1
|
Zhou Z, Li M, Zhang Z, Song Z, Xu J, Zhang M, Gong M. Overview of Panax ginseng and its active ingredients protective mechanism on cardiovascular diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118506. [PMID: 38964625 DOI: 10.1016/j.jep.2024.118506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
ETHNIC PHARMACOLOGICAL RELEVANCE Panax ginseng is a traditional Chinese herbal medicine used to treat cardiovascular diseases (CVDs), and it is still widely used to improve the clinical symptoms of various CVDs. However, there is currently a lack of summary and analysis on the mechanism of Panax ginseng exerts its cardiovascular protective effects. This article provides a review of in vivo and in vitro pharmacological studies on Panax ginseng and its active ingredients in reducing CVDs damage. AIM OF THIS REVIEW This review summarized the latest literature on Panax ginseng and its active ingredients in CVDs research, aiming to have a comprehensive and in-depth understanding of the cardiovascular protection mechanism of Panax ginseng, and to provide new ideas for the treatment of CVDs, as well as to optimize the clinical application of Panax ginseng. METHODS Enrichment of pathways and biological terms using the traditional Chinese medicine molecular mechanism bioinformatics analysis tool (BATMAN-TCM). The literature search is based on electronic databases such as PubMed, ScienceDirect, Scopus, CNKI, with a search period of 2002-2023. The search terms include Panax ginseng, Panax ginseng ingredients, ginsenosides, ginseng polysaccharides, ginseng glycoproteins, ginseng volatile oil, CVDs, heart, and cardiac. RESULTS 132 articles were ultimately included in the review. The ingredients in Panax ginseng that manifested cardiovascular protective effects are mainly ginsenosides (especially ginsenoside Rb1). Ginsenosides protected against CVDs such as ischemic reperfusion injury, atherosclerosis and heart failure mainly through improving energy metabolism, inhibiting hyper-autophagy, antioxidant, anti-inflammatory and promoting secretion of exosomes. CONCLUSION Panax ginseng and its active ingredients have a particularly prominent effect on improving myocardial energy metabolism remodeling in protecting against CVDs. The AMPK and PPAR signaling pathways are the key targets through which Panax ginseng produces multiple mechanisms of cardiovascular protection. Extracellular vesicles and nanoparticles as carriers are potential delivery ways for optimizing the bioavailability of Panax ginseng and its active ingredients.
Collapse
Affiliation(s)
- Ziwei Zhou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Meijing Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Zekuan Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Zhimin Song
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Jingjing Xu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, 100069, China
| | - Minyu Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, 100069, China.
| | - Muxin Gong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, 100069, China.
| |
Collapse
|
2
|
Jiang M, Yu H. Ginsenoside 20(S)-Rg3 Hinders Esophageal Squamous Cell Carcinoma Cells Malignant Behaviors by miR-210-3p/B4GALT5 Axis. Cell Biochem Biophys 2024:10.1007/s12013-024-01566-5. [PMID: 39422791 DOI: 10.1007/s12013-024-01566-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
Ginsenoside 20(S)-Rg3 (20(S)-Rg3) belongs to a natural chemical with an anti-tumor function, but its potential function and underlying mechanism in esophageal squamous cell carcinoma (ESCC) are unknown. Several reports have manifested that microRNA (miRNA) miR-210-3p functions as a tumor repressor in tumors, but its biofunction in ESCC remains obscure. Herein, the role and interaction of 20(S)-Rg3 and miR-210-3p in ESCC cells were investigated. We performed a series of functional experiments to validate that 20(S)-Rg3 notably restrained ESCC cell proliferation and migration while promoting cell apoptosis. Besides, miR-210-3p was found to be lowly expressed in ESCC cells. Overexpressing miR-210-3p suppressed the malignant behaviors of ESCC cells. More importantly, 20(S)-Rg3 could upregulate miR-210-3p expression in ESCC cells. MiR-210-3p knockdown offset the inhibitive impacts of 20(S)-Rg3 treatment on ESCC cell growth and migration. Furthermore, through luciferase reporter assay, beta-1,4-galactosyltransferase 5 (B4GALT5) was certified to be targeted by miR-210-3p. B4GALT5 upregulation neutralized the suppressive function of 20(S)-Rg3 on ESCC progression. Overall, 20(S)-Rg3 attenuated malignant behaviors of ESCC cells by modulating miR-210-3p/B4GALT5 axis, indicating 20(S)-Rg3 has therapeutic potential for ESCC.
Collapse
Affiliation(s)
- Min Jiang
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China.
| |
Collapse
|
3
|
Ji H, Guo L, Yu D, Du X. Application of microorganisms in Panax ginseng: cultivation of plants, and biotransformation and bioactivity of key component ginsenosides. Arch Microbiol 2024; 206:433. [PMID: 39412649 DOI: 10.1007/s00203-024-04144-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 11/10/2024]
Abstract
Panax ginseng is a precious Chinese medicinal plant with a long growth cycle and high medicinal value. Therefore, it is of great significance to explore effective ways to increase its yield and main active substance content to reduce the cost of ginseng, which is widely used in food and clinical applications. Here, we review the key roles of microorganisms in the biological control of ginseng diseases, enhancement of ginseng yield, biotransformation of ginsenosides, and augmentation of ginsenoside bioactivity. The application of microorganisms in P. ginseng faces multiple challenges, including the need for further exploration of efficient microbial strain resources used in the cultivation of ginseng and biotransformation of ginsenosides, lack of microbial application in large-scale field cultivation of ginseng, and unclear mechanism of microbial transformation of ginsenosides. This review provides a deeper understanding of the applications of microorganisms in P. ginseng.
Collapse
Affiliation(s)
- Hongyu Ji
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, Heilongjiang Province, 150040, China
| | - Lidong Guo
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, Heilongjiang Province, 150040, China
| | - Dan Yu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, Heilongjiang Province, 150040, China
| | - Xiaowei Du
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, Heilongjiang Province, 150040, China.
| |
Collapse
|
4
|
Liu Y, Niu Z, Wang X, Xiu C, Hu Y, Wang J, Lei Y, Yang J. Yiqihuoxue decoction (GSC) inhibits mitochondrial fission through the AMPK pathway to ameliorate EPCs senescence and optimize vascular aging transplantation regimens. Chin Med 2024; 19:143. [PMID: 39402613 PMCID: PMC11479513 DOI: 10.1186/s13020-024-01008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND During the aging process, the number and functional activity of endothelial progenitor cells (EPCs) are impaired, leading to the unsatisfactory efficacy of transplantation. Previous studies demonstrated that Yiqihuoxue decoction (Ginseng-Sanqi-Chuanxiong, GSC) exerts anti-vascular aging effects. The purpose of this study is to evaluated the effects of GSC on D-galactose (D-gal)induced senescence and the underlying mechanisms. METHODS The levels of cellular senescence-related markers P16, P21, P53, AMPK and p-AMPK were detected by Western blot analysis (WB). SA-β-gal staining was used to evaluate cell senescence. EPCs function was measured by CCK-8, Transwell cell migration and cell adhesion assay. The morphological changes of mitochondria were detected by confocal microscopy. The protein and mRNA expression of mitochondrial fusion fission Drp1, Mff, Fis1, Mfn1, Mfn2 and Opa1 in mitochondria were detect using WB and RT-qPCR. Mitochondrial membrane potential, mtROS and ATP of EPCs were measured using IF. H&E staining was used to observe the pathological changes and IMT of the aorta. The expressions of AGEs, MMP-2 and VEGF in aorta were measured using Immunohistochemical (IHC). The levels of SOD, MDA, NO and ET-1 in serum were detected by SOD, MDA and NO kits. RESULTS In vitro, GSC ameliorated the senescence of EPCs induced by D-gal and reduced the expression of P16, P21 and P53. The mitochondrial morphology of EPCs was restored, the expression of mitochondrial Drp1, Mff and Fis1 protein was decreased, the levels of mtROS and ATP were decreased, and mitochondrial function was improved. Meanwhile, the expression of AMPK and p-AMPK increased. The improvement effects of GSC on aging and mitochondrial morphology and function were were hindered after adding AMPK inhibitor. In vivo, GSC improved EPCs efficiency, ameliorated aortic structural disorder and decreased IMT in aging mice. The serum SOD level increased and MDA level decreased, indicating the improvement of antioxidant capacity. Increased NO content and ET-1 content suggested improvement of vascular endothelial function. The changes observed in SOD and MMP-2 suggested a reduction in vascular stiffness and the degree of vascular damage. The decreased expression of P21 and P53 indicates the delay of vascular senescence.
Collapse
Affiliation(s)
- Yinan Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zenghui Niu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xue Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chengkui Xiu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yanhong Hu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiali Wang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300120, China
| | - Yan Lei
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jing Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
5
|
Hu H, Wang S, Chen C. Pathophysiological role and potential drug target of NLRP3 inflammasome in the metabolic disorders. Cell Signal 2024; 122:111320. [PMID: 39067838 DOI: 10.1016/j.cellsig.2024.111320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
NLRP3 plays a role in the development of autoinflammatory diseases. NLRP3, ASC, and Caspases 1 or 8 make up the NLRP3 inflammasome, which is an important part of innate immune system. The NLRP3 inflammasome-mediated inflammatory cytokines may also participate in metabolic disorders, such as diabetes, hyperlipidemia, atherosclerosis, non-alcoholic fatty liver disease, and gout. Hence, an overview of the NLRP3 regulation in these metabolic diseases and the potential drugs targeting NLRP3 is the focus of this review.
Collapse
Affiliation(s)
- Huiming Hu
- School of pharmacy, Nanchang Medical College, Nanchang, Jiangxi, China; School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia; Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Jiangxi, China
| | - Shuwen Wang
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia.
| |
Collapse
|
6
|
Peng L, Li S, Cai H, Chen X, Tang Y. Ginsenoside Rg1 treats chronic heart failure by downregulating ERK1/2 protein phosphorylation. In Vitro Cell Dev Biol Anim 2024; 60:1085-1098. [PMID: 39251466 DOI: 10.1007/s11626-024-00960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/22/2024] [Indexed: 09/11/2024]
Abstract
In this study, we investigated the potential therapeutic mechanism of ginsenoside Rg1 (GRg1) in chronic heart failure (CHF), focusing on its regulation of ERK1/2 protein phosphorylation. H9c2 cardiomyocytes and SD rats were divided into the control group, CHF (ADR) group, and CHF+ginsenoside Rg1 group using an isolated cardiomyocyte model and an in vivo CHF rat model induced by adriamycin (ADR). Cell viability, proliferation, apoptosis, and the expression of relevant proteins were measured to assess the effects of GRg1. The results showed that treatment with GRg1 increased cell activity and proliferation, while significantly reducing levels of inflammatory and apoptotic factors compared to the CHF (ADR) group. Moreover, the CHF+ginsenoside Rg1 group exhibited higher levels of Bcl-2 mRNA and protein expression, as well as lower levels of Caspase3 and Bax mRNA and protein expression, compared to the CHF (ADR) group. Notably, the CHF+ginsenoside Rg1 group displayed decreased serum NT-proBNP levels and heart weight/body weight (HW/BW) index. Furthermore, the electrocardiogram of rats in the CHF+ginsenoside Rg1 group resembled that of rats in the control group. Overall, our findings suggested that GRg1 alleviated CHF by inhibiting ERK1/2 protein phosphorylation, thereby inhibiting apoptosis, enhancing cell activity and proliferation, and reducing cardiac inflammatory responses.
Collapse
Affiliation(s)
- Liqi Peng
- First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
| | - Shaodong Li
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Huzhi Cai
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
| | - Xueliang Chen
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yanping Tang
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
7
|
Liu J, Ma R, Fu B, Yang P, Zhang L, Zhang C, Chen Y, Sun L. Phytosterols in mountain cultivated ginseng, as master healthy ageing dietary supplement, activates steroid signaling in ageing Drosophila melanogaster. Exp Gerontol 2024; 195:112554. [PMID: 39179161 DOI: 10.1016/j.exger.2024.112554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/22/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Mountain cultivated ginseng (MCG) is planted in mountain forests to simulate traditional wild ginseng; therefore, it has a greater pharmacological effect than cultivated ginseng (CG) in the garden; however, insufficient evidence confirms this theory. In light of the health-promoting and life-extending properties of ginseng, we analyzed the efficacy of MCG and CG. Initial observations revealed that the phytosterols content of MCG was higher than that of CG, with a positive correlation to the duration of growth. The distinction between phytosterols in MCG and in CG is predominately determined by the stigmasterol content using High-Performance Liquid Chromatography (HPLC). The lifespan of Drosophila melanogaster (fruit flies) that aged naturally was prolonged by phytosterols in MCG and CG and stigmasterols. Further, they prolonged healthy ageing as measured by progeny numbers, length of sleep, climbing distance, and survival following oxidative damage. The findings of behavioral observations revealed that phytosterols in MCG were more efficacious than in CG in promoting health maintenance and life extension; moreover, stigmasterol indicated that these effects were dose-dependent. Stigmasterols, phytosterols in MCG and CG have restored age-associated decreases in steroid hormone levels. Notably, molecular docking was predicted to promote stigmasterol's binding to the steroid hormone receptor ECR due to its similarity to steroid hormones. In addition, stigmasterols triggered the steroid hormone signaling pathway by increasing the activity of key genes Eip75B and Br in 20E signaling and Jhamt, HmGR, Met, and Kr-h1 in JH signaling. Phytosterols, as a natural product, regulated health and longevity as a dietary supplement similar to that of steroids, which supported the social requirements of healthy ageing.
