1
|
Sahu P, Verma HK, Bhaskar LVKS. Alcohol and alcoholism associated neurological disorders: Current updates in a global perspective and recent recommendations. World J Exp Med 2025; 15:100402. [DOI: 10.5493/wjem.v15.i1.100402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/27/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024] Open
Abstract
Alcohol use disorder (AUD) is a medical condition that impairs a person's ability to stop or manage their drinking in the face of negative social, occupational, or health consequences. AUD is defined by the National Institute on Alcohol Abuse and Alcoholism as a "severe problem". The central nervous system is the primary target of alcohol's adverse effects. It is crucial to identify various neurological disorders associated with AUD, including alcohol withdrawal syndrome, Wernicke-Korsakoff syndrome, Marchiafava-Bignami disease, dementia, and neuropathy. To gain a better understanding of the neurological environment of alcoholism and to shed light on the role of various neurotransmitters in the phenomenon of alcoholism. A comprehensive search of online databases, including PubMed, EMBASE, Web of Science, and Google Scholar, was conducted to identify relevant articles. Several neurotransmitters (dopamine, gamma-aminobutyric acid, serotonin, and glutamate) have been linked to alcoholism due to a brain imbalance. Alcoholism appears to be a complex genetic disorder, with variations in many genes influencing risk. Some of these genes have been identified, including two alcohol metabolism genes, alcohol dehydrogenase 1B gene and aldehyde dehydrogenase 2 gene, which have the most potent known effects on the risk of alcoholism. Neuronal degeneration and demyelination in people with AUD may be caused by neuronal damage, nutrient deficiencies, and blood brain barrier dysfunction; however, the underlying mechanism is unknown. This review will provide a detailed overview of the neurobiology of alcohol addiction, followed by recent studies published in the genetics of alcohol addiction, molecular mechanism and detailed information on the various acute and chronic neurological manifestations of alcoholism for the Future research.
Collapse
Affiliation(s)
- Prashanti Sahu
- Department of Zoology, GGU Bilaspur, Bilaspur 495009, Chhattīsgarh, India
| | - Henu Kumar Verma
- Department of Lung Health and Immunity, Helmholtz Zentrum Munich, Munich 85764, Bayren, Germany
| | - LVKS Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur 495001, Chhattīsgarh, India
| |
Collapse
|
2
|
Wang L, Kranzler HR, Gelernter J, Zhou H. Investigating the contribution of coding variants in alcohol use disorder using whole-exome sequencing across ancestries. Biol Psychiatry 2025:S0006-3223(25)00062-9. [PMID: 39892688 DOI: 10.1016/j.biopsych.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/16/2024] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Alcohol use disorder (AUD) is a leading cause of death and disability worldwide. There has been substantial progress in identifying genetic variants underlying AUD. However, whole-exome sequencing (WES) studies of AUD are hampered by the lack of available samples. METHODS We analyzed WES data of 4,530 samples from the Yale-Penn cohort and 469,835 samples from the UK Biobank (UKB), which represents an unprecedented resource for exploring the contribution of coding variants in AUD. After quality controls, 2,039 European-ancestry (EUR: 1,420 cases) and 1,750 African-ancestry samples (AFR: 1,142 cases) from Yale-Penn, and 415,617 EUR samples (12,861 cases), 6,142 AFR samples (130 cases) and 4,607 South Asian (SAS) samples (130 cases) from UKB were included in the analyses. RESULTS We confirmed the well-known functional variant rs1229984 in ADH1B (P=4.88×10-31) and several other variants in ADH1C. Gene-based collapsing tests considering the high allelic heterogeneity revealed the previously unreported genes, CNST (P=1.19×10-6) attributable to rare variants with allele frequency < 0.001, and IFIT5 (P=3.74×10-6) driven by the burden of both common and rare loss-of-function and missense variants. CONCLUSIONS This study extends our understanding of the genetic architecture of AUD, by providing insights into the contribution of rare coding variants, separately and convergently with common variants in AUD.
Collapse
Affiliation(s)
- Lu Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT; Veterans Affairs Connecticut Healthcare System, West Haven, CT
| | - Henry R Kranzler
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Crescenz Veterans Affairs Medical Center, Philadelphia, PA
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT; Veterans Affairs Connecticut Healthcare System, West Haven, CT; Department of Genetics, Yale School of Medicine, New Haven, CT; Department of Neuroscience, Yale School of Medicine, New Haven, CT.
| | - Hang Zhou
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT; Veterans Affairs Connecticut Healthcare System, West Haven, CT; Department of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT; Center for Brain and Mind Health, Yale School of Medicine, New Haven, CT.
| |
Collapse
|
3
|
Thomas LA, Hopkinson RJ. The biochemistry of the carcinogenic alcohol metabolite acetaldehyde. DNA Repair (Amst) 2024; 144:103782. [PMID: 39566398 DOI: 10.1016/j.dnarep.2024.103782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/14/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024]
Abstract
Acetaldehyde (AcH) is the first metabolite of ethanol and is proposed to be responsible for the genotoxic effects of alcohol consumption. As an electrophilic aldehyde, AcH can form multiple adducts with DNA and other biomolecules, leading to function-altering and potentially toxic and carcinogenic effects. In this review, we describe sources of AcH in humans, including AcH biosynthesis mechanisms, and outline the structures, properties and functions of AcH-derived adducts with biomolecules. We also describe human AcH detoxification mechanisms and discuss ongoing challenges in the field.
Collapse
Affiliation(s)
- Liam A Thomas
- Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester, Leicester LE1 7RH, UK
| | - Richard J Hopkinson
- Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester, Leicester LE1 7RH, UK.
| |
Collapse
|
4
|
Davis CN, Markowitz JS, Squeglia LM, Ellingson JM, McRae-Clark AL, Gray KM, Kretschmer D, Tomko RL. Evidence for sex differences in the impact of cytochrome P450 genotypes on early subjective effects of cannabis. Addict Behav 2024; 153:107996. [PMID: 38394959 PMCID: PMC10947802 DOI: 10.1016/j.addbeh.2024.107996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Early positive subjective effects of cannabis predict the development of cannabis use disorder (CUD). Genetic factors, such as the presence of cytochrome P450 genetic variants that are associated with reduced Δ9-tetrahydrocannabinol (THC) metabolism, may contribute to individual differences in subjective effects of cannabis. Young adults (N = 54) with CUD or a non-CUD substance use disorder (control) provided a blood sample for DNA analysis and self-reported their early (i.e., effects upon initial uses) and past-year positive and negative subjective cannabis effects. Participants were classified as slow metabolizers if they had at least one CYP2C9 or CYP3A4 allele associated with reduced activity. Though the CUD group and control group did not differ in terms of metabolizer status, slow metabolizer status was more prevalent among females in the CUD group than females in the control group. Slow metabolizers reported greater past year negative THC effects compared to normal metabolizers; however, slow metabolizer status did not predict early subjective cannabis effects (positive or negative) or past year positive effects. Post-hoc analyses suggested males who were slow metabolizers reported more negative early subjective effects of cannabis than female slow metabolizers. Other sex-by-genotype interactions were not significant. These initial findings suggest that genetic variation in CYP2C9 and CYP3A4 may have sex-specific associations with cannabis-related outcomes. Slow metabolizer genes may serve as a risk factor for CUD for females independent of subjective effects. Male slow metabolizers may instead be particularly susceptible to the negative subjective effects of cannabis.
Collapse
Affiliation(s)
- Christal N Davis
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States; Department of Psychiatry and Behavioral Services, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, United States; Mental Illness Research, Education and Clinical Center, Crescenz VA Medical Center, Philadelphia, PA 19104, United States; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - John S Markowitz
- Center for Pharmacogenomics and Precision Medicine, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States
| | - Lindsay M Squeglia
- Department of Psychiatry and Behavioral Services, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Jarrod M Ellingson
- Department of Psychiatry, School of Medicine, University of Colorado, Aurora, CO 80045, United States
| | - Aimee L McRae-Clark
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States; Department of Psychiatry and Behavioral Services, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Kevin M Gray
- Department of Psychiatry and Behavioral Services, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Diana Kretschmer
- Center for Pharmacogenomics and Precision Medicine, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States
| | - Rachel L Tomko
- Department of Psychiatry and Behavioral Services, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, United States
| |
Collapse
|
5
|
Jordan A, Näslund-Koch C, Vedel-Krogh S, Egil Bojesen S, Skov L. Alcohol consumption and risk of psoriasis: Results from observational and genetic analyses in more than 100,000 individuals from the Danish general population. JAAD Int 2024; 15:197-205. [PMID: 38707928 PMCID: PMC11066682 DOI: 10.1016/j.jdin.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2024] [Indexed: 05/07/2024] Open
Abstract
Background Psoriasis is associated with high alcohol consumption, but the causality of this relationship is unclear. Objective We aimed to use a Mendelian randomization approach to investigate the causal effects of alcohol on incident psoriasis. Methods We included 102,655 adults from the prospective Copenhagen studies. All participants filled out a questionnaire on alcohol consumption, were physically examined, and had blood drawn for biochemical and genetic analyses. We created a genetic instrument based on the number of fast-metabolizing alleles in alcohol dehydrogenase 1B and alcohol dehydrogenase 1C, known to be associated with alcohol consumption, to test whether alcohol consumption was causally associated with psoriasis. Results Observationally, we found an increased risk of incident psoriasis among individuals with high alcohol consumption compared to those with low alcohol consumption with a hazard ratio of 1.30 (95% confidence interval 1.05-1.60) in the fully adjusted model. Using genetic data to predict alcohol consumption to avoid confounding and reverse causation, we found no association between number of fast-metabolizing alleles and risk of psoriasis. Limitations Alcohol consumption was self-reported and psoriasis was defined using the International Classification of Diseases 10th revision and 8th revision codes. Conclusion Alcohol consumption is observationally but not causally associated with incident psoriasis.
Collapse
Affiliation(s)
- Alexander Jordan
- Department of Dermatology and Allergy, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Charlotte Näslund-Koch
- Department of Dermatology and Allergy, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Signe Vedel-Krogh
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
- Copenhagen General Population Study, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Stig Egil Bojesen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
- Copenhagen General Population Study, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
- Copenhagen City Heart Study, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Lone Skov
- Department of Dermatology and Allergy, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Wang L, Kranzler HR, Gelernter J, Zhou H. Multi-ancestry Whole-exome Sequencing Study of Alcohol Use Disorder in Two Cohorts. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.05.24305412. [PMID: 38645055 PMCID: PMC11030482 DOI: 10.1101/2024.04.05.24305412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Alcohol use disorder (AUD) is a leading cause of death and disability worldwide. There has been substantial progress in identifying genetic variants underlying AUD. However, there are few whole-exome sequencing (WES) studies of AUD. We analyzed WES of 4,530 samples from the Yale-Penn cohort and 469,835 samples from the UK Biobank (UKB). After quality control, 1,420 AUD cases and 619 controls of European ancestry (EUR) and 1,142 cases and 608 controls of African ancestry (AFR) from Yale-Penn were retained for subsequent analyses. WES data from 415,617 EUR samples (12,861 cases), 6,142 AFR samples (130 cases) and 4,607 South Asian (SAS) samples (130 cases) from UKB were also analyzed. Single-variant association analysis identified the well-known functional variant rs1229984 in ADH1B ( P =4.88×10 -31 ) and several other common variants in ADH1C . Gene-based tests identified ADH1B ( P =1.00×10 -31 ), ADH1C ( P =5.23×10 -7 ), CNST ( P =1.19×10 -6 ), and IFIT5 (3.74×10 -6 ). This study extends our understanding of the genetic basis of AUD.
Collapse
|
7
|
Zhang H, Ruan WJ, Chou SP, Saha TD, Fan AZ, Huang B, White AM. Exploring patterns of alcohol use and alcohol use disorder among Asian Americans with a finer lens. Drug Alcohol Depend 2024; 257:111120. [PMID: 38402754 DOI: 10.1016/j.drugalcdep.2024.111120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND National survey data suggest Asian Americans (AA) are less likely to consume alcohol and develop AUD than Americans in other groups. However, it is common for AA to be born outside of the US and carry gene variants that alter alcohol metabolism, both of which can lead to lower levels of alcohol involvement. The current study examined differences in alcohol use and AUD between AA and other groups before and after controlling for birth location and gene variants. DESIGN Past year alcohol measures were examined from adults 18+ (N=22,848) in the 2012-2013 National Epidemiologic Survey on Alcohol and Related Conditions III before and after controlling for birth location (inside or outside of the US) and gene variants (ALDH2*2 and ADH1B*2/ADH1B*3). Gender gaps in alcohol measures also were assessed. RESULTS Before adjustments, AA were less likely than White Americans to drink in the previous year (OR=0.50, 95% CI 0.41-0.62), binge (OR=0.68, 95% CI 0.52-0.88), engage in frequent heavy drinking (OR=0.55, 95% CI 0.42-0.73), and reach criteria for AUD (OR=0.71, 95% CI 0.53-0.94). After controlling for birth location and gene variants, AA remained less likely to drink in the past year (OR=0.54, 95% CI 0.41-0.70) but all other differences disappeared. Gender gaps were only observed for AA born outside of the US, highlighting the importance of experience rather than racial category per se. CONCLUSIONS Findings indicate that heterogeneity among AA leads to spurious generalizations regarding alcohol use and AUD and challenge the model minority myth.
Collapse
Affiliation(s)
- Haitao Zhang
- Epidemiology and Biometry Branch, Division of Epidemiology and Prevention Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, USA
| | - W June Ruan
- Epidemiology and Biometry Branch, Division of Epidemiology and Prevention Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, USA
| | - S Patricia Chou
- Epidemiology and Biometry Branch, Division of Epidemiology and Prevention Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, USA
| | - Tulshi D Saha
- Epidemiology and Biometry Branch, Division of Epidemiology and Prevention Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, USA
| | - Amy Z Fan
- Epidemiology and Biometry Branch, Division of Epidemiology and Prevention Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, USA
| | - Boji Huang
- Epidemiology and Biometry Branch, Division of Epidemiology and Prevention Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, USA
| | - Aaron M White
- Epidemiology and Biometry Branch, Division of Epidemiology and Prevention Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, USA.
| |
Collapse
|
8
|
Cho Y, Lin K, Lee SH, Yu C, Valle DS, Avery D, Lv J, Jung K, Li L, Smith GD, China Kadoorie Biobank Collaborative Group, Sun D, Chen Z, Millwood IY, Hemani G, Walters RG. Genetic influences on alcohol flushing in East Asian populations. BMC Genomics 2023; 24:638. [PMID: 37875790 PMCID: PMC10594868 DOI: 10.1186/s12864-023-09721-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Although it is known that variation in the aldehyde dehydrogenase 2 (ALDH2) gene family influences the East Asian alcohol flushing response, knowledge about other genetic variants that affect flushing symptoms is limited. METHODS We performed a genome-wide association study meta-analysis and heritability analysis of alcohol flushing in 15,105 males of East Asian ancestry (Koreans and Chinese) to identify genetic associations with alcohol flushing. We also evaluated whether self-reported flushing can be used as an instrumental variable for alcohol intake. RESULTS We identified variants in the region of ALDH2 strongly associated with alcohol flushing, replicating previous studies conducted in East Asian populations. Additionally, we identified variants in the alcohol dehydrogenase 1B (ADH1B) gene region associated with alcohol flushing. Several novel variants were identified after adjustment for the lead variants (ALDH2-rs671 and ADH1B-rs1229984), which need to be confirmed in larger studies. The estimated SNP-heritability on the liability scale was 13% (S.E. = 4%) for flushing, but the heritability estimate decreased to 6% (S.E. = 4%) when the effects of the lead variants were controlled for. Genetic instrumentation of higher alcohol intake using these variants recapitulated known associations of alcohol intake with hypertension. Using self-reported alcohol flushing as an instrument gave a similar association pattern of higher alcohol intake and cardiovascular disease-related traits (e.g. stroke). CONCLUSION This study confirms that ALDH2-rs671 and ADH1B-rs1229984 are associated with alcohol flushing in East Asian populations. Our findings also suggest that self-reported alcohol flushing can be used as an instrumental variable in future studies of alcohol consumption.
