1
|
Konttajärvi T, Haapea M, Huhtaniska S, Björnholm L, Miettunen J, Isohanni M, Penttilä M, Murray GK, Koponen H, Vernon AC, Jääskeläinen E, Lieslehto J. The contribution of first-episode illness characteristics and cumulative antipsychotic usage to progressive structural brain changes over a long-term follow-up in schizophrenia. Psychiatry Res Neuroimaging 2024; 339:111790. [PMID: 38354478 DOI: 10.1016/j.pscychresns.2024.111790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 11/26/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
Exposure to antipsychotics as well as certain first-episode illness characteristics have been associated with greater gray matter (GM) deficits in the early phase of schizophrenia. Whether the first-episode illness characteristics affect the long-term progression of the structural brain changes remain unexplored. We therefore assessed the role of first-episode illness characteristics and life-time antipsychotic use in relation to long-term structural brain GM changes in schizophrenia. Individuals with schizophrenia (SZ, n = 29) and non-psychotic controls (n = 61) from the Northern Finland Birth Cohort 1966 underwent structural MRI at the ages of 34 (baseline) and 43 (follow-up) years. At follow-up, the average duration of illness was 19.8 years. Voxel-based morphometry was used to assess the effects of predictors on longitudinal GM changes in schizophrenia-relevant brain areas. Younger age of onset (AoO), higher cumulative antipsychotic dose and severity of symptoms were associated with greater GM deficits in the SZ group at follow-up. None of the first-episode illness characteristics were associated with longitudinal GM changes during 9-year follow-up period. We conclude that a younger AoO and high life-time antipsychotic use may contribute to progression of structural brain changes in schizophrenia. Apart from AoO, other first-episode illness characteristics may not contribute to longitudinal GM changes in midlife.
Collapse
Affiliation(s)
| | - Marianne Haapea
- Research Unit of Population Health, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University of Hospital and University of Oulu, Finland; Department of Psychiatry, Oulu University of Hospital, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Sanna Huhtaniska
- Research Unit of Population Health, University of Oulu, Oulu, Finland
| | - Lassi Björnholm
- Department of Psychiatry, Oulu University of Hospital, Finland; Research Unit of Clinical Neuroscience, University of Oulu, Finland
| | - Jouko Miettunen
- Research Unit of Population Health, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University of Hospital and University of Oulu, Finland
| | - Matti Isohanni
- Research Unit of Population Health, University of Oulu, Oulu, Finland
| | - Matti Penttilä
- Research Unit of Population Health, University of Oulu, Oulu, Finland
| | - Graham K Murray
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Hannu Koponen
- University of Helsinki, Helsinki University Hospital, Psychiatry, Helsinki, Finland
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London,United Kingdom
| | - Erika Jääskeläinen
- Research Unit of Population Health, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University of Hospital and University of Oulu, Finland; Department of Psychiatry, Oulu University of Hospital, Finland
| | - Johannes Lieslehto
- Research Unit of Population Health, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University of Hospital and University of Oulu, Finland; Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland; Department of Clinical Neuroscience, Division of Insurance Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Neufeld NH, Oliver LD, Mulsant BH, Alexopoulos GS, Hoptman MJ, Tani H, Marino P, Meyers BS, Rothschild AJ, Whyte EM, Bingham KS, Flint AJ, Voineskos AN. Effects of antipsychotic medication on functional connectivity in major depressive disorder with psychotic features. Mol Psychiatry 2023; 28:3305-3313. [PMID: 37258617 DOI: 10.1038/s41380-023-02118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023]
Abstract
The effect of antipsychotic medication on resting state functional connectivity in major depressive disorder (MDD) is currently unknown. To address this gap, we examined patients with MDD with psychotic features (MDDPsy) participating in the Study of the Pharmacotherapy of Psychotic Depression II. All participants were treated with sertraline plus olanzapine and were subsequently randomized to continue sertraline plus olanzapine or be switched to sertraline plus placebo. Participants completed an MRI at randomization and at study endpoint (study completion at Week 36, relapse, or early termination). The primary outcome was change in functional connectivity measured within and between specified networks and the rest of the brain. The secondary outcome was change in network topology measured by graph metrics. Eighty-eight participants completed a baseline scan; 73 completed a follow-up scan, of which 58 were usable for analyses. There was a significant treatment X time interaction for functional connectivity between the secondary visual network and rest of the brain (t = -3.684; p = 0.0004; pFDR = 0.0111). There was no significant treatment X time interaction for graph metrics. Overall, functional connectivity between the secondary visual network and the rest of the brain did not change in participants who stayed on olanzapine but decreased in those switched to placebo. There were no differences in changes in network topology measures when patients stayed on olanzapine or switched to placebo. This suggests that olanzapine may stabilize functional connectivity, particularly between the secondary visual network and the rest of the brain.
Collapse
Affiliation(s)
- Nicholas H Neufeld
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Benoit H Mulsant
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - George S Alexopoulos
- Department of Psychiatry, Weill Cornell Medicine, Weill Cornell Medical College, Westchester Behavioral Health Center, White Plains, NY, USA
| | - Matthew J Hoptman
- Division of Clinical Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Hideaki Tani
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Patricia Marino
- Department of Psychiatry, Weill Cornell Medicine, Weill Cornell Medical College, Westchester Behavioral Health Center, White Plains, NY, USA
| | - Barnett S Meyers
- Department of Psychiatry, Weill Cornell Medicine, Weill Cornell Medical College, Westchester Behavioral Health Center, White Plains, NY, USA
| | - Anthony J Rothschild
- Department of Psychiatry, University of Massachusetts Chan Medical School and UMass Memorial Health Care, Worcester, MA, USA
| | - Ellen M Whyte
- Department of Psychiatry, University of Pittsburgh School of Medicine and UPMC Western Psychiatric Hospital, Pittsburgh, PA, USA
| | - Kathleen S Bingham
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Mental Health, University Health Network, Toronto, ON, Canada
| | - Alastair J Flint
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Mental Health, University Health Network, Toronto, ON, Canada
| | - Aristotle N Voineskos
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Centre for Addiction and Mental Health, Toronto, ON, Canada.
| |
Collapse
|
3
|
Mısır E, Akay GG. Synaptic dysfunction in schizophrenia. Synapse 2023:e22276. [PMID: 37210696 DOI: 10.1002/syn.22276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/25/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Schizophrenia is a chronic disease presented with psychotic symptoms, negative symptoms, impairment in the reward system, and widespread neurocognitive deterioration. Disruption of synaptic connections in neural circuits is responsible for the disease's development and progression. Because deterioration in synaptic connections results in the impaired effective processing of information. Although structural impairments of the synapse, such as a decrease in dendritic spine density, have been shown in previous studies, functional impairments have also been revealed with the development of genetic and molecular analysis methods. In addition to abnormalities in protein complexes regulating exocytosis in the presynaptic region and impaired vesicle release, especially, changes in proteins related to postsynaptic signaling have been reported. In particular, impairments in postsynaptic density elements, glutamate receptors, and ion channels have been shown. At the same time, effects on cellular adhesion molecular structures such as neurexin, neuroligin, and cadherin family proteins were detected. Of course, the confusing effect of antipsychotic use in schizophrenia research should also be considered. Although antipsychotics have positive and negative effects on synapses, studies indicate synaptic deterioration in schizophrenia independent of drug use. In this review, the deterioration in synapse structure and function and the effects of antipsychotics on the synapse in schizophrenia will be discussed.
Collapse
Affiliation(s)
- Emre Mısır
- Department of Psychiatry, Baskent University Faculty of Medicine, Ankara, Turkey
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, Turkey
| | - Güvem Gümüş Akay
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, Turkey
- Faculty of Medicine, Department of Physiology, Ankara University, Ankara, Turkey
- Brain Research Center (AÜBAUM), Ankara University, Ankara, Turkey
- Department of Cellular Neuroscience and Advanced Microscopic Neuroimaging, Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey
| |
Collapse
|
4
|
Klein L, Van Steenwinckel J, Fleiss B, Scheuer T, Bührer C, Faivre V, Lemoine S, Blugeon C, Schwendimann L, Csaba Z, Bokobza C, Vousden DA, Lerch JP, Vernon AC, Gressens P, Schmitz T. A unique cerebellar pattern of microglia activation in a mouse model of encephalopathy of prematurity. Glia 2022; 70:1699-1719. [PMID: 35579329 PMCID: PMC9545095 DOI: 10.1002/glia.24190] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022]
Abstract
Preterm infants often show pathologies of the cerebellum, which are associated with impaired motor performance, lower IQ and poor language skills at school ages. Using a mouse model of inflammation-induced encephalopathy of prematurity driven by systemic administration of pro-inflammatory IL-1β, we sought to uncover causes of cerebellar damage. In this model, IL-1β is administered between postnatal day (P) 1 to day 5, a timing equivalent to the last trimester for brain development in humans. Structural MRI analysis revealed that systemic IL-1β treatment induced specific reductions in gray and white matter volumes of the mouse cerebellar lobules I and II (5% false discovery rate [FDR]) from P15 onwards. Preceding these MRI-detectable cerebellar volume changes, we observed damage to oligodendroglia, with reduced proliferation of OLIG2+ cells at P10 and reduced levels of the myelin proteins myelin basic protein (MBP) and myelin-associated glycoprotein (MAG) at P10 and P15. Increased density of IBA1+ cerebellar microglia were observed both at P5 and P45, with evidence for increased microglial proliferation at P5 and P10. Comparison of the transcriptome of microglia isolated from P5 cerebellums and cerebrums revealed significant enrichment of pro-inflammatory markers in microglia from both regions, but cerebellar microglia displayed a unique type I interferon signaling dysregulation. Collectively, these data suggest that perinatal inflammation driven by systemic IL-1β leads to specific cerebellar volume deficits, which likely reflect oligodendrocyte pathology downstream of microglial activation. Further studies are now required to confirm the potential of protective strategies aimed at preventing sustained type I interferon signaling driven by cerebellar microglia as an important therapeutic target.
Collapse
Affiliation(s)
- Luisa Klein
- Department of NeonatologyCharité University Medicine BerlinBerlinGermany
| | | | - Bobbi Fleiss
- NeuroDiderot, InsermUniversité de ParisParisFrance
- School of Health and Biomedical SciencesRMIT UniversityMelbourneVictoriaAustralia
| | - Till Scheuer
- Department of NeonatologyCharité University Medicine BerlinBerlinGermany
| | - Christoph Bührer
- Department of NeonatologyCharité University Medicine BerlinBerlinGermany
| | | | - Sophie Lemoine
- Genomics Core Facility, Département de Biologie, École Normale Supérieure, Institut de Biologie de l'ENS (IBENS), CNRS, INSERMUniversité PSLParisFrance
| | - Corinne Blugeon
- Genomics Core Facility, Département de Biologie, École Normale Supérieure, Institut de Biologie de l'ENS (IBENS), CNRS, INSERMUniversité PSLParisFrance
| | | | - Zsolt Csaba
- NeuroDiderot, InsermUniversité de ParisParisFrance
| | | | - Dulcie A. Vousden
- Mouse Imaging CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Jason P. Lerch
- Mouse Imaging CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
- Wellcome Trust Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| | - Anthony C. Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| | | | - Thomas Schmitz
- Department of NeonatologyCharité University Medicine BerlinBerlinGermany
| |
Collapse
|
5
|
Liu C, Kim WS, Shen J, Tsogt U, Kang NI, Lee KH, Chung YC. Altered Neuroanatomical Signatures of Patients With Treatment-Resistant Schizophrenia Compared to Patients With Early-Stage Schizophrenia and Healthy Controls. Front Psychiatry 2022; 13:802025. [PMID: 35664476 PMCID: PMC9158464 DOI: 10.3389/fpsyt.2022.802025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/12/2022] [Indexed: 11/25/2022] Open
Abstract
Background The relationship between brain structural changes and cognitive dysfunction in schizophrenia is strong. However, few studies have investigated both neuroanatomical abnormalities and cognitive dysfunction in treatment-resistant schizophrenia (TRS). We examined neuroanatomical markers and cognitive function between patients with TRS or early-stage schizophrenia (ES-S) and healthy controls (HCs). Relationships between neuroanatomical markers and cognitive function in the patient groups were also investigated. Methods A total of 46 and 45 patients with TRS and ES-S and 61 HCs underwent structural magnetic resonance imaging (MRI) brain scanning and comprehensive cognitive tests. MRI scans were analyzed using the FreeSurfer to investigate differences in cortical surface area (CSA), cortical thickness (CT), cortical volume (CV), and subcortical volume (SCV) among the groups. Four cognitive domains (attention, verbal memory, executive function, and language) were assessed. Comparisons of neuroanatomical and cognitive function results among the three groups were performed. Results A widespread reduction in CT was observed in patients with TRS compared to HCs, but differences in cortical thinning between TRS and ES-S patients were mainly limited to the inferior frontal gyrus and insula. Several subcortical structures (accumbens, amygdala, hippocampus, putamen, thalamus and ventricles) were significantly altered in TRS patients compared to both ES-S patients and HCs. Performance in the verbal memory domain was significantly worse in TRS patients compared to ES-S patients. A positive relationship between the thickness of the left middle temporal gyrus and the composite score for language was identified in patients with ES-S. Conclusions Our findings suggest significant cognitive impairment and reductions in CT and SCV in individuals with TRS compared to those with ES-S and HCs. These abnormalities could act as biomarkers for earlier identification of TRS.
Collapse
Affiliation(s)
- Congcong Liu
- Department of Psychiatry, Medical School, Jeonbuk National University, Jeonju, South Korea
| | - Woo-Sung Kim
- Department of Psychiatry, Medical School, Jeonbuk National University, Jeonju, South Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Jie Shen
- Department of Psychiatry, Medical School, Jeonbuk National University, Jeonju, South Korea
| | - Uyanga Tsogt
- Department of Psychiatry, Medical School, Jeonbuk National University, Jeonju, South Korea
| | - Nam-In Kang
- Department of Psychiatry, Maeumsarang Hospital, Wanju, South Korea
| | - Keon-Hak Lee
- Department of Psychiatry, Maeumsarang Hospital, Wanju, South Korea
| | - Young-Chul Chung
- Department of Psychiatry, Medical School, Jeonbuk National University, Jeonju, South Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, South Korea
| |
Collapse
|
6
|
Murray RM, Bora E, Modinos G, Vernon A. Schizophrenia: A developmental disorder with a risk of non-specific but avoidable decline. Schizophr Res 2022; 243:181-186. [PMID: 35390609 DOI: 10.1016/j.schres.2022.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/31/2022]
Abstract
The onset of schizophrenia is determined by biological and social risk factors operating predominantly during development. These result in subtle deviations in brain structure and cognitive function. Striatal dopamine dysregulation follows, causing abnormal salience and resultant psychotic symptoms. Most people diagnosed as having schizophrenia do not progressively deteriorate; many improve or recover. However, poor care can allow a cycle of deterioration to be established, stress increasing dopamine dysregulation, leading to more stress consequent on continuing psychotic experiences, and so further dopamine release. Additionally, long-term antipsychotics can induce dopamine supersensitivity with resultant relapse and eventually treatment resistance. Some patients suffer loss of social and cognitive function, but this is a consequence of the hazards that afflict the person with schizophrenia, not a direct consequence of genetic predisposition. Thus, brain health and cognition can be further impaired by chronic medication effects, cardiovascular and cerebrovascular events, obesity, poor diet, and lack of exercise; drug use, especially of tobacco and cannabis, are likely to contribute. Poverty, homelessness and poor nutrition which become the lot of some people with schizophrenia, can also affect cognition. Regrettably, the model of progressive deterioration provides psychiatry and its funders with an alibi for the effects of poor care.