Collapse
Affiliation(s)
- Jialiang Liu
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin Province 130021, China
| | - Rui Ma
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin Province 130021, China
| | - Baoyu Fu
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin Province 130021, China
| | - Pengdi Yang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin Province 130021, China
| | - Lili Zhang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin Province 130021, China
| | - Chunyang Zhang
- Jilin Province Sericultural Scientific Research Institute, Jilin 132012, China
| | - Ying Chen
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin Province 130021, China.
| | - Liwei Sun
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin Province 130021, China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin Province 130117, China.
| |
Collapse
|
8
|
Jiang Y, Liu C, He G, Zhang Y, Liu M, Zhang K, Liu M, Wang A, Zhang M, Wang Y, Zhao M, Wang K. Regulation of ginseng adventitious root growth in Panax ginseng by the miR156-targeted PgSPL24-09 transcription factors. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109026. [PMID: 39137685 DOI: 10.1016/j.plaphy.2024.109026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
MicroRNA (miRNA) is a class of non-coding endogenous small-molecule, single-stranded RNAs, and it is involved in post-transcriptional gene expression regulation in plants and plays an important role in plant growth and development. Among them, miRNA156 regulates members of target SPL gene family and thus participates in plant growth and development, hormonal response and adversity stress. However, it has not been reported in ginseng. In this study, based on the previous analysis of the SPL gene family, the age-related and stably expressed SPL gene PgSPL24-09 was obtained in roots. The binding site of miRNA156 to this gene was analyzed using target gene prediction tools, and the interactions between miRNA156 and PgSPL24-09 gene were verified by dual luciferase reporter gene assay and RT-qPCR. At the same time, miRNA156 silencing vector and overexpression vector were constructed and transformed into ginseng adventitious roots and Arabidopsis thaliana to analyze the molecular mechanism of miRNA156-SPL module in regulating the growth of ginseng adventitious roots. This study provides a theoretical basis for the in-depth study of the molecular role of miRNAs in ginseng growth, and also lays the foundation for the study of the role of miRNA156-SPL module in regulating the growth and development of ginseng.
Collapse
Affiliation(s)
- Yang Jiang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China; Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Chang Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China; Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Gaohui He
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China; Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Yu Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China; Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Mengna Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China; Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Kexin Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China; Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Mingming Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China; Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Aimin Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China; Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China; Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China; Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China; Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China; Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| |
Collapse
|
9
|
Qu Z, Zhao S, Zhang Y, Wang X, Yan L. Natural Compounds for Bone Remodeling: Targeting osteoblasts and relevant signaling pathways. Biomed Pharmacother 2024; 180:117490. [PMID: 39332184 DOI: 10.1016/j.biopha.2024.117490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
In the process of bone metabolism and bone remodeling, bone marrow mesenchymal stem cells (BM-MSCs) differentiate into osteoblasts (OBs) under certain conditions to enable the formation of new bone, and normal bone reconstruction and pathological bone alteration are closely related to the differentiation and proliferation functions of OBs. Osteogenic differentiation of BM-MSCs involves multiple signaling pathways, which function individually but interconnect intricately to form a complex signaling regulatory network. Natural compounds have fewer adverse effects than chemically synthesized drugs, optimize bone health, and are more suitable for long-term use. In this paper, we focus on OBs, summarize the current research progress of signaling pathways related to OBs differentiation, and review the molecular mechanisms by which chemically synthesized drugs with potential anti-osteoporosis properties regulate OBs-mediated bone formation.
Collapse
Affiliation(s)
- Zechao Qu
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Songchuan Zhao
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yong Zhang
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaohao Wang
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liang Yan
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
10
|
Chen Q, Qiu FS, Xie W, Yu WY, Su ZA, Qin GM, Kang YK, Jiang SL, Yu CH. Gypenoside A-loaded mPEG-PLGA nanoparticles ameliorate high-glucose-induced retinal microvasculopathy by inhibiting ferroptosis. Int J Pharm 2024; 666:124758. [PMID: 39326476 DOI: 10.1016/j.ijpharm.2024.124758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/30/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
Diabetic retinopathy (DR) is one of the chronic microvascular complications of type 2 diabetes mellitus (T2DM), which will cause retinal detachment and blindness without ideal therapies. Gypenoside A (GPA) are the main bioactive compound from Gynostemma pentaphyllum, and have various pharmacological effects. However, it suffered from poor bioavailability and potential cardiotoxicity in the clinical application. To overcome those limitations, in this study, nearly spherical nanoparticles (GPA-NP) with a mean particle size of 140.6 ± 22.4 nm were prepared by encapsulating GPA into mPEG-PLGA. This encapsulation efficiency was 84.4 ± 6.9 %, and the drug load was 4.02 %±0.35 %. The results showed that GPA-NP displayed more prolonged GPA release and higher bioavailability in vitro than GPA. GPA-NP obviously reduced the levels of oxidative stress markers and inflammatory cytokines in both retinal tissues of DR mice and high glucose-exposed HRMEC better than GPA alone. Mechanismly, GPA blocked the Nrf2-Keap1 interaction by binding with Kelch domain of Keap1 via alkyl and hydrogen bonds. Therefore, GPA-NP exerted more potent protectivity effects against high glucose-induced retinal microvascular endothelial ferroptosis in vitro and in vivo by activating Nrf2/HO-1/GPX4 pathway. It could be a promising therapeutic agent for preventing DR.
Collapse
Affiliation(s)
- Qin Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310003, China
| | - Fen-Sheng Qiu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, China; Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou 310013, China
| | - Wei Xie
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou 310013, China
| | - Wen-Ying Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou 310013, China
| | - Zhao-An Su
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310003, China
| | - Guang-Ming Qin
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310003, China.
| | - You-Kun Kang
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou 310013, China
| | - Song-Lin Jiang
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou 310013, China
| | - Chen-Huan Yu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310018, China.
| |
Collapse
|
11
|
Mei Y, Chen Y, Zhang H, Fan W, Liu L, Wang Z, Wang J, Fan L, Xiong A, Yang L, Wang Z. Borneol acts as an adjuvant agent to enhance the oral absorption of Panax notoginseng saponins in rats: Effect of optical configuration and compatibility ratios. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118331. [PMID: 38734392 DOI: 10.1016/j.jep.2024.118331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng saponins (PNS), as the main active component of Panax notoginseng, shows broad pharmacological effects but with low oral bioavailability. Borneol (BO) is commonly used as an adjuvant drug in the field of traditional Chinese medicine, which has been proven to facilitate the absorption of ginsenosides such as Rg1 and Rb1 in vivo. The presence of chiral carbons has resulted in three optical isomers of BO commercially available in the market, all of which are documented by national standards. AIM OF THE STUDY This study aimed to investigate the role of BO in promoting the oral absorption of PNS from the perspective of optical configuration and compatibility ratios. MATERIALS AND METHODS In this study, an ultra-performance liquid chromatography coupled with triple quadrupole-linear ion trap tandem mass spectrometry (UPLC-QTRAP-MS/MS) method was validated and applied to determine the concentrations of five main saponins in PNS in rat plasma. The kinetic characteristics of PNS were compared when co-administered with BO based on optical isomerism and different compatibility ratios. RESULTS The results showed that BO promoted the exposure of PNS in rats. Three forms of BO, namely d-borneol (DB), l-borneol (LB), and synthetic borneol (SB), exhibited different promotion strengths. SB elevated PNS exposure in rats more than DB or LB. It is also interesting to note that under different compatibility ratios, SB can exert a strong promoting effect only when PNS and BO were combined in a 1:1 ratio (PNS 75 mg/kg; BO 75 mg/kg). As a pharmacokinetic booster, the dosage of BO is worthy of consideration and should follow the traditional medication principles of Chinese medicine. CONCLUSIONS This study shed new light on the compatible use of PNS and BO from the perspective of "configuration-dose-influence" of BO. The results provide important basis for the clinical application and selection of BO.
Collapse
Affiliation(s)
- Yuqi Mei
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yan Chen
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Haoyue Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wenxiang Fan
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Longchan Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ziying Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jinyuan Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Linhong Fan
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Aizhen Xiong
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai R & D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201203, China.
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai R & D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201203, China.
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai R & D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201203, China.
| |
Collapse
|
12
|
Wu D, Xiong F, Wang H, Liu S, Zhu J, Zhao D, Yang J, Ma W, Guo L, Kang C. Temperature seasonality and soil phosphorus availability shape ginseng quality via regulating ginsenoside contents. BMC PLANT BIOLOGY 2024; 24:824. [PMID: 39227804 PMCID: PMC11370115 DOI: 10.1186/s12870-024-05518-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024]
Abstract
The accumulation of secondary metabolites in Panax ginseng Meyer (P. ginseng) exhibits significant geographical variation, normally due to environmental factors. The current study aimed at elucidating the key environmental factors modulating the accumulation of secondary metabolites in P. ginseng. Plant and the associated soil samples were collected from ten geographical locations within the latitudinalrange of 27.09°N - 42.39°N and longitudinal range of 99.28°E - 128.19°E. 12 secondary metabolites in P. ginseng toots were measured. And the correlation between secondary metabolites with a series of soil properties and 7 climatic factors were investigated through Pearson's correlation, mantel test, random forest and pathway analysis. The results revealed that climatic factors were stronger drivers of ginseng secondary metabolite profile than soil nutrients. Specifically, temperature seasonality (TS) and soil available phosphorus (AP) were the most effective environments to have significantly and positively influence on the secondary metabolites of ginseng. This findings contribute to identifying optimal cultivation areas for P. ginseng, and hopefully establishing methods for interfering/shaping microclimate for cultivating high-quality P. ginseng.
Collapse
Affiliation(s)
- Dehua Wu
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Feng Xiong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Hongyang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Siqi Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Jitong Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Dan Zhao
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jian Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Wenqi Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Lanping Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China.
| | - Chuanzhi Kang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China.
| |
Collapse
|
13
|
Vashishth S, Ambasta RK, Kumar P. Deciphering the microbial map and its implications in the therapeutics of neurodegenerative disorder. Ageing Res Rev 2024; 100:102466. [PMID: 39197710 DOI: 10.1016/j.arr.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Every facet of biological anthropology, including development, ageing, diseases, and even health maintenance, is influenced by gut microbiota's significant genetic and metabolic capabilities. With current advancements in sequencing technology and with new culture-independent approaches, researchers can surpass older correlative studies and develop mechanism-based studies on microbiome-host interactions. The microbiota-gut-brain axis (MGBA) regulates glial functioning, making it a possible target for the improvement of development and advancement of treatments for neurodegenerative diseases (NDDs). The gut-brain axis (GBA) is accountable for the reciprocal communication between the gastrointestinal and central nervous system, which plays an essential role in the regulation of physiological processes like controlling hunger, metabolism, and various gastrointestinal functions. Lately, studies have discovered the function of the gut microbiome for brain health-different microbiota through different pathways such as immunological, neurological and metabolic pathways. Additionally, we review the involvement of the neurotransmitters and the gut hormones related to gut microbiota. We also explore the MGBA in neurodegenerative disorders by focusing on metabolites. Further, targeting the blood-brain barrier (BBB), intestinal barrier, meninges, and peripheral immune system is investigated. Lastly, we discuss the therapeutics approach and evaluate the pre-clinical and clinical trial data regarding using prebiotics, probiotics, paraprobiotics, fecal microbiota transplantation, personalised medicine, and natural food bioactive in NDDs. A comprehensive study of the GBA will felicitate the creation of efficient therapeutic approaches for treating different NDDs.
Collapse
Affiliation(s)
- Shrutikirti Vashishth
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, School of Medicine, VUMC, Vanderbilt University, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
14
|
Chen Q, Zou J, Shi Y, Zhang X, Guo D, Luan F, Sun J. Chinese patent medicine Tongxinluo: A review on chemical constituents, pharmacological activities, quality control, and clinical applications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155674. [PMID: 38901283 DOI: 10.1016/j.phymed.2024.155674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Cardiovascular and cerebrovascular disease (CCVD) is the leading cause of morbidity and mortality worldwide, imposing a significant economic burden on individuals and societies. For the past few years, Traditional Chinese Medicine (TCM) has attracted much attention due to its advantages such as fewer side effects in the treatment of CCVD. TXL has shown great promise in the treatment of CCVD. PURPOSE This paper aims to provide a comprehensive introduction to TXL, covering its chemical constituents, quality control, pharmacological properties, adverse reactions, and clinical applications through an extensive search of relevant electronic databases while discussing its current challenges and provides opinions for future study. METHODS The following electronic databases were searched up to 2023: "TXL", "CCVD", "Chemical constituents", "Quality control" and "Pharmacological properties" were entered as keywords in PubMed, Web of Science, Google Scholar and China National Knowledge Infrastructure Database and WANFANG DATA databases. The PRISMA guidelines were followed in this review process. RESULTS Studies have confirmed that TXL is effective in treating patients with CCVD and has fewer adverse effects. The aim of this review is to explore TXL anti-CCVD effects in relation to oxidative stress, lipid metabolism and enhanced cardiac function. This review also provides additional information on safety issues. CONCLUSION TXL plays a key role in the treatment of CCVD by regulating various pathways such as lipid metabolism, oxidative stress and inflammation. However, further clinical trials and animal experiments are needed to provide more evidence and recommendations for its clinical application. This article provides an overview of TXL research to inform and inspire future studies.
