1
|
Zarghami TS, Zeidman P, Razi A, Bahrami F, Hossein‐Zadeh G. Dysconnection and cognition in schizophrenia: A spectral dynamic causal modeling study. Hum Brain Mapp 2023; 44:2873-2896. [PMID: 36852654 PMCID: PMC10089110 DOI: 10.1002/hbm.26251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/28/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Schizophrenia (SZ) is a severe mental disorder characterized by failure of functional integration (aka dysconnection) across the brain. Recent functional connectivity (FC) studies have adopted functional parcellations to define subnetworks of large-scale networks, and to characterize the (dys)connection between them, in normal and clinical populations. While FC examines statistical dependencies between observations, model-based effective connectivity (EC) can disclose the causal influences that underwrite the observed dependencies. In this study, we investigated resting state EC within seven large-scale networks, in 66 SZ and 74 healthy subjects from a public dataset. The results showed that a remarkable 33% of the effective connections (among subnetworks) of the cognitive control network had been pathologically modulated in SZ. Further dysconnection was identified within the visual, default mode and sensorimotor networks of SZ subjects, with 24%, 20%, and 11% aberrant couplings. Overall, the proportion of discriminative connections was remarkably larger in EC (24%) than FC (1%) analysis. Subsequently, to study the neural correlates of impaired cognition in SZ, we conducted a canonical correlation analysis between the EC parameters and the cognitive scores of the patients. As such, the self-inhibitions of supplementary motor area and paracentral lobule (in the sensorimotor network) and the excitatory connection from parahippocampal gyrus to inferior temporal gyrus (in the cognitive control network) were significantly correlated with the social cognition, reasoning/problem solving and working memory capabilities of the patients. Future research can investigate the potential of whole-brain EC as a biomarker for diagnosis of brain disorders and for neuroimaging-based cognitive assessment.
Collapse
Affiliation(s)
- Tahereh S. Zarghami
- Bio‐Electric Department, School of Electrical and Computer Engineering, College of EngineeringUniversity of TeranTehranIran
- Human Motor Control and Computational Neuroscience Laboratory, School of Electrical and Computer Engineering, College of EngineeringUniversity of TehranTehranIran
| | - Peter Zeidman
- The Wellcome Centre for Human NeuroimagingUniversity College LondonLondonUK
| | - Adeel Razi
- The Wellcome Centre for Human NeuroimagingUniversity College LondonLondonUK
- Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
- Monash Biomedical ImagingMonash UniversityClaytonVictoriaAustralia
- CIFAR Azrieli Global Scholars Program, CIFARTorontoCanada
| | - Fariba Bahrami
- Bio‐Electric Department, School of Electrical and Computer Engineering, College of EngineeringUniversity of TeranTehranIran
- Human Motor Control and Computational Neuroscience Laboratory, School of Electrical and Computer Engineering, College of EngineeringUniversity of TehranTehranIran
| | - Gholam‐Ali Hossein‐Zadeh
- Bio‐Electric Department, School of Electrical and Computer Engineering, College of EngineeringUniversity of TeranTehranIran
| |
Collapse
|
2
|
Lin B, Li XB, Ruan S, Wu YX, Zhang CY, Wang CY, Wang LB. Convergent and divergent gray matter volume abnormalities in unaffected first-degree relatives and ultra-high risk individuals of schizophrenia. SCHIZOPHRENIA 2022; 8:55. [PMID: 35853913 PMCID: PMC9261104 DOI: 10.1038/s41537-022-00261-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/24/2022] [Indexed: 01/10/2023]
Abstract
High-risk populations of schizophrenia can be mainly identified as genetic high-risk based on putative endophenotypes or ultra-high-risk (UHR) based on clinically manifested symptoms. Previous studies have consistently shown brain structural abnormalities in both genetic high-risk and UHR individuals. In this study, we aimed to disentangle the convergent and divergent pattern of gray matter alterations between UHR and unaffected first-degree relatives from genetic high-risk individuals. We used structural MRI scans and voxel-based morphometry method to examine gray matter volume (GMV) differences among 23 UHR subjects meeting the Structured Interview for Prodromal Syndromes (SIPS) criteria, 18 unaffected first-degree relatives (UFDR), 26 first-episode schizophrenia patients (FES) and 54 healthy controls (CN). We found that a number of brain regions exhibited a monotonically decreasing trend of GMV from CN to UFDR to UHR to FES. Compared with CN, the UHR subjects showed significant decreases of GMV similar to the patients in the inferior temporal gyrus, fusiform gyrus, middle occipital gyrus, insula, and limbic regions. Moreover, the UHR transformed subgroup had significantly lower GMV than UHR non-transformed subgroup in the right inferior temporal/fusiform gyrus. On the other hand, the UFDR subjects only showed significant GMV decreases in the inferior temporal gyrus and fusiform. Moreover, we found GMV in the occipital lobe was negatively correlated with the UHR subjects’ composite positive symptom of SIPS, and GMV in the cerebellum was positively correlated with FES subjects’ symptom severity. Our results suggest that GMV deficits and regional dysfunction are evident prior to the onset of psychosis and are more prominent in the UHR than the UFDR individuals.
Collapse
|
3
|
Romer AL, Pizzagalli DA. Associations between Brain Structural Alterations, Executive Dysfunction, and General Psychopathology in a Healthy and Cross-Diagnostic Adult Patient Sample. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:17-27. [PMID: 35252949 PMCID: PMC8896812 DOI: 10.1016/j.bpsgos.2021.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/20/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND A general psychopathology 'p' factor captures shared variance across mental disorders in diverse samples and may partly reflect executive dysfunction. Higher p factor scores have been related to structural alterations within the visual association cortex (VAC) and a cerebello-thalamo-cerebrocortical circuit (CTCC), both of which are important for executive control. Here, we tested replicability of these direct associations as well as the indirect role of executive functioning in a sample of healthy and cross-diagnostic adult patients. METHODS We conducted hypothesis-driven (i.e., region-of-interest) and exploratory whole-brain structural neuroimaging analyses using data from the Consortium for Neuropsychiatric Phenomics study of 272 adults who met diagnostic criteria for schizophrenia, bipolar disorder, or attention deficit-hyperactivity disorder or were healthy controls. Using structural equation modeling, we examined direct and indirect relations between structural neural alterations (within regions-of-interest and regions identified from exploratory analyses) and p and executive function factors. RESULTS Higher levels of p were associated with decreased executive functioning and VAC grey matter volume, replicating previous research. In contrast, we failed to replicate prior negative relations between the p factor and CTCC structure. A significant indirect relation between VAC grey matter volume and p via executive function also emerged. Whole-brain analyses identified additional structural alterations in supplementary motor area/cingulate cortex, anterior corona radiata, and corpus callosum genu related to the p factor. CONCLUSIONS Executive dysfunction may be one mechanism underlying relations between brain structure and general psychopathology. Replication of VAC structural alterations related to p encourages further focus on this brain structure.
Collapse
Affiliation(s)
- Adrienne L. Romer
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts
- Harvard Medical School, Belmont, Massachusetts
| | - Diego A. Pizzagalli
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts
- McLean Imaging Center, McLean Hospital, Belmont, Massachusetts
- Harvard Medical School, Belmont, Massachusetts
| |
Collapse
|
4
|
Ma M, Zhang Y, Zhang X, Yan H, Zhang D, Yue W. Common and Distinct Alterations of Cognitive Function and Brain Structure in Schizophrenia and Major Depressive Disorder: A Pilot Study. Front Psychiatry 2021; 12:705998. [PMID: 34354618 PMCID: PMC8329352 DOI: 10.3389/fpsyt.2021.705998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/03/2021] [Indexed: 01/10/2023] Open
Abstract
Objective: Numerous studies indicate that schizophrenia (SCZ) and major depressive disorder (MDD) share pathophysiological characteristics. Investigating the neurobiological features of psychiatric-affective disorders may facilitate the diagnosis of psychiatric disorders. Hence, we aimed to explore whether patients with SCZ and patients with MDD had the similar or distinct cognitive impairments and GMV alterations to further understand their underlying pathophysiological mechanisms. Methods: We recruited a total of 52 MDD patients, 64 SCZ patients, and 65 healthy controls (HCs). The Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) Consensus Cognitive Battery was used to assess cognitive functions. In addition, voxel-based morphometry (VBM) analysis was used to evaluate the gray matter volume (GMV) by using MRI scanning. One-way ANOVA and post-hoc tests were used to find the differences among the MDD, SCZ, and HCs. Finally, we explored the correlation between structural alterations and cognitive functions. Results: Compared with that of HCs, processing speed was impaired in both patients with SCZ and patients with MDD (F = 49.505, p < 0.001). SCZ patients displayed impaired cognitive performance in all dimensions of cognitive functions compared with HCs (p < 0.001, except social cognition, p = 0.043, Bonferroni corrected). Whole-brain VBM analysis showed that both SCZ and MDD groups had reductions of GMV in the medial superior frontal cortex (cluster-level FWE p < 0.05). Patients with SCZ exhibited declining GMV in the anterior cingulate cortex and right middle frontal cortex (MFC) compared with HCs and MDD patients (cluster-level FWE p < 0.05). The mean values of GMV in the right MFC had a positive correlation with the attention/vigilance function in patients with MDD (p = 0.014, partial. r = 0.349, without Bonferroni correction). Conclusions: In total, our study found that MDD and SCZ groups had common cognitive impairments and brain structural alterations, but the SCZ group exhibited more severe impairment than the MDD group in both fields. The above findings may provide a potential support for recognizing the convergent and divergent brain neural pathophysiological mechanisms between MDD and SCZ.
Collapse
Affiliation(s)
- Mengying Ma
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Yuyanan Zhang
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Xiao Zhang
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Hao Yan
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Dai Zhang
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Weihua Yue
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
5
|
Brain structural correlates of familial risk for mental illness: a meta-analysis of voxel-based morphometry studies in relatives of patients with psychotic or mood disorders. Neuropsychopharmacology 2020; 45:1369-1379. [PMID: 32353861 PMCID: PMC7297956 DOI: 10.1038/s41386-020-0687-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 02/05/2023]
Abstract
Schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD) are heritable psychiatric disorders with partially overlapping genetic liability. Shared and disorder-specific neurobiological abnormalities associated with familial risk for developing mental illnesses are largely unknown. We performed a meta-analysis of structural brain imaging studies in relatives of patients with SCZ, BD, and MDD to identify overlapping and discrete brain structural correlates of familial risk for mental disorders. Search for voxel-based morphometry studies in relatives of patients with SCZ, BD, and MDD in PubMed and Embase identified 33 studies with 2292 relatives and 2052 healthy controls (HC). Seed-based d Mapping software was used to investigate global differences in gray matter volumes between relatives as a group versus HC, and between those of each psychiatric disorder and HC. As a group, relatives exhibited gray matter abnormalities in left supramarginal gyrus, right striatum, right inferior frontal gyrus, left thalamus, bilateral insula, right cerebellum, and right superior frontal gyrus, compared with HC. Decreased right cerebellar gray matter was the only abnormality common to relatives of all three conditions. Subgroup analyses showed disorder-specific gray matter abnormalities in left thalamus and bilateral insula associated with risk for SCZ, in left supramarginal gyrus and right frontal regions with risk for BD, and in right striatum with risk for MDD. While decreased gray matter in right cerebellum might be a common brain structural abnormality associated with shared risk for SCZ, BD, and MDD, regional gray matter abnormalities in neocortex, thalamus, and striatum appear to be disorder-specific.
Collapse
|
6
|
Zhao Z, Xu G, Shen Z, Grunebaum M, Li X, Sun B, Li S, Xu Y, Huang M, Xu D. The Effect of Auditory Verbal Hallucinations on the Relationship between Spontaneous Brain Activity and intraventricular Brain Temperature in Patients with Drug-Naïve Schizophrenia. Neurosci Lett 2020; 729:134933. [PMID: 32325103 DOI: 10.1016/j.neulet.2020.134933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 10/24/2022]
Abstract
Our recent study reported that adolescent-onset schizophrenia showed an uncoupling between intraventricular brain temperature (iBT) and local spontaneous brain activity (SBA). While auditory verbal hallucinations (AVH) are common in schizophrenia, the role of AVH in the iBT-SBA relationship is unclear. The current study recruited 24 drug-naïve schizophrenia patients with AVH, 20 patients without AVH and 30 matched healthy controls (HC). We used a diffusion-weighted imaging (DWI) based thermometry method to calculate the iBT for each participant and used both regional homogeneity and amplitude of low-frequency fluctuation methods to assess the SBA. One-way ANOVA was used to detect group differences in iBT, and a partial correlation analysis controlling for lateral ventricles volume, sex and age was applied to detect the relationships between iBT and SBA across the three groups. The results demonstrated that the AVH group showed a significant coupling between iBT and SBA in the bilateral lingual gyrus, left superior occipital gyrus and caudate compared with the other two groups, and no uncoupling was found in the two patients groups relative to HCs. These findings suggest that AVH may modulate the relationship between iBT and SBA in schizophrenia-related regions.
