10.3390/plants11243477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Obesity is a critical medical condition worldwide that is increasingly involved with nutritional derangements associated with micronutrient deficiencies, including iron, zinc, calcium, magnesium, selenium, and vitamins A, C, D, and E. Nutritional deficiencies in obesity are mainly caused by poor-quality diets, higher nutrient requirements, alterations in micronutrient metabolism, and invasive obesity treatments. The current conventional agricultural system is designed for intensive food production, focusing on food quantity rather than food quality, consuming excessive agricultural inputs, and producing nutrient-deficient foods, thus generating severe health and environmental problems; agricultural food products may worsen obesity-related malnutrition. Therefore, modern agriculture is adopting new biofortification technologies to combat micronutrient deficiencies and improve agricultural productivity and sustainability. Biofertilization and nanofertilization practices are increasingly used due to their efficiency, safety, and reduced environmental impact. Biofertilizers are preparations of PGP-microorganisms that promote plant growth by influencing plant metabolism and improving the nutrient uptake, and nanofertilizers consist of synthesized nanoparticles with unique physicochemical properties that are capable of increasing plant nutrition and enriching agricultural products. This review presents the current micronutrient deficiencies associated with obesity, the modern unsustainable agri-food system contributing to obesity progression, and the development of bio- and nanofertilizers capable of biofortifying agri-food crops with micronutrients commonly deficient in patients with obesity.
Collapse
Affiliation(s)
| | - María Teresa Santos-Ramírez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. General Ramon Corona 2514, Zapopan 45138, Jalisco, Mexico
| | - M. Eugenia Segura-Jiménez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. General Ramon Corona 2514, Zapopan 45138, Jalisco, Mexico
| | - Melina Lizeth Figueroa-Montes
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. General Ramon Corona 2514, Zapopan 45138, Jalisco, Mexico
| | - Daniel A. Jacobo-Velázquez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Ave. General Ramon Corona 2514, Zapopan 45138, Jalisco, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. General Ramon Corona 2514, Zapopan 45201, Jalisco, Mexico
| |
Collapse
|
45
|
Sindhu SS, Sehrawat A, Glick BR. The involvement of organic acids in soil fertility, plant health and environment sustainability. Arch Microbiol 2022; 204:720. [DOI: 10.1007/s00203-022-03321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/22/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
|
46
|
Guardiola-Márquez CE, Jacobo-Velázquez DA. Potential of enhancing anti-obesogenic agriceuticals by applying sustainable fertilizers during plant cultivation. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1034521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Overweight and obesity are two of the world's biggest health problems. They are associated with excessive fat accumulation resulting from an imbalance between energy consumed and energy expended. Conventional therapies for obesity commonly include synthetic drugs and surgical procedures that can lead to serious side effects. Therefore, developing effective, safe, and readily available new treatments to prevent and treat obesity is highly relevant. Many plant extracts have shown anti-obesogenic potential. These plant extracts are composed of different agriceuticals such as fibers, phenolic acids, flavonoids, anthocyanins, alkaloids, lignans, and proteins that can manage obesity by suppressing appetite, inhibiting digestive enzymes, reducing adipogenesis and lipogenesis, promoting lipolysis and thermogenesis, modulating gut microbiota and suppressing obesity-induced inflammation. These anti-obesogenic agriceuticals can be enhanced in plants during their cultivation by applying sustainable fertilization strategies, improving their capacity to fight the obesity pandemic. Biofertilization and nanofertilization are considered efficient, eco-friendly, and cost-effective strategies to enhance plant growth and development and increase the content of nutrients and bioactive compounds, representing an alternative to overproducing the anti-obesogenic agriceuticals of interest. However, further research is required to study the impact of anti-obesogenic plant species grown using these agricultural practices. This review presents the current scenario of overweight and obesity; recent research work describing different plant species with significant effects against obesity; and several reports exhibiting the potential of the biofertilization and nanofertilization practices to enhance the concentrations of bioactive molecules of anti-obesogenic plant species.