Collapse
Affiliation(s)
- Yoonsu Cho
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Barley House, Oakfield Grove, Bristol, UK
| | - Kuang Lin
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Su-Hyun Lee
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, South Korea
| | - Canqing Yu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, 100191, China
| | - Dan Schmidt Valle
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Daniel Avery
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jun Lv
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, 100191, China
| | - Keumji Jung
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, South Korea
| | - Liming Li
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, 100191, China
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Barley House, Oakfield Grove, Bristol, UK
| | | | - Dianjianyi Sun
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, 100191, China
| | - Zhengming Chen
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, University of Oxford, Oxford, UK
| | - Iona Y Millwood
- Nuffield Department of Population Health, University of Oxford, Oxford, UK.
- MRC Population Health Research Unit, University of Oxford, Oxford, UK.
| | - Gibran Hemani
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Barley House, Oakfield Grove, Bristol, UK.
| | - Robin G Walters
- Nuffield Department of Population Health, University of Oxford, Oxford, UK.
- MRC Population Health Research Unit, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Kukowka A, Brzuchalski B, Kurzawski M, Malinowski D, Białecka MA. ADH1B, ADH1B/C and CYP2E1 Gene Polymorphism and the Risk of Fetal Alcohol Spectrum Disorder. Genes (Basel) 2023; 14:1392. [PMID: 37510297 PMCID: PMC10379323 DOI: 10.3390/genes14071392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Increasing alcohol consumption by women of childbearing age contributes to more frequent cases of fetal alcohol spectrum disorder. The cause of the syndrome is fetal alcohol exposure, particularly what is referred to as high prenatal alcohol exposure. Low metabolic activity of fetal enzymes shifts the burden of ethanol removal to maternal metabolism. One of the factors influencing the pathogenesis of FASD is the genetic background. It can determine the rate of elimination of ethanol, thus increasing or decreasing the time of fetal exposure to ethanol and also decreasing its concentration. Genetic polymorphisms could potentially play a significant role in these processes. In the present study, we considered three polymorphisms of genes implicated in the synthesis of enzymes involved in ethanol metabolism, i.e., ADH1b (rs1229984), ADH1b/c (rs1789891), and CYP2E1 (rs3813867). The studied group consisted of 303 children and 251 mothers. Both mothers' and children's genotypes were considered in our analysis. There were no statistically significant differences between the respective groups of genotypes of the studied polymorphisms. However, the genetic background of FASD is still elusive.
Collapse
Affiliation(s)
- Arnold Kukowka
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Aleja Powstanców Wielkopolskich 72 St., 70-111 Szczecin, Poland (D.M.)
| | - Bogusław Brzuchalski
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Aleja Powstanców Wielkopolskich 72 St., 70-111 Szczecin, Poland (D.M.)
| | - Mateusz Kurzawski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Aleja Powstanców Wielkopolskich 72 St., 70-111 Szczecin, Poland;
| | - Damian Malinowski
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Aleja Powstanców Wielkopolskich 72 St., 70-111 Szczecin, Poland (D.M.)
| | - Monika Anna Białecka
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Aleja Powstanców Wielkopolskich 72 St., 70-111 Szczecin, Poland (D.M.)
| |
Collapse
|
10
|
Ciucă Anghel DM, Nițescu GV, Tiron AT, Guțu CM, Baconi DL. Understanding the Mechanisms of Action and Effects of Drugs of Abuse. Molecules 2023; 28:4969. [PMID: 37446631 DOI: 10.3390/molecules28134969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
AIM Drug abuse and addiction are major public health concerns, with millions of people worldwide affected by the negative consequences of drug use. To better understand this complex issue, a review was conducted to examine the mechanisms of action and effects of drugs of abuse, including their acute and chronic effects, the symptoms of abstinence syndrome, as well as their cardiovascular impacts. METHODS The analyzed data were obtained after surveying an electronic database, namely PubMed, with no time limit, grey literature sources, and reference lists of relevant articles. RESULTS The review highlights the different categories of drugs of abuse, such as opioids, stimulants, depressants, hallucinogens, and cannabis, and discusses the specific ways that each drug affects the brain and body. Additionally, the review explores the short-term and long-term effects of drug abuse on the body and mind, including changes in brain structure and function, physical health problems, and mental health issues, such as depression and anxiety. In addition, the review explores the effects of drug abuse on cardiovascular health, focusing on electrocardiogram changes. Moreover, the analysis of relevant literature also highlighted possible genetic susceptibility in various addictions. Furthermore, the review delves into the withdrawal symptoms that occur when someone stops using drugs of abuse after a period of chronic use. CONCLUSION Overall, this review provides a comprehensive overview of the current state of knowledge on drug abuse and addiction. The findings of this review can inform the development of evidence-based prevention and intervention strategies to address this critical public health issue.
Collapse
Affiliation(s)
| | - Gabriela Viorela Nițescu
- Ward ATI-Toxicology, Paediatric Clinic 2, "Grigore Alexandrescu" Emergency Clinical Hospital for Children, 011732 Bucharest, Romania
| | - Andreea-Taisia Tiron
- Department of Medical Semiology, Sf. Ioan Emergency Clinical Hospital, Carol Davila University of Medicine and Pharmacy, 20021 Bucharest, Romania
| | - Claudia Maria Guțu
- Department of Toxicology, Carol Davila University of Medicine and Pharmacy, 20021 Bucharest, Romania
| | - Daniela Luiza Baconi
- Department of Toxicology, Carol Davila University of Medicine and Pharmacy, 20021 Bucharest, Romania
| |
Collapse
|
11
|
Quintanilla ME, Israel Y. Role of Metabolism on Alcohol Preference, Addiction, and Treatment. Curr Top Behav Neurosci 2023. [PMID: 37221350 DOI: 10.1007/7854_2023_422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Studies presented in this chapter show that: (1) in the brain, ethanol is metabolized by catalase to acetaldehyde, which condenses with dopamine forming salsolinol; (2) acetaldehyde-derived salsolinol increases the release of dopamine mediating, via opioid receptors, the reinforcing effects of ethanol during the acquisition of ethanol consumption, while (3) brain acetaldehyde does not influence the maintenance of chronic ethanol intake, it is suggested that a learned cue-induced hyperglutamatergic system takes precedence over the dopaminergic system. However, (4) following a prolonged ethanol deprivation, the generation of acetaldehyde in the brain again plays a role, contributing to the increase in ethanol intake observed during ethanol re-access, called the alcohol deprivation effect (ADE), a model of relapse behavior; (5) naltrexone inhibits the high ethanol intake seen in the ADE condition, suggesting that acetaldehyde-derived salsolinol via opioid receptors also contributes to the relapse-like drinking behavior. The reader is referred to glutamate-mediated mechanisms that trigger the cue-associated alcohol-seeking and that also contribute to triggering relapse.
Collapse
Affiliation(s)
- María Elena Quintanilla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Yedy Israel
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Centro de Medicina Regenerativa, ICM Clinica Alemana-Universidad de Desarrollo, Santiago, Chile
| |
Collapse
|
12
|
Mauro PM, Kane JC, Askari MS, Iwamoto D, Martins SS. Mind The Gap: Differences in Alcohol Use Screening And Discussions Among Adults Comparing Asian American And Other Racial And Ethnic Subgroups in the United States, 2015-2019. Alcohol Alcohol 2023; 58:31-39. [PMID: 36309849 PMCID: PMC9830473 DOI: 10.1093/alcalc/agac050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 08/29/2022] [Accepted: 09/16/2022] [Indexed: 01/13/2023] Open
Abstract
AIMS Asian Americans are the fastest growing racial and ethnic subgroup in the USA but are underrepresented in the alcohol literature, partially due to misconceptions and racial stereotypes. We estimated any alcohol screening/discussions with providers among Asian Americans and other racial and ethnic subgroups and tested associations with alcohol treatment. METHODS Weighted prevalences of any alcohol screening or discussions with providers included US adults reporting past-year alcohol use and > =1 healthcare visit in the 2015-2019 National Survey on Drug Use and Health (n = 123,002). Multinomial logistic regressions estimated adjusted associations between alcohol use screening/discussions (ref: no screening/discussion) comparing Asian Americans to other racial and ethnic adult subgroups. Among adults with alcohol use disorder (AUD), we estimated adjusted odds of alcohol treatment and perceived treatment need by screening/discussions and racial and ethnic subgroup. RESULTS Among Asian American adults who reported past-year alcohol use and a healthcare visit, 24.7% reported any screening only and 51.4% discussed alcohol with providers. All racial and ethnic subgroups were more likely than Asian Americans to report alcohol screening/discussions (e.g. white adults, screening adjusted relative risk ratio [aRRR] = 1.48, 95% CI: 1.28-1.72; discussions aRRR = 1.92, 95% CI: 1.74-2.10). AUD treatment use and perceived need were about two times higher among people reporting alcohol discussions. CONCLUSIONS Asian Americans were less likely to report discussing alcohol with providers than all other racial and ethnic subgroups. Alcohol discussions were associated with treatment use and perceived need. Efforts to increase equitable alcohol screening and discussions with clinicians are needed.
Collapse
Affiliation(s)
- Pia M Mauro
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, 10032, USA
| | - Jeremy C Kane
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, 10032, USA
| | - Melanie S Askari
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, 10032, USA
| | - Derek Iwamoto
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA
| | - Silvia S Martins
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, 10032, USA
| |
Collapse
|
13
|
Chiarella P, Capone P, Sisto R. Contribution of Genetic Polymorphisms in Human Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:912. [PMID: 36673670 PMCID: PMC9858723 DOI: 10.3390/ijerph20020912] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Human health is influenced by various factors; these include genetic inheritance, behavioral lifestyle, socioeconomic and environmental conditions, and public access to care and therapies in case of illness, with the support of the national health system. All these factors represent the starting point for the prevention and promotion of a healthy lifestyle. However, it is not yet clear to what extent these factors may actually affect the health of an entire population. The exposures to environmental and occupational factors are several, most of which might be poorly known, contributing to influencing individual health. Personal habits, including diet, smoking, alcohol, and drug consumption, together with unhealthy behaviors, may inevitably lead people to the development of chronic diseases, contributing to increasing aging and decreasing life expectancy. In this article, we highlight the role of susceptibility biomarkers, i.e., the genetic polymorphisms of individuals of different ethnicities, with particular attention to the risk factors in the response to specific exposures of Europeans. Moreover, we discuss the role of precision medicine which is representing a new way of treating and preventing diseases, taking into account the genetic variability of the individual with each own clinical history and lifestyle.
Collapse
|
14
|
Kurshed AAM, Ádány R, Diószegi J. The Impact of Taste Preference-Related Gene Polymorphisms on Alcohol Consumption Behavior: A Systematic Review. Int J Mol Sci 2022; 23:ijms232415989. [PMID: 36555636 PMCID: PMC9783388 DOI: 10.3390/ijms232415989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Unhealthy alcohol consumption is recognized as a leading contributory factor to mortality and disability. In addition to other factors, taste sensation also mediates alcohol intake. The orosensation provoked by alcoholic drinks may vary across individuals and may be responsible for differences in preference for alcoholic beverages. Thus, individual genetic variability of taste preference may have an impact on alcohol consumption practices. The present review aimed to explore the associations between different taste preference polymorphisms and alcohol consumption behavior. Based on the PRISMA statement, the three databases PubMed, Web of Science and ProQuest Central were searched to identify articles and the Q-Genie tool was used to assess the quality of the included studies. Among the 17 studies included in this review, 5 and 12 were of good and moderate quality, respectively. Most of the studies analyzed TAS2R38 (taste 2 receptor member 38) rs713598, rs1726866, rs10246939 polymorphisms. Due to the inconclusive findings on these variants and the very limited number of studies on other polymorphisms, additional extensive research is recommended to replicate the existing findings, to generate new knowledge to enhance our understanding of the complexity of alcohol consumption behavior and to aid the development of personalized recommendations on unhealthy alcohol use.
Collapse
Affiliation(s)
- Ali Abbas Mohammad Kurshed
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Kassai Street 26/B, H-4028 Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Nagyerdei Krt. 98., H-4032 Debrecen, Hungary
| | - Róza Ádány
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Kassai Street 26/B, H-4028 Debrecen, Hungary
- ELKH-DE Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, Kassai Street 26/B, H-4028 Debrecen, Hungary
| | - Judit Diószegi
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Kassai Street 26/B, H-4028 Debrecen, Hungary
- Correspondence:
| |
Collapse
|
15
|
Lee J, Lee J, Jeon S, Lee J, Jang I, Yang JO, Park S, Lee B, Choi J, Choi BO, Gee HY, Oh J, Jang IJ, Lee S, Baek D, Koh Y, Yoon SS, Kim YJ, Chae JH, Park WY, Bhak JH, Choi M. A database of 5305 healthy Korean individuals reveals genetic and clinical implications for an East Asian population. Exp Mol Med 2022; 54:1862-1871. [PMID: 36323850 PMCID: PMC9628380 DOI: 10.1038/s12276-022-00871-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022] Open
Abstract
Despite substantial advances in disease genetics, studies to date have largely focused on individuals of European descent. This limits further discoveries of novel functional genetic variants in other ethnic groups. To alleviate the paucity of East Asian population genome resources, we established the Korean Variant Archive 2 (KOVA 2), which is composed of 1896 whole-genome sequences and 3409 whole-exome sequences from healthy individuals of Korean ethnicity. This is the largest genome database from the ethnic Korean population to date, surpassing the 1909 Korean individuals deposited in gnomAD. The variants in KOVA 2 displayed all the known genetic features of those from previous genome databases, and we compiled data from Korean-specific runs of homozygosity, positively selected intervals, and structural variants. In doing so, we found loci, such as the loci of ADH1A/1B and UHRF1BP1, that are strongly selected in the Korean population relative to other East Asian populations. Our analysis of allele ages revealed a correlation between variant functionality and evolutionary age. The data can be browsed and downloaded from a public website ( https://www.kobic.re.kr/kova/ ). We anticipate that KOVA 2 will serve as a valuable resource for genetic studies involving East Asian populations.
