1
|
Rees TA, Buttle BJ, Tasma Z, Yang SH, Harris PWR, Walker CS. Tirzepatide, GIP(1-42) and GIP(1-30) display unique signaling profiles at two common GIP receptor variants, E354 and Q354. Front Pharmacol 2024; 15:1463313. [PMID: 39464637 PMCID: PMC11502443 DOI: 10.3389/fphar.2024.1463313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/02/2024] [Indexed: 10/29/2024] Open
Abstract
Type 2 diabetes (T2D) and obesity are prevalent metabolic disorders affecting millions of individuals worldwide. A new effective therapeutic drug called tirzepatide for the treatment of obesity and T2D is a dual agonist of the GIP receptor and GLP-1 receptor. Tirzepatide is clinically more effective than GLP-1 receptor agonists but the reasons why are not well understood. Tirzepatide reportedly stimulates the GIP receptor more potently than the GLP-1 receptor. However, tirzepatide signaling has not been thoroughly investigated at the E354 (wildtype) or Q354 (E354Q) GIP receptor variants. The E354Q variant is associated increased risk of T2D and lower body mass index. To better understand GIP receptor signaling we characterized the activity of endogenous agonists and tirzepatide at both GIP receptor variants. Using Cos7 cells we examined wildtype and E354Q GIP receptor signaling, analyzing cAMP and IP1 accumulation as well as AKT, ERK1/2 and CREB phosphorylation. GIP(1-42) and GIP(1-30)NH2 displayed equipotent effects on these pathways excluding CREB phosphorylation where GIP(1-30)NH2 was more potent than GIP(1-42) at the E354Q GIP receptor. Tirzepatide favored cAMP signaling at both variants. These findings indicate that tirzepatide is a biased agonist towards Gαs signaling and suggests it equally activates the wildtype and E354Q GIP receptor variants. We also observed differences between the pharmacology of the GIP receptor variants with endogenous peptides, which may help to explain differences in phenotype. These findings contribute to a comprehensive understanding of GIP receptor signaling, and will aid development of therapies combating T2D and obesity.
Collapse
Affiliation(s)
- Tayla A. Rees
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Headache Group, Wolfson Sensory Pain and Regeneration Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Benjamin J. Buttle
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Zoe Tasma
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Sung-Hyun Yang
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Paul W. R. Harris
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Christopher S. Walker
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Nakashima M, Suga N, Yoshikawa S, Matsuda S. Caveolae with GLP-1 and NMDA Receptors as Crossfire Points for the Innovative Treatment of Cognitive Dysfunction Associated with Neurodegenerative Diseases. Molecules 2024; 29:3922. [PMID: 39203005 PMCID: PMC11357136 DOI: 10.3390/molecules29163922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Some neurodegenerative diseases may be characterized by continuing behavioral and cognitive dysfunction that encompasses memory loss and/or apathy. Alzheimer's disease is the most typical type of such neurodegenerative diseases that are characterized by deficits of cognition and alterations of behavior. Despite the huge efforts against Alzheimer's disease, there has yet been no successful treatment for this disease. Interestingly, several possible risk genes for cognitive dysfunction are frequently expressed within brain cells, which may also be linked to cholesterol metabolism, lipid transport, exosomes, and/or caveolae formation, suggesting that caveolae may be a therapeutic target for cognitive dysfunctions. Interestingly, the modulation of autophagy/mitophagy with the alteration of glucagon-like peptide-1 (GLP-1) and N-methyl-d-aspartate (NMDA) receptor signaling may offer a novel approach to preventing and alleviating cognitive dysfunction. A paradigm showing that both GLP-1 and NMDA receptors at caveolae sites may be promising and crucial targets for the treatment of cognitive dysfunctions has been presented here, which may also be able to modify the progression of Alzheimer's disease. This research direction may create the potential to move clinical care toward disease-modifying treatment strategies with maximal benefits for patients without detrimental adverse events for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan (N.S.)
| |
Collapse
|
3
|
Hoffman S, Adeli K. Glucagon-like peptide (GLP)-1 regulation of lipid and lipoprotein metabolism. MEDICAL REVIEW (2021) 2024; 4:301-311. [PMID: 39135603 PMCID: PMC11317082 DOI: 10.1515/mr-2024-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/13/2024] [Indexed: 08/15/2024]
Abstract
Metabolic health is highly dependent on intestinal and hepatic handling of dietary and endogenous lipids and lipoproteins. Disorders of lipid and lipoprotein metabolism are commonly observed in patients with insulin resistant states such as obesity, metabolic syndrome, and type 2 diabetes. Evidence from both animal models and human studies indicates that a major underlying factor in metabolic or diabetic dyslipidemia is the overproduction of hepatic and intestinal apolipoprotein (apo)B-containing lipoprotein particles. These particles are catabolized down into highly proatherogenic remnants, which can be taken up into the arterial intima and promote plaque development. Several gut-derived peptides have been identified as key regulators of energy metabolism; one such peptide is the incretin hormone glucagon-like peptide (GLP)-1. Our laboratory has previously demonstrated that GLP-1 can signal both centrally and peripherally to reduce postprandial and fasting lipoprotein secretion. Moreover, we have demonstrated that GLP-1 receptor (GLP-1R) agonists can ameliorate diet-induced dyslipidemia. Recently, we published evidence for a novel vagal neuroendocrine signalling pathway by which native GLP-1 may exert its anti-lipemic effects. Furthermore, we demonstrated a novel role for other gut-derived peptides in regulating intestinal lipoprotein production. Overall, ample evidence supports a key role for GLP-1R on the portal vein afferent neurons and nodose ganglion in modulating intestinal fat absorption and lipoprotein production and identifies other gut-derived peptides as novel regulators of postprandial lipemia. Insights from these data may support identification of potential drug targets and the development of new therapeutics targeting treatment of diabetic dyslipidemia.
Collapse
Affiliation(s)
- Simon Hoffman
- Molecular Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Cardiovascular & Metabolic Disease, Merck Research Laboratories, South San Francisco, CA, USA
| | - Khosrow Adeli
- Molecular Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Reed J, Higginbotham V, Bain S, Kanamarlapudi V. Comparative Analysis of Orthosteric and Allosteric GLP-1R Agonists' Effects on Insulin Secretion from Healthy, Diabetic, and Recovered INS-1E Pancreatic Beta Cells. Int J Mol Sci 2024; 25:6331. [PMID: 38928038 PMCID: PMC11203424 DOI: 10.3390/ijms25126331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Despite the availability of different treatments for type 2 diabetes (T2D), post-diagnosis complications remain prevalent; therefore, more effective treatments are desired. Glucagon-like peptide (GLP)-1-based drugs are currently used for T2D treatment. They act as orthosteric agonists for the GLP-1 receptor (GLP-1R). In this study, we analyzed in vitro how the GLP-1R orthosteric and allosteric agonists augment glucose-stimulated insulin secretion (GSIS) and intracellular cAMP production (GSICP) in INS-1E pancreatic beta cells under healthy, diabetic, and recovered states. The findings from this study suggest that allosteric agonists have a longer duration of action than orthosteric agonists. They also suggest that the GLP-1R agonists do not deplete intracellular insulin, indicating they can be a sustainable and safe treatment option for T2D. Importantly, this study demonstrates that the GLP-1R agonists variably augment GSIS through GSICP in healthy, diabetic, and recovered INS-1E cells. Furthermore, we find that INS-1E cells respond differentially to the GLP-1R agonists depending on both glucose concentration during and before treatment and/or whether the cells have been previously exposed to these drugs. In conclusion, the findings described in this manuscript will be useful in determining in vitro how pancreatic beta cells respond to T2D drug treatments in healthy, diabetic, and recovered states.
Collapse
Affiliation(s)
| | | | | | - Venkateswarlu Kanamarlapudi
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK; (J.R.); (V.H.); (S.B.)
| |
Collapse
|
5
|
Lei S, Meng Q, Liu Y, Liu Q, Dai A, Cai X, Wang MW, Zhou Q, Zhou H, Yang D. Distinct roles of the extracellular surface residues of glucagon-like peptide-1 receptor in β-arrestin 1/2 signaling. Eur J Pharmacol 2024; 968:176419. [PMID: 38360293 DOI: 10.1016/j.ejphar.2024.176419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) is a prime drug target for type 2 diabetes and obesity. The ligand initiated GLP-1R interaction with G protein has been well studied, but not with β-arrestin 1/2. Therefore, bioluminescence resonance energy transfer (BRET), mutagenesis and an operational model were used to evaluate the roles of 85 extracellular surface residues on GLP-1R in β-arrestin 1/2 recruitment triggered by three representative GLP-1R agonists (GLP-1, exendin-4 and oxyntomodulin). Residues selectively regulated β-arrestin 1/2 recruitment for diverse ligands, and β-arrestin isoforms were identified. Mutation of residues K130-S136, L142 and Y145 on the transmembrane helix 1 (TM1)-extracellular domain (ECD) linker decreased β-arrestin 1 recruitment but increased β-arrestin 2 recruitment. Other extracellular loop (ECL) mutations, including P137A, Q211A, D222A and M303A selectively affected β-arrestin 1 recruitment while D215A, L217A, Q221A, S223A, Y289A, S301A, F381A and I382A involved more in β-arrestin 2 recruitment for the ligands. Oxyntomodulin engaged more broadly with GLP-1R extracellular surface to drive β-arrestin 1/2 recruitment than GLP-1 and exendin-4; I147, W214 and L218 involved in β-arrestin 1 recruitment, while L141, D215, L218, D293 and F381 in β-arrestin 2 recruitment for oxyntomodulin particularly. Additionally, the non-conserved residues on β-arrestin 1/2 C-domains contributed to interaction with GLP-1R. Further proteomic profiling of GLP-1R stably expressed cell line upon ligand stimulation with or without β-arrestin 1/2 overexpression demonstrated both commonly and biasedly regulated proteins and pathways associated with cognate ligands and β-arrestins. Our study offers valuable information about ligand induced β-arrestin recruitment mediated by GLP-1R and consequent intracellular signaling events.
Collapse
Affiliation(s)
- Saifei Lei
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Qian Meng
- State Key Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yanyun Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qiaofeng Liu
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Antao Dai
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiaoqing Cai
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China; Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China; Department of Chemistry, School of Science, The University of Tokyo, Tokyo, 113-0033, Japan; School of Pharmacy, Hainan Medical University, Haikou, 570228, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China; Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China.
| | - Hu Zhou
- State Key Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Dehua Yang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; State Key Laboratory of Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Research Center for Deepsea Bioresources, Sanya, Hainan, 572025, China.
| |
Collapse
|
6
|
McNeill SM, Lu J, Marion C Carino C, Inoue A, Zhao P, Sexton PM, Wootten D. The role of G protein-coupled receptor kinases in GLP-1R β-arrestin recruitment and internalisation. Biochem Pharmacol 2024; 222:116119. [PMID: 38461904 DOI: 10.1016/j.bcp.2024.116119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/11/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
The glucagon-like peptide 1 receptor (GLP-1R) is a validated clinical target for the treatment of type 2 diabetes and obesity. Unlike most G protein-coupled receptors (GPCRs), the GLP-1R undergoes an atypical mode of internalisation that does not require β-arrestins. While differences in GLP-1R trafficking and β-arrestin recruitment have been observed between clinically used GLP-1R agonists, the role of G protein-coupled receptor kinases (GRKs) in affecting these pathways has not been comprehensively assessed. In this study, we quantified the contribution of GRKs to agonist-mediated GLP-1R internalisation and β-arrestin recruitment profiles using cells where endogenous β-arrestins, or non-visual GRKs were knocked out using CRISPR/Cas9 genome editing. Our results confirm the previously established atypical β-arrestin-independent mode of GLP-1R internalisation and revealed that GLP-1R internalisation is dependent on the expression of GRKs. Interestingly, agonist-mediated GLP-1R β-arrestin 1 and β-arrestin 2 recruitment were differentially affected by endogenous GRK knockout with β-arrestin 1 recruitment more sensitive to GRK knockout than β-arrestin 2 recruitment. Moreover, individual overexpression of GRK2, GRK3, GRK5 or GRK6 in a newly generated GRK2/3/4/5/6 HEK293 cells, rescued agonist-mediated β-arrestin 1 recruitment and internalisation profiles to similar levels, suggesting that there is no specific GRK isoform that drives these pathways. This study advances mechanistic understanding of agonist-mediated GLP-1R internalisation and provides novel insights into how GRKs may fine-tune GLP-1R signalling.