Collapse
Affiliation(s)
- Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, China; Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China; Molecular Imaging and Neuropathology Division, Columbia University Department of Psychiatry & New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Guojun Xu
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China; Molecular Imaging and Neuropathology Division, Columbia University Department of Psychiatry & New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Zhe Shen
- College of Medicine, Zhejiang University, No. 268, Kaixuan Road, Hangzhou, 310000, Zhejiang Province, China
| | - Michael Grunebaum
- Molecular Imaging and Neuropathology Division, Columbia University Department of Psychiatry & New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Xuzhou Li
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China; Molecular Imaging and Neuropathology Division, Columbia University Department of Psychiatry & New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Bin Sun
- College of Medicine, Zhejiang University, No. 268, Kaixuan Road, Hangzhou, 310000, Zhejiang Province, China
| | - Shangda Li
- College of Medicine, Zhejiang University, No. 268, Kaixuan Road, Hangzhou, 310000, Zhejiang Province, China
| | - Yi Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, 310003, Zhejiang Province, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, 310003, Zhejiang Province, China.
| | - Dongrong Xu
- Molecular Imaging and Neuropathology Division, Columbia University Department of Psychiatry & New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA.
| |
Collapse
|
7
|
de Zwarte SMC, Brouwer RM, Tsouli A, Cahn W, Hillegers MHJ, Hulshoff Pol HE, Kahn RS, van Haren NEM. Running in the Family? Structural Brain Abnormalities and IQ in Offspring, Siblings, Parents, and Co-twins of Patients with Schizophrenia. Schizophr Bull 2019; 45:1209-1217. [PMID: 30597053 PMCID: PMC6811835 DOI: 10.1093/schbul/sby182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Structural brain abnormalities and cognitive deficits have been reported in patients with schizophrenia and to a lesser extent in their first-degree relatives (FDRs). Here we investigated whether brain abnormalities in nonpsychotic relatives differ per type of FDR and how these abnormalities are related to intelligent quotient (IQ). Nine hundred eighty individuals from 5 schizophrenia family cohorts (330 FDRs, 432 controls, 218 patients) were included. Effect sizes were calculated to compare brain measures of FDRs and patients with controls, and between each type of FDR. Analyses were repeated with a correction for IQ, having a nonpsychotic diagnosis, and intracranial volume (ICV). FDRs had significantly smaller ICV, surface area, total brain, cortical gray matter, cerebral white matter, cerebellar gray and white matter, thalamus, putamen, amygdala, and accumbens volumes as compared with controls (ds < -0.19, q < 0.05 corrected). Offspring showed the largest effect sizes relative to the other FDRs; however, none of the effects in the different relative types survived correction for multiple comparisons. After IQ correction, all effects disappeared in the FDRs after correction for multiple comparisons. The findings in FDRs were not explained by having a nonpsychotic disorder and were only partly explained by ICV. FDRs show brain abnormalities that are strongly covarying with IQ. On the basis of consistent evidence of genetic overlap between schizophrenia, IQ, and brain measures, we suggest that the brain abnormalities in FDRs are at least partly explained by genes predisposing to both schizophrenia risk and IQ.
Collapse
Affiliation(s)
- Sonja M C de Zwarte
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands,To whom correspondence should be addressed; Department of Psychiatry, University Medical Center Utrecht, House A.01.126 A01.126, PO Box 85500, 3508 GA Utrecht, The Netherlands; tel: +31-88-75-67656, e-mail:
| | - Rachel M Brouwer
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andromachi Tsouli
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Wiepke Cahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Manon H J Hillegers
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands,Department of Child and Adolescent Psychiatry/Psychology, Sophia Children’s Hospital, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Hilleke E Hulshoff Pol
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - René S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Neeltje E M van Haren
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands,Department of Child and Adolescent Psychiatry/Psychology, Sophia Children’s Hospital, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Ma Q, Zhang T, Zanetti MV, Shen H, Satterthwaite TD, Wolf DH, Gur RE, Fan Y, Hu D, Busatto GF, Davatzikos C. Classification of multi-site MR images in the presence of heterogeneity using multi-task learning. Neuroimage Clin 2018; 19:476-486. [PMID: 29984156 PMCID: PMC6029565 DOI: 10.1016/j.nicl.2018.04.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/09/2018] [Accepted: 04/28/2018] [Indexed: 12/21/2022]
Abstract
With the advent of Big Data Imaging Analytics applied to neuroimaging, datasets from multiple sites need to be pooled into larger samples. However, heterogeneity across different scanners, protocols and populations, renders the task of finding underlying disease signatures challenging. The current work investigates the value of multi-task learning in finding disease signatures that generalize across studies and populations. Herein, we present a multi-task learning type of formulation, in which different tasks are from different studies and populations being pooled together. We test this approach in an MRI study of the neuroanatomy of schizophrenia (SCZ) by pooling data from 3 different sites and populations: Philadelphia, Sao Paulo and Tianjin (50 controls and 50 patients from each site), which posed integration challenges due to variability in disease chronicity, treatment exposure, and data collection. Some existing methods are also tested for comparison purposes. Experiments show that classification accuracy of multi-site data outperformed that of single-site data and pooled data using multi-task feature learning, and also outperformed other comparison methods. Several anatomical regions were identified to be common discriminant features across sites. These included prefrontal, superior temporal, insular, anterior cingulate cortex, temporo-limbic and striatal regions consistently implicated in the pathophysiology of schizophrenia, as well as the cerebellum, precuneus, and fusiform, middle temporal, inferior parietal, postcentral, angular, lingual and middle occipital gyri. These results indicate that the proposed multi-task learning method is robust in finding consistent and reliable structural brain abnormalities associated with SCZ across different sites, in the presence of multiple sources of heterogeneity.
Collapse
Affiliation(s)
- Qiongmin Ma
- College of Mechatronics and Automation, National University of Defense Technology, Changsha, Hunan 410073, China; Center for Biomedical Image Computing and Analytics, and Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, United States; Beijing Institute of System Engineering, China.
| | - Tianhao Zhang
- Center for Biomedical Image Computing and Analytics, and Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Marcus V Zanetti
- Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Hui Shen
- College of Mechatronics and Automation, National University of Defense Technology, Changsha, Hunan 410073, China
| | | | - Daniel H Wolf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Yong Fan
- Center for Biomedical Image Computing and Analytics, and Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Dewen Hu
- College of Mechatronics and Automation, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Geraldo F Busatto
- Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, and Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
9
|
Abnormal neural activity as a potential biomarker for drug-naive first-episode adolescent-onset schizophrenia with coherence regional homogeneity and support vector machine analyses. Schizophr Res 2018; 192:408-415. [PMID: 28476336 DOI: 10.1016/j.schres.2017.04.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Patients with adolescent-onset schizophrenia (AOS) hold the same but severe form of symptoms with adult-onset schizophrenia, and with worse outcome and poor treatment response to antipsychotics. Several dominant brain regions of schizophrenia patients show significantly abnormal structural and functional connectivity during resting-state scans. However, coherence regional homogeneity (Cohe-ReHo) in drug-naive first-episode patients with AOS remains unclear. METHOD A total of 48 drug-naive first-episode AOS outpatients and 31 healthy controls underwent resting-state functional magnetic resonance scans. Cohe-ReHo and support vector machine analyses were used to analyze the data. RESULTS Compared with the healthy controls, the AOS group showed significantly decreased Cohe-ReHo values distributed over brain regions, including the left postcentral gyrus, left superior temporal gyrus, left paracentral lobule, right precentral gyrus, right inferior parietal lobule (IPL), right middle frontal gyrus, and bilateral precuneus. No region with increased Cohe-ReHo values was observed in the AOS group compared with healthy controls. In addition, the right IPL was correlated with fluency (r=-0.324, p=0.030). However, the correlation was not significant after the Bonferroni correction at p<0.0083 (0.05/6). A combination of the Cohe-ReHo values in the bilateral precuneus and right IPL discriminated the patients from controls with the sensitivity, specificity, and accuracy of 91.67%, 87.10%, and 89.87%, respectively. CONCLUSION Our findings suggested that the AOS patients exhibited diminished Cohe-ReHo values in some regions within the DMN network and sensorimotor network. The abnormalities in particular brain regions (bilateral precuneus and right IPL) may serve as potential biomarkers for AOS.
Collapse
|
10
|
Wang S, Zhang Y, Lv L, Wu R, Fan X, Zhao J, Guo W. Abnormal regional homogeneity as a potential imaging biomarker for adolescent-onset schizophrenia: A resting-state fMRI study and support vector machine analysis. Schizophr Res 2018; 192:179-184. [PMID: 28587813 DOI: 10.1016/j.schres.2017.05.038] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 05/04/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Structural and functional abnormalities have been reported in the brain of patients with adolescent-onset schizophrenia (AOS). The brain regional functional synchronization in patients with AOS remains unclear. METHODS We analyzed resting-state functional magnetic resonance scans in 48 drug-naive patients with AOS and 31 healthy controls by using regional homogeneity (ReHo), a measurement that reflects brain local functional connectivity or synchronization and indicates regional integration of information processing. Then, receiver operating characteristic curves and support vector machines were used to evaluate the effect of abnormal regional homogeneity in differentiating patients from controls. RESULTS Patients with AOS showed significantly increased ReHo values in the bilateral superior medial prefrontal cortex (MPFC) and significantly decreased ReHo values in the left superior temporal gyrus (STG), right precentral lobule, right inferior parietal lobule (IPL), and left paracentral lobule when compared with controls. A combination of the ReHo values in bilateral superior MPFC, left STG, and right IPL was able to discriminate patients from controls with the sensitivity of 88.24%, specificity of 91.89%, and accuracy of 90.14%. CONCLUSION The brain regional functional synchronization abnormalities exist in drug-naive patients with AOS. A combination of ReHo values in these abnormal regions might serve as potential imaging biomarker to identify patients with AOS.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center on Mental Disorders, Changsha, China; National Technology Institute on Mental Disorders, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Yan Zhang
- Henan Key Laboratory of Biological Psychiatry, Henan Mental Hospital, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Luxian Lv
- Henan Key Laboratory of Biological Psychiatry, Henan Mental Hospital, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Renrong Wu
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center on Mental Disorders, Changsha, China; National Technology Institute on Mental Disorders, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Xiaoduo Fan
- UMass Memorial Medical Center, UMass Medical School, Worcester, USA
| | - Jingping Zhao
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center on Mental Disorders, Changsha, China; National Technology Institute on Mental Disorders, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China; Henan Key Laboratory of Biological Psychiatry, Henan Mental Hospital, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
| | - Wenbin Guo
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center on Mental Disorders, Changsha, China; National Technology Institute on Mental Disorders, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.
| |
Collapse
|
11
|
Kurachi M, Takahashi T, Sumiyoshi T, Uehara T, Suzuki M. Early Intervention and a Direction of Novel Therapeutics for the Improvement of Functional Outcomes in Schizophrenia: A Selective Review. Front Psychiatry 2018; 9:39. [PMID: 29515467 PMCID: PMC5826072 DOI: 10.3389/fpsyt.2018.00039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND A recent review reported that the median proportion of patients recovering from schizophrenia was 13.5% and that this did not change over time. Various factors including the duration of untreated psychosis, cognitive impairment, negative symptoms, and morphological changes in the brain influence the functional outcome of schizophrenia. The authors herein reviewed morphological changes in the brain of schizophrenia patients, effects of early intervention, and a direction of developing novel therapeutics to achieve significant improvement of the functional outcome. METHODS A selective review of the literature including studies from our department was performed. RESULTS Longitudinal structural neuroimaging studies on schizophrenia revealed that volume reductions in the peri-Sylvian regions (e.g., superior temporal gyrus and insula), which are related to positive psychotic symptoms, progress around the onset (critical stage) of schizophrenia, but become stable in the chronic stage. On the other hand, morphological changes in the fronto-thalamic regions and lateral ventricle, which are related to negative symptoms, neurocognitive dysfunction, and the functional outcome, progress during both the critical and chronic stages. These changes in the peri-Sylvian and fronto-thalamic regions may provide a pathophysiological basis for Crow's two-syndrome classification. Accumulated evidence from early intervention trials suggests that the transition risk from an at-risk mental state (ARMS) to psychosis is approximately 30%. Differences in the cognitive performance, event-related potentials (e.g., mismatch negativity), and brain morphology have been reported between ARMS subjects who later developed psychosis and those who did not. Whether early intervention for ARMS significantly improves the long-term recovery rate of schizophrenia patients remains unknown. With respect to the development of novel therapeutics, animal models of schizophrenia based on the N-methyl-d-aspartate receptor hypofunction hypothesis successfully mimicked behavioral changes associated with cognitive impairments characteristic of the disease. Furthermore, these animal models elicited histological changes in the brain similar to those observed in schizophrenia patients, i.e., decreased numbers of parvalbumin-positive interneurons and dendritic spines of pyramidal neurons in the frontal cortex. Some antioxidant compounds were found to ameliorate these behavioral and histological abnormalities. CONCLUSION Early intervention coupled with novel therapeutics may offer a promising approach for substantial improvement of the functional outcome of schizophrenia patients.