Collapse
Affiliation(s)
- Qin Chen
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China; School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China; School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China; School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China; School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China; School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China; School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China; School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
15
|
Xu Y, Bian S, Shang L, Wang X, Bai X, Zhang W. Phytochemistry, pharmacological effects and mechanism of action of volatile oil from Panax ginseng C.A.Mey: a review. Front Pharmacol 2024; 15:1436624. [PMID: 39193331 PMCID: PMC11347760 DOI: 10.3389/fphar.2024.1436624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Panax ginseng (P. ginseng), a traditional and highly valued botanical drug, has been used for thousands of years and is known around the world for its uses in food, medicine, and healthcare. The comprehensive study of P. ginseng is crucial for the quality assurance of medicinal materials and optimal resource utilization. Despite being present in trace amounts, P. ginseng volatile oil has a wide range of chemical metabolites with important medicinal potential. The volatile oil has shown promise in defending the cardiovascular system, as well as in terms of its ability of antibacterial, anti-aging, anti-platelet coagulation, anti-inflammatory, support the nervous system nutritionally, and shield it from harm. Due to its low composition and lack of thorough investigation, P. ginseng volatile oil's therapeutic applicability is still restricted although it exhibited many benefits. This review aims to provide insights into the chemical composition, extraction processes, pharmacological effects, and mechanisms of action of P. ginseng volatile oil, and to provide theoretical support and guidelines for future research and clinical application.
Collapse
Affiliation(s)
- Yanan Xu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shuai Bian
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
| | - LiYing Shang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xin Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyuan Bai
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Wei Zhang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
16
|
Tang X, Zhu M, Zhu Z, Tang W, Zhang H, Chen Y, Liu F, Zhang Y. Ginsenoside Re inhibits non-small cell lung cancer progression by suppressing macrophage M2 polarization induced by AMPKα1/STING positive feedback loop. Phytother Res 2024. [PMID: 39119862 DOI: 10.1002/ptr.8309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/29/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
Tumor-associated macrophages (TAMs) in non-small cell lung cancer (NSCLC) promote tumor cell metastasis by interacting with cancer cells. Ginsenoside Re is capable of modulating the host immune system and exerts anticancer effects through multiple pathways. Both AMPK and STING are involved in the regulation of MΦ polarization, thereby affecting tumor progression. However, whether there is a regulatory relationship between them and its effect on MΦ polarization and tumor progression is unclear. The aim of this study was to provide mechanistic evidence that ginsenoside Re modulates MΦ phenotype through inhibition of the AMPKα1/STING positive feedback loop and thus exerts an antimetastatic effect in NSCLC immunotherapy. Cell culture models and conditioned media (CM) systems were constructed, and the treated MΦ were analyzed by database analysis, RT-PCR, Western blotting, flow cytometry, and immunofluorescence to determine the regulatory relationship between AMPK and STING and the effects of ginsenoside Re on MΦ polarization and tumor cells migration. The effects of ginsenoside Re (10, 20 mg/kg/day) on TAMs phenotype as well as tumor progression in mice were assessed by HE staining, immunohistochemical staining, and Western blotting. In this study, AMPKα1/STING positive feedback loop in NSCLC TAMs induced M2 type polarization, which in turn promoted NSCLC cell migration. In addition, ginsenoside Re was discovered to inhibit M2-like MΦ polarization, thereby inhibiting NSCLC cell migration. Mechanistically, Re was able to inhibit the formation of the AMPKα1/STING positive feedback loop, thereby inhibiting its induction of M2-like MΦ and consequently inhibiting the epithelial-mesenchymal transition (EMT) process of NSCLC cells. Furthermore, in mouse models, Re was found to suppress LLC tumor growth and colonization by inhibiting M2-type polarization of TAMs. Our finding indicates that ginsenoside Re can effectively modulate MΦ polarization and thus play an important role in antimetastatic immunotherapy of NSCLC.
Collapse
Affiliation(s)
- Xiaoyu Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Man Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Zeren Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Wenjun Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Hongmei Zhang
- Department of Endocrinology, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Yanbin Chen
- Shaanxi Buchang Pharmaceutical Co. Ltd, Xi'an, China
| | - Feng Liu
- Shaanxi Buchang Pharmaceutical Co. Ltd, Xi'an, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
17
|
Lin Z, Sun L. Research advances in the therapy of metabolic syndrome. Front Pharmacol 2024; 15:1364881. [PMID: 39139641 PMCID: PMC11319131 DOI: 10.3389/fphar.2024.1364881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Metabolic syndrome refers to the pathological state of metabolic disorder of protein, fat, carbohydrate, and other substances in the human body. It is a syndrome composed of a group of complex metabolic disorders, whose pathogenesis includes multiple genetic and acquired entities falling under the category of insulin resistance and chronic low-grade inflammationand. It is a risk factor for increased prevalence and mortality from diabetes and cardiovascular disease. Cardiovascular diseases are the predominant cause of morbidity and mortality globally, thus it is imperative to investigate the impact of metabolic syndrome on alleviating this substantial disease burden. Despite the increasing number of scientists dedicating themselves to researching metabolic syndrome in recent decades, numerous aspects of this condition remain incompletely understood, leaving many questions unanswered. In this review, we present an epidemiological analysis of MetS, explore both traditional and novel pathogenesis, examine the pathophysiological repercussions of metabolic syndrome, summarize research advances, and elucidate the mechanisms underlying corresponding treatment approaches.
Collapse
Affiliation(s)
- Zitian Lin
- Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
- Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang University, Haining, China
| | - Luning Sun
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
18
|
Yin Y, Wang Z, Yang Y, Shen M, Hu H, Chen C, Zhou H, Li Z, Wu S. Ginsenoside Rb1 regulates CPT1A deacetylation to inhibit intramuscular fat infiltration after rotator cuff tear. iScience 2024; 27:110331. [PMID: 39071885 PMCID: PMC11277379 DOI: 10.1016/j.isci.2024.110331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/23/2024] [Accepted: 06/18/2024] [Indexed: 07/30/2024] Open
Abstract
Fat infiltration (FI) in the rotator cuff muscle is associated with poor clinical outcomes and failed repair of rotator cuff tears (RCTs) in patients. In this study, we aimed to investigate the function of ginsenoside Rb1 in inhibiting FI in muscles after RCT and its underlying molecular mechanism. After TT modeling, mice treated with Rb1 for 6 weeks showed lower FI in the SS muscle compared with mice in the control groups and those treated with other ginsenoside components. Mechanically, Rb1 binds to the NAD+ domain of SIRT1, activating its expression and enzyme activity. This activation stimulates the deacetylation of CPT1A at site K195, thereby promoting fatty acid β-oxidation in adipocyte cells and improving lipolysis. These findings suggest that Rb1 is a potential therapeutic component for improving the outcomes of patients with RCTs.
Collapse
Affiliation(s)
- Yuesong Yin
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha 410013, China
| | - Zili Wang
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha 410013, China
| | - Yian Yang
- Department of Oncology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha 410013, China
| | - Minren Shen
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha 410013, China
| | - Hai Hu
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha 410013, China
| | - Chuanshun Chen
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha 410013, China
| | - Hecheng Zhou
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha 410013, China
| | - Zheng Li
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Song Wu
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha 410013, China
| |
Collapse
|
19
|
Feng C, Song J, Deng L, Zhang J, Lian X, Zhen Z, Liu J. Ginsenoside Rb1 reduces oxidative/carbonyl stress damage and dysfunction of RyR2 in the heart of streptozotocin-induced diabetic rats. BMC Cardiovasc Disord 2024; 24:333. [PMID: 38961333 PMCID: PMC11221176 DOI: 10.1186/s12872-024-04005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Oxidative stress may contribute to cardiac ryanodine receptor (RyR2) dysfunction in diabetic cardiomyopathy. Ginsenoside Rb1 (Rb1) is a major pharmacologically active component of ginseng to treat cardiovascular diseases. Whether Rb1 treat diabetes injured heart remains unknown. This study was to investigate the effect of Rb1 on diabetes injured cardiac muscle tissue and to further investigate its possible molecular pharmacology mechanisms. METHODS Male Sprague-Dawley rats were injected streptozotocin solution for 2 weeks, followed 6 weeks Rb1 or insulin treatment. The activity of SOD, CAT, Gpx, and the levels of MDA was measured; histological and ultrastructure analyses, RyR2 activity and phosphorylated RyR2(Ser2808) protein expression analyses; and Tunel assay were performed. RESULTS There was decreased activity of SOD, CAT, Gpx and increased levels of MDA in the diabetic group from control. Rb1 treatment increased activity of SOD, CAT, Gpx and decreased the levels of MDA as compared with diabetic rats. Neutralizing the RyR2 activity significantly decreased in diabetes from control, and increased in Rb1 treatment group from diabetic group. The expression of phosphorylation of RyR2 Ser2808 was increased in diabetic rats from control, and were attenuated with insulin and Rb1 treatment. Diabetes increased the apoptosis rate, and Rb1 treatment decreased the apoptosis rate. Rb1 and insulin ameliorated myocardial injury in diabetic rats. CONCLUSIONS These data indicate that Rb1 could be useful for mitigating oxidative damage, reduced phosphorylation of RyR2 Ser2808 and decreased the apoptosis rate of cardiomyocytes in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Chunpeng Feng
- Guang'anmen Hospital of China Academy of Chinese Medical Sciences, No 5. Beixiange Street, Beijing, 100053, China
| | - Jianping Song
- International Campus, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Lan Deng
- Guang'anmen Hospital of China Academy of Chinese Medical Sciences, No 5. Beixiange Street, Beijing, 100053, China
| | - Jinfeng Zhang
- Jingmen Hospital of Traditional Chinese Medicine, Jingmen, China
| | - Xinyi Lian
- Guang'anmen Hospital of China Academy of Chinese Medical Sciences, No 5. Beixiange Street, Beijing, 100053, China
| | - Zhong Zhen
- Guang'anmen Hospital of China Academy of Chinese Medical Sciences, No 5. Beixiange Street, Beijing, 100053, China
| | - Jinfeng Liu
- Guang'anmen Hospital of China Academy of Chinese Medical Sciences, No 5. Beixiange Street, Beijing, 100053, China.
| |
Collapse
|
20
|
Huang YW, Luo F, Zhang M, Wang L, Meng W, Hu D, Yang J, Sheng J, Wang X. 20( S )-Protopanaxatriol Improves Atherosclerosis by Inhibiting Low-Density Lipoprotein Receptor Degradation in ApoE KO Mice. J Cardiovasc Pharmacol 2024; 84:45-57. [PMID: 38922585 PMCID: PMC11230660 DOI: 10.1097/fjc.0000000000001566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/24/2024] [Indexed: 06/27/2024]
Abstract
ABSTRACT Atherosclerosis (AS) is a chronic progressive disease caused by various factors and causes various cerebrovascular and cardiovascular diseases (CVDs). Reducing the plasma levels of low-density lipoprotein cholesterol is the primary goal in preventing and treating AS. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a crucial role in regulating low-density lipoprotein cholesterol metabolism. Panax notoginseng has potent lipid-reducing effects and protects against CVDs, and its saponins induce vascular dilatation, inhibit thrombus formation, and are used in treating CVDs. However, the anti-AS effect of the secondary metabolite, 20( S )-protopanaxatriol (20( S )-PPT), remains unclear. In this study, the anti-AS effect and molecular mechanism of 20( S )-PPT were investigated in vivo and in vitro by Western blotting, real-time polymerase chain reaction, enzyme-linked immunosorbent assay, immunofluorescence staining, and other assays. The in vitro experiments revealed that 20( S )-PPT reduced the levels of PCSK9 in the supernatant of HepG2 cells, upregulated low-density lipoprotein receptor protein levels, promoted low-density lipoprotein uptake by HepG2 cells, and reduced PCSK9 mRNA transcription by upregulating the levels of forkhead box O3 protein and mRNA and decreasing the levels of HNF1α and SREBP2 protein and mRNA. The in vivo experiments revealed that 20( S )-PPT upregulated aortic α-smooth muscle actin expression, increased the stability of atherosclerotic plaques, and reduced aortic plaque formation induced by a high-cholesterol diet in ApoE -/- mice (high-cholesterol diet-fed group). Additionally, 20( S )-PPT reduced the aortic expression of CD68, reduced inflammation in the aortic root, and alleviated the hepatic lesions in the high-cholesterol diet-fed group. The study revealed that 20( S )-PPT inhibited low-density lipoprotein receptor degradation via PCSK9 to alleviate AS.