Collapse
Affiliation(s)
- R M Murray
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| | - E Bora
- Dokuz Eylül Üniversitesi, Izmir, Izmir, Turkey
| | - G Modinos
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - A Vernon
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| |
Collapse
|
7
|
Krajner F, Hadaya L, McQueen G, Sendt KV, Gillespie A, Avila A, Lally J, Hedges EP, Diederen K, Howes OD, Barker GJ, Lythgoe DJ, Kempton MJ, McGuire P, MacCabe JH, Egerton A. Subcortical volume reduction and cortical thinning 3 months after switching to clozapine in treatment resistant schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:13. [PMID: 35236831 PMCID: PMC8891256 DOI: 10.1038/s41537-022-00230-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022]
Abstract
The neurobiological effects of clozapine are under characterised. We examined the effects clozapine treatment on subcortical volume and cortical thickness and investigated whether macrostructural changes were linked to alterations in glutamate or N-acetylaspartate (NAA). Data were acquired in 24 patients with treatment-resistant schizophrenia before and 12 weeks after switching to clozapine. During clozapine treatment we observed reductions in caudate and putamen volume, lateral ventricle enlargement (P < 0.001), and reductions in thickness of the left inferior temporal cortex, left caudal middle frontal cortex, and the right temporal pole. Reductions in right caudate volume were associated with local reductions in NAA (P = 0.002). None of the morphometric changes were associated with changes in glutamate levels. These results indicate that clozapine treatment is associated with subcortical volume loss and cortical thinning and that at least some of these effects are linked to changes in neuronal or metabolic integrity.
Collapse
Affiliation(s)
- Fanni Krajner
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Laila Hadaya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Grant McQueen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Kyra-Verena Sendt
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Amy Gillespie
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Alessia Avila
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - John Lally
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Emily P Hedges
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Kelly Diederen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
- South London and Maudsley NHS Trust, London, UK
| | - Gareth J Barker
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - David J Lythgoe
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Matthew J Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
- South London and Maudsley NHS Trust, London, UK
| | - James H MacCabe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
- South London and Maudsley NHS Trust, London, UK
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK.
| |
Collapse
|
8
|
Jeon P, Mackinley M, Théberge J, Palaniyappan L. The trajectory of putative astroglial dysfunction in first episode schizophrenia: a longitudinal 7-Tesla MRS study. Sci Rep 2021; 11:22333. [PMID: 34785674 PMCID: PMC8595701 DOI: 10.1038/s41598-021-01773-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 11/03/2021] [Indexed: 11/28/2022] Open
Abstract
Myo-inositol is mainly found in astroglia and its levels has been shown to be reduced in the anterior cingulate cortex (ACC) of patients with schizophrenia. We investigate the status of astroglial integrity indexed by ACC myo-inositol at the onset and over the first 6 months of treatment of first episode schizophrenia. We employed 7 T magnetic resonance spectroscopy (1H-MRS) and quantified myo-inositol spectra at the dorsal ACC in 31 participants; 21 patients with schizophrenia with median lifetime antipsychotic exposure of less than 3 days, followed up after 6 months of treatment, and 10 healthy subjects scanned twice over the same period. We studied the time by group interaction for myo-inositol after adjusting for gender and age. We report significant reduction in myo-inositol concentration in the ACC in schizophrenia at an early, untreated state of acute illness that becomes insignificant over time, after instituting early intervention. This trajectory indicates that dynamic astroglial changes are likely to operate in the early stages of schizophrenia. MRS myo-inositol may be a critical marker of amelioration of active psychosis in early stages of schizophrenia.
Collapse
Affiliation(s)
- Peter Jeon
- Department of Medical Biophysics, Western University, London, Canada
- Imaging Division, Lawson Health Research Institute, London, Canada
| | - Michael Mackinley
- Imaging Division, Lawson Health Research Institute, London, Canada
- Robarts Research Institute, Western University, London, Canada
- Department of Neuroscience, Western University, London, Canada
| | - Jean Théberge
- Department of Medical Biophysics, Western University, London, Canada
- Imaging Division, Lawson Health Research Institute, London, Canada
- Diagnostic Imaging, St. Joseph's Health Care, London, Canada
- Department of Medical Imaging, Western University, London, Canada
- Department of Psychiatry, Western University, London, Canada
| | - Lena Palaniyappan
- Department of Medical Biophysics, Western University, London, Canada.
- Imaging Division, Lawson Health Research Institute, London, Canada.
- Robarts Research Institute, Western University, London, Canada.
- Department of Psychiatry, Western University, London, Canada.
- Robarts Research Institute, UWO, 1151 Richmond Street N., Room 3208, London, ON, N6A 5B7, Canada.
| |
Collapse
|
9
|
Halff EF, Cotel MC, Natesan S, McQuade R, Ottley CJ, Srivastava DP, Howes OD, Vernon AC. Effects of chronic exposure to haloperidol, olanzapine or lithium on SV2A and NLGN synaptic puncta in the rat frontal cortex. Behav Brain Res 2021; 405:113203. [PMID: 33636238 DOI: 10.1016/j.bbr.2021.113203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 01/03/2023]
Abstract
Positron emission tomography studies using the synaptic vesicle glycoprotein 2A (SV2A) radioligand [11C]-UCB-J provide in vivo evidence for synaptic dysfunction and/or loss in the cingulate and frontal cortex of patients with schizophrenia. In exploring potential confounding effects of antipsychotic medication, we previously demonstrated that chronic (28-day) exposure to clinically relevant doses of haloperidol does not affect [3H]-UCB-J radioligand binding in the cingulate and frontal cortex of male rats. Furthermore, neither chronic haloperidol nor olanzapine exposure had any effect on SV2A protein levels in these brain regions. These data do not exclude the possibility, however, that more subtle changes in SV2A may occur at pre-synaptic terminals, or the post-synaptic density, following chronic antipsychotic drug exposure. Moreover, relatively little is known about the potential effects of psychotropic drugs other than antipsychotics on SV2A. To address these questions directly, we herein used immunostaining and confocal microscopy to explore the effect of chronic (28-day) exposure to clinically relevant doses of haloperidol, olanzapine or the mood stabilizer lithium on presynaptic SV2A, postsynaptic Neuroligin (NLGN) puncta and their overlap as a measure of total synaptic density in the rat prefrontal and anterior cingulate cortex. We found that, under the conditions tested here, exposure to antipsychotics had no effect on SV2A, NLGN, or overall synaptic puncta count. In contrast, chronic lithium exposure significantly increased NLGN puncta density relative to vehicle, with no effect on either SV2A or total synaptic puncta. Future studies are required to understand the functional consequences of these changes.
Collapse
Affiliation(s)
- Els F Halff
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK; Psychiatric Imaging group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Marie-Caroline Cotel
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, 5 Cutcombe Road, London SE5 9RT, UK
| | - Sridhar Natesan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK; Psychiatric Imaging group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Psychiatric Imaging group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, 72 Du Cane Road, London W12 0HS, UK
| | - Richard McQuade
- Psychobiology Research Group, School of Neurology, Neurobiology and Psychiatry, Newcastle University, NE2 4HH, Newcastle upon Tyne, UK
| | - Chris J Ottley
- Department of Earth Sciences, Durham University, Durham, DH1 3LE, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, 5 Cutcombe Road, London SE5 9RT, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK; Psychiatric Imaging group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Psychiatric Imaging group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, 72 Du Cane Road, London W12 0HS, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK; South London and Maudsley NHS Foundation Trust, Camberwell, London, UK
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, 5 Cutcombe Road, London SE5 9RT, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK.
| |
Collapse
|
10
|
Functional brain defects in a mouse model of a chromosomal t(1;11) translocation that disrupts DISC1 and confers increased risk of psychiatric illness. Transl Psychiatry 2021; 11:135. [PMID: 33608504 PMCID: PMC7895946 DOI: 10.1038/s41398-021-01256-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 11/24/2020] [Accepted: 01/22/2021] [Indexed: 12/17/2022] Open
Abstract
A balanced t(1;11) translocation that directly disrupts DISC1 is linked to schizophrenia and affective disorders. We previously showed that a mutant mouse, named Der1, recapitulates the effect of the translocation upon DISC1 expression. Here, RNAseq analysis of Der1 mouse brain tissue found enrichment for dysregulation of the same genes and molecular pathways as in neuron cultures generated previously from human t(1;11) translocation carriers via the induced pluripotent stem cell route. DISC1 disruption therefore apparently accounts for a substantial proportion of the effects of the t(1;11) translocation. RNAseq and pathway analysis of the mutant mouse predicts multiple Der1-induced alterations converging upon synapse function and plasticity. Synaptosome proteomics confirmed that the Der1 mutation impacts synapse composition, and electrophysiology found reduced AMPA:NMDA ratio in hippocampal neurons, indicating changed excitatory signalling. Moreover, hippocampal parvalbumin-positive interneuron density is increased, suggesting that the Der1 mutation affects inhibitory control of neuronal circuits. These phenotypes predict that neurotransmission is impacted at many levels by DISC1 disruption in human t(1;11) translocation carriers. Notably, genes implicated in schizophrenia, depression and bipolar disorder by large-scale genetic studies are enriched among the Der1-dysregulated genes, just as we previously observed for the t(1;11) translocation carrier-derived neurons. Furthermore, RNAseq analysis predicts that the Der1 mutation primarily targets a subset of cell types, pyramidal neurons and interneurons, previously shown to be vulnerable to the effects of common schizophrenia-associated genetic variants. In conclusion, DISC1 disruption by the t(1;11) translocation may contribute to the psychiatric disorders of translocation carriers through commonly affected pathways and processes in neurotransmission.
Collapse
|
11
|
Kaul D, Schwab SG, Mechawar N, Matosin N. How stress physically re-shapes the brain: Impact on brain cell shapes, numbers and connections in psychiatric disorders. Neurosci Biobehav Rev 2021; 124:193-215. [PMID: 33556389 DOI: 10.1016/j.neubiorev.2021.01.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/20/2021] [Accepted: 01/31/2021] [Indexed: 12/16/2022]
Abstract
Severe stress is among the most robust risk factors for the development of psychiatric disorders. Imaging studies indicate that life stress is integral to shaping the human brain, especially regions involved in processing the stress response. Although this is likely underpinned by changes to the cytoarchitecture of cellular networks in the brain, we are yet to clearly understand how these define a role for stress in human psychopathology. In this review, we consolidate evidence of macro-structural morphometric changes and the cellular mechanisms that likely underlie them. Focusing on stress-sensitive regions of the brain, we illustrate how stress throughout life may lead to persistent remodelling of the both neurons and glia in cellular networks and how these may lead to psychopathology. We support that greater translation of cellular alterations to human cohorts will support parsing the psychological sequalae of severe stress and improve our understanding of how stress shapes the human brain. This will remain a critical step for improving treatment interventions and prevention outcomes.
Collapse
Affiliation(s)
- Dominic Kaul
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong 2522, Australia; Molecular Horizons, School of Chemistry and Molecular Biosciences, University of Wollongong, Northfields Ave, Wollongong 2522, Australia
| | - Sibylle G Schwab
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong 2522, Australia; Molecular Horizons, School of Chemistry and Molecular Biosciences, University of Wollongong, Northfields Ave, Wollongong 2522, Australia
| | - Naguib Mechawar
- Douglas Mental Health University Institute, 6875 LaSalle blvd, Verdun, Qc, H4H 1R3, Canada
| | - Natalie Matosin
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong 2522, Australia; Molecular Horizons, School of Chemistry and Molecular Biosciences, University of Wollongong, Northfields Ave, Wollongong 2522, Australia; Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany.
| |
Collapse
|
12
|
Peris-Yague A, Kiemes A, Cash D, Cotel MC, Singh N, Vernon AC, Modinos G. Region-specific and dose-specific effects of chronic haloperidol exposure on [ 3H]-flumazenil and [ 3H]-Ro15-4513 GABA A receptor binding sites in the rat brain. Eur Neuropsychopharmacol 2020; 41:106-117. [PMID: 33153853 PMCID: PMC7731940 DOI: 10.1016/j.euroneuro.2020.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 09/02/2020] [Accepted: 10/16/2020] [Indexed: 11/02/2022]
Abstract
Postmortem studies suggest that schizophrenia is associated with abnormal expression of specific GABAA receptor (GABAAR) α subunits, including α5GABAAR. Positron emission tomography (PET) measures of GABAAR availability in schizophrenia, however, have not revealed consistent alterations in vivo. Animal studies using the GABAAR agonist [3H]-muscimol provide evidence that antipsychotic drugs influence GABAAR availability, in a region-specific manner, suggesting a potential confounding effect of these drugs. No such data, however, are available for more recently developed subunit-selective GABAAR radioligands. To address this, we combined a rat model of clinically relevant antipsychotic drug exposure with quantitative receptor autoradiography. Haloperidol (0.5 and 2 mg/kg/day) or drug vehicle were administered continuously to adult male Sprague-Dawley rats via osmotic mini-pumps for 28 days. Quantitative receptor autoradiography was then performed postmortem using the GABAAR subunit-selective radioligand [3H]-Ro15-4513 and the non-subunit selective radioligand [3H]-flumazenil. Chronic haloperidol exposure increased [3H]-Ro15-4513 binding in the CA1 sub-field of the rat dorsal hippocampus (p<0.01; q<0.01; d=+1.3), which was not dose-dependent. [3H]-flumazenil binding also increased in most rat brain regions (p<0.05; main effect of treatment), irrespective of the haloperidol dose. These data confirm previous findings that chronic haloperidol exposure influences the specific binding of non-subtype selective GABAAR radioligands and is the first to demonstrate a potential effect of haloperidol on the binding of a α1/5GABAAR-selective radioligand. Although caution should be exerted when extrapolating results from animals to patients, our data support a view that exposure to antipsychotics may be a confounding factor in PET studies of GABAAR in the context of schizophrenia.
Collapse
Affiliation(s)
- Alba Peris-Yague
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom
| | - Amanda Kiemes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespingy Park, London SE5 8AF, United Kingdom
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom
| | - Marie-Caroline Cotel
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe Road, London SE5 9RT, United Kingdom
| | - Nisha Singh
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe Road, London SE5 9RT, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom.
| | - Gemma Modinos
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespingy Park, London SE5 8AF, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom.
| |
Collapse
|
13
|
Dinesh AA, Islam J, Khan J, Turkheimer F, Vernon AC. Effects of Antipsychotic Drugs: Cross Talk Between the Nervous and Innate Immune System. CNS Drugs 2020; 34:1229-1251. [PMID: 32975758 DOI: 10.1007/s40263-020-00765-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2020] [Indexed: 12/11/2022]
Abstract
Converging lines of evidence suggest that activation of microglia (innate immune cells in the central nervous system [CNS]) is present in a subset of patients with schizophrenia. The extent to which antipsychotic drug treatment contributes to or combats this effect remains unclear. To address this question, we reviewed the literature for evidence that antipsychotic exposure influences brain microglia as indexed by in vivo neuroimaging and post-mortem studies in patients with schizophrenia and experimental animal models. We found no clear evidence from clinical studies for an effect of antipsychotics on either translocator protein (TSPO) radioligand binding (an in vivo neuroimaging measure of putative gliosis) or markers of brain microglia in post-mortem studies. In experimental animals, where drug and illness effects may be differentiated, we also found no clear evidence for consistent effects of antipsychotic drugs on TSPO radioligand binding. By contrast, we found evidence that chronic antipsychotic exposure may influence central microglia density and morphology. However, these effects were dependent on the dose and duration of drug exposure and whether an immune stimulus was present or not. In the latter case, antipsychotics were generally reported to suppress expression of inflammatory cytokines and inducible inflammatory enzymes such as cyclooxygenase and microglia activation. No clear conclusions could be drawn with regard to any effect of antipsychotics on brain microglia from current clinical data. There is evidence to suggest that antipsychotic drugs influence brain microglia in experimental animals, including possible anti-inflammatory actions. However, we lack detailed information on how these drugs influence brain microglia function at the molecular level. The clinical relevance of the animal data with regard to beneficial treatment effects and detrimental side effects of antipsychotic drugs also remains unknown, and further studies are warranted.
Collapse
Affiliation(s)
- Ayushi Anna Dinesh
- School of Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Juned Islam
- School of Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Javad Khan
- School of Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Centre for Neuroimaging Sciences, De Crespigny Park, London, SE5 8AF, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom.
