1
|
Very E, Leroy A, Richaud L, Vaiva G, Jardri R, Roullet P, Taib S, Bourcier A, Loubinoux I, Birmes P. Hippocampal connectivity changes after traumatic memory reactivation with propranolol for posttraumatic stress disorder: a randomized fMRI study. Eur J Psychotraumatol 2025; 16:2466886. [PMID: 40261001 PMCID: PMC12016248 DOI: 10.1080/20008066.2025.2466886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/20/2025] [Accepted: 02/06/2025] [Indexed: 04/24/2025] Open
Abstract
Background: Reactivation of traumatic memory under the influence of propranolol has shown encouraging clinical results in the treatment of posttraumatic stress disorder (PTSD), but the neural correlates remain unknown. To identify these correlates, we examined the changes in brain functional connectivity specifically associated with the influence of propranolol and their correlation with improvement in PTSD symptoms.Objectives: To identify resting-state functional connectivity (rs-FC) changes specifically associated with propranolol after a traumatic memory reactivation procedure (TMRP) in PTSD patients.Method: Thirty patients (50% of women) with PTSD were enrolled in a randomized controlled study comprised of six sessions of a traumatic memory reactivation procedure (TMRP) under the influence of propranolol (n = 16), compared to the same reactivation under a placebo (n = 14). Patients were scanned twice by functional magnetic resonance before and after treatment. Resting state functional connectivity (rs-FC) was compared across groups and over time.Results: Post versus pretreatment comparisons found an increase in rs-FC between the right hippocampus and the left parahippocampal gyrus in the propranolol group, but not in the placebo group. Symptom improvement in both groups were associated with an increase in rs-FC between the parahippocampal gyrus and both the supramarginal gyrus and the amygdala.Conclusions: During TMRP treatment, propranolol appears to constrain functional connectivity changes in the explicit memory brain system. These findings require further replication and exploration but could distinguish the effect of TMRP on the brain from other forms of PTSD psychotherapy.
Collapse
Affiliation(s)
- E. Very
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
- CHU de Purpan, Hopital de Psychiatrie, Toulouse, France
| | - A. Leroy
- Univ. Lille, INSERM, Centre Lille Neuroscience & Cognition (U-1172), PSY Team, Lille, France
- CHU de Lille, Hopital Fontan, Plateforme CURE, Lille, France
- Centre National de Ressources et Résilience pour les psychotraumatismes (CN2R Lille-Paris), Lille, France
| | - L. Richaud
- CHU de Purpan, Hopital de Psychiatrie, Toulouse, France
| | - G. Vaiva
- CHU de Lille, Hopital Fontan, Plateforme CURE, Lille, France
- Centre National de Ressources et Résilience pour les psychotraumatismes (CN2R Lille-Paris), Lille, France
| | - R. Jardri
- CHU de Lille, Hopital Fontan, Plateforme CURE, Lille, France
| | - P. Roullet
- University of Toulouse, UPS, Toulouse, France
- Centre Régional du Psychotraumatisme Occitanie, CHU Purpan, Toulouse, France
| | - S. Taib
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
- CHU de Purpan, Hopital de Psychiatrie, Toulouse, France
| | - A. Bourcier
- Cabinet de Sante Bonne Nouvelle, Paris, France
| | - I. Loubinoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - P. Birmes
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
- CHU de Purpan, Hopital de Psychiatrie, Toulouse, France
- Centre Régional du Psychotraumatisme Occitanie, CHU Purpan, Toulouse, France
| |
Collapse
|
2
|
Wellington NJ, Boųcas AP, Lagopoulos J, Quigley BL, Kuballa AV. Molecular pathways of ketamine: A systematic review of immediate and sustained effects on PTSD. Psychopharmacology (Berl) 2025; 242:1197-1243. [PMID: 40097854 DOI: 10.1007/s00213-025-06756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025]
Abstract
RATIONALE Existing studies predominantly focus on the molecular and neurobiological mechanisms underlying Ketamine's acute treatment effects on post-traumatic stress disorder (PTSD). This emphasis has largely overlooked its sustained therapeutic effects, which hold significant potential for the development of targeted interventions. OBJECTIVES This systematic review examines the pharmacokinetic and pharmacodynamic effects of ketamine on PTSD, differentiating between immediate and sustained molecular effects. METHOD A comprehensive search across databases (Web of Science, Scopus, Global Health, PubMed) and grey literature yielded 317 articles, where 29 studies met the inclusion criteria. These studies included preclinical models and clinical trials, through neurotransmitter regulation, gene expression, synaptic plasticity, and neural pathways (PROSPERO ID: CRD42024582874). RESULTS We found accumulating evidence that the immediate effects of ketamine, which involve changes in GABA, glutamate, and glutamine levels, trigger the re-regulation of BDNF, enhancing synaptic plasticity via pathways such as TrkB and PSD-95. Other molecular influences also include c-Fos, GSK-3, HDAC, HCN1, and the modulation of hormones like CHR and ACTH, alongside immune responses (IL-6, IL-1β, TNF-α). Sustained effects arise from neurotransmitter remodulations and involve prolonged changes in gene expression. These include mTOR-mediated BDNF expression, alterations in GSK-3β, FkBP5, GFAP, ERK phosphorylation, and epigenetic modifications (DNMT3, MeCP2, H3K27me3, mir-132, mir-206, HDAC). CONCLUSION These molecular changes promote long-term synaptic stability and re-regulation in key brain regions, contributing to prolonged therapeutic benefits. Understanding the sustained molecular and epigenetic mechanisms behind ketamine's effects is critical for developing safe and effective personalised treatments, potentially leading to more effective recovery.
Collapse
Affiliation(s)
- Nathan J Wellington
- National PTSD Research Centre, Thompson Institute, University of the Sunshine Coast (UniSC), Birtinya, QLD, Australia.
- School of Health, UniSC, Sippy Downs, QLD, Australia.
- Centre for Bioinnovation, UniSC, Sippy Downs, QLD, Australia.
- Sunshine Coast Hospital and Health Service, Sunshine Coast Health Institute, Birtinya, QLD, Australia.
| | - Ana P Boųcas
- National PTSD Research Centre, Thompson Institute, University of the Sunshine Coast (UniSC), Birtinya, QLD, Australia
| | - Jim Lagopoulos
- Thompson Brain and Mind Healthcare, Maroochydore, QLD, Australia
| | - Bonnie L Quigley
- National PTSD Research Centre, Thompson Institute, University of the Sunshine Coast (UniSC), Birtinya, QLD, Australia
- Centre for Bioinnovation, UniSC, Sippy Downs, QLD, Australia
- Sunshine Coast Hospital and Health Service, Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Anna V Kuballa
- School of Health, UniSC, Sippy Downs, QLD, Australia
- Centre for Bioinnovation, UniSC, Sippy Downs, QLD, Australia
- Sunshine Coast Hospital and Health Service, Sunshine Coast Health Institute, Birtinya, QLD, Australia
| |
Collapse
|
3
|
Ubri CE, Farrugia AM, Cohen AS. Mild Traumatic Brain Injury Impairs Fear Extinction and Network Excitability in the Infralimbic Cortex. J Neurotrauma 2025. [PMID: 40401451 DOI: 10.1089/neu.2025.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and disability, with mild TBI (concussions) representing over 80% of cases. Although often considered benign, mild TBI is associated with persistent neuropsychiatric conditions, including post-traumatic stress disorder, anxiety, and depression. A hallmark of these conditions is impaired fear extinction (FE), the process by which learned fear responses are inhibited in safe contexts. This dysfunction contributes to maladaptive fear expression and is linked to altered neurocircuitry, particularly in the infralimbic cortex (IL), a key region in FE. Despite extensive evidence of impaired FE in patients with mild TBI and animal models, the specific mechanisms underlying this deficit remain poorly understood. This study aimed to address this gap by combining cued-FE behavior, local field potential recordings, and whole-cell patch-clamp techniques to investigate how mild TBI affects IL network activity and excitability in a mouse model of TBI. Our results demonstrate that mild lateral fluid percussion injury significantly impairs FE memory, as evidenced by an elevated cued-fear response during extinction testing 10 days post-injury. Field potential recordings revealed decreased activation of the IL network in both layers II/III and V, which was consistent with the observed behavioral deficits. Further analysis of synaptic physiology revealed an imbalance in excitatory and inhibitory neurotransmission (E/I imbalance) in the IL, characterized by reduced excitatory input and enhanced inhibitory input to neurons in both layers. Moreover, intrinsic excitability was altered in IL neurons after mild TBI. This study provides novel insights into how mild TBI disrupts the neurocircuitry underlying FE, specifically by suppressing IL excitability. These results highlight the importance of understanding the mechanistic disruptions in IL activity for developing therapeutic strategies to address fear-based disorders in patients with mild TBI.
Collapse
Affiliation(s)
- Catherine E Ubri
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department and Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Anthony M Farrugia
- Department and Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Akiva S Cohen
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department and Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Lonnberg A, Logrip ML, Kuznetsov A. Mechanisms of alcohol influence on fear conditioning: A computational model. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025. [PMID: 40390190 DOI: 10.1111/acer.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/14/2025] [Indexed: 05/21/2025]
Abstract
BACKGROUND A connection between stress-related illnesses and alcohol use disorders is extensively documented. Fear conditioning is a standard procedure used to study stress learning and links it to the activation of amygdala circuitry. However, the connection between the changes in amygdala circuitry and function induced by alcohol and fear conditioning is not well established. METHODS We introduce a computational model to test the mechanistic relationship between amygdala functional and circuit adaptations during fear conditioning and the impact of acute vs. repeated alcohol exposure. Using firing rate formalism, the model generates electrophysiological and behavioral responses in fear conditioning protocols via plasticity of amygdala inputs. The influence of alcohol is modeled by accounting for known modulation of connections within amygdala circuits, which consequently affect plasticity. Thus, the model connects the electrophysiological and behavioral experiments. We hypothesize that alterations within amygdala circuitry produced by alcohol cause abnormal plasticity of amygdala inputs such that fear extinction is slower to achieve and less robust. RESULTS In accordance with prior experimental results, both acute and prior repeated alcohol decrease the speed and robustness of fear extinction in our simulations. The model predicts that, first, the delay in fear extinction caused by alcohol is mostly induced by greater activation of the basolateral amygdala (BLA) after fear acquisition due to alcohol-induced modulation of synaptic weights. Second, both acute and prior repeated alcohol shift the amygdala network away from the robust extinction regime by inhibiting activity in the central amygdala (CeA). Third, our model predicts that fear memories formed during acute or after chronic alcohol are more connected to the context. CONCLUSIONS The model suggests how circuit changes induced by alcohol may affect fear behaviors and provides a framework for investigating the involvement of multiple neuromodulators in this neuroadaptive process.
Collapse
Affiliation(s)
- Adam Lonnberg
- Cleveland Clinic, Neurology Residency, Cleveland, Ohio, USA
| | - Marian L Logrip
- Department of Psychology, Indiana University Indianapolis, Indianapolis, Indiana, USA
| | - Alexey Kuznetsov
- Department of Mathematical Sciences, Indiana University Indianapolis, Indianapolis, Indiana, USA
| |
Collapse
|
5
|
Andero R. Stress-induced changes in the molecular processes underlying fear memories: implications for PTSD and relevant animal models. Mol Psychiatry 2025; 30:2219-2227. [PMID: 39890919 PMCID: PMC12014489 DOI: 10.1038/s41380-025-02910-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/31/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Most of the fear literature on humans and animals tests healthy individuals. However, fear memories can differ between healthy individuals and those previously exposed to traumatic stress, such as a car accident, sexual abuse, military combat and personal assault. Traumatic stress can lead to post-traumatic stress disorder (PTSD) which presents alterations in fear memories, such as an impairment of fear extinction and extinction recall. PTSD-like animal models are exposed to a single highly stressful experience in the laboratory, such as stress immobilization or single-prolonged stress. Some days later, animals exposed to a PTSD-like model can be tested in fear procedures that help uncover molecular mechanisms of fear memories. In this review, there are discussed the molecular mechanisms in stress-induced fear memories of patients with PTSD and PTSD-like animal models. The focus is on the effects of estradiol and cortisol/corticosterone hormones and of different genes, such as FKBP prolyl isomerase 5 gene (FKBP5) - FK506 binding protein 51 (FKBP51), pituitary adenylate cyclase-activating peptide (PACAP) - pituitary adenylate cyclase-activating polypeptide type I receptor (PAC1R), endocannabinoid (eCB) system and the tropomyosin receptor kinase B (TrkB) - brain-derived neurotrophic factor (BDNF). The conclusion is that greater emphasis should be placed on investigating the molecular mechanisms of fear memories in PTSD, through direct testing of patients with PTSD or the use of relevant PTSD-like models.
Collapse
Affiliation(s)
- Raül Andero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
6
|
Liu J, Totty MS, Bayer H, Maren S. Integrating Aversive Memories in the Basolateral Amygdala. Biol Psychiatry 2025:S0006-3223(25)01107-2. [PMID: 40189005 DOI: 10.1016/j.biopsych.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 05/29/2025]
Abstract
Decades of research have established a critical role of the basolateral complex of the amygdala (BLA) in the encoding and storage of aversive memories. Much of this work has utilized Pavlovian fear conditioning procedures in which animals experience a single aversive event. Although this effort has produced great insight into the neural mechanisms that support fear memories for an isolated aversive experience, much less is known about how amygdala circuits encode and integrate multiple emotional experiences. The emergence of methods to label and record neuronal ensembles over days allows a deeper understanding of how amygdala neurons encode and integrate distinct aversive episodes over time. Here, we review evidence that the BLA is an essential site for the persistent storage of long-term fear memory. As a long-term storage site for fear memory, a challenge for encoding multiple fear memories is the mechanisms by which BLA neurons allocate, integrate, and discriminate distinct experiences from one another. In this review, we discuss the historical evidence supporting the BLA as a critical site for long-term memory storage, as well as new evidence that stems from technological advances that allow researchers to simultaneously study the encoding and storage of multiple memory traces, including recent versus remote experiences. We explore the possibility that dysfunction in ensemble coding schemes contributes to the pathophysiology of posttraumatic stress disorder and argue that future studies should place increased emphasis on potential subregional differences in memory coding schemes in the amygdala to deepen our understanding of both normal and pathological emotional memory.
