1
|
Ye J, Duan C, Han J, Chen J, Sun N, Li Y, Yuan T, Peng D. Peripheral mitochondrial DNA as a neuroinflammatory biomarker for major depressive disorder. Neural Regen Res 2025; 20:1541-1554. [PMID: 38934398 DOI: 10.4103/nrr.nrr-d-23-01878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
In the pathogenesis of major depressive disorder, chronic stress-related neuroinflammation hinders favorable prognosis and antidepressant response. Mitochondrial DNA may be an inflammatory trigger, after its release from stress-induced dysfunctional central nervous system mitochondria into peripheral circulation. This evidence supports the potential use of peripheral mitochondrial DNA as a neuroinflammatory biomarker for the diagnosis and treatment of major depressive disorder. Herein, we critically review the neuroinflammation theory in major depressive disorder, providing compelling evidence that mitochondrial DNA release acts as a critical biological substrate, and that it constitutes the neuroinflammatory disease pathway. After its release, mitochondrial DNA can be carried in the exosomes and transported to extracellular spaces in the central nervous system and peripheral circulation. Detectable exosomes render encaged mitochondrial DNA relatively stable. This mitochondrial DNA in peripheral circulation can thus be directly detected in clinical practice. These characteristics illustrate the potential for mitochondrial DNA to serve as an innovative clinical biomarker and molecular treatment target for major depressive disorder. This review also highlights the future potential value of clinical applications combining mitochondrial DNA with a panel of other biomarkers, to improve diagnostic precision in major depressive disorder.
Collapse
Affiliation(s)
- Jinmei Ye
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Duan
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaxin Han
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jinrong Chen
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Yuan Li
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tifei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Daihui Peng
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Li Q, Xie Y, Lin J, Li M, Gu Z, Xin T, Zhang Y, Lu Q, Guo Y, Xing Y, Wang W. Microglia Sing the Prelude of Neuroinflammation-Associated Depression. Mol Neurobiol 2024:10.1007/s12035-024-04575-w. [PMID: 39535682 DOI: 10.1007/s12035-024-04575-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Major depressive disorder (MDD) is a psychiatric condition characterized by sadness and anhedonia and is closely linked to chronic low-grade neuroinflammation, which is primarily induced by microglia. Nonetheless, the mechanisms by which microglia elicit depressive symptoms remain uncertain. This review focuses on the mechanism linking microglia and depression encompassing the breakdown of the blood-brain barrier, the hypothalamic-pituitary-adrenal axis, the gut-brain axis, the vagus and sympathetic nervous systems, and the susceptibility influenced by epigenetic modifications on microglia. These pathways may lead to the alterations of microglia in cytokine levels, as well as increased oxidative stress. Simultaneously, many antidepressant treatments can alter the immune phenotype of microglia, while anti-inflammatory treatments can also have antidepressant effects. This framework linking microglia, neuroinflammation, and depression could serve as a reference for targeting microglia to treat depression.
Collapse
Affiliation(s)
- Qingqing Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Ying Xie
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Jinyi Lin
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Miaomiao Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Ziyan Gu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Tianli Xin
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Yang Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Qixia Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Yihui Guo
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Yanhong Xing
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China.
| | - Wuyang Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
3
|
Chen CY, Wang YF, Lei L, Zhang Y. MicroRNA-specific targets for neuronal plasticity, neurotransmitters, neurotrophic factors, and gut microbes in the pathogenesis and therapeutics of depression. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111186. [PMID: 39521033 DOI: 10.1016/j.pnpbp.2024.111186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/11/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Depression is of great concern because of the huge burden, and it is impacted by various epigenetic modifications, e.g., histone modification, covalent modifications in DNA, and silencing mechanisms of non-coding protein genes, e.g., microRNAs (miRNAs). MiRNAs are a class of endogenous non-coding RNAs. Alternations in specific miRNAs have been observed both in depressive patients and experimental animals. Also, miRNAs are highly expressed in the central nervous system and can be delivered to different tissues via tissue-specific exosomes. However, the mechanism of miRNAs' involvement in the pathological process of depression is not well understood. Therefore, we summarized and discussed the role of miRNAs in depression. Conclusively, miRNAs are involved in the pathology of depression by causing structural and functional changes in synapses, mediating neuronal regeneration, differentiation, and apoptosis, regulating the gut microbes and the expression of various neurotransmitters and BDNF, and mediating inflammatory and immune responses. Moreover, miRNAs can predict the efficacy of antidepressant medications and explain the mechanism of action of antidepressant drugs and aerobic exercise to prevent and assist in treating depression.