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe Road, London, SE5 9RT, United Kingdom.
| |
Collapse
|
14
|
Boz Z, Hu M, Yu Y, Huang XF. N-acetylcysteine prevents olanzapine-induced oxidative stress in mHypoA-59 hypothalamic neurons. Sci Rep 2020; 10:19185. [PMID: 33154380 PMCID: PMC7644715 DOI: 10.1038/s41598-020-75356-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 09/25/2020] [Indexed: 12/30/2022] Open
Abstract
Olanzapine is a second-generation antipsychotic (AP) drug commonly prescribed for the treatment of schizophrenia. Recently, olanzapine has been found to cause brain tissue volume loss in rodent and primate studies; however, the underlying mechanism remains unknown. Abnormal autophagy and oxidative stress have been implicated to have a role in AP-induced neurodegeneration, while N-acetylcysteine (NAC) is a potent antioxidant, shown to be beneficial in the treatment of schizophrenia. Here, we investigate the role of olanzapine and NAC on cell viability, oxidative stress, mitochondrial mass and mitophagy in hypothalamic cells. Firstly, cell viability was assessed in mHypoA-59 and mHypoA NPY/GFP cells using an MTS assay and flow cytometric analyses. Olanzapine treated mHypoA-59 cells were then assessed for mitophagy markers and oxidative stress; including quantification of lysosomes, autophagosomes, LC3B-II, p62, superoxide anion (O2–) and mitochondrial mass. NAC (10 mM) was used to reverse the effects of olanzapine (100 µM) on O2−, mitochondrial mass and LC3B-II. We found that olanzapine significantly impacted cell viability in mHypoA-59 hypothalamic cells in a dose and time-dependent manner. Olanzapine inhibited mitophagy, instigated oxidative stress and prompted mitochondrial abnormalities. NAC was able to mitigate olanzapine-induced effects. These findings suggest that high doses of olanzapine may cause neurotoxicity of hypothalamic neurons via increased production of reactive oxygen species (ROS), mitochondrial damage and mitophagy inhibition. This could in part explain data suggesting that APs may reduce brain volume.
Collapse
Affiliation(s)
- Zehra Boz
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Minmin Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yinghua Yu
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia.,Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
15
|
Zito MF, Marder SR. Rethinking the risks and benefits of long-term maintenance in schizophrenia. Schizophr Res 2020; 225:77-81. [PMID: 31806525 DOI: 10.1016/j.schres.2019.10.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 11/26/2022]
Abstract
This review addresses the risks and benefits of long-term maintenance antipsychotic treatment for patients that extends beyond two years. It focuses on framing discussions with patients who are recovering from a first episode. For these patients the evidence strongly supports the benefits over the risk for the first two years. However, both the clinical side effects of antipsychotics and the possible long-term effects of dopamine blocking drugs on the brain require a more nuanced discussion beyond this initial period. In most cases, the decision will be to continue antipsychotics but to consider strategies for mitigating the risks of drugs. This review provides information about the relative risks of dose reduction and intermittent treatment.
Collapse
Affiliation(s)
- Michael F Zito
- Semel Institute for Neuroscience at UCLA and the VA Desert Pacific Mental Illness Research, Education, and Clinical Center, Los Angeles, USA
| | - Stephen R Marder
- Semel Institute for Neuroscience at UCLA and the VA Desert Pacific Mental Illness Research, Education, and Clinical Center, Los Angeles, USA.
| |
Collapse
|
16
|
Schmidt S, Gull S, Herrmann KH, Boehme M, Irintchev A, Urbach A, Reichenbach JR, Klingner CM, Gaser C, Witte OW. Experience-dependent structural plasticity in the adult brain: How the learning brain grows. Neuroimage 2020; 225:117502. [PMID: 33164876 DOI: 10.1016/j.neuroimage.2020.117502] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/31/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022] Open
Abstract
Volumetric magnetic resonance imaging studies have shown that intense learning can be associated with grey matter volume increases in the adult brain. The underlying mechanisms are poorly understood. Here we used monocular deprivation in rats to analyze the mechanisms underlying use-dependent grey matter increases. Optometry for quantification of visual acuity was combined with volumetric magnetic resonance imaging and microscopic techniques in longitudinal and cross-sectional studies. We found an increased spatial vision of the open eye which was associated with a transient increase in the volumes of the contralateral visual and lateral entorhinal cortex. In these brain areas dendrites of neurons elongated, and there was a strong increase in the number of spines, the targets of synapses, which was followed by spine maturation and partial pruning. Astrocytes displayed a transient pronounced swelling and underwent a reorganization of their processes. The use-dependent increase in grey matter corresponded predominantly to the swelling of the astrocytes. Experience-dependent increase in brain grey matter volume indicates a gain of structure plasticity with both synaptic and astrocyte remodeling.
Collapse
Affiliation(s)
- Silvio Schmidt
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, D07747 Jena, Germany; Brain Imaging Center Jena, Jena University Hospital, Am Klinikum 1, D07747 Jena, Germany
| | - Sidra Gull
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, D07747 Jena, Germany
| | - Karl-Heinz Herrmann
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Marcus Boehme
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, D07747 Jena, Germany
| | - Andrey Irintchev
- Department of Otorhinolaryngology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Anja Urbach
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, D07747 Jena, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Carsten M Klingner
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, D07747 Jena, Germany; Brain Imaging Center Jena, Jena University Hospital, Am Klinikum 1, D07747 Jena, Germany; Biomagnetic Center, Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Christian Gaser
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, D07747 Jena, Germany; Brain Imaging Center Jena, Jena University Hospital, Am Klinikum 1, D07747 Jena, Germany; Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, D07747 Jena, Germany; Brain Imaging Center Jena, Jena University Hospital, Am Klinikum 1, D07747 Jena, Germany; Biomagnetic Center, Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany.
| |
Collapse
|
17
|
Fletcher EJR, Finlay CJ, Amor Lopez A, Crum WR, Vernon AC, Duty S. Neuroanatomical and Microglial Alterations in the Striatum of Levodopa-Treated, Dyskinetic Hemi-Parkinsonian Rats. Front Neurosci 2020; 14:567222. [PMID: 33041762 PMCID: PMC7522511 DOI: 10.3389/fnins.2020.567222] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/17/2020] [Indexed: 02/02/2023] Open
Abstract
Dyskinesia associated with chronic levodopa treatment in Parkinson’s disease is associated with maladaptive striatal plasticity. The objective of this study was to examine whether macroscale structural changes, as captured by magnetic resonance imaging (MRI) accompany this plasticity and to identify plausible cellular contributors in a rodent model of levodopa-induced dyskinesia. Adult male Sprague-Dawley rats were rendered hemi-parkinsonian by stereotaxic injection of 6-hydroxydopamine into the left medial forebrain bundle prior to chronic treatment with saline (control) or levodopa to induce abnormal involuntary movements (AIMs), reflective of dyskinesia. Perfusion-fixed brains underwent ex vivo structural MRI before sectioning and staining for cellular markers. Chronic treatment with levodopa induced significant AIMs (p < 0.0001 versus saline). The absolute volume of the ipsilateral, lesioned striatum was increased in levodopa-treated rats resulting in a significant difference in percentage volume change when compared to saline-treated rats (p < 0.01). Moreover, a significant positive correlation was found between this volume change and AIMs scores for individual levodopa-treated rats (r = 0.96; p < 0.01). The density of Iba1+ cells was increased within the lesioned versus intact striatum (p < 0.01) with no difference between treatment groups. Conversely, Iba1+ microglia soma size was significantly increased (p < 0.01) in the lesioned striatum of levodopa-treated but not saline-treated rats. Soma size was not, however, significantly correlated with either AIMs or MRI volume change. Although GFAP+ astrocytes were elevated in the lesioned versus intact striatum (p < 0.001), there was no difference between treatment groups. No statistically significant effects of either lesion or treatment on RECA1, a marker for blood vessels, were observed. Collectively, these data suggest chronic levodopa treatment in 6-hydroxydopamine lesioned rats is associated with increased striatal volume that correlates with the development of AIMs. The accompanying increase in number and size of microglia, however, cannot alone explain this volume expansion. Further multi-modal studies are warranted to establish the brain-wide effects of chronic levodopa treatment.
Collapse
Affiliation(s)
- Edward J R Fletcher
- Wolfson Centre for Age Related Diseases, Wolfson Wing, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Clare J Finlay
- Wolfson Centre for Age Related Diseases, Wolfson Wing, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Ana Amor Lopez
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - William R Crum
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Susan Duty
- Wolfson Centre for Age Related Diseases, Wolfson Wing, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
18
|
Poddar I, Callahan PM, Hernandez CM, Pillai A, Yang X, Bartlett MG, Terry AV. Oral quetiapine treatment results in time-dependent alterations of recognition memory and brain-derived neurotrophic factor-related signaling molecules in the hippocampus of rats. Pharmacol Biochem Behav 2020; 197:172999. [PMID: 32702397 DOI: 10.1016/j.pbb.2020.172999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022]
Abstract
Antipsychotic drugs (APDs) have a variety of important therapeutic applications for neuropsychiatric disorders. However, they are routinely prescribed off-label across all age categories, a controversial practice given their potential for producing metabolic and extrapyramidal side effects. Evidence also suggests that chronic treatment with some APDs may lead to impairments in cognition and decreases in brain volume, although these findings are controversial. The purpose of the studies described here was to evaluate one of the most commonly prescribed APDs, quetiapine, for chronic effects on recognition memory, brain-derived neurotrophic factor (BDNF), its precursor proBDNF, as well as relevant downstream signaling molecules that are known to influence neuronal plasticity and cognition. Multiple cohorts of adult rats were treated with quetiapine (25.0 mg/kg/day) for 30 or 90 days in their drinking water then evaluated for drug effects on motor function in a catalepsy assessment, recognition memory in a spontaneous novel object recognition (NOR) task, and BDNF-related signaling molecules in the post mortem hippocampus via Western Blot. The results indicated that oral quetiapine at a dose that did not induce catalepsy, led to time-dependent impairments in NOR performance, increases in the proBDNF/BDNF ratio, and decreases in Akt and CREB phosphorylation in the hippocampus. These results indicate that chronic treatment with quetiapine has the potential to adversely affect recognition memory and neurotrophin-related signaling molecules that support synaptic plasticity and cognitive function. Given the widespread use this APD across multiple conditions and patient populations, such long-term effects observed in animals should be considered.
Collapse
Affiliation(s)
- Indrani Poddar
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Patrick M Callahan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Small Animal Behavior Core, Augusta University, Augusta, GA 30912, United States of America
| | - Caterina M Hernandez
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Xiangkun Yang
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30602, United States of America
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30602, United States of America
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America; Small Animal Behavior Core, Augusta University, Augusta, GA 30912, United States of America.
| |
Collapse
|
19
|
Affiliation(s)
| | - Erin W Dickie
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Benoit H Mulsant
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Voineskos AN, Mulsant BH, Dickie EW, Neufeld NH, Rothschild AJ, Whyte EM, Meyers BS, Alexopoulos GS, Hoptman MJ, Lerch JP, Flint AJ. Effects of Antipsychotic Medication on Brain Structure in Patients With Major Depressive Disorder and Psychotic Features: Neuroimaging Findings in the Context of a Randomized Placebo-Controlled Clinical Trial. JAMA Psychiatry 2020; 77:674-683. [PMID: 32101271 PMCID: PMC7330722 DOI: 10.1001/jamapsychiatry.2020.0036] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Prescriptions for antipsychotic medications continue to increase across many brain disorders, including off-label use in children and elderly individuals. Concerning animal and uncontrolled human data suggest antipsychotics are associated with change in brain structure, but to our knowledge, there are no controlled human studies that have yet addressed this question. OBJECTIVE To assess the effects of antipsychotics on brain structure in humans. DESIGN, SETTING, AND PARTICIPANTS Prespecified secondary analysis of a double-blind, randomized, placebo-controlled trial over a 36-week period at 5 academic centers. All participants, aged 18 to 85 years, were recruited from the multicenter Study of the Pharmacotherapy of Psychotic Depression II (STOP-PD II). All participants had major depressive disorder with psychotic features (psychotic depression) and were prescribed olanzapine and sertraline for a period of 12 to 20 weeks, which included 8 weeks of remission of psychosis and remission/near remission of depression. Participants were then were randomized to continue receiving this regimen or to be switched to placebo and sertraline for a subsequent 36-week period. Data were analyzed between October 2018 and February 2019. INTERVENTIONS Those who consented to the imaging study completed a magnetic resonance imaging (MRI) scan at the time of randomization and a second MRI scan at the end of the 36-week period or at time of relapse. MAIN OUTCOMES AND MEASURES The primary outcome measure was cortical thickness in gray matter and the secondary outcome measure was microstructural integrity of white matter. RESULTS Eighty-eight participants (age range, 18-85 years) completed a baseline scan; 75 completed a follow-up scan, of which 72 (32 men and 40 women) were useable for final analyses. There was a significant treatment-group by time interaction in cortical thickness (left, t = 3.3; P = .001; right, t = 3.6; P < .001) but not surface area. No significant interaction was found for fractional anisotropy, but one for mean diffusivity of the white matter skeleton was present (t = -2.6, P = .01). When the analysis was restricted to those who sustained remission, exposure to olanzapine compared with placebo was associated with significant decreases in cortical thickness in the left hemisphere (β [SE], 0.04 [0.009]; t34.4 = 4.7; P <.001), and the right hemisphere (β [SE], 0.03 [0.009]; t35.1 = 3.6; P <.001). Post hoc analyses showed that those who relapsed receiving placebo experienced decreases in cortical thickness compared with those who sustained remission. CONCLUSIONS AND RELEVANCE In this secondary analysis of a randomized clinical trial, antipsychotic medication was shown to change brain structure. This information is important for prescribing in psychiatric conditions where alternatives are present. However, adverse effects of relapse on brain structure support antipsychotic treatment during active illness. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01427608.
Collapse
Affiliation(s)
- Aristotle N. Voineskos
- Kimel Family Translational Imaging-Genetics Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Benoit H. Mulsant
- Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Erin W. Dickie
- Kimel Family Translational Imaging-Genetics Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Nicholas H. Neufeld
- Kimel Family Translational Imaging-Genetics Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | - Matthew J. Hoptman
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York,Department of Psychiatry, New York University School of Medicine, New York
| | - Jason P. Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada,Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, England
| | - Alastair J. Flint
- University Health Network, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Nelson EA, Kraguljac NV, White DM, Jindal RD, Shin AL, Lahti AC. A Prospective Longitudinal Investigation of Cortical Thickness and Gyrification in Schizophrenia. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2020; 65:381-391. [PMID: 32022594 PMCID: PMC7265602 DOI: 10.1177/0706743720904598] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Cortical thickness (CT) and gyrification are complementary indices that assess different aspects of gray matter structural integrity. Both neurodevelopment insults and acute tissue response to antipsychotic medication could underlie the known heterogeneity of treatment response and are well-suited for interrogation into the relationship between gray matter morphometry and clinical outcomes in schizophrenia (SZ). METHODS Using a prospective design, we enrolled 34 unmedicated patients with SZ and 23 healthy controls. Patients were scanned at baseline and after a 6-week trial with risperidone. CT and local gyrification index (LGI) values were quantified from structural MRI scans using FreeSurfer 5.3. RESULTS We found reduced CT and LGI in patients compared to controls. Vertex-wise analyses demonstrated that hypogyrification was most prominent in the inferior frontal cortex, temporal cortex, insula, pre/postcentral gyri, temporoparietal junction, and the supramarginal gyrus. Baseline CT was predictive of subsequent response to antipsychotic treatment, and increase in CT after 6 weeks was correlated with greater symptom reductions. CONCLUSIONS In summary, we report evidence of reduced CT and LGI in unmedicated patients compared to controls, suggesting involvement of different aspects of gray matter morphometry in the pathophysiology of SZ. Importantly, we found that lower CT at baseline and greater increase of CT following 6 weeks of treatment with risperidone were associated with better clinical response. Our results suggest that cortical thinning may normalize as a result of a good response to antipsychotic medication, possibly by alleviating potential neurotoxic processes underlying gray matter deterioration.
