1
|
Beshir SA, Hussain N, Menon VB, Al Haddad AHI, Al Zeer RAK, Elnour AA. Advancements and Challenges in Antiamyloid Therapy for Alzheimer's Disease: A Comprehensive Review. Int J Alzheimers Dis 2024; 2024:2052142. [PMID: 39081336 PMCID: PMC11288696 DOI: 10.1155/2024/2052142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/20/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder caused by the accumulation of amyloid-beta (Aβ) proteins and neurofibrillary tangles in the brain. There have been recent advancements in antiamyloid therapy for AD. This narrative review explores the recent advancements and challenges in antiamyloid therapy. In addition, a summary of evidence from antiamyloid therapy trials is presented with a focus on lecanemab. Lecanemab is the most recently approved monoclonal antibody that targets Aβ protofibrils for the treatment of patients with early AD and mild cognitive impairment (MCI). Lecanemab was the first drug shown to slow cognitive decline in patients with MCI or early onset AD dementia when administered as an infusion once every two weeks. In the Clarity AD trial, lecanemab was associated with infusion-site reactions (26.4%) and amyloid-related imaging abnormalities (12.6%). The clinical relevance and long-term side effects of lecanemab require further longitudinal observation. However, several challenges must be addressed before the drug can be routinely used in clinical practice. The drug's route of administration, need for imaging and genetic testing, affordability, accessibility, infrastructure, and potential for serious side effects are some of these challenges. Lecanemab's approval has fueled interest in the potential of other antiamyloid therapies, such as donanemab. Future research must focus on developing strategies to prevent AD; identify easy-to-use validated plasma-based assays; and discover newer user-friendly, and cost-effective drugs that target multiple pathways in AD pathology.
Collapse
Affiliation(s)
- Semira Abdi Beshir
- Department of Pharmacy PracticeDubai Pharmacy College for Girls, Dubai, UAE
| | - Nadia Hussain
- Department of Pharmaceutical SciencesCollege of PharmacyAl Ain University, Al Ain, UAE
- AAU Health and Biomedical Research CentreAl Ain University, Abu Dhabi, UAE
| | | | - Amal H. I. Al Haddad
- Chief Operations OfficeSheikh Shakhbout Medical City (SSMC)PureHealth, Abu Dhabi, UAE
| | | | - Asim Ahmed Elnour
- AAU Health and Biomedical Research CentreAl Ain University, Abu Dhabi, UAE
- College of PharmacyAl Ain UniversityAbu Dhabi Campus, Abu Dhabi, UAE
| |
Collapse
|
2
|
Bermejo-Pareja F, del Ser T. Controversial Past, Splendid Present, Unpredictable Future: A Brief Review of Alzheimer Disease History. J Clin Med 2024; 13:536. [PMID: 38256670 PMCID: PMC10816332 DOI: 10.3390/jcm13020536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Background: The concept of Alzheimer disease (AD)-since its histological discovery by Alzheimer to the present day-has undergone substantial modifications. Methods: We conducted a classical narrative review of this field with a bibliography selection (giving preference to Medline best match). Results: The following subjects are reviewed and discussed: Alzheimer's discovery, Kraepelin's creation of a new disease that was a rare condition until the 1970's, the growing interest and investment in AD as a major killer in a society with a large elderly population in the second half of the 20th century, the consolidation of the AD clinicopathological model, and the modern AD nosology based on the dominant amyloid hypothesis among many others. In the 21st century, the development of AD biomarkers has supported a novel biological definition of AD, although the proposed therapies have failed to cure this disease. The incidence of dementia/AD has shown a decrease in affluent countries (possibly due to control of risk factors), and mixed dementia has been established as the most frequent etiology in the oldest old. Conclusions: The current concept of AD lacks unanimity. Many hypotheses attempt to explain its complex physiopathology entwined with aging, and the dominant amyloid cascade has yielded poor therapeutic results. The reduction in the incidence of dementia/AD appears promising but it should be confirmed in the future. A reevaluation of the AD concept is also necessary.
Collapse
Affiliation(s)
- Félix Bermejo-Pareja
- CIBERNED, Institute of Health Carlos III, 28029 Madrid, Spain
- Institute of Research i+12, University Hospital “12 de Octubre”, 28041 Madrid, Spain
| | - Teodoro del Ser
- Alzheimer’s Centre Reina Sofia—CIEN Foundation, Institute of Health Carlos III, 28031 Madrid, Spain;
| |
Collapse
|
3
|
Nabavi Zadeh F, Nazari M, Amini A, Adeli S, Barzegar Behrooz A, Fahanik Babaei J. Pre- and post-treatment of α-Tocopherol on cognitive, synaptic plasticity, and mitochondrial disorders of the hippocampus in icv-streptozotocin-induced sporadic Alzheimer's-like disease in male Wistar rat. Front Neurosci 2023; 17:1073369. [PMID: 37152606 PMCID: PMC10157075 DOI: 10.3389/fnins.2023.1073369] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Objective Most dementia cases in the elderly are caused by Alzheimer's disease (AD), a complex, progressive neurological disease. Intracerebroventricular (ICV) administration of streptozotocin (STZ) in rat's results in aberrant brain insulin signaling, oxidative stress, and mitochondrial dysfunction that impair cognition change neural plasticity, and eventually lead to neuronal death. The current study aims to define the neuroprotective action of alpha-tocopherol in enhancing mitochondrial function and the function of synapses in memory-impaired rats brought on by icv-STZ. Methods Male Wistar rats were pre-treated with (α-Tocopherol 150 mg/kg) orally once daily for 7 days before and 14 days after being bilaterally injected with icv-STZ (3 mg/kg), while sham group rats received the same volume of STZ solvent. After 2 weeks of icv-STZ infusion, rats were tested for cognitive performance using a behaviors test and then were prepared electrophysiology recordings or sacrificed for biochemical and histopathological assays. Results The cognitive impairment was significantly minimized in the behavioral paradigms for those who had taken α-Tocopherol. In the hippocampus of icv-STZ rat brains, α-Tocopherol ocopherol effectively prevented the loss of glutathione levels and superoxide dismutase enzyme activity, lowered mitochondrial ROS and mitochondrial membrane potential, and also brought about a decrease in Aβ aggregation and neuronal death. Conclusion Our findings demonstrated that by lowering neurobehavioral impairments caused by icv-STZ, oxidative stress, and mitochondrial dysfunction, α-Tocopherol enhanced intracellular calcium homeostasis and corrected neurodegenerative defects in the brain. These findings examine the available approach for delaying AD connected to mitochondrial malfunction and plasticity issues.
Collapse
Affiliation(s)
- Fatemeh Nabavi Zadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Nazari
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Adeli
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Barzegar Behrooz
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Javad Fahanik Babaei, ,
| |
Collapse
|
4
|
Kipkemoi DJ, Ireri AM, Ngugi MP. Cognition Enhancing Potential of Aqueous Leaf Extract of Amaranthus dubius in Mice. J Evid Based Integr Med 2023; 28:2515690X231211661. [PMID: 37960857 PMCID: PMC10644747 DOI: 10.1177/2515690x231211661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/08/2023] [Accepted: 10/15/2023] [Indexed: 11/15/2023] Open
Abstract
Amaranthus dubius is a vegetable consumed for its nutritional content in Kenya. In herbal medicine, A. dubius is utilized to relief fever, anemia and hemorrhage. Additionally, it is utilized to manage cognitive dysfunction and is considered to augment brain function, but there is no empirical evidence to support this claim. The contemporary study investigated cognitive enhancing potential of A. dubius in mice model of Alzheimer's disease (AD)-like dementia induced with ketamine. Cognitively damaged mice were treated with aqueous extract of A. dubius leaf upon which passive avoidance task (PAT) was used to assess the cognitive performance. At the end of passive avoidance test, brains of the mice were dissected to evaluate the possibility of the extract to inhibit hallmarks that propagate AD namely oxidative stress and acetylcholinesterase activity. Additionally, characterization of secondary metabolites was done using liquid chromatograph- mass spectrometry analysis. During PAT test, extract-treated mice showed significantly increased step-through latencies than AD mice, depicting ability of A. dubius to reverse ketamine-induced cognitive decline. Further, the extract remarkably lowered malondialdehyde levels to normal levels and effectively inhibited acetylcholinesterase enzyme. The study showed that A. dubius extract is endowed with phytoconstituents that possess anti-oxidant and anticholinesterase activities. Thus, this study confirmed promising therapeutic effects of 200, 300 and 400 mg/kg bw of A. dubius extract with potential to alleviate cognitive disarray observed in AD.
Collapse
Affiliation(s)
- Daisy Jepkosgei Kipkemoi
- Department of Biochemistry, Microbiology and Biotechnology, School of Pure and Applied Sciences, Kenyatta University, Nairobi, Kenya
| | - Anthony Murithi Ireri
- Department of Educational Psychology, School of Education, Kenyatta University, Nairobi, Kenya
| | - Mathew Piero Ngugi
- Department of Biochemistry, Microbiology and Biotechnology, School of Pure and Applied Sciences, Kenyatta University, Nairobi, Kenya
| |
Collapse
|
5
|
Desai RJ, Mahesri M, Lee SB, Varma VR, Loeffler T, Schilcher I, Gerhard T, Segal JB, Ritchey ME, Horton DB, Kim SC, Schneeweiss S, Thambisetty M. No association between initiation of phosphodiesterase-5 inhibitors and risk of incident Alzheimer's disease and related dementia: results from the Drug Repurposing for Effective Alzheimer's Medicines study. Brain Commun 2022; 4:fcac247. [PMID: 36330433 PMCID: PMC9598543 DOI: 10.1093/braincomms/fcac247] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/11/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
We evaluated the hypothesis that phosphodiesterase-5 inhibitors, including sildenafil and tadalafil, may be associated with reduced incidence of Alzheimer's disease and related dementia using a patient-level cohort study of Medicare claims and cell culture-based phenotypic assays. We compared incidence of Alzheimer's disease and related dementia after phosphodiesterase-5 inhibitor initiation versus endothelin receptor antagonist initiation among patients with pulmonary hypertension after controlling for 76 confounding variables through propensity score matching. Across four separate analytic approaches designed to address specific types of biases including informative censoring, reverse causality, and outcome misclassification, we observed no evidence for a reduced risk of Alzheimer's disease and related dementia with phosphodiesterase-5 inhibitors;hazard ratio (95% confidence interval): 0.99 (0.69-1.43), 1.00 (0.71-1.42), 0.67 (0.43-1.06), and 1.15 (0.57-2.34). We also did not observe evidence that sildenafil ameliorated molecular abnormalities relevant to Alzheimer's disease in most cell culture-based phenotypic assays. These results do not provide support to the hypothesis that phosphodiesterase-5 inhibitors are promising repurposing candidates for Alzheimer's disease and related dementia.
Collapse
Affiliation(s)
- Rishi J Desai
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Mufaddal Mahesri
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Su Been Lee
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Vijay R Varma
- Clinical & Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA
| | - Tina Loeffler
- QPS Austria GmbH, Parkring 12, 8074 Grambach, Austria
| | | | - Tobias Gerhard
- Rutgers Center for Pharmacoepidemiology and Treatment Science, New Brunswick, NJ 08901, USA
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Jodi B Segal
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mary E Ritchey
- Rutgers Center for Pharmacoepidemiology and Treatment Science, New Brunswick, NJ 08901, USA
| | - Daniel B Horton
- Rutgers Center for Pharmacoepidemiology and Treatment Science, New Brunswick, NJ 08901, USA
- Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08901, USA
| | - Seoyoung C Kim
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital & Harvard Medical School, Boston, MA 02115, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sebastian Schneeweiss
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Madhav Thambisetty
- Clinical & Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA
| |
Collapse
|
6
|
Khan FZ, Mostaid MS, Apu MNH. Molecular Signaling Pathway Targeted Therapeutic Potential of Thymoquinone in Alzheimer’s disease. Heliyon 2022; 8:e09874. [PMID: 35832342 PMCID: PMC9272348 DOI: 10.1016/j.heliyon.2022.e09874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/07/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease with rapid progression. Black cumin (Nigella sativa) is a nutraceutical that has been investigated as a prophylactic and therapeutic agent for this disease due to its ability to prevent or retard the progression of neurodegeneration. Thymoquinone (TQ) is the main bioactive compound isolated from the seeds of black cumin. Several reports have shown that it has promising potential in the prevention and treatment of AD due to its significant antioxidative, anti-inflammatory, and antiapoptotic properties along with several other mechanisms that target the altered signaling pathways due to the disease pathogenesis. In addition, it shows anticholinesterase activity and prevents α-synuclein induced synaptic damage. The aim of this review is to summarize the potential aspects and mechanisms by which TQ imparts its action in AD.
