1
|
Xu P, Zhang L, Wu Q. Factors influencing Nirmatrelvir/Ritonavir concentration in patients with COVID-19. BMC Infect Dis 2024; 24:1425. [PMID: 39696027 DOI: 10.1186/s12879-024-10291-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND In the filed of antiviral therapy, effective therapeutic concentration is beneficial to shorten the recovery time of patients and reduce the transmission rate.The aim of this study is to retrospectively analyze the factors that lead to the drug concentration of Nirmatrelvir /Ritonavir (NMV/RTV) not reaching the standard. METHODS In this study, the NMV/RTV drug concentration(Cnmv/rtv) data (n = 114) of COVID-19 patients over 18 years old were collected from May 2022 to July 2022, and the results of the patients were retrospectively compared. According to the analysis of the early study of NMV/RTV, combined with the research results at home and abroad, according to whether the measured drug concentration > 987 ng/ml, the patients were divided into target group and non-target group,The non-target group was defined as not reaching the trough concentration level. RESULTS Serum NMV/RTV concentration in adult patients was correlated with prognostic nutritional index [PNI, (P < 0.05)], height (P < 0.05), weight (P < 0.05) and creatinine clearance [Crcl, (P < 0.05)]. Multivariate analysis showed that height, weight, PNI, lymphocyte (LYM) and CrCl were independent influencing factors of NMV/RTV trough concentration. However, after the correction of BMI calculation, there was no correlation between NMV/RTV and BMI, so in the clinical medication plan, the drug was not adjusted according to the height and weight. CONCLUSIONS The serum NMV/RTV concentration of adult patients gradually decreased with the increase of CrCl. For patients with high and low CrCl, the trough concentration of NMV/RTV should be continuously monitored and the dosing regimen should be adjusted to achieve the target trough concentration in these patients to reduce the effect of CrCl. PNI is also a key factor affecting drug concentration. For poor nutritional status, drug concentration should be closely monitored and the dose should be adjusted.
Collapse
Affiliation(s)
- Ping Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Shanghai, 201508, People's Republic of China
| | - Lijun Zhang
- Department of Clinical Research, Shanghai Public Health Clinical Center, Shanghai, 201508, People's Republic of China.
| | - Qingguo Wu
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Shanghai, 201508, People's Republic of China.
| |
Collapse
|
2
|
Zhang R, Fan J, Han L, Mao J, Sun L, Yu Y, Fan W, Xie J, Lin B, Lin N. Population Pharmacokinetics and Dosing Regimen Analysis of Nirmatrelvir in Chinese Patients with COVID-19 Infection. Drug Des Devel Ther 2024; 18:5517-5527. [PMID: 39650854 PMCID: PMC11622681 DOI: 10.2147/dddt.s479561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/15/2024] [Indexed: 12/11/2024] Open
Abstract
Purpose Nirmatrelvir/ritonavir (N/R) is the first drug to receive emergency authorization for the treatment of COVID-19 infection. We aimed to develop a population pharmacokinetic (PopPK) model to evaluate the effects of potential covariates and explore dosing regimen. Patients and Methods Sparse data of serum concentrations of N/R were obtained from 129 patients with COVID-19 infection receiving oral 300/100 mg N/R twice daily for 5 days. Plasma samples were assayed using ultra-high-performance liquid chromatography-tandem mass spectrometry. The PopPK model was developed using a nonlinear mixed effects approach utilizing the NONMEM 7.4 software. Monte Carlo simulation was conducted to optimize the dosage regimen. Results A one-compartment model with first-order absorption and first-order elimination provided the best fit for the data. Allometric scaling of parameters on creatinine clearance (CrCl) and body weight were identified as covariates that significantly influenced exposure-efficacy after oral administration of nirmatrelvir. Monte Carlo simulation using the final model generated concentration-time profiles for virtual patients (1,000 per group) with varying renal functions and body weight. Furthermore, we developed a web-based dashboard to visualize the dynamic changes in nirmatrelvir concentration and provide individualized dosage regimens. Conclusion This study showed that dosing regimen optimization of nirmatrelvir should be based on CrCl and body weight. Moreover, a web-based dashboard has been developed to facilitate individualized pharmacotherapy.
Collapse
Affiliation(s)
- Runcong Zhang
- Department of Pharmacy, Changxing People’s Hospital, Changxing, People’s Republic of China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Changxing, People’s Republic of China
| | - Jing Fan
- Department of Pharmacy, Changxing People’s Hospital, Changxing, People’s Republic of China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Changxing, People’s Republic of China
| | - Lu Han
- School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Juehui Mao
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Liang Sun
- Department of Pharmacy, Changxing People’s Hospital, Changxing, People’s Republic of China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Changxing, People’s Republic of China
| | - Yuetian Yu
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Changxing, People’s Republic of China
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, People’s Republic of China
| | - Weibin Fan
- Department of Pharmacy, Changxing People’s Hospital, Changxing, People’s Republic of China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Changxing, People’s Republic of China
| | - Jiao Xie
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Changxing, People’s Republic of China
- Department of Pharmacy, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Bin Lin
- Department of Pharmacy, Changxing People’s Hospital, Changxing, People’s Republic of China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Changxing, People’s Republic of China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, People’s Republic of China
| | - Nengming Lin
- Department of Pharmacy, Changxing People’s Hospital, Changxing, People’s Republic of China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Changxing, People’s Republic of China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, People’s Republic of China
| |
Collapse
|
3
|
Zhao T, Wang Z, Tong M, Fei Y. The development of therapeutics and vaccines against COVID-19. Diagn Microbiol Infect Dis 2024; 111:116643. [PMID: 39637679 DOI: 10.1016/j.diagmicrobio.2024.116643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/24/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Since the COVID-19 pandemic, it has caused a great threat to the global economy and public health, initiatives have been launched to control the spread of the virus. To explore the efficacy of drugs, a large number of clinical trials have been carried out, with the purpose of providing guidelines based on high-quality evidence for clinicians. We mainly discuss therapeutic agents for COVID-19 and explain the mechanism, including antiviral agents, tocilizumab, Janus kinase (JAK) inhibitors, neutralizing antibody therapies and corticosteroids. In addition, the COVID-19 vaccine has been proven to be efficacious in preventing SARS-CoV-2 infection. We systematically analyzed four mainstream vaccine platforms: messenger RNA (mRNA) vaccines, viral vector vaccines, inactivated vaccines and protein subunit vaccines. We evaluated the therapeutic effects of drugs and vaccines through enumerating the most typical clinical trials. However, the emergence of novel variants has further complicated the interpretation of the available clinical data, especially vaccines and antibody therapies. In the post-epidemic era, therapeutic agents are still the first choice for controlling the progression of disease, whereas the protective effect of vaccines against different strains should be assessed comprehensively.
Collapse
Affiliation(s)
- Tianyu Zhao
- The Affiliated Hospital of Shao Xing University/The Affiliated Hospital of Shao Xing University(Shao Xing Municipal Hospital), China
| | - Zhiwei Wang
- The Affiliated Hospital of Shao Xing University/The Affiliated Hospital of Shao Xing University(Shao Xing Municipal Hospital), China
| | - Mingjiong Tong
- The Affiliated Hospital of Shao Xing University/The Affiliated Hospital of Shao Xing University(Shao Xing Municipal Hospital), China
| | - Yingming Fei
- The Affiliated Hospital of Shao Xing University/The Affiliated Hospital of Shao Xing University(Shao Xing Municipal Hospital), China.
| |
Collapse
|
4
|
Barashkova XA, Gevondian AG, Latyshev GV, Kotovshchikov YN, Bezzubov SI, Lukashev NV, Beletskaya IP. Access to Bicyclo[3.1.0]hexane and Cyclopenta[ c]pyrazole Scaffolds via Solvent-Directed Divergent Reactivity of 5-Iodotriazoles. Org Lett 2024; 26:9625-9630. [PMID: 39504931 DOI: 10.1021/acs.orglett.4c03082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Divergent access to bicyclo[3.1.0]hexane and cyclopenta[c]pyrazole scaffolds bearing azole and azine units has been developed. The approach involves intramolecular cyclization of 5-iodo-1,2,3-triazoles acting as stable diazoimine precursors with concomitant noncatalytic (3 + 2)-cycloaddition. The choice of solvent allows control of the outcome of the cascade transformation. The developed procedure is simple and cost-efficient and allowed important heterocycles to be obtained in one-pot with various functional groups.
Collapse
Affiliation(s)
- Xenia A Barashkova
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Avetik G Gevondian
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Gennadij V Latyshev
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Yury N Kotovshchikov
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Stanislav I Bezzubov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskiy pr. 31, Moscow 119991, Russia
| | - Nikolay V Lukashev
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Irina P Beletskaya
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| |
Collapse
|
5
|
Xu J, Li J, Chen M, Jiang H, Fan X, Hu Y, Shan H, Yang M, Xu Y, Lang Y, Dai H, Cai X. Population pharmacokinetics of nirmatrelvir/ritonavir in critically ill Chinese COVID-19 patients and recommendations for medication use: a two-center retrospective study. Expert Rev Clin Pharmacol 2024; 17:1071-1079. [PMID: 39325653 DOI: 10.1080/17512433.2024.2410385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND This study aimed to establish population pharmacokinetics (PPK) models of nirmatrelvir/ritonavir in critically ill Chinese patients with the coronavirus disease 2019 (COVID-19) infection, explore factors affecting the pharmacokinetics (PK) of nirmatrelvir/ritonavir. METHODS A total of 285 serum samples and clinical data were collected from 152 patients. The PPK models of nirmatrelvir/ritonavir were analyzed using nonlinear mixed-effect modeling (NONMEM) approach. The optimal dosing regimen for patients with different renal function was determined using Monte Carlo simulations. RESULTS The population typical values of apparent clearance (CL/F) and apparent volume of distribution (V/F) of nirmatrelvir were 2.26 L/h and 15.3 L, respectively. Notably, creatinine clearance (CrCL) significantly influenced the PK variation of nirmatrelvir. Monte Carlo simulations suggested that patients with mild-to-moderate renal impairment experienced a 22.0-59.9% increase in the area under the curve (AUC) when they were administered a standard dose of nirmatrelvir compared to those with normal renal function. The AUC in patients with severe renal impairment after administration of 150 mg q12h nirmatrelvir was similar to that in patients with normal renal function after administration of 300 mg q12h nirmatrelvir. CONCLUSIONS PPK modeling and simulation provided a reference for the rational clinical application of nirmatrelvir/ritonavir in critically ill Chinese patients.
Collapse
Affiliation(s)
- Junjun Xu
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jinmeng Li
- Department of Pharmacy, Hangzhou Red Cross Hospital, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang Province, China
| | - Meng Chen
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Huifang Jiang
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xudong Fan
- Department of Pharmacy, Hangzhou Red Cross Hospital, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang Province, China
| | - Yangmin Hu
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Haili Shan
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Mingdong Yang
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yichao Xu
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yuying Lang
- Department of Pharmacy, Hangzhou Red Cross Hospital, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang Province, China
| | - Haibin Dai
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xinjun Cai
- Department of Pharmacy, Hangzhou Red Cross Hospital, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
6
|
Carvalho MAGD, Souza GB, Tizziani T, Pontes CLM, Dambrós BP, Sousa NFD, Scotti MT, Steindel M, Braga AL, Sandjo LP, Assis FFD. Synthesis, in vitro and in silico evaluation of gallamide and selenogallamide derivatives as inhibitors of the SARS-CoV-2 main protease. Arch Pharm (Weinheim) 2024; 357:e2400253. [PMID: 39148177 DOI: 10.1002/ardp.202400253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
The present work reports the inhibitory effect of amides derived from gallic acid (gallamides) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro), along with cytotoxicity evaluation and molecular docking studies. In addition to gallamides, other relevant compounds were also synthesized and evaluated against Mpro, making a total of 25 compounds. Eight compounds presented solubility issues during the inhibitory assay and one showed no inhibitory activity. Compounds 3a, 3b, and 3f showed the highest enzymatic inhibition with IC50 = 0.26 ± 0.19 µM, 0.80 ± 0.38 µM, and 2.87 ± 1.17 µM, respectively. Selenogallamide 6a exhibited IC50 values of 5.42 ± 2.89 µM and a comparison with its nonselenylated congener 3c shows that the insertion of the chalcogen moiety improved the inhibitory capacity of the compound by approximately 10 times. Regarding the cellular toxicity in THP-1 and Vero cells, compounds 3e and 3g, showed moderate cytotoxicity in Vero cells, while for THP-1 both were nontoxic, with CC50 > 150 µM. Derivative 3d showed moderate cytotoxicity against both cell lines, whereas 6d was moderatly toxic to THP-1. Other compounds analyzed do not induce substantial cellular toxicity at the concentrations tested. The molecular docking results for compounds 3a, 3b, and 3f show that hydrogen bonding interactions involving the hydroxyl groups (OH) of the gallate moiety are relevant, as well as the carbonyl group.
Collapse
Affiliation(s)
- Maryelle A G de Carvalho
- Department of Chemistry, CFM, Universidade Federal de Santa Catarina, Campus Universitario-Trindade, Florianópolis, Santa Catarina, Brazil
| | - Gabriella B Souza
- Department of Chemistry, CFM, Universidade Federal de Santa Catarina, Campus Universitario-Trindade, Florianópolis, Santa Catarina, Brazil
| | - Tiago Tizziani
- Department of Chemistry, CFM, Universidade Federal de Santa Catarina, Campus Universitario-Trindade, Florianópolis, Santa Catarina, Brazil
| | - Carime L M Pontes
- Department of Chemistry, CFM, Universidade Federal de Santa Catarina, Campus Universitario-Trindade, Florianópolis, Santa Catarina, Brazil
| | - Bibiana P Dambrós
- Department of Microbiology, Immunology and Parasitology, CCB, Universidade Federal de Santa Catarina, Campus Universitario-Trindade, Florianópolis, Santa Catarina, Brazil
| | - Natália F de Sousa
- Department of Chemistry, Center for Exact and Natural Sciences, Universidade Federal de Paraíba, Campus I, João Pessoa, Paraíba, Brazil
| | - Marcus T Scotti
- Department of Chemistry, Center for Exact and Natural Sciences, Universidade Federal de Paraíba, Campus I, João Pessoa, Paraíba, Brazil
| | - Mario Steindel
- Department of Microbiology, Immunology and Parasitology, CCB, Universidade Federal de Santa Catarina, Campus Universitario-Trindade, Florianópolis, Santa Catarina, Brazil
| | - Antonio L Braga
- Department of Chemistry, CFM, Universidade Federal de Santa Catarina, Campus Universitario-Trindade, Florianópolis, Santa Catarina, Brazil
| | - Louis P Sandjo
- Department of Chemistry, CFM, Universidade Federal de Santa Catarina, Campus Universitario-Trindade, Florianópolis, Santa Catarina, Brazil
| | - Francisco F de Assis
- Department of Chemistry, CFM, Universidade Federal de Santa Catarina, Campus Universitario-Trindade, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
7
|
Cao Y, Lai KM, Fu KC, Kuo CL, Tan YJ, Yu L(L, Huang D. Dual Functionality of Papaya Leaf Extracts: Anti-Coronavirus Activity and Anti-Inflammation Mechanism. Foods 2024; 13:3274. [PMID: 39456336 PMCID: PMC11506937 DOI: 10.3390/foods13203274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Papaya leaves have been used as food and traditional herbs for the treatment of cancer, diabetes, asthma, and virus infections, but the active principle has not been understood. We hypothesized that the anti-inflammatory activity could be the predominant underlying principle. To test this, we extracted papaya leaf juice with different organic solvents and found that the ethyl acetate (EA) fraction showed the most outstanding anti-inflammatory activity by suppressing the production of nitric oxide (NO, IC50 = 24.94 ± 2.4 μg/mL) and the expression of pro-inflammatory enzymes, such as inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2), and cytokines including interleukins (IL-1β and IL-6), and a tumor necrosis factor (TNF-α) in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Transcriptomic analysis and Western blot results revealed its anti-inflammatory mechanisms were through the MAPK signaling pathway by inhibiting the phosphorylation of ERK1/2, JNKs, and p38 and the prevention of the cell surface expression of TLR4. Furthermore, we discovered that the EA fraction could inhibit the replication of alpha-coronavirus (HCoV-229E) and beta-coronavirus (HCoV-OC43 and SARS-CoV-2) and might be able to prevent cytokine storms caused by the coronavirus infection. From HPLC-QTOF-MS data, we found that the predominant phytochemicals that existed in the EA fraction were quercetin and kaempferol glycosides and carpaine. Counter-intuitively, further fractionation resulted in a loss of activity, suggesting that the synergistic effect of different components in the EA fraction contribute to the overall potent activity. Taken together, our results provide preliminary evidence for papaya leaf as a potential anti-inflammatory and anti-coronavirus agent, warranting further study for its use for human health promotion.