Collapse
Affiliation(s)
- Eric A. Nelson
- Department of Psychology, University of Alabama at Birmingham, AL, USA
| | - Nina V. Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, AL, USA
| | - David M. White
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, AL, USA
| | - Ripu D. Jindal
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, AL, USA
- Birmingham Veteran Affairs Medical Center, AL, USA
| | - Ah L. Shin
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, AL, USA
| | - Adrienne C. Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
22
|
Andersen HG, Raghava JM, Svarer C, Wulff S, Johansen LB, Antonsen PK, Nielsen MØ, Rostrup E, Vernon AC, Jensen LT, Pinborg LH, Glenthøj BY, Ebdrup BH. Striatal Volume Increase After Six Weeks of Selective Dopamine D 2/3 Receptor Blockade in First-Episode, Antipsychotic-Naïve Schizophrenia Patients. Front Neurosci 2020; 14:484. [PMID: 32508577 PMCID: PMC7251943 DOI: 10.3389/fnins.2020.00484] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/20/2020] [Indexed: 11/13/2022] Open
Abstract
Patients with chronic schizophrenia often display enlarged striatal volumes, and antipsychotic drugs may contribute via the dopamine D2/3 receptor (D2/3R) blockade. Separating the effects of disease from medication is challenging due to the lack of a proper placebo-group. To address this, we conducted a longitudinal study of antipsychotic-naïve, first-episode schizophrenia patients to test the hypothesis that selective blockade of D2/3R would induce a dose-dependent striatal volume increase. Twenty-one patients underwent structural magnetic resonance imaging (sMRI), single-photon emission computed tomography (SPECT), and symptom severity ratings before and after six weeks of amisulpride treatment. Twenty-three matched healthy controls underwent sMRI and baseline SPECT. Data were analyzed using repeated measures and multiple regression analyses. Correlations between symptom severity decrease, volume changes, dose and receptor occupancy were explored. Striatal volumes did not differ between patients and controls at baseline or follow-up, but a significant group-by-time interaction was found (p = 0.01). This interaction was explained by a significant striatal volume increase of 2.1% in patients (Cohens d = 0.45). Striatal increase was predicted by amisulpride dose, but not by either D2/3R occupancy or baseline symptom severity. A significant reduction in symptom severity was observed at a mean dose of 233.3 (SD = 109.9) mg, corresponding to D2/3R occupancy of 44.65%. Reduction in positive symptoms correlated significantly with striatal volume increase, driven by reductions in hallucinations. Our data demonstrate a clear link between antipsychotic treatment and striatal volume increase in antipsychotic-naïve schizophrenia patients. Moreover, the treatment-induced striatal volume increase appears clinically relevant by correlating to reductions in core symptoms of schizophrenia.
Collapse
Affiliation(s)
- Helle G Andersen
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research and Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jayachandra M Raghava
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research and Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.,Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, University of Copenhagen, Glostrup, Denmark
| | - Claus Svarer
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sanne Wulff
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research and Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Louise B Johansen
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research and Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Patrick K Antonsen
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research and Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Ø Nielsen
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research and Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Egill Rostrup
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research and Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, United Kingdom.,Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Lars T Jensen
- Department of Clinical Physiology and Nuclear Medicine, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Lars H Pinborg
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Birte Y Glenthøj
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research and Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bjørn H Ebdrup
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research and Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Turkheimer FE, Selvaggi P, Mehta MA, Veronese M, Zelaya F, Dazzan P, Vernon AC. Normalizing the Abnormal: Do Antipsychotic Drugs Push the Cortex Into an Unsustainable Metabolic Envelope? Schizophr Bull 2020; 46:484-495. [PMID: 31755955 PMCID: PMC7147598 DOI: 10.1093/schbul/sbz119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of antipsychotic medication to manage psychosis, principally in those with a diagnosis of schizophrenia or bipolar disorder, is well established. Antipsychotics are effective in normalizing positive symptoms of psychosis in the short term (delusions, hallucinations and disordered thought). Their long-term use is, however, associated with side effects, including several types of movement (extrapyramidal syndrome, dyskinesia, akathisia), metabolic and cardiac disorders. Furthermore, higher lifetime antipsychotic dose-years may be associated with poorer cognitive performance and blunted affect, although the mechanisms driving the latter associations are not well understood. In this article, we propose a novel model of the long-term effects of antipsychotic administration focusing on the changes in brain metabolic homeostasis induced by the medication. We propose here that the brain metabolic normalization, that occurs in parallel to the normalization of psychotic symptoms following antipsychotic treatment, may not ultimately be sustainable by the cerebral tissue of some patients; these patients may be characterized by already reduced oxidative metabolic capacity and this may push the brain into an unsustainable metabolic envelope resulting in tissue remodeling. To support this perspective, we will review the existing data on the brain metabolic trajectories of patients with a diagnosis of schizophrenia as indexed using available neuroimaging tools before and after use of medication. We will also consider data from pre-clinical studies to provide mechanistic support for our model.
Collapse
Affiliation(s)
- Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Pierluigi Selvaggi
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
24
|
Poddar I, Callahan PM, Hernandez CM, Pillai A, Yang X, Bartlett MG, Terry AV. Chronic oral treatment with risperidone impairs recognition memory and alters brain-derived neurotrophic factor and related signaling molecules in rats. Pharmacol Biochem Behav 2020; 189:172853. [PMID: 31945381 DOI: 10.1016/j.pbb.2020.172853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 01/09/2023]
Abstract
Antipsychotic drugs (APDs) are essential for the treatment of schizophrenia and other neuropsychiatric illnesses such as bipolar disease. However, they are also extensively prescribed off-label for many other conditions, a practice that is controversial given their potential for long-term side effects. There is clinical and preclinical evidence that chronic treatment with some APDs may lead to impairments in cognition and decreases in brain volume, although the molecular mechanisms of these effects are unknown. The purpose of the rodent studies described here was to evaluate a commonly prescribed APD, risperidone, for chronic effects on recognition memory, brain-derived neurotrophic factor (BDNF), its precursor proBDNF, as well as relevant downstream signaling molecules that are known to influence neuronal plasticity and cognition. Multiple cohorts of adult rats were treated with risperidone (2.5 mg/kg/day) or vehicle (dilute acetic acid solution) in their drinking water for 30 or 90 days. Subjects were then evaluated for drug effects on recognition memory in a spontaneous novel object recognition task and protein levels of BDNF-related signaling molecules in the hippocampus and prefrontal cortex. The results indicated that depending on the treatment period, a therapeutically relevant daily dose of risperidone impaired recognition memory and increased the proBDNF/BDNF ratio in the hippocampus and prefrontal cortex. Risperidone treatment also led to a decrease in Akt and CREB phosphorylation in the prefrontal cortex. These results indicate that chronic treatment with a commonly prescribed APD, risperidone, has the potential to adversely affect recognition memory and neurotrophin-related signaling molecules that support synaptic plasticity and cognitive function.
Collapse
Affiliation(s)
- Indrani Poddar
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Patrick M Callahan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America.; Small Animal Behavior Core, Augusta University, Augusta, GA 30912, United States of America
| | - Caterina M Hernandez
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Xiangkun Yang
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30607, United States of America
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30607, United States of America
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America.; Small Animal Behavior Core, Augusta University, Augusta, GA 30912, United States of America.
| |
Collapse
|
25
|
Onwordi EC, Halff EF, Whitehurst T, Mansur A, Cotel MC, Wells L, Creeney H, Bonsall D, Rogdaki M, Shatalina E, Reis Marques T, Rabiner EA, Gunn RN, Natesan S, Vernon AC, Howes OD. Synaptic density marker SV2A is reduced in schizophrenia patients and unaffected by antipsychotics in rats. Nat Commun 2020; 11:246. [PMID: 31937764 PMCID: PMC6959348 DOI: 10.1038/s41467-019-14122-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022] Open
Abstract
Synaptic dysfunction is hypothesised to play a key role in schizophrenia pathogenesis, but this has not been tested directly in vivo. Here, we investigated synaptic vesicle glycoprotein 2A (SV2A) levels and their relationship to symptoms and structural brain measures using [11C]UCB-J positron emission tomography in 18 patients with schizophrenia and 18 controls. We found significant group and group-by-region interaction effects on volume of distribution (VT). [11C]UCB-J VT was significantly lower in the frontal and anterior cingulate cortices in schizophrenia with large effect sizes (Cohen's d = 0.8-0.9), but there was no significant difference in the hippocampus. We also investigated the effects of antipsychotic drug administration on SV2A levels in Sprague-Dawley rats using western blotting, [3H]UCB-J autoradiography and immunostaining with confocal microscopy, finding no significant effects on any measure. These findings indicate that there are lower synaptic terminal protein levels in schizophrenia in vivo and that antipsychotic drug exposure is unlikely to account for them.
Collapse
Affiliation(s)
- Ellis Chika Onwordi
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
- South London and Maudsley NHS Foundation Trust, Camberwell, London, SE5 8AF, UK
| | - Els F Halff
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Thomas Whitehurst
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
- South London and Maudsley NHS Foundation Trust, Camberwell, London, SE5 8AF, UK
| | - Ayla Mansur
- Division of Brain Sciences, Imperial College London, The Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Marie-Caroline Cotel
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, 5 Cutcombe Road, London, SE5 9RT, UK
| | - Lisa Wells
- Invicro Imaging Services, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
| | - Hannah Creeney
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, 5 Cutcombe Road, London, SE5 9RT, UK
| | - David Bonsall
- Invicro Imaging Services, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
| | - Maria Rogdaki
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
- South London and Maudsley NHS Foundation Trust, Camberwell, London, SE5 8AF, UK
| | - Ekaterina Shatalina
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Tiago Reis Marques
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
- South London and Maudsley NHS Foundation Trust, Camberwell, London, SE5 8AF, UK
| | - Eugenii A Rabiner
- Invicro Imaging Services, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Roger N Gunn
- Division of Brain Sciences, Imperial College London, The Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Invicro Imaging Services, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
| | - Sridhar Natesan
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, 5 Cutcombe Road, London, SE5 9RT, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK
| | - Oliver D Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK.
- South London and Maudsley NHS Foundation Trust, Camberwell, London, SE5 8AF, UK.
| |
Collapse
|
26
|
Chen F, Bertelsen AB, Holm IE, Nyengaard JR, Rosenberg R, Dorph-Petersen KA. Hippocampal volume and cell number in depression, schizophrenia, and suicide subjects. Brain Res 2020; 1727:146546. [DOI: 10.1016/j.brainres.2019.146546] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/29/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022]
|
27
|
Birner A, Bengesser SA, Seiler S, Dalkner N, Queissner R, Platzer M, Fellendorf FT, Hamm C, Maget A, Pilz R, Lenger M, Reininghaus B, Pirpamer L, Ropele S, Hinteregger N, Magyar M, Deutschmann H, Enzinger C, Kapfhammer HP, Reininghaus EZ. Total gray matter volume is reduced in individuals with bipolar disorder currently treated with atypical antipsychotics. J Affect Disord 2020; 260:722-727. [PMID: 31563071 DOI: 10.1016/j.jad.2019.09.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 12/01/2022]
Abstract
BACKGROUND/AIMS Recent evidence indicates that the intake of atypical antipsychotics (AAP) is associated with gray matter abnormalities in patients with psychiatric disorders. We explored if patients with bipolar disorder (BD) who are medicated with AAP exhibit total gray matter volume (TGV) reduction compared to BD individuals not medicated with AAP and healthy controls (HC). METHODS In a cross-sectional design, 124 individuals with BD and 86 HC underwent 3T-MRI of the brain and clinical assessment as part of our BIPFAT-study. The TGV was estimated using Freesurfer. We used univariate covariance analysis (ANCOVA) to test for normalized TGV differences and controlled for covariates. RESULTS ANCOVA results indicated that 75 BD individuals taking AAP had significantly reduced normalized TGV as compared to 49 BD not taking AAP (F = 9.995, p = .002., Eta = 0.084) and 86 HC (F = 7.577, p = .007, Eta = 0.046). LIMITATIONS Our cross-sectional results are not suited to draw conclusions about causality. We have no clear information on treatment time and baseline volumes before drug treatment in the studied subjects. We cannot exclude that patients received different psychopharmacologic medications prior to the study point. We did not included dosages into the calculation. Many BD individuals received combinations of psychopharmacotherapy across drug classes. We did not have records displaying quantitative alcohol consumption and drug abuse in our sample. CONCLUSIONS Our data provide further evidence for the impact of AAP on brain structure in BD. Longitudinal studies are needed to investigate the causal directions of the proposed relationships.
Collapse
Affiliation(s)
- Armin Birner
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Susanne A Bengesser
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria.
| | - Stephan Seiler
- Imaging of Dementia and Aging (IDeA), Laboratory Department of Neurology and Center for Neuroscience, University of California, Davis, USA
| | - Nina Dalkner
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Robert Queissner
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Martina Platzer
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Frederike T Fellendorf
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Carlo Hamm
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Alexander Maget
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Rene Pilz
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Melanie Lenger
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Bernd Reininghaus
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Lukas Pirpamer
- Department of Neurology, Medical University of Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Austria; Division of Neuroradiology, Department of Radiology, Medical University of Graz, Austria
| | - Nicole Hinteregger
- Division of Neuroradiology, Department of Radiology, Medical University of Graz, Austria
| | - Marton Magyar
- Division of Neuroradiology, Department of Radiology, Medical University of Graz, Austria
| | - Hannes Deutschmann
- Division of Neuroradiology, Department of Radiology, Medical University of Graz, Austria
| | - Christian Enzinger
- Department of Neurology, Medical University of Graz, Austria; Division of Neuroradiology, Department of Radiology, Medical University of Graz, Austria
| | - Hans-Peter Kapfhammer
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| | - Eva Z Reininghaus
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Auenbruggerplatz 31, A-8036, Graz, Austria
| |
Collapse
|
28
|
Qi XR, Kamphuis W, Shan L. Astrocyte Changes in the Prefrontal Cortex From Aged Non-suicidal Depressed Patients. Front Cell Neurosci 2019; 13:503. [PMID: 31798416 PMCID: PMC6874137 DOI: 10.3389/fncel.2019.00503] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/24/2019] [Indexed: 11/13/2022] Open
Abstract
Glia alterations in the anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC) have been postulated to play an important role in the pathophysiology of psychiatric disorders. Astroglia is the most abundant type of glial cells in the central nervous system. The expression levels of astrocyte markers (glial fibrillary acidic protein (GFAP), synemin-α, synemin-β, vimentin, nestin) in isolated gray matter from postmortem ACC and DLPFC were determined to investigate the possible involvement of astrocytes in depression. Donors were aged non-suicidal subjects with bipolar disorder (BPD) or major depressive disorder (MDD), and matched controls. GFAP mRNA levels were significantly increased in the ACC of BPD patients. However, GFAP immunohistochemistry showed that the area fraction of GFAP immunoreactive astrocytes was decreased in the ACC of BPD patients, while there were no changes in the cell density and integrated optical density (IOD), indicating that there might be a reduction of GFAP-positive astrocyte processes and remodeling of the astrocyte network in BPD. Furthermore, in controls, DLPFC GFAP mRNA levels were significantly lower with a time of death at daytime (08:01–20:00 h) compared to nighttime (20:01–08:00 h). In depression, such a diurnal pattern was not present. These findings in BPD and MDD subjects warrant further studies given the crucial roles of astrocytes in the central nervous system.
Collapse
Affiliation(s)
- Xin-Rui Qi
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Willem Kamphuis
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Ling Shan
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| |
Collapse
|
29
|
Li F, Wu D, Lui S, Gong Q, Sweeney JA. Clinical Strategies and Technical Challenges in Psychoradiology. Neuroimaging Clin N Am 2019; 30:1-13. [PMID: 31759566 DOI: 10.1016/j.nic.2019.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Psychoradiology is an emerging discipline at the intersection between radiology and psychiatry. It holds promise for playing a role in clinical diagnosis, evaluation of treatment response and prognosis, and illness risk prediction for patients with psychiatric disorders. Addressing complex issues, such as the biological heterogeneity of psychiatric syndromes and unclear neurobiological mechanisms underpinning radiological abnormalities, is a challenge that needs to be resolved. With the advance of multimodal imaging and more efforts in standardization of image acquisition and analysis, psychoradiology is becoming a promising tool for the future of clinical care for patients with psychiatric disorders.