Collapse
|
47
|
Li Y, Shen Q, An X, Xie Y, Liu X, Lian B. Organomineral fertilizer application enhances Perilla frutescens nutritional quality and rhizosphere microbial community stability in karst mountain soils. Front Microbiol 2022; 13:1058067. [PMID: 36504806 PMCID: PMC9730529 DOI: 10.3389/fmicb.2022.1058067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Applications of organomineral fertilizer (OMF) are important measures for developing organic agriculture in karst mountain areas. However, the influence of OMF on the structure and function of soil microbial diversity and their relationship with crop yield and quality are still unclear. Methods Based on soil science, crop science, and high-throughput sequencing methods, we investigated the changes of rhizosphere soil microbial communities of Perilla frutescens under different fertilization measures. Then, the relationship between P. frutescens yield and quality with soil quality was analyzed. Results The results showed that the addition of OMF increased the amount of total carbon and total potassium in soil. OF, especially OMF, improved P. frutescens yield and quality (e.g., panicle number per plant, main panicle length, and unsaturated fatty acid contents). Both OF and OMF treatments significantly increased the enrichment of beneficial microorganism (e.g., Bacillus, Actinomadura, Candidatus_Solibacter, Iamia, Pseudallescheria, and Cladorrhinum). The symbiotic network analysis demonstrated that OMF strengthened the connection among the soil microbial communities, and the community composition became more stable. Redundancy analysis and structural equation modeling showed that the soil pH, available phosphorus, and available potassium were significantly correlated with soil microbial community diversity and P. frutescens yield and quality. Discussion Our study confirmed that OMF could replace CF or common OF to improve soil fertility, crop yield and quality in karst mountain soils.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China,College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Qi Shen
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaochi An
- College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Yuanhuan Xie
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Xiuming Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China,*Correspondence: Xiuming Liu,
| | - Bin Lian
- College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China,Bin Lian,
| |
Collapse
|
48
|
Brondi M, Florencio C, Mattoso L, Ribeiro C, Farinas C. Encapsulation of Trichoderma harzianum with nanocellulose/carboxymethyl cellulose nanocomposite. Carbohydr Polym 2022; 295:119876. [DOI: 10.1016/j.carbpol.2022.119876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
|
49
|
Rafique E, Mumtaz MZ, Ullah I, Rehman A, Qureshi KA, Kamran M, Rehman MU, Jaremko M, Alenezi MA. Potential of mineral-solubilizing bacteria for physiology and growth promotion of Chenopodium quinoa Willd. FRONTIERS IN PLANT SCIENCE 2022; 13:1004833. [PMID: 36299778 PMCID: PMC9589155 DOI: 10.3389/fpls.2022.1004833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Nutrient deficiency in wild plant species, including quinoa (Chenopodium quinoa Willd), can be overcome by applying mineral-solubilizing bacteria. Quinoa is a gluten-free, nutritious food crop with unique protein content. The present study aimed to characterize mineral-solubilizing rhizobacterial strains and to evaluate their plant growth-promoting potential in quinoa seedlings. More than sixty rhizobacterial strains were isolated from the quinoa rhizosphere and found eighteen strains to be strong phosphate solubilizers. Most of these bacterial strains showed zinc solubilization, and more than 80% of strains could solubilize manganese. The selected strains were identified as Bacillus altitudinis Cq-3, Pseudomonas flexibilis Cq-32, Bacillus pumilus Cq-35, Pseudomonas furukawaii Cq-40, Pontibacter lucknowensis Cq-48, and Ensifer sp. Cq-51 through 16S rRNA partial gene sequencing. Mainly, these strains showed the production of organic acids, including malic, gluconic, tartaric, ascorbic, lactic, and oxalic acids in insoluble phosphorus amended broth. All strains showed production of gluconic acids, while half of the strains could produce malic, ascorbic, lactic, and oxalic acids. These strains demonstrated the production of indole-3-acetic acid in the presence as well as in the absence of L-tryptophan. The bacterial strains also demonstrated their ability to promote growth and yield attributes, including shoot length, root length, leave numbers, root and shoot dry biomass, spike length, and spikes numbers of quinoa in pots and field trials. Increased physiological attributes, including relative humidity, quantum flux, diffusive resistance, and transpiration rate, were observed due to inoculation with mineral solubilizing bacterial strains under field conditions. P. lucknowensis Cq-48, followed by P. flexibilis Cq-32, and P. furukawaii Cq-40 showed promising results to promote growth, yield, and physiological attributes. The multi-traits characteristics and plant growth-promoting ability in the tested bacterial strains could provide an opportunity for formulating biofertilizers that could promote wild quinoa growth and physiology.