Collapse
Affiliation(s)
- Jeongeun Lee
- grid.31501.360000 0004 0470 5905Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, 03080 Republic of Korea
| | - Jean Lee
- grid.31501.360000 0004 0470 5905Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Sungwon Jeon
- grid.42687.3f0000 0004 0381 814XDepartment of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
| | - Jeongha Lee
- grid.31501.360000 0004 0470 5905Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Insu Jang
- grid.249967.70000 0004 0636 3099Korea BioInformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Republic of Korea
| | - Jin Ok Yang
- grid.249967.70000 0004 0636 3099Korea BioInformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Republic of Korea ,grid.37172.300000 0001 2292 0500Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Soojin Park
- grid.31501.360000 0004 0470 5905Department of Pediatrics, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Byungwook Lee
- grid.249967.70000 0004 0636 3099Korea BioInformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Republic of Korea
| | - Jinwook Choi
- grid.31501.360000 0004 0470 5905Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Byung-Ok Choi
- grid.264381.a0000 0001 2181 989XDepartment of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351 Republic of Korea
| | - Heon Yung Gee
- grid.15444.300000 0004 0470 5454Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
| | - Jaeseong Oh
- grid.31501.360000 0004 0470 5905Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, 03080 Republic of Korea
| | - In-Jin Jang
- grid.31501.360000 0004 0470 5905Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, 03080 Republic of Korea
| | - Sanghyuk Lee
- grid.255649.90000 0001 2171 7754Department of Bio-Information Science, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Daehyun Baek
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Youngil Koh
- grid.412484.f0000 0001 0302 820XDepartment of Internal Medicine, Seoul National University Hospital, Seoul, 03080 Republic of Korea
| | - Sung-Soo Yoon
- grid.412484.f0000 0001 0302 820XDepartment of Internal Medicine, Seoul National University Hospital, Seoul, 03080 Republic of Korea
| | - Young-Joon Kim
- grid.15444.300000 0004 0470 5454Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| | - Jong-Hee Chae
- grid.31501.360000 0004 0470 5905Department of Pediatrics, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea ,grid.412484.f0000 0001 0302 820XDepartment of Genomic Medicine, Seoul National University Hospital, Seoul, 03080 Republic of Korea
| | - Woong-Yang Park
- grid.414964.a0000 0001 0640 5613Samsung Genome Institute, Samsung Medical Center, Seoul, 06351 Republic of Korea
| | - Jong Hwa Bhak
- grid.42687.3f0000 0004 0381 814XDepartment of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
| | - Murim Choi
- grid.31501.360000 0004 0470 5905Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| |
Collapse
|
16
|
McQuillan MA, Ranciaro A, Hansen MEB, Fan S, Beggs W, Belay G, Woldemeskel D, Tishkoff SA. Signatures of Convergent Evolution and Natural Selection at the Alcohol Dehydrogenase Gene Region are Correlated with Agriculture in Ethnically Diverse Africans. Mol Biol Evol 2022; 39:msac183. [PMID: 36026493 PMCID: PMC9547508 DOI: 10.1093/molbev/msac183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The alcohol dehydrogenase (ADH) family of genes encodes enzymes that catalyze the metabolism of ethanol into acetaldehyde. Nucleotide variation in ADH genes can affect the catalytic properties of these enzymes and is associated with a variety of traits, including alcoholism and cancer. Some ADH variants, including the ADH1B*48His (rs1229984) mutation in the ADH1B gene, reduce the risk of alcoholism and are under positive selection in multiple human populations. The advent of Neolithic agriculture and associated increase in fermented foods and beverages is hypothesized to have been a selective force acting on such variants. However, this hypothesis has not been tested in populations outside of Asia. Here, we use genome-wide selection scans to show that the ADH gene region is enriched for variants showing strong signals of positive selection in multiple Afroasiatic-speaking, agriculturalist populations from Ethiopia, and that this signal is unique among sub-Saharan Africans. We also observe strong selection signals at putatively functional variants in nearby lipid metabolism genes, which may influence evolutionary dynamics at the ADH region. Finally, we show that haplotypes carrying these selected variants were introduced into Northeast Africa from a West-Eurasian source within the last ∼2,000 years and experienced positive selection following admixture. These selection signals are not evident in nearby, genetically similar populations that practice hunting/gathering or pastoralist subsistence lifestyles, supporting the hypothesis that the emergence of agriculture shapes patterns of selection at ADH genes. Together, these results enhance our understanding of how adaptations to diverse environments and diets have influenced the African genomic landscape.
Collapse
Affiliation(s)
| | - Alessia Ranciaro
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
| | | | - Shaohua Fan
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China
| | - William Beggs
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
| | - Gurja Belay
- Department of Microbial Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Dawit Woldemeskel
- Department of Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sarah A Tishkoff
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
17
|
Zhou H, Kalayasiri R, Sun Y, Nuñez YZ, Deng HW, Chen XD, Justice AC, Kranzler HR, Chang S, Lu L, Shi J, Sanichwankul K, Mutirangura A, Malison RT, Gelernter J. Genome-wide meta-analysis of alcohol use disorder in East Asians. Neuropsychopharmacology 2022; 47:1791-1797. [PMID: 35094024 PMCID: PMC9372033 DOI: 10.1038/s41386-022-01265-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022]
Abstract
Alcohol use disorder (AUD) is a leading cause of death and disability worldwide. Genome-wide association studies (GWAS) have identified ~30 AUD risk genes in European populations, but many fewer in East Asians. We conducted GWAS and genome-wide meta-analysis of AUD in 13,551 subjects with East Asian ancestry, using published summary data and newly genotyped data from five cohorts: (1) electronic health record (EHR)-diagnosed AUD in the Million Veteran Program (MVP) sample; (2) DSM-IV diagnosed alcohol dependence (AD) in a Han Chinese-GSA (array) cohort; (3) AD in a Han Chinese-Cyto (array) cohort; and (4) two AD Thai cohorts. The MVP and Thai samples included newly genotyped subjects from ongoing recruitment. In total, 2254 cases and 11,297 controls were analyzed. An AUD polygenic risk score was analyzed in an independent sample with 4464 East Asians (Genetic Epidemiology Research in Adult Health and Aging (GERA)). Phenotypes from survey data and ICD-9-CM diagnoses were tested for association with the AUD PRS. Two risk loci were detected: the well-known functional variant rs1229984 in ADH1B and rs3782886 in BRAP (near the ALDH2 gene locus) are the lead variants. AUD PRS was significantly associated with days per week of alcohol consumption (beta = 0.43, SE = 0.067, p = 2.47 × 10-10) and nominally associated with pack years of smoking (beta = 0.09, SE = 0.05, p = 4.52 × 10-2) and ever vs. never smoking (beta = 0.06, SE = 0.02, p = 1.14 × 10-2). This is the largest GWAS of AUD in East Asians to date. Building on previous findings, we were able to analyze pleiotropy, but did not identify any new risk regions, underscoring the importance of recruiting additional East Asian subjects for alcohol GWAS.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Rasmon Kalayasiri
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center for Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yan Sun
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Yaira Z Nuñez
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Hong-Wen Deng
- Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Xiang-Ding Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Amy C Justice
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Center for Interdisciplinary Research on AIDS, Yale School of Public Health, New Haven, CT, USA
| | - Henry R Kranzler
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Suhua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Lin Lu
- National Institute on Drug Dependence, Peking University, Beijing, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence, Peking University, Beijing, China
| | | | - Apiwat Mutirangura
- Center for Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Robert T Malison
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA.
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
18
|
Alcohol-Induced Oxidative Stress and the Role of Antioxidants in Alcohol Use Disorder: A Systematic Review. Antioxidants (Basel) 2022; 11:antiox11071374. [PMID: 35883865 PMCID: PMC9311529 DOI: 10.3390/antiox11071374] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Alcohol use disorder (AUD) is a highly prevalent, comorbid, and disabling disorder. The underlying mechanism of ethanol neurotoxicity and the involvement of oxidative stress is still not fully elucidated. However, ethanol metabolism has been associated with increased oxidative stress through alcohol dehydrogenase, the microsomal ethanol oxidation system, and catalase metabolic pathways. We searched the PubMed and genome-wide association studies (GWAS) catalog databases to review the literature systematically and summarized the findings focusing on AUD and alcohol abstinence in relation to oxidative stress. In addition, we reviewed the ClinicalTrials.gov resource of the US National Library of Medicine to identify all ongoing and completed clinical trials that include therapeutic interventions based on antioxidants. The retrieved clinical and preclinical studies show that oxidative stress impacts AUD through genetics, alcohol metabolism, inflammation, and neurodegeneration.
Collapse
|
19
|
Chang T, Yen T, Wei C, Hsiao T, Chen I. Impacts of ADH1B rs1229984 and ALDH2 rs671 polymorphisms on risks of alcohol-related disorder and cancer. Cancer Med 2022; 12:747-759. [PMID: 35670037 PMCID: PMC9844601 DOI: 10.1002/cam4.4920] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND ADH1B rs1229984 and ALDH2 rs671 are the specifically prevalent functional variants in the East Asians. These variants, which result in a dramatic change in enzyme activity, are highly associated with alcohol-related disorders and cancer. Previous studies focusing on the additive and synergic effects of the variants are few and inconsistent. The aim of the research was to evaluate the associations of ADH1B rs1229984 and ALDH2 rs671 with the risks of alcohol-related disorder and cancer. METHODS This cohort study enrolled 42,665 participants from the Taiwan Precision Medicine Initiative database, including 19,522 and 20,534, ADH1B and ALDH2 carriers, respectively. The associations between the two variants and cancer risk were analyzed by univariable and multivariable logistic regression. RESULTS Compared with the noncarriers, the ADH1B rs1229984 variant had a stronger effect on alcohol-related disorders and was related to an increased risk of alcohol-related cancers. The CC genotype of ADH1B rs1229984 was significantly associated with cancer of the larynx, pharynx, and nasal cavities [odds ratio (OR) = 1.56, p = 0.0009], cancer of the pancreas (OR = 1.66, p = 0.018), and cancer of the esophagus (OR = 4.10, p < 0.001). Participants who carried the rs1229984 TC/CC and rs671 GG genotypes were at higher risk of esophageal cancer (OR = 3.02, p < 0.001). The risk of esophageal cancer was increased by 381% (OR = 4.81, p < 0.001) in those carrying the rs1229984 TC/CC and rs671 GA/AA genotypes. CONCLUSION rs1229984 and rs671 are common and functionally important genetic variants in the Taiwanese population. Our findings provide strong evidence of additive and synergic risks of ADH1B and ALDH2 variants for alcohol-related disorders and cancer. The results suggested that are reduction in alcohol consumption should be advised as a preventive measure for high-risk patients carrying ADH1B rs1229984 C or the ALDH2 rs671 A allele.
Collapse
Affiliation(s)
- Ting‐Gang Chang
- Department of PsychiatryTaichung Veterans General HospitalTaichungTaiwan,School of PsychologyChung Shan Medical UniversityTaichungTaiwan
| | - Ting‐Ting Yen
- Department of OtorhinolaryngologyTaichung Veterans General HospitalTaichungTaiwan,School of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Chia‐Yi Wei
- Department of Medical ResearchTaichung Veterans General HospitalTaichungTaiwan
| | - Tzu‐Hung Hsiao
- Department of Medical ResearchTaichung Veterans General HospitalTaichungTaiwan,Department of Public Health, College of MedicineFu Jen Catholic UniversityNew Taipei CityTaiwan,Institute of Genomics and BioinformaticsNational Chung Hsing UniversityTaichungTaiwan
| | - I‐Chieh Chen
- Department of Medical ResearchTaichung Veterans General HospitalTaichungTaiwan
| |
Collapse
|
20
|
Ochi R, Ueno F, Sakuma M, Tani H, Tsugawa S, Graff-Guerrero A, Uchida H, Mimura M, Oshima S, Matsushita S, Nakajima S. Patterns of functional connectivity alterations induced by alcohol reflect somatostatin interneuron expression in the human cerebral cortex. Sci Rep 2022; 12:7896. [PMID: 35550587 PMCID: PMC9098480 DOI: 10.1038/s41598-022-12035-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Acute alcohol administration affects functional connectivity, yet the underlying mechanism is unknown. Previous work suggested that a moderate dose of alcohol reduces the activity of gamma-aminobutyric acidergic (GABAergic) interneurons, thereby leading to a state of pyramidal disinhibition and hyperexcitability. The present study aims to relate alcohol-induced changes in functional connectivity to regional genetic markers of GABAergic interneurons. Healthy young adults (N = 15, 5 males) underwent resting state functional MRI scanning prior to alcohol administration, immediately and 90 min after alcohol administration. Functional connectivity density mapping was performed to quantify alcohol-induced changes in resting brain activity between conditions. Patterns of differences between conditions were related to regional genetic markers that express the primary GABAergic cortical interneuron subtypes (parvalbumin, somatostatin, and 5-hydroxytryptamine receptor 3A) obtained from the Allen Human Brain Atlas. Acute alcohol administration increased local functional connectivity density within the visual cortex, sensorimotor cortex, thalamus, striatum, and cerebellum. Patterns of alcohol-induced changes in local functional connectivity density inversely correlated with somatostatin cortical gene expression. These findings suggest that somatostatin-expressing interneurons modulate alcohol-induced changes in functional connectivity in healthy individuals.
Collapse
Affiliation(s)
- Ryo Ochi
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Fumihiko Ueno
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Mutsuki Sakuma
- National Hospital Organization Kurihama Medical and Addiction Center, Kanagawa, Japan
| | - Hideaki Tani
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Sakiko Tsugawa
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ariel Graff-Guerrero
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shunji Oshima
- Sustainable Technology Laboratories, Asahi Quality and Innovations, Ltd., Ibaraki, Japan
| | - Sachio Matsushita
- National Hospital Organization Kurihama Medical and Addiction Center, Kanagawa, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
21
|
Balakrishnan R, Mohammed V, Veerabathiran R. The role of genetic mutation in alcoholic liver disease. EGYPTIAN LIVER JOURNAL 2022. [DOI: 10.1186/s43066-022-00175-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Alcoholic liver disease (ALD) is the world’s most common type of liver disease caused due to overconsumption of alcohol. The liver supports the best level of tissue damage by hefty drinking since it is the binding site of ethanol digestion. This disease can progress to alcoholic steatohepatitis from alcoholic fatty liver, which implies steatosis has become the most punctual reaction to hefty drinking and is portrayed by the deposition of fat hepatocytes. In addition, steatosis can advance to steatohepatitis, a more extreme, provocative sort of liver damage described by hepatic inflammation. Constant and unnecessary liquor utilization delivers a wide range of hepatic sores, fibrosis and cirrhosis, and sometimes hepatocellular carcinoma. Most people consuming > 40 g of liquor each day create alcoholic fatty liver (AFL); notwithstanding, just a subset of people will grow further developed infection. Hereditary, epigenetic, and non-hereditary components may clarify the impressive interindividual variety in the ALD phenotype.
Main body
This systematic review is to classify new candidate genes associated with alcoholic liver disorders, such as RASGRF2, ALDH2, NFE2L2, ADH1B, PNPLA3, DRD2, MTHFR, TM6SF2, IL1B, and CYP2E1, MBOAT7 as well as to revise the functions of each gene in its polymorphic sequence. The information obtained from the previously published articles revealed the crucial relationship between the genes and ALD and discussed each selected gene’s mechanism.
Conclusion
The aim of this review is to highlight the candidate genes associated with the ALD, and the evidence of this study is to deliberate the part of genetic alterations and modifications that can serve as an excellent biological maker, risk predictors, and therapeutic targets for this disease.
Collapse
|
22
|
Haas ME, Pirruccello JP, Friedman SN, Wang M, Emdin CA, Ajmera VH, Simon TG, Homburger JR, Guo X, Budoff M, Corey KE, Zhou AY, Philippakis A, Ellinor PT, Loomba R, Batra P, Khera AV. Machine learning enables new insights into genetic contributions to liver fat accumulation. CELL GENOMICS 2021; 1:100066. [PMID: 34957434 PMCID: PMC8699145 DOI: 10.1016/j.xgen.2021.100066] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/13/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022]
Abstract
Excess liver fat, called hepatic steatosis, is a leading risk factor for end-stage liver disease and cardiometabolic diseases but often remains undiagnosed in clinical practice because of the need for direct imaging assessments. We developed an abdominal MRI-based machine-learning algorithm to accurately estimate liver fat (correlation coefficients, 0.97-0.99) from a truth dataset of 4,511 middle-aged UK Biobank participants, enabling quantification in 32,192 additional individuals. 17% of participants had predicted liver fat levels indicative of steatosis, and liver fat could not have been reliably estimated based on clinical factors such as BMI. A genome-wide association study of common genetic variants and liver fat replicated three known associations and identified five newly associated variants in or near the MTARC1, ADH1B, TRIB1, GPAM, and MAST3 genes (p < 3 × 10-8). A polygenic score integrating these eight genetic variants was strongly associated with future risk of chronic liver disease (hazard ratio > 1.32 per SD score, p < 9 × 10-17). Rare inactivating variants in the APOB or MTTP genes were identified in 0.8% of individuals with steatosis and conferred more than 6-fold risk (p < 2 × 10-5), highlighting a molecular subtype of hepatic steatosis characterized by defective secretion of apolipoprotein B-containing lipoproteins. We demonstrate that our imaging-based machine-learning model accurately estimates liver fat and may be useful in epidemiological and genetic studies of hepatic steatosis.