Collapse
Affiliation(s)
- Yujia Cao
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore;
| | - Kah-Man Lai
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; (K.-M.L.); (Y.-J.T.)
| | - Kuo-Chang Fu
- AgriGADA Biotech Pte Ltd., 8 Eu Tong Sen Street #17–82, The Central, Singapore 059818, Singapore; (K.-C.F.); (C.-L.K.)
| | - Chien-Liang Kuo
- AgriGADA Biotech Pte Ltd., 8 Eu Tong Sen Street #17–82, The Central, Singapore 059818, Singapore; (K.-C.F.); (C.-L.K.)
- Ph.D. Program for Aging, College of Medicine, China Medical University, Taichung 333, Taiwan
| | - Yee-Joo Tan
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; (K.-M.L.); (Y.-J.T.)
| | - Liangli (Lucy) Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA;
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore;
- Biomedical and Health Technology Platform, National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
| |
Collapse
|
8
|
Liu Z, Petinrin OO, Chen N, Toseef M, Liu F, Zhu Z, Qi F, Wong KC. Identification and evaluation of candidate COVID-19 critical genes and medicinal drugs related to plasma cells. BMC Infect Dis 2024; 24:1099. [PMID: 39363208 PMCID: PMC11451256 DOI: 10.1186/s12879-024-10000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
The ongoing COVID-19 pandemic, caused by the SARS-CoV-2 virus, represents one of the most significant global health crises in recent history. Despite extensive research into the immune mechanisms and therapeutic options for COVID-19, there remains a paucity of studies focusing on plasma cells. In this study, we utilized the DESeq2 package to identify differentially expressed genes (DEGs) between COVID-19 patients and controls using datasets GSE157103 and GSE152641. We employed the xCell algorithm to perform immune infiltration analyses, revealing notably elevated levels of plasma cells in COVID-19 patients compared to healthy individuals. Subsequently, we applied the Weighted Gene Co-expression Network Analysis (WGCNA) algorithm to identify COVID-19 related plasma cell module genes. Further, positive cluster biomarker genes for plasma cells were extracted from single-cell RNA sequencing data (GSE171524), leading to the identification of 122 shared genes implicated in critical biological processes such as cell cycle regulation and viral infection pathways. We constructed a robust protein-protein interaction (PPI) network comprising 89 genes using Cytoscape, and identified 20 hub genes through cytoHubba. These genes were validated in external datasets (GSE152418 and GSE179627). Additionally, we identified three potential small molecules (GSK-1070916, BRD-K89997465, and idarubicin) that target key hub genes in the network, suggesting a novel therapeutic approach. These compounds were characterized by their ability to down-regulate AURKB, KIF11, and TOP2A effectively, as evidenced by their low free binding energies determined through computational analyses using cMAP and AutoDock. This study marks the first comprehensive exploration of plasma cells' role in COVID-19, offering new insights and potential therapeutic targets. It underscores the importance of a systematic approach to understanding and treating COVID-19, expanding the current body of knowledge and providing a foundation for future research.
Collapse
Affiliation(s)
- Zhe Liu
- Institute for Hepatology, The Second Affiliated Hospital, School of Medicine, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518112, China
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | | | - Nanjun Chen
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Muhammad Toseef
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Fang Liu
- Rocgene (Beijing) Technology Co., Ltd, Beijing, Beijing, 102200, China
| | - Zhongxu Zhu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
| | - Furong Qi
- Institute for Hepatology, The Second Affiliated Hospital, School of Medicine, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518112, China.
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
9
|
Davis DA, Nair A, Astter Y, Treco E, Peyser B, Gussio R, Nguyen T, Eaton B, Postnikova E, Murphy M, Shrestha P, Bulut H, Hattorri SI, Mitsuya H, Yarchoan R. Discovery of a nasal spray steroid, tixocortol, as an inhibitor of SARS-CoV-2 main protease and viral replication. RSC Med Chem 2024; 15:d4md00454j. [PMID: 39371432 PMCID: PMC11450544 DOI: 10.1039/d4md00454j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024] Open
Abstract
Coronaviruses rely on the viral-encoded chymotrypsin-like main protease (Mpro or 3CLpro) for replication and assembly. Our previous research on Mpro of SARS-CoV-2 identified cysteine 300 (Cys300) as a potential allosteric site of Mpro inhibition. Here, we identified tixocortol (TX) as a covalent modifier of Cys300 which inhibits Mpro activity in vitro as well as in a cell-based Mpro expression assay. Most importantly TX inhibited SARS-CoV-2 replication in ACE2 expressing HeLa cells. Biochemical analysis and kinetic assays were consistent with TX acting as a non-competitive inhibitor. By contrast, TX was a weaker inhibitor and modifier of C300S Mpro, confirming a role for Cys300 in inhibition of WT Mpro but also providing evidence for an additional Cys target. TX pivalate (TP), a prodrug for TX that was previously marketed as a nasal spray, also inhibited SARS-CoV-2 replication in HeLa-ACE2 cells at low micromolar IC50s. These studies suggest that TX and/or TP could possibly be repurposed for the prevention and/or treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- David A Davis
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute Bethesda MD USA
| | - Ashwin Nair
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute Bethesda MD USA
| | - Yana Astter
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute Bethesda MD USA
| | - Emma Treco
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute Bethesda MD USA
| | - Brian Peyser
- Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health USA
| | - Rick Gussio
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research Frederick MD 21702 USA
- Computational Institute for Health and Environmental Research, (CIFHER.ORG) Riverside 5, RM 4076, 8490 Progress Dr. Frederick MD 21701 USA
| | - Tam Nguyen
- Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health USA
| | - Brett Eaton
- Integrated Research Facility at Fort Detrick 8200 Research Plaza Frederick MD 21702 USA
| | - Elena Postnikova
- Integrated Research Facility at Fort Detrick 8200 Research Plaza Frederick MD 21702 USA
| | - Michael Murphy
- Integrated Research Facility at Fort Detrick 8200 Research Plaza Frederick MD 21702 USA
| | - Prabha Shrestha
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute Bethesda MD USA
| | - Haydar Bulut
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute Bethesda MD USA
| | - Shin-Ichiro Hattorri
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute 1-21-1 Toyama Shinjuku-ku Tokyo 162-8655 Japan
| | - Hiroaki Mitsuya
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute Bethesda MD USA
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute 1-21-1 Toyama Shinjuku-ku Tokyo 162-8655 Japan
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute Bethesda MD USA
| |
Collapse
|
10
|
Chatatikun M, Indo HP, Imai M, Kawakami F, Kubo M, Kitagawa Y, Ichikawa H, Udomwech L, Phongphithakchai A, Sarakul O, Sukati S, Somsak V, Ichikawa T, Klangbud WK, Nissapatorn V, Tangpong J, Majima HJ. Potential of traditional medicines in alleviating COVID-19 symptoms. Front Pharmacol 2024; 15:1452616. [PMID: 39391697 PMCID: PMC11464457 DOI: 10.3389/fphar.2024.1452616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
This review discusses the prevention and treatment of coronavirus disease 2019 (COVID-19) caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Mutations in its spike glycoprotein have driven the emergence of variants with high transmissibility and immune escape capabilities. Some antiviral drugs are ineffective against the BA.2 subvariant at the authorized dose. Recently, 150 natural metabolites have been identified as potential candidates for development of new anti-COVID-19 drugs with higher efficacy and lower toxicity than those of existing therapeutic agents. Botanical drug-derived bioactive molecules have shown promise in dampening the COVID-19 cytokine storm and thus preventing pulmonary fibrosis, as they exert a strong binding affinity for viral proteins and inhibit their activity. The Health Ministry of Thailand has approved Andrographis paniculata (Jap. Senshinren) extracts to treat COVID-19. In China, over 85% of patients infected with SARS-CoV-2 receive treatments based on traditional Chinese medicine. A comprehensive map of the stages and pathogenetic mechanisms related to the disease and effective natural products to treat and prevent COVID-19 are presented. Approximately 10% of patients with COVID-19 are affected by long COVID, and COVID-19 infection impairs mitochondrial DNA. As the number of agents to treat COVID-19 is limited, adjuvant botanical drug treatments including vitamin C and E supplementation may reduce COVID-19 symptoms and inhibit progression to long COVID.
Collapse
Affiliation(s)
- Moragot Chatatikun
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Center of Excellence Research for Melioidosis and Microorganisms, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Hiroko P. Indo
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Amanogawa Galaxy Astronomy Research Center, Kagoshima University Graduate School of Engineering, Kagoshima, Japan
| | - Motoki Imai
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
- Department of Health Administration, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| | - Fumitaka Kawakami
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
- Department of Health Administration, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| | - Makoto Kubo
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
- Division of Microbiology, Kitasato University School of Allied Health Sciences, Sagamihara, Japan
- Department of Environmental Microbiology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
| | - Yoshimasa Kitagawa
- Oral Diagnosis and Medicine, Division of Oral Pathobiological Science, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Ichikawa
- Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Lunla Udomwech
- School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
| | - Atthaphong Phongphithakchai
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Orawan Sarakul
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Suriyan Sukati
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Voravuth Somsak
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Takafumi Ichikawa
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
- Department of Health Administration, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| | - Wiyada Kwanhian Klangbud
- Medical Technology Program, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, Thailand
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Jitbanjong Tangpong
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Hideyuki J. Majima
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
11
|
Diogo MA, Cabral AGT, de Oliveira RB. Advances in the Search for SARS-CoV-2 M pro and PL pro Inhibitors. Pathogens 2024; 13:825. [PMID: 39452697 PMCID: PMC11510351 DOI: 10.3390/pathogens13100825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/26/2024] Open
Abstract
SARS-CoV-2 is a spherical, positive-sense, single-stranded RNA virus with a large genome, responsible for encoding both structural proteins, vital for the viral particle's architecture, and non-structural proteins, critical for the virus's replication cycle. Among the non-structural proteins, two cysteine proteases emerge as promising molecular targets for the design of new antiviral compounds. The main protease (Mpro) is a homodimeric enzyme that plays a pivotal role in the formation of the viral replication-transcription complex, associated with the papain-like protease (PLpro), a cysteine protease that modulates host immune signaling by reversing post-translational modifications of ubiquitin and interferon-stimulated gene 15 (ISG15) in host cells. Due to the importance of these molecular targets for the design and development of novel anti-SARS-CoV-2 drugs, the purpose of this review is to address aspects related to the structure, mechanism of action and strategies for the design of inhibitors capable of targeting the Mpro and PLpro. Examples of covalent and non-covalent inhibitors that are currently being evaluated in preclinical and clinical studies or already approved for therapy will be also discussed to show the advances in medicinal chemistry in the search for new molecules to treat COVID-19.
Collapse
Affiliation(s)
| | | | - Renata Barbosa de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (M.A.D.); (A.G.T.C.)
| |
Collapse
|
12
|
Aguilera-Rodriguez D, Ortega-Alarcon D, Vazquez-Calvo A, Ricci V, Abian O, Velazquez-Campoy A, Alcami A, Palomo JM. Inhibition of SARS-CoV-2 3CLpro by chemically modified tyrosinase from Agaricus bisporus. RSC Med Chem 2024:d4md00289j. [PMID: 39371431 PMCID: PMC11451904 DOI: 10.1039/d4md00289j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Antiviral compounds are crucial to controlling the SARS-CoV-2 pandemic. Approved drugs have been tested for their efficacy against COVID-19, and new pharmaceuticals are being developed as a complementary tool to vaccines. In this work, a cheap and fast purification method for natural tyrosinase from Agaricus bisporus (AbTyr) fresh mushrooms was developed to evaluate the potential of this enzyme as a therapeutic protein via the inhibition of SARS-CoV-2 3CLpro protease activity in vitro. AbTyr showed a mild inhibition of 3CLpro. Thus, different variants of this protein were synthesized through chemical modifications, covalently binding different tailor-made glycans and peptides to the amino terminal groups of the protein. These new tyrosinase conjugates were purified and characterized through circular dichroism and fluorescence spectroscopy analyses, and their stability was evaluated under different conditions. Subsequently, all these tyrosinase conjugates were tested for 3CLpro protease inhibition. From them, the conjugate between tyrosinase and a dextran-aspartic acid (6 kDa) polymer showed the highest inhibition, with an IC50 of 2.5 μg ml-1 and IC90 of 5 μg ml-1, with no cytotoxicity activity by polymer insertion. Finally, SARS-CoV-2 virus infection was studied. It was found that this new AbTyr-Dext6000 protein showed an 80% decrease in viral load. These results show the capacity of these tyrosinase bioconjugates as potential therapeutic proteins, opening the possibility of extension and applicability against other different viruses.
Collapse
Affiliation(s)
| | - David Ortega-Alarcon
- Instituto de Investigación Sanitaria Aragón (IIS Aragón) 50009 Zaragoza Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd) 28029 Madrid Spain
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza Spain
| | - Angela Vazquez-Calvo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM) 28049 Madrid Spain
| | - Veronica Ricci
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC C/Marie Curie 2 28049 Madrid Spain
| | - Olga Abian
- Instituto de Investigación Sanitaria Aragón (IIS Aragón) 50009 Zaragoza Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd) 28029 Madrid Spain
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza Spain
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza Spain
| | - Adrian Velazquez-Campoy
- Instituto de Investigación Sanitaria Aragón (IIS Aragón) 50009 Zaragoza Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd) 28029 Madrid Spain
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza Spain
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza Spain
| | - Antonio Alcami
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM) 28049 Madrid Spain
| | - Jose M Palomo
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC C/Marie Curie 2 28049 Madrid Spain
| |
Collapse
|
13
|
Prokop JW, Alberta S, Witteveen-Lane M, Pell S, Farag HA, Bhargava D, Vaughan RM, Frisch A, Bauss J, Bhatti H, Arora S, Subrahmanya C, Pearson D, Goodyke A, Westgate M, Cook TW, Mitchell JT, Zieba J, Sims MD, Underwood A, Hassouna H, Rajasekaran S, Tamae Kakazu MA, Chesla D, Olivero R, Caulfield AJ. SARS-CoV-2 Genotyping Highlights the Challenges in Spike Protein Drift Independent of Other Essential Proteins. Microorganisms 2024; 12:1863. [PMID: 39338537 PMCID: PMC11433680 DOI: 10.3390/microorganisms12091863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
As of 2024, SARS-CoV-2 continues to propagate and drift as an endemic virus, impacting healthcare for years. The largest sequencing initiative for any species was initiated to combat the virus, tracking changes over time at a full virus base-pair resolution. The SARS-CoV-2 sequencing represents a unique opportunity to understand selective pressures and viral evolution but requires cross-disciplinary approaches from epidemiology to functional protein biology. Within this work, we integrate a two-year genotyping window with structural biology to explore the selective pressures of SARS-CoV-2 on protein insights. Although genotype and the Spike (Surface Glycoprotein) protein continue to drift, most SARS-CoV-2 proteins have had few amino acid alterations. Within Spike, the high drift rate of amino acids involved in antibody evasion also corresponds to changes within the ACE2 binding pocket that have undergone multiple changes that maintain functional binding. The genotyping suggests selective pressure for receptor specificity that could also confer changes in viral risk. Mapping of amino acid changes to the structures of the SARS-CoV-2 co-transcriptional complex (nsp7-nsp14), nsp3 (papain-like protease), and nsp5 (cysteine protease) proteins suggest they remain critical factors for drug development that will be sustainable, unlike those strategies targeting Spike.