Collapse
Affiliation(s)
- Jianfeng Liu
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China; School of Medicine, Wuhan University of Science and Technology, Wuhan, China.
| | - Michael S Totty
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Hugo Bayer
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas; Institute for Neuroscience, Texas A&M University, College Station, Texas
| | - Stephen Maren
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, Illinois; Neuroscience Graduate Program, University of Illinois Urbana-Champaign, Urbana, Illinois; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
7
|
Rye CS, Milton AL. Glutamate receptor expression in the PL-BLA circuit is associated with susceptibility to showing the PTSD-like phenotype. Neurobiol Learn Mem 2025; 219:108051. [PMID: 40157419 DOI: 10.1016/j.nlm.2025.108051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/07/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
While many individuals experience traumatic events during their lifetimes, only some go on to develop post-traumatic stress disorder (PTSD). This susceptibility and resilience to developing PTSD can be modelled in rodents using the stress-enhanced fear learning (SEFL) procedure, in which rats are exposed to a session of massed, unpredictable footshocks and subsequently assessed on tasks of adaptive fear learning. It has previously been observed that subpopulations of rats are susceptible and resilient to showing the PTSD-like phenotype following SEFL, and that these rats show differences in glutamate receptor expression in the basolateral amygdala. However, it is currently unknown whether structural differences are observed in other brain regions implicated in stress responding and memory. Using the refined SEFL procedure, this study aimed to determine whether expression of GluN2B, GluA1 and GluA2 receptor subunits in the prelimbic and infralimbic cortices, and dorsal hippocampus could be correlated to the SEFL-phenotype or shock experience in male rats. Here we show that following SEFL, differences can be observed in receptor subunit expression in the infralimbic cortex and dorsal hippocampus as a function of shock experience, whilst differences in the prelimbic cortex are associated with susceptibility. Importantly, these structural changes can be observed in male rats that are group-housed and exposed to 13-shocks rather than 15-shocks, indicating that the refined SEFL procedure offers a robust animal analogue of the non-associative fear sensitisation that occurs in PTSD. Future studies using this procedure could pave the way to the eventual development of pharmacological treatments to alleviate or prevent stress-induced psychopathology in susceptible individuals.
Collapse
Affiliation(s)
- Charlotte S Rye
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, United Kingdom; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom.
| | - Amy L Milton
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, United Kingdom
| |
Collapse
|
8
|
Kuznetsov A. Dopamine modulation of basolateral amygdala activity and function. J Comput Neurosci 2025:10.1007/s10827-025-00897-3. [PMID: 40106071 DOI: 10.1007/s10827-025-00897-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 03/22/2025]
Abstract
The basolateral amygdala (BLA) is central to emotional processing, fear learning, and memory. Dopamine (DA) significantly influences BLA function, yet its precise effects are not clear. We present a mathematical model exploring how DA modulation of BLA activity depends on the network's current state. Specifically, we model the firing rates of interconnected neural groups in the BLA and their responses to external stimuli and DA modulation. BLA projection neurons are separated into two groups according to their responses-fear and safety. These groups are connected by mutual inhibition though interneurons. We contrast 'differentiated' BLA states, where fear and safety projection neurons exhibit distinct activity levels, with 'non-differentiated' states. We posit that differentiated states support selective responses and short-term emotional memory. On the other hand, non-differentiated states represent either the case in which BLA is disengaged, or the activation of the fear and safety neurons is at a similar moderate or high level. We show that, while DA further disengages BLA in the low activity state, it destabilizes the moderate activity non-differentiated BLA state. We show that in the latter non-differentiated state the BLA is hypersensitive, and the polarity of its responses (fear or safety) to salient stimuli is highly random. We hypothesize that this non-differentiated state is related to anxiety and Post-Traumatic Stress Disorder (PTSD).
Collapse
Affiliation(s)
- Alexey Kuznetsov
- Department of Mathematical Sciences, Indiana University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
9
|
Tuna T, Totty MS, Badarnee M, Mourão FAG, Peters S, Milad MR, Maren S. Associative coding of conditioned fear in the thalamic nucleus reuniens in rodents and humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643915. [PMID: 40166211 PMCID: PMC11957024 DOI: 10.1101/2025.03.18.643915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The nucleus reuniens (RE) is a midline thalamic structure interconnecting the medial prefrontal cortex (mPFC) and the hippocampus (HPC). Recent work in both rodents and humans implicates the RE in the adaptive regulation of emotional memories, including the suppression of learned fear. However, the neural correlates of aversive learning in the RE of rodents and humans remains unclear. To address this, we recorded RE activity in humans (BOLD fMRI) and rats (fiber photometry) during Pavlovian fear conditioning and extinction. In both rats and humans, we found that conditioned stimulus (CS)-evoked activity in RE reflects the associative value of the CS. In rats, we additionally found that spontaneous neural activity in RE tracks defensive freezing and shows anticipatory increases in calcium activity that precede the termination of freezing behavior. Single-unit recordings in rats confirmed that individual RE neurons index both the associative value of the CS and defensive behavior transitions. Moreover, distinct neuronal ensembles in the RE encode fear versus extinction memories. These findings suggest a conserved role of the RE across species in modulating defensive states and emotional memory processes, providing a foundation for future translational research on fear-related disorders.
Collapse
Affiliation(s)
- Tuğçe Tuna
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX
- Institute for Neuroscience, Texas A&M University, College Station, TX
| | - Michael S. Totty
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Muhammad Badarnee
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, TX
| | | | - Shaun Peters
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX
| | - Mohammed R. Milad
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, TX
| | - Stephen Maren
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL
| |
Collapse
|
10
|
Schenker MT, Zeng LZ, Lynskey J, Greaves MD, Rouhi S, Kay A, Dawson A, Thornton T, Nicholas CL, Felmingham KL, Jordan AS. The Effect of Suvorexant on Fear Extinction Recall: A Double-Blind Randomised Controlled Pilot Trial in Healthy Individuals. J Sleep Res 2025:e70033. [PMID: 40087982 DOI: 10.1111/jsr.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/23/2025] [Accepted: 02/21/2025] [Indexed: 03/17/2025]
Abstract
Post-traumatic stress disorder (PTSD) is a highly debilitating condition that develops after trauma exposure. Dysregulation in extinction memory consolidation (i.e., the ability to remember that trauma-related stimuli no longer signal danger) is proposed to underlie PTSD development. Disruptions in rapid eye movement (REM) sleep are thought to be the key contributor to this dysregulation, as REM sleep is suggested to play a vital role in the processing of emotional memories. While previous literature has investigated the role of natural REM sleep variations or REM sleep disruptions on extinction recall capacities, none have attempted to increase REM sleep to improve extinction recall. In this pilot, randomised controlled trial, we investigated the effect of 20 mg suvorexant to increase REM sleep, 20 mg temazepam to decrease REM sleep, and a placebo on extinction recall in 30 healthy adults (age: M = 26.93 years, SD = 7.54). Overall, no difference in REM percentage (p = 0.68, η2 = 0.0.03, small effect), nor in extinction recall (p = 0.58, η2 = 0.04, small effect) was observed between the drug conditions. However, increased REM percentage was associated with decreased conditioned fear response at recall, indicating better extinction recall (β = -0.71, p = 0.03, ηp 2 = 0.10; moderate effect) across the sample. These findings suggest that increasing REM sleep in populations with REM disruptions such as PTSD to optimal levels could improve extinction recall. This underscores the potential of enhancing REM sleep as a therapeutic target for improving PTSD outcomes, warranting further investigation of suvorexant in clinical populations where REM sleep deficits are prevalent.
Collapse
Affiliation(s)
- Maya T Schenker
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia
| | - Lilith Z Zeng
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia
| | - Joshua Lynskey
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia
| | - Matthew D Greaves
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia
| | - Shima Rouhi
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia
| | - Amanda Kay
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia
| | - Andrew Dawson
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia
| | - Therese Thornton
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia
| | - Christian L Nicholas
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia
| | - Kim L Felmingham
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia
| | - Amy S Jordan
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
11
|
Rosenfeld-Ganzel A, Shalev H, Hochman S, Zultan R, Cohen N, Naparstek S. Oxytocin's role in the interaction between emotion and cognitive control. Biol Psychol 2025; 196:109004. [PMID: 39987954 DOI: 10.1016/j.biopsycho.2025.109004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Emotional stimuli, especially negative ones, have been shown to impair cognitive performance. Previous studies demonstrated that tasks that recruit cognitive control attenuate the emotional interference effect, enhancing emotion regulation. The current study focused on the effects of oxytocin-a hormone known to influence socioemotional processing and motivation-on the interaction between emotion and cognitive control. In a double-blind placebo-controlled design, 124 male students (mean age 25.18 ± 3) were administered intranasal oxytocin or a placebo and completed self-report questionnaires, an emotional flanker task, and an emotional rating task. Consistent with our hypotheses, we found that oxytocin significantly reduced the effect of cognitive control on emotion. However, counter to our prediction, it did not affect emotional experience or perception. These findings suggest that oxytocin plays a role in shaping the association between emotion and cognitive control, specifically affecting the ability of cognitive control to regulate emotional responses, but not impacting emotional processing itself. The effect of oxytocin is attributed to its role in increasing approach motivation while reducing avoidance motivation-mechanisms supported by frontal-limbic interactions. Furthermore, it has been suggested that approach behavior is achieved by reducing inhibition. Therefore, the results may suggest changes in connectivity between frontal and emotional areas following oxytocin inhalation, leading to impaired regulation by cognitive control. These findings not only enhance our understanding of oxytocin's role in emotional processing and regulation but also highlight the importance of comprehensively examining these mechanisms due to their significant implications for both healthy populations and various psychopathologies.
Collapse
Affiliation(s)
| | - Hadar Shalev
- Mental Health Division, Soroka Medical Center, Israel; Faculty of Health Science, Ben-Gurion University of the Negev, Israel
| | - Shachar Hochman
- School of Psychology, University of Surrey, United Kingdom; Independent Researcher, Tel Aviv, Israel
| | - Ro'i Zultan
- Department of Economics, Ben-Gurion University of the Negev, Israel
| | - Noga Cohen
- Department of Special Education, University of Haifa, Israel; The Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Israel
| | | |
Collapse
|
12
|
Lin YH, Tsai HY, Huang CW, Lin WW, Lin MM, Lu ZL, Lin FS, Tseng MT. Brain Mechanisms of Fear Reduction Underlying Habituation to Pain in Humans. Psychophysiology 2025; 62:e70039. [PMID: 40032649 DOI: 10.1111/psyp.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/22/2025] [Accepted: 02/24/2025] [Indexed: 03/05/2025]
Abstract
Habituation to painful stimuli reflects an endogenous pain alleviation mechanism, and reduced pain habituation has been demonstrated in many chronic pain conditions. In ethology, animals exhibit reduced fear responses while habituating to repeated threatening stimuli. It remains unclear whether pain habituation in humans involves a fear reduction mechanism. In an fMRI experiment, we investigated pain-related brain responses before and after the development of habituation to pain induced by repetitive painful stimulation in healthy adults. In another behavioral experiment, we examined emotional responses in another group of healthy adults to assess pain habituation-related emotional changes. Pain habituation at the repetitively stimulated forearm site entailed reduced fear and engaged the neural system implicated in fear reduction, which included the amygdala, anterior cingulate, and ventromedial prefrontal cortex (vmPFC). Individual pain-related fear, assessed via a questionnaire, predicted neural activity within the periaqueductal gray (a pain-modulating center), which covaried with vmPFC responsivity. Moreover, pain habituation also occurred at nonstimulated sites, and its extent was predicted by habituation at the repetitively stimulated site. This phenomenon again involved the vmPFC, which has also been implicated in safety generalization under threat. These results suggest a role of fear reduction in pain habituation that is related to individual pain fearfulness. The reduced fear acquired at the repetitively stimulated site can be generalized to other body parts to cope with similar aversive situations. The identified link between fear and pain habituation helps explain why impaired fear reduction and reduced pain habituation coexist in chronic pain conditions.
Collapse
Affiliation(s)
- Yi-Hsuan Lin
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Hsin-Yun Tsai
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Cheng-Wei Huang
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Wei Lin
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Min-Min Lin
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Zheng-Liang Lu
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Feng-Sheng Lin
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Tsung Tseng
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
13
|
Alexander C, Jeon J, Nickerson K, Hassler S, Vasefi M. CBD and the 5-HT1A receptor: A medicinal and pharmacological review. Biochem Pharmacol 2025; 233:116742. [PMID: 39778776 DOI: 10.1016/j.bcp.2025.116742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/25/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Cannabidiol (CBD), a phytocannabinoid, has emerged as a promising candidate for addressing a wide array of symptoms. It has the ability to bind to multiple proteins and receptors, including 5-HT1AR, transient receptor potential vanilloid 1 (TRPV1), and cannabinoid receptors. However, CBD's pharmacodynamic interaction with 5-HT1AR and its medicinal outcomes are still debated. This review explores recent literature to elucidate these questions, highlighting the neurotherapeutic outcomes of this pharmacodynamic interaction and proposing a signaling pathway underlying the mechanism by which CBD desensitizes 5-HT1AR signaling. A comprehensive survey of the literature underscores CBD's multifaceted neurotherapeutic effects, which include antidepressant, anxiolytic, neuroprotective, antipsychotic, antiemetic, anti-allodynic, anti-epileptic, anti-degenerative, and addiction-treating properties, attributable in part to its interactions with 5-HT1AR. Furthermore, evidence suggests that the pharmacodynamic interaction between CBD and 5-HT1AR is contingent upon dosage. Moreover, we propose that CBD can induce desensitization of 5-HT1AR via both homologous and heterologous mechanisms. Homologous desensitization involves the recruitment of G protein-coupled receptor kinase 2 (GRK2) and β-arrestin, leading to receptor endocytosis. In contrast, heterologous desensitization is mediated by an elevated intracellular calcium level or activation of protein kinases, such as c-Jun N-terminal kinase (JNK), through the activity of other receptors.
Collapse
Affiliation(s)
- Claire Alexander
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70118, USA
| | - Jiyoon Jeon
- Department of Biology, Lamar University, Beaumont, TX, 77710, USA
| | - Kyle Nickerson
- Department of Biology, Baylor University, Waco, TX, 76706, USA
| | - Shayne Hassler
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houton, Houston, TX, 77204, USA
| | - Maryam Vasefi
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houton, Houston, TX, 77204, USA.
| |
Collapse
|
14
|
de Voogd LD, Hashemi MM, Zhang W, Kaldewaij R, Koch SBJ, van Ast VA, Klumpers F, Roelofs K. Amygdala Hyperactivity in Posttraumatic Stress Disorder: Disentangling Predisposing From Consequential Factors Using a Prospective Longitudinal Design. Biol Psychiatry 2025:S0006-3223(25)00993-X. [PMID: 40024495 DOI: 10.1016/j.biopsych.2025.02.894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/31/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Substantial interindividual differences exist in the vulnerability to develop posttraumatic stress disorder (PTSD) symptoms following trauma exposure. Identification of neurocognitive risk markers for PTSD symptoms could aid early assessment and identification of preventive intervention targets for PTSD, particularly in high-risk professionals. Therefore, large prospective longitudinal studies with pretrauma measurements are essential to disentangle whether previously observed neurobiological alterations in PTSD are a cause or consequence of trauma exposure or PTSD symptoms. METHODS In police recruits (n = 221) without current trauma symptoms but at high risk for trauma exposure, we used functional magnetic resonance imaging to disentangle predictive and acquired neural markers of posttraumatic stress symptoms. Using an experimental paradigm, we investigated anticipatory threat responses and the switch into defensive action. RESULTS Recruits who showed relatively heightened dorsal amygdala responses and heightened amygdala-precuneus coupling during threat anticipation demonstrated relatively stronger increase in PTSD symptoms after trauma exposure. The experience of traumatic events, independent of PTSD symptoms, was associated with increased lateral amygdala activation in response to an aversive stimulus (i.e., receiving an electrical shock). CONCLUSIONS This prospective longitudinal study shows a predictive role for dorsal amygdala responsivity during threat anticipation for the development of trauma symptoms, while lateral amygdala responding to aversive events after trauma may reflect a failure to regulate. Our findings not only inform neurobiological theories of PTSD risk and vulnerability but also provide a starting point for prediction and intervention studies.