Collapse
Affiliation(s)
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, Graduate School of Medicine, University of Toyama, Toyama, Japan
| | - Tomiki Sumiyoshi
- Department of Clinical Epidemiology, Translational Medical Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takashi Uehara
- Department of Neuropsychiatry, Kanazawa Medical University, Kanazawa, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, Graduate School of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
12
|
Abstract
Schizophrenia is a complex disorder lacking an effective treatment option for the pervasive and debilitating cognitive impairments experienced by patients. Working memory is a core cognitive function impaired in schizophrenia that depends upon activation of distributed neural network, including the circuitry of the dorsolateral prefrontal cortex (DLPFC). Accordingly, individuals diagnosed with schizophrenia show reduced DLPFC activation while performing working-memory tasks. This lower DLPFC activation appears to be an integral part of the disease pathophysiology, and not simply a reflection of poor performance. Thus, the cellular and circuitry alterations that underlie lower DLPFC neuronal activity in schizophrenia must be determined in order to identify appropriate therapeutic targets. Studies using human postmortem brain tissue provide a robust way to investigate and characterize these cellular and circuitry alterations at multiple levels of resolution, and such studies provide essential information that cannot be obtained either through in vivo studies in humans or through experimental animal models. Studies examining neuronal morphology, protein expression and localization, and transcript levels indicate that a microcircuit composed of excitatory pyramidal cells and inhibitory interneurons containing the calcium-binding protein parvalbumin is altered in the DLPFC of subjects with schizophrenia and likely contributes to DLPFC dysfunction.
Collapse
Affiliation(s)
- Jill R Glausier
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
13
|
Picchioni MM, Rijsdijk F, Toulopoulou T, Chaddock C, Cole JH, Ettinger U, Oses A, Metcalfe H, Murray RM, McGuire P. Familial and environmental influences on brain volumes in twins with schizophrenia. J Psychiatry Neurosci 2017; 42:122-130. [PMID: 28245176 PMCID: PMC5373701 DOI: 10.1503/jpn.140277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Reductions in whole brain and grey matter volumes are robust features of schizophrenia, yet their etiological influences are unclear. METHODS We investigated the association between the genetic and environmental risk for schizophrenia and brain volumes. Whole brain, grey matter and white matter volumes were established from structural MRIs from twins varying in their zygosity and concordance for schizophrenia. Hippocampal volumes were measured manually. We conducted between-group testing and full genetic modelling. RESULTS We included 168 twins in our study. Whole brain, grey matter, white matter and right hippocampal volumes were smaller in twins with schizophrenia. Twin correlations were larger for whole brain, grey matter and white matter volumes in monozygotic than dizygotic twins and were significantly heritable, whereas hippocampal volume was the most environmentally sensitive. There was a significant phenotypic correlation between schizophrenia and reductions in all the brain volumes except for that of the left hippocampus. For whole brain, grey matter and the right hippocampus the etiological links with schizophrenia were principally associated with the shared familial environment. Lower birth weight and perinatal hypoxia were both associated with lower whole brain volume and with lower white matter and grey matter volumes, respectively. LIMITATIONS Scan data were collected across 2 sites, and some groups were modest in size. CONCLUSION Whole brain, grey matter and right hippocampal volume reductions are linked to schizophrenia through correlated familial risk (i.e., the shared familial environment). The degree of influence of etiological factors varies between brain structures, leading to the possibility of a neuroanatomically specific etiological imprint.
Collapse
Affiliation(s)
- Marco M. Picchioni
- Correspondence to: M. Picchioni, PO23 Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK;
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Xiao B, Wang S, Liu J, Meng T, He Y, Luo X. Abnormalities of localized connectivity in schizophrenia patients and their unaffected relatives: a meta-analysis of resting-state functional magnetic resonance imaging studies. Neuropsychiatr Dis Treat 2017; 13:467-475. [PMID: 28243099 PMCID: PMC5317331 DOI: 10.2147/ndt.s126678] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE The localized dysfunction of specialized brain regions in schizophrenia patients and their unaffected relatives has been identified in a large-scale brain network; however, evidence is inconsistent. We aimed to identify abnormalities in the localized connectivity in schizophrenia patients and their relatives by conducting a meta-analysis of regional homogeneity (ReHo) studies. METHODS Fourteen studies on resting-state functional magnetic resonance imaging, with 316 schizophrenia patients, 342 healthy controls, and 66 unaffected relatives, were included in the meta-analysis. This analysis was performed using anisotropic effect-size-based signed differential mapping software. RESULTS Schizophrenia patients showed increased ReHo in right superior frontal gyrus and right superior temporal gyrus, as well as decreased ReHo in left fusiform gyrus, left superior temporal gyrus, left postcentral gyrus, and right precentral gyrus. Unaffected relatives showed decreased ReHo in right insula and right superior temporal gyrus. These results remained widely unchanged in both sensitivity and subgroup analyses. CONCLUSION Schizophrenia patients and their unaffected relatives had extensive abnormal localized connectivity in cerebrum, especially in superior temporal gyrus, which were the potential diagnostic markers and expounded the pathophysiological hypothesis for the disorder.
Collapse
Affiliation(s)
- Bo Xiao
- Mental Health Institute of the Second Xiangya Hospital, Central South University, National Clinical Research Center on Mental Health Disorders, National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, People's Republic of China
| | - Shuai Wang
- Mental Health Institute of the Second Xiangya Hospital, Central South University, National Clinical Research Center on Mental Health Disorders, National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, People's Republic of China
| | - Jianbo Liu
- Mental Health Institute of the Second Xiangya Hospital, Central South University, National Clinical Research Center on Mental Health Disorders, National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, People's Republic of China
| | - Tiantian Meng
- Mental Health Institute of the Second Xiangya Hospital, Central South University, National Clinical Research Center on Mental Health Disorders, National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, People's Republic of China
| | - Yuqiong He
- Mental Health Institute of the Second Xiangya Hospital, Central South University, National Clinical Research Center on Mental Health Disorders, National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, People's Republic of China
| | - Xuerong Luo
- Mental Health Institute of the Second Xiangya Hospital, Central South University, National Clinical Research Center on Mental Health Disorders, National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, People's Republic of China
| |
Collapse
|
15
|
Walter A, Suenderhauf C, Smieskova R, Lenz C, Harrisberger F, Schmidt A, Vogel T, Lang UE, Riecher-Rössler A, Eckert A, Borgwardt S. Altered Insular Function during Aberrant Salience Processing in Relation to the Severity of Psychotic Symptoms. Front Psychiatry 2016; 7:189. [PMID: 27933003 PMCID: PMC5120113 DOI: 10.3389/fpsyt.2016.00189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/09/2016] [Indexed: 12/31/2022] Open
Abstract
There is strong evidence for abnormal salience processing in patients with psychotic experiences. In particular, there are indications that the degree of aberrant salience processing increases with the severity of positive symptoms. The aim of the present study was to elucidate this relationship by means of brain imaging. Functional magnetic resonance imaging was acquired to assess hemodynamic responses during the Salience Attribution Test, a paradigm for reaction time that measures aberrant salience to irrelevant stimulus features. We included 42 patients who were diagnosed as having a psychotic disorder and divided them into two groups according to the severity of their positive symptoms. Whole brain analysis was performed using Statistical Parametric Mapping. We found no significant behavioral differences with respect to task performance. Patients with more positive symptoms showed increased hemodynamic responses in the left insula corresponding to aberrant salience than in patients with less positive symptoms. In addition, left insula activation correlated negatively with cumulative antipsychotic medication. Aberrant salience processing in the insula may be increased in psychosis, depending on the severity of positive symptoms. This study indicates that clinically similar psychosis manifestations share the same functional characteristics. In addition, our results suggest that antipsychotic medication can modulate insular function.
Collapse
Affiliation(s)
- Anna Walter
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | | | - Renata Smieskova
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Claudia Lenz
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | | | - André Schmidt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Tobias Vogel
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Undine E. Lang
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | | | - Anne Eckert
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| |
Collapse
|
16
|
Abstract
This article reviews the results of longitudinal studies on frontal brain volume reduction in patients with schizophrenia spectrum disorders and focuses on the relationship with antipsychotic treatment. Based on a systematic literature search all studies were included in which results on changes of brain volumes over a longer period of time were correlated with antipsychotic treatment dose and disease severity. The findings indicate that there is evidence for grey and white matter volume changes of the frontal brain, which cannot be explained by the severity of the disease alone but are also very likely a manifestation of long-term effects of antipsychotics. Whether second generation antipsychotics have an advantage compared to first generation antipsychotics is currently unclear. Considering the contribution of antipsychotics to the changes in brain structure, which seem to depend on cumulative dosage and can exert adverse effects on neurocognition, negative and positive symptoms and psychosocial functioning, the guidelines for antipsychotic long-term drug treatment should be reconsidered. This is the reason why we and others recommend prescribing the lowest dose necessary to control symptoms. In non-schizophrenic psychiatric disorders, antipsychotics should be used only with great caution after a careful risk-benefit assessment. Moreover, treatment approaches which can help to minimize antipsychotic medication or even administer them only selectively are of increasing importance.
Collapse
|
17
|
HU G, YANG C, ZHAO J, ZHU M, GUO X, BAO C, JIA S, XU A, JIE Y, WANG Z, ZHANG C, HE Y, LV Q, YU S, YI Z. Association of schizophrenia with the rs821633 polymorphism in the DISC1 gene among Han Chinese. SHANGHAI ARCHIVES OF PSYCHIATRY 2015; 27:348-55. [PMID: 27199526 PMCID: PMC4858506 DOI: 10.11919/j.issn.1002-0829.215120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Previous studies report that various single nucleotide polymorphisms (SNP) in the Disrupted-in Schizophrenia 1 (DISC1) gene are closely associated with schizophrenia, but there are no studies that assess the relationship of age of onset of schizophrenia with these SNPs. OBJECTIVE Investigate the relationship between the rs821633 SNP in the DISC1 gene and the occurrence and age of onset of schizophrenia in Han Chinese. METHODS We used the TaqMan genotyping technology to examine the rs821633 SNP in the DISC1 gene among 315 individuals who developed schizophrenia prior to 19 years of age ('early-onset'), 407 individuals who developed schizophrenia when 19 years of age or older ('late-onset'), and 482 healthy controls. We used survival analyses to investigate the relationship between the rs821633(C) risk allele and the age of onset of schizophrenia. RESULTS Compared to the prevalence in healthy controls, the prevalence of the C/C genotype of rs821633 and of the C allele in rs821633 were significantly greater in individuals with early-onset schizophrenia (X (2)=7.17, df=1, p=0.007; X (2)=7.20, df=2, p=0.032) and significantly greater in individuals with late-onset schizophrenia (X (2)=5.36, df=1, p=0.022; X (2)=6.58, df=2, p=0.041). However, there were no significant differences in the prevalence of the C/C genotype or the C allele between individuals with early-onset and late-onset schizophrenia. Kaplan-Meier survival analyses found no significant association between the rs821633(C) risk allele and age of onset in schizophrenia. CONCLUSION We confirm the association of polymorphism in the rs821633 SNP in the DISC1 gene with schizophrenia among Han Chinese, but we found no association between the rs821633(C) risk allele and the age of onset in individuals with schizophrenia.