Collapse
Affiliation(s)
- Mary E. Haas
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Molecular Biology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - James P. Pirruccello
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Machine Learning for Health, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Samuel N. Friedman
- Machine Learning for Health, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Minxian Wang
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Connor A. Emdin
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Veeral H. Ajmera
- NAFLD Research Center, Department of Medicine, University of California San Diego, La Jolla, CA 92103, USA
| | - Tracey G. Simon
- Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
- Liver Center, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Xiuqing Guo
- The Lundquist Institute for Biomedical Innovation and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Matthew Budoff
- The Lundquist Institute for Biomedical Innovation and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Kathleen E. Corey
- Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
- Liver Center, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Anthony Philippakis
- Machine Learning for Health, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Patrick T. Ellinor
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Machine Learning for Health, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rohit Loomba
- NAFLD Research Center, Department of Medicine, University of California San Diego, La Jolla, CA 92103, USA
| | - Puneet Batra
- Machine Learning for Health, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amit V. Khera
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Machine Learning for Health, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
23
|
Exploring the Role of Alcohol Metabolizing Genotypes in a 12-Week Clinical Trial of Naltrexone for Alcohol Use Disorder. Biomolecules 2021; 11:biom11101495. [PMID: 34680127 PMCID: PMC8533258 DOI: 10.3390/biom11101495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/26/2021] [Accepted: 10/03/2021] [Indexed: 11/16/2022] Open
Abstract
Background: The efficacy of naltrexone in the treatment of alcohol use disorder (AUD) has been associated with a set of variables not directly related with the expression of opioid receptors. All the variables have been found to be highly associated with AUD itself or more severe clinical levels of AUD. Objectives: Given the high association between alcohol metabolizing enzymes (AME) and the outcome of AUD, the present study aims to investigate the role of AME genotype variants in the treatment of AUD with naltrexone. Methods: We carried out a 12-week longitudinal clinical trial based on the treatment of AUD patients with naltrexone (N = 101), stratified by different alcohol metabolization genotypes. Genotyping was performed after the inclusion of the patients in the study, based on the individual presence of single nucleotide polymorphisms (SNPs) in the ADH (alcohol dehydrogenase)1B (ADH1B*2 and ADH1B*3), ADH1C (ADHC*1) and ALDH (aldehyde dehydrogenase) 2 (ALDH2*2) genes. The outcome of alcohol use has been monitored employing the timeline follow-back during the treatment. Results: The ADH1C*1 (Ile350Val, rs698) and ALDH2*2 (Glu504Lys, rs671) polymorphisms were associated with a better response to naltrexone treatment, whereas the ADH1B*3 (Arg370Cys, rs2066702) allelic variant showed a negative outcome. Conclusions: The present study explores a genomic setting for the treatment of AUD with naltrexone. According to our findings, the association between ADH1C*1 and ALDH2*2 variants and better outcomes suggests a successful treatment, whereas the ADH1B*3 mutated allele might lead to an unsuccessful treatment. Further studies should be performed to investigate the relationship between alcohol metabolizing genotypes, the family history of alcohol use disorders and the effect of naltrexone on the outcomes. Genotyping may be a valuable tool for precision-medicine and individualized approach, especially in the context of alcohol use disorders. The small number of subjects was the main limitation of the present study.
Collapse
|
24
|
Morgan MY, Sharma M, Atkinson SR. Genetic and Environmental Susceptibility to Alcoholic Hepatitis. Clin Liver Dis 2021; 25:517-535. [PMID: 34229837 DOI: 10.1016/j.cld.2021.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Constitutional, environmental, and genetic risk factors influence the development of alcohol-related cirrhosis. The amount of alcohol consumed and whether excessive drinking continues after the identification of pre-cirrhotic liver damage are key risk factors. Female sex, ethnicity, obesity, coffee consumption, cigarette smoking, and exposure to other causes of liver injury also influence the risk of disease development. More recently several genetic loci have been robustly associated with the risk for developing significant alcohol-related liver disease. It remains unclear whether additional risk factors are involved in the development of the clinical syndrome of alcoholic hepatitis, but the genetic evidence is suggestive.
Collapse
Affiliation(s)
- Marsha Y Morgan
- UCL Institute for Liver & Digestive Health, Division of Medicine, Royal Free Campus, University College, Rowland Hill Street, Hampstead, London NW3 2PF, UK.
| | - Moksh Sharma
- UCL Institute for Liver & Digestive Health, Division of Medicine, Royal Free Campus, University College, Rowland Hill Street, Hampstead, London NW3 2PF, UK
| | - Stephen R Atkinson
- Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
25
|
Ayuso P, García-Martín E, Cornejo-García JA, Agúndez JAG, Ladero JM. Genetic Variants of Alcohol Metabolizing Enzymes and Alcohol-Related Liver Cirrhosis Risk. J Pers Med 2021; 11:jpm11050409. [PMID: 34068303 PMCID: PMC8153263 DOI: 10.3390/jpm11050409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 11/25/2022] Open
Abstract
Alcohol-related liver disease (ARLD) is a major public health issue caused by excessive alcohol consumption. ARLD encompasses a wide range of chronic liver lesions, alcohol-related liver cirrhosis being the most severe and harmful state. Variations in the genes encoding the enzymes, which play an active role in ethanol metabolism, might influence alcohol exposure and hence be considered as risk factors of developing cirrhosis. We conducted a case-control study in which 164 alcohol-related liver cirrhosis patients and 272 healthy controls were genotyped for the following functional single nucleotide variations (SNVs): ADH1B gene, rs1229984, rs1041969, rs6413413, and rs2066702; ADH1C gene, rs35385902, rs283413, rs34195308, rs1693482, and rs35719513; CYP2E1 gene, rs3813867. Furthermore, copy number variations (CNVs) for ADH1A, ADH1B, ADH1C, and CYP2E1 genes were analyzed. A significant protective association with the risk of developing alcohol-related liver cirrhosis was observed between the mutant alleles of SNVs ADH1B rs1229984 (Pc value = 0.037) and ADH1C rs283413 (Pc value = 0.037). We identified CNVs in all genes studied, ADH1A gene deletions being more common in alcohol-related liver cirrhosis patients than in control subjects, although the association lost statistical significance after multivariate analyses. Our findings support that susceptibility to alcohol-related liver cirrhosis is related to variations in alcohol metabolism genes.
Collapse
Affiliation(s)
- Pedro Ayuso
- ARADyAL, Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, UEx, 10003 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
- Correspondence:
| | - Elena García-Martín
- ARADyAL, Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, UEx, 10003 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José A. Cornejo-García
- ARADyAL, Instituto de Salud Carlos III Research Laboratory, IBIMA, Regional University Hospital of Málaga, UMA, 29010 Málaga, Spain;
| | - José A. G. Agúndez
- ARADyAL, Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, UEx, 10003 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José María Ladero
- Service of Gastroenterology (Liver Unit), Hospital Clínico San Carlos, Universidad Complutense Medical School, 28040 Madrid, Spain;
| |
Collapse
|
26
|
Mathkar PP, Chen X, Sulovari A, Li D. Characterization of Hepatitis B Virus Integrations Identified in Hepatocellular Carcinoma Genomes. Viruses 2021; 13:v13020245. [PMID: 33557409 PMCID: PMC7915589 DOI: 10.3390/v13020245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality. Almost half of HCC cases are associated with hepatitis B virus (HBV) infections, which often lead to HBV sequence integrations in the human genome. Accurate identification of HBV integration sites at a single nucleotide resolution is critical for developing a better understanding of the cancer genome landscape and of the disease itself. Here, we performed further analyses and characterization of HBV integrations identified by our recently reported VIcaller platform in recurrent or known HCC genes (such as TERT, MLL4, and CCNE1) as well as non-recurrent cancer-related genes (such as CSMD2, NKD2, and RHOU). Our pathway enrichment analysis revealed multiple pathways involving the alcohol dehydrogenase 4 gene, such as the metabolism pathways of retinol, tyrosine, and fatty acid. Further analysis of the HBV integration sites revealed distinct patterns involving the integration upper breakpoints, integrated genome lengths, and integration allele fractions between tumor and normal tissues. Our analysis also implies that the VIcaller method has diagnostic potential through discovering novel clonal integrations in cancer-related genes. In conclusion, although VIcaller is a hypothesis free virome-wide approach, it can still be applied to accurately identify genome-wide integration events of a specific candidate virus and their integration allele fractions.
Collapse
Affiliation(s)
- Pranav P. Mathkar
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA; (P.P.M.); (A.S.)
| | - Xun Chen
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA; (P.P.M.); (A.S.)
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto 606-8501, Japan
- Correspondence: (X.C.); (D.L.)
| | - Arvis Sulovari
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA; (P.P.M.); (A.S.)
- Cajal Neuroscience Inc., Seattle, WA 98102, USA
| | - Dawei Li
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA; (P.P.M.); (A.S.)
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
- Correspondence: (X.C.); (D.L.)
| |
Collapse
|
27
|
Li W, Thygesen JH, O'Brien NL, Heydtmann M, Smith I, Degenhardt F, Nöthen MM, Morgan MY, Bass NJ, McQuillin A. The influence of regression models on genome-wide association studies of alcohol dependence: a comparison of binary and quantitative analyses. Psychiatr Genet 2021; 31:13-20. [PMID: 33290381 DOI: 10.1097/ypg.0000000000000268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Genome-wide association studies (GWAS) of alcohol dependence syndrome (ADS) offer a platform to detect genetic risk loci. However, the majority of the ADS GWAS undertaken, to date, have utilized a case-control design and have failed to identify consistently replicable loci with the exception of protective variants within the alcohol metabolizing genes, notably ADH1B. The ADS phenotype shows considerable variability which means that the use of quantitative variables as a proxy for the severity of ADS has the potential to facilitate identification of risk loci by increasing statistical power. The current study aims to examine the influences of using binary and adjusted quantitative measures of ADS on GWAS outcomes and on calculated polygenic risk scores (PRS). METHODS A GWAS was performed in 1251 healthy controls with no history of excess alcohol use and 739 patients with ADS classified using binary DMS-IV criteria. Two additional GWAS were undertaken using a quantitative score based on DSM-IV criteria, which were applied assuming both normal and non-normal distributions of the phenotypic variables. PRS analyses were performed utilizing the data from the binary and the quantitative trait analyses. RESULTS No associations were identified at genome-wide significance in any of the individual GWAS; results were comparable in all three. The top associated single nucleotide polymorphism was located on the alcohol dehydrogenase gene cluster on chromosome 4, consistent with previous ADS GWAS. The quantitative trait analysis adjusted for the distribution of the criterion score and the associated PRS had the smallest standard errors and thus the greatest precision. CONCLUSION Further exploitation of the use of qualitative trait analysis in GWAS in ADS is warranted.
Collapse
Affiliation(s)
- Wenqianglong Li
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London
| | - Johan Hilge Thygesen
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London
| | - Niamh Louise O'Brien
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London
| | - Mathis Heydtmann
- Royal Alexandria Hospital, NHS Greater Glasgow and Clyde, Paisley
| | - Iain Smith
- Glasgow Addiction Services, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn
- Department of Child and Adolescent Psychiatry, University of Duisburg-Essen, Essen, Germany
| | - Markus Maria Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn
| | - Marsha Yvonne Morgan
- UCL Institute for Liver & Digestive Health, Division of Medicine, Royal Free Campus, University College London, London, UK
| | - Nicholas James Bass
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London
| | - Andrew McQuillin
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London
| |
Collapse
|
28
|
Blázovics A. Alcoholic liver disease. INFLUENCE OF NUTRIENTS, BIOACTIVE COMPOUNDS, AND PLANT EXTRACTS IN LIVER DISEASES 2021:57-82. [DOI: 10.1016/b978-0-12-816488-4.00010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
29
|
Ikeda K, Ide S, Takahashi-Omoe H, Minami M, Miyata H, Kawato M, Okamoto H, Kikuchi T, Saito Y, Shirao T, Sekino Y, Murai T, Matsumoto T, Iseki M, Nishitani Y, Sumitani M, Takahashi H, Yamawaki S, Isa T, Kamio Y. Required research activities to overcome addiction problems in Japan. TAIWANESE JOURNAL OF PSYCHIATRY 2021. [DOI: 10.4103/tpsy.tpsy_3_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
30
|
Eduardo VG, Silvia S, Jose PC, Tiebing L, Samer G, Oscar C, Wanqing L, Naga C. ADH1B∗2 Is Associated With Reduced Severity of Nonalcoholic Fatty Liver Disease in Adults, Independent of Alcohol Consumption. Gastroenterology 2020; 159:929-943. [PMID: 32454036 PMCID: PMC7502531 DOI: 10.1053/j.gastro.2020.05.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Alcohol dehydrogenase 1B (ADH1B) is involved in alcohol metabolism. The allele A (ADH1B∗2) of the rs1229984: A>G variant in ADH1B is associated with a higher alcohol metabolizing activity compared to the ancestral allele G (ADH1B∗1). Moderate alcohol consumption is associated with reduced severity of nonalcoholic fatty liver disease (NAFLD), based on histologic analysis, compared with no alcohol consumption. However, it is unclear whether ADH1B∗2 modifies the relationship between moderate alcohol consumption and severity of NAFLD. We examined the association between ADH1B∗2 and moderate alcohol consumption and histologic severity of NAFLD. METHODS We collected data from 1557 multiethnic adult patients with biopsy-proven NAFLD enrolled into 4 different studies conducted by the Nonalcoholic Steatohepatitis (NASH) Clinical Research Network. Histories of alcohol consumption were obtained from answers to standardized questionnaires. Liver biopsy samples were analyzed by histology and scored centrally according to the NASH Clinical Research Network criteria. We performed covariate adjusted logistic regressions to identify associations between histologic features of NAFLD severity and moderate alcohol consumption and/or ADH1B∗2. RESULTS A higher proportion of Asians/Pacific Islanders/Hawaiians carried the ADH1B∗2 allele (86%) than other racial groups (4%-13%). However, the study population comprised mostly non-Hispanic whites (1153 patients, 74%), so the primary analysis focused on this group. Among them, 433 were moderate drinkers and 90 were ADH1B∗2 carriers. After we adjusted for confounders, including alcohol consumption status, ADH1B∗2 was associated with lower frequency of steatohepatitis (odds ratio [OR], 0.52; P < .01) or fibrosis (odds ratio, 0.69; P = .050) compared with ADH1B∗1. Moderate alcohol consumption (g/d) reduced the severity of NAFLD in patients with ADH1B∗1 or ADH1B∗2. However, ADH1B∗2, compared to ADH1B∗1, was associated with a reduced risk of definite NASH (ADH1B∗2: OR, 0.80; P < .01 vs ADH1B∗1: OR, 0.96; P = .036) and a reduced risk of an NAFLD activity score of 4 or higher (ADH1B∗2: OR, 0.83; P = .012 vs ADH1B∗1: OR, 0.96; P = .048) (P < .01 for the difference in the effect of moderate alcohol consumption between alleles). The relationship between body mass index and NAFLD severity was significantly modified by ADH1B∗2, even after we controlled for alcohol consumption. CONCLUSIONS ADH1B∗2 reduces the risk of NASH and fibrosis in adults with NAFLD regardless of alcohol consumption status. ADH1B∗2 might modify the association between high body mass index and NAFLD severity.
Collapse
Affiliation(s)
- Vilar-Gomez Eduardo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Sookoian Silvia
- Department of Clinical and Molecular Hepatology, Institute of Medical Research (IDIM), University of Buenos Aires-National Scientific and Technical Research Council (CONICET), Ciudad Autonoma de Buenos Aires, Argentina
| | - Pirola Carlos Jose
- Molecular Genetics and Biology of Complex Diseases, Institute of Medical Research (IDIM), University of Buenos Aires-National Scientific and Technical Research Council (CONICET), Ciudad Autonoma de Buenos Aires, Argentina
| | - Liang Tiebing
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Gawrieh Samer
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Cummings Oscar
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN
| | - Liu Wanqing
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences; Department of Pharmacology, School of Medicine; Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI
| | - Chalasani Naga
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
31
|
Schmitt RE, Messick MR, Shell BC, Dunbar EK, Fang H, Shelton KL, Venton BJ, Pletcher SD, Grotewiel M. Dietary yeast influences ethanol sedation in Drosophila via serotonergic neuron function. Addict Biol 2020; 25:e12779. [PMID: 31169340 DOI: 10.1111/adb.12779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 03/23/2019] [Accepted: 05/02/2019] [Indexed: 01/10/2023]
Abstract
Abuse of alcohol is a major clinical problem with far-reaching health consequences. Understanding the environmental and genetic factors that contribute to alcohol-related behaviors is a potential gateway for developing novel therapeutic approaches for patients that abuse the drug. To this end, we have used Drosophila melanogaster as a model to investigate the effect of diet, an environmental factor, on ethanol sedation. Providing flies with diets high in yeast, a routinely used component of fly media, increased their resistance to ethanol sedation. The yeast-induced resistance to ethanol sedation occurred in several different genetic backgrounds, was observed in males and females, was elicited by yeast from different sources, was readily reversible, and was associated with increased nutrient intake as well as decreased internal ethanol levels. Inhibition of serotonergic neuron function using multiple independent genetic manipulations blocked the effect of yeast supplementation on ethanol sedation, nutrient intake, and internal ethanol levels. Our results demonstrate that yeast is a critical dietary component that influences ethanol sedation in flies and that serotonergic signaling is required for the effect of dietary yeast on nutrient intake, ethanol uptake/elimination, and ethanol sedation. Our studies establish the fly as a model for diet-induced changes in ethanol sedation and raise the possibility that serotonin might mediate the effect of diet on alcohol-related behavior in other species.