Collapse
Affiliation(s)
- Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
4
|
Herzog S, Bartlett EA, Zanderigo F, Galfalvy HC, Burke A, Mintz A, Schmidt M, Hauser E, Huang YY, Melhem N, Sublette ME, Miller JM, Mann JJ. Neuroinflammation, Stress-Related Suicidal Ideation, and Negative Mood in Depression. JAMA Psychiatry 2024:2825422. [PMID: 39504032 PMCID: PMC11541744 DOI: 10.1001/jamapsychiatry.2024.3543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/17/2024] [Indexed: 11/09/2024]
Abstract
Importance Brain translocator protein 18k Da (TSPO) binding, a putative marker of neuroinflammatory processes (eg, gliosis), is associated with stress and elevated in depressed and suicidal populations. However, it is unclear whether neuroinflammation moderates the impact of daily life stress on suicidal ideation and negative affect, thereby increasing risk for suicidal behavior. Objective To examine the association of TSPO binding in participants with depression with real-world daily experiences of acute stress-related suicidal ideation and negative affect, as well as history of suicidal behavior and clinician-rated suicidal ideation. Design, Setting, and Participants Data for this cross-sectional study were collected from June 2019 through July 2023. Procedures were conducted at a hospital-based research center in New York, New York. Participants were recruited via clinical referrals, the Columbia University research subject web portal, and from responses to internet advertisements. Of 148 participants who signed informed consent for study protocols, 53 adults aged 18 to 60 years who met DSM-5 diagnostic criteria for current major depressive disorder completed procedures with approved data and were enrolled. Participants were free of schizophrenia spectrum disorders, active physical illness, cognitive impairment, and substance intoxication or withdrawal at the time of scan. Exposures All participants underwent positron emission tomography imaging of TSPO binding with 11C-ER176 and concurrent arterial blood sampling. Main Outcome and Measures A weighted average of 11C-ER176 total distribution volume (VT) was computed across 11 a priori brain regions and made up the primary outcome measure. Clinician-rated suicidal ideation was measured via the Beck Scale for Suicidal Ideation (BSS). A subset of participants (n = 21) completed 7 days of ecological momentary assessment (EMA), reporting daily on suicidal ideation, negative affect, and stressors. Results In the overall sample of 53 participants (mean [SD] age, 29.5 [9.8] years; 37 [69.8%] female and 16 [30.2%] male), 11C-ER176 VT was associated at trend levels with clinician-rated suicidal ideation severity (β, 0.19; 95% CI, -0.03 to 0.39; P = .09) and did not differ by suicide attempt history (n = 15; β, 0.18; 95% CI, -0.04 to 0.37; P = .11). Exploratory analyses indicated that presence of suicidal ideation (on BSS or EMA) was associated with higher 11C-ER176 VT (β, 0.21; 95% CI, 0.01 to 0.98; P = .045). In 21 participants who completed EMA, 11C-ER176 VT was associated with greater suicidal ideation and negative affect during EMA periods with stressors compared with nonstress periods (β, 0.12; SE, 0.06; 95% CI, 0.01 to 0.23; P = .03 and β, 0.19; SE, 0.06; 95% CI, 0.08 to 0.30; P < .001, respectively). Conclusion and Relevance TSPO binding in individuals with depression may be a marker of vulnerability to acute stress-related increases in suicidal ideation and negative affect. Continued study is needed to determine the causal direction of TSPO binding and stress-related suicidal ideation or negative affect and whether targeting neuroinflammation may improve resilience to life stress in patients with depression.