Collapse
Affiliation(s)
- Ejaz Rafique
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Zahid Mumtaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Inam Ullah
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Aneela Rehman
- Department of Microbiology, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Kamal Ahmad Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - Muhammad Kamran
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Mujaddad Ur Rehman
- Department of Microbiology, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | |
Collapse
|
50
|
Suyal DC, Joshi D, Kumar S, Bhatt P, Narayan A, Giri K, Singh M, Soni R, Kumar R, Yadav A, Devi R, Kaur T, Kour D, Yadav AN. Himalayan Microbiomes for Agro-environmental Sustainability: Current Perspectives and Future Challenges. MICROBIAL ECOLOGY 2022; 84:643-675. [PMID: 34647148 DOI: 10.1007/s00248-021-01849-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The Himalayas are one of the most mystical, yet least studied terrains of the world. One of Earth's greatest multifaceted and diverse montane ecosystems is also one of the thirty-four global biodiversity hotspots of the world. These are supposed to have been uplifted about 60-70 million years ago and support, distinct environments, physiography, a variety of orogeny, and great biological diversity (plants, animals, and microbes). Microbes are the pioneer colonizer of the Himalayas that are involved in various bio-geological cycles and play various significant roles. The applications of Himalayan microbiomes inhabiting in lesser to greater Himalayas have been recognized. The researchers explored the applications of indigenous microbiomes in both agricultural and environmental sectors. In agriculture, microbiomes from Himalayan regions have been suggested as better biofertilizers and biopesticides for the crops growing at low temperature and mountainous areas as they help in the alleviation of cold stress and other biotic stresses. Along with alleviation of low temperature, Himalayan microbes also have the capability to enhance plant growth by availing the soluble form of nutrients like nitrogen, phosphorus, potassium, zinc, and iron. These microbes have been recognized for producing plant growth regulators (abscisic acid, auxin, cytokinin, ethylene, and gibberellins). These microbes have been reported for bioremediating the diverse pollutants (pesticides, heavy metals, and xenobiotics) for environmental sustainability. In the current perspectives, present review provides a detailed discussion on the ecology, biodiversity, and adaptive features of the native Himalayan microbiomes in view to achieve agro-environmental sustainability.
Collapse
Affiliation(s)
- Deep Chandra Suyal
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Sirmaur, Himachal Pradesh, India
| | - Divya Joshi
- Uttarakhand Pollution Control Board, Regional Office, Kashipur, Uttarakhand, India
| | - Saurabh Kumar
- Division of Crop Research, Research Complex for Eastern Region, Patna, Bihar, India
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Arun Narayan
- Forest Research Institute, Dehradun, 2480 06, India
| | - Krishna Giri
- Rain Forest Research Institute, Jorhat, 785 010, India
| | - Manali Singh
- Department of Biotechnology, Invertis Institute of Engineering and Technology (IIET), Invertis University, Bareilly, 243123, Uttar Pradesh, India
| | - Ravindra Soni
- Department of Agricultural Microbiology, College of Agriculture, Indira Gandhi Krishi Vishwa Vidyalaya, Raipur, Chhattisgarh, India
| | - Rakshak Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Ashok Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rubee Devi
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Tanvir Kaur
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Divjot Kour
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Ajar Nath Yadav
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India.
| |
Collapse
|