Collapse
Affiliation(s)
- Jeremy W. Prokop
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA; (M.W.-L.); (H.A.F.); (S.A.); (C.S.); (D.P.); (A.G.); (M.W.); (S.R.); (D.C.)
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
| | - Sheryl Alberta
- Advanced Technology Lab, Corewell Health, Grand Rapids, MI 49503, USA; (S.A.); (S.P.)
| | - Martin Witteveen-Lane
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA; (M.W.-L.); (H.A.F.); (S.A.); (C.S.); (D.P.); (A.G.); (M.W.); (S.R.); (D.C.)
| | - Samantha Pell
- Advanced Technology Lab, Corewell Health, Grand Rapids, MI 49503, USA; (S.A.); (S.P.)
| | - Hosam A. Farag
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA; (M.W.-L.); (H.A.F.); (S.A.); (C.S.); (D.P.); (A.G.); (M.W.); (S.R.); (D.C.)
| | - Disha Bhargava
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
| | - Robert M. Vaughan
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
| | - Austin Frisch
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
| | - Jacob Bauss
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
| | - Humza Bhatti
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
| | - Sanjana Arora
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA; (M.W.-L.); (H.A.F.); (S.A.); (C.S.); (D.P.); (A.G.); (M.W.); (S.R.); (D.C.)
| | - Charitha Subrahmanya
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA; (M.W.-L.); (H.A.F.); (S.A.); (C.S.); (D.P.); (A.G.); (M.W.); (S.R.); (D.C.)
| | - David Pearson
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA; (M.W.-L.); (H.A.F.); (S.A.); (C.S.); (D.P.); (A.G.); (M.W.); (S.R.); (D.C.)
| | - Austin Goodyke
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA; (M.W.-L.); (H.A.F.); (S.A.); (C.S.); (D.P.); (A.G.); (M.W.); (S.R.); (D.C.)
| | - Mason Westgate
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA; (M.W.-L.); (H.A.F.); (S.A.); (C.S.); (D.P.); (A.G.); (M.W.); (S.R.); (D.C.)
| | - Taylor W. Cook
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
| | - Jackson T. Mitchell
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
| | - Jacob Zieba
- Genetics and Genome Sciences Program, BioMolecular Science, Michigan State University, East Lansing, MI 48824, USA;
| | - Matthew D. Sims
- Section of Infectious Diseases, Corewell Health, Royal Oak, MI 48073, USA;
- Department of Internal Medicine, Oakland University William Beaumont School of Medicine, Auburn Hills, MI 48309, USA
| | - Adam Underwood
- Division of Mathematics and Science, Walsh University, North Canton, OH 44720, USA;
| | - Habiba Hassouna
- Adult Infectious Disease, Corewell Health, Grand Rapids, MI 49503, USA;
| | - Surender Rajasekaran
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA; (M.W.-L.); (H.A.F.); (S.A.); (C.S.); (D.P.); (A.G.); (M.W.); (S.R.); (D.C.)
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
| | - Maximiliano A. Tamae Kakazu
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
- Division of Pulmonary and Critical Care Medicine, Corewell Health, Grand Rapids, MI 49503, USA
| | - Dave Chesla
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA; (M.W.-L.); (H.A.F.); (S.A.); (C.S.); (D.P.); (A.G.); (M.W.); (S.R.); (D.C.)
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
| | - Rosemary Olivero
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (D.B.); (R.M.V.); (A.F.); (J.B.); (H.B.); (T.W.C.); (J.T.M.); (M.A.T.K.); (R.O.)
- Pediatric Infectious Disease, Helen DeVos Children’s Hospital, Corewell Health, Grand Rapids, MI 49503, USA
| | | |
Collapse
|
14
|
Bachhav N, Singh DK, Blithe DL, Lee MS, Prasad B. Identification of the Biotransformation Pathways of a Potential Oral Male Contraceptive, 11β-Methyl-19-Nortestosterone (11β-MNT) and Its Prodrugs: An In Vitro Study Highlights the Contribution of Polymorphic Intestinal UGT2B17. Pharmaceutics 2024; 16:1032. [PMID: 39204377 PMCID: PMC11360557 DOI: 10.3390/pharmaceutics16081032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
11β-Methyl-19-nortestosterone dodecylcarbonate (11β-MNTDC) is a prodrug of 11β-MNT and is being considered as a promising male oral contraceptive candidate in clinical development. However, the oral administration of 11β-MNTDC exhibits an ~200-fold lower serum concentration of 11β-MNT compared to 11β-MNTDC, resulting in the poor bioavailability of 11β-MNT. To elucidate the role of the first-pass metabolism of 11β-MNT in its poor bioavailability, we determined the biotransformation products of 11β-MNT and its prodrugs in human in vitro models. 11β-MNT and its two prodrugs 11β-MNTDC and 11β-MNT undecanoate (11β-MNTU) were incubated in cryopreserved human hepatocytes (HHs) and subjected to liquid chromatography-high resolution tandem mass spectrometry analysis, which identified ten 11β-MNT biotransformation products with dehydrogenated and glucuronidation (11β-MNTG) metabolites being the major metabolites. However, 11β-MNTG formation is highly variable and prevalent in human intestinal S9 fractions. A reaction phenotyping study of 11β-MNT using thirteen recombinant UDP-glucuronosyltransferase (UGT) enzymes confirmed the major role of UGT2B17 in 11β-MNTG formation. This was further supported by a strong correlation (R2 > 0.78) between 11β-MNTG and UGT2B17 abundance in human intestinal microsomes, human liver microsomes, and HH systems. These results suggest that 11β-MNT and its prodrugs are rapidly metabolized to 11β-MNTG by the highly polymorphic intestinal UGT2B17, which may explain the poor and variable bioavailability of the drug.
Collapse
Affiliation(s)
- Namrata Bachhav
- College of Pharmacy and Pharmaceutical Sciences, Washington State University (WSU), Spokane, WA 99202, USA
| | - Dilip Kumar Singh
- College of Pharmacy and Pharmaceutical Sciences, Washington State University (WSU), Spokane, WA 99202, USA
| | - Diana L. Blithe
- Contraceptive Development Program, Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 1 Center Dr, Bethesda, MD 20892, USA
| | - Min S. Lee
- Contraceptive Development Program, Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 1 Center Dr, Bethesda, MD 20892, USA
| | - Bhagwat Prasad
- College of Pharmacy and Pharmaceutical Sciences, Washington State University (WSU), Spokane, WA 99202, USA
| |
Collapse
|
15
|
Bekono BD, Onguéné PA, Simoben CV, Owono LCO, Ntie-Kang F. Computational discovery of dual potential inhibitors of SARS-CoV-2 spike/ACE2 and M pro: 3D-pharmacophore, docking-based virtual screening, quantum mechanics and molecular dynamics. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:277-298. [PMID: 38907013 DOI: 10.1007/s00249-024-01713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/01/2024] [Accepted: 06/02/2024] [Indexed: 06/23/2024]
Abstract
To find drugs against COVID-19, caused by the SARS-CoV-2, promising targets include the fusion of the viral spike with the human angiotensin-converting enzyme 2 (ACE2) as well as the main protease (Mpro). These proteins are responsible for viral entry and replication, respectively. We combined several state-of-the-art computational methods, including, protein-ligand interaction fingerprint, 3D-pharmacophores, molecular-docking, MM-GBSA, DFT, and MD simulations to explore two databases: ChEMBL and NANPDB to identify molecules that could both block spike/ACE2 fusion and inhibit Mpro. A total of 1,690,649 compounds from the two databases were screened using the pharmacophore model obtained from PLIF analysis. Five recent complexes of Mpro co-crystallized with different ligands were used to generate the pharmacophore model, allowing 4,829 compounds that passed this prefilter. These were then submitted to molecular docking against Mpro. The 5% top-ranked docking hits from docking result having scores < -8.32 kcal mol-1 were selected and then docked against spike/ACE2. Only four compounds: ChEMBL244958, ChEMBL266531, ChEMBL3680003, and 1-methoxy-3-indolymethyl glucosinolate (4) displayed binding energies < - 8.21 kcal mol-1 (for the native ligand) were considered as putative dual-target inhibitors. Furthermore, predictive ADMET, MM-GBSA and DFT/6-311G(d,p) were performed on these compounds and compared with those of well-known antivirals. DFT calculations showed that ChEMBL244958 and compound 4 had significant predicted reactivity values. Molecular dynamics simulations of the docked complexes were run for 100 ns and used to validate the stability docked poses and to confirm that these hits are putative dual binders of the spike/ACE2 and the Mpro.
Collapse
Affiliation(s)
- Boris D Bekono
- Department of Physics, Ecole Normale Supérieure, University of Yaoundé I, P. O. Box 47, Yaoundé, CM-00237, Cameroon.
- Center for Drug Discovery, Faculty of Science, University of Buea, P.O. Box 63, Buea, CM-00237, Cameroon.
| | - Pascal Amoa Onguéné
- Center for Drug Discovery, Faculty of Science, University of Buea, P.O. Box 63, Buea, CM-00237, Cameroon
- Department of Chemistry, University of Yaoundé I Institute of Wood Technology Mbalmayo, University of Yaoundé I, BP 50, Mbalmayo, Cameroon
| | - Conrad V Simoben
- Center for Drug Discovery, Faculty of Science, University of Buea, P.O. Box 63, Buea, CM-00237, Cameroon
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Luc C O Owono
- Department of Physics, Ecole Normale Supérieure, University of Yaoundé I, P. O. Box 47, Yaoundé, CM-00237, Cameroon
- CEPAMOQ, Faculty of Science, University of Douala, CM-00237, Douala, Cameroon
| | - Fidele Ntie-Kang
- Center for Drug Discovery, Faculty of Science, University of Buea, P.O. Box 63, Buea, CM-00237, Cameroon.
- Department of Chemistry, Faculty of Science, University of Buea, CM-00237, Buea, Cameroon.
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| |
Collapse
|
16
|
Monticone G, Huang Z, Hewins P, Cook T, Mirzalieva O, King B, Larter K, Miller-Ensminger T, Sanchez-Pino MD, Foster TP, Nichols OV, Ramsay AJ, Majumder S, Wyczechowska D, Tauzier D, Gravois E, Crabtree JS, Garai J, Li L, Zabaleta J, Barbier MT, Del Valle L, Jurado KA, Miele L. Novel immunomodulatory properties of adenosine analogs promote their antiviral activity against SARS-CoV-2. EMBO Rep 2024; 25:3547-3573. [PMID: 39009832 PMCID: PMC11315900 DOI: 10.1038/s44319-024-00189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 04/30/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024] Open
Abstract
The COVID-19 pandemic reminded us of the urgent need for new antivirals to control emerging infectious diseases and potential future pandemics. Immunotherapy has revolutionized oncology and could complement the use of antivirals, but its application to infectious diseases remains largely unexplored. Nucleoside analogs are a class of agents widely used as antiviral and anti-neoplastic drugs. Their antiviral activity is generally based on interference with viral nucleic acid replication or transcription. Based on our previous work and computer modeling, we hypothesize that antiviral adenosine analogs, like remdesivir, have previously unrecognized immunomodulatory properties which contribute to their therapeutic activity. In the case of remdesivir, we here show that these properties are due to its metabolite, GS-441524, acting as an Adenosine A2A Receptor antagonist. Our findings support a new rationale for the design of next-generation antiviral agents with dual - immunomodulatory and intrinsic - antiviral properties. These compounds could represent game-changing therapies to control emerging viral diseases and future pandemics.
Collapse
Affiliation(s)
- Giulia Monticone
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| | - Zhi Huang
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Peter Hewins
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomasina Cook
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Oygul Mirzalieva
- Department of Biochemistry and Molecular Biology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Brionna King
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Kristina Larter
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Taylor Miller-Ensminger
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria D Sanchez-Pino
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Interdisciplinary Oncology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Timothy P Foster
- Department of Microbiology, Immunology & Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Olga V Nichols
- Department of Microbiology, Immunology & Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Alistair J Ramsay
- Department of Microbiology, Immunology & Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Samarpan Majumder
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Dorota Wyczechowska
- Department of Interdisciplinary Oncology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Darlene Tauzier
- Precision Medicine Program, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Pathology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Elizabeth Gravois
- Precision Medicine Program, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Pathology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Judy S Crabtree
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Precision Medicine Program, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Jone Garai
- Department of Interdisciplinary Oncology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Li Li
- Department of Interdisciplinary Oncology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Jovanny Zabaleta
- Department of Interdisciplinary Oncology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Mallory T Barbier
- Department of Interdisciplinary Oncology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Luis Del Valle
- Department of Interdisciplinary Oncology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Pathology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Kellie A Jurado
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lucio Miele
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
17
|
Chung YS, Lam CY, Tan PH, Tsang HF, Wong SCC. Comprehensive Review of COVID-19: Epidemiology, Pathogenesis, Advancement in Diagnostic and Detection Techniques, and Post-Pandemic Treatment Strategies. Int J Mol Sci 2024; 25:8155. [PMID: 39125722 PMCID: PMC11312261 DOI: 10.3390/ijms25158155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
At present, COVID-19 remains a public health concern due to the ongoing evolution of SARS-CoV-2 and its prevalence in particular countries. This paper provides an updated overview of the epidemiology and pathogenesis of COVID-19, with a focus on the emergence of SARS-CoV-2 variants and the phenomenon known as 'long COVID'. Meanwhile, diagnostic and detection advances will be mentioned. Though many inventions have been made to combat the COVID-19 pandemic, some outstanding ones include multiplex RT-PCR, which can be used for accurate diagnosis of SARS-CoV-2 infection. ELISA-based antigen tests also appear to be potential diagnostic tools to be available in the future. This paper also discusses current treatments, vaccination strategies, as well as emerging cell-based therapies for SARS-CoV-2 infection. The ongoing evolution of SARS-CoV-2 underscores the necessity for us to continuously update scientific understanding and treatments for it.
Collapse
Affiliation(s)
| | | | | | | | - Sze-Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; (Y.-S.C.); (C.-Y.L.); (P.-H.T.); (H.-F.T.)
| |
Collapse
|
18
|
Shang N, Li X, Guo Z, Zhang L, Wang S. Comparative analysis of the safety and effectiveness of Nirmatrelvir-Ritonavir and Azvudine in older patients with COVID-19: a retrospective study from a tertiary hospital in China. Front Pharmacol 2024; 15:1362345. [PMID: 39104387 PMCID: PMC11298358 DOI: 10.3389/fphar.2024.1362345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/27/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction: Numerous studies have explored the treatment outcomes of Nirmatrelvir-Ritonavir and Azvudine in older patients with COVID-19. However, direct comparisons between these two drugs are still relatively limited. This study aims to compare the safety and effectiveness of these two drugs in Chinese older patients with early infection to provide strategies for clinical treatment. Methods: Older COVID-19 patients (age ≥65) hospitalized during the winter 2022 epidemic in China were included and divided into Nirmatrelvir-Ritonavir and Azvudine. Demographics, medication information, laboratory parameters, and treatment outcomes were collected. All-cause 28-day mortality, delta cycle threshold (ΔCt), nucleic acid negative conversion time, and incidence of adverse events were defined as outcomes. Propensity score matching (PSM), Kaplan-Meier, Cox proportional hazards model, subgroup analysis, and nomograms were selected to evaluate the outcomes. Results: A total of 1,508 older COVID-19 patients were screened. Based on the inclusion and exclusion criteria, 1,075 patients were eligible for the study. After PSM, the final number of older COVID-19 patients included in the study was 375, and there were no significant differences in demographic characteristics between the two groups (p > 0.05). Compared to the Azvudine group, the Nirmatrelvir-Ritonavir group showed a higher incidence of multiple adverse events (12.8% vs 5.2%, p = 0.009). The incidence of adverse events related to abnormal renal function was higher in the Nirmatrelvir-Ritonavir group compared to the Azvudine group (13.6% vs 7.2%, p = 0.045). There were no significant differences between the two groups in terms of all-cause 28-day mortality (HR = 1.020, 95% CI: 0.542 - 1.921, p = 0.951), whereas there were significant differences in nucleic acid negative conversion time (HR = 1.659, 95% CI: 1.166 - 2.360, p = 0.005) and ΔCt values (HR = 1.442, 95% CI: 1.084 - 1.918, p = 0.012). Conclusion: Azvudine and Nirmatrelvir-Ritonavir have comparable effectiveness in reducing mortality risk. Azvudine may perform better in nucleic acid negative conversion time and virus clearance and shows slightly better safety in older patients. Further studies with a larger sample size were needed to validate the result.