Collapse
Affiliation(s)
- Rebecca E. Schmitt
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
| | - Monica R. Messick
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
| | - Brandon C. Shell
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
| | - Ellyn K. Dunbar
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
| | - Huai‐Fang Fang
- Department of Chemistry and Neuroscience Graduate Program University of Virginia Charlottesville VA USA
| | - Keith L. Shelton
- Department of Pharmacology and Toxicology Virginia Commonwealth University Richmond VA USA
| | - B. Jill Venton
- Department of Chemistry and Neuroscience Graduate Program University of Virginia Charlottesville VA USA
| | - Scott D. Pletcher
- Department of Molecular and Integrative Physiology and Geriatrics Center University of Michigan Ann Arbor MI USA
| | - Mike Grotewiel
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
- Virginia Commonwealth University Alcohol Research Center Richmond VA USA
| |
Collapse
|
32
|
Stickel F, Lutz P, Buch S, Nischalke HD, Silva I, Rausch V, Fischer J, Weiss KH, Gotthardt D, Rosendahl J, Marot A, Elamly M, Krawczyk M, Casper M, Lammert F, Buckley TWM, McQuillin A, Spengler U, Eyer F, Vogel A, Marhenke S, von Felden J, Wege H, Sharma R, Atkinson S, Franke A, Nehring S, Moser V, Schafmayer C, Spahr L, Lackner C, Stauber RE, Canbay A, Link A, Valenti L, Grove JI, Aithal GP, Marquardt JU, Fateen W, Zopf S, Dufour JF, Trebicka J, Datz C, Deltenre P, Mueller S, Berg T, Hampe J, Morgan MY. Genetic Variation in HSD17B13 Reduces the Risk of Developing Cirrhosis and Hepatocellular Carcinoma in Alcohol Misusers. Hepatology 2020; 72:88-102. [PMID: 31630428 DOI: 10.1002/hep.30996] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Carriage of rs738409:G in patatin-like phospholipase domain containing 3 (PNPLA3) is associated with an increased risk for developing alcohol-related cirrhosis and hepatocellular carcinoma (HCC). Recently, rs72613567:TA in hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13) was shown to be associated with a reduced risk for developing alcohol-related liver disease and to attenuate the risk associated with carriage of PNPLA3 rs738409:G. This study explores the risk associations between these two genetic variants and the development of alcohol-related cirrhosis and HCC. APPROACH AND RESULTS Variants in HSD17B13 and PNPLA3 were genotyped in 6,171 participants, including 1,031 with alcohol-related cirrhosis and HCC, 1,653 with alcohol-related cirrhosis without HCC, 2,588 alcohol misusers with no liver disease, and 899 healthy controls. Genetic associations with the risks for developing alcohol-related cirrhosis and HCC were determined using logistic regression analysis. Carriage of HSD17B13 rs72613567:TA was associated with a lower risk for developing both cirrhosis (odds ratio [OR], 0.79; 95% confidence interval [CI], 0.72-0.88; P = 8.13 × 10-6 ) and HCC (OR, 0.77; 95% CI, 0.68-0.89; P = 2.27 × 10-4 ), whereas carriage of PNPLA3 rs738409:G was associated with an increased risk for developing cirrhosis (OR, 1.70; 95% CI, 1.54-1.88; P = 1.52 × 10-26 ) and HCC (OR, 1.77; 95% CI, 1.58-1.98; P = 2.31 × 10-23 ). These associations remained significant after adjusting for age, sex, body mass index, type 2 diabetes, and country. Carriage of HSD17B13 rs72613567:TA attenuated the risk for developing cirrhosis associated with PNPLA3 rs738409:G in both men and women, but the protective effect against the subsequent development of HCC was only observed in men (ORallelic , 0.75; 95% CI, 0.64-0.87; P = 1.72 × 10-4 ). CONCLUSIONS Carriage of variants in PNPLA3 and HSD17B13 differentially affect the risk for developing advanced alcohol-related liver disease. A genotypic/phenotypic risk score might facilitate earlier diagnosis of HCC in this population.
Collapse
Affiliation(s)
- Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital of Zürich, Switzerland
| | - Philipp Lutz
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Stephan Buch
- Medical Department 1, University Hospital Dresden, TU Dresden, Germany
| | | | - Ines Silva
- Department of Internal Medicine and Center for Alcohol Research, Salem Medical Center University Hospital Heidelberg, Heidelberg, Germany
| | - Vanessa Rausch
- Department of Internal Medicine and Center for Alcohol Research, Salem Medical Center University Hospital Heidelberg, Heidelberg, Germany
| | - Janett Fischer
- Division of Hepatology, Clinic and Polyclinic for Gastroenterology, Hepatology, Infectiology and Pneumology, University Clinic Leipzig, Leipzig, Germany
| | - Karl Heinz Weiss
- Department of Internal Medicine IV, Medical University of Heidelberg, Germany
| | - Daniel Gotthardt
- Department of Internal Medicine IV, Medical University of Heidelberg, Germany
| | - Jonas Rosendahl
- Department of Gastroenterology, University Hospital Halle/Saale, Germany
| | - Astrid Marot
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland
| | - Mona Elamly
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany.,Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Markus Casper
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Thomas W M Buckley
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, UK
| | - Andrew McQuillin
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, UK
| | - Ulrich Spengler
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Florian Eyer
- Department of Clinical Toxicology, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Germany
| | - Silke Marhenke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Germany
| | - Johann von Felden
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henning Wege
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rohini Sharma
- Department of Metabolism, Digestion & Reproduction, Division of Surgery and Cancer, Imperial College London, London, UK
| | - Stephen Atkinson
- Department of Metabolism, Digestion & Reproduction, Division of Surgery and Cancer, Imperial College London, London, UK
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Sophie Nehring
- Medical Department 1, University Hospital Dresden, TU Dresden, Germany
| | - Vincent Moser
- Medical Department 1, University Hospital Dresden, TU Dresden, Germany
| | - Clemens Schafmayer
- Department of Visceral and Thoracic Surgery, Kiel University, Kiel, Germany
| | - Laurent Spahr
- Departments of Gastroenterology and Hepatology, University Hospitals of Geneva and Faculty of Medicine, Geneva, Switzerland
| | | | - Rudolf E Stauber
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Ali Canbay
- Ruhr-Universität Bochum, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| | - Alexander Link
- Ruhr-Universität Bochum, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.,Translational Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Jane I Grove
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK.,Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham, UK
| | - Guruprasad P Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK.,Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham, UK
| | - Jens U Marquardt
- Department of Medicine I, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Waleed Fateen
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK.,Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham, UK
| | - Steffen Zopf
- Medical Department 1, University of Erlangen-Nuremberg, Germany
| | - Jean-Francois Dufour
- University Clinic for Visceral Surgery and Medicine, Inselspital, University of Berne, Berne, Switzerland
| | - Jonel Trebicka
- Department of Internal Medicine I, Goethe University Frankfurt, Frankfurt, Germany
| | - Christian Datz
- Department of Internal Medicine, Hospital Oberndorf, Teaching Hospital of the Paracelsus Private Medical University of Salzburg, Oberndorf, Austria
| | - Pierre Deltenre
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland
| | - Sebastian Mueller
- Department of Internal Medicine and Center for Alcohol Research, Salem Medical Center University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Berg
- Division of Hepatology, Clinic and Polyclinic for Gastroenterology, Hepatology, Infectiology and Pneumology, University Clinic Leipzig, Leipzig, Germany
| | - Jochen Hampe
- Medical Department 1, University Hospital Dresden, TU Dresden, Germany
| | - Marsha Y Morgan
- UCL Institute for Liver & Digestive Health, Division of Medicine, Royal Free Campus, University College London, UK
| |
Collapse
|
33
|
Govind P, Pavethynath S, Sawabe M, Arai T, Muramatsu M. Association between rs1229984 in ADH1B and cancer prevalence in a Japanese population. Mol Clin Oncol 2020; 12:503-510. [PMID: 32337031 PMCID: PMC7179391 DOI: 10.3892/mco.2020.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/15/2020] [Indexed: 12/24/2022] Open
Abstract
Alcohol consumption is an established risk factor for cancer, but little is known regarding the effect of genetic polymorphisms in alcohol metabolism genes on alcohol-related cancer risk in the Japanese population. Associations between the ADH1B gene (alcohol dehydrogenase 1B), single nucleotide polymorphism (SNP) rs1229984 and cancer have been extensively studied yet evidence is inconsistent. This population-based case-control study primarily aimed to clarify any association between SNP rs1229984 in both overall and specific cancer risk in a Japanese population. The functional non-synonymous SNP rs1229984 (Arg48His) was genotyped using DNA samples from 1,359 consecutive autopsy cases registered in The Japanese Single Nucleotide Polymorphisms for Geriatric Research database. Medical and pathological record data from this database were used to categorise cases and controls. Results included 1,359 participants, 816 cases and 543 controls. Multinomial logistic regression analyses showed no significant association between rs1229984 presence and overall cancer risk in both dominant and recessive genetic inheritance models [Arg/Arg+Arg/His vs. His/His: Adjusted odds ratio (OR)=0.66 (95% CI=0.39-1.13; P=0.129), Arg/Arg vs. Arg/His+His/His: OR=0.95 (95% CI=0.75-1.20; P=0.657)]. However, results showed those homozygous for rs1229984 (genotype His/His) were at significantly decreased odds of lung cancer than other genotypes [recessive model: OR=0.64 (95% CI=0.44-0.93; P=0.020]. In conclusion, there was no significant association between rs1229984 and odds of overall or specific cancers except in lung cancer where His/His genotype decreased odds. To the best of our knowledge, the association between His/His and decreased odds of lung cancer is a novel finding. These findings require further validation in larger studies.
Collapse
Affiliation(s)
- Pallavi Govind
- Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Shilpa Pavethynath
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Motoji Sawabe
- Department of Molecular Pathology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
| | - Masaaki Muramatsu
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| |
Collapse
|
34
|
Wilson DF, Matschinsky FM. Ethanol metabolism: The good, the bad, and the ugly. Med Hypotheses 2020; 140:109638. [PMID: 32113062 DOI: 10.1016/j.mehy.2020.109638] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/20/2022]
Abstract
Throughout the world, ethanol is both an important commercial commodity and a source of major medical and social problems. Ethanol readily passes through biological membranes and distributes throughout the body. It is oxidized, first to acetaldehyde and then to acetate, and finally by the citric acid cycle in virtually all tissues. The oxidation of ethanol is irreversible and unregulated, making the rate dependent only on local concentration and enzyme activity. This unregulated input of reducing equivalents increases reduction of both cytoplasmic and intramitochondrial NAD and, through the latter, cellular energy state {[ATP]/([ADP][Pi])}. In brain, this increase in energy state stimulates dopaminergic neural activity signalling reward and a sense of well being, while suppressing glutamatergic neural activity signalling anxiety and unease. These positive responses to ethanol ingestion are important to social alcohol consumption. Importantly, decreased free [AMP] decreases AMP-dependent protein kinase (AMPK) activity, an important regulator of cellular energy metabolism. Oxidation of substrates used for energy metabolism in the absence of ethanol is down regulated to accommodate the input from ethanol. In liver, chronic ethanol metabolism results in fatty liver and general metabolic dysfunction. In brain, transport of other oxidizable metabolites through the blood-brain barrier and the enzymes for their oxidation are both down regulated. For exposures of short duration, ethanol induced regulatory changes are rapid and reversible, recovering completely when the concentrations of ethanol and acetate fall again. Longer periods of ethanol exposure and associated chronic suppression of AMPK activity activates regulatory mechanisms, including gene expression, that operate over longer time scales, both in onset and reversal. If chronic alcohol consumption is abruptly ended, metabolism is no longer able to respond rapidly enough to compensate. Glutamatergic neural activity adapts to chronic dysregulation of glutamate metabolism and suppression of glutamatergic neural activity by increasing excitatory and decreasing inhibitory amino acid receptors. A point is reached (ethanol dependence) where withdrawal of ethanol results in significant metabolic energy depletion in neurons and other brain cells as well as hyperexcitation of the glutamatergic system. The extent and regional specificity of energy depletion in the brain, combined with hyperactivity of the glutamatergic neuronal system, largely determines the severity of withdrawal symptoms.
Collapse
Affiliation(s)
- David F Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Franz M Matschinsky
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
35
|
Gordon KS, McGinnis K, Dao C, Rentsch CT, Small A, Smith RV, Kember RL, Gelernter J, Kranzler HR, Bryant KJ, Tate JP, Justice AC. Differentiating Types of Self-Reported Alcohol Abstinence. AIDS Behav 2020; 24:655-665. [PMID: 31435887 DOI: 10.1007/s10461-019-02638-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We contrast three types of abstinence: quit after alcohol associated problems (Q-AP), quit for other reasons (Q-OR), and lifetime abstainer (LTA). We summarized the characteristics of people living with HIV (PLWH), and matched uninfected individuals, by levels of alcohol use and types of abstinence. We then identified factors that differentiate abstinence and determined whether the association with an alcohol biomarker or a genetic polymorphism is improved by differentiating abstinence. Among abstainers, 34% of PLWH and 38% of uninfected were Q-AP; 53% and 53% were Q-OR; and 12% and 10% were LTA. Logistic regression models found smoking, alcohol, cocaine, and hepatitis C increased odds of Q-AP, whereas smoking and marijuana decreased odds of LTA. Differentiating types of abstinence improved association. Q-APs and LTAs can be readily differentiated by an alcohol biomarker and genetic polymorphism. Differentiating type of abstinence may enhance understanding of alcohol health effects.
Collapse
Affiliation(s)
- Kirsha S Gordon
- VA Connecticut Healthcare System, 11ACSL-G, 950 Campbell Avenue, West Haven, CT, 06516, USA.
- Yale University School of Medicine, New Haven, CT, 06510, USA.
| | - Kathleen McGinnis
- VA Connecticut Healthcare System, 11ACSL-G, 950 Campbell Avenue, West Haven, CT, 06516, USA
| | - Cecilia Dao
- Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Christopher T Rentsch
- VA Connecticut Healthcare System, 11ACSL-G, 950 Campbell Avenue, West Haven, CT, 06516, USA
- Epidemiology & Population Health, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Aeron Small
- Yale University School of Medicine, New Haven, CT, 06510, USA
| | | | - Rachel L Kember
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center VISN4 MIRECC, Philadelphia, PA, 19104, USA
| | - Joel Gelernter
- VA Connecticut Healthcare System, 11ACSL-G, 950 Campbell Avenue, West Haven, CT, 06516, USA
- Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Henry R Kranzler
- Corporal Michael J. Crescenz Veterans Affairs Medical Center VISN4 MIRECC, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kendall J Bryant
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Janet P Tate
- VA Connecticut Healthcare System, 11ACSL-G, 950 Campbell Avenue, West Haven, CT, 06516, USA
- Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Amy C Justice
- VA Connecticut Healthcare System, 11ACSL-G, 950 Campbell Avenue, West Haven, CT, 06516, USA
- Yale University School of Medicine, New Haven, CT, 06510, USA
| |
Collapse
|
36
|
Thompson A, Cook J, Choquet H, Jorgenson E, Yin J, Kinnunen T, Barclay J, Morris AP, Pirmohamed M. Functional validity, role, and implications of heavy alcohol consumption genetic loci. SCIENCE ADVANCES 2020; 6:eaay5034. [PMID: 31998841 PMCID: PMC6962045 DOI: 10.1126/sciadv.aay5034] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
High alcohol consumption is a risk factor for morbidity and mortality, yet few genetic loci have been robustly associated with alcohol intake. Here, we use U.K. Biobank (n = 125,249) and GERA (n = 47,967) datasets to determine genetic factors associated with extreme population-level alcohol consumption and examine the functional validity of outcomes using model organisms and in silico techniques. We identified six loci attaining genome-wide significant association with alcohol consumption after meta-analysis and meeting our criteria for replication: ADH1B (lead SNP: rs1229984), KLB (rs13130794), BTF3P13 (rs144198753), GCKR (rs1260326), SLC39A8 (rs13107325), and DRD2 (rs11214609). A conserved role in phenotypic responses to alcohol was observed for all genetic targets available for investigation (ADH1B, GCKR, SLC39A8, and KLB) in Caenorhabditis elegans. Evidence of causal links to lung cancer, and shared genetic architecture with gout and hypertension was also found. These findings offer insight into genes, pathways, and relationships for disease risk associated with high alcohol consumption.