Collapse
Affiliation(s)
- Guoqin HU
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengqing YANG
- Mental Health Center of Hongkou District, Shanghai, China
| | - Jing ZHAO
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minghuan ZHU
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangqing GUO
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenxi BAO
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Si JIA
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ahong XU
- Mental Health Center of Hongkou District, Shanghai, China
| | - Yong JIE
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zuowei WANG
- Mental Health Center of Hongkou District, Shanghai, China
| | - Chen ZHANG
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongguang HE
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinyu LV
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunying YU
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenghui YI
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
The role of the thalamus in schizophrenia from a neuroimaging perspective. Neurosci Biobehav Rev 2015; 54:57-75. [DOI: 10.1016/j.neubiorev.2015.01.013] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 12/19/2014] [Accepted: 01/12/2015] [Indexed: 02/06/2023]
|
19
|
van der Velde J, Gromann PM, Swart M, de Haan L, Wiersma D, Bruggeman R, Krabbendam L, Aleman A. Grey matter, an endophenotype for schizophrenia? A voxel-based morphometry study in siblings of patients with schizophrenia. J Psychiatry Neurosci 2015; 40:207-13. [PMID: 25768029 PMCID: PMC4409438 DOI: 10.1503/jpn.140064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Grey matter, both volume and concentration, has been proposed as an endophenotype for schizophrenia given a number of reports of grey matter abnormalities in relatives of patients with schizophrenia. However, previous studies on grey matter abnormalities in relatives have produced inconsistent results. The aim of the present study was to examine grey matter differences between controls and siblings of patients with schizophrenia and to examine whether the age, genetic loading or subclinical psychotic symptoms of selected individuals could explain the previously reported inconsistencies. METHODS We compared the grey matter volume and grey matter concentration of healthy siblings of patients with schizophrenia and healthy controls matched for age, sex and education using voxel-based morphometry (VBM). Furthermore, we selected subsamples based on age (< 30 yr), genetic loading and subclinical psychotic symptoms to examine whether this would lead to different results. RESULTS We included 89 siblings and 69 controls in our study. The results showed that siblings and controls did not differ significantly on grey matter volume or concentration. Furthermore, specifically selecting participants based on age, genetic loading or subclinical psychotic symptoms did not alter these findings. LIMITATIONS The main limitation was that subdividing the sample resulted in smaller samples for the subanalyses. Furthermore, we used MRI data from 2 different scanner sites. CONCLUSION These results indicate that grey matter measured through VBM might not be a suitable endophenotype for schizophrenia.
Collapse
Affiliation(s)
- Jorien van der Velde
- Correspondence to: J van der Velde, Department of Neuroscience, Neuroimaging Center, UMCG-O&O, P.O. Box 196, 9700 AD Groningen, The Netherlands;
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kim DW, Shim M, Song MJ, Im CH, Lee SH. Early visual processing deficits in patients with schizophrenia during spatial frequency-dependent facial affect processing. Schizophr Res 2015; 161:314-21. [PMID: 25553978 DOI: 10.1016/j.schres.2014.12.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/08/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
Abstract
Abnormal facial emotion recognition is considered as one of the key symptoms of schizophrenia. Only few studies have considered deficits in the spatial frequency (SF)-dependent visual pathway leading to abnormal facial emotion recognition in schizophrenia. Twenty-one patients with schizophrenia and 19 matched healthy controls (HC) were recruited for this study. Event-related potentials (ERP) were measured during presentation of SF-modulated face stimuli and their source imaging was analyzed. The patients showed reduced P100 amplitude for low-spatial frequency (LSF) pictures of fearful faces compared with the HC group. The P100 amplitude for high-spatial frequency (HSF) pictures of neutral faces was increased in the schizophrenia group, but not in the HC group. The neural source activities of the LSF fearful faces and HSF neutral faces led to hypo- and hyperactivation of the frontal lobe of subjects from the schizophrenia group and HC group, respectively. In addition, patients with schizophrenia showed enhanced N170 activation in the right hemisphere in the LSF condition, while the HC group did not. Our results suggest that deficits in the LSF-dependent visual pathway, which involves magnocellular neurons, impair early visual processing leading to dysfunctional facial emotion recognition in schizophrenia. Moreover, it suggests impaired bottom-up processing rather than top-down dysfunction for facial emotion recognition in these patients.
Collapse
Affiliation(s)
- Do-Won Kim
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea; Clinical Emotion and Cognition Research Laboratory, Goyang, Korea
| | - Miseon Shim
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea; Clinical Emotion and Cognition Research Laboratory, Goyang, Korea
| | - Myeong Ju Song
- Clinical Emotion and Cognition Research Laboratory, Goyang, Korea; Department of Psychology, Korea University, Seoul, Korea
| | - Chang-Hwan Im
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Goyang, Korea; Psychiatry Department, Ilsan Paik Hospital, Inje University, Goyang, Korea.
| |
Collapse
|
21
|
Li ML, Xiang B, Li YF, Hu X, Wang Q, Guo WJ, Lei W, Huang CH, Zhao LS, Li N, Ren HY, Wang HY, Ma XH, Deng W, Li T. Morphological changes in gray matter volume correlate with catechol-O-methyl transferase gene Val158Met polymorphism in first-episode treatment-naïve patients with schizophrenia. Neurosci Bull 2015; 31:31-42. [PMID: 25564193 DOI: 10.1007/s12264-014-1491-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/20/2014] [Indexed: 11/28/2022] Open
Abstract
The catechol-O-methyltransferase (COMT) gene is a schizophrenia susceptibility gene. A common functional polymorphism of this gene, Val158/158Met, has been proposed to influence gray matter volume (GMV). However, the effects of this polymorphism on cortical thickness/surface area in schizophrenic patients are less clear. In this study, we explored the relationship between the Val158Met polymorphism of the COMT gene and the GMV/cortical thickness/cortical surface area in 150 first-episode treatment-naïve patients with schizophrenia and 100 healthy controls. Main effects of diagnosis were found for GMV in the cerebellum and the visual, medial temporal, parietal, and middle frontal cortex. Patients with schizophrenia showed reduced GMVs in these regions. And main effects of genotype were detected for GMV in the left superior frontal gyrus. Moreover, a diagnosis × genotype interaction was found for the GMV of the left precuneus, and the effect of the COMT gene on GMV was due mainly to cortical thickness rather than cortical surface area. In addition, a pattern of increased GMV in the precuneus with increasing Met dose found in healthy controls was lost in patients with schizophrenia. These findings suggest that the COMTMet variant is associated with the disruption of dopaminergic influence on gray matter in schizophrenia, and the effect of the COMT gene on GMV in schizophrenia is mainly due to changes in cortical thickness rather than in cortical surface area.
Collapse
Affiliation(s)
- Ming-Li Li
- The Mental Health Center and the Psychiatric Laboratory, Sichuan University, Chengdu, 610041, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Moodie CA, Wisner KM, MacDonald AW. Characteristics of canonical intrinsic connectivity networks across tasks and monozygotic twin pairs. Hum Brain Mapp 2014; 35:5532-49. [PMID: 24984861 PMCID: PMC6868978 DOI: 10.1002/hbm.22568] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 05/06/2014] [Accepted: 06/11/2014] [Indexed: 01/10/2023] Open
Abstract
Intrinsic connectivity networks (ICNs) are becoming more prominent in the analyses of in vivo brain activity as the field of neurometrics has revealed their importance for augmenting traditional cognitive neuroscience approaches. Consequently, tools that assess the coherence, or connectivity, and morphology of ICNs are being developed to support inferences and assumptions about the dynamics of the brain. Recently, we reported trait-like profiles of ICNs showing reliability over time and reproducibility across different contexts. This study further examined the trait-like and familial nature of ICNs by utilizing two divergent task paradigms in twins. The study aimed to identify stable network phenotypes that exhibited sensitivity to individual differences and external perturbations in task demands. Analogous ICNs were detected in each task and these ICNs showed consistency in morphology and intranetwork coherence across tasks, whereas the ICN timecourse dynamics showed sensitivity to task demands. Specifically, the timecourse of an arm/hand sensorimotor network showed the strongest correlation with the timeline of a hand imitation task, and the timecourse of a language-processing network showed the strongest temporal association with a verb generation task. The area V1/simple visual stimuli network exhibited the most consistency in morphology, coherence, and timecourse dynamics within and across tasks. Similarly, this network exhibited familiality in all three domains as well. Hence, this experiment is a proof of principle that the morphology and coherence of ICNs can be consistent both within and across tasks, that ICN timecourses can be differentially and meaningfully modulated by a task, and that these domains can exhibit familiality.
Collapse
Affiliation(s)
- Craig A Moodie
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota
| | | | | |
Collapse
|
23
|
Abstract
Psychotic disorders continue to be among the most disabling and scientifically challenging of all mental illnesses. Accumulating research findings suggest that the etiologic processes underlying the development of these disorders are more complex than had previously been assumed. At the same time, this complexity has revealed a wider range of potential options for preventive intervention, both psychosocial and biological. In part, these opportunities result from our increased understanding of the dynamic and multifaceted nature of the neurodevelopmental mechanisms involved in the disease process, as well as the evidence that many of these entail processes that are malleable. In this article, we review the burgeoning research literature on the prodrome to psychosis, based on studies of individuals who meet clinical high risk criteria. This literature has examined a range of factors, including cognitive, genetic, psychosocial, and neurobiological. We then turn to a discussion of some contemporary models of the etiology of psychosis that emphasize the prodromal period. These models encompass the origins of vulnerability in fetal development, as well as postnatal stress, the immune response, and neuromaturational processes in adolescent brain development that appear to go awry during the prodrome to psychosis. Then, informed by these neurodevelopmental models of etiology, we turn to the application of new research paradigms that will address critical issues in future investigations. It is expected that these studies will play a major role in setting the stage for clinical trials aimed at preventive intervention.