Collapse
|
7
|
Yang H, Zeng F, Luo Y, Zheng C, Ran C, Yang J. Curcumin Scaffold as a Multifunctional Tool for Alzheimer's Disease Research. Molecules 2022; 27:3879. [PMID: 35745002 PMCID: PMC9227459 DOI: 10.3390/molecules27123879] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders, which is caused by multi-factors and characterized by two histopathological hallmarks: amyloid-β (Aβ) plaques and neurofibrillary tangles of Tau proteins. Thus, researchers have been devoting tremendous efforts to developing and designing new molecules for the early diagnosis of AD and curative purposes. Curcumin and its scaffold have fluorescent and photochemical properties. Mounting evidence showed that curcumin scaffold had neuroprotective effects on AD such as anti-amyloidogenic, anti-inflammatory, anti-oxidative and metal chelating. In this review, we summarized different curcumin derivatives and analyzed the in vitro and in vivo results in order to exhibit the applications in AD diagnosis, therapeutic monitoring and therapy. The analysis results showed that, although curcumin and its analogues have some disadvantages such as short wavelength and low bioavailability, these shortcomings can be conquered by modifying the structures. Curcumin scaffold still has the potential to be a multifunctional tool for AD research, including AD diagnosis and therapy.
Collapse
Affiliation(s)
- Haijun Yang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China; (H.Y.); (Y.L.)
| | - Fantian Zeng
- School of Public Health, Xiamen University, Xiamen 361000, China;
| | - Yunchun Luo
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China; (H.Y.); (Y.L.)
| | - Chao Zheng
- PET Center, School of Medicine, Yale University, New Haven, CT 06520, USA;
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Jian Yang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China; (H.Y.); (Y.L.)
| |
Collapse
|
8
|
Desai RJ, Varma VR, Gerhard T, Segal J, Mahesri M, Chin K, Horton DB, Kim SC, Schneeweiss S, Thambisetty M. Comparative Risk of Alzheimer Disease and Related Dementia Among Medicare Beneficiaries With Rheumatoid Arthritis Treated With Targeted Disease-Modifying Antirheumatic Agents. JAMA Netw Open 2022; 5:e226567. [PMID: 35394510 PMCID: PMC8994126 DOI: 10.1001/jamanetworkopen.2022.6567] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
IMPORTANCE Cytokine signaling, including tumor necrosis factor (TNF) and interleukin (IL)-6, through the Janus-kinase (JAK)-signal transducer and activator of transcription pathway, was hypothesized to attenuate the risk of Alzheimer disease and related dementia (ADRD) in the Drug Repurposing for Effective Alzheimer Medicines (DREAM) initiative based on multiomics phenotyping. OBJECTIVE To evaluate the association between treatment with tofacitinib, tocilizumab, or TNF inhibitors compared with abatacept and risk of incident ADRD. DESIGN, SETTING, AND PARTICIPANTS This cohort study was conducted among US Medicare fee-for-service patients with rheumatoid arthritis aged 65 years and older from 2007 to 2017. Patients were categorized into 3 cohorts based on initiation of tofacitinib (a JAK inhibitor), tocilizumab (an IL-6 inhibitor), or TNF inhibitors compared with a common comparator abatacept (a T-cell activation inhibitor). Analyses were conducted from August 2020 to August 2021. MAIN OUTCOMES AND MEASURES The main outcome was onset of ADRD based on diagnosis codes evaluated in 4 alternative analysis schemes: (1) an as-treated follow-up approach, (2) an as-started follow-up approach incorporating a 6-month induction period, (3) incorporating a 6-month symptom to diagnosis period to account for misclassification of ADRD onset, and (4) identifying ADRD through symptomatic prescriptions and diagnosis codes. Hazard ratios (HRs) with 95% CIs were calculated from Cox proportional hazard regression after adjustment for 79 preexposure characteristics through propensity score matching. RESULTS After 1:1 propensity score matching to patients using abatacept, a total of 22 569 propensity score-matched patient pairs, including 4224 tofacitinib pairs (mean [SD] age 72.19 [5.65] years; 6945 [82.2%] women), 6369 tocilizumab pairs (mean [SD] age 72.01 [5.46] years; 10 105 [79.4%] women), and 11 976 TNF inhibitor pairs (mean [SD] age 72.67 [5.91] years; 19 710 [82.3%] women), were assessed. Incidence rates of ADRD varied from 2 to 18 per 1000 person-years across analyses schemes. There were no statistically significant associations of ADRD with tofacitinib (analysis 1: HR, 0.90 [95% CI, 0.55-1.51]; analysis 2: HR, 0.78 [95% CI, 0.53-1.13]; analysis 3: HR, 1.29 [95% CI, 0.72-2.33]; analysis 4: HR, 0.50 [95% CI, 0.21-1.20]), tocilizumab (analysis 1: HR, 0.82 [95% CI, 0.55-1.21]; analysis 2: HR, 1.05 [95% CI, 0.81-1.35]; analysis 3: HR, 1.21 [95% CI, 0.75-1.96]; analysis 4: HR, 0.78 [95% CI, 0.44-1.39]), or TNF inhibitors (analysis 1: HR, 0.93 [95% CI, 0.72-1.20]; analysis 2: HR, 1.02 [95% CI, 0.86-1.20]; analysis 3: HR, 1.13 [95% CI, 0.86-1.48]; analysis 4: 0.90 [95% CI, 0.60-1.37]) compared with abatacept. Results from prespecified subgroup analysis by age, sex, and baseline cardiovascular disease were consistent except in patients with cardiovascular disease, for whom there was a potentially lower risk of ADRD with TNF inhibitors vs abatacept, but only in analyses 2 and 4 (analysis 1: HR, 0.76 [95% CI, 0.50-1.16]; analysis 2: HR, 0.74 [95% CI, 0.56-0.99]; analysis 3: HR, 1.03 [95% CI, 0.65-1.61]; analysis 4: HR, 0.45 [95% CI, 0.21-0.98]). CONCLUSIONS AND RELEVANCE This cohort study did not find any association of risk of ADRD in patients treated with tofacitinib, tocilizumab, or TNF inhibitors compared with abatacept.
Collapse
Affiliation(s)
- Rishi J. Desai
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Vijay R. Varma
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland
| | - Tobias Gerhard
- Center for Pharmacoepidemiology and Treatment Science, Ernest Mario School of Pharmacy, Rutgers University, New Brunswick, New Jersey
| | - Jodi Segal
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mufaddal Mahesri
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kristyn Chin
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Daniel B. Horton
- Center for Pharmacoepidemiology and Treatment Science, Ernest Mario School of Pharmacy, Rutgers University, New Brunswick, New Jersey
| | - Seoyoung C. Kim
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sebastian Schneeweiss
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Madhav Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland
| |
Collapse
|
9
|
Andrade SM, Machado DGDS, Silva-Sauerc LD, Regis CT, Mendes CKTT, de Araújo JSS, de Araújo KDT, Costa LP, Queiroz MEBS, Leitão MM, Fernández-Calvo B. Effects of multisite anodal transcranial direct current stimulation combined with cognitive stimulation in patients with Alzheimer's disease and its neurophysiological correlates: A double-blind randomized clinical trial. Neurophysiol Clin 2022; 52:117-127. [PMID: 35339351 DOI: 10.1016/j.neucli.2022.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES We aimed to examine the effects of multisite anodal transcranial direct current stimulation (tDCS) combined with cognitive stimulation (CS) over 2 months on cognitive performance and brain activity, and the relationship between them, in patients with Alzheimer's disease (AD). METHODS Patients with AD were randomly assigned to an active tDCS+CS (n=18) or a sham tDCS+CS (n=18) group. Cognitive performance was assessed using the Alzheimer Disease Assessment Scale-cognitive subscale (ADAS-cog) and brain activity using EEG (spectral power and coherence analysis) before and after the intervention. Multisite anodal tDCS (2 mA, 30 min) was applied over six brain regions [left and right dorsolateral prefrontal cortex (F3 and F4), Broca's area (F5), Wernicke's area (CP5), left and right somatosensory association cortex (P3 and P4)] for 24 sessions (three times a week). Both groups performed CS during tDCS. RESULTS Anodal tDCS+CS delays cognitive decline (ADAS-cog change) to a greater extent than sham tDCS+CS (-3.4±1.1 vs. -1.7±0.4; p=.03). Bilateral EEG coherence at high and low frequencies was greater for the active tDCS+CS than sham+CS group for most electrode pairs assessed (p < .05). The post-intervention ADAS-cog change score was predictive for EEG coherence at different sites (R²=.59 to .68; p < .05) in the active but not in the sham tDCS+CS group. CONCLUSION Anodal tDCS+CS improved overall cognitive function and changed EEG brain activity compared to sham tDCS+CS. Changes in cognitive performance were associated with changes in EEG measures of brain activity. Anodal tDCS+CS appears to be a promising therapeutic strategy to modulate cortical activity and improve cognitive function in patients with AD.
Collapse
Affiliation(s)
| | | | - Leandro da Silva-Sauerc
- Laboratory of Aging and Neurodegenerative Disorder, Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| | - Cláudio Teixeira Regis
- Aging and Neuroscience Laboratory, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | | | | | - Larissa Pereira Costa
- Aging and Neuroscience Laboratory, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | | | - Bernardino Fernández-Calvo
- Laboratory of Aging and Neurodegenerative Disorder, Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil; Department of Psychology, Faculty of Educational Sciences and Psychology, University of Córdoba, Córdoba, Spain; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain
| |
Collapse
|
10
|
Chowdhury UN, Ahmad S, Islam MB, Alyami SA, Quinn JMW, Eapen V, Moni MA. System biology and bioinformatics pipeline to identify comorbidities risk association: Neurodegenerative disorder case study. PLoS One 2021; 16:e0250660. [PMID: 33956862 PMCID: PMC8101720 DOI: 10.1371/journal.pone.0250660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is the commonest progressive neurodegenerative condition in humans, and is currently incurable. A wide spectrum of comorbidities, including other neurodegenerative diseases, are frequently associated with AD. How AD interacts with those comorbidities can be examined by analysing gene expression patterns in affected tissues using bioinformatics tools. We surveyed public data repositories for available gene expression data on tissue from AD subjects and from people affected by neurodegenerative diseases that are often found as comorbidities with AD. We then utilized large set of gene expression data, cell-related data and other public resources through an analytical process to identify functional disease links. This process incorporated gene set enrichment analysis and utilized semantic similarity to give proximity measures. We identified genes with abnormal expressions that were common to AD and its comorbidities, as well as shared gene ontology terms and molecular pathways. Our methodological pipeline was implemented in the R platform as an open-source package and available at the following link: https://github.com/unchowdhury/AD_comorbidity. The pipeline was thus able to identify factors and pathways that may constitute functional links between AD and these common comorbidities by which they affect each others development and progression. This pipeline can also be useful to identify key pathological factors and therapeutic targets for other diseases and disease interactions.