Collapse
Affiliation(s)
- Andrew Thompson
- Wolfson Centre for Personalised Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- MRC Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- Liverpool Centre for Alcohol Research University of Liverpool, Liverpool, UK
| | - James Cook
- Biostatistics, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Jie Yin
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Tarja Kinnunen
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Jeff Barclay
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andrew P. Morris
- Biostatistics, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Munir Pirmohamed
- Wolfson Centre for Personalised Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- MRC Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- Liverpool Centre for Alcohol Research University of Liverpool, Liverpool, UK
| |
Collapse
|
37
|
Lawson DJ, Davies NM, Haworth S, Ashraf B, Howe L, Crawford A, Hemani G, Davey Smith G, Timpson NJ. Is population structure in the genetic biobank era irrelevant, a challenge, or an opportunity? Hum Genet 2020; 139:23-41. [PMID: 31030318 PMCID: PMC6942007 DOI: 10.1007/s00439-019-02014-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 04/12/2019] [Indexed: 12/11/2022]
Abstract
Replicable genetic association signals have consistently been found through genome-wide association studies in recent years. The recent dramatic expansion of study sizes improves power of estimation of effect sizes, genomic prediction, causal inference, and polygenic selection, but it simultaneously increases susceptibility of these methods to bias due to subtle population structure. Standard methods using genetic principal components to correct for structure might not always be appropriate and we use a simulation study to illustrate when correction might be ineffective for avoiding biases. New methods such as trans-ethnic modeling and chromosome painting allow for a richer understanding of the relationship between traits and population structure. We illustrate the arguments using real examples (stroke and educational attainment) and provide a more nuanced understanding of population structure, which is set to be revisited as a critical aspect of future analyses in genetic epidemiology. We also make simple recommendations for how problems can be avoided in the future. Our results have particular importance for the implementation of GWAS meta-analysis, for prediction of traits, and for causal inference.
Collapse
Affiliation(s)
- Daniel John Lawson
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK.
| | - Neil Martin Davies
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Simon Haworth
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Bilal Ashraf
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Laurence Howe
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Andrew Crawford
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Nicholas John Timpson
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| |
Collapse
|
38
|
Zaso MJ, Goodhines PA, Wall TL, Park A. Meta-Analysis on Associations of Alcohol Metabolism Genes With Alcohol Use Disorder in East Asians. Alcohol Alcohol 2019; 54:216-224. [PMID: 30834931 DOI: 10.1093/alcalc/agz011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/27/2019] [Accepted: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
AIMS The current meta-analysis tested independent and composite associations of three commonly studied alcohol metabolism alleles with alcohol use disorder (AUD) within East Asians as well as characterized potential moderating factors in these associations. METHODS For meta-analysis, 32 articles were selected that investigated ALDH2 (n = 17,755), ADH1B (n = 13,591) and ADH1C (n = 4,093) associations with AUD in East Asians. RESULTS AND CONCLUSIONS All three variants were associated with AUD across allelic and genotypic models: ALDH2, ORs = 0.25, P < 0.001; ADH1B, ORs = 0.22-0.49, P < 0.001; ADH1C, ORs = 0.26-0.46, P < 0.001. Composite analyses suggested genetic associations did not differ across ALDH2*2 and ADH1B*2, correcting for multiple comparisons. Moderation analyses suggested ADH1B was more strongly associated with AUD among samples with cases recruited from treatment than the community. Also, strength of ALDH2 and/or ADH1B associations varied with mean age and proportion of men in cases and controls. Findings support medium to large and unique associations of ALDH2, ADH1B, and ADH1C with AUD in East Asians. Results also identified novel methodological and sample characteristics that may modulate strength of these associations.
Collapse
Affiliation(s)
- Michelle J Zaso
- Department of Psychology, Syracuse University, 430 Huntington Hall, Syracuse, NY, USA
| | - Patricia A Goodhines
- Department of Psychology, Syracuse University, 430 Huntington Hall, Syracuse, NY, USA
| | - Tamara L Wall
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA.,V.A. San Diego Health System, 3350 La Jolla Village Drive, San Diego, CA, USA
| | - Aesoon Park
- Department of Psychology, Syracuse University, 430 Huntington Hall, Syracuse, NY, USA
| |
Collapse
|
39
|
Sun Y, Chang S, Wang F, Sun H, Ni Z, Yue W, Zhou H, Gelernter J, Malison RT, Kalayasiri R, Wu P, Lu L, Shi J. Genome-wide association study of alcohol dependence in male Han Chinese and cross-ethnic polygenic risk score comparison. Transl Psychiatry 2019; 9:249. [PMID: 31591379 PMCID: PMC6779867 DOI: 10.1038/s41398-019-0586-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 09/01/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022] Open
Abstract
Alcohol-related behaviors are moderately heritable and have ethnic-specific characteristics. At present, genetic studies for alcohol dependence (AD) in Chinese populations are underrepresented. We are the first to conduct a genome-wide association study (GWAS) for AD using 533 male alcoholics and 2848 controls of Han Chinese ethnicity and replicate our findings in 146 male alcoholics and 200 male controls. We then assessed genetic effects on AD characteristics (drinking volume/age onset/Michigan Alcoholism Screening Test (MAST)/Barratt Impulsiveness Scale (BIS-11)), and compared the polygenic risk of AD in Han Chinese with other populations (Thai, European American and African American). We found and validated two significant loci, one located in 4q23, with lead SNP rs2075633*ADH1B (Pdiscovery = 6.64 × 10-16) and functional SNP rs1229984*ADH1B (Pdiscovery = 3.93 × 10-13); and the other located in 12q24.12-12q24.13, with lead SNP rs11066001*BRAP (Pdiscovery = 1.63 × 10-9) and functional SNP rs671*ALDH2 (Pdiscovery = 3.44 × 10-9). ADH1B rs1229984 was associated with MAST, BIS_total score and average drinking volume. Polygenic risk scores from the Thai AD and European American AD GWAS were significantly associated with AD in Han Chinese, which were entirely due to the top two loci, however there was no significant prediction from African Americans. This is the first case-control AD GWAS in Han Chinese. Our findings demonstrate that these variants, which were highly linked with ALDH2 rs671 and ADH1B rs1229984, were significant modulators for AD in our Han Chinese cohort. A larger replication cohort is still needed to validate our findings.
Collapse
Affiliation(s)
- Yan Sun
- National Institute on Drug Dependence, Peking University, 100191, Beijing, China
| | - Suhua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Fan Wang
- Beijing Hui Long Guan Hospital, 100096, Beijing, China
- The Second Affiliated Hospital, Xinjiang Medical University, 830063, Urumqi, China
| | - Hongqiang Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Zhaojun Ni
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Weihua Yue
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Hang Zhou
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Robert T Malison
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, 06519, USA
| | - Rasmon Kalayasiri
- Department of Psychiatry, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ping Wu
- National Institute on Drug Dependence, Peking University, 100191, Beijing, China
| | - Lin Lu
- National Institute on Drug Dependence, Peking University, 100191, Beijing, China.
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China.
| | - Jie Shi
- National Institute on Drug Dependence, Peking University, 100191, Beijing, China.
- Beijing Key Laboratory of Drug Dependence Research, Peking University, 100191, Beijing, China.
- The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, Beijing, China.
- The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, 100191, Beijing, China.
| |
Collapse
|
40
|
Gelernter J, Sun N, Polimanti R, Pietrzak RH, Levey DF, Lu Q, Hu Y, Li B, Radhakrishnan K, Aslan M, Cheung KH, Li Y, Rajeevan N, Sayward F, Harrington K, Chen Q, Cho K, Honerlaw J, Pyarajan S, Lencz T, Quaden R, Shi Y, Hunter-Zinck H, Gaziano JM, Kranzler HR, Concato J, Zhao H, Stein MB. Genome-wide Association Study of Maximum Habitual Alcohol Intake in >140,000 U.S. European and African American Veterans Yields Novel Risk Loci. Biol Psychiatry 2019; 86:365-376. [PMID: 31151762 PMCID: PMC6919570 DOI: 10.1016/j.biopsych.2019.03.984] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Habitual alcohol use can be an indicator of alcohol dependence, which is associated with a wide range of serious health problems. METHODS We completed a genome-wide association study in 126,936 European American and 17,029 African American subjects in the Veterans Affairs Million Veteran Program for a quantitative phenotype based on maximum habitual alcohol consumption. RESULTS ADH1B, on chromosome 4, was the lead locus for both populations: for the European American sample, rs1229984 (p = 4.9 × 10-47); for African American, rs2066702 (p = 2.3 × 10-12). In the European American sample, we identified three additional genome-wide-significant maximum habitual alcohol consumption loci: on chromosome 17, rs77804065 (p = 1.5 × 10-12), at CRHR1 (corticotropin-releasing hormone receptor 1); the protein product of this gene is involved in stress and immune responses; and on chromosomes 8 and 10. European American and African American samples were then meta-analyzed; the associated region at CRHR1 increased in significance to 1.02 × 10-13, and we identified two additional genome-wide significant loci, FGF14 (p = 9.86 × 10-9) (chromosome 13) and a locus on chromosome 11. Besides ADH1B, none of the five loci have prior genome-wide significant support. Post-genome-wide association study analysis identified genetic correlation to other alcohol-related traits, smoking-related traits, and many others. Replications were observed in UK Biobank data. Genetic correlation between maximum habitual alcohol consumption and alcohol dependence was 0.87 (p = 4.78 × 10-9). Enrichment for cell types included dopaminergic and gamma-aminobutyric acidergic neurons in midbrain, and pancreatic delta cells. CONCLUSIONS The present study supports five novel alcohol-use risk loci, with particularly strong statistical support for CRHR1. Additionally, we provide novel insight regarding the biology of harmful alcohol use.
Collapse
Affiliation(s)
- Joel Gelernter
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| | - Ning Sun
- Veterans Affairs (VA) Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut; Department of Biostatistics, Yale University School of Medicine, New Haven, Connecticut
| | - Renato Polimanti
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Robert H Pietrzak
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Daniel F Levey
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Qiongshi Lu
- Department of Biostatistics, Yale University School of Medicine, New Haven, Connecticut
| | - Yiming Hu
- Department of Biostatistics, Yale University School of Medicine, New Haven, Connecticut
| | - Boyang Li
- Department of Biostatistics, Yale University School of Medicine, New Haven, Connecticut
| | - Krishnan Radhakrishnan
- Veterans Affairs (VA) Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut
| | - Mihaela Aslan
- Veterans Affairs (VA) Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut; Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Kei-Hoi Cheung
- Veterans Affairs (VA) Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut; Department of Emergency Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Yuli Li
- Veterans Affairs (VA) Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut; Yale Center for Medical Informatics, Yale University School of Medicine, New Haven, Connecticut
| | - Nallakkandi Rajeevan
- Veterans Affairs (VA) Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut; Yale Center for Medical Informatics, Yale University School of Medicine, New Haven, Connecticut
| | - Fred Sayward
- Veterans Affairs (VA) Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut; Yale Center for Medical Informatics, Yale University School of Medicine, New Haven, Connecticut
| | - Kelly Harrington
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, Massachusetts; Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
| | - Quan Chen
- Veterans Affairs (VA) Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut; Department of Biostatistics, Yale University School of Medicine, New Haven, Connecticut
| | - Kelly Cho
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, Massachusetts; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jacqueline Honerlaw
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, Massachusetts
| | - Saiju Pyarajan
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, Massachusetts; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Todd Lencz
- Department of Psychiatry, Hofstra Northwell School of Medicine, Hempstead, New York; Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, New York; Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, New York; Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, New York
| | - Rachel Quaden
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, Massachusetts
| | - Yunling Shi
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, Massachusetts
| | - Haley Hunter-Zinck
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, Massachusetts
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, Massachusetts; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Henry R Kranzler
- Veterans Integrated Services Networks (VISN) 4 Mental Illness Research, Education and Clinical Center, Crescenz VA Medical Center, Philadelphia, Pennsylvania; Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - John Concato
- Veterans Affairs (VA) Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut; Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Hongyu Zhao
- Veterans Affairs (VA) Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut; Department of Biostatistics, Yale University School of Medicine, New Haven, Connecticut
| | - Murray B Stein
- Psychiatry Service, VA San Diego Healthcare System, San Diego, California; Department of Psychiatry, University of California San Diego, La Jolla, California.
| |
Collapse
|
41
|
Cornelis MC. Genetic determinants of beverage consumption: Implications for nutrition and health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 89:1-52. [PMID: 31351524 PMCID: PMC7047661 DOI: 10.1016/bs.afnr.2019.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Beverages make important contributions to nutritional intake and their role in health has received much attention. This review focuses on the genetic determinants of common beverage consumption and how research in this field is contributing insight to what and how much we consume and why this genetic knowledge matters from a research and public health perspective. The earliest efforts in gene-beverage behavior mapping involved genetic linkage and candidate gene analysis but these approaches have been largely replaced by genome-wide association studies (GWAS). GWAS have identified biologically plausible loci underlying alcohol and coffee drinking behavior. No GWAS has identified variants specifically associated with consumption of tea, juice, soda, wine, beer, milk or any other common beverage. Thus far, GWAS highlight an important behavior-reward component (as opposed to taste) to beverage consumption which may serve as a potential barrier to dietary interventions. Loci identified have been used in Mendelian randomization and gene×beverage interaction analysis of disease but results have been mixed. This research is necessary as it informs the clinical relevance of SNP-beverage associations and thus genotype-based personalized nutrition, which is gaining interest in the commercial and public health sectors.
Collapse
Affiliation(s)
- Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
42
|
Sanchez-Roige S, Fontanillas P, Elson SL, Gray JC, de Wit H, Davis LK, MacKillop J, Palmer AA. Genome-wide association study of alcohol use disorder identification test (AUDIT) scores in 20 328 research participants of European ancestry. Addict Biol 2019; 24:121-131. [PMID: 29058377 PMCID: PMC6988186 DOI: 10.1111/adb.12574] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/11/2017] [Accepted: 09/25/2017] [Indexed: 12/26/2022]
Abstract
Genetic factors contribute to the risk for developing alcohol use disorder (AUD). In collaboration with the genetics company 23andMe, Inc., we performed a genome-wide association study of the alcohol use disorder identification test (AUDIT), an instrument designed to screen for alcohol misuse over the past year. Our final sample consisted of 20 328 research participants of European ancestry (55.3% females; mean age = 53.8, SD = 16.1) who reported ever using alcohol. Our results showed that the 'chip-heritability' of AUDIT score, when treated as a continuous phenotype, was 12%. No loci reached genome-wide significance. The gene ADH1C, which has been previously implicated in AUD, was among our most significant associations (4.4 × 10-7 ; rs141973904). We also detected a suggestive association on chromosome 1 (2.1 × 10-7 ; rs182344113) near the gene KCNJ9, which has been implicated in mouse models of high ethanol drinking. Using linkage disequilibrium score regression, we identified positive genetic correlations between AUDIT score, high alcohol consumption and cigarette smoking. We also observed an unexpected positive genetic correlation between AUDIT and educational attainment and additional unexpected negative correlations with body mass index/obesity and attention-deficit/hyperactivity disorder. We conclude that conducting a genetic study using responses to an online questionnaire in a population not ascertained for AUD may represent a cost-effective strategy for elucidating aspects of the etiology of AUD.