Collapse
Affiliation(s)
- Samantha M McNeill
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - Jessica Lu
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (CCeMMP), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
| | - Carlo Marion C Carino
- Graduate School of Pharmaceutical Sciences, Tokohu University, Sendai, Miyagi 980-8578, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tokohu University, Sendai, Miyagi 980-8578, Japan
| | - Peishen Zhao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (CCeMMP), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (CCeMMP), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia.
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (CCeMMP), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia.
| |
Collapse
|
7
|
Folli F, Finzi G, Manfrini R, Galli A, Casiraghi F, Centofanti L, Berra C, Fiorina P, Davalli A, La Rosa S, Perego C, Higgins PB. Mechanisms of action of incretin receptor based dual- and tri-agonists in pancreatic islets. Am J Physiol Endocrinol Metab 2023; 325:E595-E609. [PMID: 37729025 PMCID: PMC10874655 DOI: 10.1152/ajpendo.00236.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
Simultaneous activation of the incretin G-protein-coupled receptors (GPCRs) via unimolecular dual-receptor agonists (UDRA) has emerged as a new therapeutic approach for type 2 diabetes. Recent studies also advocate triple agonism with molecules also capable of binding the glucagon receptor. In this scoping review, we discuss the cellular mechanisms of action (MOA) underlying the actions of these novel and therapeutically important classes of peptide receptor agonists. Clinical efficacy studies of several UDRAs have demonstrated favorable results both as monotherapies and when combined with approved hypoglycemics. Although the additive insulinotropic effects of dual glucagon-like peptide-1 receptor (GLP-1R) and glucose-dependent insulinotropic peptide receptor (GIPR) agonism were anticipated based on the known actions of either glucagon-like peptide-1 (GLP-1) or glucose-dependent insulinotropic peptide (GIP) alone, the additional benefits from GCGR were largely unexpected. Whether additional synergistic or antagonistic interactions among these G-protein receptor signaling pathways arise from simultaneous stimulation is not known. The signaling pathways affected by dual- and tri-agonism require more trenchant investigation before a comprehensive understanding of the cellular MOA. This knowledge will be essential for understanding the chronic efficacy and safety of these treatments.
Collapse
Affiliation(s)
- Franco Folli
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
- Unit of Diabetes, Endocrinology and Metabolism, San Paolo Hospital, ASST Santi Paolo e Carlo, Milan, Italy
| | - Giovanna Finzi
- Unit of Pathology, Department of Oncology, ASST Sette Laghi, Varese, Italy
| | - Roberto Manfrini
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
- Unit of Diabetes, Endocrinology and Metabolism, San Paolo Hospital, ASST Santi Paolo e Carlo, Milan, Italy
| | - Alessandra Galli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Francesca Casiraghi
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Lucia Centofanti
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Cesare Berra
- IRCCS MultiMedica, Sesto San Giovanni, Milan, Italy
| | - Paolo Fiorina
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Alberto Davalli
- Diabetes and Endocrinology Unit, Department of Internal Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano La Rosa
- Unit of Pathology, Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Carla Perego
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Paul B Higgins
- Department of Life & Physical Sciences, Atlantic Technological University, Letterkenny, Ireland
| |
Collapse
|
8
|
Jannoo R, Walker W, Kanamarlapudi V. Targeting and Sensitization of Breast Cancer Cells to Killing with a Novel Interleukin-13 Receptor α2-Specific Hybrid Cytolytic Peptide. Cancers (Basel) 2023; 15:2772. [PMID: 37345109 PMCID: PMC10216279 DOI: 10.3390/cancers15102772] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 06/23/2023] Open
Abstract
Highly metastatic breast cancers, such as triple-negative subtypes (TNBC), require the most effective treatments. Since interleukin-13 receptor (IL-13R)α2 is reportedly over-expressed in some cancers, we investigated here its expression and the feasibility of therapeutically targeting this receptor in breast cancer using a novel hybrid cytolytic peptide (Pep-1-Phor21) consisting of IL-13Rα2-binding (Pep-1) and cytolytic (Phor21) domains. This study demonstrates that particularly TNBC tissues and cells display the prominent expression of IL-13Rα2. Furthermore, Pep-1-Phor21 induced the rapid necrosis of tumor cells expressing cell-surface IL-13Rα2. Notably, IL-13Rα2 expression was found to be epigenetically regulated in breast cancer cells in that the inhibition of histone deacetylase (HDAC) or DNA methyltransferase (DNMT) upregulated IL-13Rα2 expression, thereby sensitizing them to Pep-1-Phor21. IL-13Rα2-negative non-malignant cells were refractory to these epigenetic effects. Consistent with its cytolytic activity, Pep-1-Phor21 readily destroyed IL-13Rα2-expressing breast cancer spheroids with HDAC or DNMT inhibition, further enhancing cytolytic activity. Therefore, the Pep-1-Phor21-mediated targeting of IL-13Rα2 is a potentially novel therapeutic strategy for TNBC. Given that tumor cells can be selectively sensitized to Pep-1-Phor21 via the epigenetic up-regulation of IL-13Rα2, a combined adjuvant approach involving Pep-1-Phor21 and epigenetic inhibitors may be an effective strategy.
Collapse
Affiliation(s)
- Riaz Jannoo
- UCL ECMC GCLP Facility, UCL Cancer Institute, University College London, London WC1E 6DD, UK;
| | - William Walker
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK;
| | | |
Collapse
|
9
|
Bitsi S, El Eid L, Manchanda Y, Oqua AI, Mohamed N, Hansen B, Suba K, Rutter GA, Salem V, Jones B, Tomas A. Divergent acute versus prolonged pharmacological GLP-1R responses in adult β cell-specific β-arrestin 2 knockout mice. SCIENCE ADVANCES 2023; 9:eadf7737. [PMID: 37134170 PMCID: PMC10156113 DOI: 10.1126/sciadv.adf7737] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/04/2023] [Indexed: 05/05/2023]
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is a major type 2 diabetes therapeutic target. Stimulated GLP-1Rs are rapidly desensitized by β-arrestins, scaffolding proteins that not only terminate G protein interactions but also act as independent signaling mediators. Here, we have assessed in vivo glycemic responses to the pharmacological GLP-1R agonist exendin-4 in adult β cell-specific β-arrestin 2 knockout (KO) mice. KOs displayed a sex-dimorphic phenotype consisting of weaker acute responses that improved 6 hours after agonist injection. Similar effects were observed for semaglutide and tirzepatide but not with biased agonist exendin-phe1. Acute cyclic adenosine 5'-monophosphate increases were impaired, but desensitization reduced in KO islets. The former defect was attributed to enhanced β-arrestin 1 and phosphodiesterase 4 activities, while reduced desensitization co-occurred with impaired GLP-1R recycling and lysosomal targeting, increased trans-Golgi network signaling, and reduced GLP-1R ubiquitination. This study has unveiled fundamental aspects of GLP-1R response regulation with direct application to the rational design of GLP-1R-targeting therapeutics.
Collapse
Affiliation(s)
- Stavroula Bitsi
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Liliane El Eid
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Yusman Manchanda
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Affiong I. Oqua
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Nimco Mohamed
- Department of Bioengineering, Imperial College London, London, UK
| | - Ben Hansen
- Department of Bioengineering, Imperial College London, London, UK
| | - Kinga Suba
- Department of Bioengineering, Imperial College London, London, UK
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- CHUM Research Centre, Faculty of Medicine, University of Montreal, Quebec H2X 0A9, Canada
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637553, Singapore
| | - Victoria Salem
- Department of Bioengineering, Imperial College London, London, UK
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
10
|
Al‐Zaid B, Chacko S, Ezeamuzie CI, Bünemann M, Krasel C, Karimian T, Lanzerstorfer P, Al‐Sabah S. Differential effects of glucose-dependent insulinotropic polypeptide receptor/glucagon-like peptide-1 receptor heteromerization on cell signaling when expressed in HEK-293 cells. Pharmacol Res Perspect 2022; 10:e01013. [PMID: 36177761 PMCID: PMC9523454 DOI: 10.1002/prp2.1013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
The incretin hormones: glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are important regulators of many aspects of metabolism including insulin secretion. Their receptors (GIPR and GLP-1R) are closely related members of the secretin class of G-protein-coupled receptors. As both receptors are expressed on pancreatic β-cells there is at least the hypothetical possibility that they may form heteromers. In the present study, we investigated GIPR/GLP-1R heteromerization and the impact of GIPR on GLP-1R-mediated signaling and vice versa in HEK-293 cells. Real-time fluorescence resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET) saturation experiments confirm that GLP-1R and GIPR form heteromers. Stimulation with 1 μM GLP-1 caused an increase in both FRET and BRET ratio, whereas stimulation with 1 μM GIP caused a decrease. The only other ligand tested to cause a significant change in BRET signal was the GLP-1 metabolite, GLP-1 (9-36). GIPR expression had no significant effect on mini-Gs recruitment to GLP-1R but significantly inhibited GLP-1 stimulated mini-Gq and arrestin recruitment. In contrast, the presence of GLP-1R improved GIP stimulated mini-Gs and mini-Gq recruitment to GIPR. These data support the hypothesis that GIPR and GLP-1R form heteromers with differential consequences on cell signaling.
Collapse
Affiliation(s)
- Bashaier Al‐Zaid
- Department of Pharmacology and Toxicology, Faculty of MedicineKuwait UniversityKuwait CityKuwait
| | - Siby Chacko
- Department of Pharmacology and Toxicology, Faculty of MedicineKuwait UniversityKuwait CityKuwait
| | | | - Moritz Bünemann
- School of Pharmacy, Institute for Pharmacology and ToxicologyThe Philipps University of MarburgMarburgGermany
| | - Cornelius Krasel
- School of Pharmacy, Institute for Pharmacology and ToxicologyThe Philipps University of MarburgMarburgGermany
| | - Tina Karimian
- University of Applied Sciences Upper Austria, School of EngineeringWelsAustria
| | - Peter Lanzerstorfer
- University of Applied Sciences Upper Austria, School of EngineeringWelsAustria
| | - Suleiman Al‐Sabah
- Department of Pharmacology and Toxicology, Faculty of MedicineKuwait UniversityKuwait CityKuwait
| |
Collapse
|
11
|
El Eid L, Reynolds CA, Tomas A, Ben Jones. Biased Agonism and Polymorphic Variation at the GLP-1 Receptor: Implications for the Development of Personalised Therapeutics. Pharmacol Res 2022; 184:106411. [PMID: 36007775 DOI: 10.1016/j.phrs.2022.106411] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) is a well-studied incretin hormone receptor and target of several therapeutic drugs for type 2 diabetes (T2D), obesity and, more recently, cardiovascular disease. Some signalling pathways downstream of GLP-1R may be responsible for drug adverse effects such as nausea, while others mediate therapeutic outcomes of incretin-based T2D therapeutics. Understanding the interplay between different factors that alter signalling, trafficking, and receptor activity, including biased agonism, single nucleotide polymorphisms and structural modifications is key to develop the next-generation of personalised GLP-1R agonists. However, these interactions remain poorly described, especially for novel therapeutics such as dual and tri-agonists that target more than one incretin receptor. Comparison of GLP-1R structures in complex with G proteins and different peptide and non-peptide agonists has revealed novel insights into important agonist-residue interactions and networks crucial for receptor activation, recruitment of G proteins and engagement of specific signalling pathways. Here, we review the latest knowledge on GLP-1R structure and activation, providing structural evidence for biased agonism and delineating important networks associated with this phenomenon. We survey current biased agonists and multi-agonists at different stages of development, highlighting possible challenges in their translational potential. Lastly, we discuss findings related to non-synonymous genomic variants of GLP1R and the functional importance of specific residues involved in GLP-1R function. We propose that studies of GLP-1R polymorphisms, and specifically their effect on receptor dynamics and pharmacology in response to biased agonists, could have a significant impact in delineating precision medicine approaches and development of novel therapeutics.