Collapse
Affiliation(s)
- Utpala Nanda Chowdhury
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi, Bangladesh
| | - Shamim Ahmad
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi, Bangladesh
| | - M. Babul Islam
- Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi, Bangladesh
| | - Salem A. Alyami
- Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Julian M. W. Quinn
- Healthy Ageing Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Valsamma Eapen
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Mohammad Ali Moni
- Healthy Ageing Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia
- WHO Collaborating Centre on eHealth, School of Public Health and Community Medicine, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| |
Collapse
|
11
|
Elahi M, Motoi Y, Shimonaka S, Ishida Y, Hioki H, Takanashi M, Ishiguro K, Imai Y, Hattori N. High-fat diet-induced activation of SGK1 promotes Alzheimer's disease-associated tau pathology. Hum Mol Genet 2021; 30:1693-1710. [PMID: 33890983 PMCID: PMC8411983 DOI: 10.1093/hmg/ddab115] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/31/2021] [Accepted: 04/18/2021] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) has long been considered a risk factor for Alzheimer’s disease (AD). However, the molecular links between T2DM and AD remain obscure. Here, we reported that serum-/glucocorticoid-regulated kinase 1 (SGK1) is activated by administering a chronic high-fat diet (HFD), which increases the risk of T2DM, and thus promotes Tau pathology via the phosphorylation of tau at Ser214 and the activation of a key tau kinase, namely, GSK-3ß, forming SGK1-GSK-3ß-tau complex. SGK1 was activated under conditions of elevated glucocorticoid and hyperglycemia associated with HFD, but not of fatty acid–mediated insulin resistance. Elevated expression of SGK1 in the mouse hippocampus led to neurodegeneration and impairments in learning and memory. Upregulation and activation of SGK1, SGK1-GSK-3ß-tau complex were also observed in the hippocampi of AD cases. Our results suggest that SGK1 is a key modifier of tau pathology in AD, linking AD to corticosteroid effects and T2DM.
Collapse
Affiliation(s)
- Montasir Elahi
- Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University Graduate of Medicine, Tokyo, Japan
- Department of Neurology, Juntendo University Graduate of Medicine, Tokyo, Japan
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yumiko Motoi
- Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University Graduate of Medicine, Tokyo, Japan
- Department of Neurology, Juntendo University Graduate of Medicine, Tokyo, Japan
| | - Shotaro Shimonaka
- Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University Graduate of Medicine, Tokyo, Japan
| | - Yoko Ishida
- Department of Cell Biology and Neuroscience, Juntendo University Graduate of Medicine, Tokyo, Japan
| | - Hiroyuki Hioki
- Department of Cell Biology and Neuroscience, Juntendo University Graduate of Medicine, Tokyo, Japan
| | - Masashi Takanashi
- Department of Neurology, Juntendo University Graduate of Medicine, Tokyo, Japan
| | - Koichi Ishiguro
- Department of Neurology, Juntendo University Graduate of Medicine, Tokyo, Japan
| | - Yuzuru Imai
- Department of Neurology, Juntendo University Graduate of Medicine, Tokyo, Japan
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
- To whom correspondence should be addressed. Tel: +81 368018332; Fax: +81 358000547;
| | - Nobutaka Hattori
- Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University Graduate of Medicine, Tokyo, Japan
- Department of Neurology, Juntendo University Graduate of Medicine, Tokyo, Japan
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Park J, Won CW, Saligan LN, Kim YJ, Kim Y, Lukkahatai N. Accelerated Epigenetic Age in Normal Cognitive Aging of Korean Community-Dwelling Older Adults. Biol Res Nurs 2021; 23:464-470. [PMID: 33406883 DOI: 10.1177/1099800420983896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Epigenetic age acceleration has been studied as a promising biomarker of age-related conditions, including cognitive aging. This pilot study aims to explore potential cognitive aging-related biomarkers by investigating the relationship of epigenetic age acceleration and cognitive function and by examining the epigenetic age acceleration differences between successful cognitive aging (SCA) and normal cognitive aging (NCA) among Korean community-dwelling older adults (CDOAs). METHODS We used data and blood samples of Korean CDOAs from the Korean Frailty and Aging Cohort Study. The participants were classified into two groups, SCA (above the 50th percentile in all domains of cognitive function) and NCA. The genome-wide DNA methylation profiling array using Illumina Infinium MethylationEPIC BeadChip was used to calculate the following: the DNA methylation age, universal epigenetic age acceleration, intrinsic epigenetic age acceleration (IEAA), and extrinsic epigenetic age acceleration (EEAA). We also used Pearson correlation analysis and independent t-tests to analyze the data. RESULTS Universal age acceleration correlated with the Frontal Assessment Battery test results (r = -0.42, p = 0.025); the EEAA correlated with the Word List Recognition test results (r = -0.41, p = 0.027). There was a significant difference between SCA and NCA groups in IEAA (p = 0.041, Cohen's d = 0.82) and EEAA (p = 0.042, Cohen's d = 0.78). CONCLUSIONS Epigenetic age acceleration can be used as a biomarker for early detection of cognitive decline in Korean community-dwelling older adults. Large longitudinal studies are warranted.
Collapse
Affiliation(s)
- Jongmin Park
- College of Nursing, 34996Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Chang Won Won
- Elderly Frailty Research Center, Department of Family Medicine, College of Medicine, 26723Kyung Hee University, Seoul, Republic of Korea
| | - Leorey N Saligan
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Youn-Jung Kim
- College of Nursing Science, 26723Kyung Hee University, Seoul, Republic of Korea
| | - Yoonju Kim
- College of Nursing Science, 26723Kyung Hee University, Seoul, Republic of Korea
| | - Nada Lukkahatai
- School of Nursing, 1466Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
13
|
Morsy MD, Alsaleem MA, Aboonq MS, Bashir SO, Al-Daher HA. Acylated Ghrelin Administration Inhibits Sleeve Gastrectomy-Induced Hippocampal Oxidative Stress, Apoptosis and Tau-Hyperphosphorylation by Activating the PI3K/Akt Pathway. Folia Biol (Praha) 2021; 67:49-61. [PMID: 34624937 DOI: 10.14712/fb2021067020049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
This study investigated the impact of exogenous replacement therapy with acylated ghrelin (AG) post sleeve gastrectomy (SG) on the memory function in rats. In addition, we investigated the possible underlying mechanisms, including the effects on markers of oxidative stress, tau phosphorylation, and apoptosis. Adult male Wistar rats were divided into four groups (N = 18/group) as follows: sham (control), SG, SG+AG (100 μM), and SG+AG+LY294002 (0.25 μg/100 g). We continued all treatments daily for four weeks post-surgery. SG impaired the spatial, retention, and recognition memories as tested by the Morris water maze test, passive avoidance test, and novel object recognition test, respectively. Also, it enhanced the levels of reactive oxygen species and lipid peroxides, reduced glutathione and protein levels of Bcl-2, and increased the levels of Bax and cleaved caspase-3 in the hippocampus. In addition, SG reduced the hippocampal levels of acetylcholine and brain-derived neurotrophic factor. Concomitantly, it inhibited the hippocampal activity of Akt and increased the activity of glycogen synthase kinase 3β and tau protein phosphorylation. Exogenous administration of acylated ghrelin to rats that had undergone SG prevented memory deficits. Also, it prevented the alteration in the above-mentioned biochemical parameters, an effect that was abolished by co-administration of LY294002 (phosphoinositide 3-kinase inhibitor). In conclusion, AG replacement therapy after SG in rats protects them against memory deficits and hippocampal damage by suppressing tau protein phosphorylation, mediated by activating PI3K/Aktinduced inhibition of glycogen synthase kinase 3β.
Collapse
Affiliation(s)
- M D Morsy
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - M A Alsaleem
- Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - M S Aboonq
- Department of Physiology, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - S O Bashir
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - H A Al-Daher
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
14
|
Pandey M, Choudhury H, Verma RK, Chawla V, Bhattamisra SK, Gorain B, Raja MAG, Amjad MW. Nanoparticles Based Intranasal Delivery of Drug to Treat Alzheimer's Disease: A Recent Update. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:648-662. [PMID: 32819251 DOI: 10.2174/1871527319999200819095620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/23/2020] [Accepted: 07/10/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer Association Report (2019) stated that the 6th primary cause of death in the USA is Alzheimer's Disease (AD), which leads to behaviour and cognitive impairment. Nearly 5.8 million peoples of all ages in the USA have suffered from this disease, including 5.6 million elderly populations. The statistics of the progression of this disease is similar to the global scenario. Still, the treatment of AD is limited to a few conventional oral drugs, which often fail to deliver an adequate amount of the drug in the brain. The reduction in the therapeutic efficacy of an anti-AD drug is due to poor solubility, existence to the blood-brain barrier and low permeability. In this context, nasal drug delivery emerges as a promising route for the delivery of large and small molecular drugs for the treatment of AD. This promising pathway delivers the drug directly into the brain via an olfactory route, which leads to the low systemic side effect, enhanced bioavailability, and higher therapeutic efficacy. However, few setbacks, such as mucociliary clearance and poor drug mucosal permeation, limit its translation from the laboratory to the clinic. The above stated limitation could be overcome by the adaption of nanoparticle as a drug delivery carrier, which may lead to prolong delivery of drugs with better permeability and high efficacy. This review highlights the latest work on the development of promising Nanoparticles (NPs) via the intranasal route for the treatment of AD. Additionally, the current update in this article will draw the attention of the researcher working on these fields and facing challenges in practical applicability.
Collapse
Affiliation(s)
- Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University-Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University-Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Rohit Kumar Verma
- Department of Pharmacy Practice, School of Pharmacy, International Medical University- Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Viney Chawla
- University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, India
| | - Subrat Kumar Bhattamisra
- Department of Life sciences, School of Pharmacy, International Medical University-Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor 47500, Malaysia
| | | | - Muhammad Wahab Amjad
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Saudi Arabia
| |
Collapse
|
15
|
Desai RJ, Varma VR, Gerhard T, Segal J, Mahesri M, Chin K, Nonnenmacher E, Gabbeta A, Mammen AM, Varma S, Horton DB, Kim SC, Schneeweiss S, Thambisetty M. Targeting abnormal metabolism in Alzheimer's disease: The Drug Repurposing for Effective Alzheimer's Medicines (DREAM) study. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12095. [PMID: 33304987 PMCID: PMC7690721 DOI: 10.1002/trc2.12095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022]
Abstract
Drug discovery for disease-modifying therapies for Alzheimer's disease and related dementias (ADRD) based on the traditional paradigm of experimental animal models has been disappointing. We describe the rationale and design of the Drug Repurposing for Effective Alzheimer's Medicines (DREAM) study, an innovative multidisciplinary alternative to traditional drug discovery. First, we use a systems biology perspective in the "hypothesis generation" phase to identify metabolic abnormalities that may either precede or interact with the accumulation of ADRD neuropathology, accelerating the expression of clinical symptoms of the disease. Second, in the "hypothesis refinement" phase we propose use of large patient cohorts to test whether drugs approved for other indications that also target metabolic drivers of ADRD pathogenesis might alter the trajectory of the disease. We emphasize key challenges in population-based pharmacoepidemiologic studies aimed at quantifying the association between medication use and ADRD onset and outline robust causal inference principles to safeguard against common pitfalls. Candidate ADRD treatments emerging from this approach will hold promise as plausible disease-modifying therapies for evaluation in randomized controlled trials.
Collapse
Affiliation(s)
- Rishi J. Desai
- Division of Pharmacoepidemiology and PharmacoeconomicsDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Vijay R. Varma
- Clinical and Translational Neuroscience SectionLaboratory of Behavioral NeuroscienceNational Institute on AgingBaltimoreMarylandUSA
| | - Tobias Gerhard
- Center for Pharmacoepidemiology and Treatment ScienceErnest Mario School of PharmacyRutgers UniversityNew BrunswickNew JerseyUSA
| | - Jodi Segal
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Mufaddal Mahesri
- Division of Pharmacoepidemiology and PharmacoeconomicsDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Kristyn Chin
- Division of Pharmacoepidemiology and PharmacoeconomicsDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Edward Nonnenmacher
- Center for Pharmacoepidemiology and Treatment ScienceErnest Mario School of PharmacyRutgers UniversityNew BrunswickNew JerseyUSA
| | - Avinash Gabbeta
- Center for Pharmacoepidemiology and Treatment ScienceErnest Mario School of PharmacyRutgers UniversityNew BrunswickNew JerseyUSA
| | - Anup M. Mammen
- Glycoscience GroupNCBES National Centre for Biomedical Engineering ScienceNational University of Ireland GalwayGalwayIreland
| | | | - Daniel B. Horton
- Center for Pharmacoepidemiology and Treatment ScienceErnest Mario School of PharmacyRutgers UniversityNew BrunswickNew JerseyUSA
| | - Seoyoung C. Kim
- Division of Pharmacoepidemiology and PharmacoeconomicsDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Sebastian Schneeweiss
- Division of Pharmacoepidemiology and PharmacoeconomicsDepartment of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Madhav Thambisetty
- Clinical and Translational Neuroscience SectionLaboratory of Behavioral NeuroscienceNational Institute on AgingBaltimoreMarylandUSA
| |
Collapse
|
16
|
Hanes J, Dobakova E, Majerova P. Brain Drug Delivery: Overcoming the Blood-brain Barrier to Treat Tauopathies. Curr Pharm Des 2020; 26:1448-1465. [PMID: 32178609 DOI: 10.2174/1381612826666200316130128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/10/2020] [Indexed: 02/06/2023]
Abstract
Tauopathies are neurodegenerative disorders characterized by the deposition of abnormal tau protein in the brain. The application of potentially effective therapeutics for their successful treatment is hampered by the presence of a naturally occurring brain protection layer called the blood-brain barrier (BBB). BBB represents one of the biggest challenges in the development of therapeutics for central nervous system (CNS) disorders, where sufficient BBB penetration is inevitable. BBB is a heavily restricting barrier regulating the movement of molecules, ions, and cells between the blood and the CNS to secure proper neuronal function and protect the CNS from dangerous substances and processes. Yet, these natural functions possessed by BBB represent a great hurdle for brain drug delivery. This review is concentrated on summarizing the available methods and approaches for effective therapeutics' delivery through the BBB to treat neurodegenerative disorders with a focus on tauopathies. It describes the traditional approaches but also new nanotechnology strategies emerging with advanced medical techniques. Their limitations and benefits are discussed.