Collapse
Affiliation(s)
- Nan Shang
- Department of Pharmacy, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xianlin Li
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhiyu Guo
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lan Zhang
- School of Public Health, Capital Medical University, Beijing, China
| | - Shanshan Wang
- Section of Occupational Medicine, Department of Special Medicine, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
19
|
Xia YL, Du WW, Li YP, Tao Y, Zhang ZB, Liu SM, Fu YX, Zhang KQ, Liu SQ. Computational Insights into SARS-CoV-2 Main Protease Mutations and Nirmatrelvir Efficacy: The Effects of P132H and P132H-A173V. J Chem Inf Model 2024; 64:5207-5218. [PMID: 38913174 PMCID: PMC11235099 DOI: 10.1021/acs.jcim.4c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Nirmatrelvir, a pivotal component of the oral antiviral Paxlovid for COVID-19, targets the SARS-CoV-2 main protease (Mpro) as a covalent inhibitor. Here, we employed combined computational methods to explore how the prevalent Omicron variant mutation P132H, alone and in combination with A173V (P132H-A173V), affects nirmatrelvir's efficacy. Our findings suggest that P132H enhances the noncovalent binding affinity of Mpro for nirmatrelvir, whereas P132H-A173V diminishes it. Although both mutants catalyze the rate-limiting step more efficiently than the wild-type (WT) Mpro, P132H slows the overall rate of covalent bond formation, whereas P132H-A173V accelerates it. Comprehensive analysis of noncovalent and covalent contributions to the overall binding free energy of the covalent complex suggests that P132H likely enhances Mpro sensitivity to nirmatrelvir, while P132H-A173V may confer resistance. Per-residue decompositions of the binding and activation free energies pinpoint key residues that significantly affect the binding affinity and reaction rates, revealing how the mutations modulate these effects. The mutation-induced conformational perturbations alter drug-protein local contact intensities and the electrostatic preorganization of the protein, affecting noncovalent binding affinity and the stability of key reaction states, respectively. Our findings inform the mechanisms of nirmatrelvir resistance and sensitivity, facilitating improved drug design and the detection of resistant strains.
Collapse
Affiliation(s)
- Yuan-Ling Xia
- State
Key Laboratory for Conservation and Utilization of Bio-Resources in
Yunnan & School of Life Sciences, Yunnan
University, Kunming, Yunnan 650091, China
- Editorial
Office of Journal of Yunnan University (Natural Sciences Edition), Yunnan University, Kunming, Yunnan 650091, China
| | - Wen-Wen Du
- State
Key Laboratory for Conservation and Utilization of Bio-Resources in
Yunnan & School of Life Sciences, Yunnan
University, Kunming, Yunnan 650091, China
| | - Yong-Ping Li
- School
of Agriculture, Yunnan University, Kunming, Yunnan 650091, China
| | - Yan Tao
- State
Key Laboratory for Conservation and Utilization of Bio-Resources in
Yunnan & School of Life Sciences, Yunnan
University, Kunming, Yunnan 650091, China
- Yunnan
University Library, Yunnan University, Kunming, Yunnan 650091, China
| | - Zhi-Bi Zhang
- Yunnan
Key Laboratory of Stem Cell and Regenerative Medicine & Biomedical
Engineering Research Center, Kunming Medical
University, Kunming, Yunnan 650500, China
| | - Song-Ming Liu
- State
Key Laboratory for Conservation and Utilization of Bio-Resources in
Yunnan & School of Life Sciences, Yunnan
University, Kunming, Yunnan 650091, China
| | - Yun-Xin Fu
- State
Key Laboratory for Conservation and Utilization of Bio-Resources in
Yunnan & School of Life Sciences, Yunnan
University, Kunming, Yunnan 650091, China
- Human Genetics
Center and Department of Biostatistics and Data Science, School of
Public Health, The University of Texas Health
Science Center, Houston, Texas 77030, United States
| | - Ke-Qin Zhang
- State
Key Laboratory for Conservation and Utilization of Bio-Resources in
Yunnan & School of Life Sciences, Yunnan
University, Kunming, Yunnan 650091, China
| | - Shu-Qun Liu
- State
Key Laboratory for Conservation and Utilization of Bio-Resources in
Yunnan & School of Life Sciences, Yunnan
University, Kunming, Yunnan 650091, China
| |
Collapse
|
20
|
Amani B, Amani B. Comparison of effectiveness and safety of nirmatrelvir/ritonavir versus sotrovimab for COVID-19: a systematic review and meta-analysis. Expert Rev Anti Infect Ther 2024; 22:547-555. [PMID: 38457124 DOI: 10.1080/14787210.2024.2326561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND This study aims to compare the effectiveness and safety of nirmatrelvir/ritonavir (Paxlovid) and sotrovimab for coronavirus disease 2019 (COVID-19). METHODS A search was conducted on PubMed, Cochrane Library, and Web of Science to explore relevant studies from January 2021 to November 2023. The risk of bias in the included studies was assessed using the Cochrane Collaboration's tool. Data analysis was conducted using the Comprehensive Meta-Analysis software (version 3.0). RESULTS Fifteen retrospective studies involving 13, 306 patients were included. The meta-analysis revealed no significant difference between the nirmatrelvir/ritonavir and sotrovimab groups in terms of mortality rate (odds ratio [OR] = 0.62, 95% confidence interval [CI]: 0.28 to 1.38), hospitalization rate (OR = 0.76, 95% CI: 0.48 to 1.22), death or hospitalization rate (OR = 0.75, 95% CI: 0.51 to 1.10), and intensive unit care admission (OR = 1.97, 95% CI: 0.38 to 10.07). In terms of safety, nirmatrelvir/ritonavir was associated with a higher incidence of adverse events (OR = 3.44, 95% CI: 1.29 to 9.17). CONCLUSIONS The meta-analysis showed that nirmatrelvir/ritonavir and sotrovimab have similar effectiveness in treating COVID-19 patients. However, the certainty of evidence supporting these findings is low. High-quality research is needed to better compare these interventions in COVID-19.
Collapse
Affiliation(s)
- Behnam Amani
- Department of Health Management and Economics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Amani
- Department of Health Management and Economics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Lim SA, Ho N, Chen S, Chung EJ. Natural Killer Cell‐Derived Extracellular Vesicles as Potential Anti‐Viral Nanomaterials. Adv Healthc Mater 2024; 13:e2304186. [PMID: 38676697 DOI: 10.1002/adhm.202304186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/19/2024] [Indexed: 04/29/2024]
Abstract
In viral infections, natural killer (NK) cells exhibit anti-viral activity by inducing apoptosis in infected host cells and impeding viral replication through heightened cytokine release. Extracellular vesicles derived from NK cells (NK-EVs) also contain the membrane composition, homing capabilities, and cargo that enable anti-viral activity. These characteristics, and their biocompatibility and low immunogenicity, give NK-EVs the potential to be a viable therapeutic platform. This study characterizes the size, EV-specific protein expression, cell internalization, biocompatibility, and anti-viral miRNA cargo to evaluate the anti-viral properties of NK-EVs. After 48 h of NK-EV incubation in inflamed A549 lung epithelial cells, or conditions that mimic lung viral infections such as during COVID-19, cells treated with NK-EVs exhibit upregulated anti-viral miRNA cargo (miR-27a, miR-27b, miR-369-3p, miR-491-5p) compared to the non-treated controls and cells treated with control EVs derived from lung epithelial cells. Additionally, NK-EVs effectively reduce expression of viral RNA and pro-inflammatory cytokine (TNF-α, IL-8) levels in SARS-CoV-2 infected Vero E6 kidney epithelial cells and in infected mice without causing tissue damage while significantly decreasing pro-inflammatory cytokine compared to non-treated controls. Herein, this work elucidates the potential of NK-EVs as safe, anti-viral nanomaterials, offering a promising alternative to conventional NK cell and anti-viral therapies.
Collapse
Affiliation(s)
- Siyoung A Lim
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Nathan Ho
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sophia Chen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
- Bridge Institute, University of Southern California, Los Angeles, CA, 90089, USA
- Michelson Center for Convergent Bioscience, 1002 Childs Way, MCB 377, Los Angeles, CA, 90089, USA
| |
Collapse
|
22
|
Wang C, Ma CY, Hong RS, Turner TD, Rosbottom I, Sheikh AY, Yin Q, Roberts KJ. Influence of Solvent Selection on the Crystallizability and Polymorphic Selectivity Associated with the Formation of the "Disappeared" Form I Polymorph of Ritonavir. Mol Pharm 2024; 21:3525-3539. [PMID: 38900600 PMCID: PMC11220793 DOI: 10.1021/acs.molpharmaceut.4c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
The comparative crystallizability and polymorphic selectivity of ritonavir, a novel protease inhibitor for the treatment of acquired immune-deficiency syndrome, as a function of solvent selection are examined through an integrated and self-consistent experimental and computational molecular modeling study. Recrystallization at high supersaturation by rapid cooling at 283.15 K is found to produce the metastable "disappeared" polymorphic form I from acetone, ethyl acetate, acetonitrile, and toluene solutions in contrast to ethanol which produces the stable form II. Concomitant crystallization of the other known solid forms is not found under these conditions. Isothermal crystallization studies using turbidometric detection based upon classical nucleation theory reveal that, for an equal induction time, the required driving force needed to initiate solution nucleation decreases with solubility in the order of ethanol, acetone, acetonitrile, ethyl acetate, and toluene consistent with the expected desolvation behavior predicted from the calculated solute solvation free energies. Molecular dynamics simulations of the molecular and intermolecular chemistry reveal the presence of conformational interplay between intramolecular and intermolecular interactions within the solution phase. These encompass the solvent-dependent formation of intramolecular O-H...O hydrogen bonding between the hydroxyl and carbamate groups coupled with differing conformations of the hydroxyl's shielding phenyl groups. These conformational preferences and their relative interaction propensities, as a function of solvent selection, may play a rate-limiting role in the crystallization behavior by not only inhibiting to different degrees the nucleation process but also restricting the assembly of the optimal intermolecular hydrogen bonding network needed for the formation of the stable form II polymorph.
Collapse
Affiliation(s)
- Chang Wang
- Centre
for the Digital Design of Drug Products, School of Chemical and Process
Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
- School
of Chemical Engineering and Technology, State Key Laboratory of Chemical
Engineering, Tianjin University, Tianjin 300072, China
| | - Cai Y. Ma
- Centre
for the Digital Design of Drug Products, School of Chemical and Process
Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Richard S. Hong
- Molecular
Profiling and Drug Delivery, Research and Development, AbbVie Inc, North Chicago, Illinois 60064, United States
| | - Thomas D. Turner
- Centre
for the Digital Design of Drug Products, School of Chemical and Process
Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Ian Rosbottom
- Centre
for the Digital Design of Drug Products, School of Chemical and Process
Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Ahmad Y. Sheikh
- Molecular
Profiling and Drug Delivery, Research and Development, AbbVie Inc, North Chicago, Illinois 60064, United States
| | - Qiuxiang Yin
- School
of Chemical Engineering and Technology, State Key Laboratory of Chemical
Engineering, Tianjin University, Tianjin 300072, China
| | - Kevin J. Roberts
- Centre
for the Digital Design of Drug Products, School of Chemical and Process
Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| |
Collapse
|
23
|
Qin B, Wu C, Zhao B, Li G, Wang B, Ou M, Li Z, Lang X, Li P, Liu J, Cui S, Huang H. Design, Synthesis, and Biological Evaluation of 1,2,4-Oxadiazole Derivatives Containing an Aryl Carboxylic Acid Moiety as Potent Sarbecovirus Papain-like Protease Inhibitors. J Med Chem 2024; 67:10211-10232. [PMID: 38871484 DOI: 10.1021/acs.jmedchem.4c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Papain-like protease (PLpro) is a promising therapeutic target for its pivotal role in the life cycle of SARS-CoV-2. A series of 1,2,4-oxadiazole derivatives was designed and synthesized via a ring formation strategy based on SARS-CoV-2 PLpro-GRL0617 complex structure. Systematic structure-activity relationship studies revealed that introducing oxadiazole and aryl carboxylic acid moieties to GRL0617 enhanced the enzymatic inhibition activity, affinity, and deubiquitination capacity toward PLpro. 1,2,4-Oxadiazole compounds 13f and 26r, which had PLpro inhibition activity (IC50 = 1.8 and 1.0 μM) and antiviral activity against SARS-CoV-2 (EC50 = 5.4 and 4.3 μM), exhibited good metabolic stability (t1/2 > 93.2 min) and higher plasma exposure (AUC0-t = 17,380.08 and 24,289.76 ng·h/mL) in mice. Especially, compound 26r with moderate oral bioavailability of 39.1% and potent antiviral activity is worthy of further studies in vivo. Our findings provide a new insight for the discovery of antiviral agents targeting PLpro.
Collapse
Affiliation(s)
- Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Chengwei Wu
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P. R. China
| | - Binbin Zhao
- National Center of Technology Innovation for Animal Models, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, P. R. China
| | - Gang Li
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Baolian Wang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P. R. China
| | - Mengdie Ou
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Ziheng Li
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Xuli Lang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P. R. China
| | - Peng Li
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P. R. China
| | - Jiangning Liu
- National Center of Technology Innovation for Animal Models, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, P. R. China
| | - Sheng Cui
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Haihong Huang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| |
Collapse
|
24
|
Peralta-Moreno MN, Mena Y, Ortega-Alarcon D, Jimenez-Alesanco A, Vega S, Abian O, Velazquez-Campoy A, Thomson TM, Pinto M, Granadino-Roldán JM, Santos Tomas M, Perez JJ, Rubio-Martinez J. Shedding Light on Dark Chemical Matter: The Discovery of a SARS-CoV-2 M pro Main Protease Inhibitor through Intensive Virtual Screening and In Vitro Evaluation. Int J Mol Sci 2024; 25:6119. [PMID: 38892306 PMCID: PMC11172690 DOI: 10.3390/ijms25116119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The development of specific antiviral therapies targeting SARS-CoV-2 remains fundamental because of the continued high incidence of COVID-19 and limited accessibility to antivirals in some countries. In this context, dark chemical matter (DCM), a set of drug-like compounds with outstanding selectivity profiles that have never shown bioactivity despite being extensively assayed, appears to be an excellent starting point for drug development. Accordingly, in this study, we performed a high-throughput screening to identify inhibitors of the SARS-CoV-2 main protease (Mpro) using DCM compounds as ligands. Multiple receptors and two different docking scoring functions were employed to identify the best molecular docking poses. The selected structures were subjected to extensive conventional and Gaussian accelerated molecular dynamics. From the results, four compounds with the best molecular behavior and binding energy were selected for experimental testing, one of which presented inhibitory activity with a Ki value of 48 ± 5 μM. Through virtual screening, we identified a significant starting point for drug development, shedding new light on DCM compounds.
Collapse
Affiliation(s)
- Maria Nuria Peralta-Moreno
- Department of Materials Science and Physical Chemistry, Institut de Recerca en Quimica Teòrica i Computacional (IQTCUB), University of Barcelona (UB), 08028 Barcelona, Spain; (M.N.P.-M.); (Y.M.)
| | - Yago Mena
- Department of Materials Science and Physical Chemistry, Institut de Recerca en Quimica Teòrica i Computacional (IQTCUB), University of Barcelona (UB), 08028 Barcelona, Spain; (M.N.P.-M.); (Y.M.)
| | - David Ortega-Alarcon
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (D.O.-A.); (A.J.-A.); (S.V.); (O.A.); (A.V.-C.)