Collapse
Affiliation(s)
- Lycia D de Voogd
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands; Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands; Institute of Psychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands.
| | - Mahur M Hashemi
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands; Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| | - Wei Zhang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Reinoud Kaldewaij
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| | - Saskia B J Koch
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands
| | - Vanessa A van Ast
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Floris Klumpers
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands; Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| | - Karin Roelofs
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands; Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
15
|
Ko SY, Kim DG, Lee H, Jung SJ, Son H. Extinction of contextual fear memory is facilitated in TRPM2 knockout mice. Mol Brain 2025; 18:16. [PMID: 40016847 PMCID: PMC11869647 DOI: 10.1186/s13041-025-01181-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025] Open
Abstract
Transient receptor potential melastatin type 2 (TRPM2) is a nonselective cation channel involved in synaptic plasticity. We investigated its role in contextual fear conditioning and extinction of conditioned fear using Trpm2-deficient (Trpm2-/-) mice. Trpm2-/- mice exhibited reduced acquisition of contextual fear memory during conditioning but had an intact freezing response to conditioning context 24 h after conditioning. They also showed a reduced freezing response to extinction training, indicating facilitated extinction. Consistent with this, infusion of flufenamic acid (FFA), a TRPM2 antagonist, into the dentate gyrus (DG) of the hippocampus in fear-conditioned mice facilitated extinction of contextual fear. The enhanced extinction in Trpm2-/- and FFA-treated mice was associated with down-regulation of immediate-early genes (IEGs) including Npas4, c-Fos, Arc and Egr1 in the hippocampus after extinction training. Our results indicate that TRPM2 plays a positive role in retention of contextual fear memory by modulating neuronal activity in the hippocampus, and suggest that TRPM2 activity could potentially be targeted to strengthen extinction-based exposure therapies for post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Seung Yeon Ko
- Hanyang Biomedical Research Institute, Hanyang University, Seongdong-gu, Seoul, 04763, Korea
| | - Do Gyeong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Korea
| | - Huiju Lee
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Korea
| | - Sung Jun Jung
- Department of Physiology, College of Medicine, Hanyang University, Seongdong-gu, Seoul, 04763, Korea.
- College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - Hyeon Son
- Hanyang Biomedical Research Institute, Hanyang University, Seongdong-gu, Seoul, 04763, Korea.
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seongdong-gu, Seoul, 04763, Korea.
- College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
16
|
Harnett NG, Fleming LL, Clancy KJ, Ressler KJ, Rosso IM. Affective Visual Circuit Dysfunction in Trauma and Stress-Related Disorders. Biol Psychiatry 2025; 97:405-416. [PMID: 38996901 PMCID: PMC11717988 DOI: 10.1016/j.biopsych.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/12/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
Posttraumatic stress disorder (PTSD) is widely recognized as involving disruption of core neurocircuitry that underlies processing, regulation, and response to threat. In particular, the prefrontal cortex-hippocampal-amygdala circuit is a major contributor to posttraumatic dysfunction. However, the functioning of core threat neurocircuitry is partially dependent on sensorial inputs, and previous research has demonstrated that dense, reciprocal connections exist between threat circuits and the ventral visual stream. Furthermore, emergent evidence suggests that trauma exposure and resultant PTSD symptoms are associated with altered structure and function of the ventral visual stream. In the current review, we discuss evidence that both threat and visual circuitry together are an integral part of PTSD pathogenesis. An overview of the relevance of visual processing to PTSD is discussed in the context of both basic and translational research, highlighting the impact of stress on affective visual circuitry. This review further synthesizes emergent literature to suggest potential timing-dependent effects of traumatic stress on threat and visual circuits that may contribute to PTSD development. We conclude with recommendations for future research to move the field toward a more complete understanding of PTSD neurobiology.
Collapse
Affiliation(s)
- Nathaniel G Harnett
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| | - Leland L Fleming
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Kevin J Clancy
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Kerry J Ressler
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Isabelle M Rosso
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
17
|
Brown JC, Kweon J, Sharma P, Siddiqi SH, Isserles M, Ressler KJ. Critically Assessing the Unanswered Questions of How, Where, and When to Induce Plasticity in the Posttraumatic Stress Disorder Network With Transcranial Magnetic Stimulation. Biol Psychiatry 2025; 97:392-404. [PMID: 38909668 DOI: 10.1016/j.biopsych.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
Extinction of traumatic memory, a primary treatment approach (termed exposure therapy) in posttraumatic stress disorder (PTSD), occurs through relearning and may be subserved at the molecular level by long-term potentiation of relevant circuits. In parallel, repetitive transcranial magnetic stimulation (TMS) is thought to work through long-term potentiation-like mechanisms and may provide a novel, safe, and effective treatment for PTSD. In a recent failed randomized controlled trial we emphasized the necessity of correctly identifying cortical targets, the directionality of TMS protocols, and the role of memory activation. Here, we provide a systematic review of TMS for PTSD to further identify how, where, and when TMS treatment should be delivered to alleviate PTSD symptoms. We conducted a systematic review of the literature by searching for repetitive TMS clinical trials involving patients with PTSD and outcomes. We searched MEDLINE through October 25, 2023, for "TMS and PTSD" and "transcranial magnetic stimulation and posttraumatic stress disorder." Thirty-one publications met our inclusion criteria (k = 17 randomized controlled trials, k = 14 open label). Randomized controlled trial protocols were varied in terms of TMS protocols, cortical TMS targets, and memory activation protocols. There was no clear superiority of low-frequency (k = 5) versus high-frequency (k = 6) protocols or by stimulation location. Memory provocation or exposure protocols (k = 7) appear to enhance response. Overall, TMS appears to be effective in treating PTSD symptoms across a variety of TMS frequencies, hemispheric target differences, and exposure protocols. Disparate protocols may be conceptually harmonized when viewed as potentiating proposed anxiolytic networks or suppressing anxiogenic networks.
Collapse
Affiliation(s)
- Joshua C Brown
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| | - Jamie Kweon
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, Massachusetts
| | - Prayushi Sharma
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, Massachusetts
| | - Shan H Siddiqi
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, Massachusetts
| | - Moshe Isserles
- Department of Psychiatry, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Kerry J Ressler
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
18
|
Biltz RG, Yin W, Goodman EJ, Wangler LM, Davis AC, Oliver BT, Godbout JP, Sheridan JF. Repeated social defeat in male mice induced unique RNA profiles in projection neurons from the amygdala to the hippocampus. Brain Behav Immun Health 2025; 43:100908. [PMID: 39720627 PMCID: PMC11667635 DOI: 10.1016/j.bbih.2024.100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Chronic stress increases the incidence of psychiatric disorders including anxiety, depression, and posttraumatic stress disorder. Repeated Social Defeat (RSD) in mice recapitulates several key physiological, immune, and behavioral changes evident after chronic stress in humans. For instance, neurons in the prefrontal cortex, amygdala, and hippocampus are involved in the interpretation of and response to fear and threatful stimuli after RSD. Therefore, the purpose of this study was to determine how stress influenced the RNA profile of hippocampal neurons and neurons that project into the hippocampus from threat appraisal centers. Here, RSD increased anxiety-like behavior in the elevated plus maze and reduced hippocampal-dependent novel object location memory in male mice. Next, pan-neuronal (Baf53 b-Cre) RiboTag mice were generated to capture ribosomal bound mRNA (i.e., active translation) activated by RSD in the hippocampus. RNAseq revealed that there were 1694 differentially expressed genes (DEGs) in hippocampal neurons after RSD. These DEGs were associated with an increase in oxidative stress, synaptic long-term potentiation, and neuroinflammatory signaling. To further examine region-specific neural circuitry associated with fear and anxiety, a retrograde-adeno-associated-virus (AAV2rg) expressing Cre-recombinase was injected into the hippocampus of male RiboTag mice. This induced expression of a hemagglutinin epitope in neurons that project into the hippocampus. These AAV2rg-RiboTag mice were subjected to RSD and ribosomal-bound mRNA was collected from the amygdala for RNA-sequencing. RSD induced 677 DEGs from amygdala projections. Amygdala neurons that project into the hippocampus had RNA profiles associated with increased synaptogenesis, interleukin-1 signaling, nitric oxide, and reactive oxygen species production. Using a similar approach, there were 1132 DEGs in neurons that project from the prefrontal cortex. These prefrontal cortex neurons had RNA profiles associated with increased synaptogenesis, integrin signaling, and dopamine feedback signaling after RSD. Collectively, there were unique RNA profiles of stress-influenced projection neurons and these profiles were associated with hippocampal-dependent behavioral and cognitive deficits.
Collapse
Affiliation(s)
- Rebecca G. Biltz
- Department of Neuroscience, The Ohio State University Wexner Medical Center, USA
| | - Wenyuan Yin
- Department of Neuroscience, The Ohio State University Wexner Medical Center, USA
| | - Ethan J. Goodman
- Department of Neuroscience, The Ohio State University Wexner Medical Center, USA
| | - Lynde M. Wangler
- Department of Neuroscience, The Ohio State University Wexner Medical Center, USA
| | - Amara C. Davis
- Department of Neuroscience, The Ohio State University Wexner Medical Center, USA
| | - Braedan T. Oliver
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, USA
| | - Jonathan P. Godbout
- Department of Neuroscience, The Ohio State University Wexner Medical Center, USA
- Chronic Brain Injury Program, The Ohio State University, USA
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, USA
| | - John F. Sheridan
- Department of Neuroscience, The Ohio State University Wexner Medical Center, USA
- Division of Biosciences, The Ohio State University College of Dentistry, USA
- Chronic Brain Injury Program, The Ohio State University, USA
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, USA
| |
Collapse
|
19
|
Kausche FM, Carsten HP, Sobania KM, Riesel A. Fear and safety learning in anxiety- and stress-related disorders: An updated meta-analysis. Neurosci Biobehav Rev 2025; 169:105983. [PMID: 39706234 DOI: 10.1016/j.neubiorev.2024.105983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Fear learning processes are believed to play a crucial role in the development and maintenance of anxiety and stress-related disorders. To integrate results across different studies, we conducted a systematic meta-analysis following PRISMA guidelines to examine differences in fear conditioning during fear acquisition, extinction, and extinction recall between individuals with anxiety-related or stress-related disorders and healthy participants. This analysis updates the work of Duits et al. (2015) while also refining distinctions between physiological and behavioral outcomes and examining extinction recall. Our meta-analysis encompasses 77 studies published from 1986 to 2022, involving 2052 patients with anxiety disorders, obsessive-compulsive disorder, or post-traumatic stress disorder, and 3258 healthy controls. The results indicate significant differences in fear acquisition, extinction, and recall between the two groups. Specifically, during acquisition patients exhibited heightened physiological and behavioral responses to the CS- and reported increased affect ratings for the CS+ . During extinction and extinction recall, patients continue to show heightened threat expectancy and negative affect ratings towards the CS- and increased affect ratings towards the CS+ . No differences were found in CS+ /CS- differentiation between groups. These findings imply that individuals with anxiety and stress-related disorders may exhibit amplified responses to safety cues and stronger reactions to threat cues during fear conditioning, lasting through extinction and extinction recall. These changes may lead to increased sensitivity in detecting fear and slower extinction process, resulting in more enduring anxiety responses. We discuss these results in the context of existing literature on fear and safety learning and consider potential underlying mechanisms.
Collapse
Affiliation(s)
| | | | - Kim M Sobania
- Department of Psychology, University Hamburg, Hamburg, Germany
| | - Anja Riesel
- Department of Psychology, University Hamburg, Hamburg, Germany
| |
Collapse
|
20
|
Lightfoot SHM, Nastase AS, Costa Lenz Cesar G, Hume C, Gom RC, Teskey GC, Hill MN. Acute and chronic cannabis vapor exposure produces immediate and delayed impacts on phases of fear learning in a sex specific manner. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06748-4. [PMID: 39888377 DOI: 10.1007/s00213-025-06748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025]
Abstract
RATIONALE Current treatment options for PTSD have unreliable efficacy, with many individuals unable to achieve complete remission. Cannabis and cannabinoids that act through the endogenous cannabinoid (endocannabinoid) system to help promote trauma recovery by means of enhanced extinction learning are potential therapeutic, pharmacological candidates. Using a preclinical model of translationally-relevant cannabis administration in rodents, we examined the impact of cannabis exposure on aversive memory. OBJECTIVES Our study investigated the effects of acute cannabis exposure prior to (1) fear conditioning and (2) fear extinction, as well as (3) chronic cannabis exposure prior to fear conditioning, on the behavioural representations of fear memory dynamics in a Pavlovian auditory conditioning paradigm. METHODS Male and female Sprague Dawley rats were acutely or chronically exposed to THC-dominant cannabis extract or vehicle vapor as described above. We then assessed both passive (freezing) and active (darting) fear behaviours during conditioning, extinction, retrieval, and spontaneous recovery. RESULTS Acute cannabis exposure prior to conditioning had no immediate effects on fear acquisition, but impaired fear recall in females 24 h later and prevented spontaneous recovery of conditioned fear following a two-week retrieval test in both male and female rats. Acute cannabis exposure prior to extinction training impaired extinction in females while enhancing extinction acquisition in males. Finally, chronic THC exposure prior to fear conditioning initially potentiated fear responses, predominately in females, but produced no differences in spontaneous recovery in a two-week retrieval test. CONCLUSIONS Cannabis exposure has complex dynamics on fear memory, however, acute cannabis exposure prior to fear learning appears to result in destabilization of the fear memory long term, which could have potential implications for PTSD.
Collapse
Affiliation(s)
- Savannah H M Lightfoot
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada
- Graduate Program in Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Andrei S Nastase
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada
- Graduate Program in Neuroscience, University of Calgary, Calgary, AB, Canada
| | | | - Catherine Hume
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Renaud C Gom
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada
- Graduate Program in Neuroscience, University of Calgary, Calgary, AB, Canada
| | - G Campbell Teskey
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada.