Collapse
Affiliation(s)
- Fei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Lane, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, No. 37 Guo Xue Lane, Chengdu 610041, China
| | - Dongsheng Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Lane, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, No. 37 Guo Xue Lane, Chengdu 610041, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Lane, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, No. 37 Guo Xue Lane, Chengdu 610041, China.
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Lane, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, No. 37 Guo Xue Lane, Chengdu 610041, China
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Suite 3200, 260 Stetson Street, Cincinnati, OH 45219, USA
| |
Collapse
|
30
|
Drazanova E, Kratka L, Vaskovicova N, Skoupy R, Horska K, Babinska Z, Kotolova H, Vrlikova L, Buchtova M, Starcuk Z, Ruda-Kucerova J. Olanzapine exposure diminishes perfusion and decreases volume of sensorimotor cortex in rats. Pharmacol Rep 2019; 71:839-847. [PMID: 31394417 DOI: 10.1016/j.pharep.2019.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Olanzapine is a frequently used atypical antipsychotic drug known to exert structural brain alterations in animals. This study investigated whether chronic olanzapine exposure alters regional blood brain perfusion assessed by Arterial Spin Labelling (ASL) magnetic resonance imaging (MRI) in a validated model of olanzapine-induced metabolic disturbances. An effect of acute olanzapine exposure on brain perfusion was also assessed for comparison. METHODS Adult Sprague-Dawley female rats were treated by intramuscular depot olanzapine injections (100 mg/kg every 14 days) or vehicle for 8 weeks. ASL scanning was performed on a 9.4 T Bruker BioSpec 94/30USR scanner under isoflurane anesthesia. Serum samples were used to assay leptin and TNF-α level while brains were sliced for histology. Another group received only one non-depot intraperitoneal dose of olanzapine (7 mg/kg) during MRI scanning, thus exposing its acute effect on brain perfusion. RESULTS Both acute and chronic dosing of olanzapine resulted in decreased perfusion in the sensorimotor cortex, while no effect was observed in the piriform cortex or hippocampus. Furthermore, in the chronically treated group decreased cortex volume was observed. Chronic olanzapine dosing led to increased body weight, adipose tissue mass and leptin level, confirming its expected metabolic effects. CONCLUSION This study demonstrates region-specific decreases in blood perfusion associated with olanzapine exposure present already after the first dose. These findings extend our understanding of olanzapine-induced functional and structural brain changes.
Collapse
Affiliation(s)
- Eva Drazanova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic.
| | - Lucie Kratka
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Nadezda Vaskovicova
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Radim Skoupy
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Katerina Horska
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Zuzana Babinska
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hana Kotolova
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Lucie Vrlikova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Marcela Buchtova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Zenon Starcuk
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
31
|
Doostdar N, Kim E, Grayson B, Harte MK, Neill JC, Vernon AC. Global brain volume reductions in a sub-chronic phencyclidine animal model for schizophrenia and their relationship to recognition memory. J Psychopharmacol 2019; 33:1274-1287. [PMID: 31060435 DOI: 10.1177/0269881119844196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cognitive deficits and structural brain changes co-occur in patients with schizophrenia. Improving our understanding of the relationship between these is important to develop improved therapeutic strategies. Back-translation of these findings into rodent models for schizophrenia offers a potential means to achieve this goal. AIMS The purpose of this study was to determine the extent of structural brain changes and how these relate to cognitive behaviour in a sub-chronic phencyclidine rat model. METHODS Performance in the novel object recognition task was examined in female Lister Hooded rats at one and six weeks after sub-chronic phencyclidine (2 mg/kg intra-peritoneal, n=15) and saline controls (1 ml/kg intra-peritoneal, n=15). Locomotor activity following acute phencyclidine challenge was also measured. Brain volume changes were assessed in the same animals using ex vivo structural magnetic resonance imaging and computational neuroanatomical analysis at six weeks. RESULTS Female sub-chronic phencyclidine-treated Lister Hooded rats spent significantly less time exploring novel objects (p<0.05) at both time-points and had significantly greater locomotor activity response to an acute phencyclidine challenge (p<0.01) at 3-4 weeks of washout. At six weeks, sub-chronic phencyclidine-treated Lister Hooded rats displayed significant global brain volume reductions (p<0.05; q<0.05), without apparent regional specificity. Relative volumes of the perirhinal cortex however were positively correlated with novel object exploration time only in sub-chronic phencyclidine rats at this time-point. CONCLUSION A sustained sub-chronic phencyclidine-induced cognitive deficit in novel object recognition is accompanied by global brain volume reductions in female Lister Hooded rats. The relative volumes of the perirhinal cortex however are positively correlated with novel object exploration, indicating some functional relevance.
Collapse
Affiliation(s)
- Nazanin Doostdar
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ben Grayson
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Michael K Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Joanna C Neill
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
32
|
Guma E, Rocchetti J, Devenyi GA, Tanti A, Mathieu AP, Lerch JP, Elgbeili G, Courcot B, Mechawar N, Chakravarty MM, Giros B. Role of D3 dopamine receptors in modulating neuroanatomical changes in response to antipsychotic administration. Sci Rep 2019; 9:7850. [PMID: 31127135 PMCID: PMC6534671 DOI: 10.1038/s41598-019-43955-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 05/01/2019] [Indexed: 12/31/2022] Open
Abstract
Clinical research has shown that chronic antipsychotic drug (APD) treatment further decreases cortical gray matter and hippocampus volume, and increases striatal and ventricular volume in patients with schizophrenia. D2-like receptor blockade is necessary for clinical efficacy of the drugs, and may be responsible for inducing these volume changes. However, the role of other D2-like receptors, such as D3, remains unclear. Following our previous work, we undertook a longitudinal study to examine the effects of chronic (9-week) typical (haloperidol (HAL)) and atypical (clozapine (CLZ)) APDs on the neuroanatomy of wild-type (WT) and dopamine D3-knockout (D3KO) mice using magnetic resonance imaging (MRI) and histological assessments in a sub-region of the anterior cingulate cortex (the prelimbic [PL] area) and striatum. D3KO mice had larger striatal volume prior to APD administration, coupled with increased glial and neuronal cell density. Chronic HAL administration increased striatal volume in both WT and D3KO mice, and reduced PL area volume in D3KO mice both at trend level. CLZ increased volume of the PL area of WT mice at trend level, but decreased D3KO PL area glial cell density. Both typical and atypical APD administration induced neuroanatomical remodeling of regions rich in D3 receptor expression, and typically altered in schizophrenia. Our findings provide novel insights on the role of D3 receptors in structural changes observed following APD administration in clinical populations.
Collapse
Affiliation(s)
- Elisa Guma
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, H3A2B4, Canada.,Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, H3H1R3, Canada
| | - Jill Rocchetti
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, H3A2B4, Canada
| | - Gabriel A Devenyi
- Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, H3H1R3, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, H3A1A1, Canada
| | - Arnaud Tanti
- McGill Group for Suicide Studies, Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Axel P Mathieu
- Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, H3H1R3, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, M5T3H7, Canada.,Department of Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, M5G1X8, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G1L7, Canada.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Guillaume Elgbeili
- Department of Psychiatry, McGill University, Montreal, Quebec, H3A1A1, Canada
| | - Blandine Courcot
- Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, H3H1R3, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, H3A1A1, Canada
| | - M Mallar Chakravarty
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, H3A2B4, Canada.,Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, H3H1R3, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, H3A1A1, Canada.,Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, H3A2B4, Canada
| | - Bruno Giros
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, H3A2B4, Canada. .,Department of Psychiatry, McGill University, Montreal, Quebec, H3A1A1, Canada. .,Sorbonne University, Neuroscience Paris Seine, CNRS UMR 8246, INSERM U 1130, UPMC Univ Paris 06, UM119, 75005, Paris, France.
| |
Collapse
|
33
|
Wang X, Luo Q, Tian F, Cheng B, Qiu L, Wang S, He M, Wang H, Duan M, Jia Z. Brain grey-matter volume alteration in adult patients with bipolar disorder under different conditions: a voxel-based meta-analysis. J Psychiatry Neurosci 2019; 44:89-101. [PMID: 30354038 PMCID: PMC6397036 DOI: 10.1503/jpn.180002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The literature on grey-matter volume alterations in bipolar disorder is heterogeneous in its findings. METHODS Using effect-size differential mapping, we conducted a meta-analysis of grey-matter volume alterations in patients with bipolar disorder compared with healthy controls. RESULTS We analyzed data from 50 studies that included 1843 patients with bipolar disorder and 2289 controls. Findings revealed lower grey-matter volumes in the bilateral superior frontal gyri, left anterior cingulate cortex and right insula in patients with bipolar disorder and in patients with bipolar disorder type I. Patients with bipolar disorder in the euthymic and depressive phases had spatially distinct regions of altered grey-matter volume. Meta-regression revealed that the proportion of female patients with bipolar disorder or bipolar disorder type I was negatively correlated with regional grey-matter alteration in the right insula; the proportion of patients with bipolar disorder or bipolar disorder type I taking lithium was positively correlated with regional grey-matter alterations in the left anterior cingulate/paracingulate gyri; and the proportion of patients taking antipsychotic medications was negatively correlated with alterations in the anterior cingulate/paracingulate gyri. LIMITATIONS This study was cross-sectional; analysis techniques, patient characteristics and clinical variables in the included studies were heterogeneous. CONCLUSION Structural grey-matter abnormalities in patients with bipolar disorder and bipolar disorder type I were mainly in the prefrontal cortex and insula. Patients' mood state might affect grey-matter alterations. Abnormalities in regional grey-matter volume could be correlated with patients' specific demographic and clinical features.
Collapse
Affiliation(s)
- Xiuli Wang
- From the Department of Psychiatry, the Fourth People’s Hospital of Chengdu, Chengdu, China (Duan, He, H. Wang, S. Wang, X. Wang); the Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China (Luo, Jia); the Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China (Tian, Jia); the Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, China (Cheng); and the Department of Radiology, the Second People’s Hospital of Yibin, Yibin, China (Qiu)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wood TC, Edye ME, Harte MK, Neill JC, Prinssen EP, Vernon AC. Mapping the impact of exposure to maternal immune activation on juvenile Wistar rat brain macro- and microstructure during early post-natal development. Brain Neurosci Adv 2019; 3:2398212819883086. [PMID: 31742236 PMCID: PMC6861131 DOI: 10.1177/2398212819883086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Maternal immune activation is consistently associated with elevated risk for multiple psychiatric disorders in the affected offspring. Related to this, an important goal of our work is to explore the impact of maternal immune activation effects across the lifespan. In this context, we recently reported the effects of polyriboinosinic-polyribocytidylic acid-induced maternal immune activation at gestational day 15, immediately prior to birth, at gestational day 21 and again at post-natal day 21, providing a systematic assessment of plasma interleukin 6, body temperature and weight alterations in pregnant rats and preliminary evidence for gross morphological changes and microglial neuropathology in both male and female offsprings at these time points. Here, we sought to complement and extend these data by characterising in more detail the mesoscale impact of gestational polyriboinosinic-polyribocytidylic acid exposure at gestational day 15 on the neuroanatomy of the juvenile (post-natal day 21) rat brain using high-resolution, ex vivo anatomical magnetic resonance imaging in combination with atlas-based segmentation. Our preliminary data suggest subtle neuroanatomical effects of gestational polyriboinosinic-polyribocytidylic acid exposure (n = 10) relative to saline controls (n = 10) at this time-point. Specifically, we found an increase in the relative volume of the diagonal domain in polyriboinosinic-polyribocytidylic acid offspring (p < 0.01 uncorrected), which just failed to pass stringent multiple comparisons correction (actual q = 0.07). No statistically significant microstructural alterations were detectable using diffusion tensor imaging. Further studies are required to map the proximal effects of maternal immune activation on the developing rodent brain from foetal to early post-natal life and confirm our findings herein.
Collapse
Affiliation(s)
- Tobias C Wood
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Michelle E Edye
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Michael K Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Joanna C Neill
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Eric P Prinssen
- Roche Innovation Centre Basel, Grenzacherstrasse, Switzerland
| | - Anthony C Vernon
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,MRC Centre for Neurodevelopmental Disorders, Guy's Hospital Campus, King's College London, London, UK
| |
Collapse
|
35
|
Huhtaniska S, Korkala I, Heikka T, Björnholm L, Lehtiniemi H, Hulkko AP, Moilanen J, Tohka J, Manjón J, Coupé P, Kiviniemi V, Isohanni M, Koponen H, Murray GK, Miettunen J, Jääskeläinen E. Antipsychotic and benzodiazepine use and brain morphology in schizophrenia and affective psychoses - Systematic reviews and birth cohort study. Psychiatry Res Neuroimaging 2018; 281:43-52. [PMID: 30219591 DOI: 10.1016/j.pscychresns.2018.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 10/28/2022]
Abstract
The aim of this paper was to investigate differences in brain structure volumes between schizophrenia and affective psychoses, and whether cumulative lifetime antipsychotic or benzodiazepine doses relate to brain morphology in these groups. We conducted two systematic reviews on the topic and investigated 44 schizophrenia cases and 19 with affective psychoses from the Northern Finland Birth Cohort 1966. The association between lifetime antipsychotic and benzodiazepine dose and brain MRI scans at the age of 43 was investigated using linear regression. Intracranial volume, sex, illness severity, and antipsychotic/benzodiazepine doses were used as covariates. There were no differences between the groups in brain structure volumes. In schizophrenia, after adjusting for benzodiazepine dose and symptoms, a negative association between lifetime antipsychotic dose and the nucleus accumbens volume remained. In affective psychoses, higher lifetime benzodiazepine dose associated with larger volumes of total gray matter and hippocampal volume after controlling for antipsychotic use and symptoms. It seems that in addition to antipsychotics, the severity of symptoms and benzodiazepine dose are also associated with brain structure volumes. These results suggest, that benzodiazepine effects should also be investigated also independently and not only as a confounder.
Collapse
Affiliation(s)
- Sanna Huhtaniska
- Center for Life Course Health Research, University of Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Finland; Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Finland.
| | - Iikka Korkala
- Center for Life Course Health Research, University of Oulu, Finland; Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Finland
| | - Tuomas Heikka
- Center for Life Course Health Research, University of Oulu, Finland
| | - Lassi Björnholm
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Finland; Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Finland
| | - Heli Lehtiniemi
- Center for Life Course Health Research, University of Oulu, Finland
| | - Anja P Hulkko
- Center for Life Course Health Research, University of Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Finland; Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Finland
| | - Jani Moilanen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Finland
| | - Jussi Tohka
- AI Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - José Manjón
- Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Spain
| | - Pierrick Coupé
- Laboratoire Bordelais de Recherche en Informatique, Unité Mixte de Recherche CNRS (UMR 5800), PICTURA Research Group, France
| | - Vesa Kiviniemi
- Department of Diagnostic Radiology, Oulu University Hospital, Finland
| | - Matti Isohanni
- Center for Life Course Health Research, University of Oulu, Finland; Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Finland; Department of Psychiatry, Oulu University Hospital, Finland
| | - Hannu Koponen
- University of Helsinki, Helsinki University Hospital, Psychiatry, Helsinki, Finland
| | - Graham K Murray
- University of Cambridge, Department of Psychiatry, United Kingdom; University of Cambridge, Behavioural and Clinical Neuroscience Institute, United Kingdom
| | - Jouko Miettunen
- Center for Life Course Health Research, University of Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Finland
| | - Erika Jääskeläinen
- Center for Life Course Health Research, University of Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Finland; Department of Psychiatry, Oulu University Hospital, Finland
| |
Collapse
|
36
|
Meditation experience predicts negative reinforcement learning and is associated with attenuated FRN amplitude. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2018; 19:268-282. [PMID: 30446979 PMCID: PMC6420441 DOI: 10.3758/s13415-018-00665-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Focused attention meditation (FAM) practices are cognitive control exercises where meditators learn to maintain focus and attention in the face of distracting stimuli. Previous studies have shown that FAM is both activating and causing plastic changes to the mesolimbic dopamine system and some of its target structures, particularly the anterior cingulate cortex (ACC) and striatum. Feedback-based learning also depends on these systems and is known to be modulated by tonic dopamine levels. Capitalizing on previous findings that FAM practices seem to cause dopamine release, the present study shows that FAM experience predicts learning from negative feedback on a probabilistic selection task. Furthermore, meditators exhibited attenuated feedback-related negativity (FRN) as compared with nonmeditators and this effect scales with meditation experience. Given that reinforcement learning and FRN are modulated by dopamine levels, a possible explanation for our findings is that FAM practice causes persistent increases in tonic dopamine levels which scale with amount of practice, thus altering feedback processing.