Collapse
Affiliation(s)
- Liliane El Eid
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
| | - Christopher A Reynolds
- Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Alison Gingell Building, United Kingdom; School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom.
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
12
|
Tang X, Bian J, Li Z. Post-Translational Modifications in GPCR Internalization. Am J Physiol Cell Physiol 2022; 323:C84-C94. [PMID: 35613355 DOI: 10.1152/ajpcell.00015.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane receptors that serve as the most important drug targets. Classically, GPCR internalization has been considered to lead to receptor desensitization. However, many studies over the past decade have reported that internalized membrane receptors can trigger distinct signal activation. The "internalized activation" provides a completely new understanding for the receptor internalization, the mechanism of physiology/pathology and novel drug targets for precision medicine. GPCR internalization undergoes a series of strict regulations, especially by post-translational modifications (PTMs). Here, this review summarizes different PTMs in GPCR internalization and analyzes their significance in GPCR internalization dynamics, internalization routes, post-internalization fates and related diseases, which will offer new insights into the regulatory mechanism of GPCR signaling and novel drug targets for precision medicine.
Collapse
Affiliation(s)
- Xueqing Tang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Jingwei Bian
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Zijian Li
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China.,Department of Pharmacy, Peking University Third Hospital, Beijing, China
| |
Collapse
|
13
|
Girdhar K, Thakur S, Gaur P, Choubey A, Dogra S, Dehury B, Kumar S, Biswas B, Dwivedi DK, Ghosh S, Mondal P. Design, synthesis, and biological evaluation of a small molecule oral agonist of the glucagon-like-peptide-1 receptor. J Biol Chem 2022; 298:101889. [PMID: 35378127 PMCID: PMC9095748 DOI: 10.1016/j.jbc.2022.101889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 11/28/2022] Open
Abstract
An absolute or relative deficiency of pancreatic β-cells mass and functionality is a crucial pathological feature common to type 1 diabetes mellitus and type 2 diabetes mellitus. Glucagon-like-peptide-1 receptor (GLP1R) agonists have been the focus of considerable research attention for their ability to protect β-cell mass and augment insulin secretion with no risk of hypoglycemia. Presently commercially available GLP1R agonists are peptides that limit their use due to cost, stability, and mode of administration. To address this drawback, strategically designed distinct sets of small molecules were docked on GLP1R ectodomain and compared with previously known small molecule GLP1R agonists. One of the small molecule PK2 (6-((1-(4-nitrobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-6H-indolo[2,3-b]quinoxaline) displays stable binding with GLP1R ectodomain and induces GLP1R internalization and increasing cAMP levels. PK2 also increases insulin secretion in the INS-1 cells. The oral administration of PK2 protects against diabetes induced by multiple low-dose streptozotocin administration by lowering high blood glucose levels. Similar to GLP1R peptidic agonists, treatment of PK2 induces β-cell replication and attenuate β-cell apoptosis in STZ-treated mice. Mechanistically, this protection was associated with decreased thioredoxin-interacting protein expression, a potent inducer of diabetic β-cell apoptosis and dysfunction. Together, this report describes a small molecule, PK2, as an orally active nonpeptidic GLP1R agonist that has efficacy to preserve or restore functional β-cell mass.
Collapse
Affiliation(s)
- Khyati Girdhar
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, HP, India
| | - Shilpa Thakur
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, HP, India
| | - Pankaj Gaur
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, HP, India
| | - Abhinav Choubey
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, HP, India
| | - Surbhi Dogra
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, HP, India
| | - Budheswar Dehury
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Sunil Kumar
- ICAR-Indian Agricultural Statistics Research Institute (IASRI), PUSA, New Delhi, India
| | - Bidisha Biswas
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, HP, India
| | - Durgesh Kumar Dwivedi
- Pharmacology Division, CCRAS-Regional Ayurveda Research Institute, Gwalior, MP, India
| | - Subrata Ghosh
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, HP, India
| | - Prosenjit Mondal
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, HP, India.
| |
Collapse
|
14
|
Ježek P, Holendová B, Jabůrek M, Dlasková A, Plecitá-Hlavatá L. Contribution of Mitochondria to Insulin Secretion by Various Secretagogues. Antioxid Redox Signal 2022; 36:920-952. [PMID: 34180254 PMCID: PMC9125579 DOI: 10.1089/ars.2021.0113] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Significance: Mitochondria determine glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells by elevating ATP synthesis. As the metabolic and redox hub, mitochondria provide numerous links to the plasma membrane channels, insulin granule vesicles (IGVs), cell redox, NADH, NADPH, and Ca2+ homeostasis, all affecting insulin secretion. Recent Advances: Mitochondrial redox signaling was implicated in several modes of insulin secretion (branched-chain ketoacid [BCKA]-, fatty acid [FA]-stimulated). Mitochondrial Ca2+ influx was found to enhance GSIS, reflecting cytosolic Ca2+ oscillations induced by action potential spikes (intermittent opening of voltage-dependent Ca2+ and K+ channels) or the superimposed Ca2+ release from the endoplasmic reticulum (ER). The ATPase inhibitory factor 1 (IF1) was reported to tune the glucose sensitivity range for GSIS. Mitochondrial protein kinase A was implicated in preventing the IF1-mediated inhibition of the ATP synthase. Critical Issues: It is unknown how the redox signal spreads up to the plasma membrane and what its targets are, what the differences in metabolic, redox, NADH/NADPH, and Ca2+ signaling, and homeostasis are between the first and second GSIS phase, and whether mitochondria can replace ER in the amplification of IGV exocytosis. Future Directions: Metabolomics studies performed to distinguish between the mitochondrial matrix and cytosolic metabolites will elucidate further details. Identifying the targets of cell signaling into mitochondria and of mitochondrial retrograde metabolic and redox signals to the cell will uncover further molecular mechanisms for insulin secretion stimulated by glucose, BCKAs, and FAs, and the amplification of secretion by glucagon-like peptide (GLP-1) and metabotropic receptors. They will identify the distinction between the hub β-cells and their followers in intact and diabetic states. Antioxid. Redox Signal. 36, 920-952.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Holendová
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Jabůrek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Dlasková
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
15
|
Mayendraraj A, Rosenkilde MM, Gasbjerg LS. GLP-1 and GIP receptor signaling in beta cells - A review of receptor interactions and co-stimulation. Peptides 2022; 151:170749. [PMID: 35065096 DOI: 10.1016/j.peptides.2022.170749] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
Abstract
Glucagon-like peptide 1 receptor (GLP-1R) and glucose-dependent insulinotropic polypeptide receptor (GIPR) are two class B1 G protein-coupled receptors, which are stimulated by the gastrointestinal hormones GLP-1 and GIP, respectively. In the pancreatic beta cells, activation of both receptors lead to increased cyclic adenosine monophosphate (cAMP) and glucose-dependent insulin secretion. Marketed GLP-1R agonists such as dulaglutide, liraglutide, exenatide and semaglutide constitute an expanding drug class with beneficial effects for persons suffering from type 2 diabetes and/or obesity. In recent years another drug class, the GLP-1R-GIPR co-agonists, has emerged. Especially the peptide-based, co-agonist tirzepatide is a promising candidate for a better treatment of type 2 diabetes by improving glycemic control and weight reduction. The mechanism of action for tirzepatide include biased signaling of the GLP-1R as well as potent GIPR signaling. Since the implications of co-targeting these closely related receptors concomitantly are challenging to study in vivo, the pharmacodynamic mechanisms and downstream signaling pathways of the GLP-1R-GIPR co-agonists in general, are not fully elucidated. In this review, we present the individual signaling pathways for GLP-1R and GIPR in the pancreatic beta cell with a focus on the shared signaling pathways of the two receptors and interpret the implications of GLP-1R-GIPR co-activation in the light of recent co-activating therapeutic compounds.
Collapse
Affiliation(s)
- Ashok Mayendraraj
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lærke S Gasbjerg
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
16
|
Pearce A, Redfern-Nichols T, Harris M, Poyner DR, Wigglesworth M, Ladds G. Determining the Effects of Differential Expression of GRKs and β-arrestins on CLR-RAMP Agonist Bias. Front Physiol 2022; 13:840763. [PMID: 35422711 PMCID: PMC9001978 DOI: 10.3389/fphys.2022.840763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
Signalling of the calcitonin-like receptor (CLR) is multifaceted, due to its interaction with receptor activity modifying proteins (RAMPs), and three endogenous peptide agonists. Previous studies have focused on the bias of G protein signalling mediated by the receptor and receptor internalisation of the CLR-RAMP complex has been assumed to follow the same pattern as other Class B1 G Protein-Coupled Receptors (GPCRs). Here we sought to measure desensitisation of the three CLR-RAMP complexes in response to the three peptide agonists, through the measurement of β-arrestin recruitment and internalisation. We then delved further into the mechanism of desensitisation through modulation of β-arrestin activity and the expression of GPCR kinases (GRKs), a key component of homologous GPCR desensitisation. First, we have shown that CLR-RAMP1 is capable of potently recruiting β-arrestin1 and 2, subsequently undergoing rapid endocytosis, and that CLR-RAMP2 and -RAMP3 also utilise these pathways, although to a lesser extent. Following this we have shown that agonist-dependent internalisation of CLR is β-arrestin dependent, but not required for full agonism. Overexpression of GRK2-6 was then found to decrease receptor signalling, due to an agonist-independent reduction in surface expression of the CLR-RAMP complex. These results represent the first systematic analysis of the importance of β-arrestins and GRKs in CLR-RAMP signal transduction and pave the way for further investigation regarding other Class B1 GPCRs.
Collapse
Affiliation(s)
- Abigail Pearce
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | | | - Matthew Harris
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - David R. Poyner
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Mark Wigglesworth
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, London, United Kingdom
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Graham Ladds,
| |
Collapse
|
17
|
Hao Y, Wei M, Zhang N, Zhang X. Novel glucagon-like peptide-1 analogue exhibits potency-driven G-protein biased agonism with promising effects on diabetes and diabetic dry eye syndrome. Bioengineered 2022; 13:5467-5479. [PMID: 35184645 PMCID: PMC8975272 DOI: 10.1080/21655979.2022.2031418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are considered as effective treatments for type 2 diabetes. Here, we describe the in vitro characteristics and in vivo anti-diabetic efficacies of a novel GLP-1RA, termed SM102. The in vitro functions of SM102, including GLP-1R kinetic binding parameter, cAMP activation, endocytosis and recycling, were all evaluated using the INS-1 832/13 cells expressing human GLP-1R. Chronic efficacies study was performed to evaluate the effects of SM102 on the glycemic benefits, body weight loss and other diabetic complications in db/db mice. As a result, SM102 exhibited enhanced binding affinity and potency-driven bias in favor of cAMP over GLP-1R endocytosis and β-Arrestin 2 recruitment, as well as comparable insulin secretory response compared with Semaglutide. In addition, chronic treatment of SM102 led to more promising therapeutical effects on hyperglycemia, weight control and insulin resistance as well as dry eye syndrome (DES) than Semaglutide. Furthermore, SM102 could ameliorate diabetic DES via improving antioxidant properties, inflammatory factors and inhibiting MAPKs pathway in diabetic mice. In conclusion, SM102 is a G protein-biased agonist serving as a promising new GLP-1RA for treating diabetes and diabetic complications.