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Ana Jimenez-Alesanco
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (D.O.-A.); (A.J.-A.); (S.V.); (O.A.); (A.V.-C.)
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Sonia Vega
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (D.O.-A.); (A.J.-A.); (S.V.); (O.A.); (A.V.-C.)
| | - Olga Abian
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (D.O.-A.); (A.J.-A.); (S.V.); (O.A.); (A.V.-C.)
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas Digestivas (CIBERehd), 28029 Madrid, Spain;
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (D.O.-A.); (A.J.-A.); (S.V.); (O.A.); (A.V.-C.)
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas Digestivas (CIBERehd), 28029 Madrid, Spain;
| | - Timothy M. Thomson
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas Digestivas (CIBERehd), 28029 Madrid, Spain;
- Institute of Molecular Biology of Barcelona (IBMB-CSIC), 08028 Barcelona, Spain
- Instituto de investigaciones de la Altura, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, Lima 15102, Peru
| | - Marta Pinto
- AbbVie Deutschland GmbH & Co. KG, Computational Drug Discovery, Knollstrasse, 67061 Ludwigshafen, Germany;
| | - José M. Granadino-Roldán
- Departamento de Química Física y Analítica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus “Las Lagunillas” s/n, 23071 Jaén, Spain;
| | - Maria Santos Tomas
- Department of Architecture Technology, Universitat Politecnica de Catalunya (UPC), Av. Diagonal 649, 08028 Barcelona, Spain;
| | - Juan J. Perez
- Department of Chemical Engineering, Universitat Politecnica de Catalunya (UPC), Barcelona Tech. Av. Diagonal, 647, 08028 Barcelona, Spain;
| | - Jaime Rubio-Martinez
- Department of Materials Science and Physical Chemistry, Institut de Recerca en Quimica Teòrica i Computacional (IQTCUB), University of Barcelona (UB), 08028 Barcelona, Spain; (M.N.P.-M.); (Y.M.)
| |
Collapse
|
25
|
Holmes J, Islam SM, Milligan KA. Exploring Cannabinoids as Potential Inhibitors of SARS-CoV-2 Papain-like Protease: Insights from Computational Analysis and Molecular Dynamics Simulations. Viruses 2024; 16:878. [PMID: 38932170 PMCID: PMC11209085 DOI: 10.3390/v16060878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a global COVID-19 pandemic, challenging healthcare systems worldwide. Effective therapeutic strategies against this novel coronavirus remain limited, underscoring the urgent need for innovative approaches. The present research investigates the potential of cannabis compounds as therapeutic agents against SARS-CoV-2 through their interaction with the virus's papain-like protease (PLpro) protein, a crucial element in viral replication and immune evasion. Computational methods, including molecular docking and molecular dynamics (MD) simulations, were employed to screen cannabis compounds against PLpro and analyze their binding mechanisms and interaction patterns. The results showed cannabinoids with binding affinities ranging from -6.1 kcal/mol to -4.6 kcal/mol, forming interactions with PLpro. Notably, Cannabigerolic and Cannabidiolic acids exhibited strong binding contacts with critical residues in PLpro's active region, indicating their potential as viral replication inhibitors. MD simulations revealed the dynamic behavior of cannabinoid-PLpro complexes, highlighting stable binding conformations and conformational changes over time. These findings shed light on the mechanisms underlying cannabis interaction with SARS-CoV-2 PLpro, aiding in the rational design of antiviral therapies. Future research will focus on experimental validation, optimizing binding affinity and selectivity, and preclinical assessments to develop effective treatments against COVID-19.
Collapse
Affiliation(s)
| | - Shahidul M. Islam
- Department of Chemistry, Delaware State University, 1200 N. DuPont Hwy, Dover, DE 19901, USA; (J.H.); (K.A.M.)
| | | |
Collapse
|
26
|
Messore A, Malune P, Patacchini E, Madia VN, Ialongo D, Arpacioglu M, Albano A, Ruggieri G, Saccoliti F, Scipione L, Tramontano E, Canton S, Corona A, Scognamiglio S, Paulis A, Suleiman M, Al-Maqtari HM, Abid FMA, Kawsar SMA, Sankaranarayanan M, Di Santo R, Esposito F, Costi R. New Thiazolidine-4-One Derivatives as SARS-CoV-2 Main Protease Inhibitors. Pharmaceuticals (Basel) 2024; 17:650. [PMID: 38794220 PMCID: PMC11124136 DOI: 10.3390/ph17050650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
It has been more than four years since the first report of SARS-CoV-2, and humankind has experienced a pandemic with an unprecedented impact. Moreover, the new variants have made the situation even worse. Among viral enzymes, the SARS-CoV-2 main protease (Mpro) has been deemed a promising drug target vs. COVID-19. Indeed, Mpro is a pivotal enzyme for viral replication, and it is highly conserved within coronaviruses. It showed a high extent of conservation of the protease residues essential to the enzymatic activity, emphasizing its potential as a drug target to develop wide-spectrum antiviral agents effective not only vs. SARS-CoV-2 variants but also against other coronaviruses. Even though the FDA-approved drug nirmatrelvir, a Mpro inhibitor, has boosted the antiviral therapy for the treatment of COVID-19, the drug shows several drawbacks that hinder its clinical application. Herein, we report the synthesis of new thiazolidine-4-one derivatives endowed with inhibitory potencies in the micromolar range against SARS-CoV-2 Mpro. In silico studies shed light on the key structural requirements responsible for binding to highly conserved enzymatic residues, showing that the thiazolidinone core acts as a mimetic of the Gln amino acid of the natural substrate and the central role of the nitro-substituted aromatic portion in establishing π-π stacking interactions with the catalytic His-41 residue.
Collapse
Affiliation(s)
- Antonella Messore
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (A.M.); (E.P.); (D.I.); (M.A.); (A.A.); (G.R.); (F.S.); (L.S.); (R.D.S.); (R.C.)
| | - Paolo Malune
- Department of Life and Environmental Sciences, Faculty of Biology and Pharmacy, University of Cagliari, Cittadella Universitaria di Monserrato, ss554 Km 4500, 09045 Monserrato, Cagliari, Italy; (P.M.); (E.T.); (S.C.); (A.C.); (S.S.); (A.P.)
| | - Elisa Patacchini
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (A.M.); (E.P.); (D.I.); (M.A.); (A.A.); (G.R.); (F.S.); (L.S.); (R.D.S.); (R.C.)
| | - Valentina Noemi Madia
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (A.M.); (E.P.); (D.I.); (M.A.); (A.A.); (G.R.); (F.S.); (L.S.); (R.D.S.); (R.C.)
| | - Davide Ialongo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (A.M.); (E.P.); (D.I.); (M.A.); (A.A.); (G.R.); (F.S.); (L.S.); (R.D.S.); (R.C.)
| | - Merve Arpacioglu
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (A.M.); (E.P.); (D.I.); (M.A.); (A.A.); (G.R.); (F.S.); (L.S.); (R.D.S.); (R.C.)
| | - Aurora Albano
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (A.M.); (E.P.); (D.I.); (M.A.); (A.A.); (G.R.); (F.S.); (L.S.); (R.D.S.); (R.C.)
| | - Giuseppe Ruggieri
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (A.M.); (E.P.); (D.I.); (M.A.); (A.A.); (G.R.); (F.S.); (L.S.); (R.D.S.); (R.C.)
| | - Francesco Saccoliti
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (A.M.); (E.P.); (D.I.); (M.A.); (A.A.); (G.R.); (F.S.); (L.S.); (R.D.S.); (R.C.)
| | - Luigi Scipione
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (A.M.); (E.P.); (D.I.); (M.A.); (A.A.); (G.R.); (F.S.); (L.S.); (R.D.S.); (R.C.)
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, Faculty of Biology and Pharmacy, University of Cagliari, Cittadella Universitaria di Monserrato, ss554 Km 4500, 09045 Monserrato, Cagliari, Italy; (P.M.); (E.T.); (S.C.); (A.C.); (S.S.); (A.P.)
| | - Serena Canton
- Department of Life and Environmental Sciences, Faculty of Biology and Pharmacy, University of Cagliari, Cittadella Universitaria di Monserrato, ss554 Km 4500, 09045 Monserrato, Cagliari, Italy; (P.M.); (E.T.); (S.C.); (A.C.); (S.S.); (A.P.)
| | - Angela Corona
- Department of Life and Environmental Sciences, Faculty of Biology and Pharmacy, University of Cagliari, Cittadella Universitaria di Monserrato, ss554 Km 4500, 09045 Monserrato, Cagliari, Italy; (P.M.); (E.T.); (S.C.); (A.C.); (S.S.); (A.P.)
| | - Sante Scognamiglio
- Department of Life and Environmental Sciences, Faculty of Biology and Pharmacy, University of Cagliari, Cittadella Universitaria di Monserrato, ss554 Km 4500, 09045 Monserrato, Cagliari, Italy; (P.M.); (E.T.); (S.C.); (A.C.); (S.S.); (A.P.)
| | - Annalaura Paulis
- Department of Life and Environmental Sciences, Faculty of Biology and Pharmacy, University of Cagliari, Cittadella Universitaria di Monserrato, ss554 Km 4500, 09045 Monserrato, Cagliari, Italy; (P.M.); (E.T.); (S.C.); (A.C.); (S.S.); (A.P.)
| | - Mustapha Suleiman
- Department of Chemistry, Sokoto State University, Sokoto 852101, Nigeria;
| | | | - Fatma Mohamed A. Abid
- Department of Chemistry, Faculty of Science, Al-Azzaytuna University, Tarhuna 537622224, Libya;
| | - Sarkar M. A. Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, Rajasthan, India;
| | - Roberto Di Santo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (A.M.); (E.P.); (D.I.); (M.A.); (A.A.); (G.R.); (F.S.); (L.S.); (R.D.S.); (R.C.)
| | - Francesca Esposito
- Department of Life and Environmental Sciences, Faculty of Biology and Pharmacy, University of Cagliari, Cittadella Universitaria di Monserrato, ss554 Km 4500, 09045 Monserrato, Cagliari, Italy; (P.M.); (E.T.); (S.C.); (A.C.); (S.S.); (A.P.)
| | - Roberta Costi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, “Sapienza” Università di Roma, p.le Aldo Moro 5, 00185 Rome, Italy; (A.M.); (E.P.); (D.I.); (M.A.); (A.A.); (G.R.); (F.S.); (L.S.); (R.D.S.); (R.C.)
| |
Collapse
|
27
|
Urbanowicz K, Opielka M, Stegmann KM, Dickmanns A, Dobbelstein M, Peters GJ, Smoleński RT. Evaluation of N4-hydroxycytidine incorporation into nucleic acids of SARS-CoV-2-infected host cells by direct measurement with liquid chromatography-mass spectrometry. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:813-821. [PMID: 38741480 DOI: 10.1080/15257770.2024.2346550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Molnupiravir, an orally administered prodrug of β-d-N4-hydroxycytidine (NHC), is incorporated into newly synthesized RNA by viral RNA-dependent RNA polymerase (RdRp). It is used for treatment of SARS-CoV-2 infections. Incorporation of NHC triphosphate into viral RNA inhibits replication of the virus, at least in part by introducing deleterious mutations. However, there is limited information on NHC incorporation into host RNA and reports on the risk of mutagenicity that molnupiravir/NHC pose to the host are conflicting. We used two liquid chromatography-mass spectrometry (LC-MS) methods to evaluate the incorporation of NHC into RNA and DNA of host Vero E6 cells in a SARS-CoV-2 infection model. To test this, host and viral RNA were degraded to their ribonucleosides, while host DNA was degraded to deoxyribonucleosides. Subsequently, nucleic acid constituents were analyzed by LC-MS, which offers specific, direct, and quantitative determination of incorporation. Our findings revealed concentration dependent NHC incorporation into host cell RNA in both infected and uninfected cell cultures, reaching a maximum of 1 in 7,093 bases. Analysis of host DNA revealed no presence of deoxy-N4-hydroxycytidine down to a detection limit of 1 in 133,000 bases. Our findings therefore suggest minimal to no NHC incorporation into host DNA, indicating a low probability of significant host cell mutagenicity associated with its use.
Collapse
Affiliation(s)
| | - Mikolaj Opielka
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Kim M Stegmann
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Antje Dickmanns
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Matthias Dobbelstein
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Godefridus J Peters
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
- Laboratory of Medical Oncology, Amsterdam University Medical Centers, Cancer Center Amsterdam, Vrije Unversteit Amsterdam, Amsterdam, the Netherlands
| | | |
Collapse
|
28
|
Avedissian SN, Malik JR, Podany AT, Neely M, Rhodes NJ, Scarsi KK, Scheetz MH, Duryee MJ, Modebelu UO, Mykris TM, Winchester LC, Byrareddy SN, Fletcher CV. In-vitro and in-vivo assessment of nirmatrelvir penetration into CSF, central nervous system cells, tissues, and peripheral blood mononuclear cells. Sci Rep 2024; 14:10709. [PMID: 38729980 PMCID: PMC11087525 DOI: 10.1038/s41598-024-60935-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Three years after SARS-CoV-2 emerged as a global infectious threat, the virus has become endemic. The neurological complications such as depression, anxiety, and other CNS complications after COVID-19 disease are increasing. The brain, and CSF have been shown as viral reservoirs for SARS-CoV-2, yielding a potential hypothesis for CNS effects. Thus, we investigated the CNS pharmacology of orally dosed nirmatrelvir/ritonavir (NMR/RTV). Using both an in vitro and an in vivo rodent model, we investigated CNS penetration and potential pharmacodynamic activity of NMR. Through pharmacokinetic modeling, we estimated the median CSF penetration of NMR to be low at 18.11% of plasma with very low accumulation in rodent brain tissue. Based on the multiples of the 90% maximal effective concentration (EC90) for SARS-CoV-2, NMR concentrations in the CSF and brain do not achieve an exposure level similar to that of plasma. A median of only 16% of all the predicted CSF concentrations in rats were > 3xEC90 (unadjusted for protein binding). This may have implications for viral persistence and neurologic post-acute sequelae of COVID-19 if increased NMR penetration in the CNS leads to decreased CNS viral loads and decreased CNS inflammation.
Collapse
Affiliation(s)
- Sean N Avedissian
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA.
| | - Johid R Malik
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Anthony T Podany
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Michael Neely
- Department of Pediatrics, Division of Infectious Diseases, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Nathaniel J Rhodes
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, USA
- Pharmacometrics Center of Excellence, Midwestern University, Downers Grove, IL, USA
| | - Kimberly K Scarsi
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
- Division of Infectious Diseases, Department of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Marc H Scheetz
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, USA
- Pharmacometrics Center of Excellence, Midwestern University, Downers Grove, IL, USA
| | - Michael J Duryee
- Division of Rheumatology, Department of Pharmacology & Experimental Neurosciences Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ukamaka O Modebelu
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Timothy M Mykris
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Lee C Winchester
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology & Experimental Neurosciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Courtney V Fletcher
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA.
- Division of Infectious Diseases, Department of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
29
|
Niu ZX, Hu J, Sun JF, Wang YT. Fluorine in the pharmaceutical industry: Synthetic approaches and application of clinically approved fluorine-enriched anti-infectious medications. Eur J Med Chem 2024; 271:116446. [PMID: 38678824 DOI: 10.1016/j.ejmech.2024.116446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
The strategic integration of fluorine atoms into anti-infectious agents has become a cornerstone in the field of medicinal chemistry, owing to the unique influence of fluorine on the chemical and biological properties of pharmaceuticals. This review examines the synthetic methodologies that enable the incorporation of fluorine into anti-infectious drugs, and the resultant clinical applications of these fluorine-enriched compounds. With a focus on clinically approved medications, the discussion extends to the molecular mechanisms. It further outlines the specific effects of fluorination, which contribute to the heightened efficacy of anti-infective therapies. By presenting a comprehensive analysis of current drugs and their developmental pathways, this review underscores the continuing evolution and significance of fluorine in advancing anti-infectious treatment options. The insights offered extend valuable guidance for future drug design and the development of next-generation anti-infectious agents.