Collapse
Affiliation(s)
- Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska cesta 9, 845 10 Bratislava, Slovakia
| | - Eva Dobakova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska cesta 9, 845 10 Bratislava, Slovakia
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska cesta 9, 845 10 Bratislava, Slovakia
| |
Collapse
|
17
|
Lv G, Xu Y, Yang J, Li W, Li C, Sun A. Novel D-π-A type near-infrared fluorescent probes for the detection of Aβ 40 aggregates. Analyst 2020; 145:6579-6585. [PMID: 32780031 DOI: 10.1039/d0an01180k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aberrant accumulation of Amyloid-β (Aβ) peptide is closely related to Alzheimer's disease. Thus, it is important to develop featured probes for the specific detection of Aβ species. Herein, we designed and synthesized a novel near-infrared fluorescent probe SDPY based on the D-π-A architecture for the detection of Aβ aggregates. The probe SDPY displayed higher affinity for Aβ40 aggregates over Aβ42 aggregates in solution (Kd = 164 nM vs. 2.1 μM). In addition, SDPY showed excellent anti-interference against a wide range of other substances. Furthermore, SDPY was capable of labeling Aβ40 aggregates better than Aβ42 aggregates in the brain sections of AD transgenic mouse models.
Collapse
Affiliation(s)
- Guanglei Lv
- Department of Neurology, Shanghai Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China. and Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, Zhejiang, P. R. China.
| | - Yunze Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, Zhejiang, P. R. China.
| | - Jiajia Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, Zhejiang, P. R. China.
| | - Wenhui Li
- Department of Neurology, Shanghai Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China.
| | - Chunxia Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, Zhejiang, P. R. China.
| | - Anyang Sun
- Department of Neurology, Shanghai Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
18
|
Microtubule Dysfunction: A Common Feature of Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21197354. [PMID: 33027950 PMCID: PMC7582320 DOI: 10.3390/ijms21197354] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
Neurons are particularly susceptible to microtubule (MT) defects and deregulation of the MT cytoskeleton is considered to be a common insult during the pathogenesis of neurodegenerative disorders. Evidence that dysfunctions in the MT system have a direct role in neurodegeneration comes from findings that several forms of neurodegenerative diseases are associated with changes in genes encoding tubulins, the structural units of MTs, MT-associated proteins (MAPs), or additional factors such as MT modifying enzymes which modulating tubulin post-translational modifications (PTMs) regulate MT functions and dynamics. Efforts to use MT-targeting therapeutic agents for the treatment of neurodegenerative diseases are underway. Many of these agents have provided several benefits when tested on both in vitro and in vivo neurodegenerative model systems. Currently, the most frequently addressed therapeutic interventions include drugs that modulate MT stability or that target tubulin PTMs, such as tubulin acetylation. The purpose of this review is to provide an update on the relevance of MT dysfunctions to the process of neurodegeneration and briefly discuss advances in the use of MT-targeting drugs for the treatment of neurodegenerative disorders.
Collapse
|
19
|
D’Mello SR, Kindy MC. Overdosing on iron: Elevated iron and degenerative brain disorders. Exp Biol Med (Maywood) 2020; 245:1444-1473. [PMID: 32878460 PMCID: PMC7553095 DOI: 10.1177/1535370220953065] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IMPACT STATEMENT Brain degenerative disorders, which include some neurodevelopmental disorders and age-associated diseases, cause debilitating neurological deficits and are generally fatal. A large body of emerging evidence indicates that iron accumulation in neurons within specific regions of the brain plays an important role in the pathogenesis of many of these disorders. Iron homeostasis is a highly complex and incompletely understood process involving a large number of regulatory molecules. Our review provides a description of what is known about how iron is obtained by the body and brain and how defects in the homeostatic processes could contribute to the development of brain diseases, focusing on Alzheimer's disease and Parkinson's disease as well as four other disorders belonging to a class of inherited conditions referred to as neurodegeneration based on iron accumulation (NBIA) disorders. A description of potential therapeutic approaches being tested for each of these different disorders is provided.
Collapse
Affiliation(s)
| | - Mark C Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veterans Affairs Medical Center, Tampa, FL 33612, USA
| |
Collapse
|
20
|
Michalicova A, Majerova P, Kovac A. Tau Protein and Its Role in Blood-Brain Barrier Dysfunction. Front Mol Neurosci 2020; 13:570045. [PMID: 33100967 PMCID: PMC7554615 DOI: 10.3389/fnmol.2020.570045] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022] Open
Abstract
The blood-brain barrier (BBB) plays a crucial role in maintaining the specialized microenvironment of the central nervous system (CNS). In aging, the stability of the BBB declines and the permeability increases. The list of CNS pathologies involving BBB dysfunction is growing. The opening of the BBB and subsequent infiltration of serum components to the brain can lead to a host of processes resulting in progressive synaptic, neuronal dysfunction, and detrimental neuroinflammatory changes. Such processes have been implicated in different diseases, including vascular dementia, stroke, Alzheimer's disease (AD), Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, hypoxia, ischemia, and diabetes mellitus. The BBB damage is also observed in tauopathies that lack amyloid-β overproduction, suggesting a role for tau in BBB damage. Tauopathies represent a heterogeneous group of around 20 different neurodegenerative diseases characterized by abnormal deposition of the MAPT in cells of the nervous system. Neuropathology of tauopathies is defined as intracellular accumulation of neurofibrillary tangles (NFTs) consisting of aggregated hyper- and abnormal phosphorylation of tau protein and neuroinflammation. Disruption of the BBB found in tauopathies is driven by chronic neuroinflammation. Production of pro-inflammatory signaling molecules such as cytokines, chemokines, and adhesion molecules by glial cells, neurons, and endothelial cells determine the integrity of the BBB and migration of immune cells into the brain. The inflammatory processes promote structural changes in capillaries such as fragmentation, thickening, atrophy of pericytes, accumulation of laminin in the basement membrane, and increased permeability of blood vessels to plasma proteins. Here, we summarize the knowledge about the role of tau protein in BBB structural and functional changes.
Collapse
Affiliation(s)
- Alena Michalicova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia.,Department of Pharmacology and Toxicology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| |
Collapse
|
21
|
Poddar J, Singh S, Kumar P, Bali S, Gupta S, Chakrabarti S. Inhibition of complex I-III activity of brain mitochondria after intracerebroventricular administration of streptozotocin in rats is possibly related to loss of body weight. Heliyon 2020; 6:e04490. [PMID: 32743098 PMCID: PMC7387826 DOI: 10.1016/j.heliyon.2020.e04490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/30/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
The effects of streptozotocin (STZ) on the brain after intracerebroventricular (ICV) administration in rodents have been suggested to mimic the pathogenesis of sporadic Alzheimer's disease (AD). Oxidative damage, decreased glucose utilization, mitochondrial bioenergetic changes, neuroinflammation and behavioral impairment have been reported in rodents after ICV-STZ administration. However, the molecular mechanisms of STZ effects on brain after ICV administration remain highly controversial. In this study we re-examined several bioenergetic parameters of rat brain mitochondria on day 15 following ICV-STZ treatment. We observed only a moderate but statistically significant decrease in complex I-III activity in brain mitochondria from streptozotocin-treated rats. There were no changes in complex II-III activity or phosphorylation capacity of brain mitochondria after streptozotocin treatment. More importantly, it was observed that ICV-STZ treatment caused variable degrees of body-weight loss in rats, and complex I-III activity was decreased only in those rats showing a significant (more than 10%-35%) loss in body-weights.
Collapse
Affiliation(s)
- Jit Poddar
- Department of Biochemistry, Institute of Post-graduate Medical Education & Research, Kolkata, India.,Department of Biochemistry, M M Institute of Medical Sciences & Research, Maharishi Markandeshwar Deemed University, Mullana, Ambala, India
| | - Sukhpal Singh
- Department of Biochemistry, M M Institute of Medical Sciences & Research, Maharishi Markandeshwar Deemed University, Mullana, Ambala, India
| | - Pardeep Kumar
- Department of Biochemistry, M M Institute of Medical Sciences & Research, Maharishi Markandeshwar Deemed University, Mullana, Ambala, India
| | - Sharadendu Bali
- Department of Surgery, M M Institute of Medical Sciences & Research, Maharishi Markandeshwar Deemed University, Mullana, Ambala, India
| | - Sumeet Gupta
- M M College of Pharmacy, Maharishi Markandeshwar Deemed University, Mullana, Ambala, India
| | - Sasanka Chakrabarti
- Department of Biochemistry, M M Institute of Medical Sciences & Research, Maharishi Markandeshwar Deemed University, Mullana, Ambala, India
| |
Collapse
|
22
|
Garrett MD. Multiple Causes of Dementia as Engineered Senescence. EUROPEAN JOURNAL OF MEDICAL AND HEALTH SCIENCES 2020; 2. [DOI: 10.24018/ejmed.2020.2.2.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
All traumas—cranial, cardiovascular, hormone, viral, bacterial, fungi, parasites, misfolded protein, genetic, behavior, environmental and medication—affect the brain. This paper itemizes studies showing the many different causes of dementia including Alzheimer’s disease. Causes interact with each other, act sequentially by preparing the optimal conditions for its successor, initiate other diseases, allow for other traumas to accumulate and degrade protective features of the brain. Since such age-related cognitive impairment is not exclusively a human attribute there might be support for an evolutionary theory of dementia. Relying on theories of antagonistic pleiotropy and polymorphism, the brain has been designed to sequester trauma. Because of increased longevity, the short-term tactic of sequestering trauma becomes a long-term liability. We are engineered to sequester these insults until a tipping point is reached. Dementia is an evolutionary trade-off for longevity. We cannot cure dementia without understanding the overall biology of aging.
Collapse
|
23
|
Affiliation(s)
- Sonia R Singh
- From the Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital, OH
| | - Jeffrey Robbins
- From the Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital, OH.
| |
Collapse
|
24
|
Stockburger C, Eckert S, Eckert GP, Friedland K, Müller WE. Mitochondrial Function, Dynamics, and Permeability Transition: A Complex Love Triangle as A Possible Target for the Treatment of Brain Aging and Alzheimer's Disease. J Alzheimers Dis 2019; 64:S455-S467. [PMID: 29504539 DOI: 10.3233/jad-179915] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Because of the failure of all amyloid-β directed treatment strategies for Alzheimer's disease (AD), the concept of mitochondrial dysfunction as a major pathomechanism of the cognitive decline in aging and AD has received substantial support. Accordingly, improving mitochondrial function as an alternative strategy for new drug development became of increasing interest and many different compounds have been identified which improve mitochondrial function in preclinical in vitro and in vivo experiments. However, very few if any have been investigated in clinical trials, representing a major drawback of the mitochondria directed drug development. To overcome these problems, we used a top-down approach by investigating several older antidementia drugs with clinical evidence of therapeutic efficacy. These include EGb761® (standardized ginkgo biloba extract), piracetam, and Dimebon. All improve experimentally many aspects of mitochondrial dysfunction including mitochondrial dynamics and also improve cognition and impaired neuronal plasticity, the functionally most relevant consequences of mitochondrial dysfunction. All partially inhibit opening events of the mitochondrial permeability transition pore (mPTP) which previously has mainly been discussed as a mechanism relevant for the induction of apoptosis. However, as more recent work suggests the mPTP as a master regulator of many mitochondrial functions, our data suggest the mPTP as a possible relevant drug target within the love triangle between mPTP regulation, mitochondrial dynamics, and mitochondrial function including regulation of neuronal plasticity. Drugs interfering with mPTP function will improve not only mitochondrial impairment in aging and AD but also will have beneficial effects on impaired neuronal plasticity, the pathomechanism which correlates best with functional deficits (cognition, behavior) in aging and AD.