Collapse
Affiliation(s)
- Yongna Hao
- Corneal Department, Handan City Eye Hospital, Handan, PR China
| | - Min Wei
- Corneal Department, Handan City Eye Hospital, Handan, PR China
| | - Ning Zhang
- Corneal Department, Handan City Eye Hospital, Handan, PR China
| | - Xinying Zhang
- Infection Control Office, Affiliated Hospital of Hebei University, Baoding, PR China
| |
Collapse
|
18
|
Jones B. The therapeutic potential of GLP-1 receptor biased agonism. Br J Pharmacol 2022; 179:492-510. [PMID: 33880754 PMCID: PMC8820210 DOI: 10.1111/bph.15497] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are effective treatments for type 2 diabetes as they stimulate insulin release and promote weight loss through appetite suppression. Their main side effect is nausea. All approved GLP-1 agonists are full agonists across multiple signalling pathways. However, selective engagement with specific intracellular effectors, or biased agonism, has been touted as a means to improve GLP-1 agonists therapeutic efficacy. In this review, I critically examine how GLP-1 receptor-mediated intracellular signalling is linked to physiological responses and discuss the implications of recent studies investigating the metabolic effects of biased GLP-1 agonists. Overall, there is little conclusive evidence that beneficial and adverse effects of GLP-1 agonists are attributable to distinct, nonoverlapping signalling pathways. Instead, G protein-biased GLP-1 agonists appear to achieve enhanced anti-hyperglycaemic efficacy by avoiding GLP-1 receptor desensitisation and downregulation, partly via reduced β-arrestin recruitment. This effect seemingly applies more to insulin release than to appetite regulation and nausea, possible reasons for which are discussed. At present, most evidence derives from cellular and animal studies, and more human data are required to determine whether this approach represents a genuine therapeutic advance. LINKED ARTICLES: This article is part of a themed issue on GLP1 receptor ligands (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.4/issuetoc.
Collapse
Affiliation(s)
- Ben Jones
- Section of Endocrinology and Investigative MedicineImperial College LondonLondonUK
| |
Collapse
|
19
|
Holst JJ. Treatment of Type 2 Diabetes and Obesity on the Basis of the Incretin System: The 2021 Banting Medal for Scientific Achievement Award Lecture. Diabetes 2021; 70:2468-2475. [PMID: 34711671 PMCID: PMC8928930 DOI: 10.2337/dbi21-0026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In my lecture given on the occasion of the 2021 Banting Medal for Scientific Achievement, I briefly described the history of the incretin effect and summarized some of the developments leading to current therapies of obesity and diabetes based on the incretin hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). In the text below, I discuss in further detail the role of these two hormones for postprandial insulin secretion in humans on the basis of recent studies with antagonists. Their direct and indirect actions on the β-cells are discussed next as well as their contrasting actions on glucagon secretion. After a brief discussion of their effect on insulin sensitivity, I describe their immediate actions in patients with type 2 diabetes and emphasize the actions of GLP-1 on β-cell glucose sensitivity, followed by a discussion of their extrapancreatic actions, including effects on appetite and food intake in humans. Finally, possible mechanisms of action of GIP-GLP-1 coagonists are discussed, and it is concluded that therapies based on incretin actions are likely to change the current hesitant therapy of both obesity and diabetes.
Collapse
Affiliation(s)
- Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Glucagon-like peptide-1 receptor controls exocytosis in chromaffin cells by increasing full-fusion events. Cell Rep 2021; 36:109609. [PMID: 34433018 DOI: 10.1016/j.celrep.2021.109609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/02/2021] [Accepted: 08/04/2021] [Indexed: 11/21/2022] Open
Abstract
Agonists for glucagon-like-peptide-1 receptor (GLP-1R) are currently used for the treatment of type 2 diabetes and obesity. Their benefits have been centered on pancreas and hypothalamus, but their roles in other organ systems are not well understood. We studied the action of GLP-1R on secretions of adrenal medulla. Exendin-4, a synthetic analog of GLP-1, increases the synthesis and the release of catecholamines (CAs) by increasing cyclic AMP (cAMP) production, without apparent participation of cAMP-regulated guanine nucleotide exchange factor (Epac). Exendin-4, when incubated for 24 h, increases CA synthesis by promoting the activation of tyrosine hydroxylase. Short incubation (20 min) increases the quantum size of exocytotic events by switching exocytosis from partial to full fusion. Our results give a strong support to the role of GLP-1 in the fine control of exocytosis.
Collapse
|
21
|
Marzook A, Tomas A, Jones B. The Interplay of Glucagon-Like Peptide-1 Receptor Trafficking and Signalling in Pancreatic Beta Cells. Front Endocrinol (Lausanne) 2021; 12:678055. [PMID: 34040588 PMCID: PMC8143046 DOI: 10.3389/fendo.2021.678055] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/15/2021] [Indexed: 12/30/2022] Open
Abstract
The glucagon-like peptide 1 receptor (GLP-1R) is a class B G protein-coupled receptor (GPCR) which mediates the effects of GLP-1, an incretin hormone secreted primarily from L-cells in the intestine and within the central nervous system. The GLP-1R, upon activation, exerts several metabolic effects including the release of insulin and suppression of appetite, and has, accordingly, become an important target for the treatment for type 2 diabetes (T2D). Recently, there has been heightened interest in how the activated GLP-1R is trafficked between different endomembrane compartments, controlling the spatial origin and duration of intracellular signals. The discovery of "biased" GLP-1R agonists that show altered trafficking profiles and selective engagement with different intracellular effectors has added to the tools available to study the mechanisms and physiological importance of these processes. In this review we survey early and recent work that has shed light on the interplay between GLP-1R signalling and trafficking, and how it might be therapeutically tractable for T2D and related diseases.
Collapse
Affiliation(s)
- Amaara Marzook
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Imperial College London, London, United Kingdom
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
22
|
Novikoff A, O'Brien SL, Bernecker M, Grandl G, Kleinert M, Knerr PJ, Stemmer K, Klingenspor M, Zeigerer A, DiMarchi R, Tschöp MH, Finan B, Calebiro D, Müller TD. Spatiotemporal GLP-1 and GIP receptor signaling and trafficking/recycling dynamics induced by selected receptor mono- and dual-agonists. Mol Metab 2021; 49:101181. [PMID: 33556643 PMCID: PMC7921015 DOI: 10.1016/j.molmet.2021.101181] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/17/2022] Open
Abstract
Objective We assessed the spatiotemporal GLP-1 and GIP receptor signaling, trafficking, and recycling dynamics of GIPR mono-agonists, GLP-1R mono-agonists including semaglutide, and GLP-1/GIP dual-agonists MAR709 and tirzepatide. Methods Receptor G protein recruitment and internalization/trafficking dynamics were assessed using bioluminescence resonance energy transfer (BRET)-based technology and live-cell HILO microscopy. Results Relative to native and acylated GLP-1 agonists, MAR709 and tirzepatide showed preserved maximal cAMP production despite partial Gαs recruitment paralleled by diminished ligand-induced receptor internalization at both target receptors. Despite MAR709's lower internalization rate, GLP-1R co-localization with Rab11-associated recycling endosomes was not different between MAR709 and GLP-1R specific mono-agonists. Conclusions Our data indicated that MAR709 and tirzepatide induce unique spatiotemporal GLP-1 and GIP receptor signaling, trafficking, and recycling dynamics relative to native peptides, semaglutide, and matched mono-agonist controls. These findings support the hypothesis that the structure of GLP-1/GIP dual-agonists confer a biased agonism that, in addition to its influence on intracellular signaling, uniquely modulates receptor trafficking. GLP-1/GIP dual-agonists, MAR709 and tirzepatide, are partial effectors at multiple GLP-1R pathways, yet retain full cAMP agonism. MAR709 elicits comparable GLP-1R incorporation into Rab11+ recycling endosomes relative to the native peptides and acyl-GLP-1. At the GIPR, both dual-agonists exhibit full-agonism properties with limited receptor internalization/trafficking properties.
Collapse
Affiliation(s)
- Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
| | - Shannon L O'Brien
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK; Center of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, B15 2TT, UK
| | - Miriam Bernecker
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Gerald Grandl
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Maximilian Kleinert
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Patrick J Knerr
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN 46241, USA
| | - Kerstin Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Anja Zeigerer
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Richard DiMarchi
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Matthias H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany; Helmholtz Zentrum München, Neuherberg, Germany; Technische Universität München, München, Germany
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN 46241, USA
| | - Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK; Center of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, B15 2TT, UK.
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, 72076 Tübingen, Germany.
| |
Collapse
|
23
|
Manchanda Y, Bitsi S, Kang Y, Jones B, Tomas A. Spatiotemporal control of GLP-1 receptor activity. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.coemr.2020.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Ježek P, Holendová B, Jabůrek M, Tauber J, Dlasková A, Plecitá-Hlavatá L. The Pancreatic β-Cell: The Perfect Redox System. Antioxidants (Basel) 2021; 10:antiox10020197. [PMID: 33572903 PMCID: PMC7912581 DOI: 10.3390/antiox10020197] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic β-cell insulin secretion, which responds to various secretagogues and hormonal regulations, is reviewed here, emphasizing the fundamental redox signaling by NADPH oxidase 4- (NOX4-) mediated H2O2 production for glucose-stimulated insulin secretion (GSIS). There is a logical summation that integrates both metabolic plus redox homeostasis because the ATP-sensitive K+ channel (KATP) can only be closed when both ATP and H2O2 are elevated. Otherwise ATP would block KATP, while H2O2 would activate any of the redox-sensitive nonspecific calcium channels (NSCCs), such as TRPM2. Notably, a 100%-closed KATP ensemble is insufficient to reach the -50 mV threshold plasma membrane depolarization required for the activation of voltage-dependent Ca2+ channels. Open synergic NSCCs or Cl- channels have to act simultaneously to reach this threshold. The resulting intermittent cytosolic Ca2+-increases lead to the pulsatile exocytosis of insulin granule vesicles (IGVs). The incretin (e.g., GLP-1) amplification of GSIS stems from receptor signaling leading to activating the phosphorylation of TRPM channels and effects on other channels to intensify integral Ca2+-influx (fortified by endoplasmic reticulum Ca2+). ATP plus H2O2 are also required for branched-chain ketoacids (BCKAs); and partly for fatty acids (FAs) to secrete insulin, while BCKA or FA β-oxidation provide redox signaling from mitochondria, which proceeds by H2O2 diffusion or hypothetical SH relay via peroxiredoxin "redox kiss" to target proteins.
Collapse
|
25
|
Puddu A, Maggi D. Emerging Role of Caveolin-1 in GLP-1 Action. Front Endocrinol (Lausanne) 2021; 12:668012. [PMID: 33935978 PMCID: PMC8079975 DOI: 10.3389/fendo.2021.668012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a gut hormone mainly produced in the intestinal epithelial endocrine L cells, involved in maintaining glucose homeostasis. The use of GLP-1 analogous and dipeptidyl peptidase-IV (DPP-IV) inhibitors is well-established in Type 2 Diabetes. The efficacy of these therapies is related to the activation of GLP-1 receptor (GLP-1R), which is widely expressed in several tissues. Therefore, GLP-1 is of great clinical interest not only for its actions at the level of the beta cells, but also for the extra-pancreatic effects. Activation of GLP-1R results in intracellular signaling that is regulated by availability of downstream molecules and receptor internalization. It has been shown that GLP-1R co-localizes with caveolin-1, the main component of caveolae, small invagination of the plasma membrane, which are involved in controlling receptor activity by assembling signaling complexes and regulating receptor trafficking. The aim of this review is to outline the important role of caveolin-1 in mediating biological effects of GLP-1 and its analogous.
Collapse
|
26
|
Fang Z, Chen S, Manchanda Y, Bitsi S, Pickford P, David A, Shchepinova MM, Corrêa Jr IR, Hodson DJ, Broichhagen J, Tate EW, Reimann F, Salem V, Rutter GA, Tan T, Bloom SR, Tomas A, Jones B. Ligand-Specific Factors Influencing GLP-1 Receptor Post-Endocytic Trafficking and Degradation in Pancreatic Beta Cells. Int J Mol Sci 2020; 21:E8404. [PMID: 33182425 PMCID: PMC7664906 DOI: 10.3390/ijms21218404] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/30/2022] Open
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is an important regulator of blood glucose homeostasis. Ligand-specific differences in membrane trafficking of the GLP-1R influence its signalling properties and therapeutic potential in type 2 diabetes. Here, we have evaluated how different factors combine to control the post-endocytic trafficking of GLP-1R to recycling versus degradative pathways. Experiments were performed in primary islet cells, INS-1 832/3 clonal beta cells and HEK293 cells, using biorthogonal labelling of GLP-1R to determine its localisation and degradation after treatment with GLP-1, exendin-4 and several further GLP-1R agonist peptides. We also characterised the effect of a rare GLP1R coding variant, T149M, and the role of endosomal peptidase endothelin-converting enzyme-1 (ECE-1), in GLP1R trafficking. Our data reveal how treatment with GLP-1 versus exendin-4 is associated with preferential GLP-1R targeting towards a recycling pathway. GLP-1, but not exendin-4, is a substrate for ECE-1, and the resultant propensity to intra-endosomal degradation, in conjunction with differences in binding affinity, contributes to alterations in GLP-1R trafficking behaviours and degradation. The T149M GLP-1R variant shows reduced signalling and internalisation responses, which is likely to be due to disruption of the cytoplasmic region that couples to intracellular effectors. These observations provide insights into how ligand- and genotype-specific factors can influence GLP-1R trafficking.