- Department of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.
| |
Collapse
|
21
|
Denis D, Bottary R, Cunningham TJ, Davidson P, Yuksel C, Milad MR, Pace-Schott EF. Slow oscillation-sleep spindle coupling is associated with fear extinction retention in trauma-exposed individuals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.634866. [PMID: 39974936 PMCID: PMC11838212 DOI: 10.1101/2025.01.27.634866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Posttraumatic stress disorder (PTSD) can be characterized as a disorder of fear learning and memory, in which there is a failure to retain memory for the extinction of conditioned fear. Sleep has been implicated in successful extinction retention. The coupling of sleep spindles to slow oscillations (SOs) during non-rapid eye movement sleep has been shown to broadly underpin sleep's beneficial effect on memory consolidation. However, the role of this oscillatory coupling in the retention of extinction memories is unknown. In a large sample of 124 trauma-exposed individuals, we investigated SO-spindle coupling in relation to fear extinction memory. We found that participants with a PTSD diagnosis, relative to trauma-exposed controls, showed significantly altered SO-spindle timing, such that PTSD participants exhibited spindle coupling further away from the peak of the SO. Across participants, the amount of coupling significantly predicted extinction retention, with coupled spindles uniquely predicting successful extinction retention compared to uncoupled spindles. These results suggest that SO-spindle coupling is critical for successful retention of extinguished fear, and that SO-spindle coupling dynamics are altered in PTSD. These alterations in the mechanics of sleep may have substantial clinical implications, meriting further investigation.
Collapse
Affiliation(s)
- Dan Denis
- Department of Psychology, University of York, York, United Kingdom
| | - Ryan Bottary
- Institute for Graduate Clinical Psychology, Widener University, Chester, PA, USA
| | - Tony J. Cunningham
- Center for Sleep and Cognition, Psychiatry Department, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Per Davidson
- Department of Psychology, Kristianstad University, Kristianstad, Sweden
| | - Cagri Yuksel
- Schizophrenia and Bipolar Research Program, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | | | - Edward F. Pace-Schott
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Department of Psychiatry, Mass General Brigham, Charlestown, MA, USA
| |
Collapse
|
22
|
Morin EL, Siebert ER, Howell BR, Higgins M, Jovanovic T, Kazama AM, Sanchez MM. Effects of early maternal care on anxiety and threat learning in adolescent nonhuman primates. Dev Cogn Neurosci 2025; 71:101480. [PMID: 39642805 PMCID: PMC11665541 DOI: 10.1016/j.dcn.2024.101480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/30/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024] Open
Abstract
Early life adverse experiences, including childhood maltreatment, are major risk factors for psychopathology, including anxiety disorders with dysregulated fear responses. Consistent with human studies, maltreatment by the mother (MALT) leads to increased emotional reactivity in rhesus monkey infants. Whether this persists and results in altered emotion regulation, due to enhanced fear learning or impaired utilization of safety signals as shown in human stress-related disorders, is unclear. Here we used a rhesus model of MALT to examine long-term effects on state anxiety and threat/safety learning in 25 adolescents, using a fear conditioning paradigm (AX+/BX-) with acoustic startle amplitude as the peripheral measure. The AX+/BX- paradigm measures baseline startle, fear-potentiated startle, threat/safety cue discrimination, startle attenuation by safety signals, and extinction. Baseline startle was higher in MALT animals, suggesting elevated state anxiety. No differences in threat learning, or threat/safety discrimination were detected. However, MALT animals showed generalized blunted responses to the conditioned threat cue, regardless of the safety cue presence in the transfer test, and took longer to extinguish spontaneously recovered threat. These findings suggest adverse caregiving experiences have long-term impacts on adolescent emotion regulation, including elevated state anxiety and blunted fear conditioning responses, consistent with reports in children with maltreatment exposure.
Collapse
Affiliation(s)
- Elyse L Morin
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States; Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Erin R Siebert
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Brittany R Howell
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States; Emory National Primate Research Center, Emory University, Atlanta, GA, United States; Fralin Biomedical Research Institute at VTC, Roanoke, VA, United States; Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, United States
| | - Melinda Higgins
- School of Nursing, Emory University, Atlanta, GA, United States
| | - Tanja Jovanovic
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Andrew M Kazama
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States; Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Mar M Sanchez
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States; Emory National Primate Research Center, Emory University, Atlanta, GA, United States; Center for Translational Social Neuroscience, Emory University, Atlanta, GA, United States.
| |
Collapse
|
23
|
Judd JM, Peay DN, Kim JL, Smith EA, Donnay ME, Miller J, Klein JP, Nagy EK, Acuña AM, Olive MF, Conrad CD. Inhibition of prefrontal glutamatergic neuron activity during the recovery period following chronic stress disrupts fear memory in male rats: potential role of the infralimbic cortex. Learn Mem 2025; 32:a053957. [PMID: 39824647 PMCID: PMC11801481 DOI: 10.1101/lm.053957.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/14/2024] [Indexed: 01/20/2025]
Abstract
Chronic stress typically leads to deficits in fear extinction. However, when a delay occurs from the end of chronic stress and the start of fear conditioning (a "recovery"), rats show improved context-cue discrimination, compared to recently stressed rats or nonstressed rats. The infralimbic cortex (IL) is important for fear extinction and undergoes neuronal remodeling after chronic stress ends, which could drive improved context-cue discrimination. Here, glutamatergic IL neurons of Sprague-Dawley male rats were targeted for inhibition using inhibitory designer receptors exclusively activated by designer drugs (DREADDs) and daily injections of clozapine N-oxide (CNO) during a 21-day recovery period from chronic stress. Histological verification confirmed DREADDs in the IL with some spread to nearby medial prefrontal cortex (PFC) regions. CNO administration was then discontinued before fear conditioning started and behavioral testing thereafter so that behavioral assessments occurred without neuronal inhibition. Fear conditioning involved presenting male rats with three tone-foot shock pairings on 1 day, which was followed by 2 days of 15 tone-alone extinction sessions. Daily and repeated inhibition of mainly IL neurons during the 21-day recovery period did not disrupt fear learning or fear extinction in all groups (controls, stressed rats without a recovery, and stressed rats with a recovery). However, chronically stressed rats given a recovery and with DREADD activation showed impaired spontaneous recovery, indicating a failure to form a tone-foot shock association. The findings show that daily inhibition of mainly IL neurons prior to fear conditioning and extinction depends upon the changes that occur during the recovery period following the end of chronic stress.
Collapse
Affiliation(s)
- Jessica M Judd
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| | - Dylan N Peay
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| | - Jinah L Kim
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| | - Elliot A Smith
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| | - Megan E Donnay
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| | - Joel Miller
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| | - Jean-Paul Klein
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| | - Erin K Nagy
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| | - Amanda M Acuña
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| | - Cheryl D Conrad
- Department of Psychology, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
24
|
Velasco ER, Nabás JF, Torrents-Rodas D, Arias B, Torrubia R, Fullana MA, Andero R. The PAC1 receptor risk genotype does not influence fear acquisition, extinction, or generalization in women with no trauma/low trauma. Biol Psychol 2025; 194:108981. [PMID: 39733787 DOI: 10.1016/j.biopsycho.2024.108981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Women are known to have twice as much lifetime prevalence of post-traumatic stress disorder (PTSD) as men do. It has been reported that the risk genotype (CC) of a single nucleotide polymorphism (SNP) (rs2267735) in the pituitary adenylate cyclase-activating polypeptide (PACAP-PAC1R) system is associated with PTSD risk and altered fear conditioning and fear extinction in women. Surprisingly, no previous work has studied the effect of this SNP on fear conditioning, extinction, or generalization in non-traumatized/low trauma load women. Here, two separate groups of women underwent either a two-day fear conditioning and fear extinction paradigm, or a one-day fear conditioning and fear generalization paradigm. Results showed no significant differences between genotypes in conditioned stimulus discrimination, during fear acquisition, extinction, or generalization. These findings suggest that the previously reported fear processing impairments in traumatized CC women are not a consequence of this genotype alone, but likely dependent on the interaction between this genetic risk and the exposure to traumatic stressors.
Collapse
Affiliation(s)
- Eric R Velasco
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Jaime F Nabás
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - David Torrents-Rodas
- Clinical Psychology and Psychotherapy, Institute of Psychology, Faculty of Psychology and Movement Sciences, Universität Hamburg, Germany
| | - Bárbara Arias
- Secció de Zoologia i Antropologia Biològica (Dpt. Biologia Evolutiva, Ecologia i Ciències Ambientals), Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Torrubia
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Miquel A Fullana
- Adult Psychiatry and Psychology Department, Institute of Neurosciences, Hospital Clinic, Barcelona, Spain; Imaging of Mood, and Anxiety-Related Disorders Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, University of Barcelona, Barcelona, Spain
| | - Raül Andero
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; ICREA, Barcelona, Spain.
| |
Collapse
|
25
|
Hinostroza F, Mahr MM. The Implementation of the Biopsychosocial Model: Individuals With Alcohol Use Disorder and Post-Traumatic Stress Disorder. Brain Behav 2025; 15:e70230. [PMID: 39740784 DOI: 10.1002/brb3.70230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 01/02/2025] Open
Abstract
INTRODUCTION This extensive literature review investigates the relationship between post-traumatic stress disorder (PTSD) and alcohol use disorder (AUD), focusing on the neurobiological changes associated with their co-occurrence. Given that these disorders frequently coexist, we analyze mechanisms through which alcohol serves as a coping strategy for PTSD symptoms, particularly highlighting the drinking-to-cope self-medication model, which suggests that alcohol use exacerbates PTSD symptoms and complicates recovery. METHODS A systematic literature search was conducted across multiple databases, including PubMed and Google Scholar, to identify studies examining the intersection of the biopsychosocial model with PTSD, AUD, and associated neural alterations. RESULTS Findings demonstrate that chronic PTSD is associated with progressive dysfunction in the amygdala, hippocampus, prefrontal cortex, hypothalamic-pituitary-adrenal axis, and white matter pathways. Also, our findings underscore alterations within the reward system, prefrontal cortex, hippocampus, amygdala, basal ganglia, and hypothalamic-pituitary-adrenal axis that contribute to the pathophysiology of AUD. Our results support the notion that a biopsychosocial framework is essential for contemporary addiction treatment, particularly in the context of alcohol addiction and PTSD. CONCLUSION PTSD frequently leads individuals to use alcohol as a maladaptive coping strategy, ultimately resulting in neuroadaptive alterations across critical brain regions. These neurobiological changes contribute to the development and maintenance of AUD. The findings reiterate the necessity of employing a biopsychosocial model in treating individuals grappling with both PTSD and AUD. This model allows for a comprehensive understanding of the unique challenges faced by this population, integrating biological, psychological, and social factors that influence recovery.
Collapse
Affiliation(s)
- Fernando Hinostroza
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile
- Escuela de Química y Farmacia, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
- Centro para la Investigación Traslacional en Neurofarmacología, Universidad de Valparaíso, Valparaíso, Chile
| | - Michele M Mahr
- Rehabilitation Psychology, Health Science Center, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
26
|
Yuksel C, Watford L, Muranaka M, Daffre C, McCoy E, Lax H, Mendelsohn AK, Oliver KI, Acosta A, Vidrin A, Martinez U, Lasko N, Orr S, Pace-Schott EF. REM disruption and REM vagal activity predict extinction recall in trauma-exposed individuals. Psychol Med 2024; 54:1-12. [PMID: 39648681 PMCID: PMC11769908 DOI: 10.1017/s0033291724002757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/08/2024] [Accepted: 10/07/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Accumulating evidence suggests that rapid eye movement sleep (REM) supports the consolidation of extinction memory. REM is disrupted in posttraumatic stress disorder (PTSD), and REM abnormalities after traumatic events increase the risk of developing PTSD. Therefore, it was hypothesized that abnormal REM in trauma-exposed individuals may pave the way for PTSD by interfering with the processing of extinction memory. In addition, PTSD patients display reduced vagal activity. Vagal activity contributes to the strengthening of memories, including fear extinction memory, and recent studies show that the role of vagus in memory processing extends to memory consolidation during sleep. Therefore, it is plausible that reduced vagal activity during sleep in trauma-exposed individuals may be an additional mechanism that impairs extinction memory consolidation. However, to date, the contribution of sleep vagal activity to the consolidation of extinction memory or any emotional memory has not been investigated. METHODS Trauma-exposed individuals (n = 113) underwent a 2-day fear conditioning and extinction protocol. Conditioning and extinction learning phases were followed by extinction recall 24 h later. The association of extinction recall with REM characteristics and REM vagal activity (indexed as heart rate variability) during the intervening consolidation night was examined. RESULTS Consistent with our hypotheses, REM disruption was associated with poorer physiological and explicit extinction memory. Furthermore, higher vagal activity during REM was associated with better explicit extinction memory, and physiological extinction memory in males. CONCLUSIONS These findings support the notion that abnormal REM, including reduced REM vagal activity, may contribute to PTSD by impairing the consolidation of extinction memory.
Collapse
Affiliation(s)
- Cagri Yuksel
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Lauren Watford
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA
| | - Monami Muranaka
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA
| | - Carolina Daffre
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, USA
| | - Emma McCoy
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA
| | - Hannah Lax
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, USA
| | - Augustus Kram Mendelsohn
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, USA
| | - Katelyn I. Oliver
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, USA
| | - Alexis Acosta
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, USA
| | - Abegail Vidrin
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, USA
| | - Uriel Martinez
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, USA
| | - Natasha Lasko
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Scott Orr
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Edward F. Pace-Schott
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
27
|
Bayer H, Hassell JE, Oleksiak CR, Garcia GM, Vaughan HL, Juliano VAL, Maren S. Pharmacological stimulation of infralimbic cortex after fear conditioning facilitates subsequent fear extinction. Neuropsychopharmacology 2024; 49:1951-1957. [PMID: 39138373 PMCID: PMC11480363 DOI: 10.1038/s41386-024-01961-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
The infralimbic (IL) division of the medial prefrontal cortex (mPFC) is a crucial site for the extinction of conditioned fear memories in rodents. Recent work suggests that neuronal plasticity in the IL that occurs during (or soon after) fear conditioning enables subsequent IL-dependent extinction learning. We therefore hypothesized that pharmacological activation of the IL after fear conditioning would promote the extinction of conditioned fear. To test this hypothesis, we characterized the effects of post-conditioning infusions of the GABAA receptor antagonist, picrotoxin, into the IL on the extinction of auditory conditioned freezing in male and female rats. In four experiments, we found that picrotoxin injections performed immediately, 24 h, or 13 days after fear conditioning reduced conditioned freezing to the auditory conditioned stimulus (CS) during both extinction training and extinction retrieval; this effect was observed up to two weeks after picrotoxin infusions. Interestingly, inhibiting protein synthesis inhibition in the IL immediately after fear conditioning prevented the inhibition of freezing by picrotoxin injected 24 h later. Our data suggest that the IL encodes an inhibitory memory during the consolidation of fear conditioning that is necessary for future fear suppression.