Collapse
Affiliation(s)
- Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | | | | | | | - Joshua C. Gray
- Center for Deployment Psychology, Uniformed Services University, Bethesda, MD, 20814
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA
| | - Lea K. Davis
- Vanderbilt Genetics Institute; Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - James MacKillop
- Peter Boris Centre for Addictions Research, McMaster University/St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 3K7, Canada; Homewood Research Institute, Guelph, ON N1E 6K9, Canada
| | - Abraham A. Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
43
|
Bach P, Zois E, Vollstädt-Klein S, Kirsch M, Hoffmann S, Jorde A, Frank J, Charlet K, Treutlein J, Beck A, Heinz A, Walter H, Rietschel M, Kiefer F. Association of the alcohol dehydrogenase gene polymorphism rs1789891 with gray matter brain volume, alcohol consumption, alcohol craving and relapse risk. Addict Biol 2019; 24:110-120. [PMID: 29058369 DOI: 10.1111/adb.12571] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 07/27/2017] [Accepted: 09/12/2017] [Indexed: 11/27/2022]
Abstract
Alcohol metabolizing enzymes, such as the alcohol dehydrogenases and the aldehyde dehydrogenases, regulate the levels of acetaldehyde in the blood and play an important role in the development and maintenance of alcohol addiction. Recent genome-wide systematic searches found associations between a single nucleotide polymorphism (rs1789891, risk allele: A, protective allele: C) in the alcohol dehydrogenase gene cluster and the risk of alcohol dependence. The current study investigated the effect of this single nucleotide polymorphism on alcohol consumption, craving for alcohol, relapse risk and brain gray matter volume. Alcohol-dependent patients (n = 74) and controls (n = 43) were screened, genotyped and underwent magnetic resonance imaging scanning, and relapse data were collected during 3 months following the experiment. Alcohol-dependent A allele carriers reported increased alcohol craving and higher alcohol consumption compared with the group of alcohol-dependent individuals homozygous for the C allele, which displayed craving values similar to the control group. Further, follow-up data indicated that A allele carriers relapsed earlier to heavy drinking compared with individuals with two C alleles. Analyses of gray matter volume indicated a significant genotype difference in the patient group: individuals with two C alleles had reduced gray matter volume in the left and right superior, middle and inferior temporal gyri. Findings of the current study further support the relevance of genetic variants in alcohol metabolizing enzymes to addictive behavior, brain tissue volume and relapse risk. Genotype-dependent differences in acetaldehyde formation, implicated by earlier studies, might be the biological substrate of the genotype differences.
Collapse
Affiliation(s)
- Patrick Bach
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Evangelos Zois
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Sabine Vollstädt-Klein
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Martina Kirsch
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Sabine Hoffmann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Anne Jorde
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Katrin Charlet
- Department of Psychiatry and Psychotherapy; Charité-Universitätsmedizin Berlin; Germany
| | - Jens Treutlein
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Anne Beck
- Department of Psychiatry and Psychotherapy; Charité-Universitätsmedizin Berlin; Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy; Charité-Universitätsmedizin Berlin; Germany
| | - Henrik Walter
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy; Charité-Universitätsmedizin Berlin; Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Germany
| |
Collapse
|
44
|
Edenberg HJ, McClintick JN. Alcohol Dehydrogenases, Aldehyde Dehydrogenases, and Alcohol Use Disorders: A Critical Review. Alcohol Clin Exp Res 2018; 42:2281-2297. [PMID: 30320893 PMCID: PMC6286250 DOI: 10.1111/acer.13904] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/07/2018] [Indexed: 12/20/2022]
Abstract
Alcohol use disorders (AUDs) are complex traits, meaning that variations in many genes contribute to the risk, as does the environment. Although the total genetic contribution to risk is substantial, most individual variations make only very small contributions. By far the strongest contributors are functional variations in 2 genes involved in alcohol (ethanol [EtOH]) metabolism. A functional variant in alcohol dehydrogenase 1B (ADH1B) is protective in people of European and Asian descent, and a different functional variant in the same gene is protective in those of African descent. A strongly protective variant in aldehyde dehydrogenase 2 (ALDH2) is essentially only found in Asians. This highlights the need to study a wide range of populations. The likely mechanism of protection against heavy drinking and AUDs in both cases is alteration in the rate of metabolism of EtOH that at least transiently elevates acetaldehyde. Other ADH and ALDH variants, including functional variations in ADH1C, have also been implicated in affecting drinking behavior and risk for alcoholism. The pattern of linkage disequilibrium in the ADH region and the differences among populations complicate analyses, particularly of regulatory variants. This critical review focuses upon the ADH and ALDH genes as they affect AUDs.
Collapse
Affiliation(s)
- Howard J. Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Jeanette N. McClintick
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
45
|
Walters RK, Polimanti R, Johnson EC, McClintick JN, Adams MJ, Adkins AE, Aliev F, Bacanu SA, Batzler A, Bertelsen S, Biernacka JM, Bigdeli TB, Chen LS, Clarke TK, Chou YL, Degenhardt F, Docherty AR, Edwards AC, Fontanillas P, Foo JC, Fox L, Frank J, Giegling I, Gordon S, Hack LM, Hartmann AM, Hartz SM, Heilmann-Heimbach S, Herms S, Hodgkinson C, Hoffmann P, Jan Hottenga J, Kennedy MA, Alanne-Kinnunen M, Konte B, Lahti J, Lahti-Pulkkinen M, Lai D, Ligthart L, Loukola A, Maher BS, Mbarek H, McIntosh AM, McQueen MB, Meyers JL, Milaneschi Y, Palviainen T, Pearson JF, Peterson RE, Ripatti S, Ryu E, Saccone NL, Salvatore JE, Sanchez-Roige S, Schwandt M, Sherva R, Streit F, Strohmaier J, Thomas N, Wang JC, Webb BT, Wedow R, Wetherill L, Wills AG, Boardman JD, Chen D, Choi DS, Copeland WE, Culverhouse RC, Dahmen N, Degenhardt L, Domingue BW, Elson SL, Frye MA, Gäbel W, Hayward C, Ising M, Keyes M, Kiefer F, Kramer J, Kuperman S, Lucae S, Lynskey MT, Maier W, Mann K, Männistö S, Müller-Myhsok B, Murray AD, Nurnberger JI, Palotie A, Preuss U, Räikkönen K, Reynolds MD, Ridinger M, Scherbaum N, Schuckit MA, Soyka M, Treutlein J, Witt S, Wodarz N, Zill P, Adkins DE, Boden JM, Boomsma DI, Bierut LJ, Brown SA, Bucholz KK, Cichon S, Costello EJ, de Wit H, Diazgranados N, Dick DM, Eriksson JG, Farrer LA, Foroud TM, Gillespie NA, Goate AM, Goldman D, Grucza RA, Hancock DB, Harris KM, Heath AC, Hesselbrock V, Hewitt JK, Hopfer CJ, Horwood J, Iacono W, Johnson EO, Kaprio JA, Karpyak VM, Kendler KS, Kranzler HR, Krauter K, Lichtenstein P, Lind PA, McGue M, MacKillop J, Madden PAF, Maes HH, Magnusson P, Martin NG, Medland SE, Montgomery GW, Nelson EC, Nöthen MM, Palmer AA, Pedersen NL, Penninx BWJH, Porjesz B, Rice JP, Rietschel M, Riley BP, Rose R, Rujescu D, Shen PH, Silberg J, Stallings MC, Tarter RE, Vanyukov MM, Vrieze S, Wall TL, Whitfield JB, Zhao H, Neale BM, Gelernter J, Edenberg HJ, Agrawal A. Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. Nat Neurosci 2018; 21:1656-1669. [PMID: 30482948 PMCID: PMC6430207 DOI: 10.1038/s41593-018-0275-1] [Citation(s) in RCA: 415] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 10/12/2018] [Indexed: 01/21/2023]
Abstract
Liability to alcohol dependence (AD) is heritable, but little is known about its complex polygenic architecture or its genetic relationship with other disorders. To discover loci associated with AD and characterize the relationship between AD and other psychiatric and behavioral outcomes, we carried out the largest genome-wide association study to date of DSM-IV-diagnosed AD. Genome-wide data on 14,904 individuals with AD and 37,944 controls from 28 case-control and family-based studies were meta-analyzed, stratified by genetic ancestry (European, n = 46,568; African, n = 6,280). Independent, genome-wide significant effects of different ADH1B variants were identified in European (rs1229984; P = 9.8 × 10-13) and African ancestries (rs2066702; P = 2.2 × 10-9). Significant genetic correlations were observed with 17 phenotypes, including schizophrenia, attention deficit-hyperactivity disorder, depression, and use of cigarettes and cannabis. The genetic underpinnings of AD only partially overlap with those for alcohol consumption, underscoring the genetic distinction between pathological and nonpathological drinking behaviors.
Collapse
Affiliation(s)
- Raymond K Walters
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine and Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Emma C Johnson
- Washington University School of Medicine, Department of Psychiatry, St. Louis, MO, USA
| | - Jeanette N McClintick
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mark J Adams
- University of Edinburgh, Division of Psychiatry, Edinburgh, UK
| | - Amy E Adkins
- Department of Psychology & College Behavioral and Emotional Health Institute, Virginia Commonwealth University, Richmond, VA, USA
| | - Fazil Aliev
- Virginia Commonwealth University, Department of Psychology, Richmond, VA, USA
| | - Silviu-Alin Bacanu
- Virginia Commonwealth University Alcohol Research Center; Virginia Institute for Psychiatric and Behavioral Genetics; Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Anthony Batzler
- Mayo Clinic, Psychiatric Genomics and Pharmacogenomics Program, Rochester, MN, USA
| | - Sarah Bertelsen
- Icahn School of Medicine at Mount Sinai, Department of Neuroscience, New York, NY, USA
| | - Joanna M Biernacka
- Mayo Clinic, Department of Health Sciences Research, and Department of Psychiatry and Psychology, Rochester, MN, USA
| | - Tim B Bigdeli
- Department of Psychiatry and Behavioral Sciences, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Li-Shiun Chen
- Washington University School of Medicine, Department of Psychiatry, St. Louis, MO, USA
| | - Toni-Kim Clarke
- University of Edinburgh, Division of Psychiatry, Edinburgh, UK
| | - Yi-Ling Chou
- Washington University School of Medicine, Department of Psychiatry, St. Louis, MO, USA
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn; and Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Anna R Docherty
- University of Utah, Department of Psychiatry, Salt Lake City, UT, USA
| | - Alexis C Edwards
- Virginia Commonwealth University, Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Richmond, VA, USA
| | | | - Jerome C Foo
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Louis Fox
- Washington University School of Medicine, Department of Psychiatry, St. Louis, MO, USA
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ina Giegling
- Martin-Luther-University Halle-Wittenberg, Department of Psychiatry, Psychotherapy and Psychosomatics, Halle, Germany
| | - Scott Gordon
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Laura M Hack
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Annette M Hartmann
- Martin-Luther-University Halle-Wittenberg, Department of Psychiatry, Psychotherapy and Psychosomatics, Halle, Germany
| | - Sarah M Hartz
- Washington University School of Medicine, Department of Psychiatry, St. Louis, MO, USA
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn; and Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Stefan Herms
- Institute of Human Genetics, University of Bonn; and Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Human Genomics Research Group, Department of Biomedicine, University of Basel Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | | | - Per Hoffmann
- Institute of Human Genetics, University of Bonn; and Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Human Genomics Research Group, Department of Biomedicine, University of Basel Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Jouke Jan Hottenga
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Mervi Alanne-Kinnunen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Bettina Konte
- Martin-Luther-University Halle-Wittenberg, Department of Psychiatry, Psychotherapy and Psychosomatics, Halle, Germany
| | - Jari Lahti
- Helsinki Collegium for Advanced Studies, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | | | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lannie Ligthart
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anu Loukola
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Brion S Maher
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hamdi Mbarek
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Andrew M McIntosh
- University of Edinburgh, Division of Psychiatry, Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - Matthew B McQueen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Jacquelyn L Meyers
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Public Health Research Institute, VU University Medical Center/GGz inGeest, Amsterdam, The Netherlands
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - John F Pearson
- Biostatistics and Computational Biology Unit, University of Otago, Christchurch, New Zealand
| | - Roseann E Peterson
- Virginia Commonwealth University, Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Richmond, VA, USA
| | - Samuli Ripatti
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Euijung Ryu
- Mayo Clinic, Department of Health Sciences Research, Rochester, MN, USA
| | - Nancy L Saccone
- Washington University School of Medicine, Department of Genetics, St. Louis, MO, USA
| | - Jessica E Salvatore
- Virginia Commonwealth University, Department of Psychology, Richmond, VA, USA
- Virginia Commonwealth University, Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Richmond, VA, USA
| | - Sandra Sanchez-Roige
- University of California San Diego, Department of Psychiatry, San Diego, CA, USA
| | | | - Richard Sherva
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jana Strohmaier
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nathaniel Thomas
- Department of Psychology & College Behavioral and Emotional Health Institute, Virginia Commonwealth University, Richmond, VA, USA
| | - Jen-Chyong Wang
- Icahn School of Medicine at Mount Sinai, Department of Neuroscience, New York, NY, USA
| | - Bradley T Webb
- Virginia Commonwealth University Alcohol Research Center; Virginia Institute for Psychiatric and Behavioral Genetics; Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Robbee Wedow
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Sociology, Harvard University, Cambridge, MA, USA
| | - Leah Wetherill
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Amanda G Wills
- University of Colorado School of Medicine, Department of Pharmacology, Aurora, CO, USA
| | - Jason D Boardman
- Institute of Behavioral Science and Department of Sociology, University of Colorado, Boulder, CO, USA
| | - Danfeng Chen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Doo-Sup Choi
- Mayo Clinic, Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, MN, USA
| | - William E Copeland
- Duke University Medical Center, Department of Psychiatry and Behavioral Sciences, Durham, NC, USA
| | - Robert C Culverhouse
- Washington University School of Medicine, Department of Medicine and Division of Biostatistics, St. Louis, MO, USA
| | - Norbert Dahmen
- Department of Psychiatry, University of Mainz, Mainz, Germany
| | - Louisa Degenhardt
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | - Mark A Frye
- Mayo Clinic, Department of Psychiatry and Psychology, Rochester, MN, USA
| | - Wolfgang Gäbel
- Department of Psychiatry and Psychotherapy, University of Düsseldorf, Düsseldorf, Germany
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Marcus Ising
- Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Margaret Keyes
- University of Minnesota, Department of Psychology, Minneapolis, MN, USA
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - John Kramer
- University of Iowa Roy J and Lucille A Carver College of Medicine, Department of Psychiatry, Iowa City, IA, USA
| | - Samuel Kuperman
- University of Iowa Roy J and Lucille A Carver College of Medicine, Department of Psychiatry, Iowa City, IA, USA
| | | | - Michael T Lynskey
- Addictions Department, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Wolfgang Maier
- Department of Psychiatry, University of Bonn, Bonn, Germany
| | - Karl Mann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | | | - Bertram Müller-Myhsok
- Department of Statistical Genetics, Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Alison D Murray
- The Institute of Medical Sciences, Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK
| | - John I Nurnberger
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Aarno Palotie
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Medicine, Department of Neurology and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Ulrich Preuss
- Martin-Luther-University Halle-Wittenberg, Department of Psychiatry, Psychotherapy and Psychosomatics, Halle, Germany
- Vitos Hospital Herborn, Department of Psychiatry and Psychotherapy, Herborn, Germany
| | - Katri Räikkönen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | | | - Monika Ridinger
- Department of Psychiatry and Psychotherapy, University of Regensburg Psychiatric Health Care Aargau, Regensburg, Germany
| | - Norbert Scherbaum
- LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Department of Addictive Behaviour and Addiction Medicine, Medical Faculty, University of Duisburg-Essen, Duisburg, Germany
| | - Marc A Schuckit
- University of California San Diego, Department of Psychiatry, San Diego, CA, USA
| | - Michael Soyka
- Medical Park Chiemseeblick in Bernau-Felden, Chiemsee, Germany
- Psychiatric Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Jens Treutlein
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Norbert Wodarz
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Peter Zill