Collapse
Affiliation(s)
- Zhen-Xi Niu
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Jing Hu
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| | - Jin-Feng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, College of Pharmacy, Yanji, Jilin,133002, China.
| | - Ya-Tao Wang
- First People's Hospital of Shangqiu, Henan Province, Shangqiu, 476100, China; Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49-Box 1041, 3000, Leuven, Belgium.
| |
Collapse
|
30
|
Chaganti S, Kushwah BS, Velip L, Tiwari SS, Chilvery S, Godugu C, Samanthula G. In vivo and in vitro metabolite profiling of nirmatrelvir using LC-Q-ToF-MS/MS along with the in silico approaches for prediction of metabolites and their toxicity. Biomed Chromatogr 2024; 38:e5849. [PMID: 38403275 DOI: 10.1002/bmc.5849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/22/2023] [Accepted: 02/01/2024] [Indexed: 02/27/2024]
Abstract
Nirmatrelvir (NRV), a 3C-like protease or Mpro inhibitor of SARS-CoV-2, is used for the treatment of COVID-19 in adult and paediatric patients. The present study was accomplished to investigate the comprehensive metabolic fate of NRV using in vitro and in vivo models. The in vitro models used for the study were microsomes (human liver microsomes, rat liver microsomes, mouse liver microsomes) and S9 fractions (human liver S9 fractions and rat liver S9 fractions) with the appropriate cofactors, whereas Sprague-Dawley rats were used as the in vivo models. Nirmatrelvir was administered orally to Sprague-Dawley rats, which was followed by the collection of urine, faeces and blood at pre-determined time intervals. Protein precipitation was used as the sample preparation method for all the samples. The samples were then analysed by liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (LC-Q-ToF-MS/MS) using an Acquity BEH C18 column with 0.1% formic acid and acetonitrile as the mobile phase. Four metabolites were found to be novel, which were formed via amide hydrolysis, oxidation and hydroxylation. Furthermore, an in silico analysis was performed using Meteor Nexus software to predict the probable metabolic changes of NRV. The toxicity and mutagenicity of NRV and its metabolites were also determined using DEREK Nexus and SARAH Nexus.
Collapse
Affiliation(s)
- Sowmya Chaganti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Bhoopendra Singh Kushwah
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Laximan Velip
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shristy S Tiwari
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shrilekha Chilvery
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Gananadhamu Samanthula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| |
Collapse
|
31
|
Conti V, Bertini N, Ricciardi R, Stefanelli B, De Bellis E, Sellitto C, Cascella M, Sabbatino F, Corbi G, Pagliano P, Filippelli A. Adverse events related to drug-drug interactions in COVID-19 patients. A persistent concern in the post-pandemic era: a systematic review. Expert Opin Drug Metab Toxicol 2024; 20:275-292. [PMID: 38568077 DOI: 10.1080/17425255.2024.2339397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
INTRODUCTION Since COVID-19 patients are often polytreated, monitoring drug-drug interaction (DDIs) is necessary. We evaluated whether drugs used after the second COVID-19 pandemic wave were associated with DDI-related adverse events and the role of drug interaction checkers in identifying them. METHODS The study (PROSPERO-ID: CRD42024507634) included: 1) consulting the drug interaction checkers Drugs.com, Liverpool COVID-19 Interactions, LexiComp, Medscape, and Micromedex; 2) systematic review; 3) reviewed studies analysis; 4) evaluating drug interaction checkers potential to anticipate DDI-related adverse events.The systematic review was performed searching PubMed, Scopus, ScienceDirect, and Cochrane databases from 1 March 2022 to 11 November 2023. Observational studies, and clinical trials were included. Article without reporting direct association between DDIs and adverse events were excluded. The risk of bias was assessed by Newcastle-Ottawa scale. RESULTS The most frequent DDIs involved nirmatrelvir/ritonavir (N/R) and fluvoxamine. Fifteen studies, including 150 patients and 35 DDI-related outcomes, were analyzed. The most frequent DDIs involved tacrolimus with N/R, resulting in creatinine increase.Eighty percent of reported DDI-related adverse events would have been identified by all drug-interaction checkers, while the remaining 20% by at least 2 of them. CONCLUSIONS Drug interaction checkers are useful but show inconsistencies. Multiple sources are needed to tailor treatment in the context of COVID-19.
Collapse
Affiliation(s)
- Valeria Conti
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Baronissi, SA, Italy
- Clinical Pharmacology Unit, San Giovanni di Dio e Ruggi d'Aragona University Hospital, Salerno, Italy
| | - Nicola Bertini
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Baronissi, SA, Italy
| | - Rosaria Ricciardi
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Baronissi, SA, Italy
- Clinical Pharmacology Unit, San Giovanni di Dio e Ruggi d'Aragona University Hospital, Salerno, Italy
| | - Berenice Stefanelli
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Baronissi, SA, Italy
- Clinical Pharmacology Unit, San Giovanni di Dio e Ruggi d'Aragona University Hospital, Salerno, Italy
| | - Emanuela De Bellis
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Baronissi, SA, Italy
- Clinical Pharmacology Unit, San Giovanni di Dio e Ruggi d'Aragona University Hospital, Salerno, Italy
| | - Carmine Sellitto
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Baronissi, SA, Italy
- Clinical Pharmacology Unit, San Giovanni di Dio e Ruggi d'Aragona University Hospital, Salerno, Italy
| | - Marco Cascella
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Baronissi, SA, Italy
| | - Francesco Sabbatino
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Baronissi, SA, Italy
| | - Graziamaria Corbi
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Pasquale Pagliano
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Baronissi, SA, Italy
- Infectious Disease Unit, San Giovanni di Dio e Ruggi D'Aragona University Hospital, Salerno, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Baronissi, SA, Italy
- Clinical Pharmacology Unit, San Giovanni di Dio e Ruggi d'Aragona University Hospital, Salerno, Italy
| |
Collapse
|
32
|
Zhu H, Sharma AK, Aguilar K, Boghani F, Sarcan S, George M, Ramesh J, Van Der Eerden J, Panda CS, Lopez A, Zhi W, Bollag R, Patel N, Klein K, White J, Thangaraju M, Lokeshwar BL, Singh N, Lokeshwar VB. Simple virus-free mouse models of COVID-19 pathologies and oral therapeutic intervention. iScience 2024; 27:109191. [PMID: 38433928 PMCID: PMC10906509 DOI: 10.1016/j.isci.2024.109191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/19/2023] [Accepted: 02/06/2024] [Indexed: 03/05/2024] Open
Abstract
The paucity of preclinical models that recapitulate COVID-19 pathology without requiring SARS-COV-2 adaptation and humanized/transgenic mice limits research into new therapeutics against the frequently emerging variants-of-concern. We developed virus-free models by C57BL/6 mice receiving oropharyngeal instillations of a SARS-COV-2 ribo-oligonucleotide common in all variants or specific to Delta/Omicron variants, concurrently with low-dose bleomycin. Mice developed COVID-19-like lung pathologies including ground-glass opacities, interstitial fibrosis, congested alveoli, and became moribund. Lung tissues from these mice and bronchoalveolar lavage and lung tissues from patients with COVID-19 showed elevated levels of hyaluronic acid (HA), HA-family members, an inflammatory signature, and immune cell infiltration. 4-methylumbelliferone (4-MU), an oral drug for biliary-spasm treatment, inhibits HA-synthesis. At the human equivalent dose, 4-MU prevented/inhibited COVID-19-like pathologies and long-term morbidity; 4-MU and metabolites accumulated in mice lungs. Therefore, these versatile SARS-COV-2 ribo-oligonucleotide oropharyngeal models recapitulate COVID-19 pathology, with HA as its critical mediator and 4-MU as a potential therapeutic for COVID-19.
Collapse
Affiliation(s)
- Huabin Zhu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Anuj K. Sharma
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Karina Aguilar
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Faizan Boghani
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Semih Sarcan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Michelle George
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Janavi Ramesh
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Joshua Van Der Eerden
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Chandramukhi S. Panda
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Aileen Lopez
- Clinical Trials Office, Augusta University, 1521 Pope Avenue, Augusta, GA 30912, USA
| | - Wenbo Zhi
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Roni Bollag
- Department of Pathology and Biorepository Alliance of Georgia, Medical College of Georgia, Augusta University, 1120 15th St, Augusta, GA 30912, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Nikhil Patel
- Department of Pathology and Biorepository Alliance of Georgia, Medical College of Georgia, Augusta University, 1120 15th St, Augusta, GA 30912, USA
| | - Kandace Klein
- Department of Radiology and Imaging, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Joe White
- Department of Pathology and Biorepository Alliance of Georgia, Medical College of Georgia, Augusta University, 1120 15th St, Augusta, GA 30912, USA
| | - Muthusamy Thangaraju
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Bal L. Lokeshwar
- Georgia Cancer Center, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Nagendra Singh
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Vinata B. Lokeshwar
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| |
Collapse
|
33
|
Ullah I, Escudie F, Scandale I, Gilani Z, Gendron-Lepage G, Gaudette F, Mowbray C, Fraisse L, Bazin R, Finzi A, Mothes W, Kumar P, Chatelain E, Uchil PD. Bioluminescence imaging reveals enhanced SARS-CoV-2 clearance in mice with combinatorial regimens. iScience 2024; 27:109049. [PMID: 38361624 PMCID: PMC10867665 DOI: 10.1016/j.isci.2024.109049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/21/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Direct acting antivirals (DAAs) represent critical tools for combating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that have escaped vaccine-elicited spike-based immunity and future coronaviruses with pandemic potential. Here, we used bioluminescence imaging to evaluate therapeutic efficacy of DAAs that target SARS-CoV-2 RNA-dependent RNA polymerase (favipiravir, molnupiravir) or main protease (nirmatrelvir) against Delta or Omicron VOCs in K18-hACE2 mice. Nirmatrelvir displayed the best efficacy followed by molnupiravir and favipiravir in suppressing viral loads in the lung. Unlike neutralizing antibody treatment, DAA monotherapy regimens did not eradicate SARS-CoV-2 in mice, but combining molnupiravir with nirmatrelvir exhibited superior additive efficacy and led to virus clearance. Furthermore, combining molnupiravir with caspase-1/4 inhibitor mitigated inflammation and lung pathology whereas combining molnupiravir with COVID-19 convalescent plasma demonstrated synergy, rapid virus clearance, and 100% survival. Thus, our study provides insights into in vivo treatment efficacies of DAAs and other effective combinations to bolster COVID-19 therapeutic arsenal.
Collapse
Affiliation(s)
- Irfan Ullah
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Fanny Escudie
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Zoela Gilani
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | - Fleur Gaudette
- Centre de Recherche du CHUM, Montréal, QC H2X0A9, Canada
| | - Charles Mowbray
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Laurent Fraisse
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Renée Bazin
- Hema-Quebec, Affaires Médicales et Innovation, Québec, QC G1V 5C3, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC H2X0A9, Canada
- Departement de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X0A9, Canada
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Eric Chatelain
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Pradeep D. Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
34
|
Feinstein P. Coronavirus Spike-RBD Variants Differentially Bind to the Human ACE2 Receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583944. [PMID: 38496407 PMCID: PMC10942415 DOI: 10.1101/2024.03.07.583944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The SARS-CoV-2 betacoronavirus infects people through binding the human Angiotensin Receptor 2 (ACE2), followed by import into a cell utilizing the Transmembrane Protease, Serine 2 (TMPRSS2) and Furin cofactors. Analysis of the SARS-CoV-2 extracellular spike protein has suggested critical amino acids necessary for binding within a 197-residue portion, the receptor binding domain (RBD). A cell-based assay between a membrane tethered RBD-GFP fusion protein and the membrane bound ACE2-Cherry fusion protein allowed for mutational intersection of both RBD and ACE2 proteins. Data shows Omicron BA.1 and BA.2 variants have altered dependency on the amino terminus of ACE2 protein and suggests multiple epitopes on both proteins stabilize their interactions at the Nt and internal region of ACE2. In contrast, the H-CoV-NL63 RBD is only dependent on the ACE2 internal region for binding. A peptide inhibitor approach to this internal region thus far have failed to block binding of RBDs to ACE2, suggesting that several binding regions on ACE2 are sufficient to allow functional interactions. In sum, the RBD binding surface of ACE2 appears relatively fluid and amenable to bind a range of novel variants.
Collapse
Affiliation(s)
- Paul Feinstein
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065
- The Graduate Center Programs in Biochemistry, Biology and CUNY Neuroscience Collaborative, 365 5th Ave, New York, NY 10016
| |
Collapse
|
35
|
Alipour Z, Zarezadeh S, Ghotbi-Ravandi AA. The Potential of Anti-coronavirus Plant Secondary Metabolites in COVID-19 Drug Discovery as an Alternative to Repurposed Drugs: A Review. PLANTA MEDICA 2024; 90:172-203. [PMID: 37956978 DOI: 10.1055/a-2209-6357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
In early 2020, a global pandemic was announced due to the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), known to cause COVID-19. Despite worldwide efforts, there are only limited options regarding antiviral drug treatments for COVID-19. Although vaccines are now available, issues such as declining efficacy against different SARS-CoV-2 variants and the aging of vaccine-induced immunity highlight the importance of finding more antiviral drugs as a second line of defense against the disease. Drug repurposing has been used to rapidly find COVID-19 therapeutic options. Due to the lack of clinical evidence for the therapeutic benefits and certain serious side effects of repurposed antivirals, the search for an antiviral drug against SARS-CoV-2 with fewer side effects continues. In recent years, numerous studies have included antiviral chemicals from a variety of plant species. A better knowledge of the possible antiviral natural products and their mechanism against SARS-CoV-2 will help to develop stronger and more targeted direct-acting antiviral agents. The aim of the present study was to compile the current data on potential plant metabolites that can be investigated in COVID-19 drug discovery and development. This review represents a collection of plant secondary metabolites and their mode of action against SARS-CoV and SARS-CoV-2.
Collapse
Affiliation(s)
- Zahra Alipour
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Somayeh Zarezadeh
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ali Akbar Ghotbi-Ravandi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
36
|
Avilés-Alía AI, Zulaica J, Perez JJ, Rubio-Martínez J, Geller R, Granadino-Roldán JM. The Discovery of inhibitors of the SARS-CoV-2 S protein through computational drug repurposing. Comput Biol Med 2024; 171:108163. [PMID: 38417382 DOI: 10.1016/j.compbiomed.2024.108163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/08/2024] [Accepted: 02/13/2024] [Indexed: 03/01/2024]
Abstract
SARS-CoV-2 must bind its principal receptor, ACE2, on the target cell to initiate infection. This interaction is largely driven by the receptor binding domain (RBD) of the viral Spike (S) protein. Accordingly, antiviral compounds that can block RBD/ACE2 interactions can constitute promising antiviral agents. To identify such molecules, we performed a virtual screening of the Selleck FDA approved drugs and the Selleck database of Natural Products using a multistep computational procedure. An initial set of candidates was identified from an ensemble docking process using representative structures determined from the analysis of four 3 μ s molecular dynamics trajectories of the RBD/ACE2 complex. Two procedures were used to construct an initial set of candidates including a standard and a pharmacophore guided docking procedure. The initial set was subsequently subjected to a multistep sieving process to reduce the number of candidates to be tested experimentally, using increasingly demanding computational procedures, including the calculation of the binding free energy computed using the MMPBSA and MMGBSA methods. After the sieving process, a final list of 10 candidates was proposed, compounds which were subsequently purchased and tested ex-vivo. The results identified estradiol cypionate and telmisartan as inhibitors of SARS-CoV-2 entry into cells. Our findings demonstrate that the methodology presented here enables the discovery of inhibitors targeting viruses for which high-resolution structures are available.