Collapse
Affiliation(s)
- Hugo Bayer
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, USA
| | - James E Hassell
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, USA
| | - Cecily R Oleksiak
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, USA
| | - Gabriela M Garcia
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, USA
| | - Hollis L Vaughan
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, USA
| | - Vitor A L Juliano
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, USA
- Department of Pharmacology, São Paulo University, São Paulo, Brazil
| | - Stephen Maren
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, USA.
| |
Collapse
|
28
|
Lau HC, Sinnott SM, Abohashem S, Civieri G, Aldosoky W, Karam K, Khalil M, Qamar I, Rosovsky RP, Osborne MT, Tawakol A, Seligowski AV. Posttraumatic stress disorder increases thrombosis risk: Evidence from a biobank data set. Am J Hematol 2024; 99:2279-2285. [PMID: 39207181 PMCID: PMC11560563 DOI: 10.1002/ajh.27468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Depression and anxiety are linked to deep venous thrombosis (DVT) and posttraumatic disorder (PTSD) increases risk of venous thromboembolism in women. However, the mechanisms underlying this relationship remain unknown. We hypothesized that PTSD would associate with increased DVT risk, that neuroimmune mechanisms would mediate the PTSD-DVT link, and that these associations would be stronger in women. This cohort study included N = 106 427 participants from a large biobank. PTSD and DVT were defined using ICD-10 codes. A subset (N = 1520) underwent imaging, from which we assessed stress-associated neural activity (SNA). High-sensitivity C-reactive protein (hs-CRP) levels and heart rate variability (HRV) were used as indicators of systemic inflammation and autonomic activity, respectively. Linear, logistic, and Cox regressions and mediation analyses were used to test our hypotheses. Of 106 427 participants, 4192 (3.9%) developed DVT. PTSD associated with increased DVT risk (HR [95% CI]: 1.66 [1.34, 2.07], p < .001), and this finding remained significant after adjustment for age, sex, and traditional DVT risk factors. When analyzed separately by sex, PTSD was significantly associated with DVT risk in women but not men. Further, heightened SNA and lower HRV mediated the effect of PTSD on DVT risk. Results suggest that individuals with PTSD are at increased risk for DVT, and that risk is higher in women. This relationship was partially driven by alterations in stress-associated neural activity and autonomic function, suggesting potential targets for preventive therapies. Future studies are needed to investigate whether intervening on PTSD-DVT mechanisms has downstream beneficial effects on DVT, especially among women.
Collapse
Affiliation(s)
- Hui Chong Lau
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sinead M. Sinnott
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shady Abohashem
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Giovanni Civieri
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Wesam Aldosoky
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Krystel Karam
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Maria Khalil
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Iqra Qamar
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rachel P. Rosovsky
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael T. Osborne
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ahmed Tawakol
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Antonia V. Seligowski
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Pastore JD, Mayer J, Steinhauser J, Shuler K, Bailey TW, Speigel JH, Papalexakis EE, Korzus E. Prefrontal multistimulus integration within a dedicated disambiguation circuit guides interleaving contingency judgment learning. Cell Rep 2024; 43:114926. [PMID: 39475507 DOI: 10.1016/j.celrep.2024.114926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/09/2024] [Accepted: 10/14/2024] [Indexed: 12/01/2024] Open
Abstract
Understanding how cortical network dynamics support learning is a challenge. This study investigates the role of local neural mechanisms in the prefrontal cortex during contingency judgment learning (CJL). To better understand brain network mechanisms underlying CJL, we introduce ambiguity into associative learning after fear acquisition, inducing a generalized fear response to an ambiguous stimulus sharing nontrivial similarities with the conditioned stimulus. Real-time recordings at single-neuron resolution from the prelimbic (PL) cortex show distinct PL network dynamics across CJL phases. Fear acquisition triggers PL network reorganization, led by a disambiguation circuit managing spurious and predictive relationships during cue-danger, cue-safety, and cue-neutrality contingencies. Mice with PL-targeted memory deficiency show malfunctioning disambiguation circuit function, while naive mice lacking unconditioned stimulus exposure lack the disambiguation circuit. This study shows that fear conditioning induces prefrontal cortex cognitive map reorganization and that subsequent CJL relies on the disambiguation circuit's ability to learn predictive relationships.
Collapse
Affiliation(s)
- Justin D Pastore
- Department of Psychology, University of California, Riverside, Riverside, CA 92521, USA
| | - Johannes Mayer
- Department of Psychology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jordan Steinhauser
- Department of Psychology, University of California, Riverside, Riverside, CA 92521, USA
| | - Kylene Shuler
- Department of Psychology, University of California, Riverside, Riverside, CA 92521, USA
| | - Tyler W Bailey
- Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA
| | - John H Speigel
- Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA
| | - Evangelos E Papalexakis
- Department of Computer Science and Engineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Edward Korzus
- Department of Psychology, University of California, Riverside, Riverside, CA 92521, USA; Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
30
|
Bray KO, Durbin O, Hartanto S, Khetan M, Liontos D, Manuele SJ, Zwaan I, Ganella D, Herting MM, Kim JH, O'Connell M, Pozzi E, Schwartz O, Seal M, Simmons J, Vijayakumar N, Whittle S. Puberty and NeuroDevelopment in adolescents (PANDA): a study protocol. BMC Pediatr 2024; 24:768. [PMID: 39592982 PMCID: PMC11590350 DOI: 10.1186/s12887-024-05197-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Biopsychosocial changes during adolescence are thought to confer risk for emotion dysregulation, and in particular, anxiety disorders. However, there are substantial gaps in our knowledge about the biological mechanisms underlying anxiety during adolescence, and whether this contributes to the higher prevalence in females. The Puberty and NeuroDevelopment in Adolescents (PANDA) study aims to examine links between biological (sex hormones, cortisol) and social environmental factors and brain function during adolescence, with a focus on key processes (emotion regulation, fear learning) identified as relevant for the development of anxiety disorders. METHODS PANDA is a cross-sectional study with an observational design that aims to recruit a total of 175 adolescents aged 11-16 (majority female) and their parents/guardians, from the community. Brain function will be examined using magnetic resonance imaging (MRI), including functional MRI tasks of emotion regulation and fear learning. Hormones will be measured from hair (i.e., cortisol) and weekly saliva samples (i.e., oestradiol, progesterone, five across a month in females). Questionnaires and semi-structured interviews will be used to assess mental health and social environmental factors such as parenting and adverse childhood experiences. An online study of 113 adolescents was also incorporated during the COVID-19 pandemic as a questionnaire-only sub-study. DISCUSSION Strengths of this study include the collection of multiple saliva samples to assess variability in hormone levels, examination of the timing of adverse childhood experiences, inclusion of both maternal and paternal parental factors, exploration of mechanisms through the examination of brain structure and function, and multi-method, multi-informant collection of mental health symptoms. This study addresses important gaps in the literature and will enhance knowledge of the biological and environmental contributors to emotion dysregulation and anxiety in adolescents.
Collapse
Affiliation(s)
- Katherine O Bray
- Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Olivia Durbin
- Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Stephanie Hartanto
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Muskan Khetan
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Daniel Liontos
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Sarah J Manuele
- Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| | - Isabel Zwaan
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Despina Ganella
- Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| | - Megan M Herting
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jee Hyun Kim
- School of Medicine, Institute for Innovation in Physical and Mental Health and Clinical Translation, IMPACT, Geelong, VIC, Australia
| | - Michele O'Connell
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Department of Endocrinology and Diabetes, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Elena Pozzi
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Orli Schwartz
- Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| | - Marc Seal
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Julian Simmons
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Nandita Vijayakumar
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- School of Psychology, Deakin University, Burwood, VIC, Australia
| | - Sarah Whittle
- Orygen, Parkville, VIC, Australia.
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
31
|
Romero LR, Acharya N, Nabás JF, Marín I, Andero R. Sex Differences in Neural Circuits Underlying Fear Processing. Curr Top Behav Neurosci 2024. [PMID: 39587012 DOI: 10.1007/7854_2024_543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Neural circuitry involved in anxiety and fear-related disorders exhibits strong sexual modulation. A limited number of studies integrating female and male data have revealed differences in neural networks, and distinct interconnectivity between these brain areas. Despite the efforts to incorporate female or mixed-sex data, there is compelling evidence that sex, as a biological variable, significantly influences fear processing. This chapter presents primary findings on sex differences in fear circuitry. It is imperative to consider this factor to ensure scientific research's integrity and understand how fear is processed in the central nervous system.
Collapse
Affiliation(s)
| | - Neha Acharya
- Institut de Neurociències, Universistat Autònoma de Barcelona, Barcelona, Spain
| | | | - Ignacio Marín
- Institut de Neurociències, Universistat Autònoma de Barcelona, Barcelona, Spain
| | - Raül Andero
- Departament de Psicobiologia i Metodología de les Ciències de la Salut, Universistat Autònoma de Barcelona, Barcelona, Spain.
- Centro de investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
- Unitat de Neurociència Translational, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universistat Autònoma de Barcelona, Bellaterra, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
32
|
Iqbal J, Huang GD, Shen D, Xue YX, Yang M, Jia XJ. Single prolonged stress induces behavior and transcriptomic changes in the medial prefrontal cortex to increase susceptibility to anxiety-like behavior in rats. Front Psychiatry 2024; 15:1472194. [PMID: 39628496 PMCID: PMC11611810 DOI: 10.3389/fpsyt.2024.1472194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
Introduction Transcriptomic studies offer valuable insights into the pathophysiology of traumatic stress-induced neuropsychiatric disorders, including generalized anxiety disorder and post-traumatic stress disorder (PTSD). The medial prefrontal cortex (mPFC) has been implicated in emotion, cognitive function, and psychiatric disorders. Alterations in the function of mPFC have been observed in PTSD patients. However, the specific transcriptomic mechanisms governed by genes within the mPFC under traumatic stress remain elusive. Methods In this study, we conducted transcriptome-wide RNA-seq analysis in the prelimbic (PL) and infralimbic (IL) cortices. We employed the single prolonged stress (SPS) animal model to simulate anxiety-like behavior, which was assessed using the open field and elevated plus maze tests. Results We identified sixty-two differentially expressed genes (DEGs) (FDR adjusted p < 0.05) with significant expression changes in the PL and IL mPFC. In the PL cortex, DEGs in the susceptible group exhibited reduced enrichment for cellular, biological, and molecular functions such as postsynaptic density proteins, glutamatergic synapses, synapse formation, transmembrane transport proteins, and actin cytoskeleton reorganization. In contrast, the IL-susceptible group displayed diminished enrichment for synapse formation, neuronal activity, dendrite development, axon regeneration, learning processes, and glucocorticoid receptor binding compared to control and insusceptible groups. DEGs in the PL-susceptible group were enriched for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to Parkinson's disease, Huntington's disease, Alzheimer's disease, and neurodegeneration processes. In the IL cortex, the susceptible group demonstrated enrichment for KEGG pathways involved in regulating stress signaling pathways and addiction-like behaviors, compared to control and insusceptible groups. Conclusion Our findings suggest that SPS activates distinct transcriptional and molecular pathways in PL and IL cortices of mPFC, enabling differential coping mechanisms in response to the effects of traumatic stress. The enhanced enrichment of identified KEGG pathways in the PL and IL mPFC may underlie the anxiety-like behavior observed in susceptible rats.
Collapse
Affiliation(s)
- Javed Iqbal
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center, Clinical College of Mental Health, Shenzhen University Health Science Center, Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, China
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Geng-Di Huang
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center, Clinical College of Mental Health, Shenzhen University Health Science Center, Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, China
| | - Dan Shen
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mei Yang
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center, Clinical College of Mental Health, Shenzhen University Health Science Center, Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, China
| | - Xiao-Jian Jia
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center, Clinical College of Mental Health, Shenzhen University Health Science Center, Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
33
|
Oliver KI, DelRosario D, Stevens JS. Sex Differences in the Neurobiology of Fear and Anxiety. Curr Top Behav Neurosci 2024. [PMID: 39509050 DOI: 10.1007/7854_2024_536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Although women are diagnosed with anxiety and stress-related disorders at twice the rate of men, there remains a lack of clarity around how to enhance treatment within each sex to reduce disparate rates of anxiety. However, in recent years, a growing literature has identified neural, cognitive, and physiological mechanisms that contribute to sex differences in fear and anxiety, with the promise of informing tailored treatment approaches. Here, we review recent findings, focusing on human studies among healthy populations as well as among patients with generalized anxiety, social anxiety disorder, post-traumatic stress disorder, and panic disorder. The literature reveals nuanced differences in the types of stimuli that preferentially evoke anxiety and stress responses in women and men, as well as sex differences in threat neurocircuitry that mediates the behavioral, physiological, and subjective components of fear and anxiety.
Collapse
Affiliation(s)
- Katelyn I Oliver
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Dasani DelRosario
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
34
|
Doss MK, DeMarco A, Dunsmoor JE, Cisler JM, Fonzo GA, Nemeroff CB. How Psychedelics Modulate Multiple Memory Mechanisms in Posttraumatic Stress Disorder. Drugs 2024; 84:1419-1443. [PMID: 39455547 DOI: 10.1007/s40265-024-02106-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Posttraumatic stress disorder (PTSD) is a psychiatric disorder with defining abnormalities in memory, and psychedelics may be promising candidates for the treatment of PTSD given their effects on multiple memory systems. Most PTSD and psychedelic research has investigated memory with fear conditioning and extinction. While fruitful, conditioning and extinction provide a limited model of the complexity of PTSD and phenomenology of psychedelics, thereby limiting the refinement of therapies. In this review, we discuss abnormalities in fear conditioning and extinction in PTSD and review 25 studies testing psychedelics on these forms of memory. Perhaps the most reliable effect is that the acute effects of psychedelics can enhance extinction learning, which is impaired in PTSD. However, the post-acute effects may also enhance extinction learning, and the acute effects can also enhance fear conditioning. We then discuss abnormalities in episodic and semantic memory in PTSD and review current knowledge on how psychedelics impact these memory systems. Although PTSD and psychedelics acutely impair the formation of hippocampal-dependent episodic memories, psychedelics may acutely enhance cortical-dependent learning of semantic memories that could facilitate the integration of trauma memories and disrupt maladaptive beliefs. More research is needed on the acute effects of psychedelics on episodic memory consolidation, retrieval, and reconsolidation and post-acute effects of psychedelics on all phases of episodic memory. We conclude by discussing how targeting multiple memory mechanisms could improve upon the current psychedelic therapy paradigm for PTSD, thereby necessitating a greater emphasis on assessing diverse measures of memory in translational PTSD and psychedelic research.