Collapse
Affiliation(s)
- Carola Stockburger
- Department of Pharmacology, University of Frankfurt/M, Biocenter, Frankfurt/Main, Germany
| | - Schamim Eckert
- Department of Pharmacology, University of Frankfurt/M, Biocenter, Frankfurt/Main, Germany
| | - Gunter P Eckert
- Department of Nutritional Sciences, University of Giessen, Giessen, Germany
| | - Kristina Friedland
- Department of Molecular and Clinical Pharmacy, University of Erlangen, Erlangen, Germany
| | - Walter E Müller
- Department of Pharmacology, University of Frankfurt/M, Biocenter, Frankfurt/Main, Germany
| |
Collapse
|
25
|
Trafficking of immune cells across the blood-brain barrier is modulated by neurofibrillary pathology in tauopathies. PLoS One 2019; 14:e0217216. [PMID: 31120951 PMCID: PMC6532920 DOI: 10.1371/journal.pone.0217216] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/07/2019] [Indexed: 12/25/2022] Open
Abstract
Tauopathies represent a heterogeneous group of neurodegenerative disorders characterized by abnormal deposition of the hyperphosphorylated microtubule-associated protein tau. Chronic neuroinflammation in tauopathies is driven by glial cells that potentially trigger the disruption of the blood-brain barrier (BBB). Pro-inflammatory signaling molecules such as cytokines, chemokines and adhesion molecules produced by glial cells, neurons and endothelial cells, in general, cooperate to determine the integrity of BBB by influencing vascular permeability, enhancing migration of immune cells and altering transport systems. We considered the effect of tau about vascular permeability of peripheral blood cells in vitro and in vivo using primary rat BBB model and transgenic rat model expressing misfolded truncated protein tau. Immunohistochemistry, electron microscopy and transcriptomic analysis were employed to characterize the structural and functional changes in BBB manifested by neurofibrillary pathology in a transgenic model. Our results show that misfolded protein tau ultimately modifies the endothelial properties of BBB, facilitating blood-to-brain cell transmigration. Our results suggest that the increased diapedesis of peripheral cells across the BBB, in response to tau protein, could be mediated by the increased expression of endothelial signaling molecules, namely ICAM-1, VCAM-1, and selectins. We suggest that the compensation of BBB in the diseased brain represents a crucial factor in neurodegeneration of human tauopathies.
Collapse
|
26
|
Loesche A, Köwitsch A, Lucas SD, Al-Halabi Z, Sippl W, Al-Harrasi A, Csuk R. Ursolic and oleanolic acid derivatives with cholinesterase inhibiting potential. Bioorg Chem 2019; 85:23-32. [PMID: 30599410 DOI: 10.1016/j.bioorg.2018.12.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/03/2018] [Accepted: 12/10/2018] [Indexed: 02/02/2023]
Abstract
Triterpenoids are in the focus of scientific interest, and they were evaluated for many pharmacological applications among them their ability to act as inhibitors of cholinesterases. These inhibitors are still of interest as drugs that improve the life quality of patients suffering from age-related dementia illnesses especially of Alzheimer's disease. Herein, we prepared several derivatives of ursolic and oleanolic acid and screened them in Ellman's assays for their ability to inhibit acetylcholinesterase and/or butyrylcholinesterase, and for each of the active compounds the type of inhibition was determined. As a result, several compounds were shown as good inhibitors for acetylcholinesterase and butyrylcholinesterase even in a micromolar range. An ursolic acid derived hydroxyl-propinyl derivative 10 was a competitive inhibitor for butyrylcholinesterase with an inhibition constant of Ki = 4.29 μM, and therefore being twice as active as gold standard galantamine hydrobromide. The best inhibitor for acetylcholinesterase, however, was 2-methyl-3-oxo-methyl-ursoloate (18), acting as a mixed-type inhibitor showing Ki = 1.72 µM and Ki' = 1.28 μM, respectively.
Collapse
Affiliation(s)
- Anne Loesche
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Alexander Köwitsch
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Susana D Lucas
- Universidade de Lisboa, Faculdade de Farmácio, Instituto de Investigacao do Medicamento (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Zayan Al-Halabi
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany
| | - Wolfgang Sippl
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany
| | - Ahmed Al-Harrasi
- University of Nizwa, Chair of Oman's Medicinal Plants and Marine Natural Products, PO Box 33, Birkat Al-Mauz, Nizwa, Oman
| | - René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| |
Collapse
|
27
|
Abstract
BACKGROUND The growing body of evidence indicating the heterogeneity of Alzheimer's disease (AD), coupled with disappointing clinical studies directed at a fit-for-all therapy, suggest that the development of a single magic cure suitable for all cases may not be possible. This calls for a shift in paradigm where targeted treatment is developed for specific AD subpopulations that share distinct genetic or pathological properties. Apolipoprotein E4 (apoE4), the most prevalent genetic risk factor of AD, is expressed in more than half of AD patients and is thus an important possible AD therapeutic target. REVIEW This review focuses initially on the pathological effects of apoE4 in AD, as well as on the corresponding cellular and animal models and the suggested cellular and molecular mechanisms which mediate them. The second part of the review focuses on recent apoE4-targeted (from the APOE gene to the apoE protein and its interactors) therapeutic approaches that have been developed in animal models and are ready to be translated to human. Further, the issue of whether the pathological effects of apoE4 are due to loss of protective function or due to gain of toxic function is discussed herein. It is possible that both mechanisms coexist, with certain constituents of the apoE4 molecule and/or its downstream signaling mediating a toxic effect, while others are associated with a loss of protective function. CONCLUSION ApoE4 is a promising AD therapeutic target that remains understudied. Recent studies are now paving the way for effective apoE4-directed AD treatment approaches.
Collapse
|
28
|
Müller WE, Eckert A, Eckert GP, Fink H, Friedland K, Gauthier S, Hoerr R, Ihl R, Kasper S, Möller HJ. Therapeutic efficacy of the Ginkgo special extract EGb761 ® within the framework of the mitochondrial cascade hypothesis of Alzheimer's disease. World J Biol Psychiatry 2019; 20:173-189. [PMID: 28460580 DOI: 10.1080/15622975.2017.1308552] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVES The mitochondrial cascade hypothesis of dementia assumes mitochondrial dysfunction as an important common pathomechanism for the whole spectrum of age-associated memory disorders from cognitive symptoms in the elderly over mild cognitive impairment to Alzheimer's dementia. Thus, a drug such as the Ginkgo special extract EGb 761® which improves mitochondrial function should be able to ameliorate cognitive deficits over the whole aging spectrum. METHODS We review the most relevant publications about effects of EGb 761® on cognition and synaptic deficits in preclinical studies as well as on cognitive deficits in man from aging to dementia. RESULTS EGb 761® improves mitochondrial dysfunction and cognitive impairment over the whole spectrum of age-associated cognitive disorders in relevant animal models and in vitro experiments, and also shows clinical efficacy in improving cognition over the whole range from aging to Alzheimer's or even vascular dementia. CONCLUSIONS EGb 761® shows clinical efficacy in the treatment of cognitive deficits over the whole spectrum of age-associated memory disorders. Thus, EGb 761® can serve as an important pharmacological argument for the mitochondrial cascade hypothesis of dementia.
Collapse
Affiliation(s)
- Walter E Müller
- a Department of Pharmacology , Biocenter, Goethe-University , Frankfurt/M , Germany
| | - Anne Eckert
- b Neurobiological laboratory, Department of Psychiatry , Basel , Switzerland
| | - Gunter P Eckert
- c Department of Nutritional Sciences , Justus-Liebig University , Giessen , Germany
| | - Heidrun Fink
- d Department of Pharmacology and Toxicology , Free University , Berlin , Germany
| | - Kristina Friedland
- e Department of Molecular and Clinical Pharmacy , University Erlangen , Erlangen , Germany
| | - Serge Gauthier
- f McGill Center for Studies in Aging , Montreal , Canada
| | - Robert Hoerr
- g Dr.Willmar Schwabe GmbH & Co. KG , Karlsruhe , Germany
| | - Ralf Ihl
- h Alexianer Hospital, Clinic of Geriatric Psychiatry , Krefeld , Germany
| | - Siegfried Kasper
- i Department of Psychiatry , Medical University , Vienna , Austria
| | - Hans-Jürgen Möller
- j Department of Psychiatry , Ludwig-Maximilian University , Munich , Germany
| |
Collapse
|
29
|
Zhang J, Konsmo A, Sandberg A, Wu X, Nyström S, Obermüller U, Wegenast-Braun BM, Konradsson P, Lindgren M, Hammarström P. Phenolic Bis-styrylbenzo[c]-1,2,5-thiadiazoles as Probes for Fluorescence Microscopy Mapping of Aβ Plaque Heterogeneity. J Med Chem 2019; 62:2038-2048. [DOI: 10.1021/acs.jmedchem.8b01681] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jun Zhang
- Division of Chemistry, Department of Physics Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Audun Konsmo
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Alexander Sandberg
- Division of Chemistry, Department of Physics Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Xiongyu Wu
- Division of Chemistry, Department of Physics Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Sofie Nyström
- Division of Chemistry, Department of Physics Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Ulrike Obermüller
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
- DZNE−German Center for Neurodegenerative Diseases, 72076 Tübingen, Germany
| | - Bettina M. Wegenast-Braun
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
- DZNE−German Center for Neurodegenerative Diseases, 72076 Tübingen, Germany
| | - Peter Konradsson
- Division of Chemistry, Department of Physics Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Mikael Lindgren
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Per Hammarström
- Division of Chemistry, Department of Physics Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
30
|
Shao W, Li X, Zhang J, Yang C, Tao W, Zhang S, Zhang Z, Peng D. White matter integrity disruption in the pre-dementia stages of Alzheimer's disease: from subjective memory impairment to amnestic mild cognitive impairment. Eur J Neurol 2019; 26:800-807. [PMID: 30584694 DOI: 10.1111/ene.13892] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE Subjective memory impairment (SMI) and amnestic mild cognitive impairment (aMCI) are thought to represent the pre-dementia stages of Alzheimer's disease (AD). SMI is considered a more advanced pre-clinical status prior to aMCI. Understanding the neuromechanism of SMI will have great benefits for monitoring the disease progression of AD. The study aims to explore whether SMI shows alterations of white matter (WM) integrity similar to the patterns of aMCI. METHODS The atlas-based analyses were performed to investigate the diffusion changes in the major WM tracts amongst 22 individuals with normal cognition (NC), 22 SMI patients and 25 aMCI patients. The correlations between the altered diffusion metrics and cognitive performance in the SMI and aMCI groups were assessed. RESULTS The diffusion tensor metrics of SMI were intermediate between the NC and aMCI groups. The aMCI group presented disrupted integrity in multiple WM tracts, including the left anterior thalamic radiation, right corticospinal tract and left cingulum of the hippocampus (CgH), compared to the NC group. The left CgH showed diffusion alterations in the SMI group. In the aMCI group, the mean diffusivity of the left CgH was negatively correlated with episodic memory, whilst the radial diffusivity of the right corticospinal tract was negatively correlated with executive function. No significant relationship was found in the SMI group. CONCLUSION The study suggested that SMI patients might present detectable WM integrity changes in the left CgH before exhibiting objective cognitive dysfunction, which may provide novel insights into the pathological mechanisms of AD.