Collapse
|
37
|
Lawrie SM. Are structural brain changes in schizophrenia related to antipsychotic medication? A narrative review of the evidence from a clinical perspective. Ther Adv Psychopharmacol 2018; 8:319-326. [PMID: 30344998 PMCID: PMC6180375 DOI: 10.1177/2045125318782306] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/20/2018] [Indexed: 01/28/2023] Open
Abstract
Some observational studies and literature reviews suggest that antipsychotic drug use is associated with loss of grey or white matter in patients with schizophrenia, whereas others have contradicted this finding. Here, I summarize and critique the available evidence and put it in the context of clinical practice. This narrative review pools evidence from observational and experimental studies in humans and animals on the relationship between antipsychotic medication use and brain structure and function in patients with schizophrenia. To summarize, the observational evidence in patients with schizophrenia and the experimental evidence in animals suggest that antipsychotic drugs can cause reductions in brain volume, but differ as to where those effects are manifest. The experimental evidence in patients is inconclusive. There is stronger and more consistent evidence that other factors, such as alcohol and cannabis use, are likely causes of progressive brain changes in schizophrenia. Overall, I argue the case against antipsychotics is not proven and the jury is out on any significance of putative antipsychotic-induced brain changes. Taken in the context of strong evidence from clinical trials that antipsychotic drugs have beneficial effects on symptoms, function, relapse and cognition, and observational evidence that treatment normalizes other imaging indices and reduces mortality, the balance of probabilities is that antipsychotic drugs do not cause adverse structural brain changes in schizophrenia.
Collapse
Affiliation(s)
- Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK
| |
Collapse
|
38
|
Cadinu D, Grayson B, Podda G, Harte MK, Doostdar N, Neill JC. NMDA receptor antagonist rodent models for cognition in schizophrenia and identification of novel drug treatments, an update. Neuropharmacology 2018; 142:41-62. [DOI: 10.1016/j.neuropharm.2017.11.045] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/28/2017] [Accepted: 11/27/2017] [Indexed: 01/05/2023]
|
39
|
Bloomfield PS, Bonsall D, Wells L, Dormann D, Howes O, De Paola V. The effects of haloperidol on microglial morphology and translocator protein levels: An in vivo study in rats using an automated cell evaluation pipeline. J Psychopharmacol 2018; 32:1264-1272. [PMID: 30126329 DOI: 10.1177/0269881118788830] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Altered microglial markers and morphology have been demonstrated in patients with schizophrenia in post-mortem and in vivo studies. However, it is unclear if changes are due to antipsychotic treatment. AIMS Here we aimed to determine whether antipsychotic medication affects microglia in vivo. METHODS To investigate this we administered two clinically relevant doses (0.05 mg n=12 and 2.5 mg n=7 slow-release pellets, placebo n=20) of haloperidol, over 2 weeks, to male Sprague Dawley rats to determine the effect on microglial cell density and morphology (area occupied by processes and microglial cell area). We developed an analysis pipeline for the automated assessment of microglial cells and used lipopolysaccharide (LPS) treatment ( n=13) as a positive control for analysis. We also investigated the effects of haloperidol ( n=9) or placebo ( n=10) on the expression of the translocator protein 18 kDa (TSPO) using autoradiography with [3H]PBR28, a TSPO ligand used in human positron emission tomography (PET) studies. RESULTS Here we demonstrated that haloperidol at either dose does not alter microglial measures compared with placebo control animals ( p > 0.05). Similarly there was no difference in [3H]PBR28 binding between placebo and haloperidol tissue ( p > 0.05). In contrast, LPS was associated with greater cell density ( p = 0.04) and larger cell size ( p = 0.01). CONCLUSION These findings suggest that haloperidol does not affect microglial cell density, morphology or TSPO expression, indicating that clinical study alterations are likely not the consequence of antipsychotic treatment. The automated cell evaluation pipeline was able to detect changes in microglial morphology induced by LPS and is made freely available for future use.
Collapse
Affiliation(s)
- Peter S Bloomfield
- 1 MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,2 Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - David Bonsall
- 1 MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,2 Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Lisa Wells
- 3 Imanova Centre for Imaging Sciences, London, UK
| | - Dirk Dormann
- 1 MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,2 Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Oliver Howes
- 1 MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,2 Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.,4 The Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, UK
| | - Vincenzo De Paola
- 1 MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,2 Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
40
|
van Erp TGM, Walton E, Hibar DP, Schmaal L, Jiang W, Glahn DC, Pearlson GD, Yao N, Fukunaga M, Hashimoto R, Okada N, Yamamori H, Bustillo JR, Clark VP, Agartz I, Mueller BA, Cahn W, de Zwarte SMC, Hulshoff Pol HE, Kahn RS, Ophoff RA, van Haren NEM, Andreassen OA, Dale AM, Doan NT, Gurholt TP, Hartberg CB, Haukvik UK, Jørgensen KN, Lagerberg TV, Melle I, Westlye LT, Gruber O, Kraemer B, Richter A, Zilles D, Calhoun VD, Crespo-Facorro B, Roiz-Santiañez R, Tordesillas-Gutiérrez D, Loughland C, Carr VJ, Catts S, Cropley VL, Fullerton JM, Green MJ, Henskens F, Jablensky A, Lenroot RK, Mowry BJ, Michie PT, Pantelis C, Quidé Y, Schall U, Scott RJ, Cairns MJ, Seal M, Tooney PA, Rasser PE, Cooper G, Weickert CS, Weickert TW, Morris DW, Hong E, Kochunov P, Beard LM, Gur RE, Gur RC, Satterthwaite TD, Wolf DH, Belger A, Brown GG, Ford JM, Macciardi F, Mathalon DH, O’Leary DS, Potkin SG, Preda A, Voyvodic J, Lim KO, McEwen S, Yang F, Tan Y, Tan S, Wang Z, Fan F, Chen J, Xiang H, Tang S, Guo H, Wan P, Wei D, Bockholt HJ, Ehrlich S, Wolthusen RPF, King MD, Shoemaker JM, Sponheim SR, De Haan L, Koenders L, Machielsen MW, van Amelsvoort T, Veltman DJ, Assogna F, Banaj N, de Rossi P, Iorio M, Piras F, Spalletta G, McKenna PJ, Pomarol-Clotet E, Salvador R, Corvin A, Donohoe G, Kelly S, Whelan CD, Dickie EW, Rotenberg D, Voineskos A, Ciufolini S, Radua J, Dazzan P, Murray R, Marques TR, Simmons A, Borgwardt S, Egloff L, Harrisberger F, Riecher-Rössler A, Smieskova R, Alpert KI, Wang L, Jönsson EG, Koops S, Sommer IEC, Bertolino A, Bonvino A, Di Giorgio A, Neilson E, Mayer AR, Stephen JM, Kwon JS, Yun JY, Cannon DM, McDonald C, Lebedeva I, Tomyshev AS, Akhadov T, Kaleda V, Fatouros-Bergman H, Flyckt L, Busatto GF, Rosa PGP, Serpa MH, Zanetti MV, Hoschl C, Skoch A, Spaniel F, Tomecek D, Hagenaars SP, McIntosh AM, Whalley HC, Lawrie SM, Knöchel C, Oertel-Knöchel V, Stäblein M, Howells FM, Stein DJ, Temmingh H, Uhlmann A, Lopez-Jaramillo C, Dima D, McMahon A, Faskowitz JI, Gutman BA, Jahanshad N, Thompson PM, Turner JA. Cortical Brain Abnormalities in 4474 Individuals With Schizophrenia and 5098 Control Subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium. Biol Psychiatry 2018; 84:644-654. [PMID: 29960671 PMCID: PMC6177304 DOI: 10.1016/j.biopsych.2018.04.023] [Citation(s) in RCA: 566] [Impact Index Per Article: 80.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND The profile of cortical neuroanatomical abnormalities in schizophrenia is not fully understood, despite hundreds of published structural brain imaging studies. This study presents the first meta-analysis of cortical thickness and surface area abnormalities in schizophrenia conducted by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) Schizophrenia Working Group. METHODS The study included data from 4474 individuals with schizophrenia (mean age, 32.3 years; range, 11-78 years; 66% male) and 5098 healthy volunteers (mean age, 32.8 years; range, 10-87 years; 53% male) assessed with standardized methods at 39 centers worldwide. RESULTS Compared with healthy volunteers, individuals with schizophrenia have widespread thinner cortex (left/right hemisphere: Cohen's d = -0.530/-0.516) and smaller surface area (left/right hemisphere: Cohen's d = -0.251/-0.254), with the largest effect sizes for both in frontal and temporal lobe regions. Regional group differences in cortical thickness remained significant when statistically controlling for global cortical thickness, suggesting regional specificity. In contrast, effects for cortical surface area appear global. Case-control, negative, cortical thickness effect sizes were two to three times larger in individuals receiving antipsychotic medication relative to unmedicated individuals. Negative correlations between age and bilateral temporal pole thickness were stronger in individuals with schizophrenia than in healthy volunteers. Regional cortical thickness showed significant negative correlations with normalized medication dose, symptom severity, and duration of illness and positive correlations with age at onset. CONCLUSIONS The findings indicate that the ENIGMA meta-analysis approach can achieve robust findings in clinical neuroscience studies; also, medication effects should be taken into account in future genetic association studies of cortical thickness in schizophrenia.
Collapse
Affiliation(s)
- Theo GM. van Erp
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - Esther Walton
- Imaging Genetics and Neuroinformatics Lab, Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Derrek P. Hibar
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA,Janssen Research & Development, San Diego, CA, USA
| | - Lianne Schmaal
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, VIC, Australia,Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia,Department of Psychiatry and Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Wenhao Jiang
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - David C. Glahn
- Department of Psychiatry, Yale University, New Haven, CT, USA,Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
| | - Godfrey D. Pearlson
- Department of Psychiatry, Yale University, New Haven, CT, USA,Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
| | - Nailin Yao
- Department of Psychiatry, Yale University, New Haven, CT, USA,Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Ryota Hashimoto
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan,Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate school of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hidenaga Yamamori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | - Vincent P. Clark
- University of New Mexico, Albuquerque, NM, USA,Mind Research Network, Albuquerque, NM, USA
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway,Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Bryon A. Mueller
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Wiepke Cahn
- Department of Psychiatry and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sonja MC. de Zwarte
- Department of Psychiatry and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hilleke E. Hulshoff Pol
- Department of Psychiatry and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - René S. Kahn
- Department of Psychiatry and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roel A. Ophoff
- Department of Psychiatry and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands,UCLA Center for Neurobehavioral Genetics, Los Angeles, CA, USA
| | - Neeltje EM. van Haren
- Department of Psychiatry and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Norwegian Centre for Mental Disorders Research (NORMENT), K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Anders M. Dale
- Departments of Neurosciences, Radiology, Psychiatry, and Cognitive Science, UCSD, La Jolla, CA, USA,Center for Translational Imaging and Precision Medicine, San Diego, CA, USA
| | - Nhat Trung Doan
- Norwegian Centre for Mental Disorders Research (NORMENT), K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tiril P. Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT), K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Cecilie B. Hartberg
- Norwegian Centre for Mental Disorders Research (NORMENT), K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Unn K. Haukvik
- Norwegian Centre for Mental Disorders Research (NORMENT), K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Norwegian Centre for Mental Disorders Research (NORMENT), K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Kjetil N. Jørgensen
- Norwegian Centre for Mental Disorders Research (NORMENT), K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Trine V. Lagerberg
- Norwegian Centre for Mental Disorders Research (NORMENT), K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research (NORMENT), K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Norwegian Centre for Mental Disorders Research (NORMENT), K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Lars T. Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway,Department of Psychology, University of Oslo, Oslo, Norway
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University Hospital, Heidelberg, Germany,Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry, Georg August University, Göttingen, Germany
| | - Bernd Kraemer
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University Hospital, Heidelberg, Germany,Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry, Georg August University, Göttingen, Germany
| | - Anja Richter
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University Hospital, Heidelberg, Germany,Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry, Georg August University, Göttingen, Germany
| | - David Zilles
- Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry, Georg August University, Göttingen, Germany,Department of Psychiatry, University Medical Center Göttingen, Gottingen, Germany
| | - Vince D. Calhoun
- University of New Mexico, Albuquerque, NM, USA,Mind Research Network, Albuquerque, NM, USA
| | - Benedicto Crespo-Facorro
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain,CIBERSAM, Centro Investigación Biomédica en Red de Salud Mental, Santander, Spain
| | - Roberto Roiz-Santiañez
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain,CIBERSAM, Centro Investigación Biomédica en Red de Salud Mental, Santander, Spain
| | - Diana Tordesillas-Gutiérrez
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain,CIBERSAM, Centro Investigación Biomédica en Red de Salud Mental, Santander, Spain,Neuroimaging Unit.Technological Facilities, Valdecilla Biomedical Research Institute IDIVAL, Santander, Cantabria, Spain, Dresden, Dresden, Germany
| | - Carmel Loughland
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - Vaughan J. Carr
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia,Monash University, Melbourne, Australia
| | | | - Vanessa L. Cropley
- Melbourne Neuropsychiatry Centre, University of Melbourne & Melbourne Health, Melbourne, VIC, Australia
| | - Janice M. Fullerton
- Neuroscience Research Australia, Sydney, NSW, Australia,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Melissa J. Green
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia,Neuroscience Research Australia, Sydney, NSW, Australia
| | - Frans Henskens
- PRC for Health Behaviour, and FEBE, University of Newcastle Australia, Newcastle, NSW, Australia
| | | | - Rhoshel K. Lenroot
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia,Neuroscience Research Australia, Sydney, NSW, Australia
| | - Bryan J. Mowry
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia,Queensland Centre for Mental Health Research, The University of Queensland, Brisbane, QLD, Australia
| | - Patricia T. Michie
- School of Psychology, University of Newcastle, Newcastle, NSW, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, University of Melbourne & Melbourne Health, Melbourne, VIC, Australia,Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | - Yann Quidé
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia,Neuroscience Research Australia, Sydney, NSW, Australia
| | - Ulrich Schall
- The University of Newcastle, Priority Research Centres for Brain & Mental Health and Grow Up Well, Newcastle, NSW, Australia,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Rodney J. Scott
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Murray J. Cairns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Marc Seal
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Paul A. Tooney
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia,The University of Newcastle, Priority Research Centres for Brain & Mental Health and Grow Up Well, Newcastle, NSW, Australia,The University of Newcastle, Priority Research Centre for Brain & Mental Health, Newcastle, NSW, Australia
| | - Paul E. Rasser
- The University of Newcastle, Priority Research Centre for Brain & Mental Health, Newcastle, NSW, Australia
| | - Gavin Cooper
- The University of Newcastle, Priority Research Centre for Brain & Mental Health, Newcastle, NSW, Australia
| | - Cynthia Shannon Weickert
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia,Neuroscience Research Australia, Sydney, NSW, Australia
| | - Thomas W. Weickert
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia,Neuroscience Research Australia, Sydney, NSW, Australia
| | - Derek W. Morris
- Centre for Neuroimaging & Cognitive Genomics, School of Psychology and Department of Biochemistry, National University of Ireland Galway, Galway, Ireland,Neuropsychiatric Genetics Research Group, Department of Psychiatry and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Elliot Hong
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lauren M. Beard
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruben C. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Daniel H. Wolf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA
| | - Gregory G. Brown
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Judith M. Ford
- University of California, San Francisco, San Francisco, CA, USA,San Francisco VA Medical Center, San Francisco, CA, USA
| | - Fabio Macciardi
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - Daniel H. Mathalon
- University of California, San Francisco, San Francisco, CA, USA,San Francisco VA Medical Center, San Francisco, CA, USA
| | | | - Steven G. Potkin
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - Adrian Preda
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - James Voyvodic