Collapse
Affiliation(s)
- Manoj K Doss
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic Research and Therapy, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Bldg. B, Stop Z0600, Austin, TX, 78712, USA.
| | - AnnaMarie DeMarco
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic Research and Therapy, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Bldg. B, Stop Z0600, Austin, TX, 78712, USA
| | - Joseph E Dunsmoor
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic Research and Therapy, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Bldg. B, Stop Z0600, Austin, TX, 78712, USA
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Josh M Cisler
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic Research and Therapy, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Bldg. B, Stop Z0600, Austin, TX, 78712, USA
| | - Gregory A Fonzo
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic Research and Therapy, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Bldg. B, Stop Z0600, Austin, TX, 78712, USA
| | - Charles B Nemeroff
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic Research and Therapy, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Bldg. B, Stop Z0600, Austin, TX, 78712, USA
| |
Collapse
|
35
|
Peyrot C, Duplessis-Marcotte F, Provencher J, Marin MF. Understanding sex differences in extinction retention: Pre-extinction stress and sex hormone status. Psychoneuroendocrinology 2024; 169:107161. [PMID: 39116520 DOI: 10.1016/j.psyneuen.2024.107161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/29/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Difficulties in fear regulation can sometimes result in maladaptive fear responses. To better understand how to improve fear regulation, it is important to determine how known factors, such as sex hormone status and stress, might interact to influence fear memory. Research has shown that women with high estradiol levels (mid-cycle) and men exhibit better extinction retention compared to women with low estradiol levels (women in the early follicular cycle or using oral contraceptives). Stress has also been demonstrated to affect both the learning and retention of extinction. Despite documented interactions between stress and sex hormones, their combined effects have not been thoroughly studied. This study aims to examine the impact of stress as a function of sex hormone status on extinction learning and retention. A total of 168 non-clinical participants were studied, including men (n = 46), women using oral contraceptives (n = 38), women in the early follicular phase (n = 40), and women in mid-cycle (n = 44). On Day 1, fear acquisition training was performed. On day 2, prior to extinction training, half of the participants were exposed to a psychosocial stressor, while the other half performed a non-stressful control task. On day 3, extinction retention was tested. Fear was quantified using skin conductance responses, while stress hormones were quantified through saliva samples. Exposure to stress prior to extinction training did not affect extinction learning, regardless of sex hormone status. In contrast, pre-extinction stress exposure had different effects on extinction retention depending on hormone status. Stressed men showed impairment in extinction retention compared to controls, while the experimental condition had no effect on naturally cycling women. Regardless of stress exposure, early follicular women exhibited a deficit in fear regulation, while mid-cycle women showed effective fear regulation. Among women using oral contraceptives, the stress group demonstrated better extinction retention compared to the control group. These results demonstrate the importance of considering sex hormone status and stress exposure during extinction learning, as both components may modulate extinction retention. These results could help identifying hormonal conditions that may enhance the effectiveness of extinction-based psychological therapies used in the treatment of fear-related disorders.
Collapse
Affiliation(s)
- Clémence Peyrot
- Research Centre, Institut universitaire en santé mentale de Montréal, 7331 Hochelaga Street, Montréal, Québec H1N 3J4, Canada; Department of Psychiatry and Addiction, Université de Montréal, 2900 Édouard-Montpetit boulevard, Montréal, Québec H3T 1J4, Canada.
| | - Félix Duplessis-Marcotte
- Research Centre, Institut universitaire en santé mentale de Montréal, 7331 Hochelaga Street, Montréal, Québec H1N 3J4, Canada; Department of Psychology, Université du Québec à Montréal, 100 Sherbrooke Street W, Montréal, Québec H2X 2P3, Canada.
| | - Jessie Provencher
- Research Centre, Institut universitaire en santé mentale de Montréal, 7331 Hochelaga Street, Montréal, Québec H1N 3J4, Canada; Department of Psychology, Université du Québec à Montréal, 100 Sherbrooke Street W, Montréal, Québec H2X 2P3, Canada.
| | - Marie-France Marin
- Research Centre, Institut universitaire en santé mentale de Montréal, 7331 Hochelaga Street, Montréal, Québec H1N 3J4, Canada; Department of Psychiatry and Addiction, Université de Montréal, 2900 Édouard-Montpetit boulevard, Montréal, Québec H3T 1J4, Canada; Department of Psychology, Université du Québec à Montréal, 100 Sherbrooke Street W, Montréal, Québec H2X 2P3, Canada.
| |
Collapse
|
36
|
Oga K, Fuchikami M, Kobayashi H, Miyagi T, Fujita S, Fujita S, Okada S, Morinobu S. Involvement of dysregulated hippocampal histone H3K9 methylation at the promoter of the BDNF gene in impaired memory extinction. Psychopharmacology (Berl) 2024; 241:2363-2374. [PMID: 38940908 PMCID: PMC11513706 DOI: 10.1007/s00213-024-06640-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
RATIONALE Since the precise mechanisms of posttraumatic stress disorder (PTSD) remain unknown, effective treatment interventions have not yet been established. Impaired extinction of fear memory (EFM) is one of the core symptoms of PTSD and is associated with stress-induced epigenetic change in gene expression. OBJECTIVES In this study, we examined whether the involvement of histone H3 lysine 9 dimethylation (H3K9me2) in EFM is mediated through brain-derived neurotrophic factor (BDNF) expression in the hippocampus, and whether BIX01294, a selective G9a and GLP histone methyltransferase inhibitor, could be treatment for impaired EFM in an animal model of PTSD. METHODS The single prolonged stress (SPS) paradigm was used to model PTSD. We measured BDNF mRNA levels by RT-PCR, and H3K9me2 levels in the BDNF gene promoters by chromatin immunoprecipitation-qPCR. After undergoing contextual fear conditioning and hippocampal injection of BIX01294, male rats were subjected to extinction training and extinction testing and their freezing times and BDNF mRNA levels were measured. RESULTS Compared to sham rats, SPS rats showed decreased BDNF mRNA levels 2 h after extinction training, no significant changes in levels of global H3K9me2 prior to extinction training, and increased levels of H3K9me2 in BDNF gene promoter IV, but not in BDNF gene promoter I. Administration of BIX01294 ameliorated the decrease in BDNF mRNA levels 2 h after extinction training and subsequently alleviated impaired EFM in extinction tests in SPS rats. CONCLUSION We conclude that reduced hippocampal levels of BDNF mRNA due to increase in H3K9me2 levels may play a role in PTSD-associated EFM impairment, and BIX01294 could be a PTSD treatment option.
Collapse
Affiliation(s)
- Kenichi Oga
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan
| | - Manabu Fuchikami
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan.
| | - Hironori Kobayashi
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan
| | - Tatsuhiro Miyagi
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan
| | - Sho Fujita
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan
| | - Satoshi Fujita
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan
| | - Satoshi Okada
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan
| | - Shigeru Morinobu
- Department of Psychology, School of Faculty of Health and Wellness Sciences, Hiroshima International University, Kure, Japan
| |
Collapse
|
37
|
Marin-Blasco I, Vanzo G, Rusco-Portabella J, Perez-Molina L, Romero L, Florido A, Andero R. Sex differences in prelimbic cortex calcium dynamics during stress and fear learning. Biol Sex Differ 2024; 15:79. [PMID: 39415234 PMCID: PMC11481719 DOI: 10.1186/s13293-024-00653-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/24/2024] [Indexed: 10/18/2024] Open
Abstract
In recent years, research has progressively increased the importance of considering sex differences in stress and fear memory studies. Many studies have traditionally focused on male subjects, potentially overlooking critical differences with females. Emerging evidence suggests that males and females can exhibit distinct behavioral and neurophysiological responses to stress and fear conditioning. These differences may be attributable to variations in hormone levels, brain structure, and neural circuitry, particularly in regions such as the prefrontal cortex (PFC). In the present study, we explored sex differences in prelimbic cortex (PL) calcium activity in animals submitted to immobilization stress (IMO), fear conditioning (FC), and fear extinction (FE). While no significant sex differences were found in behavioral responses, we did observe differences in several PL calcium activity parameters. To determine whether these results were related to behaviors beyond stress and fear memory, we conducted correlation studies between the movement of the animals and PL activity during IMO and freezing behavior during FC and FE. Our findings revealed a clear correlation between PL calcium activity with movement during stress exposure and freezing behavior, with no sex differences observed in these correlations. These results suggest a significant role for the PL in movement and locomotion, in addition to its involvement in fear-related processes. The inclusion of both female and male subjects is crucial for studies like this to fully understand the role of the PFC and other brain areas in stress and fear responses. Recognizing sex differences enhances our comprehension of brain function and can lead to more personalized and effective approaches in the study and treatment of stress and fear-related conditions.
Collapse
Affiliation(s)
- Ignacio Marin-Blasco
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Giorgia Vanzo
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Joaquin Rusco-Portabella
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Lucas Perez-Molina
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Leire Romero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Antonio Florido
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Applied Physical Sciences, College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Raul Andero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain.
- Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, 28090, Spain.
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain.
| |
Collapse
|
38
|
Zabik NL, Iadipaolo A, Peters CA, Baglot SL, Hill MN, Rabinak CA. Dose-dependent effect of acute THC on extinction memory recall and fear renewal: a randomized, double-blind, placebo-controlled study. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06702-w. [PMID: 39412674 PMCID: PMC12000385 DOI: 10.1007/s00213-024-06702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/03/2024] [Indexed: 11/06/2024]
Abstract
RATIONALE Prior work from our lab and others demonstrates that the endocannabinoid system is a promising avenue for improving fear memory deficits in posttraumatic stress disorder (PTSD). Specifically, 7.5 mg of delta-9-tetrahydrocannabinol (THC) decreases fear responding in healthy adults and increases prefrontal cortex activation during extinction learning and fear renewal in adults with PTSD. OBJECTIVES The present study will determine whether there is a dose-dependent effect of THC on short-term (24 h) and long-term (one week) fear learning and memory in adults with PTSD. METHODS Using a randomized, double-blind, placebo-controlled design, N = 36 adults with PTSD completed the study and were randomized to receive placebo (PBO, n = 11), 5 mg of THC (n = 11), or 10 mg of THC (n = 14) prior to fear extinction learning. Participants completed a Pavlovian conditioning paradigm with extinction recall and fear renewal occurring 24 h and one week later, where we measured concurrent functional imaging and behavioral responses. RESULTS Twenty-four hours after drug administration, individuals with PTSD given 5 mg of THC exhibited greater anterior cingulate cortex and prefrontal cortex activation during early fear renewal. One week later, individuals given 10 mg of THC exhibited greater hippocampus activation during extinction recall and prefrontal cortex activation during fear renewal. CONCLUSIONS These data suggest that dosing and timing are critical for facilitating fear memory processes in PTSD, and that low-dose oral THC prior to extinction learning can affect brain indices of fear learning and memory both acutely and one week after administration.
Collapse
Affiliation(s)
- Nicole L Zabik
- Translational Neuroscience Program, Wayne State University School of Medicine, Tolan Park Medical Building, Detroit, MI, 48201, USA
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Tolan Park Medical Building, Detroit, MI, 48201, USA
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Allesandra Iadipaolo
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Craig A Peters
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Samantha L Baglot
- Department of Cell Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N4N1, Canada
- Department of Anatomy & Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - Matthew N Hill
- Department of Cell Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N4N1, Canada
- Department of Anatomy & Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - Christine A Rabinak
- Translational Neuroscience Program, Wayne State University School of Medicine, Tolan Park Medical Building, Detroit, MI, 48201, USA.
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Tolan Park Medical Building, Detroit, MI, 48201, USA.
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA.
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
39
|
Hermann A, Benke C, Blecker CR, de Haas B, He Y, Hofmann SG, Iffland JR, Jengert-Stahl J, Kircher T, Leinweber K, Linka M, Mulert C, Neudert MK, Noll AK, Melzig CA, Rief W, Rothkopf C, Schäfer A, Schmitter CV, Schuster V, Stark R, Straube B, Zimmer RI, Kirchner L. Study protocol TransTAM: Transdiagnostic research into emotional disorders and cognitive-behavioral therapy of the adaptive mind. BMC Psychiatry 2024; 24:657. [PMID: 39369190 PMCID: PMC11456249 DOI: 10.1186/s12888-024-06108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Emotional disorders such as depression and anxiety disorders share substantial similarities in their etiology and treatment. In recent decades, these commonalities have been increasingly recognized in classification systems and treatment programs crossing diagnostic boundaries. METHODS To examine the prospective effects of different transdiagnostic markers on relevant treatment outcomes, we plan to track a minimum of N = 200 patients with emotional disorders during their routine course of cognitive behavioral therapy at two German outpatient clinics. We will collect a wide range of transdiagnostic markers, ranging from basic perceptual processes and self-report measures to complex behavioral and neurobiological indicators, before entering therapy. Symptoms and psychopathological processes will be recorded before entering therapy, between the 20th and 24th therapy session, and at the end of therapy. DISCUSSION Our results could help to identify transdiagnostic markers with high predictive power, but also provide deeper insights into which patient groups with which symptom clusters are less likely to benefit from therapy, and for what reasons. TRIAL REGISTRATION The trial was preregistered at the German Clinical Trial Register (DRKS-ID: DRKS00031206; 2023-05-09).
Collapse
Affiliation(s)
- Andrea Hermann
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Giessen, Germany.
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany.
| | - Christoph Benke
- Department of Clinical Psychology, Experimental Psychopathology and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Carlo R Blecker
- Justus Liebig University of Giessen, Bender Institute of Neuroimaging, Giessen, Germany
| | - Benjamin de Haas
- Experimental Psychology, Justus Liebig University of Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Yifei He
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Stefan G Hofmann
- Department of Psychology, Philipps University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Jona R Iffland
- Center of Psychiatry, Justus Liebig University of Giessen, Giessen, Germany
| | - Johanna Jengert-Stahl
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Giessen, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Katrin Leinweber
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Marcel Linka
- Experimental Psychology, Justus Liebig University of Giessen, Giessen, Germany
| | - Christoph Mulert
- Center of Psychiatry, Justus Liebig University of Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Marie K Neudert
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Giessen, Germany
| | - Ann-Kathrin Noll
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Giessen, Germany
| | - Christiane A Melzig
- Department of Clinical Psychology, Experimental Psychopathology and Psychotherapy, Philipps University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Winfried Rief
- Department of Clinical Psychology, Philipps University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Constantin Rothkopf
- Institute of Psychology, Centre for Cognitive Science, Technical University of Darmstadt, Darmstadt, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Axel Schäfer
- Justus Liebig University of Giessen, Bender Institute of Neuroimaging, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Christina V Schmitter
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Verena Schuster
- Department of Psychology, Philipps University of Marburg, Marburg, Germany
| | - Rudolf Stark
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Giessen, Germany
- Justus Liebig University of Giessen, Bender Institute of Neuroimaging, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Raphaela I Zimmer
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Giessen, Germany
| | - Lukas Kirchner
- Department of Clinical Psychology, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
40
|
Omoumi S, Rashidy‐Pour A, Seyedinia SA, Tarahomi P, Sedaghat K, Vafaei AA, Raise‐Abdullahi P. Systemic corticosterone enhances fear memory extinction in rats: Involvement of the infralimbic medial prefrontal cortex GABA A and GABA B receptors. Brain Behav 2024; 14:e70043. [PMID: 39344296 PMCID: PMC11440020 DOI: 10.1002/brb3.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/27/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
PURPOSE The infralimbic (IL) subregion of the medial prefrontal cortex (mPFC) regulates the extinction of conditioned fear memory. Glucocorticoid and gamma-aminobutyric acid (GABA) receptors are expressed in the mPFC and are also critical in fear extinction. This study investigated the possible interactive effects of the glucocorticoids and GABAergic system in the IL on the regulation of fear extinction. METHOD The rats were trained using an auditory fear conditioning task during which they received three conditioned stimuli (tones, 30 s, 4 kHz, 80 dB), co-terminated with the three unconditioned stimuli (footshock, 0.8 mA, 1 s). Extinction testing was conducted over 3 days (Ext 1-3). Thirty minutes before the first extinction trial (Ext 1), the rats received bicuculline (BIC, 1 mg/kg/2 mL, intraperitoneal [i.p.]) as a GABAA receptor antagonist or CGP55845 (CGP, 0.1 mg/kg/2 ML, i.p.) as a GABAB receptor antagonist followed by systemic injection of corticosterone (CORT, 3 mg/kg/2 ML, i.p.). Furthermore, separate groups of rats received a bilateral intra-IL injection of BIC (100 ng/0.3 µL/side) or CGP (10 ng/0.3 µL/side) followed by a systemic injection of CORT (3 mg/kg/2 ML, i.p.) before the first extinction trial (Ext 1). The extracellular signal-regulated kinase (ERK1) and cAMP response element-binding (CREB) activity in the IL was examined by Western blot analysis after Ext 1. FINDING The results indicated that systemic CORT injection facilitated fear extinction and increased the expression of ERK1 but not CREB in the IL. Both systemic and intra-IL co-injection of BIC or CGP blocked the effects of CORT on fear extinction and ERK1 expression. CONCLUSION These findings suggest that glucocorticoids and the GABAergic system may modulate fear extinction through the ERK pathway in the IL.