Collapse
|
24
|
Kido M, Nakamura Y, Nemoto K, Takahashi T, Aleksic B, Furuichi A, Nakamura Y, Ikeda M, Noguchi K, Kaibuchi K, Iwata N, Ozaki N, Suzuki M. The polymorphism of YWHAE, a gene encoding 14-3-3epsilon, and brain morphology in schizophrenia: a voxel-based morphometric study. PLoS One 2014; 9:e103571. [PMID: 25105667 PMCID: PMC4126687 DOI: 10.1371/journal.pone.0103571] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 07/04/2014] [Indexed: 11/24/2022] Open
Abstract
Background YWHAE is a possible susceptibility gene for schizophrenia that encodes 14-3-3epsilon, a Disrupted-in-Schizophrenia 1 (DISC1)-interacting molecule, but the effect of variation in its genotype on brain morphology remains largely unknown. Methods In this voxel-based morphometric magnetic resonance imaging study, we conducted whole-brain analyses regarding the effects of YWHAE single-nucleotide polymorphisms (SNPs) (rs28365859, rs11655548, and rs9393) and DISC1 SNP (rs821616) on gray matter volume in a Japanese sample of 72 schizophrenia patients and 86 healthy controls. On the basis of a previous animal study, we also examined the effect of rs28365859 genotype specifically on hippocampal volume. Results Whole-brain analyses showed no significant genotype effect of these SNPs on gray matter volume in all subjects, but we found significant genotype-by-diagnosis interaction for rs28365859 in the left insula and right putamen. The protective C allele carriers of rs28365859 had a significantly larger left insula than the G homozygotes only for schizophrenia patients, while the controls with G allele homozygosity had a significantly larger right putamen than the C allele carriers. The C allele carriers had a larger right hippocampus than the G allele homozygotes in schizophrenia patients, but not in healthy controls. No significant interaction was found between rs28365859 and DISC1 SNP on gray matter volume. Conclusions These different effects of the YWHAE (rs28365859) genotype on brain morphology in schizophrenia and healthy controls suggest that variation in its genotype might be, at least partly, related to the abnormal neurodevelopment, including in the limbic regions, reported in schizophrenia. Our results also suggest its specific role among YWHAE SNPs in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Mikio Kido
- Department of Neuropsychiatry, University of Toyama, Toyama, Japan
| | - Yukako Nakamura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kiyotaka Nemoto
- Department of Neuropsychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama, Toyama, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Tokyo, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama, Toyama, Japan
| | - Yumiko Nakamura
- Department of Neuropsychiatry, University of Toyama, Toyama, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Tokyo, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama, Toyama, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Tokyo, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Tokyo, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Tokyo, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama, Toyama, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Tokyo, Japan
| |
Collapse
|
25
|
Cooper D, Barker V, Radua J, Fusar-Poli P, Lawrie SM. Multimodal voxel-based meta-analysis of structural and functional magnetic resonance imaging studies in those at elevated genetic risk of developing schizophrenia. Psychiatry Res 2014; 221:69-77. [PMID: 24239093 DOI: 10.1016/j.pscychresns.2013.07.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 07/03/2013] [Accepted: 07/25/2013] [Indexed: 01/03/2023]
Abstract
Computational brain-imaging studies of individuals at familial high risk for psychosis have provided interesting results, but interpreting these findings can be a challenge due to a number of factors. We searched the literature for studies reporting whole brain voxel-based morphometry (VBM) or functional magnetic resonance imaging (fMRI) findings in people at familial high risk for schizophrenia compared with a control group. A voxel-wise meta-analysis with the effect-size version of Signed Differential Mapping (ES-SDM) identified regional abnormalities of functional brain response. Similarly, an ES-SDM meta-analysis was conducted on VBM studies. A multi-modal imaging meta-analysis was used to highlight brain regions with both structural and functional abnormalities. Nineteen studies met the inclusion criteria, in which a total of 815 familial high-risk individuals were compared to 685 controls. Our fMRI results revealed a number of regions of altered activation. VBM findings demonstrated both increases and decreases in grey matter density of relatives in a variety of brain regions. The multimodal analysis revealed relatives had decreased grey matter with hyper-activation in the left inferior frontal gyrus/amygdala, and decreased grey matter with hypo-activation in the thalamus. We found several regions of altered activation or structure in familial high-risk individuals. Reliable fMRI findings in the right posterior superior temporal gyrus further confirm that alteration in this area is a potential marker of risk.
Collapse
Affiliation(s)
- Deborah Cooper
- Division of Psychiatry, School of Clinical Sciences, Kennedy Tower, Royal Edinburgh Hospital, Morningside, Edinburgh, EH10 5HF, UK.
| | - Victoria Barker
- Division of Psychiatry, School of Clinical Sciences, Kennedy Tower, Royal Edinburgh Hospital, Morningside, Edinburgh, EH10 5HF, UK
| | - Joaquim Radua
- Institute of Psychiatry, King's College London, London, UK; FIDMAG Research Unit, CIBERSAM, Sant Boi de Llobregat, Barcelona, Spain
| | | | - Stephen M Lawrie
- Division of Psychiatry, School of Clinical Sciences, Kennedy Tower, Royal Edinburgh Hospital, Morningside, Edinburgh, EH10 5HF, UK
| |
Collapse
|
26
|
Smieskova R, Marmy J, Schmidt A, Bendfeldt K, Riecher-Rӧssler A, Walter M, Lang UE, Borgwardt S. Do subjects at clinical high risk for psychosis differ from those with a genetic high risk?--A systematic review of structural and functional brain abnormalities. Curr Med Chem 2014; 20:467-81. [PMID: 23157639 PMCID: PMC3580804 DOI: 10.2174/0929867311320030018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 10/25/2012] [Accepted: 10/30/2012] [Indexed: 11/22/2022]
Abstract
Introduction: Pre-psychotic and early psychotic characteristics are investigated in the high-risk (HR) populations for psychosis. There are two different approaches based either on hereditary factors (genetic high risk, G-HR) or on the clinically manifested symptoms (clinical high risk, C-HR). Common features are an increased risk for development of psychosis and similar cognitive as well as structural and functional brain abnormalities. Methods: We reviewed the existing literature on longitudinal structural, and on functional imaging studies, which included G-HR and/or C-HR individuals for psychosis, healthy controls (HC) and/or first episode of psychosis (FEP) or schizophrenia patients (SCZ). Results: With respect to structural brain abnormalities, vulnerability to psychosis was associated with deficits in frontal, temporal, and cingulate regions in HR, with additional insular and caudate deficits in C-HR population. Furthermore, C-HR had progressive prefrontal deficits related to the transition to psychosis. With respect to functional brain abnormalities, vulnerability to psychosis was associated with prefrontal, cingulate and middle temporal abnormalities in HR, with additional parietal, superior temporal, and insular abnormalities in C-HR population. Transition-to-psychosis related differences emphasized prefrontal, hippocampal and striatal components, more often detectable in C-HR population. Multimodal studies directly associated psychotic symptoms displayed in altered prefrontal and hippocampal activations with striatal dopamine and thalamic glutamate functions. Conclusion: There is an evidence for similar structural and functional brain abnormalities within the whole HR population, with more pronounced deficits in the C-HR population. The most consistent evidence for abnormality in the prefrontal cortex reported in structural, functional and multimodal studies of HR population may underlie the complexity of higher cognitive functions that are impaired during HR mental state for psychosis.
Collapse
Affiliation(s)
- R Smieskova
- Department of Psychiatry, University of Basel, c/o University Hospital Basel, Petersgraben 4, Basel 4031, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ellegood J, Markx S, Lerch J, Steadman P, Genç C, Provenzano F, Kushner S, Henkelman R, Karayiorgou M, Gogos J. Neuroanatomical phenotypes in a mouse model of the 22q11.2 microdeletion. Mol Psychiatry 2014; 19:99-107. [PMID: 23999526 PMCID: PMC3872255 DOI: 10.1038/mp.2013.112] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/21/2013] [Accepted: 07/22/2013] [Indexed: 12/21/2022]
Abstract
Recurrent deletions at the 22q11.2 locus have been established as a strong genetic risk factor for the development of schizophrenia and cognitive dysfunction. Individuals with 22q11.2 deletions have a range of well-defined volumetric abnormalities in a number of critical brain structures. A mouse model of the 22q11.2 deletion (Df(16)A(+/-)) has previously been utilized to characterize disease-associated abnormalities on synaptic, cellular, neurocircuitry, and behavioral levels. We performed a high-resolution MRI analysis of mutant mice compared with wild-type littermates. Our analysis revealed a striking similarity in the specific volumetric changes of Df(16)A(+/-) mice compared with human 22q11.2 deletion carriers, including in cortico-cerebellar, cortico-striatal and cortico-limbic circuits. In addition, higher resolution magnetic resonance imaging compared with neuroimaging in human subjects allowed the detection of previously unknown subtle local differences. The cerebellar findings in Df(16)A(+/-) mice are particularly instructive as they are localized to specific areas within both the deep cerebellar nuclei and the cerebellar cortex. Our study indicates that the Df(16)A(+/-)mouse model recapitulates most of the hallmark neuroanatomical changes observed in 22q11.2 deletion carriers. Our findings will help guide the design and interpretation of additional complementary studies and thereby advance our understanding of the abnormal brain development underlying the emergence of 22q11.2 deletion-associated psychiatric and cognitive symptoms.
Collapse
Affiliation(s)
- J. Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - S. Markx
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - J.P. Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
,Department of Medical Biophysics, University of Toronto, Toronto, Ontario Canada
| | - P.E. Steadman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
,Department of Medical Biophysics, University of Toronto, Toronto, Ontario Canada
| | - C. Genç
- Department of Psychiatry, Erasmus Medical Center, The Netherlands
| | - F Provenzano
- Department of Department of Biomedical Engineering, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - S.A. Kushner
- Department of Psychiatry, Erasmus Medical Center, The Netherlands
| | - R.M. Henkelman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
,Department of Medical Biophysics, University of Toronto, Toronto, Ontario Canada
| | - M. Karayiorgou
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - J.A. Gogos
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
28
|
Sprooten E, Papmeyer M, Smyth AM, Vincenz D, Honold S, Conlon GA, Moorhead TWJ, Job D, Whalley HC, Hall J, McIntosh AM, Owens DCG, Johnstone EC, Lawrie SM. Cortical thickness in first-episode schizophrenia patients and individuals at high familial risk: a cross-sectional comparison. Schizophr Res 2013; 151:259-64. [PMID: 24120958 DOI: 10.1016/j.schres.2013.09.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 09/13/2013] [Accepted: 09/27/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND Schizophrenia is associated with cortical thickness reductions in the brain, but it is unclear whether these are present before illness onset, and to what extent they are driven by genetic factors. METHODS In the Edinburgh High Risk Study, structural MRI scans of 150 young individuals at high familial risk for schizophrenia, 34 patients with first-episode schizophrenia and 36 matched controls were acquired, and clinical information was collected for the following 10 years for the high-risk and control group. During this time, 17 high-risk individuals developed schizophrenia, on average 2.5 years after the scan, and 57 experienced isolated or sub-clinical psychotic symptoms. We applied surface-based analysis of the cerebral cortex to this cohort, and extracted cortical thickness in automatically parcellated regions. RESULTS Analysis of variance revealed widespread thinning of the cerebral cortex in first-episode patients, most pronounced in superior frontal, medial parietal, and lateral occipital regions (corrected p<10(-4)). In contrast, cortical thickness reductions were only found in high-risk individuals in the left middle temporal gyrus (corrected p<0.05). There were no significant differences between those at high risk who later developed schizophrenia and those who remained well. CONCLUSIONS These findings confirm cortical thickness reductions in schizophrenia patients. Increased familial risk for schizophrenia is associated with thinning in the left middle temporal lobe, irrespective of subsequent disease onset. The absence of widespread cortical thinning before disease onset implies that the cortical thinning is unlikely to simply reflect genetic liability to schizophrenia but is predominantly driven by disease-associated factors.
Collapse
Affiliation(s)
- Emma Sprooten
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Olin Neuropsychiatry Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Crow TJ. The XY gene hypothesis of psychosis: origins and current status. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:800-24. [PMID: 24123874 PMCID: PMC4065359 DOI: 10.1002/ajmg.b.32202] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 08/19/2013] [Indexed: 11/10/2022]
Abstract
Sex differences in psychosis and their interaction with laterality (systematic departures from 50:50 left-right symmetry across the antero-posterior neural axis) are reviewed in the context of the X-Y gene hypothesis. Aspects of laterality (handedness/cerebral asymmetry/the torque) predict (1) verbal and non-verbal ability in childhood and across adult life and (2) anatomical, physiological, and linguistic variation relating to psychosis. Neuropsychological and MRI evidence from individuals with sex chromosome aneuploidies indicates that laterality is associated with an X-Y homologous gene pair. Within each mammalian species the complement of such X-Y gene pairs reflects their potential to account for taxon-specific sexual dimorphisms. As a consequence of the mechanism of meiotic suppression of unpaired chromosomes such X-Y gene pairs generate epigenetic variation around a species defining motif that is carried to the zygote with potential to initiate embryonic gene expression in XX or XY format. The Protocadherin11XY (PCDH11XY) gene pair in Xq21.3/Yp11.2 in probable coordination with a gene or genes within PAR2 (the second pseudo-autosomal region) is the prime candidate in relation to cerebral asymmetry and psychosis in Homo sapiens. The lately-described pattern of sequence variation associated with psychosis on the autosomes may reflect a component of the human genome's adjustment to selective pressures generated by the sexually dimorphic mate recognition system.