Collapse
Affiliation(s)
- Sarah Herzog
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Elizabeth A. Bartlett
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Francesca Zanderigo
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Hanga C. Galfalvy
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
- Department of Biostatistics, Columbia University, New York, New York
| | - Ainsley Burke
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Akiva Mintz
- Department of Radiology, Columbia University Irving Medical Center, New York, New York
| | - Mike Schmidt
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Eric Hauser
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Yung-yu Huang
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Nadine Melhem
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - M. Elizabeth Sublette
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Jeffrey M. Miller
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - J. John Mann
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
- Department of Radiology, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
5
|
Shraim MA, Massé-Alarie H, Farrell MJ, Cavaleri R, Loggia ML, Hodges PW. Neuroinflammatory activation in sensory and motor regions of the cortex is related to sensorimotor function in individuals with low back pain maintained by nociplastic mechanisms: A preliminary proof-of-concept study. Eur J Pain 2024; 28:1607-1626. [PMID: 39007713 DOI: 10.1002/ejp.2313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Chronic pain involves communication between neural and immune systems. Recent data suggest localization of glial (brain immune cells) activation to the sensorimotor regions of the brain cortex (S1/M1) in chronic low back pain (LBP). As glia perform diverse functions that impact neural function, activation might contribute to sensorimotor changes, particularly in LBP maintained by increased nervous system sensitivity (i.e., nociplastic pain). This preliminary proof-of-concept study aimed to: (i) compare evidence of neuroinflammatory activation in S1/M1 between individuals with and without LBP (and between nociceptive and nociplastic LBP phenotypes), and (ii) evaluate relationships between neuroinflammatory activation and sensorimotor function. METHODS Simultaneous PET-fMRI measured neuroinflammatory activation in functionally defined S1/M1 in pain-free individuals (n = 8) and individuals with chronic LBP (n = 9; nociceptive: n = 4, nociplastic: n = 5). Regions of S1/M1 related to the back were identified using fMRI during motor tasks and thermal stimuli. Sensorimotor measures included single and paired-pulse transcranial magnetic stimulation (TMS) and quantitative sensory testing (QST). Sleep, depression, disability and pain questionnaires were administered. RESULTS Neuroinflammatory activation was greater in the lower back cortical representation of S1/M1 of the nociplastic LBP group than both nociceptive LBP and pain-free groups. Neuroinflammatory activation in S1/M1 was positively correlated with sensitivity to hot (r = 0.52) and cold (r = 0.55) pain stimuli, poor sleep, depression, disability and BMI, and negatively correlated with intracortical facilitation (r = -0.41). CONCLUSION This preliminary proof-of-concept study suggests that neuroinflammation in back regions of S1/M1 in individuals with nociplastic LBP could plausibly explain some characteristic features of this LBP phenotype. SIGNIFICANCE STATEMENT Neuroinflammatory activation localized to sensorimotor areas of the brain in individuals with nociplastic pain might contribute to changes in sensory and motor function and aspects of central sensitization. If cause-effect relationships are established in longitudinal studies, this may direct development of therapies that target neuroinflammatory activation.
Collapse
Affiliation(s)
- Muath A Shraim
- The University of Queensland, School of Health & Rehabilitation Sciences, St Lucia, Queensland, Australia
| | - Hugo Massé-Alarie
- The University of Queensland, School of Health & Rehabilitation Sciences, St Lucia, Queensland, Australia
- Centre Interdisciplinaire de Recherche en réadaptation et Integration Sociale (CIRRIS), Université Laval, Québec City, Québec, Canada
| | - Michael J Farrell
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Rocco Cavaleri
- Brain Stimulation and Rehabilitation Lab, Western Sydney University, School of Health Sciences, Sydney, New South Wales, Australia
| | - Marco L Loggia
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul W Hodges
- The University of Queensland, School of Health & Rehabilitation Sciences, St Lucia, Queensland, Australia
| |
Collapse
|
6
|
Chen MH, Bai YM, Hsu JW, Huang KL, Tsai SJ. Proinflammatory cytokine levels, cognitive function, and suicidal symptoms of adolescents and young adults with major depressive disorder. Eur Arch Psychiatry Clin Neurosci 2024; 274:1681-1687. [PMID: 38492052 PMCID: PMC11422450 DOI: 10.1007/s00406-024-01780-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/16/2024] [Indexed: 03/18/2024]
Abstract
Whether proinflammatory cytokine dysregulation and cognitive dysfunction are associated with suicidal symptoms in adolescents and young adults with major depressive disorder (MDD) remains uncertain. We assessed the cognitive function and proinflammatory cytokine levels of 43 and 51 patients aged 15-29 years with MDD and severe and mild suicidal symptoms, respectively, as well as those of 85 age- and sex-matched healthy controls. Specifically, we measured serum levels of C-reactive protein, tumor necrosis factor-α (TNF-α), interleukin-2, and interleukin-6 and assessed cognitive function by using working memory and go/no-go tasks. The severity of the patients' suicidal symptoms was based on Item 10 of the Montgomery-Åsberg Depression Rating Scale; scores of ≤ 2 and ≥ 4 indicated mild and severe symptoms, respectively. The patients with MDD and severe suicidal symptoms had higher levels of C-reactive protein (p = .019) and TNF-α (p = .002) than did the patients with mild symptoms or the healthy controls. The number of errors committed on the go/no-go by patients with MDD and severe suicidal symptoms (p = .001) was significantly higher than those by patients with MDD and mild symptoms or by controls. After adjusting for nonsuicidal depressive symptoms, we observed suicidal symptoms to be positively associated with TNF-α levels (p = .050) and errors on the go/no-go task (p = .021). Compared with mild suicidal symptoms, severe symptoms are associated with greater serum levels of proinflammatory cytokines and inferior cognitive function in adolescents and young adults with MDD.