Collapse
Affiliation(s)
- Ana Isabel Avilés-Alía
- Institute for Integrative Systems Biology (I2SysBio, UV-CSIC), C/ Catedrático José Beltrán, 2, 46980, Paterna, Valencia, Spain
| | - Joao Zulaica
- Institute for Integrative Systems Biology (I2SysBio, UV-CSIC), C/ Catedrático José Beltrán, 2, 46980, Paterna, Valencia, Spain
| | - Juan J Perez
- Department of Chemical Engineering, Universitat Politecnica de Catalunya- Barcelona Tech, 08028, Barcelona, Spain
| | - Jaime Rubio-Martínez
- Department of Materials Science and Physical Chemistry, University of Barcelona and the Institut de Recerca en Quimica Teorica i Computacional (IQTCUB), 08028, Barcelona, Spain
| | - Ron Geller
- Institute for Integrative Systems Biology (I2SysBio, UV-CSIC), C/ Catedrático José Beltrán, 2, 46980, Paterna, Valencia, Spain.
| | - José M Granadino-Roldán
- Departamento de Química Física y Analítica. Universidad de Jaén, Campus "Las Lagunillas" s/n, 23071, Jaén, Spain.
| |
Collapse
|
37
|
Wang YT, Yang PC, Zhang YF, Sun JF. Synthesis and clinical application of new drugs approved by FDA in 2023. Eur J Med Chem 2024; 265:116124. [PMID: 38183778 DOI: 10.1016/j.ejmech.2024.116124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
In 2023, the U.S. Food and Drug Administration (FDA) granted approval to a total of 55 new drugs, comprising 29 new chemical entities (NCEs) and 25 new biological entities (NBEs). These drugs primarily focus on oncology, the central nervous system, anti-infection, hematology, cardiovascular, ophthalmology, immunomodulatory and other therapeutic areas. Out of the 55 drugs, 33 (60 %) underwent an accelerated review process and received approval, while 25 (45 %) were specifically approved for the treatment of rare diseases. The purpose of this review is to provide an overview of the clinical uses and production techniques of 29 newly FDA-approved NCEs in 2023. Our intention is to offer a comprehensive understanding of the synthetic approaches employed in the creation of these drug molecules, with the aim of inspiring the development of novel, efficient, and applicable synthetic methodologies.
Collapse
Affiliation(s)
- Ya-Tao Wang
- First People's Hospital of Shangqiu, Henan Province, Shangqiu, 476100, China.
| | - Peng-Cheng Yang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, College of Pharmacy, Yanji, Jilin, 133002, China
| | - Yan-Feng Zhang
- Shangqiu Municipal Hospital, Henan Province, Shangqiu, 476100, China.
| | - Jin-Feng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, College of Pharmacy, Yanji, Jilin, 133002, China; Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49-Box 1041, 3000, Leuven, Belgium.
| |
Collapse
|
38
|
Khanaliha K, Sadri Nahand J, Khatami A, Mirzaei H, Chavoshpour S, Taghizadieh M, Karimzadeh M, Donyavi T, Bokharaei‐Salim F. Analyzing the expression pattern of the noncoding RNAs (HOTAIR, PVT-1, XIST, H19, and miRNA-34a) in PBMC samples of patients with COVID-19, according to the disease severity in Iran during 2022-2023: A cross-sectional study. Health Sci Rep 2024; 7:e1861. [PMID: 38332929 PMCID: PMC10850438 DOI: 10.1002/hsr2.1861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Background and aims MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are well-known types of noncoding RNAs (ncRNAs), which have been known as the key regulators of gene expression. They can play critical roles in viral infection by regulating the host immune response and interacting with genes in the viral genome. In this regard, ncRNAs can be employed as biomarkers for viral diseases. The current study aimed to evaluate peripheral blood mononuclear cell (PBMC) ncRNAs (lncRNAs-homeobox C antisense intergenic RNA [HOTAIR], -H19, X-inactive-specific transcript [XIST], plasmacytoma variant translocation 1 [PVT-1], and miR-34a) as diagnostic biomarkers to differentiate severe COVID-19 cases from mild ones. Methods Candidate ncRNAs were selected according to previous studies and assessed by real-time polymerase chain reaction in the PBMC samples of patients with severe coronavirus disease 2019 (COVID-19) (n = 40), healthy subjects (n = 40), and mild COVID-19 cases (n = 40). Furthermore, the diagnostic value of the selected ncRNAs was assessed by analyzing the receiver-operating characteristic (ROC). Results The results demonstrated that the expression pattern of the selected ncRNAs was significantly different between the studied groups. The levels of HOTAIR, XIST, and miR-34a were remarkably overexpressed in the severe COVID-19 group in comparison with the mild COVID-19 group, and in return, the PVT-1 levels were lower than in the mild COVID-19 group. Interestingly, the XIST expression level in men with severe COVID-19 was higher compared to women with mild COVID-19. ROC results suggested that HOTAIR and PVT-1 could serve as useful biomarkers for screening mild COVID-19 from severe COVID-19. Conclusions Overall, different expression patterns of the selected ncRNAs and ROC curve results revealed that these factors can contribute to COVID-19 pathogenicity and can be considered diagnostic markers of COVID-19 severe outcomes.
Collapse
Affiliation(s)
- Khadijeh Khanaliha
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious DiseasesIran University of Medical SciencesTehranIran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - AliReza Khatami
- Department of VirologyIran University of Medical SciencesTehranIran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic DiseasesKashan University of Medical SciencesKashanIran
| | - Sara Chavoshpour
- Department of VirologyTehran University of Medical SciencesTehranIran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Mohammad Karimzadeh
- Core Research Facilities (CRF)Isfahan University of Medical ScienceIsfahanIran
| | - Tahereh Donyavi
- Department of Medical Biotechnology, Faculty of Allied MedicineIran University of Medical SciencesTehranIran
| | | |
Collapse
|
39
|
Algaissi A, Khan E, Tabassum H, Samreen S, Khamjan NA, Lohani M, Khan S, Kameli N, Madkhali F, Ahmad IZ. Campesterol and dithymoquinone as a potent inhibitors of SARS cov-2 main proteases-promising drug candidates for targeting its novel variants. J Biomol Struct Dyn 2024:1-15. [PMID: 38288958 DOI: 10.1080/07391102.2023.2301684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/13/2023] [Indexed: 02/16/2024]
Abstract
The sudden outbreak of the COVID-19 pandemic has currently taken approximately 2.4 million lives, with no specific medication and fast-tracked tested vaccines for prevention. These vaccines have their own adverse effects, which have severely affected the global healthcare system. The discovery of the main protease structure of coronavirus (Mpro/Clpro) has resulted in the identification of compounds having antiviral potential, especially from the herbal system. In this study, the computer-associated drug design tools were utilised to analyze the reported phytoconstituents of Nigella sativa for their antiviral activity against the main protease. Fifty-eight compounds were subjected to pharmacological parameter analysis to determine their lead likeness in comparison to the standard drugs (chloroquine and nirmatrelvir) used in the treatment of SARS-CoV-2. Nearly 31 compounds were docked against five different SARS-CoV-2 main proteases, and all compounds showed better binding affinity and inhibition constant against the proteases. However, dithymoquinone and campesterol displayed the best binding scores and hence were further subjected to dynamics and MMPBSA study for 100 ns. The stability analysis shows that dithymoquinone and campesterol show less variation in fluctuation in residues compared to standard complexes. Moreover, dithymoquinone exhibited higher binding affinity and favorable interaction followed by campesterol as compared to the standard drug. The in silico computational analysis provides a promising hit for regulating the main proteases activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdullah Algaissi
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
- Emerging and Epidemic Infectious Diseases Research Unit, Medical Research Center, Jazan University, Jazan, Saudi Arabia
| | - Elhan Khan
- Natural Products Laboratory, Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Heena Tabassum
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Sadiyah Samreen
- Natural Products Laboratory, Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Nizar A Khamjan
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Mohtashim Lohani
- Medical Research Centre, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, Ha'il University, Ha'il, Saudi Arabia
| | - Nader Kameli
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Faisal Madkhali
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Iffat Zareen Ahmad
- Natural Products Laboratory, Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
40
|
Xiang Z, Wang Y, Qu Y, Lv B, Han J, Xu D, Fan K, Su C, Shen Z. The Efficacy and Safety of Nirmatrelvir/Ritonavir Against COVID-19 in Elderly Patients. Int J Gen Med 2024; 17:297-304. [PMID: 38314196 PMCID: PMC10838049 DOI: 10.2147/ijgm.s446335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Objective To assess the key factors influencing the effectiveness of nirmatrelvir/ritonavir in treating elderly patients with COVID-19. Methods This study was conducted on patients aged ≥60 who were admitted to the Second Affiliated Hospital of Soochow University for COVID-19 infection and were treated with nirmatrelvir/ritonavir. Clinical information was collected from patients and steady-state blood concentrations of nirmatrelvir and ritonavir were measured. Factors associated with treatment effects were searched by univariate and multivariate analysis. Results A total of 68 (51 males and 17 females) patients had a median age of 80 (73.0-84.8) years were enrolled in this study. The blood concentration measurements (trough concentrations) of nirmatrelvir and ritonavir were 5.1 (2.6-7.1) and 0.4 (0.2-0.9) μg/mL, respectively. Adverse drug reaction was reported in 4 (5.9%) patients. Univariate analysis showed that age, clinical classification, APACHE II score, total bilirubin (TBil), aspartate transaminase (AST), lactate dehydrogenase (LDH), and total cholesterol (TC) were significantly associated with the effectiveness of treatment (P value <0.05). Concentration of nirmatrelvir was also associated with treatment outcome (P value <0.1). Based on the results of univariate analysis, the above factors were introduced into the multiple linear regression equation as independent variables, and the results showed that clinical classification was included in the regression equation model and was the most important factor affecting the treatment outcome. By receiver operating characteristic curve analysis, the area under curve of age + biochemical indicators + APACHE II score + clinical classification was 0.968 (95% CI = 0.919-1.000; P <0.0001). Among the 68 patients included in the study, 4 cases experienced adverse drug reactions. Conclusion Age, clinical classification, APACHE II score, TBil, AST, LDH, and TC were significantly associated with the effectiveness of treatment in elderly patients with COVID-19.
Collapse
Affiliation(s)
- Zheng Xiang
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People’s Republic of China
| | - Yueyuan Wang
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People’s Republic of China
| | - Yuchen Qu
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People’s Republic of China
| | - Bo Lv
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People’s Republic of China
| | - Junping Han
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People’s Republic of China
| | - Delai Xu
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People’s Republic of China
| | - Kai Fan
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People’s Republic of China
| | - Cunjin Su
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People’s Republic of China
| | - Zhu Shen
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People’s Republic of China
| |
Collapse
|
41
|
Outteridge M, Nunn CM, Devine K, Patel B, McLean GR. Antivirals for Broader Coverage against Human Coronaviruses. Viruses 2024; 16:156. [PMID: 38275966 PMCID: PMC10820748 DOI: 10.3390/v16010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Coronaviruses (CoVs) are enveloped positive-sense single-stranded RNA viruses with a genome that is 27-31 kbases in length. Critical genes include the spike (S), envelope (E), membrane (M), nucleocapsid (N) and nine accessory open reading frames encoding for non-structural proteins (NSPs) that have multiple roles in the replication cycle and immune evasion (1). There are seven known human CoVs that most likely appeared after zoonotic transfer, the most recent being SARS-CoV-2, responsible for the COVID-19 pandemic. Antivirals that have been approved by the FDA for use against COVID-19 such as Paxlovid can target and successfully inhibit the main protease (MPro) activity of multiple human CoVs; however, alternative proteomes encoded by CoV genomes have a closer genetic similarity to each other, suggesting that antivirals could be developed now that target future CoVs. New zoonotic introductions of CoVs to humans are inevitable and unpredictable. Therefore, new antivirals are required to control not only the next human CoV outbreak but also the four common human CoVs (229E, OC43, NL63, HKU1) that circulate frequently and to contain sporadic outbreaks of the severe human CoVs (SARS-CoV, MERS and SARS-CoV-2). The current study found that emerging antiviral drugs, such as Paxlovid, could target other CoVs, but only SARS-CoV-2 is known to be targeted in vivo. Other drugs which have the potential to target other human CoVs are still within clinical trials and are not yet available for public use. Monoclonal antibody (mAb) treatment and vaccines for SARS-CoV-2 can reduce mortality and hospitalisation rates; however, they target the Spike protein whose sequence mutates frequently and drifts. Spike is also not applicable for targeting other HCoVs as these are not well-conserved sequences among human CoVs. Thus, there is a need for readily available treatments globally that target all seven human CoVs and improve the preparedness for inevitable future outbreaks. Here, we discuss antiviral research, contributing to the control of common and severe CoV replication and transmission, including the current SARS-CoV-2 outbreak. The aim was to identify common features of CoVs for antivirals, biologics and vaccines that could reduce the scientific, political, economic and public health strain caused by CoV outbreaks now and in the future.
Collapse
Affiliation(s)
- Mia Outteridge
- School of Human Sciences, London Metropolitan University, London N7 8DB, UK; (M.O.); (C.M.N.); (K.D.); (B.P.)
| | - Christine M. Nunn
- School of Human Sciences, London Metropolitan University, London N7 8DB, UK; (M.O.); (C.M.N.); (K.D.); (B.P.)
| | - Kevin Devine
- School of Human Sciences, London Metropolitan University, London N7 8DB, UK; (M.O.); (C.M.N.); (K.D.); (B.P.)
| | - Bhaven Patel
- School of Human Sciences, London Metropolitan University, London N7 8DB, UK; (M.O.); (C.M.N.); (K.D.); (B.P.)
| | - Gary R. McLean
- School of Human Sciences, London Metropolitan University, London N7 8DB, UK; (M.O.); (C.M.N.); (K.D.); (B.P.)
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK
| |
Collapse
|
42
|
Tian L, Qiang T, Yang X, Gao Y, Zhai X, Kang K, Du C, Lu Q, Gao H, Zhang D, Xie X, Liang C. Development of de-novo coronavirus 3-chymotrypsin-like protease (3CL pro) inhibitors since COVID-19 outbreak: A strategy to tackle challenges of persistent virus infection. Eur J Med Chem 2024; 264:115979. [PMID: 38048696 DOI: 10.1016/j.ejmech.2023.115979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Accepted: 11/18/2023] [Indexed: 12/06/2023]
Abstract
Although no longer a public health emergency of international concern, COVID-19 remains a persistent and critical health concern. The development of effective antiviral drugs could serve as the ultimate piece of the puzzle to curbing this global crisis. 3-chymotrypsin-like protease (3CLpro), with its substrate specificity mirroring that of the main picornavirus 3C protease and conserved across various coronaviruses, emerges as an ideal candidate for broad-spectrum antiviral drug development. Moreover, it holds the potential as a reliable contingency option to combat emerging SARS-CoV-2 variants. In this light, the approved drugs, promising candidates, and de-novo small molecule therapeutics targeting 3CLpro since the COVID-19 outbreak in 2020 are discussed. Emphasizing the significance of diverse structural characteristics in inhibitors, be they peptidomimetic or nonpeptidic, with a shared mission to minimize the risk of cross-resistance. Moreover, the authors propose an innovative optimization strategy for 3CLpro reversible covalent PROTACs, optimizing pharmacodynamics and pharmacokinetics to better prepare for potential future viral outbreaks.