Collapse
Affiliation(s)
- Timothy J Crow
- Department of Psychiatry, SANE POWIC, Warneford Hospital, University of OxfordOxford, UK
| |
Collapse
|
30
|
Xiao Y, Zhang W, Lui S, Yao L, Gong Q. Similar and different gray matter deficits in schizophrenia patients and their unaffected biological relatives. Front Psychiatry 2013; 4:150. [PMID: 24319433 PMCID: PMC3836186 DOI: 10.3389/fpsyt.2013.00150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/07/2013] [Indexed: 02/05/2023] Open
Abstract
Neuroimaging studies have revealed significant reductions in the gray matter (GM) of several brain regions in patients with schizophrenia, a neuropsychiatric disorder with high hereditability. However, it is unclear whether unaffected relatives have GM abnormalities in common with their affected relatives, which may relate to susceptibility to developing schizophrenia. To address this issue, we conducted two separate meta-analyses of voxel-based morphometry to investigate GM abnormalities in schizophrenia patients and their unaffected relatives. One meta-analysis compared a patient group with healthy controls, whereas the other meta-analysis compared the unaffected relatives with healthy controls. Eight studies comprising 495 patients with schizophrenia, 584 unaffected relatives of patients, and 596 healthy controls were systematically included in the present study. Compared to healthy controls, the patient group showed decreased GM in the right cuneus, the right superior frontal gyrus, the right insula and the left claustrum, and increased GM in the bilateral putamen, the right parahippocampal gyrus, the left precentral gyrus, the left inferior temporal gyri, and the right cerebellar tonsil. The comparison between unaffected relatives and healthy controls showed a GM reduction in the left claustrum, the bilateral parahippocampal gyri, the left fusiform gyrus, the right inferior temporal gyrus, and the bilateral medial prefrontal cortices, whereas increased GM was observed in the right hippocampus, the right fusiform gyrus, the right precentral gyrus, and the right precuneus. Thus, our meta-analyses show that the GM changes in schizophrenia patients and their unaffected relatives are largely different, although there is subtle overlap in some regions.
Collapse
Affiliation(s)
- Yuan Xiao
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University , Chengdu , China
| | | | | | | | | |
Collapse
|
31
|
Holtzman CW, Trotman HD, Goulding SM, Ryan AT, Macdonald AN, Shapiro DI, Brasfield JL, Walker EF. Stress and neurodevelopmental processes in the emergence of psychosis. Neuroscience 2013; 249:172-91. [PMID: 23298853 PMCID: PMC4140178 DOI: 10.1016/j.neuroscience.2012.12.017] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/24/2012] [Accepted: 12/02/2012] [Indexed: 11/28/2022]
Abstract
The notion that stress plays a role in the etiology of psychotic disorders, especially schizophrenia, is longstanding. However, it is only in recent years that the potential neural mechanisms mediating this effect have come into sharper focus. The introduction of more sophisticated models of the interplay between psychosocial factors and brain function has expanded our opportunities for conceptualizing more detailed psychobiological models of stress in psychosis. Further, scientific advances in our understanding of adolescent brain development have shed light on a pivotal question that has challenged researchers; namely, why the first episode of psychosis typically occurs in late adolescence/young adulthood. In this paper, we begin by reviewing the evidence supporting associations between psychosocial stress and psychosis in diagnosed patients as well as individuals at clinical high risk for psychosis. We then discuss biological stress systems and examine changes that precede and follow psychosis onset. Next, research findings on structural and functional brain characteristics associated with psychosis are presented; these findings suggest that normal adolescent neuromaturational processes may go awry, thereby setting the stage for the emergence of psychotic syndromes. Finally, a model of neural mechanisms underlying the pathogenesis of psychosis is presented and directions for future research strategies are explored.
Collapse
Affiliation(s)
- C. W. Holtzman
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States
| | - H. D. Trotman
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States
| | - S. M. Goulding
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States
| | - A. T. Ryan
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States
| | - A. N. Macdonald
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States
| | - D. I. Shapiro
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States
| | - J. L. Brasfield
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States
| | - E. F. Walker
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States
| |
Collapse
|
32
|
Yu Q, Allen EA, Sui J, Arbabshirani MR, Pearlson G, Calhoun VD. Brain connectivity networks in schizophrenia underlying resting state functional magnetic resonance imaging. Curr Top Med Chem 2013; 12:2415-25. [PMID: 23279180 DOI: 10.2174/156802612805289890] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/06/2012] [Accepted: 09/26/2012] [Indexed: 02/01/2023]
Abstract
Schizophrenia (SZ) is a severe neuropsychiatric disorder. A leading hypothesis is that SZ is a brain dysconnection syndrome, involving abnormal interactions between widespread brain networks. Resting state functional magnetic resonance imaging (R-fMRI) is a powerful tool to explore the dysconnectivity of brain networks in SZ and other disorders. Seed-based functional connectivity analysis, spatial independent component analysis (ICA), and graph theory-based analysis are popular methods to quantify brain network connectivity in R-fMRI data. Widespread network dysconnectivity in SZ has been observed using both seed-based analysis and ICA, although most seed-based studies report decreased connectivity while ICA studies report both increases and decreases. Importantly, most of the findings from both techniques are also associated with typical symptoms of the illness. Disrupted topological properties and altered modular community structure of brain system in SZ have been shown using graph theory-based analysis. Overall, the resting-state findings regarding brain networks deficits have advanced our understanding of the underlying pathology of SZ. In this article, we review aberrant brain connectivity networks in SZ measured in R-fMRI by the above approaches, and discuss future challenges.
Collapse
Affiliation(s)
- Qingbao Yu
- Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Sheng J, Zhu Y, Lu Z, Liu N, Huang N, Zhang Z, Tan L, Li C, Yu X. Altered volume and lateralization of language-related regions in first-episode schizophrenia. Schizophr Res 2013; 148:168-74. [PMID: 23769260 DOI: 10.1016/j.schres.2013.05.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 04/29/2013] [Accepted: 05/22/2013] [Indexed: 01/06/2023]
Abstract
Neuroanatomical abnormalities are considered to be related to the pathogenesis of schizophrenia. Reversal or reduction of normal structural cerebral asymmetries in schizophrenia is particularly striking. The current study investigated the alteration of gray matter volume and cerebral asymmetry in early stage of first-episode schizophrenia (FESZ), and their correlations with clinical measures. Magnetic resonance imaging scans were obtained from a total of 89 participants. Thirty-three FESZ patients and 41 matched healthy controls were included in the analysis. Compared to healthy controls, the FESZ patients showed decreased gray matter volume (GMV) in the frontal cortex, anterior cingulate cortex, temporal cortex, parahippocampal, fusiform, insula, and lingual; and increased GMV in cerebellum. Both male and female patients displayed an increased rightward lateralization in frontal and temporal cortex, which was significantly correlated with the severity of symptoms and social functioning. These findings may provide the neurological substrate for the etiology and clinical manifestations of the illness.
Collapse
Affiliation(s)
- Jianhua Sheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Alemany S, Mas A, Goldberg X, Falcón C, Fatjó-Vilas M, Arias B, Bargalló N, Nenadic I, Gastó C, Fañanás L. Regional gray matter reductions are associated with genetic liability for anxiety and depression: an MRI twin study. J Affect Disord 2013; 149:175-81. [PMID: 23433857 DOI: 10.1016/j.jad.2013.01.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 12/23/2012] [Accepted: 01/24/2013] [Indexed: 01/22/2023]
Abstract
BACKGROUND The influence of genetic and/or environmental factors on the volumetric brain changes observed in subjects affected by anxiety and depression disorders remains unclear. The current study aimed to investigate whether genetic and environmental liabilities make different contributions to abnormalities in gray matter volume (GMV) in anxiety and depression using a concordant and discordant MZ twin pairs design. METHODS Fifty-three magnetic resonance imaging (3T) brain scans were obtained from monozygotic (MZ) twins concordant (6 pairs) and discordant (10 pairs) for lifetime anxiety and depression disorders and from healthy twins (21 subjects). We applied voxel-based morphometry to analyse GMV differences. Concordant affected twins were compared to healthy twins and within-pairs comparisons were performed in the discordant group. RESULTS GMV reductions in bilateral fusiform gyrus and amygdala were observed in concordant affected twins for anxiety and depression compared to healthy twins. No intrapair differences were found in GMV between discordant affected twins and their healthy co-twins. LIMITATIONS The sample size was modest. This might explain why no intrapair differences were found in the discordant MZ twin group. CONCLUSIONS As concordant affected MZ twins are believed to have a particularly high genetic liability for the disorder, our findings suggest that fusiform gyrus and amygdala gray matter reductions are related to a genetic risk for anxiety and depression. Discrepancies in regard to brain abnormalities in anxiety and depression may be related to the admixture of patients with GMV abnormalities mainly accounted for by genetic factors with patients presenting GMV mainly accounted for by environmental factors.
Collapse
Affiliation(s)
- Silvia Alemany
- Unidad de Antropología, Departamento de Biología Animal, Facultad de Biología and Instituto de Biomedicina, Universidad de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Trotman HD, Holtzman CW, Ryan AT, Shapiro DI, MacDonald AN, Goulding SM, Brasfield JL, Walker EF. The development of psychotic disorders in adolescence: a potential role for hormones. Horm Behav 2013; 64:411-9. [PMID: 23998682 PMCID: PMC4070947 DOI: 10.1016/j.yhbeh.2013.02.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 01/20/2013] [Accepted: 02/26/2013] [Indexed: 12/14/2022]
Abstract
This article is part of a Special Issue "Puberty and Adolescence". The notion that adolescence is characterized by dramatic changes in behavior, and often by emotional upheaval, is widespread and longstanding in popular western culture. In recent decades, this notion has gained increasing support from empirical research showing that the peri- and post-pubertal developmental stages are associated with a significant rise in the rate of psychiatric symptoms and syndromes. As a result, interest in adolescent development has burgeoned among researchers focused on the origins of schizophrenia and other psychotic disorders. Two factors have fueled this trend: 1) increasing evidence from longitudinal research that adolescence is the modal period for the emergence of "prodromal" manifestations, or precursors of psychotic symptoms, and 2) the rapidly accumulating scientific findings on brain structural and functional changes occurring during adolescence and young adulthood. Further, gonadal and adrenal hormones are beginning to play a more prominent role in conceptualizations of adolescent brain development, as well as in the origins of psychiatric symptoms during this period (Walker and Bollini, 2002; Walker et al., 2008). In this paper, we begin by providing an overview of the nature and course of psychotic disorders during adolescence/young adulthood. We then turn to the role of hormones in modulating normal brain development, and the potential role they might play in the abnormal brain changes that characterize youth at clinical high-risk (CHR) for psychosis. The activational and organizational effects of hormones are explored, with a focus on how hormone-induced changes might be linked with neuropathological processes in the emergence of psychosis.
Collapse
Affiliation(s)
- Hanan D Trotman
- Department of Psychology, Emory University, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Sheffield JM, Williams LE, Woodward ND, Heckers S. Reduced gray matter volume in psychotic disorder patients with a history of childhood sexual abuse. Schizophr Res 2013; 143. [PMID: 23178105 PMCID: PMC3540174 DOI: 10.1016/j.schres.2012.10.032] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Childhood trauma is associated with smaller gray matter volume, similar to the pattern seen in psychotic disorders. We explored the relationship between childhood abuse, psychosis, and brain volume in a group of 60 individuals with a psychotic disorder and 26 healthy control subjects. We used voxel-based morphometry (VBM) to quantify gray and white matter volume and the Childhood Trauma Questionnaire (CTQ) to measure childhood abuse. Within the psychotic disorder group, total gray matter volume was inversely correlated with the severity of childhood sexual abuse (r=-.34, p=.008), but not the other types of abuse. When the 24 patients with sexual abuse were compared with demographically matched samples of 23 patients without sexual abuse and 26 control subjects, only patients with a history of sexual abuse had reduced total gray matter volume (t(48)=2.3, p=.03; Cohen's d=.63). Voxel-based analysis revealed a cluster in the prefrontal cortex where volume was negatively correlated with sexual abuse severity. Voxel based comparison of the three matched groups revealed a similar pattern of results, with widespread reductions in psychosis patients with sexual abuse relative to controls that were not found in psychosis patients without sexual abuse. These findings indicate that some of the variance of gray matter volume in psychotic disorders can be explained by a history of sexual abuse.