Collapse
Affiliation(s)
- Zijian Fang
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
- Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Shiqian Chen
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
| | - Yusman Manchanda
- Section of Cell Biology and Functional Genomics, Imperial College London, London W12 0NN, UK; (Y.M.); (S.B.); (G.A.R.)
| | - Stavroula Bitsi
- Section of Cell Biology and Functional Genomics, Imperial College London, London W12 0NN, UK; (Y.M.); (S.B.); (G.A.R.)
| | - Philip Pickford
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
| | - Alessia David
- Centre for Bioinformatics and System Biology, Department of Life Sciences, Imperial College London, London SW7 2BX, UK;
| | - Maria M. Shchepinova
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London W12 0BZ, UK; (M.M.S.); (E.W.T.)
| | | | - David J. Hodson
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham B15 2TT, UK;
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Johannes Broichhagen
- Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany;
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Edward W. Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London W12 0BZ, UK; (M.M.S.); (E.W.T.)
| | - Frank Reimann
- Institute of Metabolic Science & MRC Metabolic Diseases Unit, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK;
| | - Victoria Salem
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Imperial College London, London W12 0NN, UK; (Y.M.); (S.B.); (G.A.R.)
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore
| | - Tricia Tan
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
| | - Stephen R. Bloom
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Imperial College London, London W12 0NN, UK; (Y.M.); (S.B.); (G.A.R.)
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK; (Z.F.); (S.C.); (P.P.); (V.S.); (T.T.); (S.R.B.)
| |
Collapse
|
27
|
Al-Sabah S, Adi L, Bünemann M, Krasel C. The Effect of Cell Surface Expression and Linker Sequence on the Recruitment of Arrestin to the GIP Receptor. Front Pharmacol 2020; 11:1271. [PMID: 32903502 PMCID: PMC7438548 DOI: 10.3389/fphar.2020.01271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/31/2020] [Indexed: 01/28/2023] Open
Abstract
The glucose-dependent insulinotropic polypeptide (GIP) and the glucagon-like peptide-1 (GLP-1) receptor are important targets in the treatment of both type 2 diabetes mellitus (T2DM) and obesity. Originally identified for their role in desensitization, internalization and recycling of G protein-coupled receptors (GPCRs), arrestins have since been shown to act as scaffolding proteins that allow GPCRs to signal in a G protein-independent manner. While GLP-1R has been reported to interact with arrestins, this aspect of cell signaling remains controversial for GIPR. Using a (FRET)-based assay we have previously shown that yellow fluorescent protein (YFP)-labeled GIPR does not recruit arrestin. This GIPR-YFP construct contained a 10 amino acid linker between the receptor and a XbaI restriction site upstream of the YFP. This linker was not present in the modified GIPR-SYFP2 used in subsequent FRET and bioluminescence resonance energy transfer (BRET) assays. However, its removal results in the introduction of a serine residue adjacent to the end of GIPR’s C-terminal tail which could potentially be a phosphorylation site. The resulting receptor was indeed able to recruit arrestin. To find out whether the serine/arginine (SR) coded by the XbaI site was indeed the source of the problem, it was substituted with glycine/glycine (GG) by site-directed mutagenesis. This substitution abolished arrestin recruitment in the BRET assay but only significantly reduced it in the FRET assay. In addition, we show that the presence of a N-terminal FLAG epitope and influenza hemagglutinin signal peptide were also required to detect arrestin recruitment to the GIPR, most likely by increasing receptor cell surface expression. These results demonstrate how arrestin recruitment assay configuration can dramatically alter the result. This becomes relevant when drug discovery programs aim to identify ligands with “biased agonist” properties.
Collapse
Affiliation(s)
- Suleiman Al-Sabah
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Lobna Adi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Moritz Bünemann
- School of Pharmacy, Institute for Pharmacology and Toxicology, The Philipps University of Marburg, Marburg, Germany
| | - Cornelius Krasel
- School of Pharmacy, Institute for Pharmacology and Toxicology, The Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
28
|
Lucey M, Pickford P, Bitsi S, Minnion J, Ungewiss J, Schoeneberg K, Rutter GA, Bloom SR, Tomas A, Jones B. Disconnect between signalling potency and in vivo efficacy of pharmacokinetically optimised biased glucagon-like peptide-1 receptor agonists. Mol Metab 2020; 37:100991. [PMID: 32278079 PMCID: PMC7262448 DOI: 10.1016/j.molmet.2020.100991] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/23/2020] [Accepted: 04/01/2020] [Indexed: 01/14/2023] Open
Abstract
Objective The objective of this study was to determine how pharmacokinetically advantageous acylation impacts on glucagon-like peptide-1 receptor (GLP-1R) signal bias, trafficking, anti-hyperglycaemic efficacy, and appetite suppression. Methods In vitro signalling responses were measured using biochemical and biosensor assays. GLP-1R trafficking was determined by confocal microscopy and diffusion-enhanced resonance energy transfer. Pharmacokinetics, glucoregulatory effects, and appetite suppression were measured in acute, sub-chronic, and chronic settings in mice. Results A C-terminally acylated ligand, [F1,G40,K41.C16 diacid]exendin-4, was identified that showed undetectable β-arrestin recruitment and GLP-1R internalisation. Depending on the cellular system used, this molecule was up to 1000-fold less potent than the comparator [D3,G40,K41.C16 diacid]exendin-4 for cyclic AMP signalling, yet was considerably more effective in vivo, particularly for glucose regulation. Conclusions C-terminal acylation of biased GLP-1R agonists increases their degree of signal bias in favour of cAMP production and improves their therapeutic potential. Programming of GLP-1R agonists for selective signalling. Signal bias allows “low efficacy” agonists to be highly effective in vivo. GLP-1R endocytosis does not affect pharmacokinetics.
Collapse
Affiliation(s)
- Maria Lucey
- Section of Investigative Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Philip Pickford
- Section of Investigative Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Stavroula Bitsi
- Section of Cell Biology and Functional Genomics, Imperial College London, London W12 0NN, United Kingdom
| | - James Minnion
- Section of Investigative Medicine, Imperial College London, London W12 0NN, United Kingdom
| | | | | | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Imperial College London, London W12 0NN, United Kingdom
| | - Stephen R Bloom
- Section of Investigative Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Imperial College London, London W12 0NN, United Kingdom.
| | - Ben Jones
- Section of Investigative Medicine, Imperial College London, London W12 0NN, United Kingdom.
| |
Collapse
|
29
|
Xin M, Feng J, Hao Y, You J, Wang X, Yin X, Shang P, Ma D. Cyclic adenosine monophosphate in acute ischemic stroke: some to update, more to explore. J Neurol Sci 2020; 413:116775. [PMID: 32197118 DOI: 10.1016/j.jns.2020.116775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022]
Abstract
The development of effective treatment for ischemic stroke, which is a common cause of morbidity and mortality worldwide, remains an unmet goal because the current first-line treatment management interventional therapy has a strict time window and serious complications. In recent years, a growing body of evidence has shown that the elevation of intracellular and extracellular cyclic adenosine monophosphate (cAMP) alleviates brain damage after ischemic stroke by attenuating neuroinflammation in the central nervous system and peripheral immune system. In the central nervous system, upregulated intracellular cAMP signaling can alleviate immune-mediated damage by restoring neuronal morphology and function, inhibiting microglia migration and activation, stabilizing the membrane potential of astrocytes and improving the cellular functions of endothelial cells and oligodendrocytes. Enhancement of the extracellular cAMP signaling pathway can improve neurological function by activating the cAMP-adenosine pathway to reduce immune-mediated damage. In the peripheral immune system, cAMP can act on various immune cells to suppress peripheral immune function, which can alleviate the inflammatory response in the central nervous system and improve the prognosis of acute cerebral ischemic injury. Therefore, cAMP may play key roles in reducing post-stroke neuroinflammatory damage. The protective roles of the cAMP indicate that the cAMP enhancing drugs such as cAMP supplements, phosphodiesterase inhibitors, adenylate cyclase agonists, which are currently used in the treatment of heart and lung diseases. They are potentially able to be applied as a new therapeutic strategy in ischemic stroke. This review focuses on the immune-regulating roles and the clinical implication of cAMP in acute ischemic stroke.
Collapse
Affiliation(s)
- Meiying Xin
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Jiachun Feng
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China.
| | - Yulei Hao
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Jiulin You
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Xinyu Wang
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Xiang Yin
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Pei Shang
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China
| | - Di Ma
- Department of Neurology, Jilin University First Hospital, Changchun, Jilin, China.
| |
Collapse
|
30
|
Müller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, Holst JJ, Langhans W, Meier JJ, Nauck MA, Perez-Tilve D, Pocai A, Reimann F, Sandoval DA, Schwartz TW, Seeley RJ, Stemmer K, Tang-Christensen M, Woods SC, DiMarchi RD, Tschöp MH. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019; 30:72-130. [PMID: 31767182 PMCID: PMC6812410 DOI: 10.1016/j.molmet.2019.09.010] [Citation(s) in RCA: 915] [Impact Index Per Article: 183.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The glucagon-like peptide-1 (GLP-1) is a multifaceted hormone with broad pharmacological potential. Among the numerous metabolic effects of GLP-1 are the glucose-dependent stimulation of insulin secretion, decrease of gastric emptying, inhibition of food intake, increase of natriuresis and diuresis, and modulation of rodent β-cell proliferation. GLP-1 also has cardio- and neuroprotective effects, decreases inflammation and apoptosis, and has implications for learning and memory, reward behavior, and palatability. Biochemically modified for enhanced potency and sustained action, GLP-1 receptor agonists are successfully in clinical use for the treatment of type-2 diabetes, and several GLP-1-based pharmacotherapies are in clinical evaluation for the treatment of obesity. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GLP-1 and its pharmacology and discuss its therapeutic implications on various diseases. MAJOR CONCLUSIONS Since its discovery, GLP-1 has emerged as a pleiotropic hormone with a myriad of metabolic functions that go well beyond its classical identification as an incretin hormone. The numerous beneficial effects of GLP-1 render this hormone an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, and neurodegenerative disorders.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany.
| | - B Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - S R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - D D'Alessio
- Division of Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - D J Drucker
- The Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Ontario, M5G1X5, Canada
| | - P R Flatt
- SAAD Centre for Pharmacy & Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - A Fritsche
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - F Gribble
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - H J Grill
- Institute of Diabetes, Obesity and Metabolism, Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - J J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - W Langhans
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - J J Meier
- Diabetes Division, St Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - M A Nauck
- Diabetes Center Bochum-Hattingen, St Josef Hospital (Ruhr-Universität Bochum), Bochum, Germany
| | - D Perez-Tilve
- Department of Internal Medicine, University of Cincinnati-College of Medicine, Cincinnati, OH, USA
| | - A Pocai
- Cardiovascular & ImmunoMetabolism, Janssen Research & Development, Welsh and McKean Roads, Spring House, PA, 19477, USA
| | - F Reimann
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - D A Sandoval
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - T W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DL-2200, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - R J Seeley
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - K Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - M Tang-Christensen
- Obesity Research, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - S C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - R D DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - M H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
31
|
Smith NK, Hackett TA, Galli A, Flynn CR. GLP-1: Molecular mechanisms and outcomes of a complex signaling system. Neurochem Int 2019; 128:94-105. [PMID: 31002893 PMCID: PMC7081944 DOI: 10.1016/j.neuint.2019.04.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/26/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022]
Abstract
Meal ingestion provokes the release of hormones and transmitters, which in turn regulate energy homeostasis and feeding behavior. One such hormone, glucagon-like peptide-1 (GLP-1), has received significant attention in the treatment of obesity and diabetes due to its potent incretin effect. In addition to the peripheral actions of GLP-1, this hormone is able to alter behavior through the modulation of multiple neural circuits. Recent work that focused on elucidating the mechanisms and outcomes of GLP-1 neuromodulation led to the discovery of an impressive array of GLP-1 actions. Here, we summarize the many levels at which the GLP-1 signal adapts to different systems, with the goal being to provide a background against which to guide future research.