Collapse
Affiliation(s)
- Ye-wei Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Fang Luo
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Meng Zhang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Life and Environment Science, Huangshan University, Huangshan, China
| | - Litian Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - WenLuer Meng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Dandan Hu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Science, Yunnan Agricultural University, Kunming, China
| | - Jinbo Yang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China; and
| | - Xuanjun Wang
- School of Chinese Materia Medical and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
21
|
Guo Y, Han Z, Zhang J, Lu Y, Li C, Liu G. Development of a high-speed and ultrasensitive UV/Vis-CM for detecting total triterpenes in traditional Chinese medicine and its application. Heliyon 2024; 10:e32239. [PMID: 38882362 PMCID: PMC11180301 DOI: 10.1016/j.heliyon.2024.e32239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
This study proposes a novel colorimetric method based on the ultraviolet/visible spectrophotometry-colorimetric method (UV/Vis-CM) for detecting and quantifying total triterpenoids in traditional Chinese medicine. By incorporating the colourants 2-hydroxy-5-methylbenzaldehyde and concentrated sulfuric acid, triterpenoid compounds colour development became more sensitive, and the detection accuracy was significantly improved. 2-hydroxy-5-methylbenzaldehyde and concentrated sulfuric acid were incorporated in a 1:3 vol ratio at room temperature to react with the total triterpenes for 25 min, incorporated to an ice bath for 5 min, and then detected at the optimal absorption wavelength. The accuracy and reliability of this method were verified by comparison with high-performance liquid chromatography and four other colorimetric methods. Additionally, this approach has the advantages of not requiring heating during operation, high sensitivity, short usage time, low solvent usage, and low equipment costs. This study not only offers a reliable method for detecting total triterpenes in traditional Chinese medicine but also offers a rapid detection tool for on-site testing and large-scale screening, laying a foundation for the modernization of traditional Chinese medicine research, quality control, and drug development.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhe Han
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jingwei Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yue Lu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Chunfeng Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Guiyan Liu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
22
|
Zhang YL, Chen SM, Song YJ, Islam MA, Rao PL, Zhu MJ, Gu WY, Xu Y, Xu HX. Red ginseng ameliorates lipotoxicity-induced renal fibrosis in hyperuricemia mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118014. [PMID: 38460576 DOI: 10.1016/j.jep.2024.118014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic kidney disease can be caused by numerous diseases including obesity and hyperuricemia (HUA). Obesity may exacerbate the renal injury caused by HUA. Red ginseng, a steamed products of Panax ginseng Meyer root, is known for its remarkable efficacy in improving metabolic syndrome, such as maintaining lipid metabolic balance. However, the role of red ginseng on hyperuricemia-induced renal injury in obese cases remains unclear. AIM OF THE STUDY This study aimed to investigate the action of red ginseng extract (RGE) on lipotoxicity-induced renal injury in HUA mice. MATERIALS AND METHODS A high-fat diet (HFD)-induced obesity model was employed to initially investigate the effects of RGE on body weight, TC, OGTT, renal lipid droplets, and renal function indices such as uric acid, creatinine, and urea nitrogen. Renal structural improvement was demonstrated by H&E staining. Subsequently, an animal model combining obesity and HUA was established to further study the impact of RGE on OAT1 and ACC1 expression levels. The mechanisms underlying renal injury regulation by RGE were postulated on the basis of RNA sequencing, which was verified by immunohistochemical (including F4/80, Ki67, TGF-β1, α-SMA, and E-cadherin), Masson, and Sirius red staining. RESULTS RGE modulated HFD-induced weight gain, glucose metabolism, and abnormalities of uric acid, urea nitrogen, and creatinine. RGE alleviated the more severe renal histopathological changes induced by obesity combined with HUA, with down-regulated the protein levels of ACC1, F4/80, Ki67, TGF-β1, and α-SMA, and up-regulated OAT1 and E-cadherin. CONCLUSIONS RGE has ameliorative effects on chronic kidney disease caused by obesity combined with HUA by maintaining lipid balance and reducing renal inflammation and fibrosis.
Collapse
Affiliation(s)
- Ying-Ling Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Si-Min Chen
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Yi-Jie Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Md Ariful Islam
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Pei-Li Rao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Meng-Jie Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Wen-Yi Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China.
| | - Hong-Xi Xu
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China; Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
23
|
Kim TH. Ginsenosides for the treatment of insulin resistance and diabetes: Therapeutic perspectives and mechanistic insights. J Ginseng Res 2024; 48:276-285. [PMID: 38707641 PMCID: PMC11068994 DOI: 10.1016/j.jgr.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/26/2024] [Accepted: 03/04/2024] [Indexed: 05/07/2024] Open
Abstract
Diabetes mellitus (DM) is a systemic disorder of energy metabolism characterized by a sustained elevation of blood glucose in conjunction with impaired insulin action in multiple peripheral tissues (i.e., insulin resistance). Although extensive research has been conducted to identify therapeutic targets for the treatment of DM, its global prevalence and associated mortailty rates are still increasing, possibly because of challenges related to long-term adherence, limited efficacy, and undesirable side effects of currently available medications, implying an urgent need to develop effective and safe pharmacotherapies for DM. Phytochemicals have recently drawn attention as novel pharmacotherapies for DM based on their clinical relevance, therapeutic efficacy, and safety. Ginsenosides, pharmacologically active ingredients primarily found in ginseng, have long been used as adjuvants to traditional medications in Asian countries and have been reported to exert promising therapeutic efficacy in various metabolic diseases, including hyperglycemia and diabetes. This review summarizes the current pharmacological effects of ginsenosides and their mechanistic insights for the treatment of insulin resistance and DM, providing comprehensive perspectives for the development of novel strategies to treat DM and related metabolic complications.
Collapse
Affiliation(s)
- Tae Hyun Kim
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Di Y, Zhao S, Fan H, Li W, Jiang G, Wang Y, Li C, Wang W, Wang J. Mass Production of Rg1-Loaded Small Extracellular Vesicles Using a 3D Bioreactor System for Enhanced Cardioprotective Efficacy of Doxorubicin-Induced Cardiotoxicity. Pharmaceutics 2024; 16:593. [PMID: 38794255 PMCID: PMC11126075 DOI: 10.3390/pharmaceutics16050593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Small extracellular vesicles (sEVs) obtained from human umbilical cord mesenchymal stromal cells (MSCs) have shown cardioprotective efficacy in doxorubicin-induced cardiotoxicity (DIC). However, their clinical application is limited due to the low yield and high consumption. This study aims to achieve large-scale production of sEVs using a three-dimensional (3D) bioreactor system. In addition, sEVs were developed to deliver Ginsenoside Rg1 (Rg1), a compound derived from traditional Chinese medicine, Ginseng, that has cardioprotective properties but limited bioavailability, to enhance the treatment of DIC. METHODS The 3D bioreactor system with spinner flasks was used to expand human umbilical cord MSCs and collect MSC-conditioned medium. Subsequently, sEVs were isolated from the conditioned medium using differential ultra-centrifugation (dUC). The sEVs were loaded with Ginsenoside Rg1 by electroporation and evaluated for cardioprotective efficacy using Cell Counting Kit-8 (CCK-8) analysis, Annexin V/PI staining and live cell count of H9c2 cells under DIC. RESULTS Using the 3D bioreactor system with spinner flasks, the expansion of MSCs reached ~600 million, and the production of sEVs was up to 2.2 × 1012 particles in five days with significantly reduced bench work compared to traditional 2D flasks. With the optimized protocol, the Ginsenoside Rg1 loading efficiency of sEVs by electroporation was ~21%, higher than sonication or co-incubation. Moreover, Rg1-loaded sEVs had attenuated DOX-induced cardiotoxicity with reduced apoptosis compared to free Ginsenoside Rg1 or sEVs. CONCLUSIONS The 3D culture system scaled up the production of sEVs, which facilitated the Rg1 delivery and attenuated cardiomyocyte apoptosis, suggesting a potential treatment of DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yunfeng Di
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China (G.J.)
| | - Shuang Zhao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China (G.J.)
| | - Huilan Fan
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China (G.J.)
| | - Wei Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China (G.J.)
| | - Guangjian Jiang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China (G.J.)
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Yong Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China (G.J.)
- Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Ministry of Education, Beijing 100029, China;
| | - Chun Li
- Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Ministry of Education, Beijing 100029, China;
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Wei Wang
- Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Ministry of Education, Beijing 100029, China;
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jingyu Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China (G.J.)
| |
Collapse
|
25
|
Elsaman T, Muddathir AM, Mohieldin EAM, Batubara I, Rahminiwati M, Yamauchi K, Mohamed MA, Asoka SF, Büsselberg D, Habtemariam S, Sharifi-Rad J. Ginsenoside Rg5 as an anticancer drug: a comprehensive review on mechanisms, structure-activity relationship, and prospects for clinical advancement. Pharmacol Rep 2024; 76:287-306. [PMID: 38526651 DOI: 10.1007/s43440-024-00586-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
Cancer remains one of the leading causes of death in the world. Despite the considerable success of conventional treatment strategies, the incidence and mortality rates are still high, making developing new effective anticancer therapies an urgent priority. Ginsenoside Rg5 (Rg5) is a minor ginsenoside constituent obtained exclusively from ginseng species and is known for its broad spectrum of pharmacological activities. This article aimed to comprehensively review the anticancer properties of Rg5, focusing on action mechanisms, structure-activity relationship (SAR), and pharmacokinetics attributes. The in vitro and in vivo activities of Rg5 have been proven against several cancer types, such as breast, liver, lung, bone, and gastrointestinal (GI) cancers. The modulation of multiple signaling pathways critical for cancer growth and survival mediates these activities. Nevertheless, human clinical studies of Rg5 have not been addressed before, and there is still considerable ambiguity regarding its pharmacokinetics properties. In addition, a significant shortage in the structure-activity relationship (SAR) of Rg5 has been identified. Therefore, future efforts should focus on further optimization by performing extensive SAR studies to uncover the structural features essential for the potent anticancer activity of Rg5. Thus, this review highlights the value of Rg5 as a potential anticancer drug candidate and identifies the research areas requiring more investigation.
Collapse
Affiliation(s)
- Tilal Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf, Saudi Arabia
| | - Ali Mahmoud Muddathir
- Department of Horticulture, Faculty of Agriculture, University of Khartoum, Shambat, 13314, Khartoum North, Sudan
| | | | - Irmanida Batubara
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University (Bogor Agricultural University), Bogor, Indonesia
- Tropical Biopharmaca Research Center, IPB University (Bogor Agricultural University), Bogor, Indonesia
| | - Min Rahminiwati
- Division of Pharmacology, School of Veterinary Medicine and Biomedical Science, IPB University, Jln Agathis Dramaga, Bogor, West Java, 16680, Indonesia
- Tropical Biopharmaca Research Center, IPB University, Jl. Taman Kencana No. 3, Bogor, West Java, 16128, Indonesia
| | - Kosei Yamauchi
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Magdi Awadalla Mohamed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf, Saudi Arabia
| | - Shadila Fira Asoka
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University (Bogor Agricultural University), Bogor, Indonesia
- Tropical Biopharmaca Research Center, IPB University (Bogor Agricultural University), Bogor, Indonesia
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar
| | - Solomon Habtemariam
- Pharmacognosy Research and Herbal Analysis Services UK, Central Avenue , Chatham, Kent, ME4 4TB, UK
| | | |
Collapse
|
26
|
Guo B, Yu Y, Wang M, Li R, He X, Tang S, Liu Q, Mao Y. Targeting the JAK2/STAT3 signaling pathway with natural plants and phytochemical ingredients: A novel therapeutic method for combatting cardiovascular diseases. Biomed Pharmacother 2024; 172:116313. [PMID: 38377736 DOI: 10.1016/j.biopha.2024.116313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024] Open
Abstract
The aim of this article is to introduce the roles and mechanisms of the JAK2/STAT3 pathway in various cardiovascular diseases, such as myocardial fibrosis, cardiac hypertrophy, atherosclerosis, myocardial infarction, and myocardial ischemiareperfusion. In addition, the effects of phytochemical ingredients and different natural plants, mainly traditional Chinese medicines, on the regulation of different cardiovascular diseases via the JAK2/STAT3 pathway are discussed. Surprisingly, the JAK2 pathway has dual roles in different cardiovascular diseases. Future research should focus on the dual regulatory effects of different phytochemical ingredients and natural plants on JAK2 to pave the way for their use in clinical trials.
Collapse
Affiliation(s)
- Bing Guo
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China
| | - Yunfeng Yu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Min Wang
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Ronghui Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xuan He
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China
| | - Siqin Tang
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China
| | - Qili Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Yilin Mao
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China.
| |
Collapse
|
27
|
Ma K, Liu H, Guo L, Li J, Lei Y, Li X, Sun L, Yang L, Yuan T, Wang C, Zhang D, Li J, Liu M, Hua Y, Zhang L. Comparison of metabolic syndrome prevalence and characteristics using five different definitions in China: a population-based retrospective study. Front Public Health 2024; 12:1333910. [PMID: 38439751 PMCID: PMC10909998 DOI: 10.3389/fpubh.2024.1333910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Background Metabolic syndrome (MetS) is on the rise in developing countries and is characterized by a series of indications of metabolic disturbance. However, the prevalence of MetS varies under different definitions. The study aimed to compare five definitions of MetS in the China adult population, to explore their prevalence, characteristics and agreement. Methods The data for the retrospective study came from the China Health and Retirement Longitudinal Study (CHARLS), consisting of 9,588 participants (≥45). MetS definitions from International Diabetes Federation (IDF) (2006), National Cholesterol Education Program Adult Treatment Panel III (ATPIII) (2005), National Cholesterol Education Program Adult Treatment Panel III (ATPIII) (2001), Chinese Diabetes society (CDS) (2004) and the World Health Organization (WHO) (1999). We used binary and multivariable logistic analysis to explore factors connected with MetS. Results The five definitions of MetS led to different prevalence of MetS:34.52% by IDF (2006), 38.63% by ATP (2005), 25.94% by ATP (2001), 26.31% by CDS (2004), 21.57% by WHO (1999). According to the definition of IDF (2006) (22.32% vs. 45.06%), ATPIII (2005) definition (27.99% vs. 47.82%), ATPIII (2001) definition (15.37% vs. 35.07%), CDS (2004) definition (19.96% vs. 31.80%), and WHO (1999) definition (17.44% vs. 25.14%), the prevalence of MetS in men was low but in women was high. The agreement between the five definitions for men was good except for the IDF (2006) definition and ATPIII (2001) definition (kappa = 0.51), with kappa values from 0.64 to 0.85. For women, the agreement between the five definitions was good ranging from 0.67 to 0.95, however, except for the definition of CDS (2004) and the definition of IDF (2006) (kappa = 0.44), the definition of WHO (1999) and the definition of IDF (2006) (kappa = 0.55), and the definition of WHO (1999) and the definition of ATPIII (2005) (kappa = 0.54). Binary logistic analysis indicated that although the impact and relevance varied by sex and definition, age, education, marital status, current residence, current smoking, alcohol using, taking activities and number of chronic diseases were factors connected to MetS. Conclusion the prevalence and characteristics of the five definitions of MetS are different in the Chinese population. Therefore, it is vital to use the same definition for a country to diagnose MetS. On the other side, a lower prevalence in men than in women and the consistency of five MetS definitions are good in men but relatively poor in women.