- Psychiatric Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Daniel E Adkins
- University of Utah, Department of Psychiatry, Salt Lake City, UT, USA
- University of Utah, Department of Sociology, Salt Lake City, UT, USA
| | | | - Dorret I Boomsma
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Laura J Bierut
- Washington University School of Medicine, Department of Psychiatry, St. Louis, MO, USA
| | - Sandra A Brown
- University of California San Diego, Department of Psychiatry, San Diego, CA, USA
- University of California, San Diego School of Medicine, Department of Psychology, San Diego, CA, USA
| | - Kathleen K Bucholz
- Washington University School of Medicine, Department of Psychiatry, St. Louis, MO, USA
| | - Sven Cichon
- Human Genomics Research Group, Department of Biomedicine, University of Basel Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - E Jane Costello
- Duke University Medical Center, Department of Psychiatry and Behavioral Sciences, Durham, NC, USA
| | | | | | - Danielle M Dick
- Department of Psychology & College Behavioral and Emotional Health Institute, Virginia Commonwealth University, Richmond, VA, USA
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Johan G Eriksson
- Department of General Practice and Primary Health Care, University of Helsinki, and National Institute for Health and Welfare, Helsinki, Finland
| | - Lindsay A Farrer
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
- Departments of Neurology, Ophthalmology, Epidemiology, and Biostatistics, Boston University Schools of Medicine and Public Health, Boston, MA, USA
| | - Tatiana M Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nathan A Gillespie
- Virginia Commonwealth University, Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Richmond, VA, USA
| | - Alison M Goate
- Icahn School of Medicine at Mount Sinai, Department of Neuroscience, New York, NY, USA
| | - David Goldman
- NIH/NIAAA, Laboratory of Neurogenetics, Bethesda, MD, USA
- NIH/NIAAA, Office of the Clinical Director, Bethesda, MD, USA
| | - Richard A Grucza
- Washington University School of Medicine, Department of Psychiatry, St. Louis, MO, USA
| | - Dana B Hancock
- Center for Omics Discovery and Epidemiology, Behavioral Health Research Division, RTI International, Research Triangle Park, NC, USA
| | - Kathleen Mullan Harris
- Department of Sociology and Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew C Heath
- Washington University School of Medicine, Department of Psychiatry, St. Louis, MO, USA
| | - Victor Hesselbrock
- University of Connecticut School of Medicine, Department of Psychiatry, Farmington, CT, USA
| | - John K Hewitt
- University of Colorado Boulder, Institute for Behavioral Genetics, Boulder, CO, USA
| | | | | | - William Iacono
- University of Minnesota, Department of Psychology, Minneapolis, MN, USA
| | - Eric O Johnson
- RTI International, Fellows Program, Research Triangle Park, NC, USA
| | - Jaakko A Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Victor M Karpyak
- Mayo Clinic, Department of Psychiatry and Psychology, Rochester, MN, USA
| | - Kenneth S Kendler
- Virginia Commonwealth University Alcohol Research Center; Virginia Institute for Psychiatric and Behavioral Genetics; Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Henry R Kranzler
- University of Pennsylvania Perelman School of Medicine, Center for Studies of Addiction, Department of Psychiatry and VISN 4 MIRECC, Crescenz VAMC, Philadelphia, PA, USA
| | - Kenneth Krauter
- University of Colorado Boulder, Department of Molecular, Cellular, and Developmental Biology, Boulder, CO, USA
| | - Paul Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Instituet, Stockholm, Sweden
| | - Penelope A Lind
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Matt McGue
- University of Minnesota, Department of Psychology, Minneapolis, MN, USA
| | - James MacKillop
- Peter Boris Centre for Addictions Research, McMaster University/St. Joseph's Healthcare Hamilton; Michael G. DeGroote Centre for Medicinal Cannabis Research, Hamilton, Ontario, Canada
| | - Pamela A F Madden
- Washington University School of Medicine, Department of Psychiatry, St. Louis, MO, USA
| | - Hermine H Maes
- Virginia Commonwealth University, Virginia Institute for Psychiatric and Behavioral Genetics, Richmond, VA, USA
| | - Patrik Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Instituet, Stockholm, Sweden
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Grant W Montgomery
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Elliot C Nelson
- Washington University School of Medicine, Department of Psychiatry, St. Louis, MO, USA
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Abraham A Palmer
- University of California San Diego, Department of Psychiatry, San Diego, CA, USA
- University of California San Diego, Institute for Genomic Medicine, San Diego, CA, USA
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Instituet, Stockholm, Sweden
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Public Health Research Institute, VU University Medical Center/GGz inGeest, Amsterdam, The Netherlands
| | - Bernice Porjesz
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - John P Rice
- Washington University School of Medicine, Department of Psychiatry, St. Louis, MO, USA
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Brien P Riley
- Virginia Commonwealth University Alcohol Research Center; Virginia Institute for Psychiatric and Behavioral Genetics; Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Richard Rose
- Department of Psychological & Brain Sciences, Indiana University Bloomington, Bloomington, IN, USA
| | - Dan Rujescu
- Martin-Luther-University Halle-Wittenberg, Department of Psychiatry, Psychotherapy and Psychosomatics, Halle, Germany
| | - Pei-Hong Shen
- NIH/NIAAA, Laboratory of Neurogenetics, Bethesda, MD, USA
| | - Judy Silberg
- Virginia Commonwealth University, Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Richmond, VA, USA
| | - Michael C Stallings
- University of Colorado Boulder, Institute for Behavioral Genetics, Boulder, CO, USA
| | - Ralph E Tarter
- University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | | | - Scott Vrieze
- University of Minnesota, Department of Psychology, Minneapolis, MN, USA
| | - Tamara L Wall
- University of California San Diego, Department of Psychiatry, San Diego, CA, USA
| | - John B Whitfield
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Benjamin M Neale
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joel Gelernter
- Departments of Psychiatry, Genetics, and Neuroscience, Yale University School of Medicine, Veterans Affairs Connecticut Healthcare System, New Haven, CT, USA.
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Arpana Agrawal
- Washington University School of Medicine, Department of Psychiatry, St. Louis, MO, USA.
| |
Collapse
|
46
|
Zhang S, Wu H, Zhou H, Liang L. Association of alcohol dehydrogenase 1C gene *1/*2 polymorphism with alcohol Dependence(AD) in Turkey: A meta-analysis. Neurosci Lett 2018; 671:66-69. [PMID: 29438797 DOI: 10.1016/j.neulet.2018.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/28/2018] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
Abstract
Previous studies have investigated the association between ADH1C *1/*2 polymorphism and alcohol dependence (AD), but have yielded controversial results in Turkey. Therefore, in an effort to illustrate whether ADH1C *1/*2 polymorphism is associated with AD risk in Turkish population, we used meta analysis to synthetically evaluate the effect of ADH1C *1/*2 polymorphism on AD. Publications were identified by searching in PubMed and EMBASE databases. Four eligible studies involving 400 controls and 421 cases were included in this study. Overall, there is a significant association between ADH1C *1/*2 polymorphism and AD risk in the allelic model (OR = 1.66, 95% CI = 1.05-2.62, P = 0.03) and recessive model (OR = 1.72, 95% CI = 1.14-2.58, P = 0.01), while no significance was discovered in the dominant genetic model, homozygote model and heterozygotemodel. No publication bias was indicated from Begg's and Egger's test. Our meta-analysis results suggested that a potential relationship between ADH1C *1/*2 polymorphism and AD risk in Turkish population. Further studies are confirmed to resolve this question about the etiological mechanisms of the correlation.
Collapse
Affiliation(s)
- Shiying Zhang
- Department of Pathology, Renmin Hospital of Wuhan University, Hubei Zhang Road (formerly Ziyang Road), Wuchang District No. 99 Jiefang Road 238, Wuhan, Hubei province, China
| | - Hao Wu
- Department of Pathology, Renmin Hospital of Wuhan University, Hubei Zhang Road (formerly Ziyang Road), Wuchang District No. 99 Jiefang Road 238, Wuhan, Hubei province, China
| | - Heng Zhou
- Department of Pathology, Renmin Hospital of Wuhan University, Hubei Zhang Road (formerly Ziyang Road), Wuchang District No. 99 Jiefang Road 238, Wuhan, Hubei province, China
| | - Liang Liang
- Department of Pathology, Renmin Hospital of Wuhan University, Hubei Zhang Road (formerly Ziyang Road), Wuchang District No. 99 Jiefang Road 238, Wuhan, Hubei province, China.
| |
Collapse
|
47
|
Johnson KE, Voight BF. Patterns of shared signatures of recent positive selection across human populations. Nat Ecol Evol 2018; 2:713-720. [PMID: 29459708 PMCID: PMC5866773 DOI: 10.1038/s41559-018-0478-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/11/2018] [Indexed: 12/28/2022]
Abstract
Signatures of recent positive selection often overlap across human populations, but the question of how often these overlaps represent a single ancestral event remains unresolved. If a single selective event spread across many populations, the same sweeping haplotype should appear in each population and the selective pressure could be common across populations and environments. Identifying such shared selective events could identify genomic loci and human traits important in recent history across the globe. In addition, genomic annotations that recently became available could help attach these signatures to a potential gene and molecular phenotype selected across populations. Here, we present a catalogue of selective sweeps in humans, and identify those that overlap and share a sweeping haplotype. We connect these sweep overlaps with potential biological mechanisms at several loci, including potential new sites of adaptive introgression, the glycophorin locus associated with malarial resistance and the alcohol dehydrogenase cluster associated with alcohol dependency.
Collapse
Affiliation(s)
- Kelsey Elizabeth Johnson
- Genetics and Gene Regulation Program, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin F Voight
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
48
|
Gelernter J, Zhou H, Nuñez YZ, Mutirangura A, Malison RT, Kalayasiri R. Genomewide Association Study of Alcohol Dependence and Related Traits in a Thai Population. Alcohol Clin Exp Res 2018; 42:861-868. [PMID: 29460428 DOI: 10.1111/acer.13614] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 02/14/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Alcohol use (both quantity and dependence) is moderately heritable, and genomewide association studies (GWAS) have identified risk genes in European, African, and Asian populations. The most reproducibly identified risk genes affect alcohol metabolism. Well-known functional variants at the gene encoding alcohol dehydrogenase B and other alcohol dehydrogenases affect risk in European and African ancestry populations. Similarly, variants mapped to these same genes and a well-known null variant that maps to the gene that encodes aldehyde dehydrogenase 2 (ALDH2) also affect risk in various Asian populations. In this study, we completed the first GWAS for 3 traits related to alcohol use in a Thai population recruited initially for studies of methamphetamine dependence. METHODS All subjects were evaluated with the Thai version of the Semi-Structured Assessment for Drug Dependence and Alcoholism (SSADDA). A total of 1,045 subjects were available for analysis. Three traits were analyzed: flushing, maximum number of alcoholic beverages consumed in any lifetime 24-hour period ("MAXDRINKS"), and DSM-IV alcohol dependence criterion count. We also conducted a pleiotropy analysis with major depression, the only other psychiatric trait where summary statistics from a large-scale Asian-population GWAS are available. RESULTS All 3 traits showed genomewide significant association with variants near ALDH2, with significance ranging from 2.01 × 10-14 (for flushing; lead single nucleotide polymorphism (SNP) PTPN11* rs143894582) to pmeta = 5.80 × 10-10 (for alcohol dependence criterion count; lead SNP rs149212747). These lead SNPs flank rs671 and span a region of over a megabase, illustrating the need for prior biological information in identifying the actual effect SNP, rs671. We also identified significant pleiotropy between major depression and flushing. CONCLUSIONS These results are consistent with prior findings in Asian populations and add new information regarding alcohol use-depression pleiotropy.
Collapse
Affiliation(s)
- Joel Gelernter
- Department of Psychiatry , Yale University School of Medicine, New Haven, Connecticut.,Department of Psychiatry , VA Connecticut Healthcare System, West Haven, Connecticut.,Departments of Genetics and Neuroscience , Yale University School of Medicine, New Haven, Connecticut
| | - Hang Zhou
- Department of Psychiatry , Yale University School of Medicine, New Haven, Connecticut.,Department of Psychiatry , VA Connecticut Healthcare System, West Haven, Connecticut
| | - Yaira Z Nuñez
- Department of Psychiatry , Yale University School of Medicine, New Haven, Connecticut.,Department of Psychiatry , VA Connecticut Healthcare System, West Haven, Connecticut
| | - Apiwat Mutirangura
- Department of Anatomy , Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Robert T Malison
- Department of Psychiatry , Yale University School of Medicine, New Haven, Connecticut.,Clinical Neuroscience Research Unit , Connecticut Mental Health Center, New Haven, Connecticut
| | - Rasmon Kalayasiri
- Department of Psychiatry , King Chulalongkorn Memorial Hospital, Bangkok, Thailand.,Department of Psychiatry , Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
49
|
Li D, Zhang R, Jin T, He N, Ren L, Zhang Z, Zhang Q, Xu R, Tao H, Zeng G, Gao J. ADH1B and CDH1 polymorphisms predict prognosis in male patients with non-metastatic laryngeal cancer. Oncotarget 2018; 7:73216-73228. [PMID: 27689323 PMCID: PMC5341974 DOI: 10.18632/oncotarget.12301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/20/2016] [Indexed: 01/10/2023] Open
Abstract
In this study, we assessed the association between single nucleotide polymorphisms (SNPs) in candidate genes and the prognosis of laryngeal cancer (LC) patients. Thirty-seven SNPs in 26 genes were genotyped in 170 male Han Chinese patients with LC. The effects of the candidate genes on the prognosis of LC patients were evaluated using Kaplan-Meier curves and Cox proportional hazards regression models. The GA genotype of rs1229984 (hazard ratio [HR], 0.537; 95% confidence interval [CI], 0.340-0.848; p = 0.008) in alcohol dehydrogenase 1B (ADH1B), and the AA genotype of rs9929218 (HR, 6.074; 95% CI, 1.426-25.870; p = 0.015) in CDH1 were associated with overall survival. Our data suggest that polymorphisms in ADH1B and CDH1 may be prognostic indicators in LC.
Collapse
Affiliation(s)
- Daxu Li
- Department of Stomatology, First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Ruizhi Zhang
- Department of Stomatology, Ankang Central Hospital, Ankang 725000, Shaanxi
| | - Tianbo Jin
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Na He
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Le Ren
- Department of Stomatology, First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Zhe Zhang
- Department of Stomatology, First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Qingna Zhang
- Department of Stomatology, First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Ran Xu
- Department of Stomatology, First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Hong Tao
- Department of Stomatology, First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Guang Zeng
- Department of Plastic and Burn Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Jing Gao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW With the advent of the genome-wide association study (GWAS), our understanding of the genetics of addiction has made significant strides forward. Here, we summarize genetic loci containing variants identified at genome-wide statistical significance (P < 5 × 10-8) and independently replicated, review evidence of functional or regulatory effects for GWAS-identified variants, and outline multi-omics approaches to enhance discovery and characterize addiction loci. RECENT FINDINGS Replicable GWAS findings span 11 genetic loci for smoking, eight loci for alcohol, and two loci for illicit drugs combined and include missense functional variants and noncoding variants with regulatory effects in human brain tissues traditionally viewed as addiction-relevant (e.g., prefrontal cortex [PFC]) and, more recently, tissues often overlooked (e.g., cerebellum). GWAS analyses have discovered several novel, replicable variants contributing to addiction. Using larger sample sizes from harmonized datasets and new approaches to integrate GWAS with multiple 'omics data across human brain tissues holds great promise to significantly advance our understanding of the biology underlying addiction.
Collapse
Affiliation(s)
- Dana B Hancock
- Behavioral and Urban Health Program, Behavioral Health and Criminal Justice Division, RTI International, 3040 East Cornwallis Road, P. O. Box 12194, Research Triangle Park, NC, 27709, USA.
| | - Christina A Markunas
- Behavioral and Urban Health Program, Behavioral Health and Criminal Justice Division, RTI International, 3040 East Cornwallis Road, P. O. Box 12194, Research Triangle Park, NC, 27709, USA
| | - Laura J Bierut
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Eric O Johnson
- Fellow Program and Behavioral Health and Criminal Justice Division, RTI International, Research Triangle Park, NC, USA
| |
Collapse
|