Collapse
Affiliation(s)
- Samira Omoumi
- Research Center of PhysiologySemnan University of Medical SciencesSemnanIran
- Department of Physiology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - Ali Rashidy‐Pour
- Research Center of PhysiologySemnan University of Medical SciencesSemnanIran
- Department of Physiology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - Seyed Ali Seyedinia
- Research Center of PhysiologySemnan University of Medical SciencesSemnanIran
- Student Research Committee, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - Parnia Tarahomi
- Research Center of PhysiologySemnan University of Medical SciencesSemnanIran
- Student Research Committee, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - Katayoun Sedaghat
- Research Center of PhysiologySemnan University of Medical SciencesSemnanIran
- Department of Physiology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | - Abbas Ali Vafaei
- Research Center of PhysiologySemnan University of Medical SciencesSemnanIran
- Department of Physiology, School of MedicineSemnan University of Medical SciencesSemnanIran
| | | |
Collapse
|
41
|
Greaves MD, Felmingham KL, Ney LJ, Nicholson EL, Li S, Vervliet B, Harrison BJ, Graham BM, Steward T. Using electrodermal activity to estimate fear learning differences in anxiety: A multiverse analysis. Behav Res Ther 2024; 181:104598. [PMID: 39142133 DOI: 10.1016/j.brat.2024.104598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 08/16/2024]
Abstract
Meta-analyses indicate differences in Pavlovian fear responses between anxious and non-anxious individuals using electrodermal activity (EDA). Recent research, however, has cast doubt on whether these effects are robust to different analytic choices. Using the multiverse approach conceived by Steegen et al. (2016), we surveyed analytic choices typically implemented in clinical fear conditioning research by conducting 1240 analyses reflecting different choice permutations. Only 1.45% of our analyses produced theoretically congruent statistically significant effects, and the strength and direction of the estimated effects varied substantially across EDA processing methods. We conclude that EDA-estimated fear learning differences are vulnerable to researcher degrees of freedom and make recommendations regarding which analytical choices should be approached with a high degree of caution.
Collapse
Affiliation(s)
- Matthew D Greaves
- Department of Psychiatry, The University of Melbourne, Victoria, Australia; Melbourne School of Psychological Sciences, The University of Melbourne, Victoria, Australia
| | - Kim L Felmingham
- Melbourne School of Psychological Sciences, The University of Melbourne, Victoria, Australia.
| | - Luke J Ney
- School of Psychology and Counselling, Queensland University of Technology, Australia
| | - Emma L Nicholson
- Melbourne School of Psychological Sciences, The University of Melbourne, Victoria, Australia
| | - Stella Li
- School of Psychology, The University of New South Wales, Sydney, New South Wales, Australia
| | - Bram Vervliet
- Laboratory of Biological Psychology, KU Leuven, Belgium; Leuven Brain Institute, KU Leuven, Belgium
| | - Ben J Harrison
- Department of Psychiatry, The University of Melbourne, Victoria, Australia
| | - Bronwyn M Graham
- School of Psychology, The University of New South Wales, Sydney, New South Wales, Australia
| | - Trevor Steward
- Department of Psychiatry, The University of Melbourne, Victoria, Australia; Melbourne School of Psychological Sciences, The University of Melbourne, Victoria, Australia
| |
Collapse
|
42
|
Moallem BI, Wen Z, Hammoud MZ, Su W, Pace-Schott EF, Milad MR. Impact of trauma type on neural mechanisms of threat conditioning and its extinction. J Psychiatr Res 2024; 178:50-58. [PMID: 39121707 DOI: 10.1016/j.jpsychires.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
Trauma type moderates the impact of trauma exposure on clinical symptomatology; however, the impact of trauma type on the neural correlates of emotion regulation is not as well understood. This study examines how violent and nonviolent trauma differentially influence the neural correlates of conditioned fear and extinction. We aggregated psychophysiological and fMRI data from three studies; we categorized reported trauma as violent or nonviolent, and subdivided violent trauma as sexual or nonsexual. We examined skin conductance responses (SCR) during a fear conditioning and extinction paradigm. For fMRI data analyses, we conducted region-specific and whole-brain analyses. We examined associations between beta weights from specific brain regions and CAPS scores. The group exposed to violent trauma showed significantly higher SCR during extinction recall. Those exposed to nonviolent trauma showed significantly higher functional activation during late extinction learning. The group exposed to violent trauma showed higher functional connectivity within the default mode network (DMN) and between the DMN and frontoparietal control network. For secondary analyses of sexual vs nonsexual trauma, we did not observe any between-group differences in SCR. During late extinction learning, the group exposed to sexual trauma showed significantly higher activation in the prefrontal cortex and precuneus. During extinction recall, the group exposed to nonsexual trauma showed significantly higher activation in the insular cortex. Violent trauma significantly impacts functional brain activations and connectivity in brain areas important for perception and attention with no significant impact on brain areas that modulate emotion regulation. Sexual trauma impacts brain areas important for internal perception.
Collapse
Affiliation(s)
- B Isabel Moallem
- Department of Psychiatry, School of Medicine, New York University, New York, NY, 10016, USA; Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, TX, 77054, USA
| | - Zhenfu Wen
- Department of Psychiatry, School of Medicine, New York University, New York, NY, 10016, USA; Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, TX, 77054, USA
| | - Mira Z Hammoud
- Department of Psychiatry, School of Medicine, New York University, New York, NY, 10016, USA; Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, TX, 77054, USA
| | - Wenjun Su
- Department of Psychiatry, School of Medicine, New York University, New York, NY, 10016, USA
| | - Edward F Pace-Schott
- Sleep and Anxiety Disorders Laboratory, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Mohammed R Milad
- Department of Psychiatry, School of Medicine, New York University, New York, NY, 10016, USA; Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, TX, 77054, USA.
| |
Collapse
|
43
|
Noble NC, Sendi MSE, Merker JB, Linton SR, Webber TK, Etkin A, Wu W, Ressler KJ, Seligowski AV. PTSD-related differences in resting-state functional connectivity and associations with sex hormones. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.26.24314301. [PMID: 39399043 PMCID: PMC11469513 DOI: 10.1101/2024.09.26.24314301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Background Posttraumatic stress disorder (PTSD) is a debilitating condition that disproportionately impacts individuals who are female. Prior research indicates that males with PTSD exhibit hypoconnectivity of frontal brain regions measured with resting electroencephalography (EEG). The present study examined functional connectivity among females with PTSD and trauma-exposed controls, as well as the impact of sex hormones. Methods Participants included 61 females (Mage = 31.41, SD = 8.64) who endorsed Criterion A trauma exposure. Resting state EEG data were recorded for five minutes in the eyes open position. Using a Linear Mixed Effects model, paired region-of-interest power envelope connectivity of the theta band (4-7 Hz) served as the response variables. Results Compared to controls, the PTSD group displayed hyperconnectivity between visual brain regions and the rest of the cerebral cortex (pFDR < 0.05). Additionally, participants with PTSD demonstrated enhanced connectivity between the default mode network and frontoparietal control network compared to controls (pFDR < 0.05), as well as increased connectivity between the ventral attention network and the rest of the cerebral cortex (pFDR < 0.05). Estradiol was associated with higher connectivity, while progesterone was associated with lower connectivity, but these did not survive correction. Conclusions Results are consistent with prior research indicating that PTSD is associated with altered connectivity in visual brain regions, which may reflect disrupted visual processing related to reexperiencing symptoms (e.g., intrusive memories). Our findings provide additional support for the relevance of the theta frequency range in PTSD given its role in fear learning and regulation processes.
Collapse
Affiliation(s)
- Natalie C. Noble
- Department of Psychological Science, University of Vermont, Burlington, VT, USA
| | - Mohammad S. E. Sendi
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Julia B. Merker
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE, USA
| | - Samantha R. Linton
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Theresa K. Webber
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Amit Etkin
- Alto Neuroscience, Palo Alto, CA, USA
- Department of Psychiatry, Stanford University, Palo Alto, CA, USA
| | - Wei Wu
- Alto Neuroscience, Palo Alto, CA, USA
- Department of Psychiatry, Stanford University, Palo Alto, CA, USA
| | - Kerry J. Ressler
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Antonia V. Seligowski
- Deparment of Psychiatry, Harvard Medical School, Boston, MA, USA
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
44
|
Choi TY, Jeong S, Koo JW. Mesocorticolimbic circuit mechanisms of social dominance behavior. Exp Mol Med 2024; 56:1889-1899. [PMID: 39218974 PMCID: PMC11447232 DOI: 10.1038/s12276-024-01299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 09/04/2024] Open
Abstract
Social animals, including rodents, primates, and humans, partake in competition for finite resources, thereby establishing social hierarchies wherein an individual's social standing influences diverse behaviors. Understanding the neurobiological underpinnings of social dominance is imperative, given its ramifications for health, survival, and reproduction. Social dominance behavior comprises several facets, including social recognition, social decision-making, and actions, indicating the concerted involvement of multiple brain regions in orchestrating this behavior. While extensive research has been dedicated to elucidating the neurobiology of social interaction, recent studies have increasingly delved into adverse social behaviors such as social competition and hierarchy. This review focuses on the latest advancements in comprehending the mechanisms of the mesocorticolimbic circuit governing social dominance, with a specific focus on rodent studies, elucidating the intricate dynamics of social hierarchies and their implications for individual well-being and adaptation.
Collapse
Affiliation(s)
- Tae-Yong Choi
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.
| | - Sejin Jeong
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
- Department of Life Sciences, Yeungnam University, Gyeongsan, Republic of Korea
| | - Ja Wook Koo
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea.
| |
Collapse
|
45
|
Mueller M, Fadai T, Rauh J, Haaker J. Nicotine reduces discrimination between threat and safety in the hippocampus, nucleus accumbens and amygdala. Transl Psychiatry 2024; 14:319. [PMID: 39097609 PMCID: PMC11297927 DOI: 10.1038/s41398-024-03040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024] Open
Abstract
Nicotine intake is linked to the maintenance and development of anxiety disorders and impairs adaptive discrimination of threat and safety in rodents and humans. Yet, it is unclear if nicotine exerts a causal pharmacological effect on the affective and neural mechanisms that underlie aversive learning. We conducted a pre-registered, pseudo-randomly and double-blinded pharmacological fMRI study to investigate the effect of acute nicotine on Fear Acquisition and Extinction in non-smokers (n = 88). Our results show that nicotine administration led to decreased discrimination between threat and safety in subjective fear. Nicotine furthermore decreased differential (threat vs. safety) activation in the hippocampus, which was functionally coupled with Nucleus Accumbens and amygdala, compared to placebo controls. Additionally, nicotine led to enhanced physiological arousal to learned threats and overactivation of the ventral tegmental area. This study provides mechanistic evidence that single doses of nicotine impair neural substrates of adaptive aversive learning in line with the risk for the development of pathological anxiety.
Collapse
Affiliation(s)
- Madeleine Mueller
- University Medical Center Hamburg-Eppendorf (Germany), Department of Systems Neuroscience, Hamburg, Germany.
| | - Tahmine Fadai
- University Medical Center Hamburg-Eppendorf (Germany), Department of Systems Neuroscience, Hamburg, Germany
- University Medical Center Hamburg-Eppendorf (Germany), Department of Child- and Adolescent Psychiatry and Psychotherapy, Hamburg, Germany
| | - Jonas Rauh
- University Medical Center Hamburg-Eppendorf (Germany), Department of Systems Neuroscience, Hamburg, Germany
- University Medical Center Hamburg-Eppendorf (Germany), Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch, Hamburg, Germany
| | - Jan Haaker
- University Medical Center Hamburg-Eppendorf (Germany), Department of Systems Neuroscience, Hamburg, Germany.