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA
| | - Kelvin O. Lim
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Sarah McEwen
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Fude Yang
- Psychiatry Research Center, Beijing Huilongguan hospital, Beijing, China
| | - Yunlong Tan
- Psychiatry Research Center, Beijing Huilongguan hospital, Beijing, China
| | - Shuping Tan
- Psychiatry Research Center, Beijing Huilongguan hospital, Beijing, China
| | - Zhiren Wang
- Psychiatry Research Center, Beijing Huilongguan hospital, Beijing, China
| | - Fengmei Fan
- Psychiatry Research Center, Beijing Huilongguan hospital, Beijing, China
| | - Jingxu Chen
- Psychiatry Research Center, Beijing Huilongguan hospital, Beijing, China
| | - Hong Xiang
- Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Shiyou Tang
- Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Hua Guo
- Zhumadian Psychiatry Hospital, Henan province, Zhumadian, China
| | - Ping Wan
- Zhumadian Psychiatry Hospital, Henan province, Zhumadian, China
| | - Dong Wei
- Luoyang Fifth People’s Hospital, Henan province, Luoyang, China
| | - Henry J. Bockholt
- Mind Research Network, Albuquerque, NM, USA,Department of Psychiatry, University of Iowa, Iowa City, IA, USA,Advanced Biomedical Informatics Group, LLC, Iowa City, IA, USA
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Germany, Dresden, Germany,Massachusetts General Hospital/Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Psychiatric Neuroimaging Research Program
| | - Rick PF. Wolthusen
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Germany, Dresden, Germany,Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA,Emotion and Social Neuroscience Laboratory, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | | | | | - Scott R. Sponheim
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA,Minneapolis VA HCS, Minneapolis, MN, USA
| | - Lieuwe De Haan
- Department of psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Laura Koenders
- Department of psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marise W. Machielsen
- Department of psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Therese van Amelsvoort
- Department of Psychiatry & Psychology, Maastricht University, Maastricht, The Netherlands
| | - Dick J. Veltman
- Department of Psychiatry, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Francesca Assogna
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy,Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Rome, Italy
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Pietro de Rossi
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy,NESMOS Department, Faculty of Medicine and Psychology, University “Sapienza” of Rome, Rome, Italy,Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Mariangela Iorio
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy,Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Rome, Italy
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy,Beth K. and Stuart C. Yudofsky Division of Neuropsychiatry, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Tx USA
| | - Peter J. McKenna
- FIDMAG Germanes Hospitalaries Research Foundation, Barcelona, Spain,CIBERSAM, Centro Investigación Biomédica en Red de Salud Mental, Barcelona, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalaries Research Foundation, Barcelona, Spain,CIBERSAM, Centro Investigación Biomédica en Red de Salud Mental, Barcelona, Spain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalaries Research Foundation, Barcelona, Spain,CIBERSAM, Centro Investigación Biomédica en Red de Salud Mental, Barcelona, Spain
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Gary Donohoe
- Centre for Neuroimaging & Cognitive Genomics, School of Psychology and Department of Biochemistry, National University of Ireland Galway, Galway, Ireland,Neuropsychiatric Genetics Research Group, Department of Psychiatry and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Sinead Kelly
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA,Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher D. Whelan
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA
| | | | | | | | - Simone Ciufolini
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Joaquim Radua
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden,FIDMAG Germanes Hospitalaries Research Foundation, Barcelona, Spain,CIBERSAM, Centro Investigación Biomédica en Red de Salud Mental, Barcelona, Spain,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom,National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust
| | - Robin Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Tiago Reis Marques
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Andrew Simmons
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | | | - Laura Egloff
- University of Basel Psychiatric Hospital, Basel, Switzerland
| | | | | | | | - Kathryn I. Alpert
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Erik G. Jönsson
- Norwegian Centre for Mental Disorders Research (NORMENT), K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Sanne Koops
- Department of Psychiatry and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Iris EC. Sommer
- Department of Psychiatry and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, Bari, Italy
| | - Aurora Bonvino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, Bari, Italy
| | | | - Emma Neilson
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea,Department of Brain & Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Je-Yeon Yun
- Seoul National University Hospital, Seoul, Republic of Korea,Yeongeon Student Support Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dara M. Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | | | | | - Tolibjohn Akhadov
- Children’s Clinical and Research Institute of Emergency Surgery and Trauma, Moscow, Russia
| | | | - Helena Fatouros-Bergman
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Lena Flyckt
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | | | - Geraldo F. Busatto
- Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
| | - Pedro GP. Rosa
- Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
| | - Mauricio H. Serpa
- Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
| | - Marcus V. Zanetti
- Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil
| | - Cyril Hoschl
- National Institute of Mental Health, Klecany, Czech Republic
| | - Antonin Skoch
- National Institute of Mental Health, Klecany, Czech Republic,MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Filip Spaniel
- National Institute of Mental Health, Klecany, Czech Republic
| | - David Tomecek
- National Institute of Mental Health, Klecany, Czech Republic
| | - Saskia P. Hagenaars
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom,Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew M. McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom,Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Heather C. Whalley
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen M. Lawrie
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Christian Knöchel
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University Frankfurt, Frankfurt, Germany
| | - Viola Oertel-Knöchel
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University Frankfurt, Frankfurt, Germany
| | - Michael Stäblein
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University Frankfurt, Frankfurt, Germany
| | - Fleur M. Howells
- University of Cape Town Dept of Psychiatry, Groote Schuur Hospital (J2), Cape Town South Africa
| | - Dan J. Stein
- University of Cape Town Dept of Psychiatry, Groote Schuur Hospital (J2), Cape Town South Africa,MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Henk Temmingh
- University of Cape Town Dept of Psychiatry, Groote Schuur Hospital (J2), Cape Town South Africa
| | - Anne Uhlmann
- University of Cape Town Dept of Psychiatry, Groote Schuur Hospital (J2), Cape Town South Africa,MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | - Carlos Lopez-Jaramillo
- Research Group in Psychiatry, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - Danai Dima
- Department of Psychology, City, University of London, London, United Kingdom,Department of Neuroimaging, IOPPN, King’s College London, London, United Kingdom
| | - Agnes McMahon
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA
| | - Joshua I. Faskowitz
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA
| | - Boris A. Gutman
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA
| | - Jessica A. Turner
- Imaging Genetics and Neuroinformatics Lab, Department of Psychology, Georgia State University, Atlanta, GA, USA,Mind Research Network, Albuquerque, NM, USA
| |
Collapse
|
41
|
Huang XF, Song X. Effects of antipsychotic drugs on neurites relevant to schizophrenia treatment. Med Res Rev 2018; 39:386-403. [PMID: 29785841 DOI: 10.1002/med.21512] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/06/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022]
Abstract
Although antipsychotic drugs are mainly used for treating schizophrenia, they are widely used for treating various psychiatric diseases in adults, the elderly, adolescents and even children. Today, about 1.2% of the worldwide population suffers from psychosis and related disorders, which translates to about 7.5 million subjects potentially targeted by antipsychotic drugs. Neurites project from the cell body of neurons and connect neurons to each other to form neural networks. Deficits in neurite outgrowth and integrity are implicated in psychiatric diseases including schizophrenia. Neurite deficits contribute to altered brain development, neural networking and connectivity as well as symptoms including psychosis and altered cognitive function. This review revealed that (1) antipsychotic drugs could have profound effects on neurites, synaptic spines and synapse, by which they may influence and regulate neural networking and plasticity; (2) antipsychotic drugs target not only neurotransmitter receptors but also intracellular signaling molecules regulating the signaling pathways responsible for neurite outgrowth and maintenance; (3) high doses and chronic administration of antipsychotic drugs may cause some loss of neurites, synaptic spines, or synapsis in the cortical structures. In addition, confounding effects causing neurite deficits may include elevated inflammatory cytokines and antipsychotic drug-induced metabolic side effects in patients on chronic antipsychotic therapy. Unraveling how antipsychotic drugs affect neurites and neural connectivity is essential for improving therapeutic outcomes and preventing aversive effects for patients on antipsychotic drug treatment.
Collapse
Affiliation(s)
- Xu-Feng Huang
- Henan Medical Key Laboratory of Translational Research on Psychiatric Diseases, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,The Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, Wollongong, Australia
| | - Xueqin Song
- Henan Medical Key Laboratory of Translational Research on Psychiatric Diseases, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
42
|
Drazanova E, Ruda-Kucerova J, Kratka L, Horska K, Demlova R, Starcuk Z, Kasparek T. Poly(I:C) model of schizophrenia in rats induces sex-dependent functional brain changes detected by MRI that are not reversed by aripiprazole treatment. Brain Res Bull 2017; 137:146-155. [PMID: 29155259 DOI: 10.1016/j.brainresbull.2017.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE One of the hallmarks of schizophrenia is altered brain structure, potentially due to antipsychotic treatment, the disorder itself or both. It was proposed that functional changes may precede the structural ones. In order to understand and potentially prevent this unwanted process, brain function assessment should be validated as a diagnostic tool. METHODS We used Arterial Spin Labelling MRI technique for the evaluation of brain perfusion in several brain regions in a neurodevelopmental poly(I:C) model of schizophrenia (8mg/kg on a gestational day 15) in rats taking into account sex-dependent effects and chronic treatment with aripiprazole (30days), an atypical antipsychotic acting as a partial agonist on dopaminergic receptors. RESULTS We found the sex of the animal to have a highly significant effect in all regions of interest, with females showing lower blood perfusion than males. However, both males and females treated prenatally with poly(I:C) showed enlargement of the lateral ventricles. Furthermore, we detected increased perfusion in the circle of Willis, hippocampus, and sensorimotor cortex, which was not influenced by chronic atypical antipsychotic aripiprazole treatment in male poly(I:C) rats. CONCLUSION We hypothesize that perfusion alterations may be caused by the hyperdopaminergic activity in the poly(I:C) model, and the absence of aripiprazole effect on perfusion in brain regions related to schizophrenia may be due to its partial agonistic mechanism.
Collapse
Affiliation(s)
- Eva Drazanova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Institute of Scientific Instruments, The Czech Academy of Sciences, Brno, Czech Republic
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Lucie Kratka
- Institute of Scientific Instruments, The Czech Academy of Sciences, Brno, Czech Republic
| | - Katerina Horska
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Regina Demlova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zenon Starcuk
- Institute of Scientific Instruments, The Czech Academy of Sciences, Brno, Czech Republic
| | - Tomas Kasparek
- Department of Psychiatry, University Hospital and Masaryk University, Brno, Czech Republic
| |
Collapse
|
43
|
Hawkins PCT, Wood TC, Vernon AC, Bertolino A, Sambataro F, Dukart J, Merlo-Pich E, Risterucci C, Silber-Baumann H, Walsh E, Mazibuko N, Zelaya FO, Mehta MA. An investigation of regional cerebral blood flow and tissue structure changes after acute administration of antipsychotics in healthy male volunteers. Hum Brain Mapp 2017; 39:319-331. [PMID: 29058358 DOI: 10.1002/hbm.23844] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/13/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023] Open
Abstract
Chronic administration of antipsychotic drugs has been linked to structural brain changes observed in patients with schizophrenia. Recent MRI studies have shown rapid changes in regional brain volume following just a single dose of these drugs. However, it is not clear if these changes represent real volume changes or are artefacts ("apparent" volume changes) due to drug-induced physiological changes, such as increased cerebral blood flow (CBF). To address this, we examined the effects of a single, clinical dose of three commonly prescribed antipsychotics on quantitative measures of T1 and regional blood flow of the healthy human brain. Males (n = 42) were randomly assigned to one of two parallel groups in a double-blind, placebo-controlled, randomized, three-period cross-over study design. One group received a single oral dose of either 0.5 or 2 mg of risperidone or placebo during each visit. The other received olanzapine (7.5 mg), haloperidol (3 mg), or placebo. MR measures of quantitative T1, CBF, and T1-weighted images were acquired at the estimated peak plasma concentration of the drug. All three drugs caused localized increases in striatal blood flow, although drug and region specific effects were also apparent. In contrast, all assessments of T1 and brain volume remained stable across sessions, even in those areas experiencing large changes in CBF. This illustrates that a single clinically relevant oral dose of an antipsychotic has no detectable acute effect on T1 in healthy volunteers. We further provide a methodology for applying quantitative imaging methods to assess the acute effects of other compounds on structural MRI metrics. Hum Brain Mapp 39:319-331, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peter C T Hawkins
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Tobias C Wood
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari BA, Italy
| | - Fabio Sambataro
- Department of Experimental and Clinical Medical Sciences, University of Udine, Udine, Italy
| | - Juergen Dukart
- Translational Medicine Neuroscience and Biomarkers, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Emilio Merlo-Pich
- CNS Therapeutic Area Unit, Takeda Development Centre Europe, London, United Kingdom
| | - Celine Risterucci
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Hanna Silber-Baumann
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Eamonn Walsh
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Ndabezinhle Mazibuko
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Fernando O Zelaya
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Mitul A Mehta
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
44
|
Nørbak-Emig H, Pinborg LH, Raghava JM, Svarer C, Baaré WFC, Allerup P, Friberg L, Rostrup E, Glenthøj B, Ebdrup BH. Extrastriatal dopamine D 2/3 receptors and cortical grey matter volumes in antipsychotic-naïve schizophrenia patients before and after initial antipsychotic treatment. World J Biol Psychiatry 2017; 18:539-549. [PMID: 27782768 DOI: 10.1080/15622975.2016.1237042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Long-term dopamine D2/3 receptor blockade, common to all antipsychotics, may underlie progressive brain volume changes observed in patients with chronic schizophrenia. In the present study, we examined associations between cortical volume changes and extrastriatal dopamine D2/3 receptor binding potentials (BPND) in first-episode schizophrenia patents at baseline and after antipsychotic treatment. METHODS Twenty-two initially antipsychotic-naïve patients underwent magnetic resonance imaging (MRI), [123I]epidepride single-photon emission computerised tomography (SPECT), and psychopathology assessments before and after 3 months of treatment with either risperidone (N = 13) or zuclopenthixol (N = 9). Twenty healthy controls matched on age, gender and parental socioeconomic status underwent baseline MRI and SPECT. RESULTS Neither extrastriatal D2/3 receptor BPND at baseline, nor blockade at follow-up, was related to regional cortical volume changes. In post-hoc analyses excluding three patients with cannabis use we found that higher D2/3 receptor occupancy was significantly associated with an increase in right frontal grey matter volume. CONCLUSIONS The present data do not support an association between extrastriatal D2/3 receptor blockade and extrastriatal grey matter loss in the early phases of schizophrenia. Although inconclusive, our exclusion of patients tested positive for cannabis use speaks to keeping attention to potential confounding factors in imaging studies.