Collapse
Affiliation(s)
- Julia M. Sheffield
- Department of Psychiatry, Vanderbilt University, 1601 23rd Ave S, Nashville TN, USA 37212
| | - Lisa E. Williams
- Department of Psychiatry, Vanderbilt University, 1601 23rd Ave S, Nashville TN, USA 37212
| | - Neil D. Woodward
- Department of Psychiatry, Vanderbilt University, 1601 23rd Ave S, Nashville TN, USA 37212
| | - Stephan Heckers
- Department of Psychiatry, Vanderbilt University, 1601 23rd Ave S, Nashville TN, USA 37212
| |
Collapse
|
37
|
Yang Y, Nuechterlein KH, Phillips OR, Gutman B, Kurth F, Dinov I, Thompson PM, Asarnow RF, Toga AW, Narr KL. Disease and genetic contributions toward local tissue volume disturbances in schizophrenia: a tensor-based morphometry study. Hum Brain Mapp 2012; 33:2081-91. [PMID: 22241649 DOI: 10.1002/hbm.21349] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Structural brain deficits, especially frontotemporal volume reduction and ventricular enlargement, have been repeatedly reported in patients with schizophrenia. However, it remains unclear whether brain structural deformations may be attributable to disease-related or genetic factors. In this study, the structural magnetic resonance imaging data of 48 adult-onset schizophrenia patients, 65 first-degree nonpsychotic relatives of schizophrenia patients, 27 community comparison (CC) probands, and 73 CC relatives were examined using tensor-based morphometry (TBM) to isolate global and localized differences in tissue volume across the entire brain between groups. We found brain tissue contractions most prominently in frontal and temporal regions and expansions in the putamen/pallidum, and lateral and third ventricles in schizophrenia patients when compared with unrelated CC probands. Results were similar, though less prominent when patients were compared with their nonpsychotic relatives. Structural deformations observed in unaffected patient relatives compared to age-similar CC relatives were suggestive of schizophrenia-related genetic liability and were pronounced in the putamen/pallidum and medial temporal regions. Schizophrenia and genetic liability effects for the putamen/pallidum were confirmed by regions-of-interest analysis. In conclusion, TBM findings complement reports of frontal, temporal, and ventricular dysmorphology in schizophrenia and further indicate that putamen/pallidum enlargements, originally linked mainly with medication exposure in early studies, also reflect a genetic predisposition for schizophrenia. Thus, brain deformation profiles revealed in this study may help to clarify the role of specific genetic or environmental risk factors toward altered brain morphology in schizophrenia.
Collapse
Affiliation(s)
- Yaling Yang
- Laboratory of Neuro Imaging, Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Palaniyappan L, Balain V, Liddle PF. The neuroanatomy of psychotic diathesis: a meta-analytic review. J Psychiatr Res 2012; 46:1249-56. [PMID: 22790253 DOI: 10.1016/j.jpsychires.2012.06.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/24/2012] [Accepted: 06/13/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Several studies have found widespread structural changes affecting the grey matter at various stages of schizophrenia (the prodrome, first-episode, and the chronic stage). It is unclear which of these neuroanatomical changes are associated with a predisposition or vulnerability to develop schizophrenia rather than the appearance of the clinical features of the illness. METHODS 16 voxel-based morphometry (VBM) analyses involving 733 genetically high-risk relatives (HRR) of patients with schizophrenia, 563 healthy controls and 474 patients were meta-analysed using the Signed Differential Mapping (SDM) technique. Two meta-analyses were conducted, with one comparing HRR group with healthy controls and the other comparing HRR group with the patients. RESULTS A significant grey matter reduction in the lentiform nucleus, amygdala/parahippocampal gyrus and medial prefrontal cortex was seen in association with the genetic diathesis. Grey matter reduction in bilateral insula, inferior frontal gyrus, superior temporal gyrus and the anterior cingulate was seen in association with the disease expression. CONCLUSIONS The neuroanatomical changes associated with the genetic diathesis to develop schizophrenia appear to be different from those that contribute to the clinical expression of the illness. Grey matter abnormalities in multimodal brain regions that have a supervisory function are likely to be central to the expression of the clinical symptoms of schizophrenia.
Collapse
Affiliation(s)
- Lena Palaniyappan
- Division of Psychiatry, University of Nottingham, A Floor, South Block, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom.
| | | | | |
Collapse
|
39
|
Pu W, Li L, Zhang H, Ouyang X, Liu H, Zhao J, Li L, Xue Z, Xu K, Tang H, Shan B, Liu Z, Wang F. Morphological and functional abnormalities of salience network in the early-stage of paranoid schizophrenia. Schizophr Res 2012; 141:15-21. [PMID: 22910405 DOI: 10.1016/j.schres.2012.07.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 06/24/2012] [Accepted: 07/16/2012] [Indexed: 11/30/2022]
Abstract
A salience network (SN), mainly composed of the anterior insula (AI) and anterior cingulate cortex (ACC), has been suggested to play an important role in salience attribution which has been proposed as central to the pathology of paranoid schizophrenia. The role of this SN in the pathophysiology of paranoid schizophrenia, however, still remains unclear. In the present study, voxel-based morphometry and resting-state functional connectivity analyses were combined to identify morphological and functional abnormalities in the proposed SN in the early-stage of paranoid schizophrenia (ESPS). Voxel-based morphometry and resting-state functional connectivity analyses were applied to 90 ESPS patients and 90 age- and sex-matched healthy controls (HC). Correlation analyses were performed to examine the relationships between various clinical variables and both gray matter morphology and functional connectivity within the SN in ESPS. Compared to the HC group, the ESPS group showed significantly reduced gray matter volume (GMV) in both bilateral AI and ACC. Moreover, significantly reduced functional connectivity within the SN sub-networks was identified in the ESPS group. These convergent morphological and functional deficits in SN were significantly associated with hallucinations. Additionally, illness duration correlated with reduced GMV in the left AI in ESPS. In conclusion, these findings provide convergent evidence for the morphological and functional abnormalities of the SN in ESPS. Moreover, the association of illness duration with the reduced GMV in the left AI suggests that the SN and the AI, in particular, may manifest progressive morphological changes that are especially important in the emergence of ESPS.
Collapse
Affiliation(s)
- Weidan Pu
- Institute of Mental Health, Second Xiangya Hospital of Central South University, Changsha, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Boettger MK, Grossmann D, Bär KJ. Increased cold and heat pain thresholds influence the thermal grill illusion in schizophrenia. Eur J Pain 2012; 17:200-9. [PMID: 22865795 DOI: 10.1002/j.1532-2149.2012.00188.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2012] [Indexed: 11/08/2022]
Abstract
BACKGROUND Patients with schizophrenia show decreased sensitivity towards clinical and experimental painful conditions. To date, the exact underlying mechanisms are not completely understood. One method to examine central integrative processes of pain perception is the thermal grill illusion (TGI), in which interlacing cold and warm bars create the illusion of a painful sensation. METHODS In 18 unmedicated patients with acute paranoid schizophrenia, cold and heat pain thresholds (CPT/HPT) as well as the perception of the TGI were examined and compared to 18 matched controls. In addition, symptom scales were obtained in order to relate pain perception to psychopathology. RESULTS CPT and HPT were significantly increased in patients compared to controls. In the range of TGI stimuli that were perceived painful by controls, patients did not indicate painful sensations, instead the stimulus response curve of TGI pain perception was shifted towards higher stimulus intensities, i.e., greater temperature differentials between cold and warm bars. This increase was comparable to that seen in CPT and HPT. There was no association with psychopathology for any pain parameter. CONCLUSIONS CPT and HPT, as well as temperature differentials for the perception of the TGI were increased in patients with schizophrenia as compared to controls. Similar to visual illusions, in which reduced contrast sensitivity has been shown to alter the perception of illusions, the discriminatory somatosensory deficit, which is reflected in higher CPT and HPT as well as the previously reported increased warmth perception thresholds, might account for the attenuation of TGI in patients.
Collapse
Affiliation(s)
- M K Boettger
- Institute of Physiology I, Teichgraben 8, University Hospital, Jena, Germany
| | | | | |
Collapse
|
41
|
Owens SF, Picchioni MM, Ettinger U, McDonald C, Walshe M, Schmechtig A, Murray RM, Rijsdijk F, Toulopoulou T. Prefrontal deviations in function but not volume are putative endophenotypes for schizophrenia. ACTA ACUST UNITED AC 2012; 135:2231-44. [PMID: 22693145 DOI: 10.1093/brain/aws138] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study sought to systematically investigate whether prefrontal cortex grey matter volume reductions are valid endophenotypes for schizophrenia, specifically investigating their presence in unaffected relatives, heritability, genetic overlap with the disorder itself and finally to contrast their performance on these criteria with putative neuropsychological indices of prefrontal functioning. We used a combined twin and family design and examined four prefrontal cortical regions of interest. Superior and inferior regions were significantly smaller in patients. However, the volumes of these same regions were normal in unaffected relatives and therefore, we could confirm that such deficits were not due to familial effects. Volumes of the prefrontal and orbital cortices were, however, moderately heritable, but neither shared a genetic overlap with schizophrenia. Total prefrontal cortical volume reductions shared a significant unique environmental overlap with the disorder, suggesting that the reductions were not familial. In contrast, prefrontal (executive) functioning deficits were present in the unaffected relatives, were moderately heritable and shared a substantial genetic overlap with liability to schizophrenia. These results suggest that the well recognized prefrontal volume reductions are not related to the same familial influences that increase schizophrenia liability and instead may be attributable to illness related biological changes or indeed confounded by illness trajectory, chronicity, medication or substance abuse, or in fact a combination of some or all of them.
Collapse
Affiliation(s)
- Sheena F Owens
- Department of Psychosis Studies, Institute of Psychiatry, Kings College, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Glausier JR, Lewis DA. Dendritic spine pathology in schizophrenia. Neuroscience 2012; 251:90-107. [PMID: 22546337 DOI: 10.1016/j.neuroscience.2012.04.044] [Citation(s) in RCA: 402] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/22/2012] [Accepted: 04/05/2012] [Indexed: 01/22/2023]
Abstract
Schizophrenia is a neurodevelopmental disorder whose clinical features include impairments in perception, cognition and motivation. These impairments reflect alterations in neuronal circuitry within and across multiple brain regions that are due, at least in part, to deficits in dendritic spines, the site of most excitatory synaptic connections. Dendritic spine alterations have been identified in multiple brain regions in schizophrenia, but are best characterized in layer 3 of the neocortex, where pyramidal cell spine density is lower. These spine deficits appear to arise during development, and thus are likely the result of disturbances in the molecular mechanisms that underlie spine formation, pruning, and/or maintenance. Each of these mechanisms may provide insight into novel therapeutic targets for preventing or repairing the alterations in neural circuitry that mediate the debilitating symptoms of schizophrenia.
Collapse
Affiliation(s)
- J R Glausier
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
43
|
Bora E, Fornito A, Yücel M, Pantelis C. The effects of gender on grey matter abnormalities in major psychoses: a comparative voxelwise meta-analysis of schizophrenia and bipolar disorder. Psychol Med 2012; 42:295-307. [PMID: 21835091 DOI: 10.1017/s0033291711001450] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Recent evidence from genetic and familial studies revitalized the debate concerning the validity of the distinction between schizophrenia and bipolar disorder. Comparing brain imaging findings is an important avenue to examine similarities and differences and, therefore, the validity of the distinction between these conditions. However, in contrast to bipolar disorder, most patient samples in studies of schizophrenia are predominantly male. This a limiting factor for comparing schizophrenia and bipolar disorder since male gender is associated with more severe neurodevelopmental abnormalities, negative symptoms and cognitive deficits in schizophrenia. METHOD We used a coordinate-based meta-analysis technique to compare grey matter (GM) abnormalities in male-dominated schizophrenia, gender-balanced schizophrenia and bipolar disorder samples based on published voxel-based morphometry (VBM) studies. In total, 72 English-language, peer reviewed articles published prior to January 2011 were included. All reports used VBM for comparing schizophrenia or bipolar disorder with controls and reported whole-brain analyses in standard stereotactic space. RESULTS GM reductions were more extensive in male-dominated schizophrenia compared to gender-balanced bipolar disorder and schizophrenia. In gender-balanced samples, GM reductions were less severe. Compared to controls, GM reductions were restricted to dorsal anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex in schizophrenia and ACC and bilateral fronto-insular cortex in bipolar disorder. CONCLUSIONS When gender is controlled, GM abnormalities in bipolar disorder and schizophrenia are mostly restricted to regions that have a role in emotional and cognitive aspects of salience respectively. Dorsomedial and dorsolateral prefrontal cortex were the only regions that showed greater GM reductions in schizophrenia compared to bipolar disorder.