Collapse
Affiliation(s)
- Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan.
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ju-Wei Hsu
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kai-Lin Huang
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
7
|
Turiaco F, Iannuzzo F, Bruno A, Drago A. Genetics of suicide ideation. A role for inflammation and neuroplasticity? Eur Arch Psychiatry Clin Neurosci 2024; 274:1527-1541. [PMID: 38878077 PMCID: PMC11422468 DOI: 10.1007/s00406-024-01836-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/27/2024] [Indexed: 09/25/2024]
Abstract
Suicide is a leading cause of death worldwide. Suicide ideation (SI) is a known risk factor for suicide behaviour (SB). The current psychobiology and genetic predisposition to SI and SB are poorly defined. Despite convincing relevance of a genetic background for SI, there is no current implementable knowledge about the genetic makeup that identifies subjects at risk for it. One of the possible reasons for the absence of a clear-cut evidence is the polygenetic nature of SI along with the very large sample sizes that are needed to observe significant genetic association result. The CATIE sample was instrumental to the analysis. SI was retrieved as measured by the Calgary test. Clinical possible covariates were identified by a nested regression model. A principal component analysis helped in defining the possible genetic stratification factors. A GWAS analysis, polygenic risk score associated with a random forest analysis and a molecular pathway analysis were undertaken to identify the genetic contribution to SI. As a result, 741 Schizophrenic individuals from the CATIE were available for the genetic analysis, including 166,325 SNPs after quality control and pruning. No GWAS significant result was found. The random forest analysis conducted by combining the polygenic risk score and several clinical variables resulted in a possibly overfitting model (OOB error rate < 1%). The molecular pathway analysis revealed several molecular pathways possibly involved in SI, of which those involved in microglia functioning were of particular interest. A medium-small sample of SKZ individuals was analyzed to shed a light on the genetic of SI. As an expected result from the underpowered sample, no GWAS positive result was retrieved, but the molecular pathway analysis indicated a possible role of microglia and neurodevelopment in SI.
Collapse
Affiliation(s)
- Fabrizio Turiaco
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Contesse, Messina, Italy
| | - Fiammetta Iannuzzo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Contesse, Messina, Italy
| | - Antonio Bruno
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125, Contesse, Messina, Italy
| | - Antonio Drago
- Unit for Psychiatric Research, Psychiatry, Aalborg University Hospital, 9100, Aalborg, Denmark.
| |
Collapse
|
8
|
Wood GK, Sargent BF, Ahmad ZUA, Tharmaratnam K, Dunai C, Egbe FN, Martin NH, Facer B, Pendered SL, Rogers HC, Hübel C, van Wamelen DJ, Bethlehem RAI, Giunchiglia V, Hellyer PJ, Trender W, Kalsi G, Needham E, Easton A, Jackson TA, Cunningham C, Upthegrove R, Pollak TA, Hotopf M, Solomon T, Pett SL, Shaw PJ, Wood N, Harrison NA, Miller KL, Jezzard P, Williams G, Duff EP, Williams S, Zelaya F, Smith SM, Keller S, Broome M, Kingston N, Husain M, Vincent A, Bradley J, Chinnery P, Menon DK, Aggleton JP, Nicholson TR, Taylor JP, David AS, Carson A, Bullmore E, Breen G, Hampshire A, Michael BD, Paddick SM, Leek EC. Posthospitalization COVID-19 cognitive deficits at 1 year are global and associated with elevated brain injury markers and gray matter volume reduction. Nat Med 2024:10.1038/s41591-024-03309-8. [PMID: 39312956 DOI: 10.1038/s41591-024-03309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
The spectrum, pathophysiology and recovery trajectory of persistent post-COVID-19 cognitive deficits are unknown, limiting our ability to develop prevention and treatment strategies. We report the 1-year cognitive, serum biomarker and neuroimaging findings from a prospective, national study of cognition in 351 COVID-19 patients who required hospitalization, compared with 2,927 normative matched controls. Cognitive deficits were global, associated with elevated brain injury markers and reduced anterior cingulate cortex volume 1 year after COVID-19. Severity of the initial infective insult, postacute psychiatric symptoms and a history of encephalopathy were associated with the greatest deficits. There was strong concordance between subjective and objective cognitive deficits. Longitudinal follow-up in 106 patients demonstrated a trend toward recovery. Together, these findings support the hypothesis that brain injury in moderate to severe COVID-19 may be immune-mediated, and should guide the development of therapeutic strategies.