Collapse
Affiliation(s)
- Keli Ma
- Department of Graduate School, Wannan Medical College, Wuhu, Anhui, China
| | - Haiyang Liu
- Student Health Center, Wannan Medical College, Wuhu, Anhui, China
| | - Leilei Guo
- Department of Surgical Nursing, School of Nursing, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jinlong Li
- Key Laboratory of Occupational Health and Safety for Coal Industry in Hebei Province, Department of Occupational and Environmental Health, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yunxiao Lei
- Obstetrics and Gynecology Nursing, School of Nursing, Wannan Medical College, Wuhu, Anhui, China
| | - Xiaoping Li
- Department of Emergency and Critical Care Nursing, School of Nursing, Wannan Medical College, Wuhu, Anhui, China
| | - Lu Sun
- Department of Emergency and Critical Care Nursing, School of Nursing, Wannan Medical College, Wuhu, Anhui, China
| | - Liu Yang
- Department of Internal Medicine Nursing, School of Nursing, Wannan Medical College, Wuhu, Anhui, China
| | - Ting Yuan
- Obstetrics and Gynecology Nursing, School of Nursing, Wannan Medical College, Wuhu, Anhui, China
| | - Congzhi Wang
- Department of Internal Medicine Nursing, School of Nursing, Wannan Medical College, Wuhu, Anhui, China
| | - Dongmei Zhang
- Department of Pediatric Nursing, School of Nursing, Wannan Medical College, Wuhu, Anhui, China
| | - Jing Li
- Department of Surgical Nursing, School of Nursing, Wannan Medical College, Wuhu, Anhui, China
| | - Mingming Liu
- Department of Surgical Nursing, School of Nursing, Wannan Medical College, Wuhu, Anhui, China
| | - Ying Hua
- Rehabilitation Nursing, School of Nursing, Wannan Medical College, Wuhu, Anhui, China
| | - Lin Zhang
- Department of Internal Medicine Nursing, School of Nursing, Wannan Medical College, Wuhu, Anhui, China
| |
Collapse
|
28
|
Cho W, Oh H, Abd El-Aty AM, Hacimuftuoglu A, Jeong JH, Jung TW. Therapeutic potential of ginsenoside compound K in managing tenocyte apoptosis and extracellular matrix damage in diabetic tendinopathy. Tissue Cell 2024; 86:102275. [PMID: 37979397 DOI: 10.1016/j.tice.2023.102275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
The prevalence of tendinopathy in patients with diabetes is well documented. Despite efforts to improve diabetes management, there is a lack of research on therapeutic agents targeting the core features of tendinopathy, namely, tenocyte apoptosis and extracellular matrix (ECM) damage. In this study, we investigated the potential of ginsenoside compound K (CK), known for its antidiabetic properties, to mitigate tenocyte apoptosis, inflammation, oxidative stress, and the metalloproteinase (MMP) system under hyperglycemic conditions. Our research also aimed to unravel the molecular mechanism underlying the effects of CK. The assessment of apoptosis involved observing intracellular chromatin condensation and measuring caspase 3 activity. To gauge oxidative stress, we examined cellular ROS levels and hydrogen peroxide and malondialdehyde concentrations. Western blotting was employed to determine the expression of various proteins. Our findings indicate that CK treatment effectively countered high glucose-induced apoptosis, inflammation, and oxidative stress in cultured tenocytes. Furthermore, CK normalized the expression of MMP-9, MMP-13, and TIMP-1. Notably, CK treatment boosted the expression of PPARγ and antioxidant enzymes. We conducted small interfering (si) RNA experiments targeting PPARγ, revealing its role in mediating CK's effects on tendinopathy features in hyperglycemic tenocytes. In conclusion, these in vitro results offer valuable insights into the potential therapeutic role of CK in managing tendinopathy among individuals with diabetes. By addressing crucial aspects of tendinopathy, CK presents itself as a promising avenue for future research and treatment development in this domain.
Collapse
Affiliation(s)
- Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, the Republic of Korea
| | - Heeseung Oh
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, the Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey.
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, the Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, the Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, the Republic of Korea.
| |
Collapse
|
29
|
Guan Y, Tang G, Li L, Shu J, Zhao Y, Huang L, Tang J. Herbal medicine and gut microbiota: exploring untapped therapeutic potential in neurodegenerative disease management. Arch Pharm Res 2024; 47:146-164. [PMID: 38225532 PMCID: PMC10830735 DOI: 10.1007/s12272-023-01484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
The gut microbiota that exists in the human gastrointestinal tract is incredibly important for the maintenance of general health as it contributes to multiple aspects of host physiology. Recent research has revealed a dynamic connection between the gut microbiota and the central nervous system, that can influence neurodegenerative diseases (NDs). Indeed, imbalances in the gut microbiota, or dysbiosis, play a vital role in the pathogenesis and progression of human diseases, particularly NDs. Herbal medicine has been used for centuries to treat human diseases, including NDs. These compounds help to relieve symptoms and delay the progression of NDs by improving intestinal barrier function, reducing neuroinflammation, and modulating neurotransmitter production. Notably, herbal medicine can mitigate the progression of NDs by regulating the gut microbiota. Therefore, an in-depth understanding of the potential mechanisms by which herbal medicine regulates the gut microbiota in the treatment of NDs can help explain the pathogenesis of NDs from a novel perspective and propose novel therapeutic strategies for NDs. In this review, we investigate the potential neuroprotective effects of herbal medicine, focusing on its ability to regulate the gut microbiota and restore homeostasis. We also highlight the challenges and future research priorities of the integration of herbal medicine and modern medicine. As the global population ages, access to this information is becoming increasingly important for developing effective treatments for these diseases.
Collapse
Affiliation(s)
- Yueyue Guan
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Guohua Tang
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Lei Li
- Department of Anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jianzhong Shu
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Yuhua Zhao
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Li Huang
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| | - Jun Tang
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| |
Collapse
|
30
|
Smirnova IE, Galimova ZI, Sapozhnikova TA, Khisamutdinova RY, Thi THN, Kazakova OB. New Dipterocarpol-Based Molecules with α-Glucosidase Inhibitory and Hypoglycemic Activity. Chembiochem 2024; 25:e202300716. [PMID: 37990648 DOI: 10.1002/cbic.202300716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Dammarane triterpenoids are affordable and bioactive natural metabolites with great structural potential, which makes them attractive sources for drug development. The aim of the study was to investigate the potency of new dipterocarpol derivatives for the treatment of diabetes. Two dammaranes (dipterocarpol and its 20(24)-diene derivative) were modified by a Claisen-Schmidt aldol condensation to afford C2(E)-arylidenes in good yields. The majority of the synthesized compounds exhibited an excellent-to-moderate inhibitory effect toward α-glucosidase (from S. saccharomyces), among them eight compounds showed IC50 values less than 10 μM. 3-Oxo-dammarane-2(E)-benzylidenes (holding p-hydroxy- 3 l and p-carbonyl- 3 m substituents) demonstrated the most potent α-glucosidase inhibition with IC50 0.753 and 0.204 μM, being 232- and 857-times more active than acarbose (IC50 174.90 μM), and a high level of NO inhibition in Raw 264.7 cells with IC50 of 1.75 and 4.57 μM, respectively. An in vivo testing of compound 3 m (in a dose of 20 mg/kg) on a model of streptozotocin-induced T1DM in rats showed a pronounced hypoglycemic activity, the ability to reduce effectively the processes of lipid peroxidation in liver tissue and decrease the excretion of glucose and pyruvic acid in the urine. Compound 3 m reduced the death of diabetic rats and preserved their motor activity.
Collapse
Affiliation(s)
- Irina E Smirnova
- Ufa Institute of Chemistry, UFRC RAS, 71, pr. Oktyabrya, Ufa, 450054, Russian Federation
| | - Zarema I Galimova
- Ufa Institute of Chemistry, UFRC RAS, 71, pr. Oktyabrya, Ufa, 450054, Russian Federation
| | - Tatyana A Sapozhnikova
- Ufa Institute of Chemistry, UFRC RAS, 71, pr. Oktyabrya, Ufa, 450054, Russian Federation
| | | | - Thu Ha Nguyen Thi
- Institute of Chemistry, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay Dist., Hanoi, Vietnam
| | - Oxana B Kazakova
- Ufa Institute of Chemistry, UFRC RAS, 71, pr. Oktyabrya, Ufa, 450054, Russian Federation
| |
Collapse
|
31
|
Zhang X, Yin T, Wang Y, Du J, Dou J, Zhang X. Effects of scutellarin on the mechanism of cardiovascular diseases: a review. Front Pharmacol 2024; 14:1329969. [PMID: 38259289 PMCID: PMC10800556 DOI: 10.3389/fphar.2023.1329969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Cardiovascular diseases represent a significant worldwide problem, jeopardizing individuals' physical and mental wellbeing as well as their quality of life as a result of their widespread incidence and fatality. With the aging society, the occurrence of Cardiovascular diseases is progressively rising each year. However, although drugs developed for treating Cardiovascular diseases have clear targets and proven efficacy, they still carry certain toxic and side effect risks. Therefore, finding safe, effective, and practical treatment options is crucial. Scutellarin is the primary constituent of Erigeron breviscapus (Vant.) Hand-Mazz. This article aims to establish a theoretical foundation for the creation and use of secure, productive, and logical medications for Scutellarin in curing heart-related illnesses. Additionally, the examination and analysis of the signal pathway and its associated mechanisms with regard to the employment of SCU in treating heart diseases will impart innovative resolving concepts for the treatment and prevention of Cardiovascular diseases.
Collapse
Affiliation(s)
- Xinyu Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tong Yin
- First Clinical Medical School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yincang Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiazhe Du
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jinjin Dou
- Department of Cardiovascular, The First Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiwu Zhang
- Experimental Training Centre, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
32
|
Fan W, Fan L, Wang Z, Mei Y, Liu L, Li L, Yang L, Wang Z. Rare ginsenosides: A unique perspective of ginseng research. J Adv Res 2024:S2090-1232(24)00003-1. [PMID: 38195040 DOI: 10.1016/j.jare.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Rare ginsenosides (Rg3, Rh2, C-K, etc.) refer to a group of dammarane triterpenoids that exist in low natural abundance, mostly produced by deglycosylation or side chain modification via physicochemical processing or metabolic transformation in gut, and last but not least, exhibited potent biological activity comparing to the primary ginsenosides, which lead to a high concern in both the research and development of ginseng and ginsenoside-related nutraceutical and natural products. Nevertheless, a comprehensive review on these promising compounds is not available yet. AIM OF REVIEW In this review, recent advances of Rare ginsenosides (RGs) were summarized dealing with the structurally diverse characteristics, traditional usage, drug discovery situation, clinical application, pharmacological effects and the underlying mechanisms, structure-activity relationship, toxicity, the stereochemistry properties, and production strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW A total of 144 RGs with diverse skeletons and bioactivities were isolated from Panax species. RGs acted as natural ligands on some specific receptors, such as bile acid receptors, steroid hormone receptors, and adenosine diphosphate (ADP) receptors. The RGs showed promising bioactivities including immunoregulatory and adaptogen-like effect, anti-aging effect, anti-tumor effect, as well as their effects on cardiovascular and cerebrovascular system, central nervous system, obesity and diabetes, and interaction with gut microbiota. Clinical trials indicated the potential of RGs, while high quality data remains inadequate, and no obvious side effects was found. The stereochemistry properties induced by deglycosylation at C (20) were also addressed including pharmacodynamics behaviors, together with the state-of-art analytical strategies for the identification of saponin stereoisomers. Finally, the batch preparation of targeted RGs by designated strategies including heating or acid/ alkaline-assisted processes, and enzymatic biotransformation and biosynthesis were discussed. Hopefully, the present review can provide more clues for the extensive understanding and future in-depth research and development of RGs, originated from the worldwide well recognized ginseng plants.
Collapse
Affiliation(s)
- Wenxiang Fan
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linhong Fan
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ziying Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuqi Mei
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Longchan Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
33
|
Wang L, Shao L, Huang STZ, Liu Z, Zhang W, Hu K, Huang WH. Metabolic characteristics of ginsenosides from Panax ginseng in rat feces mediated by gut microbiota. J Pharm Biomed Anal 2024; 237:115786. [PMID: 37837893 DOI: 10.1016/j.jpba.2023.115786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/21/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Ginsenosides in Panax ginseng are regarded to be functional ingredients for diverse pharmacological effects and orally administrated with very low absorption in the gastrointestinal tract to be metabolized by gut microbiota. However, in vivo metabolic characteristics of ginsenosides mediated by gut microbiota are not well-known. This study aimed to explore the metabolic profiles of ginsenosides in rat feces mediated by gut microbiota. Ginsenosides and metabolites were identified and relatively quantified by ultra-performance liquid chromatography tandem/quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS). As a result, eighty-four metabolites were identified in the normal control rat feces, while only thirty intermediates were found with very low yields in the pseudo-germ-free (GF) group. Similarly, the main bioconversion pathways of ginsenosides in vivo were the same deglycosylation reaction mediated by gut microbiota in vitro. The findings demonstrated significant differences in metabolic profiles between the normal control and pseudo-GF rats, which implied gut microbiota played an important role in the metabolism of ginsenosides.