Collapse
Affiliation(s)
- Nicholas K Smith
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Aurelio Galli
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Charles R Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
32
|
Fletcher MM, Halls ML, Zhao P, Clydesdale L, Christopoulos A, Sexton PM, Wootten D. Glucagon-like peptide-1 receptor internalisation controls spatiotemporal signalling mediated by biased agonists. Biochem Pharmacol 2018; 156:406-419. [PMID: 30195733 DOI: 10.1016/j.bcp.2018.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/05/2018] [Indexed: 12/29/2022]
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is a major therapeutic target in the treatment of type 2 diabetes due to its roles in regulating blood glucose and in promoting weight loss. Like many GPCRs, it is pleiotropically coupled, can be activated by multiple ligands and is subject to biased agonism. The GLP-1R undergoes agonist mediated receptor internalisation that may be associated with spatiotemporal control of signalling and biased agonism, although to date, this has not been extensively explored. Here, we investigate GLP-1R trafficking and its importance with regard to signalling, including the localisation of key signalling molecules, mediated by biased peptide agonists that are either endogenous GLP-1R ligands or are used clinically. Each of the agonists promoted receptor internalisation through a dynamin and caveolae dependent mechanism and traffic the receptor to both degradative and recycling pathways. This internalisation is important for signalling, with cAMP and ERK1/2 phoshorylation (pERK1/2) generated by both plasma membrane localised and internalised receptors. Further assessment of pERK1/2 revealed that all peptides induced nuclear ERK activity, but ligands, liraglutide and oxyntomodulin that are biased towards pERK1/2 relative to cAMP (when compared to GLP-1 and exendin-4), also stimulated pERK1/2 activity in the cytosol. This compartmentalisation of ERK1/2 signalling was reliant on receptor internalisation, with restriction of receptor localisation to the plasma membrane limiting ERK1/2 signalling to the cytosol. Thus, this study implicates a role of receptor internalisation in spatiotemporal control of ERK1/2 signalling that may contribute to GLP-1R biased agonism.
Collapse
Affiliation(s)
- Madeleine M Fletcher
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - Michelle L Halls
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - Peishen Zhao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - Lachlan Clydesdale
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia; School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia; School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
33
|
Jones B, Buenaventura T, Kanda N, Chabosseau P, Owen BM, Scott R, Goldin R, Angkathunyakul N, Corrêa IR, Bosco D, Johnson PR, Piemonti L, Marchetti P, Shapiro AMJ, Cochran BJ, Hanyaloglu AC, Inoue A, Tan T, Rutter GA, Tomas A, Bloom SR. Targeting GLP-1 receptor trafficking to improve agonist efficacy. Nat Commun 2018; 9:1602. [PMID: 29686402 PMCID: PMC5913239 DOI: 10.1038/s41467-018-03941-2] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 03/21/2018] [Indexed: 01/01/2023] Open
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) activation promotes insulin secretion from pancreatic beta cells, causes weight loss, and is an important pharmacological target in type 2 diabetes (T2D). Like other G protein-coupled receptors, the GLP-1R undergoes agonist-mediated endocytosis, but the functional and therapeutic consequences of modulating GLP-1R endocytic trafficking have not been clearly defined. Here, we investigate a series of biased GLP-1R agonists with variable propensities for GLP-1R internalization and recycling. Compared to a panel of FDA-approved GLP-1 mimetics, compounds that retain GLP-1R at the plasma membrane produce greater long-term insulin release, which is dependent on a reduction in β-arrestin recruitment and faster agonist dissociation rates. Such molecules elicit glycemic benefits in mice without concomitant increases in signs of nausea, a common side effect of GLP-1 therapies. Our study identifies a set of agents with specific GLP-1R trafficking profiles and the potential for greater efficacy and tolerability as T2D treatments. Glucagon-like peptide-1 receptor (GLP-1R) promotes insulin secretion from pancreatic beta cells and undergoes agonist-mediated endocytosis. Here, authors study GLP-1R endocytosis caused by different agonists and show that a longer plasma membrane retention time of GLP-1R results in greater long-term insulin release.
Collapse
Affiliation(s)
- Ben Jones
- Section of Investigative Medicine, Imperial College London, London, W12 0NN, UK
| | - Teresa Buenaventura
- Section of Cell Biology and Functional Genomics, Imperial College London, London, W12 0NN, UK
| | - Nisha Kanda
- Section of Cell Biology and Functional Genomics, Imperial College London, London, W12 0NN, UK
| | - Pauline Chabosseau
- Section of Cell Biology and Functional Genomics, Imperial College London, London, W12 0NN, UK
| | - Bryn M Owen
- Section of Investigative Medicine, Imperial College London, London, W12 0NN, UK
| | - Rebecca Scott
- Section of Investigative Medicine, Imperial College London, London, W12 0NN, UK
| | - Robert Goldin
- Centre for Pathology, Imperial College London, London, W2 1NY, UK
| | - Napat Angkathunyakul
- Centre for Pathology, Imperial College London, London, W2 1NY, UK.,Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | | | - Domenico Bosco
- Department of Surgery, University of Geneva, Geneva, CH-1211, Switzerland
| | - Paul R Johnson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Lorenzo Piemonti
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, Milan, 20132, Italy.,Vita-Salute San Raffaele University, Milan, 20132, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, 56124, Italy
| | - A M James Shapiro
- Clinical Islet Laboratory and Clinical Islet Transplant Program, University of Alberta, Edmonton, T6G 2C8, AB, Canada
| | - Blake J Cochran
- Section of Renal and Vascular Inflammation, Imperial College London, London, W12 0NN, UK.,School of Medical Sciences, UNSW Sydney, Sydney, 2052, NSW, Australia
| | - Aylin C Hanyaloglu
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | | | - Tricia Tan
- Section of Investigative Medicine, Imperial College London, London, W12 0NN, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Imperial College London, London, W12 0NN, UK.
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Imperial College London, London, W12 0NN, UK.
| | - Stephen R Bloom
- Section of Investigative Medicine, Imperial College London, London, W12 0NN, UK
| |
Collapse
|
34
|
Kanamarlapudi V. Molecular characterisation of small molecule agonists and internalisation of GLP‐1R. FASEB J 2018. [DOI: 10.1096/fasebj.2018.32.1_supplement.670.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Jones B, Bloom SR, Buenaventura T, Tomas A, Rutter GA. Control of insulin secretion by GLP-1. Peptides 2018; 100:75-84. [PMID: 29412835 DOI: 10.1016/j.peptides.2017.12.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/12/2022]
Abstract
Stimulation of insulin secretion by glucagon-like peptide-1 (GLP-1) and other gut-derived peptides is central to the incretin response to ingesting nutriments. Analogues of GLP-1, and inhibitors of its breakdown, have found widespread clinical use for the treatment of type 2 diabetes (T2D) and obesity. The release of these peptides underlies the improvements in glycaemic control and disease remission after bariatric surgery. Given therapeutically, GLP-1 analogues can lead to side effects including nausea, which limit dosage. Greater understanding of the interactions between the GLP-1 receptor (GLP-1R) and both the endogenous and artificial ligands therefore holds promise to provide more efficacious compounds. Here, we discuss recent findings concerning the signalling and trafficking of the GLP-1R in pancreatic beta cells. Leveraging "bias" at the receptor towards cAMP generation versus the recruitment of β-arrestins and extracellular signal-regulated kinases (ERK1/2) activation may allow the development of new analogues with significantly improved clinical efficacy. We describe how, unexpectedly, relatively low-affinity agonists, which prompt less receptor internalisation than the parent compound, provoke greater insulin secretion and consequent improvements in glycaemia.
Collapse
Affiliation(s)
- Ben Jones
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Stephen R Bloom
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Teresa Buenaventura
- Section of Cell Biology and Functional Genomics & Imperial Consortium for Islet Biology and Diabetes, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics & Imperial Consortium for Islet Biology and Diabetes, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics & Imperial Consortium for Islet Biology and Diabetes, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
36
|
Song Y, Ge B, Lao J, Wang Z, Yang B, Wang X, He H, Li J, Huang F. Regulation of the Oligomeric Status of CCR3 with Binding Ligands Revealed by Single-Molecule Fluorescence Imaging. Biochemistry 2017; 57:852-860. [PMID: 28994588 DOI: 10.1021/acs.biochem.7b00676] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The relationship between the oligomeric status and functions of chemokine receptor CCR3 is still controversial. We use total internal reflection fluorescence microscopy at the single-molecule level to visualize the oligomeric status of CCR3 and its regulation of the membrane of stably transfected T-REx-293 cells. We find that the population of the dimers and oligomers of CCR3 can be modulated by the binding of ligands. Natural agonists can induce an increase in the level of dimers and oligomers at high concentrations, whereas antagonists do not have a significant influence on the oligomeric status. Moreover, monomeric CCR3 exhibits a stronger chemotactic response in the migration assay of stably transfected CCR3 cells. Together, these data support the notion that CCR3 exists as a mixture of monomers and dimers under nearly physiological conditions and the monomeric CCR3 receptor is the minimal functional unit in cellular signaling transduction. To the best of our knowledge, these results constitute the first report of the oligomeric status of CCR3 and its regulation.
Collapse
Affiliation(s)
- Yanzhuo Song
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Jun Lao
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Zhencai Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Bin Yang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Hua He
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Jiqiang Li
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| |
Collapse
|
37
|
Zhang QH, Hao JW, Li GL, Ji XJ, Yao XD, Dong N, Yao YM. Proinflammatory switch from Gαs to Gαi signaling by Glucagon-like peptide-1 receptor in murine splenic monocyte following burn injury. Inflamm Res 2017; 67:157-168. [PMID: 29022064 DOI: 10.1007/s00011-017-1104-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/26/2017] [Accepted: 09/30/2017] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE Glucagon-like peptide-1 (GLP-1)-based therapy via G protein-coupled receptor (GPCR) GLP-1R, to attenuate hyperglycemia in critical care has attracted great attention. However, the exaggerated inflammation by GLP-1R agonist, Exendin-4, in a mouse model of burn injury was quite unexpected. Recent studies found that GPCR might elicit proinflammatory effects by switching from Gαs to Gαi signaling in the immune system. Thus, we aimed to investigate the possible Gαs to Gαi switch in GLP-1R signaling in monocyte following burn injury. MATERIALS AND METHODS Splenic monocytes from sham and burn mice 24 h following burn injury were treated with consecutive doses of Exendin-4 alone or in combination with an inhibitor of Gαi signaling (pertussis toxin, PTX), or a blocker of protein kinase A (H89). Cell viability was assessed by CCK-8, and the supernatant was collected for cytokine measurement by ELISA. Intracellular cAMP level, phosphorylated PKA activity, and nuclear NF-κB p65 were determined by ELISA, ERK1/2 activation was analyzed by Western blot. The expression of GLP-1R downstream molecules, Gαs, Gαi and G-protein coupled receptor kinase 2 (GRK2) were examined by immunofluorescence staining and Western blot. RESULTS Exendin-4 could inhibit the viability of monocyte from sham rather than burn mice. Unexpectedly, it could also reduce TNF-α secretion from sham monocyte while increase it from burn monocyte. The increased secretion of TNF-α by Exendin-4 from burn monocyte could be reversed by pretreatment of PTX or H89. Accordingly, Exendin-4 could stimulates cAMP production dose dependently from sham instead of burn monocyte. However, the blunt cAMP production from burn monocyte was further suppressed by pretreatment of PTX or H89 after 6-h incubation. Nevertheless, phosphorylated PKA activity was significantly increased by low dose of Exendin-4 in sham monocyte, by contrast, it was enhanced by high dose of Exendin-4 in burn monocyte after 1-h incubation. Following Exendin-4 treatment for 2 h ex vivo, total nuclear NF-κB and phosphorylated NF-κB activity, as well as cytoplasmic pERK1/2 expressions were reduced in sham monocyte, however, only pERK1/2 was increased by Exendin-4 in burn monocytes. Moreover, reduced expressions of GLP-1R, GRK-2 and Gαs in contrast with increased expression of Gαi were identified in burn monocyte relative to sham monocyte. CONCLUSIONS This study presents an unexpected proinflammatory switch from Gαs to Gαi signaling in burn monocyte, which promotes ERK1/2 and NF-κB activation and the downstream TNF-α secretion. This phenomenon is most probably responsible for proinflammatory response evoked by Gαs agonist Exendin-4 following burn injury.