| |
Collapse
|
46
|
Brown R, Cherian K, Jones K, Wickham R, Gomez R, Sahlem G. Repetitive transcranial magnetic stimulation for post-traumatic stress disorder in adults. Cochrane Database Syst Rev 2024; 8:CD015040. [PMID: 39092744 PMCID: PMC11295260 DOI: 10.1002/14651858.cd015040.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
BACKGROUND The estimated lifetime prevalence of post-traumatic stress disorder (PTSD) in adults worldwide has been estimated at 3.9%. PTSD appears to contribute to alterations in neuronal network connectivity patterns. Current pharmacological and psychotherapeutic treatments for PTSD are associated with inadequate symptom improvement and high dropout rates. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive therapy involving induction of electrical currents in cortical brain tissue, may be an important treatment option for PTSD to improve remission rates and for people who cannot tolerate existing treatments. OBJECTIVES To assess the effects of repetitive transcranial magnetic stimulation (rTMS) on post-traumatic stress disorder (PTSD) in adults. SEARCH METHODS We searched the Cochrane Common Mental Disorders Controlled Trials Register, CENTRAL, MEDLINE, Embase, three other databases, and two clinical trials registers. We checked reference lists of relevant articles. The most recent search was January 2023. SELECTION CRITERIA We included randomized controlled trials (RCTs) assessing the efficacy and safety of rTMS versus sham rTMS for PTSD in adults from any treatment setting, including veterans. Eligible trials employed at least five rTMS treatment sessions with both active and sham conditions. We included trials with combination interventions, where a pharmacological agent or psychotherapy was combined with rTMS for both intervention and control groups. We included studies meeting the above criteria regardless of whether they reported any of our outcomes of interest. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and assessed the risk of bias in accordance with Cochrane standards. Primary outcomes were PTSD severity immediately after treatment and serious adverse events during active treatment. Secondary outcomes were PTSD remission, PTSD response, PTSD severity at two follow-up time points after treatment, dropouts, and depression and anxiety severity immediately after treatment. MAIN RESULTS We included 13 RCTs in the review (12 published; 1 unpublished dissertation), with 577 participants. Eight studies included stand-alone rTMS treatment, four combined rTMS with an evidence-based psychotherapeutic treatment, and one investigated rTMS as an adjunctive to treatment-as-usual. Five studies were conducted in the USA, and some predominantly included white, male veterans. Active rTMS probably makes little to no difference to PTSD severity immediately following treatment (standardized mean difference (SMD) -0.14, 95% confidence interval (CI) -0.54 to 0.27; 3 studies, 99 participants; moderate-certainty evidence). We downgraded the certainty of evidence by one level for imprecision (sample size insufficient to detect a difference of medium effect size). We deemed one study as having a low risk of bias and the remaining two as having 'some concerns' for risk of bias. A sensitivity analysis of change-from-baseline scores enabled inclusion of a greater number of studies (6 studies, 252 participants). This analysis yielded a similar outcome to our main analysis but also indicated significant heterogeneity in efficacy across studies, including two studies with a high risk of bias. Reported rates of serious adverse events were low, with seven reported (active rTMS: 6; sham rTMS: 1). The evidence is very uncertain about the effect of active rTMS on serious adverse events (odds ratio (OR) 5.26, 95% CI 0.26 to 107.81; 5 studies, 251 participants; very low-certainty evidence [Active rTMS: 23/1000, sham rTMS: 4/1000]). We downgraded the evidence by one level for risk of bias and two levels for imprecision. We rated four of five studies as having a high risk of bias, and the fifth as 'some concerns' for bias. We were unable to assess PTSD remission immediately after treatment as none of the included studies reported this outcome. AUTHORS' CONCLUSIONS Based on moderate-certainty evidence, our review suggests that active rTMS probably makes little to no difference to PTSD severity immediately following treatment compared to sham stimulation. However, significant heterogeneity in efficacy was detected when we included a larger number of studies in sensitivity analysis. We observed considerable variety in participant and protocol characteristics across studies included in this review. For example, studies tended to be weighted towards inclusion of either male veterans or female civilians. Studies varied greatly in terms of the proportion of the sample with comorbid depression. Study protocols differed in treatment design and stimulation parameters (e.g. session number/duration, treatment course length, stimulation intensity/frequency, location of stimulation). These differences may affect efficacy, particularly when considering interactions with participant factors. Reported rates of serious adverse events were very low (< 1%) across active and sham conditions. It is uncertain whether rTMS increases the risk of serious adverse event occurrence, as our certainty of evidence was very low. Studies frequently lacked clear definitions for serious adverse events, as well as detail on tracking/assessment of data and information on the safety population. Increased reporting on these elements would likely aid the advancement of both research and clinical recommendations of rTMS for PTSD. Currently, there is insufficient evidence to meta-analyze PTSD remission, PTSD treatment response, and PTSD severity at different periods post-treatment. Further research into these outcomes could inform the clinical use of rTMS. Additionally, the relatively large contribution of data from trials that focused on white male veterans may limit the generalizability of our conclusions. This could be addressed by prioritizing recruitment of more diverse participant samples.
Collapse
Affiliation(s)
- Randi Brown
- Clinical Psychology, Palo Alto University, Palo Alto, CA, USA
| | - Kirsten Cherian
- Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine Jones
- Sheffield Centre for Health and Related Research, University of Sheffield, Sheffield, UK
| | - Robert Wickham
- Department of Psychological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Rowena Gomez
- Clinical Psychology, Palo Alto University, Palo Alto, CA, USA
- Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Gregory Sahlem
- Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
47
|
Shalev A, Cho D, Marmar CR. Neurobiology and Treatment of Posttraumatic Stress Disorder. Am J Psychiatry 2024; 181:705-719. [PMID: 39086292 DOI: 10.1176/appi.ajp.20240536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The recent worldwide surge of warfare and hostilities exposes increasingly large numbers of individuals to traumatic events, placing them at risk of developing posttraumatic stress disorder (PTSD) and challenging both clinicians and service delivery systems. This overview summarizes and updates the core knowledge of the genetic, molecular, and neural circuit features of the neurobiology of PTSD and advances in evidence-based psychotherapy, pharmacotherapy, neuromodulation, and digital treatments. While the complexity of the neurobiology and the biological and clinical heterogeneity of PTSD have challenged clinicians and researchers, there is an emerging consensus concerning the underlying mechanisms and approaches to diagnosis, treatment, and prevention of PTSD. This update addresses PTSD diagnosis, prevalence, course, risk factors, neurobiological mechanisms, current standard of care, and innovations in next-generation treatment and prevention strategies. It provides a comprehensive summary and concludes with areas of research for integrating advances in the neurobiology of the disorder with novel treatment and prevention targets.
Collapse
Affiliation(s)
- Arieh Shalev
- Department of Psychiatry, NYU Grossman School of Medicine, New York
| | - Dayeon Cho
- Department of Psychiatry, NYU Grossman School of Medicine, New York
| | - Charles R Marmar
- Department of Psychiatry, NYU Grossman School of Medicine, New York
| |
Collapse
|
48
|
Seligowski AV, Harnett NG, Ellis RA, Grasser LR, Hanif M, Wiltshire C, Ely TD, Lebois LAM, van Rooij SJH, House SL, Beaudoin FL, An X, Neylan TC, Clifford GD, Linnstaedt SD, Germine LT, Bollen KA, Rauch SL, Haran JP, Storrow AB, Lewandowski C, Musey PI, Hendry PL, Sheikh S, Jones CW, Punches BE, Swor RA, Hudak LA, Pascual JL, Seamon MJ, Harris E, Pearson C, Peak DA, Merchant RC, Domeier RM, Rathlev NK, O'Neil BJ, Sergot P, Sanchez LD, Bruce SE, Harte SE, Koenen KC, Kessler RC, McLean SA, Ressler KJ, Stevens JS, Jovanovic T. Probing the neurocardiac circuit in trauma and posttraumatic stress. J Psychiatr Res 2024; 176:173-181. [PMID: 38875773 PMCID: PMC11283955 DOI: 10.1016/j.jpsychires.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
The neurocardiac circuit is integral to physiological regulation of threat and trauma-related responses. However, few direct investigations of brain-behavior associations with replicable physiological markers of PTSD have been conducted. The current study probed the neurocardiac circuit by examining associations among its core regions in the brain (e.g., insula, hypothalamus) and the periphery (heart rate [HR], high frequency heart rate variability [HF-HRV], and blood pressure [BP]). We sought to characterize these associations and to determine whether there were differences by PTSD status. Participants were N = 315 (64.1 % female) trauma-exposed adults enrolled from emergency departments as part of the prospective AURORA study. Participants completed a deep phenotyping session (e.g., fear conditioning, magnetic resonance imaging) two weeks after emergency department admission. Voxelwise analyses revealed several significant interactions between PTSD severity 8-weeks posttrauma and psychophysiological recordings on hypothalamic connectivity to the prefrontal cortex (PFC), insula, superior temporal sulcus, and temporoparietaloccipital junction. Among those with PTSD, diastolic BP was directly correlated with right insula-hypothalamic connectivity, whereas the reverse was found for those without PTSD. PTSD status moderated the association between systolic BP, HR, and HF-HRV and hypothalamic connectivity in the same direction. While preliminary, our findings may suggest that individuals with higher PTSD severity exhibit compensatory neural mechanisms to down-regulate autonomic imbalance. Additional study is warranted to determine how underlying mechanisms (e.g., inflammation) may disrupt the neurocardiac circuit and increase cardiometabolic disease risk in PTSD.
Collapse
Affiliation(s)
- Antonia V Seligowski
- Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Nathaniel G Harnett
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
| | - Robyn A Ellis
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
| | - Lana R Grasser
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Mubeena Hanif
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Charis Wiltshire
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Timothy D Ely
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Lauren A M Lebois
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Stacey L House
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesca L Beaudoin
- Department of Epidemiology, Brown University, Providence, RI, USA; Department of Emergency Medicine, Brown University, Providence, RI, USA
| | - Xinming An
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas C Neylan
- Departments of Psychiatry and Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Gari D Clifford
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Sarah D Linnstaedt
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura T Germine
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA; The Many Brains Project, Belmont, MA, USA
| | - Kenneth A Bollen
- Department of Psychology and Neuroscience & Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott L Rauch
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, McLean Hospital, Belmont, MA, USA
| | - John P Haran
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alan B Storrow
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Paul I Musey
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Phyllis L Hendry
- Department of Emergency Medicine, University of Florida College of Medicine -Jacksonville, Jacksonville, FL, USA
| | - Sophia Sheikh
- Department of Emergency Medicine, University of Florida College of Medicine -Jacksonville, Jacksonville, FL, USA
| | - Christopher W Jones
- Department of Emergency Medicine, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Brittany E Punches
- Department of Emergency Medicine, Ohio State University College of Medicine, Columbus, OH, USA; Ohio State University College of Nursing, Columbus, OH, USA
| | - Robert A Swor
- Department of Emergency Medicine, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Lauren A Hudak
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jose L Pascual
- Department of Surgery, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark J Seamon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Surgery, Division of Traumatology, Surgical Critical Care and Emergency Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Erica Harris
- Department of Emergency Medicine, Einstein Medical Center, Philadelphia, PA, USA
| | - Claire Pearson
- Department of Emergency Medicine, Wayne State University, Ascension St. John Hospital, Detroit, MI, USA
| | - David A Peak
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Roland C Merchant
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Robert M Domeier
- Department of Emergency Medicine, Trinity Health-Ann Arbor, Ypsilanti, MI, USA
| | - Niels K Rathlev
- Department of Emergency Medicine, University of Massachusetts Medical School-Baystate, Springfield, MA, USA
| | - Brian J O'Neil
- Department of Emergency Medicine, Wayne State University, Detroit Receiving Hospital, Detroit, MI, USA
| | - Paulina Sergot
- Department of Emergency Medicine, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Leon D Sanchez
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Emergency Medicine, Harvard Medical School, Boston, MA, USA
| | - Steven E Bruce
- Department of Psychological Sciences, University of Missouri - St. Louis, St. Louis, MO, USA
| | - Steven E Harte
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Internal Medicine-Rheumatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Samuel A McLean
- Department of Emergency Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Institute for Trauma Recovery, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
49
|
Sangha S, Fitzgerald JM. Translational approaches to the neurobiological study of conditional discrimination and inhibition: Implications for psychiatric disease. Behav Neurosci 2024; 138:244-259. [PMID: 38913706 PMCID: PMC11574918 DOI: 10.1037/bne0000594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
There is a growing number of studies investigating discriminatory fear conditioning and conditioned inhibition of fear to assess safety learning, in addition to extinction of cued fear. Despite all of these paradigms resulting in a reduction in fear expression, there are nuanced differences among them, which could be mediated through distinct behavioral and neural mechanisms. These differences could impact how we approach potential treatment options in clinical disorders with dysregulated fear responses. The objective of this review is to give an overview of the conditional discrimination and inhibition findings reported in both animal models and human neuropsychiatric disorders. Both behavioral and neural findings are reviewed among human and rodent studies that include conditional fear discrimination via conditional stimuli with and without reinforcement (CS+ vs. CS-, respectively) and/or conditional inhibition of fear through assessment of the fear response to a compound CS-/CS+ cue versus CS+. There are several parallels across species in behavioral fear expression as well as neural circuits promoting fear reduction in response to a CS- and/or CS-/CS+ compound cue. Continued and increased efforts to compare similar behavioral fear inhibition paradigms across species are needed to make breakthrough advances in our understanding and treatment approaches to individuals with fear disorders. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
- Susan Sangha
- Department of Psychiatry, Indiana University School of Medicine
- Stark Neuroscience Research Institute, Indiana University School of Medicine
| | | |
Collapse
|
50
|
Van der Watt ASJ, Du Plessis S, Ahmed F, Roos A, Lesch E, Seedat S. Hippocampus, amygdala, and insula activation in response to romantic relationship dissolution stimuli: A case-case-control fMRI study on emerging adult students. J Affect Disord 2024; 356:604-615. [PMID: 38631423 DOI: 10.1016/j.jad.2024.04.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Romantic relationship dissolutions (RRDs) are associated with posttraumatic stress symptoms (PTSS). Functional magnetic resonance imaging in RRD studies indicate overlapping neural activation similar to posttraumatic stress disorder. These studies combine real and hypothetical rejection, and lack contextual information and control and/or comparison groups exposed to non-RRD or DSM-5 defined traumatic events. AIM We investigated blood oxygen level dependent (BOLD) activation in the hippocampus, amygdala, and insula of participants with RRDs compared with other traumatic or non-trauma stressors. METHODS Emerging adults (mean age = 21.54 years; female = 74.7 %) who experienced an RRD (n = 36), DSM-5 defined trauma (physical and/or sexual assault: n = 15), or a non-RRD or DSM-5 stressor (n = 28) completed PTSS, depression, childhood trauma, lifetime trauma exposure, and attachment measures. We used a general and customised version of the International Affective Picture System to investigate responses to index-trauma-related stimuli. We used mixed linear models to assess between-group differences, and ANOVAs and Spearman's correlations to analyse factors associated with BOLD activation. RESULTS BOLD activity increased between index-trauma stimuli as compared to neutral stimuli in the hippocampus and amygdala, with no significant difference between the DSM-5 Trauma and RRD groups. Childhood adversity, sexual orientation, and attachment style were associated with BOLD activation changes. Breakup characteristics (e.g., initiator status) were associated with increased BOLD activation in the hippocampus and amygdala, in the RRD group. CONCLUSION RRDs should be considered as potentially traumatic events. Breakup characteristics are risk factors for experiencing RRDs as traumatic. LIMITATION Future studies should consider more diverse representation across sex, ethnicity, and sexual orientation.
Collapse
Affiliation(s)
- A S J Van der Watt
- Department of Psychiatry, Stellenbosch University, Tygerberg, South Africa.
| | - S Du Plessis
- Department of Psychiatry, Stellenbosch University, Tygerberg, South Africa; SAMRC Genomics of Brain Disorders Research Unit, Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - F Ahmed
- Department of Psychiatry, Stellenbosch University, Tygerberg, South Africa
| | - A Roos
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - E Lesch
- Department of Psychology, Stellenbosch University, Stellenbosch, South Africa
| | - S Seedat
- Department of Psychiatry, Stellenbosch University, Tygerberg, South Africa; SAMRC Genomics of Brain Disorders Research Unit, Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|