Collapse
Affiliation(s)
- Lin Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China
| | - Li Shao
- Department of Pharmacognosy, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410128, China
| | - Su-Tian-Zi Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China
| | - Zhi Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China
| | - Kai Hu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Wei-Hua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
34
|
Ramineedu K, Sankaran KR, Mallepogu V, Rendedula DP, Gunturu R, Gandham S, Md SI, Meriga B. Thymoquinone mitigates obesity and diabetic parameters through regulation of major adipokines, key lipid metabolizing enzymes and AMPK/p-AMPK in diet-induced obese rats. 3 Biotech 2024; 14:16. [PMID: 38125651 PMCID: PMC10728404 DOI: 10.1007/s13205-023-03847-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/02/2023] [Indexed: 12/23/2023] Open
Abstract
The present study was designed to evaluate the anti-obesity and anti-hyperglycemic activity of Thymoquinone (ThyQ) isolated from Nigella sativa seeds. Male Wistar rats were randomly divided into five groups and fed either normal pellet diet or high-fat diet (HFD) for 18 weeks and water ad-libitum. Group I: normal pellet diet (NPD)-fed, Group II: high-fat diet (HFD)-fed, Group III: HFD-fed-ThyQ (20 mg)-treated, Group IV: HFD-fed-ThyQ (40 mg)-treated and Group V: HFD-fed-Orlistat (5 mg)-treated group. Intervention with ThyQ started from 12th week onwards to HFD-fed rats of group III and IV. ThyQ administration significantly (p < 0.01) mitigated body weight gain, blood glucose, insulin level, serum and liver lipids (except HDL) and improved glucose tolerance and insulin sensitivity as evaluated by oral glucose tolerance test (OGTT), homeostasis model assessment-insulin resistance (HOMA-IR) and insulin tolerance test (ITT). Furthermore, ThyQ significantly (p < 0.01) diminished serum aspartate transaminase (AST), alanine transaminase (ALT), acetyl-CoA carboxylase (ACC), plasma leptin, resistin and visfatin levels but enhanced lipoprotein lipase (LPL) and adiponectin levels. RT-PCR analysis demonstrated down-regulated mRNA expression of sterol regulatory element-binding proteins-1c (SREBP-1c), CCAAT/enhancer-binding protein-α (C/EBP-α) and fatty acid synthase (FAS) but upregulation of Insulin receptor substrate-1 (IRS-1).Western blot analysis displayed phosphorylation of adenosine monophosphate activated protein kinase (AMPK) in ThyQ-treated rats. Liver microtome sections of HFD-fed rats showed degenerated hepatocytes with high lipid stores while that of adipose tissue sections displayed large, fat-laden adipocytes, however, these histological changes were considerably attenuated in ThyQ-treated groups. Together these findings demonstrate that ThyQ can be a valuable therapeutic compound to potentially alleviate diet-induced obesity, hyperglycemia and insulin resistance. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03847-x.
Collapse
Affiliation(s)
- Keerthi Ramineedu
- Division of Cell Culture and Molecular Biology, Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh 517502 India
| | - Karunakaran Reddy Sankaran
- Division of Cell Culture and Molecular Biology, Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh 517502 India
| | - Venkataswamy Mallepogu
- Division of Cell Culture and Molecular Biology, Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh 517502 India
| | | | | | - Sreedevi Gandham
- Department of ECE, Siddartha Educational Academy Group of Institutions, Tirupati, AP 517502 India
| | - Shahidul Islam Md
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000 South Africa
| | - Balaji Meriga
- Division of Cell Culture and Molecular Biology, Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh 517502 India
| |
Collapse
|
35
|
Kaur H, Singh S, Kanagala SG, Gupta V, Patel MA, Jain R. Herbal Medicine- A Friend or a Foe of Cardiovascular Disease. Cardiovasc Hematol Agents Med Chem 2024; 22:101-105. [PMID: 37818588 DOI: 10.2174/0118715257251638230921045029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/31/2023] [Accepted: 08/23/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Herbal remedies are used by 80% of the Asian population in primary health care as per WHO. According to current research, the herbal medicine market was valued at nearly USD 166 billion in 2021 and is expected to reach approximately USD 348 billion by 2028. Increased incidence of chronic conditions such as diabetes, asthma, coronary artery disease, osteoarthritis, has fueled the growing interest in traditional herbal and plant-derived treatments among researchers. In addition, rural communities in developing nations have renewed interest in herbal treatments due to lower cost and easy availability. OBJECTIVES Aim of the paper is to highlight the role of five of more commonly used herbal medicines that are Ginkgo biloba, Garlic, Flaxseed, Ginseng, Salvia miltiorrhiza in cardiovascular disorders. METHODS A PubMed search was done using the keywords Herbal Medicine, Ginkgo biloba, Garlic, Flaxseed, Ginseng, Salvia miltiorrhiza. Articles which were available for free access were utilized. No formula inclusion or exclusion criteria was followed. A total of 42 papers were included for the study. CONCLUSION Although there have been encouraging outcomes with the use of these herbal medications, many of these products are poorly monitored and are yet to be studied in detail regarding their adverse effects. Moreover, these medicinal products are known to interact with various drugs. To compete with the expanding pharmaceutical industry, more medicinally helpful herbal items must be used and scientifically validated.
Collapse
Affiliation(s)
- Harmanjit Kaur
- Department of Internal Medicine, Government Medical College and Hospital, Patiala, India
| | - Samneet Singh
- Department of Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, India
| | - Sai G Kanagala
- Department of Internal Medicine, Osmania Medical College, Hyderabad, India
| | - Vasu Gupta
- Department of Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, India
| | - Meet A Patel
- Department of Internal Medicine, Tianjin Medical University, Tianjin, China
| | - Rohit Jain
- Department of Internal Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
36
|
Zhang M, Niu H, Li Q, Jiao L, Li H, Wu W. Active Compounds of Panax ginseng in the Improvement of Alzheimer's Disease and Application of Spatial Metabolomics. Pharmaceuticals (Basel) 2023; 17:38. [PMID: 38256872 PMCID: PMC10818864 DOI: 10.3390/ph17010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024] Open
Abstract
Panax ginseng C.A. Meyer (P. ginseng) is one of the more common traditional Chinese medicines (TCMs). It contains numerous chemical components and exhibits a range of pharmacological effects. An enormous burden is placed on people's health and life by Alzheimer's disease (AD), a neurodegenerative condition. Recent research has shown that P. ginseng's chemical constituents, particularly ginsenosides, have a significant beneficial impact on the prevention and management of neurological disorders. To understand the current status of research on P. ginseng to improve AD, this paper discusses the composition of P. ginseng, its mechanism of action, and its clinical application. The pathogenesis of AD includes amyloid beta protein (Aβ) generation and aggregation, tau protein hyperphosphorylation, oxidant stress, neuroinflammation, mitochondrial damage, and neurotransmitter and gut microbiota disorders. This review presents the key molecular mechanisms and signaling pathways of the active ingredients in P. ginseng involved in improving AD from the perspective of AD pathogenesis. A P. ginseng-related signaling pathway network was constructed to provide effective targets for the treatment of AD. In addition, the application of spatial metabolomics techniques in studying P. ginseng and AD is discussed. In summary, this paper discusses research perspectives for the study of P. ginseng in the treatment of AD, including a systematic and in-depth review of the mechanisms of action of the active substances in P. ginseng, and evaluates the feasibility of applying spatial metabolomics in the study of AD pathogenesis and pharmacological treatment.
Collapse
Affiliation(s)
| | | | | | | | - Hui Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.Z.); (H.N.); (Q.L.); (L.J.)
| | - Wei Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.Z.); (H.N.); (Q.L.); (L.J.)
| |
Collapse
|
37
|
Zhong Y, Xiao Q, Huang J, Yu S, Chen L, Wan Q, Zhang Z, Luo L, Song L, Zhao H, Zhou W, Liu D. Ginsenoside Rg1 Alleviates Ulcerative Colitis in Obese Mice by Regulating the Gut Microbiota-Lipid Metabolism-Th1/Th2/Th17 Cells Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20073-20091. [PMID: 38064669 DOI: 10.1021/acs.jafc.3c04811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Ginsenoside Rg1 (G-Rg1) has various pharmacological properties including antiobesity, immunomodulatory, and anti-inflammatory effects. This study aimed to explore the therapeutic effects and underlying mechanisms of G-Rg1 on colitis complicated by obesity. The results indicate that G-Rg1 effectively alleviates colitis in obese mice and improves serum lipid levels and liver function. Importantly, G-Rg1 improved the composition of gut microbiota in obese mice with colitis, with increases in alpha diversity indexes Sobs, Ace, and Chao, a significant down-regulation of the relative abundance of Romboutsia, and a significant up-regulation of Rikenellaceae_RC9_gut_group, Lachnospiraceae_NK4A136_group, Enterorhabdus, Desulfovibrio, and Alistipes. Meanwhile, G-Rg1 improved lipid metabolism in the colonic contents of obese mice with colitis. Additionally, G-Rg1 significantly reduced the percentages of helper T (Th)1, Th17, central memory T (TCM), and effector memory T (TEM) cells in obese mice with colitis while significantly increasing Naïve T and Th2 cells. In conclusion, G-Rg1 could be a promising therapeutic option for alleviating obesity complicated by colitis through regulation of the gut microbiota and lipid metabolism as well as Th1/Th2/Th17 cell differentiation.
Collapse
Affiliation(s)
- Youbao Zhong
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
- Institute of Chinese Medicine and Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330004, Jiangxi, China
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qiuping Xiao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Jiaqi Huang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Songren Yu
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Liling Chen
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qi Wan
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Zheyan Zhang
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Lin Luo
- College of Acupuncture and Massage, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Lizhao Song
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Haimei Zhao
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Wen Zhou
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
- Nanchang Medical College, Nanchang, Jiangxi 330004, China
| | - Duanyong Liu
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
- Institute of Chinese Medicine and Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330004, Jiangxi, China
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| |
Collapse
|
38
|
Li CJ, Zhai RR, Zhu XY, Guo ZF, Yang H. Discovery of effective combination from Renshen-Fuzi herbal pair against heart failure by spectrum-effect relationship analysis and zebrafish models. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116832. [PMID: 37352946 DOI: 10.1016/j.jep.2023.116832] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/19/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional herbal pair Ginseng Radix et Rhizoma (roots and rhizomes of Panax ginseng C.A. Mey, Renshen in Chinese) and Aconiti Lateralis Radix Praeparata (lateral roots of Aconitum carmichaelii Debeaux, Fuzi in Chinese), composition of two traditional Chinese medicinal herbs, has been widely used in traditional Chinese medicine formula, in which Shenfu decoction has been used clinically in China for the treatment of heart failure at present. AIM OF THE STUDY Although the ginsenosides and aconite alkaloids have been proven as the essential bioactive components in Renshen-Fuzi herbal pair, the exact composition of effective components to combat heart failure are still unclear. Therefore, spectrum-effect relationship analysis was performed to reveal its effective combination for anti-heart failure effect. MATERIALS AND METHODS Firstly, the chemical constituents of Renshen-Fuzi herbal pair were identified using ultra high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS). The 39 major compounds in Renshen-Fuzi with five different compatibility ratios were simultaneously quantified using ultra high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC-QQQ MS/MS). Subsequently, zebrafish models induced by verapamil hydrochloride were constructed and four heart failure-related indexes were selected for pharmacodynamic evaluation of Renshen-Fuzi. To analyze the spectrum-effect relationships, partial least squares regression (PLSR) models were established among the contents of 39 compounds in Renshen-Fuzi with each pharmacodynamic index. According to the contribution of each compound to the whole efficacy, 12 compounds were finally screened out as the effective combination. RESULTS A total of 157 chemical compounds of Renshen-Fuzi herbal pair were identified, in which 39 components were simultaneously determined. The pharmacological effects indicated that Renshen-Fuzi with 1:2 ratio exhibited the best effect based on zebrafish model, which could improve cardiac output and blood flow velocity and inhibit pericardial enlargement and venous blood stasis significantly. A combination of 9 ginsenosides and 3 aconite alkaloids based on a component-efficacy modeling by PLSR was screened, and exerted approximately equivalent pharmacological effects compared with Renshen-Fuzi herbal pair. CONCLUSIONS Our findings elucidated the effective combination of Renshen-Fuzi herbal pair that has been used in clinic for the treatment of heart failure, which could also promote the pharmacological research and quality control of their formula such as Shenfu decoction.