Collapse
Affiliation(s)
- Qing-Hong Zhang
- Department of Microbiology and Immunology, Burns' Institute, First Hospital Affiliated to the Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China.
| | - Ji-Wei Hao
- Department of Microbiology and Immunology, Burns' Institute, First Hospital Affiliated to the Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China
| | - Guang-Lei Li
- Department of Microbiology and Immunology, Burns' Institute, First Hospital Affiliated to the Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China
| | - Xiao-Jing Ji
- Department of Emergency, First Hospital Affiliated to Wenzhou Medical College, Wenzhou, 325000, People's Republic of China
| | - Xu-Dong Yao
- Department of Emergency, First Hospital Affiliated to Wenzhou Medical College, Wenzhou, 325000, People's Republic of China
| | - Ning Dong
- Department of Microbiology and Immunology, Burns' Institute, First Hospital Affiliated to the Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China
| | - Yong-Ming Yao
- Department of Microbiology and Immunology, Burns' Institute, First Hospital Affiliated to the Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China. .,State Key Laboratory of Kidney Disease, The Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| |
Collapse
|
38
|
Insuela DBR, Carvalho VF. Glucagon and glucagon-like peptide-1 as novel anti-inflammatory and immunomodulatory compounds. Eur J Pharmacol 2017; 812:64-72. [PMID: 28688914 DOI: 10.1016/j.ejphar.2017.07.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/25/2022]
Abstract
Glucagon and glucagon-like peptide-1 (GLP-1) are polypeptide hormones that are produced by pancreatic α-cells and the intestine, respectively, whose main function is to control glucose homeostasis. The glucagon and GLP-1 levels are imbalanced in diabetes. Furthermore, type 1 diabetic patients and animals present with a diminished inflammatory response, which is related to some morbidities of diabetes, such as a higher incidence of infectious diseases, including sepsis. The focus of this review is to briefly summarize the state of the art concerning the effects of glucagon and GLP-1 on the inflammatory response. Here, we propose that glucagon and GLP-1 have anti-inflammatory properties, making them possible prototypes for the design and synthesis of new compounds to treat inflammatory diseases. In addition, glucagon, GLP-1 or their analogues or new derivatives may not only be important for managing inflammatory diseases but may also have the therapeutic potential to prevent, cure or ameliorate diabetes in patients by counteracting the deleterious effects of pro-inflammatory cytokines on the function and viability of pancreatic β-cells. In addition, GLP-1, its analogues or drugs that inhibit GLP-1 metabolism may have a doubly beneficial effect in diabetic patients by inhibiting the inflammatory response and reducing glycaemia.
Collapse
Affiliation(s)
- Daniella B R Insuela
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, n°4365, Manguinhos, CEP 21040-360 Rio de Janeiro, Brazil
| | - Vinicius F Carvalho
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, n°4365, Manguinhos, CEP 21040-360 Rio de Janeiro, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil.
| |
Collapse
|
39
|
Shimizu Y, Koyama R, Kawamoto T. Rho kinase-dependent desensitization of GPR39; a unique mechanism of GPCR downregulation. Biochem Pharmacol 2017; 140:105-114. [PMID: 28619258 DOI: 10.1016/j.bcp.2017.06.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/09/2017] [Indexed: 12/14/2022]
Abstract
GPR39, a G-protein-coupled receptor activated by zinc, reportedly activates multiple intracellular signaling pathways via Gs, Gq, G12/13, and β-arrestin, but little is known about downregulation of the receptor upon its activation. To our knowledge, this is the first report on the mechanism of feedback regulation of GPR39 function determined in GPR39-expressing HEK293 cells (HEK293-GPR39) as a model cell system. In HEK293-GPR39 cells, GPR39-C3, which is a positive allosteric modulator, activated cAMP production (downstream of Gs), IP1 accumulation (downstream of Gq), SRF-RE-dependent transcription (downstream of G12/13), and β-arrestin recruitment. GPR39-C3 induced dose- and time-dependent loss of response in cAMP production by second challenge of the compound. This functional desensitization was blocked by the Rho kinase (ROCK) inhibitor, Y-27632, but not by Gq or Gs-pathway inhibitors or inhibition of β-arrestin recruitment. In the receptor localization assay, GPR39-C3 induced internalization of GFP-tagged GPR39. This internalization was also inhibited by Y-27632, which suggested that ROCK activation is critical for internalization and desensitization of GPR39. A novel biased GPR39 positive allosteric modulator, 5-[2-[(2,4-dichlorophenyl)methoxy]phenyl]-2,2-dimethyl-1,3,5,6-tetrahydrobenzo[a]phenanthridin-4-one (GSB-118), which activated cAMP responses and β-arrestin recruitment but showed no effect on SRF-RE-dependent transcription, did not induce desensitization. These results revealed a unique mechanism of desensitization of GPR39.
Collapse
Affiliation(s)
- Yuji Shimizu
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Ryokichi Koyama
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomohiro Kawamoto
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
40
|
Characterization of signal bias at the GLP-1 receptor induced by backbone modification of GLP-1. Biochem Pharmacol 2017; 136:99-108. [PMID: 28363772 DOI: 10.1016/j.bcp.2017.03.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/27/2017] [Indexed: 12/23/2022]
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is a class B G protein-coupled receptor that is a major therapeutic target for the treatment of type 2 diabetes. Activation of this receptor promotes insulin secretion and blood glucose regulation. The GLP-1R can initiate signaling through several intracellular pathways upon activation by GLP-1. GLP-1R ligands that preferentially stimulate subsets among the natural signaling pathways ("biased agonists") could be useful as tools for elucidating the consequences of specific pathways and might engender therapeutic agents with tailored effects. Using HEK-293 cells recombinantly expressing human GLP-1R, we have previously reported that backbone modification of GLP-1, via replacement of selected α-amino acid residues with β-amino acid residues, generates GLP-1 analogues with distinctive preferences for promoting G protein activation versus β-arrestin recruitment. Here, we have explored the influence of cell background across these two parameters and expanded our analysis to include affinity and other key signaling pathways (intracellular calcium mobilization and ERK phosphorylation) using recombinant human GLP-1R expressed in a CHO cell background, which has been used extensively to demonstrate biased agonism of GLP-1R ligands. The new data indicate that α/β-peptide analogues of GLP-1 exhibit a range of distinct bias profiles relative to GLP-1 and that broad assessment of signaling endpoints is required to reveal the spectrum of behavior of modified peptides. These results support the view that backbone modification via α→β amino acid replacement can enable rapid discovery of peptide hormone analogues that display substantial signal bias at a cognate GPCR.
Collapse
|
41
|
Graaf CD, Donnelly D, Wootten D, Lau J, Sexton PM, Miller LJ, Ahn JM, Liao J, Fletcher MM, Yang D, Brown AJH, Zhou C, Deng J, Wang MW. Glucagon-Like Peptide-1 and Its Class B G Protein-Coupled Receptors: A Long March to Therapeutic Successes. Pharmacol Rev 2017; 68:954-1013. [PMID: 27630114 PMCID: PMC5050443 DOI: 10.1124/pr.115.011395] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The glucagon-like peptide (GLP)-1 receptor (GLP-1R) is a class B G protein-coupled receptor (GPCR) that mediates the action of GLP-1, a peptide hormone secreted from three major tissues in humans, enteroendocrine L cells in the distal intestine, α cells in the pancreas, and the central nervous system, which exerts important actions useful in the management of type 2 diabetes mellitus and obesity, including glucose homeostasis and regulation of gastric motility and food intake. Peptidic analogs of GLP-1 have been successfully developed with enhanced bioavailability and pharmacological activity. Physiologic and biochemical studies with truncated, chimeric, and mutated peptides and GLP-1R variants, together with ligand-bound crystal structures of the extracellular domain and the first three-dimensional structures of the 7-helical transmembrane domain of class B GPCRs, have provided the basis for a two-domain-binding mechanism of GLP-1 with its cognate receptor. Although efforts in discovering therapeutically viable nonpeptidic GLP-1R agonists have been hampered, small-molecule modulators offer complementary chemical tools to peptide analogs to investigate ligand-directed biased cellular signaling of GLP-1R. The integrated pharmacological and structural information of different GLP-1 analogs and homologous receptors give new insights into the molecular determinants of GLP-1R ligand selectivity and functional activity, thereby providing novel opportunities in the design and development of more efficacious agents to treat metabolic disorders.
Collapse
Affiliation(s)
- Chris de Graaf
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Dan Donnelly
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Denise Wootten
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Jesper Lau
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Patrick M Sexton
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Laurence J Miller
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Jung-Mo Ahn
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Jiayu Liao
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Madeleine M Fletcher
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Dehua Yang
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Alastair J H Brown
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Caihong Zhou
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Jiejie Deng
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Ming-Wei Wang
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| |
Collapse
|
42
|
Shigeto M, Cha CY, Rorsman P, Kaku K. A role of PLC/PKC-dependent pathway in GLP-1-stimulated insulin secretion. J Mol Med (Berl) 2017; 95:361-368. [PMID: 28097390 DOI: 10.1007/s00109-017-1508-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 11/19/2016] [Accepted: 11/30/2016] [Indexed: 01/11/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is an endogenous glucose-lowering hormone and GLP-1 receptor agonists are currently being used as antidiabetic drugs clinically. The canonical signalling pathway (including cAMP, Epac2, protein kinase A (PKA) and KATP channels) is almost universally accepted as the main mechanism of GLP-1-stimulated insulin secretion. This belief is based on in vitro studies that used nanomolar (1-100 nM) concentrations of GLP-1. Recently, it was found that the physiological concentrations (1-10 pM) of GLP-1 also stimulate insulin secretion from isolated islets, induce membrane depolarization and increase of intracellular [Ca2+] in isolated β cells/pancreatic islets. These responses were unaffected by PKA inhibitors and occurred without detectable increases in intracellular cAMP and PKA activity. These PKA-independent actions of GLP-1 depend on protein kinase C (PKC), involve activation of the standard GLP-1 receptor (GLP1R) and culminate in activation of phospholipase C (PLC), leading to an elevation of diacylglycerol (DAG), increased L-type Ca2+ and TRPM4/TRPM5 channel activities. Here, we review these recent data and contrast them against the effects of nanomolar concentrations of GLP-1. The differential intracellular signalling activated by low and high concentrations of GLP-1 could provide a clue to explain how GLP-1 exerts different function in the central nervous system and peripheral organs.
Collapse
Affiliation(s)
- Makoto Shigeto
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK. .,Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| | - Chae Young Cha
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - Kohei Kaku
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| |
Collapse
|
43
|
Rate of Homologous Desensitization and Internalization of the GLP-1 Receptor. Molecules 2016; 22:molecules22010022. [PMID: 28035964 PMCID: PMC6155907 DOI: 10.3390/molecules22010022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/13/2016] [Accepted: 12/22/2016] [Indexed: 12/25/2022] Open
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is an important target in the treatment of type 2 diabetes mellitus. The aim of this study was to compare the rate of agonist stimulated desensitization and internalization of GLP-1R. To this end, an N-terminally myc-tagged GLP-1R was stably expressed in HEK-293 cells. Homologous desensitization was assessed by measuring the cAMP response to agonist stimulation following pre-incubation with agonist for up to 120 min. Receptor internalization was monitored using an indirect ELISA-based method and confocal microscopy. Pre-incubation with GLP-1 resulted in a time-dependent loss of response to a second stimulation. Washing cells following pre-incubation failed to bring cAMP levels back to basal. Taking this into account, two desensitization rates were calculated: “apparent” (t1/2 = 19.27 min) and “net” (t1/2 = 2.99 min). Incubation of cells with GLP-1 also resulted in a time-dependent loss of receptor cell surface expression (t1/2 = 2.05 min). Rapid agonist-stimulated internalization of GLP-1R was confirmed using confocal microscopy. Stimulation of GLP-1R with GLP-1 results in rapid desensitization and internalization of the receptor. Interestingly, the rate of “net” desensitization closely matches the rate of internalization. Our results suggest that agonist-bound GLP-1R continues to generate cAMP after it has been internalized.