Collapse
Affiliation(s)
- E Bora
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, VIC, Australia
| | - A Fornito
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, VIC, Australia
| | - M Yücel
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, VIC, Australia
| | - C Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, VIC, Australia
| |
Collapse
|
44
|
Rapp C, Bugra H, Riecher-Rössler A, Tamagni C, Borgwardt S. Effects of cannabis use on human brain structure in psychosis: a systematic review combining in vivo structural neuroimaging and post mortem studies. Curr Pharm Des 2012; 18:5070-80. [PMID: 22716152 PMCID: PMC3474956 DOI: 10.2174/138161212802884861] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/12/2012] [Indexed: 11/22/2022]
Abstract
It is unclear yet whether cannabis use is a moderating or causal factor contributing to grey matter alterations in schizophrenia and the development of psychotic symptoms. We therefore systematically reviewed structural brain imaging and post mortem studies addressing the effects of cannabis use on brain structure in psychosis. Studies with schizophrenia (SCZ) and first episode psychosis (FEP) patients as well as individuals at genetic (GHR) or clinical high risk for psychosis (ARMS) were included. We identified 15 structural magnetic resonance imaging (MRI) (12 cross sectional / 3 longitudinal) and 4 post mortem studies. The total number of subjects encompassed 601 schizophrenia or first episode psychosis patients, 255 individuals at clinical or genetic high risk for psychosis and 397 healthy controls. We found evidence for consistent brain structural abnormalities in cannabinoid 1 (CB1) receptor enhanced brain areas as the cingulate and prefrontal cortices and the cerebellum. As these effects have not consistently been reported in studies examining nonpsychotic and healthy samples, psychosis patients and subjects at risk for psychosis might be particularly vulnerable to brain volume loss due to cannabis exposure.
Collapse
Affiliation(s)
- Charlotte Rapp
- Department of Psychiatry, University of Basel, 4031 Basel, Switzerland
| | - Hilal Bugra
- Department of Psychiatry, University of Basel, 4031 Basel, Switzerland
| | | | - Corinne Tamagni
- Department of Psychiatry, University of Basel, 4031 Basel, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry, University of Basel, 4031 Basel, Switzerland
- Medical Image Analysis Centre, University of Basel, Switzerland
- King’s College London, Department of Psychosis Studies, De Crespigny Park, London SE5 8AF, United Kingdom
| |
Collapse
|
45
|
Borgwardt S, McGuire P, Fusar-Poli P. Gray matters!--mapping the transition to psychosis. Schizophr Res 2011; 133:63-7. [PMID: 21943556 DOI: 10.1016/j.schres.2011.08.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/28/2011] [Accepted: 08/28/2011] [Indexed: 10/17/2022]
Abstract
Despite many neuroimaging studies on schizophrenia showing brain abnormalities the exact time course of their occurrence is unknown. Studies of gray matter are a powerful tool in biological psychiatry and provide an unprecedented opportunity for brain structure investigations. Here we compared cross-sectional and longitudinal structural neuroimaging studies distinguishing high-risk subjects developing psychosis from those who did not. These investigations on gray matter volumes in the prodromal phase potentially identify core structural markers of impending psychoses and clarify dynamic changes underlying the transition. Subjects at high risk of psychosis show qualitatively similar albeit less severe gray matter abnormalities as patients with psychosis.
Collapse
Affiliation(s)
- Stefan Borgwardt
- Department of Psychiatry, University of Basel, Basel, Switzerland.
| | | | | |
Collapse
|
46
|
Egerton A, Borgwardt SJ, Tognin S, Howes OD, McGuire P, Allen P. An overview of functional, structural and neurochemical imaging studies in individuals with a clinical high risk for psychosis. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/npy.11.51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Mapping prodromal psychosis: a critical review of neuroimaging studies. Eur Psychiatry 2011; 27:181-91. [PMID: 21940151 DOI: 10.1016/j.eurpsy.2011.06.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 06/15/2011] [Accepted: 06/22/2011] [Indexed: 11/24/2022] Open
Abstract
The onset of schizophrenia is usually preceded by a prodromal phase characterized by functional decline and subtle prodromal symptoms, which include attenuated psychotic phenomena, cognitive deterioration and a decline in socio-occupational function. Preventive interventions during this phase are of great interest because of the impressive clinical benefits. However, available psychopathological criteria employed to define a high risk state for psychosis have low validity and specificity. Consequently there is an urgent need of reliable neurocognitive markers linked to the pathophysiological mechanisms that underlie schizophrenia. Neuroimaging techniques have rapidly developed into a powerful tool in psychiatry as they provide an unprecedented opportunity for the investigation of brain structure and function. This review shows that neuroimaging studies of the prodromal phases of psychosis have the potentials to identify core structural and functional markers of an impending risk to psychosis and to clarify the dynamic changes underlying transition to psychosis and to address significant correlations between brain structure or function and prodromal psychopathology. Additionally, neurochemical methods can address the key role played by neurotransmitters such as dopamine and glutamate during the psychosis onset. To conclude, multimodal neuroimaging may ultimately clarify the neurobiology of the prodromal phases by the integration of functional, structural and neurochemical findings.
Collapse
|
48
|
Waters-Metenier S, Toulopoulou T. Putative structural neuroimaging endophenotypes in schizophrenia: a comprehensive review of the current evidence. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.11.35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The genetic contribution to schizophrenia etiopathogenesis is underscored by the fact that the best predictor of developing schizophrenia is having an affected first-degree relative, which increases lifetime risk by tenfold, as well as the observation that when both parents are affected, the risk of schizophrenia increases to approximately 50%, compared with 1% in the general population. The search to elucidate the complex genetic architecture of schizophrenia has employed various approaches, including twin and family studies to examine co-aggregation of brain abnormalities, studies on genetic linkage and studies using genome-wide association to identify genetic variations associated with schizophrenia. ‘Endophenotypes’, or ‘intermediate phenotypes’, are potentially narrower constructs of genetic risk. Hypothetically, they are intermediate in the pathway between genetic variation and clinical phenotypes and can supposedly be implemented to assist in the identification of genetic diathesis for schizophrenia and, possibly, in redefining clinical phenomenology.
Collapse
Affiliation(s)
- Sheena Waters-Metenier
- Department of Psychosis Studies, King’s College London, King’s Health Partners, Institute of Psychiatry, London, UK
| | | |
Collapse
|
49
|
Swerdlow NR. Are we studying and treating schizophrenia correctly? Schizophr Res 2011; 130:1-10. [PMID: 21645998 PMCID: PMC3139794 DOI: 10.1016/j.schres.2011.05.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/27/2011] [Accepted: 05/04/2011] [Indexed: 12/15/2022]
Abstract
New findings are rapidly revealing an increasingly detailed image of neural- and molecular-level dysfunction in schizophrenia, distributed throughout interconnected cortico-striato-pallido-thalamic circuitry. Some disturbances appear to reflect failures of early brain maturation, that become codified into dysfunctional circuit properties, resulting in a substantial loss of, or failure to develop, both cells and/or appropriate connectivity across widely dispersed brain regions. These circuit disturbances are variable across individuals with schizophrenia, perhaps reflecting the interaction of multiple different risk genes and epigenetic events. Given these complex and variable hard-wired circuit disturbances, it is worth considering how new and emerging findings can be integrated into actionable treatment models. This paper suggests that future efforts towards developing more effective therapeutic approaches for the schizophrenias should diverge from prevailing models in genetics and molecular neuroscience, and focus instead on a more practical three-part treatment strategy: 1) systematic rehabilitative psychotherapies designed to engage healthy neural systems to compensate for and replace dysfunctional higher circuit elements, used in concert with 2) medications that specifically target cognitive mechanisms engaged by these rehabilitative psychotherapies, and 3) antipsychotic medications that target nodal or convergent circuit points within the limbic-motor interface, to constrain the scope and severity of psychotic exacerbations and thereby facilitate engagement in cognitive rehabilitation. The use of targeted cognitive rehabilitative psychotherapy plus synergistic medication has both common sense and time-tested efficacy with numerous other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Neal R Swerdlow
- School of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0804, United States.
| |
Collapse
|
50
|
Clark KA, Nuechterlein KH, Asarnow RF, Hamilton LS, Phillips OR, Hageman NS, Woods RP, Alger JR, Toga AW, Narr KL. Mean diffusivity and fractional anisotropy as indicators of disease and genetic liability to schizophrenia. J Psychiatr Res 2011; 45:980-8. [PMID: 21306734 PMCID: PMC3109158 DOI: 10.1016/j.jpsychires.2011.01.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 12/28/2010] [Accepted: 01/06/2011] [Indexed: 11/16/2022]
Abstract
The goals of this study were to first determine whether the fractional anisotropy (FA) and mean diffusivity (MD) of major white matter pathways associate with schizophrenia, and secondly to characterize the extent to which differences in these metrics might reflect a genetic predisposition to schizophrenia. Differences in FA and MD were identified using a comprehensive atlas-based tract mapping approach using diffusion tensor imaging and high-resolution structural data from 35 patients, 28 unaffected first-degree relatives of patients, 29 community controls, and 14 first-degree relatives of controls. Schizophrenia patients had significantly higher MD in the following tracts compared to controls: the right anterior thalamic radiations, the forceps minor, the bilateral inferior fronto-occipital fasciculus (IFO), the temporal component of the left superior longitudinal fasciculus (tSLF), and the bilateral uncinate. FA showed schizophrenia effects and a linear relationship to genetic liability (represented by schizophrenia patients, first-degree relatives, and controls) for the bilateral IFO, the left inferior longitudinal fasciculus (ILF), and the left tSLF. Diffusion tensor imaging studies have previously identified white matter abnormalities in all three of these tracts in schizophrenia; however, this study is the first to identify a significant genetic liability. Thus, FA of these three tracts may serve as biomarkers for studies seeking to identify how genes influence brain structure predisposing to schizophrenia. However, differences in FA and MD in frontal and temporal white matter pathways may be additionally driven by state variables that involve processes associated with the disease.
Collapse
Affiliation(s)
- Kristi A. Clark
- Laboratory of Neuro Imaging, David Geffen School of Medicine, University of California—Los Angeles, Los Angeles, CA, USA,Department of Neurology, David Geffen School of Medicine, University of California—Los Angeles, Los Angeles, CA, USA
| | - Keith H. Nuechterlein
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California—Los Angeles, Los Angeles, CA, USA,Department of Psychology, University of California—Los Angeles, Los Angeles, CA, USA
| | - Robert F. Asarnow
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California—Los Angeles, Los Angeles, CA, USA,Department of Psychology, University of California—Los Angeles, Los Angeles, CA, USA
| | - Liberty S. Hamilton
- Laboratory of Neuro Imaging, David Geffen School of Medicine, University of California—Los Angeles, Los Angeles, CA, USA,Department of Neurology, David Geffen School of Medicine, University of California—Los Angeles, Los Angeles, CA, USA
| | - Owen R. Phillips
- Laboratory of Neuro Imaging, David Geffen School of Medicine, University of California—Los Angeles, Los Angeles, CA, USA,Department of Neurology, David Geffen School of Medicine, University of California—Los Angeles, Los Angeles, CA, USA
| | - Nathan S. Hageman
- Laboratory of Neuro Imaging, David Geffen School of Medicine, University of California—Los Angeles, Los Angeles, CA, USA,Department of Neurology, David Geffen School of Medicine, University of California—Los Angeles, Los Angeles, CA, USA
| | - Roger P. Woods
- Department of Neurology, David Geffen School of Medicine, University of California—Los Angeles, Los Angeles, CA, USA
| | - Jeffry R. Alger
- Department of Neurology, David Geffen School of Medicine, University of California—Los Angeles, Los Angeles, CA, USA
| | - Arthur W. Toga
- Laboratory of Neuro Imaging, David Geffen School of Medicine, University of California—Los Angeles, Los Angeles, CA, USA,Department of Neurology, David Geffen School of Medicine, University of California—Los Angeles, Los Angeles, CA, USA
| | - Katherine L. Narr
- Laboratory of Neuro Imaging, David Geffen School of Medicine, University of California—Los Angeles, Los Angeles, CA, USA,Department of Neurology, David Geffen School of Medicine, University of California—Los Angeles, Los Angeles, CA, USA
| |
Collapse
|