Collapse
Affiliation(s)
- Chu-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Rong-Rong Zhai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Yu Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Zi-Fan Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
39
|
Zheng W, Shen P, Yu C, Tang Y, Qian C, Yang C, Gao M, Wu Y, Yu S, Tang W, Wan G, Wang A, Lu Y, Zhao Y. Ginsenoside Rh1, a novel casein kinase II subunit alpha (CK2α) inhibitor, retards metastasis via disrupting HHEX/CCL20 signaling cascade involved in tumor cell extravasation across endothelial barrier. Pharmacol Res 2023; 198:106986. [PMID: 37944834 DOI: 10.1016/j.phrs.2023.106986] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Tumor cell extravasation across endothelial barrier has been recognized as a pivotal event in orchestrating metastasis formation. This event is initiated by the interactions of extravasating tumor cells with endothelial cells (ECs). Therefore, targeting the crosstalk between tumor cells and ECs might be a promising therapeutic strategy to prevent metastasis. In this study, we demonstrated that Rh1, one of the main ingredients of ginseng, hindered the invasion of breast cancer (BC) cells as well as diminished the permeability of ECs both in vitro and in vivo, which was responsible for the attenuated tumor cell extravasation across endothelium. Noteworthily, we showed that ECs were capable of inducing the epithelial-mesenchymal transition (EMT) and invadopodia of BC cells that are essential for tumor cell migration and invasion through limiting the nuclear translocation of hematopoietically expressed homeobox (HHEX). The decreased nuclear HHEX paved the way for initiating the CCL20/CCR6 signaling axis, which in turn contributed to damaged endothelial junctions, uncovering a new crosstalk mode between tumor cells and ECs. Intriguingly, Rh1 inhibited the kinase activity of casein kinase II subunit alpha (CK2α) and further promoted the nuclear translocation of HHEX in the BC cells, which resulted in the disrupted crosstalk between chemokine (C-C motif) ligand 20 (CCL20) in the BC cells and chemokine (C-C motif) receptor 6 (CCR6) in the ECs. The prohibited CCL20-CCR6 axis by Rh1 enhanced vascular integrity and diminished tumor cell motility. Taken together, our data suggest that Rh1 serves as an effective natural CK2α inhibitor that can be further optimized to be a therapeutic agent for reducing tumor cell extravasation.
Collapse
Affiliation(s)
- Weiwei Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Peiliang Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chang Yu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Tang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chunmei Yang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mingliang Gao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Suyun Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiwei Tang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Obstetrics and Gynecology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Guiping Wan
- Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Obstetrics and Gynecology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yang Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
40
|
Wu YJ, Wang L, Wang KX, Du JR, Long FY. Modulation of Xiongdanjiuxin pills on the gut-liver axis in high-fat diet rats. Life Sci 2023; 333:122134. [PMID: 37778415 DOI: 10.1016/j.lfs.2023.122134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
AIM Xiongdanjiuxin pill (XP) is a traditional Chinese medicine formula for the prevention and treatment of hyperlipidemia (HLP) and related complications. In this study, the gut-liver axis was used as the breakthrough point to analyze the therapeutic effect and potential mechanism of XP on HLP model rats and related complications. MAIN METHODS We used high-fat diet (HFD) to establish the HLP model of rats and treated them with XP. The 16S rRNA sequencing method was used to explore the effect of XP on the gut microbiota of HFD rats, and the effects of XP on ileum pathology, intestinal barrier and circulatory inflammation in HFD rats were also investigated. We further explored the molecular mechanism of XP treating liver inflammation in rats with HFD by regulating toll-like receptor 4 (TLR4) signaling. KEY FINDINGS We found that XP could regulate the imbalance of gut microbiota in HFD rats, and up-regulate the expression of tight junction protein in intestinal epithelium of HFD rats, thereby improving the intestinal barrier damage and intestinal inflammatory response. In addition, XP could significantly reduce the levels of inflammatory cytokines in HFD rats, and inhibit TLR4 signaling pathway, thereby reducing liver inflammation in HFD rats. SIGNIFICANCE XP can effectively improve the imbalance of gut-liver axis in hyperlipidemic rats and alleviate the inflammatory damage of liver. Its mechanism may be related to regulating the disorder of gut microbiota and inhibiting TLR4 signal pathway, so as to achieve the therapeutic effect on hyperlipidemic fatty liver in rats.
Collapse
Affiliation(s)
- Yi-Jin Wu
- Department of Pharmacology, West China School of Pharmacy, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Liu Wang
- Department of Pharmacology, West China School of Pharmacy, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Ke-Xin Wang
- Department of Pharmacology, West China School of Pharmacy, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Jun-Rong Du
- Department of Pharmacology, West China School of Pharmacy, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, Sichuan, China.
| | - Fang-Yi Long
- Department of Pharmacology, West China School of Pharmacy, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, Sichuan, China; Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, China.
| |
Collapse
|
41
|
Hu QR, Hong H, Zhang ZH, Feng H, Luo T, Li J, Deng ZY, Chen F. Methods on improvements of the poor oral bioavailability of ginsenosides: Pre-processing, structural modification, drug combination, and micro- or nano- delivery system. J Ginseng Res 2023; 47:694-705. [PMID: 38107396 PMCID: PMC10721471 DOI: 10.1016/j.jgr.2023.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 12/19/2023] Open
Abstract
Panax ginseng Meyer is a traditional Chinese medicine that is widely used as tonic in Asia. The main pharmacologically active components of ginseng are the dammarane-type ginsenosides, which have been shown to have anti-cancer, anti-inflammatory, immunoregulatory, neuroprotective, and metabolic regulatory activities. Moreover, some of ginsenosides (eg, Rh2 and Rg3) have been developed into nutraceuticals. However, the utilization of ginsenosides in clinic is restrictive due to poor permeability in cells and low bioavailability in human body. Obviously, the dammarane skeleton and glycosyls of ginsenosides are responsible for these limitations. Therefore, improving the oral bioavailability of ginsenosides has become a pressing issue. Here, based on the structures of ginsenosides, we summarized the understanding of the factors affecting the oral bioavailability of ginsenosides, introduced the methods to enhance the oral bioavailability and proposed the future perspectives on improving the oral bioavailability of ginsenosides.
Collapse
Affiliation(s)
- Qi-rui Hu
- State Key Laboratory of Food Science and Resources, College of Food Science, Nanchang University, Nanjing East Road, Nanchang, Jiangxi, China
| | - Huan Hong
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Bayi Avenue, Nanchang, Jiangxi, China
| | - Zhi-hong Zhang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Bayi Avenue, Nanchang, Jiangxi, China
| | - Hua Feng
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Bayi Avenue, Nanchang, Jiangxi, China
| | - Ting Luo
- State Key Laboratory of Food Science and Resources, College of Food Science, Nanchang University, Nanjing East Road, Nanchang, Jiangxi, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, College of Food Science, Nanchang University, Nanjing East Road, Nanchang, Jiangxi, China
| | - Ze-yuan Deng
- State Key Laboratory of Food Science and Resources, College of Food Science, Nanchang University, Nanjing East Road, Nanchang, Jiangxi, China
| | - Fang Chen
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Bayi Avenue, Nanchang, Jiangxi, China
| |
Collapse
|
42
|
Hu L, Ran J, Wang L, Wu M, Wang Z, Xiao H, Du K, Wang Y. Ginsenoside Rg1 attenuates D-galactose-induced neural stem cell senescence via the Sirt1-Nrf2-BDNF pathway. Eur J Neurosci 2023; 58:4084-4101. [PMID: 37753701 DOI: 10.1111/ejn.16147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/08/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
With the ageing of society's population, neurodegenerative diseases have become an important factor affecting the quality of life and mortality in the elderly. Since its physiopathological processes are complex and the authorized medications have recently been shown to have several adverse effects, the development of safe and efficient medications is urgently needed. In this study, we looked at how ginsenoside Rg1 works to postpone neural stem cell ageing and brain ageing, giving it a solid scientific foundation for use as a therapeutic therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ling Hu
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Jianhua Ran
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Neuroscience Research Center, College of basic medicine, Chongqing Medical University, Chongqing, China
| | - Lu Wang
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Mengna Wu
- Neuroscience Research Center, College of basic medicine, Chongqing Medical University, Chongqing, China
| | - Ziling Wang
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Hanxianzhi Xiao
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Kunhang Du
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Yaping Wang
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
43
|
Alfeqy MM, El-Hawary SS, El-Halawany AM, Rabeh MA, Alshehri SA, Serry AM, Fahmy HA, Ezzat MI. Effect of Phenolics from Aeonium arboreum on Alpha Glucosidase, Pancreatic Lipase, and Oxidative Stress; a Bio-Guided Approach. Pharmaceutics 2023; 15:2541. [PMID: 38004522 PMCID: PMC10675073 DOI: 10.3390/pharmaceutics15112541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Metabolic syndrome (MetS) is a global issue affecting over a billion people, raising the risk of diabetes, cardiovascular disorders, and other ailments. It is often characterized by hypertension, dyslipidemia and/or obesity, and hyperglycemia. Chemical investigation of Aeonium arboreum (L.) Webb & Berthel led to the isolation of six compounds, viz. β-sitosterol, β-sitosterol glucoside, myricetin galactoside, quercetin rhamnoside, kaempferol rhamnoside, and myricetin glucoside. Interestingly, A. arboreum's dichloromethane (DCM), 100 and 50% MeOH Diaion fractions and the isolated compound (quercetin-3-rhamnoside) revealed potent α-glucosidase inhibitory activity, especially 50% Diaion fraction. In addition, they also showed very potent antioxidant potential, especially the polar fractions, using DPPH, ABTS, FRAP, ORAC, and metal chelation assays. Notably, the 50% Diaion fraction had the highest antioxidant potential using DPPH and ORAC assays, while the 100% Diaion fraction and quercetin-3-rhamnoside showed the highest activity using ABTS, FRAP, and metal chelation assays. Also, quercetin-3-rhamnoside showed a good docking score of -5.82 kcal/mol in comparison to acarbose. In addition, molecular dynamic stimulation studies illustrated high stability of compound binding to pocket of protein. Such potent activities present A. arboreum as a complementary safe approach for the management of diabetes mellitus as well as MetS.
Collapse
Affiliation(s)
- Marwah M. Alfeqy
- Pharmacognosy Department, Faculty of Pharmacy, Modern University for Technology & Information, Cairo 11571, Egypt;
| | - Seham S. El-Hawary
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El Aini, Cairo 11562, Egypt; (S.S.E.-H.); (A.M.E.-H.)
| | - Ali M. El-Halawany
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El Aini, Cairo 11562, Egypt; (S.S.E.-H.); (A.M.E.-H.)
| | - Mohamed A. Rabeh
- Pharmacognosy Department, College of Pharmacy, King Khalid University, Abha 62251, Saudi Arabia; (M.A.R.); (S.A.A.)
| | - Saad A. Alshehri
- Pharmacognosy Department, College of Pharmacy, King Khalid University, Abha 62251, Saudi Arabia; (M.A.R.); (S.A.A.)
| | - Aya M. Serry
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology & Information, Cairo 11571, Egypt;
| | - Heba A. Fahmy
- Pharmacognosy Department, Faculty of Pharmacy, Modern University for Technology & Information, Cairo 11571, Egypt;
| | - Marwa. I. Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El Aini, Cairo 11562, Egypt; (S.S.E.-H.); (A.M.E.-H.)
| |
Collapse
|
44
|
Du L, Lu H, Xiao Y, Guo Z, Li Y. Preparation, characterization and in vivo pharmacokinetic study of ginsenoside Rb1-PLGA nanoparticles. Sci Rep 2023; 13:18472. [PMID: 37891245 PMCID: PMC10611732 DOI: 10.1038/s41598-023-45858-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed to construct a Ginsenoside Rb1-PLGA nano drug delivery system, optimize its preparation process, characterize and evaluate the resulting Ginsenoside Rb1-PLGA Nanoparticles (GRb1@PLGA@NPs). GRb1@PLGA@NPs were prepared using the emulsion solvent evaporation method. The optimal preparation process was determined using Plackett-Burman design combined with Box-Behnken experiments. Physical characterization and in vitro release studies were conducted. LC-MS/MS technique was employed to investigate the pharmacokinetic characteristics of GRb1 and GRb1@PLGA@NPs in rat plasma. The optimal preparation process yielded GRb1@PLGA@NPs with a particle size of 120.63 nm, polydispersity index (PDI) of 0.172, zeta potential of - 22.67 mV, encapsulation efficiency of 75%, and drug loading of 11%. In vitro release demonstrated sustained drug release. Compared to GRb1, GRb1@PLGA@NPs exhibited a shortened time to peak concentration by approximately 0.72-fold. The area under the plasma concentration-time curve significantly increased to 4.58-fold of GRb1. GRb1@PLGA@NPs formulated using the optimal process exhibited uniform distribution and stable quality, its relative oral bioavailability was significantly improved compared to free GRb1.