Collapse
Affiliation(s)
- W Shao
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - X Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,BABRI Centre, Beijing Normal University, Beijing, China
| | - J Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,BABRI Centre, Beijing Normal University, Beijing, China
| | - C Yang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,BABRI Centre, Beijing Normal University, Beijing, China
| | - W Tao
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,BABRI Centre, Beijing Normal University, Beijing, China
| | - S Zhang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China.,Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Z Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,BABRI Centre, Beijing Normal University, Beijing, China
| | - D Peng
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China.,Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| |
Collapse
|
31
|
Curcumin-loaded self-nanomicellizing solid dispersion system: part II: in vivo safety and efficacy assessment against behavior deficit in Alzheimer disease. Drug Deliv Transl Res 2018; 8:1406-1420. [PMID: 30117120 DOI: 10.1007/s13346-018-0570-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Curcumin (CUR), a natural polyphenolic compound, is considered as one of the most potential candidates against Alzheimer disease (AD) by targeting multiple pathologies such as amyloid-beta, tau phosphorylation, and oxidative stress. Poor physicochemical profile and oral bioavailability (BA) are the major contributors to its failure in clinical trials. Lack of success in numerous drug clinical trials for the treatment of AD urges the need of repositioning of CUR. To overcome its limitation and enhance oral BA, Novel CUR Formulation (NCF) was developed using self-nanomicellizing solid dispersion strategy which displayed 117-fold enhancement in oral BA of CUR. NCF was tested using SH-SY5Y695 APP human neuroblastoma cell line against the cytotoxicity induced by copper metal ion, H2O2, and Aβ42 oligomer and compared with CUR control. The safety and efficacy of NCF on mice AD-like behavioral deficits (open field, novel objective recognition, Y-maze, and Morris water maze tests) were assessed in transgenic AD (APPSwe/PS1deE9) mice model. In SH-SY5Y695 APP human neuroblastoma cell line, NCF showed better safety and efficacy against the cytotoxicity due to the significantly enhancement of cellular uptake. It not only prevents the deterioration of cognitive functions of the aged APPSwe/PS1deE9 mice during aging but also reverses the cognitive functions to their much younger age which is also better than the currently available approved options. Moreover, NCF was proved as well tolerated with no appearance of any significant toxicity via oral administration. The results of the study demonstrated the potential of NCF to improve the efficacy of CUR without compromising its safety profile, and pave the way for clinical development for AD.
Collapse
|
32
|
Trans-resveratrol Inhibits Tau Phosphorylation in the Brains of Control and Cadmium Chloride-Treated Rats by Activating PP2A and PI3K/Akt Induced-Inhibition of GSK3β. Neurochem Res 2018; 44:357-373. [DOI: 10.1007/s11064-018-2683-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
|
33
|
Eckert SH, Gaca J, Kolesova N, Friedland K, Eckert GP, Muller WE. Mitochondrial Pharmacology of Dimebon (Latrepirdine) Calls for a New Look at its Possible Therapeutic Potential in Alzheimer's Disease. Aging Dis 2018; 9:729-744. [PMID: 30090660 PMCID: PMC6065284 DOI: 10.14336/ad.2017.1014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/14/2017] [Indexed: 12/14/2022] Open
Abstract
Dimebon (latrepirdine), an old antihistaminic drug, showed divergent results in two large clinical trials in Alzheimer disease (AD), which according to our review might be related to the specific pharmacological properties of the drug and the different patient populations included in both studies. Out of the many pharmacological effects of Dimebon, improvement of impaired mitochondrial function seeems to be most relevant for the substantial effects on cognition and behaviour reported in one of the studies, as these effects are already present at the low concentrations of dimebon measured in plasma and tissues of patients and experimental animals. Since impaired mitochondrial function seems to be the major driving force for the progression of the clinical symptoms and since most of the clinical benefits of dimebon originate from an effect on the symptomatic deterioration, mitochondrial improvement can also explain the lack of efficacy of this drug in another clinical trial where symptoms of the patiets remained stable for the time of the study. Accordingly, it seems worthwhile to reevaluate the clinical data to proof that clinical response is correlated with high levels of Neuropsychiatric Symptoms as these show a good relationship to the individual speed of symptomatic decline in AD patients related to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Schamim H Eckert
- Department of Pharmacology, University of Frankfurt/M, Biocenter, D-60438 Frankfurt, Germany
| | - Janett Gaca
- Department of Pharmacology, University of Frankfurt/M, Biocenter, D-60438 Frankfurt, Germany
| | - Nathalie Kolesova
- Department of Pharmacology, University of Frankfurt/M, Biocenter, D-60438 Frankfurt, Germany
| | - Kristina Friedland
- Department of Pharmacology, University of Frankfurt/M, Biocenter, D-60438 Frankfurt, Germany
- Deparment of Molecular and Clinical Pharmacy, University of Erlangen, D-91058 Erlangen, Germany
| | - Gunter P Eckert
- Department of Pharmacology, University of Frankfurt/M, Biocenter, D-60438 Frankfurt, Germany
- Department of Nutricional Sciences, University of Giessen, D-35392 Giessen, Germany
| | - Walter E Muller
- Department of Pharmacology, University of Frankfurt/M, Biocenter, D-60438 Frankfurt, Germany
| |
Collapse
|
34
|
Parikh A, Kathawala K, Li J, Chen C, Shan Z, Cao X, Wang YJ, Garg S, Zhou XF. Self-nanomicellizing solid dispersion of edaravone: part II: in vivo assessment of efficacy against behavior deficits and safety in Alzheimer's disease model. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2111-2128. [PMID: 30022810 PMCID: PMC6042531 DOI: 10.2147/dddt.s161944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Alzheimer’s disease (AD) is a devastating neurodegenerative disorder that lacks any disease-modifying drug for the prevention and treatment. Edaravone (EDR), an approved free radical scavenger, has proven to have potential against AD by targeting multiple key pathologies including amyloid-beta (Aβ), tau phosphorylation, oxidative stress, and neuroinflammation. To enable its oral use, novel edaravone formulation (NEF) was previously developed. The aim of the present investigation was to evaluate safety and efficacy of NEF by using in vitro/in vivo disease model. Materials and methods In vitro therapeutic potential of NEF over EDR was studied against the cytotoxicity induced by copper metal ion, H2O2 and Aβ42 oligomer, and cellular uptake on SH-SY5Y695 amyloid-β precursor protein (APP) human neuroblastoma cell line. For in vivo safety and efficacy assessment, totally seven groups of APP/PS1 (five treatment groups, one each as a basal and sham control) and one group of C57BL/6 mice as a positive control for behavior tests were used. Three groups were orally treated for 3 months with NEF at an equivalent dose of EDR 46, 138, and 414 µmol/kg, whereas one group was supplied with each Donepezil (5.27 µM/kg) and Soluplus (amount present in NEF of 414 µmol/kg dose of EDR). Behavior tests were conducted to assess motor function (open-field), anxiety-related behavior (open-field), and cognitive function (novel objective recognition test, Y-maze, and Morris water maze). For the safety assessment, general behavior, adverse effects, and mortality were recorded during the treatment period. Moreover, biochemical, hematological, and morphological parameters were determined. Results Compared to EDR, NEF showed superior cellular uptake and neuroprotective effect in SH-SY5Y695 APP cell line. Furthermore, it showed nontoxicity of NEF up to 414 µM/kg dose of EDR and its potential to reverse AD-like behavior deficits of APP/PS1 mice in a dose-dependent manner. Conclusion Our results indicate that oral delivery of NEF holds a promise as a safe and effective therapeutic agent for AD.
Collapse
Affiliation(s)
- Ankit Parikh
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia, ;
| | - Krishna Kathawala
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia, ;
| | - Jintao Li
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia, ; .,Neuroscience Institute, Kunming Medical University, Kunming, Yunnan, China
| | - Chi Chen
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia, ; .,Central Laboratory, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhengnan Shan
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia, ;
| | - Xia Cao
- Central Laboratory, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, Sichuan, China
| | - Sanjay Garg
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia, ;
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia, ;
| |
Collapse
|
35
|
Gong CX, Liu F, Iqbal K. Multifactorial Hypothesis and Multi-Targets for Alzheimer’s Disease. J Alzheimers Dis 2018; 64:S107-S117. [DOI: 10.3233/jad-179921] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
36
|
Zhang J, Sandberg A, Konsmo A, Wu X, Nyström S, Nilsson KPR, Konradsson P, LeVine H, Lindgren M, Hammarström P. Detection and Imaging of Aβ1-42 and Tau Fibrils by Redesigned Fluorescent X-34 Analogues. Chemistry 2018. [DOI: 10.1002/chem.201800501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Jun Zhang
- Division of chemistry; Department of Physics, Chemistry and Biology; Linköping University; 581 83 Linköping Sweden
| | - Alexander Sandberg
- Division of chemistry; Department of Physics, Chemistry and Biology; Linköping University; 581 83 Linköping Sweden
| | - Audun Konsmo
- Department of Physics; The Norwegian University of Science and Technology; 7491 Trondheim Norway
| | - Xiongyu Wu
- Division of chemistry; Department of Physics, Chemistry and Biology; Linköping University; 581 83 Linköping Sweden
| | - Sofie Nyström
- Division of chemistry; Department of Physics, Chemistry and Biology; Linköping University; 581 83 Linköping Sweden
| | - K. Peter R. Nilsson
- Division of chemistry; Department of Physics, Chemistry and Biology; Linköping University; 581 83 Linköping Sweden
| | - Peter Konradsson
- Division of chemistry; Department of Physics, Chemistry and Biology; Linköping University; 581 83 Linköping Sweden
| | - Harry LeVine
- Sanders-Brown Center on Aging; University of Kentucky; Lexington KY 40536-0230 USA
| | - Mikael Lindgren
- Division of chemistry; Department of Physics, Chemistry and Biology; Linköping University; 581 83 Linköping Sweden
- Department of Physics; The Norwegian University of Science and Technology; 7491 Trondheim Norway
| | - Per Hammarström
- Division of chemistry; Department of Physics, Chemistry and Biology; Linköping University; 581 83 Linköping Sweden
| |
Collapse
|
37
|
Seddighi S, Varma V, Thambisetty M. α2-macroglobulin in Alzheimer's disease: new roles for an old chaperone. Biomark Med 2018. [PMID: 29537301 DOI: 10.2217/bmm-2018-0027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Sahba Seddighi
- Clinical & Translational Neuroscience Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Vijay Varma
- Clinical & Translational Neuroscience Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Madhav Thambisetty
- Clinical & Translational Neuroscience Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| |
Collapse
|
38
|
Freyssin A, Page G, Fauconneau B, Rioux Bilan A. Natural polyphenols effects on protein aggregates in Alzheimer's and Parkinson's prion-like diseases. Neural Regen Res 2018; 13:955-961. [PMID: 29926816 PMCID: PMC6022479 DOI: 10.4103/1673-5374.233432] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's and Parkinson's diseases are the most common neurodegenerative diseases. They are characterized by protein aggregates and so can be considered as prion-like disease. The major components of these deposits are amyloid peptide and tau for Alzheimer's disease, α-synuclein and synphilin-1 for Parkinson's disease. Drugs currently proposed to treat these pathologies do not prevent neurodegenerative processes and are mainly symptomatic therapies. Molecules inducing inhibition of aggregation or disaggregation of these proteins could have beneficial effects, especially if they have other beneficial effects for these diseases. Thus, several natural polyphenols, which have antioxidative, anti-inflammatory and neuroprotective properties, have been largely studied, for their effects on protein aggregates found in these diseases, notably in vitro. In this article, we propose to review the significant papers concerning the role of polyphenols on aggregation and disaggregation of amyloid peptide, tau, α-synuclein, synphilin-1, suggesting that these compounds could be useful in the treatments in Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Aline Freyssin
- University of Poitiers, EA3808 NEUVACOD (Neurovascular Unit and Cognitive Disorders), Pôle Biologie Santé, Poitiers, France
| | - Guylène Page
- University of Poitiers, EA3808 NEUVACOD (Neurovascular Unit and Cognitive Disorders), Pôle Biologie Santé, Poitiers, France
| | - Bernard Fauconneau
- University of Poitiers, EA3808 NEUVACOD (Neurovascular Unit and Cognitive Disorders), Pôle Biologie Santé, Poitiers, France
| | - Agnès Rioux Bilan
- University of Poitiers, EA3808 NEUVACOD (Neurovascular Unit and Cognitive Disorders), Pôle Biologie Santé, Poitiers, France
| |
Collapse
|
39
|
Seddighi S, Varma VR, An Y, Varma S, Beason-Held LL, Tanaka T, Kitner-Triolo MH, Kraut MA, Davatzikos C, Thambisetty M. SPARCL1 Accelerates Symptom Onset in Alzheimer's Disease and Influences Brain Structure and Function During Aging. J Alzheimers Dis 2018; 61:401-414. [PMID: 29154276 PMCID: PMC5934753 DOI: 10.3233/jad-170557] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We recently reported that alpha-2 macroglobulin (A2M) is a biomarker of neuronal injury in Alzheimer's disease (AD) and identified a network of nine genes co-expressed with A2M in the brain. This network includes the gene encoding SPARCL1, a protein implicated in synaptic maintenance. Here, we examine whether SPARCL1 is associated with longitudinal changes in brain structure and function in older individuals at risk for AD in the Baltimore Longitudinal Study of Aging. Using data from the Gene-Tissue Expression Project, we first identified two single nucleotide polymorphisms (SNPs), rs9998212 and rs7695558, associated with lower brain SPARCL1 gene expression. We then analyzed longitudinal trajectories of cognitive performance in 591 participants who remained cognitively normal (average follow-up interval: 11.8 years) and 129 subjects who eventually developed MCI or AD (average follow-up interval: 9.4 years). Cognitively normal minor allele carriers of rs7695558 who developed incident AD showed accelerated memory loss prior to disease onset. Next, we compared longitudinal changes in brain volumes (MRI; n = 120 participants; follow-up = 6.4 years; 826 scans) and resting-state cerebral blood flow (rCBF; 15O-water PET; n = 81 participants; follow-up = 7.7 years; 664 scans) in cognitively normal participants. Cognitively normal minor allele carriers of rs9998212 showed accelerated atrophy in several global, lobar, and regional brain volumes. Minor allele carriers of both SNPs showed longitudinal changes in rCBF in several brain regions, including those vulnerable to AD pathology. Our findings suggest that SPARCL1 accelerates AD pathogenesis and thus link neuroinflammation with widespread changes in brain structure and function during aging.