Collapse
|
44
|
Gao J, Bai T, Ren L, Ding Y, Zhong X, Wang H, Guo Y, Li J, Liu Y, Zhang Y. The PLC/PKC/Ras/MEK/Kv channel pathway is involved in uncarboxylated osteocalcin-regulated insulin secretion in rats. Peptides 2016; 86:72-79. [PMID: 27746193 DOI: 10.1016/j.peptides.2016.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 09/22/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Abstract
Uncarboxylated osteocalcin, a bone matrix protein, has been proposed to regulate glucose metabolism by increasing insulin secretion, improving insulin sensitivity and stimulating β cell proliferation. Our previous study also indicated that uncarboxylated osteocalcin stimulates insulin secretion by inhibiting voltage-gated potassium (KV) channels. The goal of this study is to further investigate the underlying mechanisms for the regulation of Kv channels and insulin secretion by uncarboxylated osteocalcin. Insulin secretion and Kv channel currents were examined by radioimmunoassay and patch-clamp technique, respectively. Calcium imaging system was applied to measure intracellular Ca2+ concentration ([Ca2+]i). The protein levels were detected by western blot. The results showed that uncarboxylated osteocalcin potentiated insulin secretion, inhibited Kv channels and increased [Ca2+]i compared to control. These effects were suppressed by phospholipase-C (PLC)/protein kinase C (PKC)/Ras/MAPK-ERK kinase (MEK) signaling pathway, indicating that this signaling pathway plays an important role in uncarboxylated osteocalcin-regulated insulinotropic effect. In addition, the results also showed that adenylyl cyclase (AC) did not influence the effect of uncarboxylated osteocalcin on insulin secretion and Kv channels, suggesting that AC is not involved in uncarboxylated osteocalcin-stimulated insulin secretion. These findings provide new insight into the mechanism of uncarboxylated osteocalcin-regulated insulin secretion.
Collapse
Affiliation(s)
- Jingying Gao
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China; Department of Pediatrics, Shanxi Medical University, Taiyuan, China
| | - Tao Bai
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China; Department of Endocrinology, the First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Lele Ren
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yaqin Ding
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Xiangqin Zhong
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Hui Wang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yangyan Guo
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Jie Li
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, the First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China.
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
45
|
Thompson A, Stephens JW, Bain SC, Kanamarlapudi V. Molecular Characterisation of Small Molecule Agonists Effect on the Human Glucagon Like Peptide-1 Receptor Internalisation. PLoS One 2016; 11:e0154229. [PMID: 27100083 PMCID: PMC4839733 DOI: 10.1371/journal.pone.0154229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/11/2016] [Indexed: 01/23/2023] Open
Abstract
The glucagon-like peptide receptor (GLP-1R), which is a G-protein coupled receptor (GPCR), signals through both Gαs and Gαq coupled pathways and ERK phosphorylation to stimulate insulin secretion. The aim of this study was to determine molecular details of the effect of small molecule agonists, compounds 2 and B, on GLP-1R mediated cAMP production, intracellular Ca2+ accumulation, ERK phosphorylation and its internalisation. In human GLP-1R (hGLP-1R) expressing cells, compounds 2 and B induced cAMP production but caused no intracellular Ca2+ accumulation, ERK phosphorylation or hGLP-1R internalisation. GLP-1 antagonists Ex(9-39) and JANT-4 and the orthosteric binding site mutation (V36A) in hGLP-1R failed to inhibit compounds 2 and B induced cAMP production, confirming that their binding site distinct from the GLP-1 binding site on GLP-1R. However, K334A mutation of hGLP-1R, which affects Gαs coupling, inhibited GLP-1 as well as compounds 2 and B induced cAMP production, indicating that GLP-1, compounds 2 and B binding induce similar conformational changes in the GLP-1R for Gαs coupling. Additionally, compound 2 or B binding to the hGLP-1R had significantly reduced GLP-1 induced intracellular Ca2+ accumulation, ERK phosphorylation and hGLP-1R internalisation. This study illustrates pharmacology of differential activation of GLP-1R by GLP-1 and compounds 2 and B.
Collapse
Affiliation(s)
- Aiysha Thompson
- Institute of Life Science 1, Medical School, Swansea University, Singleton Park, Swansea, United Kingdom
| | - Jeffrey W. Stephens
- Institute of Life Science 1, Medical School, Swansea University, Singleton Park, Swansea, United Kingdom
| | - Stephen C. Bain
- Institute of Life Science 1, Medical School, Swansea University, Singleton Park, Swansea, United Kingdom
| | - Venkateswarlu Kanamarlapudi
- Institute of Life Science 1, Medical School, Swansea University, Singleton Park, Swansea, United Kingdom
- * E-mail:
| |
Collapse
|
46
|
The complexity of signalling mediated by the glucagon-like peptide-1 receptor. Biochem Soc Trans 2016; 44:582-8. [DOI: 10.1042/bst20150244] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Indexed: 01/14/2023]
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is a class B GPCR that is a major therapeutic target for the treatment of type 2 diabetes. The receptor is activated by the incretin peptide GLP-1 promoting a broad range of physiological effects including glucose-dependent insulin secretion and biosynthesis, improved insulin sensitivity of peripheral tissues, preservation of β-cell mass and weight loss, all of which are beneficial in the treatment of type 2 diabetes. Despite this, existing knowledge surrounding the underlying signalling mechanisms responsible for the physiological actions downstream of GLP-1R activation is limited. Here, we review the current understanding around GLP-1R-mediated signalling, in particular highlighting recent contributions to the field on biased agonism, the spatial and temporal aspects for the control of signalling and how these concepts may influence future drug development.
Collapse
|
47
|
Wootten D, Miller LJ, Koole C, Christopoulos A, Sexton PM. Allostery and Biased Agonism at Class B G Protein-Coupled Receptors. Chem Rev 2016; 117:111-138. [PMID: 27040440 DOI: 10.1021/acs.chemrev.6b00049] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Class B G protein-coupled receptors (GPCRs) respond to paracrine or endocrine peptide hormones involved in control of bone homeostasis, glucose regulation, satiety, and gastro-intestinal function, as well as pain transmission. These receptors are targets for existing drugs that treat osteoporosis, hypercalcaemia, Paget's disease, type II diabetes, and obesity and are being actively pursued as targets for numerous other diseases. Exploitation of class B receptors has been limited by difficulties with small molecule drug discovery and development and an under appreciation of factors governing optimal therapeutic efficacy. Recently, there has been increasing awareness of novel attributes of GPCR function that offer new opportunity for drug development. These include the presence of allosteric binding sites on the receptor that can be exploited as drug binding pockets and the ability of individual drugs to enrich subpopulations of receptor conformations to selectively control signaling, a phenomenon termed biased agonism. In this review, current knowledge of biased signaling and small molecule allostery within class B GPCRs is discussed, highlighting areas that have progressed significantly over the past decade, in addition to those that remain largely unexplored with respect to these phenomena.
Collapse
Affiliation(s)
- Denise Wootten
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville 3052, Victoria, Australia
| | - Laurence J Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic , Scottsdale, Arizona 85259, United States
| | - Cassandra Koole
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville 3052, Victoria, Australia.,Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University , New York, New York 10065, United States
| | - Arthur Christopoulos
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville 3052, Victoria, Australia
| | - Patrick M Sexton
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville 3052, Victoria, Australia
| |
Collapse
|
48
|
Luteinizing hormone/chorionic gonadotrophin receptor overexpressed in granulosa cells from polycystic ovary syndrome ovaries is functionally active. Reprod Biomed Online 2016; 32:635-41. [PMID: 27061682 DOI: 10.1016/j.rbmo.2016.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 02/17/2016] [Accepted: 03/01/2016] [Indexed: 12/13/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is associated with anovulatory infertility. Luteinizing hormone/chorionic gonadotrophin receptor (LHCGR), which is critical for ovulation, has been suggested to be expressed prematurely in the ovarian follicles of women with PCOS. This study aimed to analyse the expression and activity of LHCGR in ovarian granulosa cells from PCOS patients and the involvement of ARF6 small GTPase in LHCGR internalization. Granulosa cells (GC) isolated from follicular fluid collected during oocyte retrieval from normal women (n = 19) and women with PCOS (n = 17) were used to study differences in LHCGR protein expression and activity between normal and PCOS patients. LHCGR expression is up-regulated in GC from PCOS women. LHCGR in PCOS GC is functionally active, as shown by increased cAMP production upon human gonadotrophin (HCG)-stimulation. Moreover, ARF6 is highly expressed in GC from PCOS patients and HCG-stimulation increases the concentrations of active ARF6. The inhibition of ARF6 activation attenuates HCG-induced LHCGR internalization in both normal and PCOS GC, indicating that there are no alterations in LHCGR internalisation in GC from PCOS. In conclusion, the expression and activation of LHCGR and ARF6 are up-regulated in GC from PCOS women but the mechanism of agonist-induced LHCGR internalization is unaltered.
Collapse
|
49
|
Abstract
The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are important regulators of insulin and glucagon secretion as well as lipid metabolism and appetite. These biological functions make their respective receptors (GIPR and GLP-1R) attractive targets in the treatment of both type 2 diabetes mellitus (T2DM) and obesity. The use of these native peptides in the treatment of these conditions is limited by their short half-lives. However, long-acting GLP-1R agonists and inhibitors of the enzyme that rapidly inactivates GIP and GLP-1 (dipeptidyl peptidase IV) are in clinical use. Although there is a loss of response to both hormones in T2DM, this effect appears to be more pronounced for GIP. This has made targeting GIPR less successful than GLP-1R. Furthermore, results demonstrating that GIPR knockout mice were resistant to diet-induced obesity suggested that GIPR antagonists may prove to be useful therapeutics. More recently, molecules that activate both receptors have shown promise in terms of glycemic and body weight control. This review focused on recent advances in the understanding of the signaling mechanisms and regulation of these two clinically important receptors.
Collapse
Affiliation(s)
- Suleiman Al-Sabah
- *Dr. Suleiman Al-Sabah, Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, PO Box 24923, Safat 13110 (Kuwait), E-Mail
| |
Collapse
|
50
|
Thompson A, Kanamarlapudi V. Distinct regions in the C-Terminus required for GLP-1R cell surface expression, activity and internalisation. Mol Cell Endocrinol 2015; 413:66-77. [PMID: 26116235 DOI: 10.1016/j.mce.2015.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/07/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022]
Abstract
The glucagon-like peptide-1 (GLP-1) receptor (GLP-1R), an important drug target in the treatment of type 2 diabetes, is a G-protein coupled receptor (GPCR) that mediates insulin secretion by GLP-1. The N-terminus controls GLP-1R biosynthetic trafficking to the cell surface but the C-terminus involvement in that trafficking is unknown. The aim of this study was to identify distinct regions within the C-terminal domain required for human GLP-1R (hGLP-1R) cell surface expression, activity and internalisation using a number of C-terminal deletions and site-directed mutations. The results of this study revealed that the residues 411-418 within the C-terminal domain of the hGLP-1R are critical in targeting the newly synthesised receptor to the plasma membrane. The residues 419-430 are important for cAMP producing activity of the receptor, most likely by coupling to Gαs. However, the residues 431-450 within the C-terminus are essential for agonist-induced hGLP-1R internalisation. In conclusion, these findings demonstrate the hGLP-1R has distinct regions within the C-terminal domain required for its cell surface expression, activity and agonist-induced internalisation.
Collapse
Affiliation(s)
- Aiysha Thompson
- Institute of Life Science 1, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | | |
Collapse
|