Collapse
Affiliation(s)
- Lixin Du
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Huiling Lu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yifei Xiao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zhihua Guo
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ya Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
45
|
Cui Z, Gu L, Liu T, Liu Y, Yu B, Kou J, Li F, Yang K. Ginsenoside Rd attenuates myocardial ischemia injury through improving mitochondrial biogenesis via WNT5A/Ca 2+ pathways. Eur J Pharmacol 2023; 957:176044. [PMID: 37660968 DOI: 10.1016/j.ejphar.2023.176044] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Ginsenoside Rd, one of the main active components in ginseng, exerts various biological activities. However, its effectiveness on myocardial ischemia injury and its potential mechanism need further clarification. The model of isoproterenol (ISO)-induced myocardial ischemia injury (MI) mice and cobalt chloride (CoCl2)-induced cardiomyocytes injury were performed. Ginsenoside Rd significantly alleviated MI injury, as evidenced by ameliorated cardiac pathological features and improved cardiac function. Simultaneously, ginsenoside Rd notably mitigated CoCl2-induced cell injury, decreased the lactate dehydrogenase (LDH) release and reactive oxygen species (ROS) generation in vitro. Additionally, ginsenoside Rd increased nicotinamide adenine dinucleotide (NADH) and mitochondrial membrane potential (MMP). Moreover, we found that ginsenoside Rd could increase the mitochondrial DNA (mtDNA) and promote the expression of Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC1α), nuclear factor erythroid 2 related factor-1 (NRF1), nuclear factor erythroid 2 related factor-2 (NRF2) and activating mitochondrial transcription factor A (TFAM), which suggested that ginsenoside Rd might accelerate mitochondrial biogenesis function to ameliorate MI injury. Importantly, ginsenoside Rd treatment significantly inhibited the WNT5A/calcium (Ca2+) signaling pathway, decreased the expression of WNT5A, Frizzled2, phosphorylated calmodulin kinase II/calmodulin kinase II (p-CaMKII/CaMKII) and the calcium overload. Meanwhile, WNT5A siRNA was further conducted to elucidate the effect of ginsenoside Rd on CoCl2-induced cardiomyocyte injury. And we found that WNT5A siRNA partially weakened the protective effects of ginsenoside Rd on mitochondrial function and mitochondrial biogenesis, suggesting that ginsenoside Rd might suppress myocardial ischemia injury through WNT5A. Overall, this study demonstrated that ginsenoside Rd could alleviate myocardial ischemia injury through improving mitochondrial biogenesis via WNT5A/Ca2+ pathways, which provided a rationale for future clinical applications and potential drugs for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Zekun Cui
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Lifei Gu
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Tao Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yining Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Kun Yang
- Department of Endocrinology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China; Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
46
|
Ding Q, Zhang S, Liu X, Zhao Y, Yang J, Chai G, Wang N, Ma S, Liu W, Ding C. Hydrogel Tissue Bioengineered Scaffolds in Bone Repair: A Review. Molecules 2023; 28:7039. [PMID: 37894518 PMCID: PMC10609504 DOI: 10.3390/molecules28207039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Large bone defects due to trauma, infections, and tumors are difficult to heal spontaneously by the body's repair mechanisms and have become a major hindrance to people's daily lives and economic development. However, autologous and allogeneic bone grafts, with their lack of donors, more invasive surgery, immune rejection, and potential viral transmission, hinder the development of bone repair. Hydrogel tissue bioengineered scaffolds have gained widespread attention in the field of bone repair due to their good biocompatibility and three-dimensional network structure that facilitates cell adhesion and proliferation. In addition, loading natural products with nanoparticles and incorporating them into hydrogel tissue bioengineered scaffolds is one of the most effective strategies to promote bone repair due to the good bioactivity and limitations of natural products. Therefore, this paper presents a brief review of the application of hydrogels with different gel-forming properties, hydrogels with different matrices, and nanoparticle-loaded natural products loaded and incorporated into hydrogels for bone defect repair in recent years.
Collapse
Affiliation(s)
- Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.D.); (S.Z.); (J.Y.); (S.M.)
| | - Shuai Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.D.); (S.Z.); (J.Y.); (S.M.)
| | - Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China;
| | - Yingchun Zhao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China;
| | - Jiali Yang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.D.); (S.Z.); (J.Y.); (S.M.)
| | - Guodong Chai
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; (G.C.); (N.W.)
| | - Ning Wang
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; (G.C.); (N.W.)
| | - Shuang Ma
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.D.); (S.Z.); (J.Y.); (S.M.)
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China;
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China
| |
Collapse
|
47
|
Lu M, Zhao F, Ran C, Xu Y, Zhang J, Wang H. Ginsenoside Rg1 attenuates diabetic vascular endothelial dysfunction by inhibiting the calpain-1/ROS/PKC-β axis. Life Sci 2023; 329:121972. [PMID: 37482213 DOI: 10.1016/j.lfs.2023.121972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
AIMS Vascular endothelial dysfunction (VED) is the onset event of cardiovascular complications in type 2 diabetes mellitus. Ginsenoside Rg1 (Rg1) can improve the cardiovascular system, but its mechanism in diabetic vascular endothelial dysfunction has received little attention. MAIN METHODS Male calpain-1-knockout and wild-type C57BL/6 J mice were intraperitoneally injected with streptozotocin and treated with Rg1 (10 and 20 mg/kg) for 8 weeks. Human aortic endothelial cells (HAECs) were incubated with high glucose (HG) and were pretreated with Rg1 (10, 20 μM), MDL-28170 (calpain-1 inhibitor), LY-333531 (PKC-β inhibitor), NAC (ROS inhibitor) and calpain-1 overexpression. Then, factors related to mitochondrial dysfunction, oxidative stress and VED were measured. KEY FINDINGS The administration of Rg1 and calpain-1 knockout ameliorated diabetic mitochondrial dysfunction, oxidative stress and VED and inhibited the calpain-1/ROS/PKC-β axis. LY-333531 and NAC treatment restored destructive endothelium-dependent vasodilation in mice with diabetes, while pyrogallol (ROS agonist), PMA (PKC-β agonist) or L-NAME (eNOS inhibitor) treatment abrogated the protective effect of Rg1 against diabetic endothelial dysfunction. The administration of Rg1, MDL-28170, LY-333531 and NAC improved mitochondrial dysfunction, oxidative stress and VED, whereas the overexpression of calpain-1 amplified mitochondrial dysfunction, oxidative stress and VED and further upregulated the expression of PKC-β in HAECs exposed to HG. Overexpression of calpain-1 abrogated the protective effect of Rg1 against HG-induced oxidative stress and VED. SIGNIFICANCE These findings reveal that Rg1 can protect against VED by suppressing the calpain-1/ROS/PKC-β axis and alleviating the development of mitochondrial dysfunction and oxidative stress.
Collapse
Affiliation(s)
- Meili Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Fang Zhao
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Chenyang Ran
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Yu Xu
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Jingliang Zhang
- Internal Medicine-Cardiovascular Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Hongxin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
48
|
Boopathi V, Nahar J, Murugesan M, Subramaniyam S, Kong BM, Choi SK, Lee CS, Ling L, Yang DU, Yang DC, Mathiyalagan R, Chan Kang S. In silico and in vitro inhibition of host-based viral entry targets and cytokine storm in COVID-19 by ginsenoside compound K. Heliyon 2023; 9:e19341. [PMID: 37809955 PMCID: PMC10558348 DOI: 10.1016/j.heliyon.2023.e19341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023] Open
Abstract
SARS-CoV-2 is a novel coronavirus that emerged as an epidemic, causing a respiratory disease with multiple severe symptoms and deadly consequences. ACE-2 and TMPRSS2 play crucial and synergistic roles in the membrane fusion and viral entry of SARS-CoV-2 (COVID-19). The spike (S) protein of SARS-CoV-2 binds to the ACE-2 receptor for viral entry, while TMPRSS2 proteolytically cleaves the S protein into S1 and S2 subunits, promoting membrane fusion. Therefore, ACE-2 and TMPRSS2 are potential drug targets for treating COVID-19, and their inhibition is a promising strategy for treatment and prevention. This study proposes that ginsenoside compound K (G-CK), a triterpenoid saponin abundant in Panax Ginseng, a dietary and medicinal herb highly consumed in Korea and China, effectively binds to and inhibits ACE-2 and TMPRSS2 expression. We initially conducted an in-silico evaluation where G-CK showed a high affinity for the binding sites of the two target proteins of SARS-CoV-2. Additionally, we evaluated the stability of G-CK using molecular dynamics (MD) simulations for 100 ns, followed by MM-PBSA calculations. The MD simulations and free energy calculations revealed that G-CK has stable and favorable energies, leading to strong binding with the targets. Furthermore, G-CK suppressed ACE2 and TMPRSS2 mRNA expression in A549, Caco-2, and MCF7 cells at a concentration of 12.5 μg/mL and in LPS-induced RAW 264.7 cells at a concentration of 6.5 μg/mL, without significant cytotoxicity.ACE2 and TMPRSS2 expression were significantly lower in A549 and RAW 264.7 cells following G-CK treatment. These findings suggest that G-CK may evolve as a promising therapeutic against COVID-19.
Collapse
Affiliation(s)
- Vinothini Boopathi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Jinnatun Nahar
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Mohanapriya Murugesan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | | | - Byoung Man Kong
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Sung-Keun Choi
- Daedong Korea Ginseng Co., Ltd, 86, Gunbuk-ro, Gunbuk-myeon, Geumsan-gun, Chungcheongnam-do 32718 Republic of Korea
| | - Chang-Soon Lee
- Daedong Korea Ginseng Co., Ltd, 86, Gunbuk-ro, Gunbuk-myeon, Geumsan-gun, Chungcheongnam-do 32718 Republic of Korea
| | - Li Ling
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Dong Uk Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Se Chan Kang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| |
Collapse
|
49
|
Cong Z, Zhang X, Lv Z, Jiang J, Wang L, Li J, Wang J, Zhao J. Transcriptome Analysis of the Inhibitory Effects of 20(S)-Protopanaxadiol on NCI-H1299 Non-Small Cell Lung Cancer Cells. Molecules 2023; 28:5746. [PMID: 37570716 PMCID: PMC10421167 DOI: 10.3390/molecules28155746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Lung cancer seriously threatens human health. To explore the molecular mechanism of 20(S)-Protopanaxadiol (PPD) on human non-small cell lung cancer cells, we investigated the transcriptional profile of PPD-treated NCI-H1299 cells. Cell proliferation, cell cycle, and apoptosis were detected using cell counting kit-8 and flow cytometry, respectively. Differentially expressed genes (DEGs) between PPD-treated and untreated cells were determined using RNA sequencing and bioinformatic analysis. Protein phosphorylation was detected using Western blotting. Data of mRNA expression profiles of lung cancer were from The Cancer Genome Atlas (TCGA) and analyzed using R software version 4.3.1. PPD showed an inhibitory effect on the proliferation of NCI-H1299 cells and induced apoptosis. There were 938 upregulated genes and 466 downregulated genes in PPD-treated cells, and DEGs were primarily enriched in the MAPK signaling pathway. The detection of phosphorylation revealed that the phosphorylation of ERK and p38 MAPK was significantly reduced in PPD-treated cells. Further comparison of PPD-regulated DEGs with clinical data of lung adenocarcinoma demonstrated that most downregulated genes in tumor tissues were upregulated in PPD-treated cells or vice versa. Two PPD-downregulated genes HSPA2 and EFNA2 were associated with patients' overall survival. Therefore, PPD could inhibit NCI-H1299 cells by affecting gene expression and regulating ERK and p38 MAPK pathways.
Collapse
Affiliation(s)
- Zhongyi Cong
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Fujin Road 1266, Changchun 130021, China; (Z.C.); (X.Z.); (Z.L.); (J.J.); (L.W.); (J.L.); (J.W.)
| | - Xinmin Zhang
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Fujin Road 1266, Changchun 130021, China; (Z.C.); (X.Z.); (Z.L.); (J.J.); (L.W.); (J.L.); (J.W.)
| | - Zeqi Lv
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Fujin Road 1266, Changchun 130021, China; (Z.C.); (X.Z.); (Z.L.); (J.J.); (L.W.); (J.L.); (J.W.)
| | - Jingyuan Jiang
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Fujin Road 1266, Changchun 130021, China; (Z.C.); (X.Z.); (Z.L.); (J.J.); (L.W.); (J.L.); (J.W.)
| | - Lei Wang
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Fujin Road 1266, Changchun 130021, China; (Z.C.); (X.Z.); (Z.L.); (J.J.); (L.W.); (J.L.); (J.W.)
| | - Jiapeng Li
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Fujin Road 1266, Changchun 130021, China; (Z.C.); (X.Z.); (Z.L.); (J.J.); (L.W.); (J.L.); (J.W.)
| | - Jie Wang
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Fujin Road 1266, Changchun 130021, China; (Z.C.); (X.Z.); (Z.L.); (J.J.); (L.W.); (J.L.); (J.W.)
| | - Jianjun Zhao
- Department of Respiratory Medicine, China-Japan Union Hospital of Jilin University, Xiantai Street 126, Changchun 130033, China
| |
Collapse
|
50
|
Li X, Cao D, Sun S, Wang Y. Anticancer therapeutic effect of ginsenosides through mediating reactive oxygen species. Front Pharmacol 2023; 14:1215020. [PMID: 37564184 PMCID: PMC10411515 DOI: 10.3389/fphar.2023.1215020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Dysregulation of reactive oxygen species (ROS) production and ROS-regulated pathways in cancer cells leads to abnormal accumulation of reactive oxygen species, displaying a double-edged role in cancer progression, either supporting transformation/proliferation and stimulating tumorigenesis or inducing cell death. Cancer cells can accommodate reactive oxygen species by regulating them at levels that allow the activation of pro-cancer signaling pathways without inducing cell death via modulation of the antioxidant defense system. Therefore, targeting reactive oxygen species is a promising approach for cancer treatment. Ginsenosides, their derivatives, and related drug carriers are well-positioned to modulate multiple signaling pathways by regulating oxidative stress-mediated cellular and molecular targets to induce apoptosis; regulate cell cycle arrest and autophagy, invasion, and metastasis; and enhance the sensitivity of drug-resistant cells to chemotherapeutic agents of different cancers depending on the type, level, and source of reactive oxygen species, and the type and stage of the cancer. Our review focuses on the pro- and anticancer effects of reactive oxygen species, and summarizes the mechanisms and recent advances in different ginsenosides that bring about anticancer effects by targeting reactive oxygen species, providing new ideas for designing further anticancer studies or conducting more preclinical and clinical studies.
Collapse
Affiliation(s)
- Xiaonan Li
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, China
| | - Donghui Cao
- Department of Clinical Research, The First Hospital of Jilin University, Changchun, China
| | - Siming Sun
- Department of Clinical Research, The First Hospital of Jilin University, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|