Collapse
Affiliation(s)
- Sahba Seddighi
- Clinical and Translational Neuroscience Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Vijay R. Varma
- Clinical and Translational Neuroscience Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | | | - Lori L. Beason-Held
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | | | - Michael A. Kraut
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christos Davatzikos
- Department of Radiology, Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Madhav Thambisetty
- Clinical and Translational Neuroscience Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA
| |
Collapse
|
40
|
Wischik CM, Schelter BO, Wischik DJ, Storey JMD, Harrington CR. Modeling Prion-Like Processing of Tau Protein in Alzheimer's Disease for Pharmaceutical Development. J Alzheimers Dis 2018; 62:1287-1303. [PMID: 29226873 PMCID: PMC5870021 DOI: 10.3233/jad-170727] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 12/14/2022]
Abstract
Following our discovery of a fragment from the repeat domain of tau protein as a structural constituent of the PHF-core in Alzheimer's disease (AD), we developed an assay that captured several key features of the aggregation process. Tau-tau binding through the core tau fragment could be blocked by the same diaminophenothiazines found to dissolve proteolytically stable PHFs isolated from AD brain. We found that the PHF-core tau fragment is inherently capable of auto-catalytic self-propagation in vitro, or "prion-like processing", that has now been demonstrated for several neurodegenerative disorders. Here we review the findings that led to the first clinical trials to test tau aggregation inhibitor therapy in AD as a way to block this cascade. Although further trials are still needed, the results to date suggest that a treatment targeting the prion-like processing of tau protein may have a role in both prevention and treatment of AD.
Collapse
Affiliation(s)
- Claude M. Wischik
- TauRx Therapeutics Ltd., Singapore
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Björn O. Schelter
- TauRx Therapeutics Ltd., Singapore
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, UK
| | - Damon J. Wischik
- TauRx Therapeutics Ltd., Singapore
- Computer Laboratory, University of Cambridge, Cambridge, UK
| | - John M. D. Storey
- TauRx Therapeutics Ltd., Singapore
- Department of Chemistry, University of Aberdeen, Aberdeen, UK
| | - Charles R. Harrington
- TauRx Therapeutics Ltd., Singapore
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
41
|
Rajasekhar K, Narayanaswamy N, Murugan NA, Viccaro K, Lee HG, Shah K, Govindaraju T. Aβ plaque-selective NIR fluorescence probe to differentiate Alzheimer's disease from tauopathies. Biosens Bioelectron 2017; 98:54-61. [PMID: 28649025 PMCID: PMC6370041 DOI: 10.1016/j.bios.2017.06.030] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/01/2017] [Accepted: 06/15/2017] [Indexed: 10/19/2022]
Abstract
Selective detection and staining of toxic amyloid plaques, a potential biomarker present in the Alzheimer's disease (AD) brain is crucial for both clinical diagnosis and monitoring AD disease progression. Herein, we report a coumarin-quinoline (CQ) conjugate-based turn-on near-infrared (NIR) fluorescence probe for specific detection of β-amyloid (Aβ) aggregates. CQ probe is highly sensitive and exhibits ~100-fold fluorescence enhancement in vitro upon binding Aβ aggregates with enhanced quantum yield. Furthermore, the probe has ~10-fold higher binding affinity towards Aβ aggregates (86nM) compared to commonly used Thioflavin T. Most importantly, CQ probe displays unambiguous selectivity towards Aβ aggregates compared to other toxic protein aggregates such as tau, α-synuclein (α-Syn) and islet amyloid polypeptide (IAPP). In addition, CQ is nontoxic to neuronal cells and shows significant blood brain barrier permeability. Remarkably, CQ stains Aβ plaques in human brain tissue over co-existing tau aggregates and neurofibrillary tangles (NFTs), which are associated in AD and tauopathies. This is a highly desirable attribute to distinguish AD from tau pathology and mixed dementia.
Collapse
Affiliation(s)
- K Rajasekhar
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Nagarjun Narayanaswamy
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - N Arul Murugan
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Keith Viccaro
- Department of Chemistry, Purdue University Center for Cancer Research, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Hyoung-Gon Lee
- Department of Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Kavita Shah
- Department of Chemistry, Purdue University Center for Cancer Research, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India.
| |
Collapse
|
42
|
López-Sanz D, Garcés P, Álvarez B, Delgado-Losada ML, López-Higes R, Maestú F. Network Disruption in the Preclinical Stages of Alzheimer’s Disease: From Subjective Cognitive Decline to Mild Cognitive Impairment. Int J Neural Syst 2017; 27:1750041. [DOI: 10.1142/s0129065717500411] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Introduction: Subjective Cognitive Decline (SCD) is a largely unknown state thought to represent a preclinical stage of Alzheimer’s Disease (AD) previous to mild cognitive impairment (MCI). However, the course of network disruption in these stages is scarcely characterized. Methods: We employed resting state magnetoencephalography in the source space to calculate network smallworldness, clustering, modularity and transitivity. Nodal measures (clustering and node degree) as well as modular partitions were compared between groups. Results: The MCI group exhibited decreased smallworldness, clustering and transitivity and increased modularity in theta and beta bands. SCD showed similar but smaller changes in clustering and transitivity, while exhibiting alterations in the alpha band in opposite direction to those showed by MCI for modularity and transitivity. At the node level, MCI disrupted both clustering and nodal degree while SCD showed minor changes in the latter. Additionally, we observed an increase in modular partition variability in both SCD and MCI in theta and beta bands. Conclusion: SCD elders exhibit a significant network disruption, showing intermediate values between HC and MCI groups in multiple parameters. These results highlight the relevance of cognitive concerns in the clinical setting and suggest that network disorganization in AD could start in the preclinical stages before the onset of cognitive symptoms.
Collapse
Affiliation(s)
- David López-Sanz
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Complutense University of Madrid and Technical University of Madrid 28223, Spain
- Department of Basic Psychology II, Complutense University of Madrid 28223, Spain
| | - Pilar Garcés
- Laboratory of Cognitive Computational Neuroscience, Center for Biomedical Technology, Complutense University of Madrid and Technical University of Madrid 28223, Spain
| | - Blanca Álvarez
- Memory Decline Prevention Center Madrid Salud, Ayuntamiento de Madrid 28006, Spain
| | | | - Ramón López-Higes
- Department of Basic Psychology II, Complutense University of Madrid 28223, Spain
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Complutense University of Madrid and Technical University of Madrid 28223, Spain
- Department of Basic Psychology II, Complutense University of Madrid 28223, Spain
| |
Collapse
|
43
|
The Role of Nitric Oxide from Neurological Disease to Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:71-88. [PMID: 28840553 DOI: 10.1007/978-3-319-60733-7_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Rüb U, Stratmann K, Heinsen H, Seidel K, Bouzrou M, Korf HW. Alzheimer's Disease: Characterization of the Brain Sites of the Initial Tau Cytoskeletal Pathology Will Improve the Success of Novel Immunological Anti-Tau Treatment Approaches. J Alzheimers Dis 2017; 57:683-696. [PMID: 28269779 DOI: 10.3233/jad-161102] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) represents the most frequent neurodegenerative disease of the human brain worldwide. Currently practiced treatment strategies for AD only include some less effective symptomatic therapeutic interventions, which unable to counteract the disease course of AD. New therapeutic attempts aimed to prevent, reduce, or remove the extracellular depositions of the amyloid-β protein did not elicit beneficial effects on cognitive deficits or functional decline of AD. In view of the failure of these amyloid-β-based therapeutic trials and the close correlation between the brain pathology of the cytoskeletal tau protein and clinical AD symptoms, therapeutic attention has since shifted to the tau cytoskeletal protein as a novel drug target. The abnormal hyperphosphorylation and intraneuronal aggregation of this protein are early events in the evolution of the AD-related neurofibrillary pathology, and the brain spread of the AD-related tau aggregation pathology may possibly follow a corruptive protein templating and seeding-like mechanism according to the prion hypothesis. Accordingly, immunotherapeutic targeting of the tau aggregation pathology during the very early pre-tangle phase is currently considered to represent an effective and promising therapeutic approach for AD. Recent studies have shown that the initial immunoreactive tau aggregation pathology already prevails in several subcortical regions in the absence of any cytoskeletal changes in the cerebral cortex. Thus, it may be hypothesized that the subcortical brain regions represent the "port of entry" for the pathogenetic agent from which the disease ascends anterogradely as an "interconnectivity pathology".
Collapse
Affiliation(s)
- Udo Rüb
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-University, Frankfurt/Main, Germany
| | - Katharina Stratmann
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-University, Frankfurt/Main, Germany
| | - Helmut Heinsen
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany.,Department of Pathology, Ageing Brain Study Group, University of São Paulo Medical School, São Paulo, Brazil
| | - Kay Seidel
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-University, Frankfurt/Main, Germany
| | - Mohamed Bouzrou
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-University, Frankfurt/Main, Germany
| | - Horst-Werner Korf
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-University, Frankfurt/Main, Germany
| |
Collapse
|
45
|
D'Cunha NM, McKune AJ, Panagiotakos DB, Georgousopoulou EN, Thomas J, Mellor DD, Naumovski N. Evaluation of dietary and lifestyle changes as modifiers of S100β levels in Alzheimer's disease. Nutr Neurosci 2017; 22:1-18. [PMID: 28696163 DOI: 10.1080/1028415x.2017.1349032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is a significant body of research undertaken in order to elucidate the mechanisms underlying the pathology of Alzheimer's disease (AD), as well as to discover early detection biomarkers and potential therapeutic strategies. One such proposed biomarker is the calcium binding protein S100β, which, depending on its local concentration, is known to exhibit both neurotrophic and neuroinflammatory properties in the central nervous system. At present, relatively little is known regarding the effect of chronic S100β disruption in AD. Dietary intake has been identified as a modifiable risk factor for AD. Preliminary in vitro and animal studies have demonstrated an association between S100β expression and dietary intake which links to AD pathophysiology. This review describes the association of S100β to fatty acids, ketone bodies, insulin, and botanicals as well as the potential impact of physical activity as a lifestyle factor. We also discuss the prospective implications of these findings, including support of the use of a Mediterranean dietary pattern and/or the ketogenic diet as an approach to modify AD risk.