Collapse
Affiliation(s)
- Henrik Nørbak-Emig
- a Centre for Neuropsychiatric Schizophrenia Research, CNSR & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre, Glostrup, University of Copenhagen , Denmark.,b Faculty of Health and Medical Sciences, Department of Clinical Medicine , University of Copenhagen , Denmark
| | - Lars H Pinborg
- c Neurobiology Research Unit and Epilepsy Clinic, Rigshospitalet, University of Copenhagen , Denmark
| | - Jayachandra M Raghava
- a Centre for Neuropsychiatric Schizophrenia Research, CNSR & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre, Glostrup, University of Copenhagen , Denmark.,d Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet - Glostrup , University of Copenhagen , Denmark
| | - Claus Svarer
- c Neurobiology Research Unit and Epilepsy Clinic, Rigshospitalet, University of Copenhagen , Denmark
| | - William F C Baaré
- e Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, University of Copenhagen , Denmark
| | - Peter Allerup
- f Institute for Education (DPU), Aarhus University , Denmark
| | - Lars Friberg
- g Department of Clinical Physiology and Nuclear Medicine , Bispebjerg Hospital, University of Copenhagen , Denmark
| | - Egill Rostrup
- d Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet - Glostrup , University of Copenhagen , Denmark
| | - Birte Glenthøj
- a Centre for Neuropsychiatric Schizophrenia Research, CNSR & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre, Glostrup, University of Copenhagen , Denmark.,b Faculty of Health and Medical Sciences, Department of Clinical Medicine , University of Copenhagen , Denmark
| | - Bjørn H Ebdrup
- a Centre for Neuropsychiatric Schizophrenia Research, CNSR & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre, Glostrup, University of Copenhagen , Denmark
| |
Collapse
|
45
|
Huhtaniska S, Jääskeläinen E, Heikka T, Moilanen JS, Lehtiniemi H, Tohka J, Manjón JV, Coupé P, Björnholm L, Koponen H, Veijola J, Isohanni M, Kiviniemi V, Murray GK, Miettunen J. Long-term antipsychotic and benzodiazepine use and brain volume changes in schizophrenia: The Northern Finland Birth Cohort 1966 study. Psychiatry Res Neuroimaging 2017; 266:73-82. [PMID: 28618327 DOI: 10.1016/j.pscychresns.2017.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/12/2017] [Accepted: 05/19/2017] [Indexed: 11/22/2022]
Abstract
High doses of antipsychotics have been associated with loss in cortical and total gray matter in schizophrenia. However, previous imaging studies have not taken benzodiazepine use into account, in spite of evidence suggesting adverse effects such as cognitive impairment and increased mortality. In this Northern Finland Birth Cohort 1966 study, 69 controls and 38 individuals with schizophrenia underwent brain MRI at the ages of 34 and 43 years. At baseline, the average illness duration was over 10 years. Brain structures were delineated using an automated volumetry system, volBrain, and medication data on cumulative antipsychotic and benzodiazepine doses were collected using medical records and interviews. We used linear regression with intracranial volume and sex as covariates; illness severity was also taken into account. Though both medication doses associated to volumetric changes in subcortical structures, after adjusting for each other and the average PANSS total score, higher scan-interval antipsychotic dose associated only to volume increase in lateral ventricles and higher benzodiazepine dose associated with volume decrease in the caudate nucleus. To our knowledge, there are no previous studies reporting associations between benzodiazepine dose and brain structural changes. Further studies should focus on how these observations correspond to cognition and functioning.
Collapse
Affiliation(s)
- Sanna Huhtaniska
- Center for Life Course Health Research, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland.
| | - Erika Jääskeläinen
- Center for Life Course Health Research, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Oulu University Hospital, P.O. Box 26, FIN-90029 Oulu, Finland
| | - Tuomas Heikka
- Center for Life Course Health Research, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland
| | - Jani S Moilanen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Oulu University Hospital, P.O. Box 26, FIN-90029 Oulu, Finland
| | - Heli Lehtiniemi
- Center for Life Course Health Research, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland
| | - Jussi Tohka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - José V Manjón
- Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Pierrick Coupé
- Laboratoire Bordelais de Recherche en Informatique, Unité Mixte de Recherche CNRS (UMR 5800), PICTURA Research Group, France
| | - Lassi Björnholm
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland
| | - Hannu Koponen
- Department of Psychiatry, University of Helsinki and Helsinki University Hospital, P.O. Box 22, University of Helsinki, Finland
| | - Juha Veijola
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Oulu University Hospital, P.O. Box 26, FIN-90029 Oulu, Finland
| | - Matti Isohanni
- Center for Life Course Health Research, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Oulu University Hospital, P.O. Box 26, FIN-90029 Oulu, Finland
| | - Vesa Kiviniemi
- Department of Diagnostic Radiology, Oulu University Hospital, P.O. Box 50, FIN-90029 Oulu, Finland
| | - Graham K Murray
- Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Box 189, Cambridge CB2 2QQ, UK; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Site, Cambridge CB2 3EB, UK
| | - Jouko Miettunen
- Center for Life Course Health Research, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland; Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland
| |
Collapse
|
46
|
Crum WR, Sawiak SJ, Chege W, Cooper JD, Williams SC, Vernon AC. Evolution of structural abnormalities in the rat brain following in utero exposure to maternal immune activation: A longitudinal in vivo MRI study. Brain Behav Immun 2017; 63:50-59. [PMID: 27940258 PMCID: PMC5441572 DOI: 10.1016/j.bbi.2016.12.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/07/2016] [Accepted: 12/07/2016] [Indexed: 02/08/2023] Open
Abstract
Genetic and environmental risk factors for psychiatric disorders are suggested to disrupt the trajectory of brain maturation during adolescence, leading to the development of psychopathology in adulthood. Rodent models are powerful tools to dissect the specific effects of such risk factors on brain maturational profiles, particularly when combined with Magnetic Resonance Imaging (MRI; clinically comparable technology). We therefore investigated the effect of maternal immune activation (MIA), an epidemiological risk factor for adult-onset psychiatric disorders, on rat brain maturation using atlas and tensor-based morphometry analysis of longitudinal in vivo MR images. Exposure to MIA resulted in decreases in the volume of several cortical regions, the hippocampus, amygdala, striatum, nucleus accumbens and unexpectedly, the lateral ventricles, relative to controls. In contrast, the volumes of the thalamus, ventral mesencephalon, brain stem and major white matter tracts were larger, relative to controls. These volumetric changes were maximal between post-natal day 50 and 100 with no differences between the groups thereafter. These data are consistent with and extend prior studies of brain structure in MIA-exposed rodents. Apart from the ventricular findings, these data have robust face validity to clinical imaging findings reported in studies of individuals at high clinical risk for a psychiatric disorder. Further work is now required to address the relationship of these MRI changes to behavioral dysfunction and to establish thier cellular correlates.
Collapse
Affiliation(s)
- William R. Crum
- Department of Neuroimaging Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London SE5 8AF, UK
| | - Stephen J. Sawiak
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, UK
| | - Winfred Chege
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London SE5 8AF, UK
| | - Jonathan D. Cooper
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe Road, London SE5 9RT, UK
| | - Steven C.R. Williams
- Department of Neuroimaging Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London SE5 8AF, UK,MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Anthony C. Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe Road, London SE5 9RT, UK,MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK,Corresponding author at: Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe Road, London SE5 9RT, UK.Department of Basic and Clinical NeuroscienceInstitute of PsychiatryPsychology and NeuroscienceKing’s College LondonMaurice Wohl Clinical Neuroscience Institute5 Cutcombe RoadLondonSE5 9RTUK
| |
Collapse
|
47
|
Neuroadaptations to antipsychotic drugs: Insights from pre-clinical and human post-mortem studies. Neurosci Biobehav Rev 2017; 76:317-335. [DOI: 10.1016/j.neubiorev.2016.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 07/07/2016] [Accepted: 10/06/2016] [Indexed: 12/21/2022]
|
48
|
Radoeva PD, Bansal R, Antshel KM, Fremont W, Peterson BS, Kates WR. Longitudinal study of cerebral surface morphology in youth with 22q11.2 deletion syndrome, and association with positive symptoms of psychosis. J Child Psychol Psychiatry 2017; 58:305-314. [PMID: 27786353 PMCID: PMC5340081 DOI: 10.1111/jcpp.12657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND 22q11.2 deletion syndrome (22q11DS) is a genetic disorder that greatly increases risk of developing schizophrenia. We previously characterized cerebral surface morphology trajectories from late childhood to mid adolescence in a cohort of youth with 22q11DS. Herein, we extend the study period into early adulthood, and describe further the trajectories associated with severe psychiatric symptoms in this cohort. METHODS Participants included 76 youth with 22q11DS and 30 unaffected siblings, assessed at three timepoints, during which high resolution, anatomic magnetic resonance images were acquired. High-dimensional, nonlinear warping algorithms were applied to images in order to derive characteristics of cerebral surface morphology for each participant at each timepoint. Repeated-measures, linear regressions using a mixed model were conducted, while covarying for age and sex. RESULTS Alterations in cerebral surface morphology during late adolescence/early adulthood in individuals with 22q11DS were observed in the lateral frontal, orbitofrontal, temporal, parietal, occipital, and cerebellar regions. An Age x Diagnosis interaction revealed that relative to unaffected siblings, individuals with 22q11DS showed age-related surface protrusions in the prefrontal cortex (which remained stable or increased during early adulthood), and surface indentations in posterior regions (which seemed to level off during late adolescence). Symptoms of psychosis were associated with a trajectory of surface indentations in the orbitofrontal and parietal regions. CONCLUSIONS These results advance our understanding of cerebral maturation in individuals with 22q11DS, and provide clinically relevant information about the psychiatric phenotype associated with the longitudinal trajectory of cortical surface morphology in youth with this genetic syndrome.
Collapse
Affiliation(s)
- Petya D. Radoeva
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Ravi Bansal
- Children’s Hospital Los Angeles and the Keck School of Medicine at the University of Southern California, Los Angeles, California, USA
| | - Kevin M. Antshel
- Department of Psychology, Syracuse University, Syracuse, New York, USA
| | - Wanda Fremont
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Bradley S. Peterson
- Children’s Hospital Los Angeles and the Keck School of Medicine at the University of Southern California, Los Angeles, California, USA
| | - Wendy R. Kates
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
49
|
Holmes SE, Hinz R, Drake RJ, Gregory CJ, Conen S, Matthews JC, Anton-Rodriguez JM, Gerhard A, Talbot PS. In vivo imaging of brain microglial activity in antipsychotic-free and medicated schizophrenia: a [ 11C](R)-PK11195 positron emission tomography study. Mol Psychiatry 2016; 21:1672-1679. [PMID: 27698434 DOI: 10.1038/mp.2016.180] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 12/11/2022]
Abstract
Positron emission tomography (PET) imaging of the 18 kDa translocator protein (TSPO) has been used to investigate whether microglial activation, an indication of neuroinflammation, is evident in the brain of adults with schizophrenia. Interpretation of these studies is confounded by potential modulatory effects of antipsychotic medication on microglial activity. In the first such study in antipsychotic-free schizophrenia, we have used [11C](R)-PK11195 PET to compare TSPO availability in a predominantly antipsychotic-naive group of moderate-to-severely symptomatic unmedicated patients (n=8), similarly symptomatic medicated patients with schizophrenia taking risperidone or paliperidone by regular intramuscular injection (n=8), and healthy comparison subjects (n=16). We found no evidence for increased TSPO availability in antipsychotic-free patients compared with healthy controls (mean difference 4%, P=0.981). However, TSPO availability was significantly elevated in medicated patients (mean increase 88%, P=0.032) across prefrontal (dorsolateral, ventrolateral, orbital), anterior cingulate and parietal cortical regions. In the patients, TSPO availability was also strongly correlated with negative symptoms measured using the Positive and Negative Syndrome Scale across all the brain regions investigated (r=0.651-0.741). We conclude that the pathophysiology of schizophrenia is not associated with microglial activation in the 2-6 year period following diagnosis. The elevation in the medicated patients may be a direct effect of the antipsychotic, although this study cannot exclude treatment resistance and/or longer illness duration as potential explanations. It also remains to be determined whether it is present only in a subset of patients, represents a pro- or anti-inflammatory state, its association with primary negative symptoms, and whether there are significant differences between antipsychotics.
Collapse
Affiliation(s)
- S E Holmes
- Wolfson Molecular Imaging Centre, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - R Hinz
- Wolfson Molecular Imaging Centre, Division of Informatics, Imaging & Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - R J Drake
- Division of Psychology & Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - C J Gregory
- Wolfson Molecular Imaging Centre, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - S Conen
- Wolfson Molecular Imaging Centre, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - J C Matthews
- Wolfson Molecular Imaging Centre, Division of Informatics, Imaging & Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - J M Anton-Rodriguez
- Wolfson Molecular Imaging Centre, Division of Informatics, Imaging & Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - A Gerhard
- Wolfson Molecular Imaging Centre, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - P S Talbot
- Wolfson Molecular Imaging Centre, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
50
|
Crum WR, Danckaers F, Huysmans T, Cotel MC, Natesan S, Modo MM, Sijbers J, Williams SCR, Kapur S, Vernon AC. Chronic exposure to haloperidol and olanzapine leads to common and divergent shape changes in the rat hippocampus in the absence of grey-matter volume loss. Psychol Med 2016; 46:3081-3093. [PMID: 27516217 PMCID: PMC5108303 DOI: 10.1017/s0033291716001768] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND One of the most consistently reported brain abnormalities in schizophrenia (SCZ) is decreased volume and shape deformation of the hippocampus. However, the potential contribution of chronic antipsychotic medication exposure to these phenomena remains unclear. METHOD We examined the effect of chronic exposure (8 weeks) to clinically relevant doses of either haloperidol (HAL) or olanzapine (OLZ) on adult rat hippocampal volume and shape using ex vivo structural MRI with the brain retained inside the cranium to prevent distortions due to dissection, followed by tensor-based morphometry (TBM) and elastic surface-based shape deformation analysis. The volume of the hippocampus was also measured post-mortem from brain tissue sections in each group. RESULTS Chronic exposure to either HAL or OLZ had no effect on the volume of the hippocampus, even at exploratory thresholds, which was confirmed post-mortem. In contrast, shape deformation analysis revealed that chronic HAL and OLZ exposure lead to both common and divergent shape deformations (q = 0.05, FDR-corrected) in the rat hippocampus. In particular, in the dorsal hippocampus, HAL exposure led to inward shape deformation, whereas OLZ exposure led to outward shape deformation. Interestingly, outward shape deformations that were common to both drugs occurred in the ventral hippocampus. These effects remained significant after controlling for hippocampal volume suggesting true shape changes. CONCLUSIONS Chronic exposure to either HAL or OLZ leads to both common and divergent effects on rat hippocampal shape in the absence of volume change. The implications of these findings for the clinic are discussed.
Collapse
Affiliation(s)
- W. R. Crum
- Department of Neuroimaging,
King's College London, Institute of
Psychiatry, Psychology and Neuroscience,
Centre for Neuroimaging Sciences, De Crespigny
Park, London, UK
| | - F. Danckaers
- Department of Physics,
iMinds-Vision Laboratory, University of
Antwerp, Antwerp, Belgium
| | - T. Huysmans
- Department of Physics,
iMinds-Vision Laboratory, University of
Antwerp, Antwerp, Belgium
| | - M.-C. Cotel
- Department of Psychosis Studies,
King's College London, Institute of
Psychiatry, Psychology and Neuroscience, De
Crespigny Park, London, UK
| | - S. Natesan
- Department of Psychosis Studies,
King's College London, Institute of
Psychiatry, Psychology and Neuroscience, De
Crespigny Park, London, UK
| | - M. M. Modo
- Department of Basic and Clinical
Neuroscience, King's College London,
Institute of Psychiatry, Psychology and
Neuroscience, Maurice Wohl Institute for Clinical
Neuroscience, London, UK
| | - J. Sijbers
- Department of Physics,
iMinds-Vision Laboratory, University of
Antwerp, Antwerp, Belgium
| | - S. C. R. Williams
- Department of Neuroimaging,
King's College London, Institute of
Psychiatry, Psychology and Neuroscience,
Centre for Neuroimaging Sciences, De Crespigny
Park, London, UK
| | - S. Kapur
- Department of Psychosis Studies,
King's College London, Institute of
Psychiatry, Psychology and Neuroscience, De
Crespigny Park, London, UK
| | - A. C. Vernon
- Department of Psychosis Studies,
King's College London, Institute of
Psychiatry, Psychology and Neuroscience, De
Crespigny Park, London, UK
- Department of Basic and Clinical
Neuroscience, King's College London,
Institute of Psychiatry, Psychology and
Neuroscience, Maurice Wohl Institute for Clinical
Neuroscience, London, UK
| |
Collapse
|