Collapse
Affiliation(s)
- Lei Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Taotao Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Xiuding Yang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yue Gao
- College of Pharmacy, Jinan University, Guangzhou, 511436, PR China
| | - Xiaopei Zhai
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, PR China
| | - Kairui Kang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Cong Du
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Qi Lu
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Hong Gao
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Shaanxi Pioneer Biotech Co., Ltd., Xi'an, 710021, PR China
| | - Dezhu Zhang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Xiaolin Xie
- Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Chengyuan Liang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| |
Collapse
|
43
|
De Luca V, Angeli A, Nocentini A, Gratteri P, Pratesi S, Tanini D, Carginale V, Capperucci A, Supuran CT, Capasso C. Leveraging SARS-CoV-2 Main Protease (M pro) for COVID-19 Mitigation with Selenium-Based Inhibitors. Int J Mol Sci 2024; 25:971. [PMID: 38256046 PMCID: PMC10815619 DOI: 10.3390/ijms25020971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The implementation of innovative approaches is crucial in an ongoing endeavor to mitigate the impact of COVID-19 pandemic. The present study examines the strategic application of the SARS-CoV-2 Main Protease (Mpro) as a prospective instrument in the repertoire to combat the virus. The cloning, expression, and purification of Mpro, which plays a critical role in the viral life cycle, through heterologous expression in Escherichia coli in a completely soluble form produced an active enzyme. The hydrolysis of a specific substrate peptide comprising a six-amino-acid sequence (TSAVLQ) linked to a p-nitroaniline (pNA) fragment together with the use of a fluorogenic substrate allowed us to determine effective inhibitors incorporating selenium moieties, such as benzoselenoates and carbamoselenoates. The new inhibitors revealed their potential to proficiently inhibit Mpro with IC50-s in the low micromolar range. Our study contributes to the development of a new class of protease inhibitors targeting Mpro, ultimately strengthening the antiviral arsenal against COVID-19 and possibly, related coronaviruses.
Collapse
Affiliation(s)
- Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, 80131 Naples, Italy; (V.D.L.); (V.C.)
| | - Andrea Angeli
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (A.N.); (P.G.)
| | - Alessio Nocentini
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (A.N.); (P.G.)
| | - Paola Gratteri
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (A.N.); (P.G.)
| | - Silvia Pratesi
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy (D.T.); (A.C.)
| | - Damiano Tanini
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy (D.T.); (A.C.)
| | - Vincenzo Carginale
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, 80131 Naples, Italy; (V.D.L.); (V.C.)
| | - Antonella Capperucci
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy (D.T.); (A.C.)
| | - Claudiu T. Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (A.N.); (P.G.)
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, 80131 Naples, Italy; (V.D.L.); (V.C.)
| |
Collapse
|
44
|
Lv B, Gao X, Zeng G, Guo H, Li F. Safety Profile of Paxlovid in the Treatment of COVID-19. Curr Pharm Des 2024; 30:666-675. [PMID: 38415446 DOI: 10.2174/0113816128280987240214103432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND With the urgent and widespread application of Paxlovid, a novel antiviral drug for Coronavirus Disease 2019 (COVID-19) in clinical practice, concerns regarding its actual efficacy and safety have emerged. In order to provide more evidence to support its clinical application, we sought to perform a descriptive analysis of cases who experienced at least one Paxlovid-related adverse event (AEs) and reported to the FDA Adverse Event Reporting System (FAERS) in the post-marketing period. METHODS Individual adverse event reports between January 1, 2022 and September 30, 2022, were downloaded from the FAERS website. We completed a descriptive study about the safety of Paxlovid in the treatment of COVID-19. Further, we also analyzed the onset time of Paxlovid-related AEs. RESULTS As of 30 September 2022, 16,529 de-duplicated cases were submitted to the FDA, and 5,860 (35.45%) were female. The average age was 58.38 years (S.D. 15.50). Most reports (12,390, 74.96%) were submitted by consumers and 1,436 (8.68%) concerned serious outcomes. The most frequently reported AEs were disease recurrence (7,724, 16.23%), dysgeusia (2,877, 6.05%), and diarrhoea (1,448, 3.04%). The median onset time of Paxlovid-related AEs was 8 days (interquartile range,1-10 days), and most of the cases (2,629, 19.12%) occurred on the day after Paxlovid initiation. CONCLUSION This study indicates that the most common AEs reported with Paxlovid in post-marketing experience are consistent with the safety assessment of antiviral drugs. Even without emerging apparent safety concerns, the incidence of serious outcomes was unexpectedly high, and a few cases of potential new AEs occurred.
Collapse
Affiliation(s)
- Bing Lv
- Department of Emergency, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Xin Gao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Guoqiang Zeng
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Hui Guo
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
45
|
Khurshid R, Schulz JM, Hu J, Snowden TS, Reynolds RC, Schürer SC. Targeted degrader technologies as prospective SARS-CoV-2 therapies. Drug Discov Today 2024; 29:103847. [PMID: 38029836 PMCID: PMC10836335 DOI: 10.1016/j.drudis.2023.103847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
COVID-19 remains a severe public health threat despite the WHO declaring an end to the public health emergency in May 2023. Continual development of SARS-CoV-2 variants with resistance to vaccine-induced or natural immunity necessitates constant vigilance as well as new vaccines and therapeutics. Targeted protein degradation (TPD) remains relatively untapped in antiviral drug discovery and holds the promise of attenuating viral resistance development. From a unique structural design perspective, this review covers antiviral degrader merits and challenges by highlighting key coronavirus protein targets and their co-crystal structures, specifically illustrating how TPD strategies can refine existing SARS-CoV-2 3CL protease inhibitors to potentially produce superior protease-degrading agents.
Collapse
Affiliation(s)
- Rabia Khurshid
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Joseph M Schulz
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jiaming Hu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Timothy S Snowden
- The University of Alabama, Department of Chemistry and Biochemistry and Center for Convergent Bioscience and Medicine, 250 Hackberry Lane, Tuscaloosa, AL 35487-0336, USA
| | - Robert C Reynolds
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Stephan C Schürer
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Institute for Data Science & Computing, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
46
|
Ao D, He X, Liu J, Xu L. Strategies for the development and approval of COVID-19 vaccines and therapeutics in the post-pandemic period. Signal Transduct Target Ther 2023; 8:466. [PMID: 38129394 PMCID: PMC10739883 DOI: 10.1038/s41392-023-01724-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant casualties and put immense strain on public health systems worldwide, leading to economic recession and social unrest. In response, various prevention and control strategies have been implemented globally, including vaccine and drug development and the promotion of preventive measures. Implementing these strategies has effectively curbed the transmission of the virus, reduced infection rates, and gradually restored normal social and economic activities. However, the mutations of SARS-CoV-2 have led to inevitable infections and reinfections, and the number of deaths continues to rise. Therefore, there is still a need to improve existing prevention and control strategies, mainly focusing on developing novel vaccines and drugs, expediting medical authorization processes, and keeping epidemic surveillance. These measures are crucial to combat the Coronavirus disease (COVID-19) pandemic and achieve sustained, long-term prevention, management, and disease control. Here, we summarized the characteristics of existing COVID-19 vaccines and drugs and suggested potential future directions for their development. Furthermore, we discussed the COVID-19-related policies implemented over the past years and presented some strategies for the future.
Collapse
Affiliation(s)
- Danyi Ao
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Sichuan, People's Republic of China
| | - Jian Liu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Sichuan, People's Republic of China
| | - Li Xu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
47
|
Chakraborty C, Bhattacharya M, Alshammari A, Alharbi M, Albekairi TH, Zheng C. Exploring the structural and molecular interaction landscape of nirmatrelvir and Mpro complex: The study might assist in designing more potent antivirals targeting SARS-CoV-2 and other viruses. J Infect Public Health 2023; 16:1961-1970. [PMID: 37883855 DOI: 10.1016/j.jiph.2023.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Several therapeutics have been developed and approved against SARS-CoV-2 occasionally; nirmatrelvir is one of them. The drug target of nirmatrelvir is Mpro, and therefore, it is necessary to comprehend the structural and molecular interaction of the Mpro-nirmatrelvir complex. METHODS Integrative bioinformatics, system biology, and statistical models were used to analyze the macromolecular complex. RESULTS Using two macromolecular complexes, the study illustrated the interactive residues, H-bonds, and interactive interfaces. It informed of six and nine H-bond formations for the first and second complex, respectively. The maximum bond length was observed as 3.33 Å. The ligand binding pocket's surface area and volume were noted as 303.485 Å2 and 295.456 Å3 for the first complex and 308.397 Å2 and 304.865 Å3 for the second complex. The structural proteome dynamics were evaluated by analyzing the complex's NMA mobility, eigenvalues, deformability, and B-factor. Conversely, a model was created to assess the therapeutic status of nirmatrelvir. CONCLUSIONS Our study reveals the structural and molecular interaction landscape of Mpro-nirmatrelvir complex. The study will guide researchers in designing more broad-spectrum antiviral molecules mimicking nirmatrelvir, which assist in fighting against SARS-CoV-2 and other infectious viruses. It will also help to prepare for future epidemics or pandemics.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India.
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Chunfu Zheng
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao 028000, China; Department of Microbiology, Immunology & Infection Diseases, University of Calgary, Health Research Innovation Centre, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
48
|
Sadhu S, Dandotiya J, Dalal R, Khatri R, Mykytyn AZ, Batra A, Kaur M, Chandwaskar R, Singh V, Kamboj A, Srivastava M, Mani S, Asthana S, Samal S, Rizvi ZA, Salunke DB, Haagmans BL, Awasthi A. Fangchinoline inhibits SARS-CoV-2 and MERS-CoV entry. Antiviral Res 2023; 220:105743. [PMID: 37949319 DOI: 10.1016/j.antiviral.2023.105743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2, lead to mild to severe respiratory illness and resulted in 6.9 million deaths worldwide. Although vaccines are effective in preventing COVID-19, they may not be sufficient to protect immunocompromised individuals from this respiratory illness. Moreover, novel emerging variants of SARS-CoV-2 pose a risk of new COVID-19 waves. Therefore, identification of effective antivirals is critical in controlling SARS and other coronaviruses, such as MERS-CoV. We show that Fangchinoline (Fcn), a bisbenzylisoquinoline alkaloid, inhibits replication of SARS-CoV, SARS-CoV-2, and MERS-CoV in a range of in vitro assays, by blocking entry. Therapeutic use of Fcn inhibited viral loads in the lungs, and suppressed associated airway inflammation in hACE2. Tg mice and Syrian hamster infected with SARS-CoV-2. Combination of Fcn with remdesivir (RDV) or an anti-leprosy drug, Clofazimine, exhibited synergistic antiviral activity. Compared to Fcn, its synthetic derivative, MK-04-003, more effectively inhibited SARS-CoV-2 and its variants B.1.617.2 and BA.5 in mice. Taken together these data demonstrate that Fcn is a pan beta coronavirus inhibitor, which possibly can be used to combat novel emerging coronavirus diseases.
Collapse
Affiliation(s)
- Srikanth Sadhu
- Center for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India; Immunology-Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Jyotsna Dandotiya
- Center for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Rajdeep Dalal
- Center for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Ritika Khatri
- Infection and Immunology Center, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Anna Z Mykytyn
- Viroscience Department, Erasmus University Medical Center, Netherlands; Department of Pediatric Surgery, Erasmus University Medical Center, Sophia Children's Hospital, Netherlands
| | - Aashima Batra
- Department of Chemistry and Centre for Advanced Studies, Panjab University, Chandigarh, India; National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, India
| | - Manpreet Kaur
- Department of Chemistry and Centre for Advanced Studies, Panjab University, Chandigarh, India; National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, India
| | | | - Virendra Singh
- Center for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Aarzoo Kamboj
- Department of Chemistry and Centre for Advanced Studies, Panjab University, Chandigarh, India; National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, India
| | - Mitul Srivastava
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Shailendra Mani
- Infection and Immunology Center, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Shailendra Asthana
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Sweety Samal
- Infection and Immunology Center, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Zaigham Abbas Rizvi
- Center for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India; Immunology-Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Deepak B Salunke
- Department of Chemistry and Centre for Advanced Studies, Panjab University, Chandigarh, India; National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, India
| | - Bart L Haagmans
- Viroscience Department, Erasmus University Medical Center, Netherlands
| | - Amit Awasthi
- Center for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India; Immunology-Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| |
Collapse
|
49
|
Ali M, Park IH, Kim J, Kim G, Oh J, You JS, Kim J, Shin JS, Yoon SS. How Deep Learning in Antiviral Molecular Profiling Identified Anti-SARS-CoV-2 Inhibitors. Biomedicines 2023; 11:3134. [PMID: 38137356 PMCID: PMC10740425 DOI: 10.3390/biomedicines11123134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
The integration of artificial intelligence (AI) into drug discovery has markedly advanced the search for effective therapeutics. In our study, we employed a comprehensive computational-experimental approach to identify potential anti-SARS-CoV-2 compounds. We developed a predictive model to assess the activities of compounds based on their structural features. This model screened a library of approximately 700,000 compounds, culminating in the selection of the top 100 candidates for experimental validation. In vitro assays on human intestinal epithelial cells (Caco-2) revealed that 19 of these compounds exhibited inhibitory activity. Notably, eight compounds demonstrated dose-dependent activity in Vero cell lines, with half-maximal effective concentration (EC50) values ranging from 1 μM to 7 μM. Furthermore, we utilized a clustering approach to pinpoint potential nucleoside analog inhibitors, leading to the discovery of two promising candidates: azathioprine and its metabolite, thioinosinic acid. Both compounds showed in vitro activity against SARS-CoV-2, with thioinosinic acid also significantly reducing viral loads in mouse lungs. These findings underscore the utility of AI in accelerating drug discovery processes.
Collapse
Affiliation(s)
- Mohammed Ali
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.A.); (J.K.); (G.K.); (J.O.); (J.S.Y.); (J.K.)
- Brain Korea 21 Project for Medical Sciences, Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - In Ho Park
- Department of Biomedical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Junebeom Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.A.); (J.K.); (G.K.); (J.O.); (J.S.Y.); (J.K.)
- Brain Korea 21 Project for Medical Sciences, Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Gwanghee Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.A.); (J.K.); (G.K.); (J.O.); (J.S.Y.); (J.K.)
- Brain Korea 21 Project for Medical Sciences, Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jooyeon Oh
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.A.); (J.K.); (G.K.); (J.O.); (J.S.Y.); (J.K.)
- Brain Korea 21 Project for Medical Sciences, Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jin Sun You
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.A.); (J.K.); (G.K.); (J.O.); (J.S.Y.); (J.K.)
- Brain Korea 21 Project for Medical Sciences, Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jieun Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.A.); (J.K.); (G.K.); (J.O.); (J.S.Y.); (J.K.)
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jeon-Soo Shin
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.A.); (J.K.); (G.K.); (J.O.); (J.S.Y.); (J.K.)
- Brain Korea 21 Project for Medical Sciences, Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sang Sun Yoon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.A.); (J.K.); (G.K.); (J.O.); (J.S.Y.); (J.K.)
- Brain Korea 21 Project for Medical Sciences, Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- BioMe Inc., Seoul 02455, Republic of Korea
| |
Collapse
|
50
|
Valipour M, Irannejad H, Keyvani H. An Overview on Anti-COVID-19 Drug Achievements and Challenges Ahead. ACS Pharmacol Transl Sci 2023; 6:1248-1265. [PMID: 37705590 PMCID: PMC10496143 DOI: 10.1021/acsptsci.3c00121] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Indexed: 09/15/2023]
Abstract
The appearance of several coronavirus pandemics/epidemics during the last two decades (SARS-CoV-1 in 2002, MERS-CoV in 2012, and SARS-CoV-2 in 2019) indicates that humanity will face increasing challenges from coronaviruses in the future. The emergence of new strains with similar transmission characteristics as SARS-CoV-2 and mortality rates similar to SARS-CoV-1 (∼10% mortality) or MERS-CoV (∼35% mortality) in the future is a terrifying possibility. Therefore, getting enough preparations to face such risks is an inevitable necessity. The present study aims to review the drug achievements and challenges in the fight against SARS-CoV-2 with a combined perspective derived from pharmacology, pharmacotherapy, and medicinal chemistry insights. Appreciating all the efforts made during the past few years, there is strong evidence that the desired results have not yet been achieved and research in this area should still be pursued seriously. By expressing some pessimistic possibilities and concluding that the drug discovery and pharmacotherapy of COVID-19 have not been successful so far, this short essay tries to draw the attention of responsible authorities to be more prepared against future coronavirus epidemics/pandemics.
Collapse
Affiliation(s)
- Mehdi Valipour
- Razi
Drug Research Center, Iran University of
Medical Sciences, Tehran 1134845764, Iran
| | - Hamid Irannejad
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Hossein Keyvani
- Department
of Virology, School of Medicine, Iran University
of Medical Sciences, Tehran 1134845764, Iran
| |
Collapse
|