Collapse
Affiliation(s)
- Nathan M D'Cunha
- a University of Canberra Health Research Institute (UCHRI) , University of Canberra , Locked Bag 1, Bruce , Canberra ACT 2601 , Australia.,b Collaborative Research in Bioactives and Biomarkers Group (CRIBB) , University of Canberra , Bruce , Canberra ACT 2601 , Australia
| | - Andrew J McKune
- b Collaborative Research in Bioactives and Biomarkers Group (CRIBB) , University of Canberra , Bruce , Canberra ACT 2601 , Australia.,c University of Canberra, Research Institute for Sport and Exercise , University of Canberra , Bruce , Canberra ACT 2601 , Australia.,d Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences , University of KwaZulu-Natal , Durban 4041 , South Africa
| | - Demosthenes B Panagiotakos
- e Department of Nutrition-Dietetics, School of Health and Education , Harokopio University , Athens 176 71 , Greece
| | - Ekavi N Georgousopoulou
- b Collaborative Research in Bioactives and Biomarkers Group (CRIBB) , University of Canberra , Bruce , Canberra ACT 2601 , Australia.,e Department of Nutrition-Dietetics, School of Health and Education , Harokopio University , Athens 176 71 , Greece
| | - Jackson Thomas
- a University of Canberra Health Research Institute (UCHRI) , University of Canberra , Locked Bag 1, Bruce , Canberra ACT 2601 , Australia.,b Collaborative Research in Bioactives and Biomarkers Group (CRIBB) , University of Canberra , Bruce , Canberra ACT 2601 , Australia
| | - Duane D Mellor
- a University of Canberra Health Research Institute (UCHRI) , University of Canberra , Locked Bag 1, Bruce , Canberra ACT 2601 , Australia.,b Collaborative Research in Bioactives and Biomarkers Group (CRIBB) , University of Canberra , Bruce , Canberra ACT 2601 , Australia
| | - Nenad Naumovski
- a University of Canberra Health Research Institute (UCHRI) , University of Canberra , Locked Bag 1, Bruce , Canberra ACT 2601 , Australia.,b Collaborative Research in Bioactives and Biomarkers Group (CRIBB) , University of Canberra , Bruce , Canberra ACT 2601 , Australia
| |
Collapse
|
46
|
Thambisetty M. Understanding mechanisms and seeking cures for Alzheimer's disease: why we must be "extraordinarily diverse". Am J Physiol Cell Physiol 2017; 313:C353-C361. [PMID: 28615163 DOI: 10.1152/ajpcell.00111.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/13/2017] [Indexed: 12/29/2022]
Abstract
After more than a century since Dr. Alois Alzheimer first described the pathological hallmarks accompanying the defining clinical features of the disease, we have yet to deliver any meaningful disease-modifying treatments to our patients. In this article, I present a rationale for the need to be "extraordinarily diverse" in seeking effective ways to treat or prevent this devastating disease. This approach is based on applying a systems-biology perspective at the population level, using a diverse array of "OMICS" methodologies to identify molecular mechanisms associated with well-established AD risk factors including systemic inflammation, obesity, and insulin resistance. We believe that applying this strategy to understand longitudinal changes in human physiology during aging is of paramount importance in identifying meaningful opportunities to intervene effectively in AD.
Collapse
Affiliation(s)
- Madhav Thambisetty
- Clinical and Translational Neuroscience Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
47
|
Mamelak M. Energy and the Alzheimer brain. Neurosci Biobehav Rev 2017; 75:297-313. [PMID: 28193453 DOI: 10.1016/j.neubiorev.2017.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 01/01/2023]
Abstract
The high energy demands of the poorly myelinated long axon hippocampal and cortical neurons render these neurons selectively vulnerable to degeneration in Alzheimer's disease. However, pathology engages all of the major elements of the neurovascular unit of the mature Alzheimer brain, the neurons, glia and blood vessels. Neurons present with retrograde degeneration of the axodendritic tree, capillaries with string vessels and markedly reduced densities and glia with signs of inflammatory activation. The neurons, capillaries and astrocytes of the mature Alzheimer brain harbor structurally defective mitochondria. Clinically, reduced glucose utilization, decades before cognitive deterioration, betrays ongoing energy insufficiency. β-hydroxybutyrate and γ-hydroxybutyrate can both provide energy to the brain when glucose utilization is blocked. Early work in mouse models of Alzheimer's disease demonstrate their ability to reverse the pathological changes in the Alzheimer brain and initial clinical trials reveal their ability to improve cognition and every day function. Supplying the brain with energy holds great promise for delaying the onset of Alzheimer's disease and slowing its progress.
Collapse
|
48
|
Hensley K, Kursula P. Collapsin Response Mediator Protein-2 (CRMP2) is a Plausible Etiological Factor and Potential Therapeutic Target in Alzheimer's Disease: Comparison and Contrast with Microtubule-Associated Protein Tau. J Alzheimers Dis 2017; 53:1-14. [PMID: 27079722 PMCID: PMC4942723 DOI: 10.3233/jad-160076] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer’s disease (AD) has long been viewed as a pathology that must be caused either by aberrant amyloid-β protein precursor (AβPP) processing, dysfunctional tau protein processing, or a combination of these two factors. This is a reasonable assumption because amyloid-β peptide (Aβ) accumulation and tau hyperphosphorylation are the defining histological features in AD, and because AβPP and tau mutations can cause AD in humans or AD-like features in animal models. Nonetheless, other protein players are emerging that one can argue are significant etiological players in subsets of AD and potentially novel, druggable targets. In particular, the microtubule-associated protein CRMP2 (collapsin response mediator protein-2) bears striking analogies to tau and is similarly relevant to AD. Like tau, CRMP2 dynamically regulates microtubule stability; it is acted upon by the same kinases; collects similarly in neurofibrillary tangles (NFTs); and when sequestered in NFTs, complexes with critical synapse-stabilizing factors. Additionally, CRMP2 is becoming recognized as an important adaptor protein involved in vesicle trafficking, amyloidogenesis and autophagy, in ways that tau is not. This review systematically compares the biology of CRMP2 to that of tau in the context of AD and explores the hypothesis that CRMP2 is an etiologically significant protein in AD and participates in pathways that can be rationally engaged for therapeutic benefit.
Collapse
Affiliation(s)
- Kenneth Hensley
- Department of Pathology, University of Toledo Health Science Campus, Toledo, OH, USA
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
49
|
Rajaram S, Valls-Pedret C, Cofán M, Sabaté J, Serra-Mir M, Pérez-Heras AM, Arechiga A, Casaroli-Marano RP, Alforja S, Sala-Vila A, Doménech M, Roth I, Freitas-Simoes TM, Calvo C, López-Illamola A, Haddad E, Bitok E, Kazzi N, Huey L, Fan J, Ros E. The Walnuts and Healthy Aging Study (WAHA): Protocol for a Nutritional Intervention Trial with Walnuts on Brain Aging. Front Aging Neurosci 2017; 8:333. [PMID: 28119602 PMCID: PMC5222811 DOI: 10.3389/fnagi.2016.00333] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022] Open
Abstract
Introduction: An unwanted consequence of population aging is the growing number of elderly at risk of neurodegenerative disorders, including dementia and macular degeneration. As nutritional and behavioral changes can delay disease progression, we designed the Walnuts and Healthy Aging (WAHA) study, a two-center, randomized, 2-year clinical trial conducted in free-living, cognitively healthy elderly men and women. Our interest in exploring the role of walnuts in maintaining cognitive and retinal health is based on extensive evidence supporting their cardio-protective and vascular health effects, which are linked to bioactive components, such as n-3 fatty acids and polyphenols. Methods: The primary aim of WAHA is to examine the effects of ingesting walnuts daily for 2 years on cognitive function and retinal health, assessed with a battery of neuropsychological tests and optical coherence tomography, respectively. All participants followed their habitual diet, adding walnuts at 15% of energy (≈30-60 g/day) (walnut group) or abstaining from walnuts (control group). Secondary outcomes include changes in adiposity, blood pressure, and serum and urinary biomarkers in all participants and brain magnetic resonance imaging in a subset. Results: From May 2012 to May 2014, 708 participants (mean age 69 years, 68% women) were randomized. The study ended in May 2016 with a 90% retention rate. Discussion: The results of WAHA might provide high-level evidence of the benefit of regular walnut consumption in delaying the onset of age-related cognitive impairment and retinal pathology. The findings should translate into public health policy and sound recommendations to the general population (ClinicalTrials.gov identifier NCT01634841).
Collapse
Affiliation(s)
- Sujatha Rajaram
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda CA, USA
| | - Cinta Valls-Pedret
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i SunyerBarcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos IIIMadrid, Spain
| | - Montserrat Cofán
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i SunyerBarcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos IIIMadrid, Spain
| | - Joan Sabaté
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda CA, USA
| | - Mercè Serra-Mir
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i SunyerBarcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos IIIMadrid, Spain
| | - Ana M Pérez-Heras
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i SunyerBarcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos IIIMadrid, Spain
| | - Adam Arechiga
- Department of Psychology, School of Behavioral Health, Loma Linda University, Loma Linda CA, USA
| | - Ricardo P Casaroli-Marano
- Ophthalmology Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona, Spain
| | - Socorro Alforja
- Ophthalmology Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona, Spain
| | - Aleix Sala-Vila
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i SunyerBarcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos IIIMadrid, Spain
| | - Mónica Doménech
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i SunyerBarcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos IIIMadrid, Spain
| | - Irene Roth
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i SunyerBarcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos IIIMadrid, Spain
| | - Tania M Freitas-Simoes
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona, Spain
| | - Carlos Calvo
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i SunyerBarcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos IIIMadrid, Spain
| | - Anna López-Illamola
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i SunyerBarcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos IIIMadrid, Spain
| | - Ella Haddad
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda CA, USA
| | - Edward Bitok
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda CA, USA
| | - Natalie Kazzi
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda CA, USA
| | - Lynnley Huey
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda CA, USA
| | - Joseph Fan
- Department of Ophthalmology, School of Medicine, Loma Linda University, Loma Linda CA, USA
| | - Emilio Ros
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i SunyerBarcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos IIIMadrid, Spain
| |
Collapse
|
50
|
Rodriguez-Callejas JD, Fuchs E, Perez-Cruz C. Evidence of Tau Hyperphosphorylation and Dystrophic Microglia in the Common Marmoset. Front Aging Neurosci 2016; 8:315. [PMID: 28066237 PMCID: PMC5177639 DOI: 10.3389/fnagi.2016.00315] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/08/2016] [Indexed: 01/22/2023] Open
Abstract
Common marmosets (Callithrix jacchus) have recently gained popularity in biomedical research as models of aging research. Basically, they confer advantages from other non-human primates due to their shorter lifespan with onset of appearance of aging at 8 years. Old marmosets present some markers linked to neurodegeneration in the brain such as amyloid beta (Aβ)1-42 and Aβ1-40. However, there are no studies exploring other cellular markers associated with neurodegenerative diseases in this non-human primate. Using immunohistochemistry, we analyzed brains of male adolescent, adult, old, and aged marmosets. We observed accumulation of Aβ1-40 and Aβ1-42 in the cortex of aged subjects. Tau hyperphosphorylation was already detected in the brain of adolescent animals and increased with aging in a more fibrillary form. Microglia activation was also observed in the aging process, while a dystrophic phenotype accumulates in aged subjects. Interestingly, dystrophic microglia contained hyperphosphorylated tau, but active microglia did not. These results support previous findings regarding microglia dysfunctionality in aging and neurodegenerative diseases as Alzheimer's disease. Further studies should explore the functional consequences of these findings to position this non-human primate as animal model of aging and neurodegeneration.
Collapse
Affiliation(s)
- Juan D Rodriguez-Callejas
- Laboratory of Neuroplasticity and Neurodegeneration, Department of Pharmacology, Center for Research and Advanced Studies (CINVESTAV) Mexico City, Mexico
| | - Eberhard Fuchs
- Clinical Neurobiology Laboratory, German Primate Center - Leibniz Institute for Primate Research, Göttingen Germany
| | - Claudia Perez-Cruz
- Laboratory of Neuroplasticity and Neurodegeneration, Department of Pharmacology, Center for Research and Advanced Studies (CINVESTAV) Mexico City, Mexico
| |
Collapse
|