Collapse
Affiliation(s)
- Greta K Wood
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Brendan F Sargent
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Zain-Ul-Abideen Ahmad
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Kukatharmini Tharmaratnam
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Liverpool, UK
| | - Cordelia Dunai
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Franklyn N Egbe
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Naomi H Martin
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Bethany Facer
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sophie L Pendered
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Henry C Rogers
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Christopher Hübel
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- National Centre for Register-based Research, Aarhus Business and Social Sciences, Aarhus University, Aarhus, Denmark
- Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel J van Wamelen
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Parkinson's Foundation Center of Excellence, King's College Hospital, London, UK
- Department of Neurology; Centre of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | | - Peter J Hellyer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - William Trender
- Department of Brain Sciences, Imperial College London, London, UK
| | - Gursharan Kalsi
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Edward Needham
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ava Easton
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Encephalitis International, Malton, UK
| | - Thomas A Jackson
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rachel Upthegrove
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Thomas A Pollak
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Matthew Hotopf
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Tom Solomon
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- The Pandemic Institute, University of Liverpool, Liverpool, UK
- Department of Neurology, Walton Centre Foundation Trust, Liverpool, UK
| | - Sarah L Pett
- MRC Clinical Trials Unit, UCL, London, UK
- Institute of Clinical Trials and Methodology, UCL, London, UK
- Institute for Global Health, UCL, London, UK
| | - Pamela J Shaw
- Division of Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, NIHR Biomedical Research Centre, University of Sheffield, Sheffield, UK
| | - Nicholas Wood
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, UCL, London, UK
- UCL Genetics Institute, Division of Biosciences, UCL, London, UK
| | - Neil A Harrison
- Cardiff University Brain Research Imaging Centre, School of Medicine, Cardiff University, Cardiff, UK
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Peter Jezzard
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Guy Williams
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Eugene P Duff
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, London, UK
| | - Steven Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust, London, UK
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Simon Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Matthew Broome
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Nathalie Kingston
- NIHR Bioresource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Haematology, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Masud Husain
- Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Angela Vincent
- Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - John Bradley
- NIHR Bioresource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Patrick Chinnery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - David K Menon
- Section of Perioperative, Acute, Critical Care and Emergency Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Timothy R Nicholson
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Neuropsychiatry Research and Education Group, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
- Old Age Psychiatry, Tyne and Wear NHS Trust, Newcastle, UK
| | - Anthony S David
- Department of Psychiatry, Institute of Mental Health, UCL, London, UK
| | - Alan Carson
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ed Bullmore
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Psychiatry, Institute of Behavioural and Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust, London, UK
| | - Adam Hampshire
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Benedict D Michael
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
- NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
- Department of Neurology, Walton Centre Foundation Trust, Liverpool, UK.
| | - Stella-Maria Paddick
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
- Department of Old Age Psychiatry, Gateshead Health NHS Foundation Trust, Gateshead, UK
- Millenium Institute for Care Research (MICARE), Santiago, Chile
| | - E Charles Leek
- Department of Psychology, Institute of Population Health, Institute of Life and Human Sciences, University of Liverpool, Liverpool, UK
- School of Psychology, University of Southampton, Southampton, UK
| |
Collapse
|
9
|
Takahashi A. Associations of the immune system in aggression traits and the role of microglia as mediators. Neuropharmacology 2024; 256:110021. [PMID: 38825308 DOI: 10.1016/j.neuropharm.2024.110021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
There is an important relationship between the immune system and aggressive behavior. Aggressive encounters acutely increase the levels of proinflammatory cytokines, and there are positive correlations between aggressive traits and peripheral proinflammatory cytokines. Endotoxin lipopolysaccharide (LPS) treatment, which results in peripheral immune activation, decreases aggressive behavior as one of the sickness behavioral symptoms. In contrast, certain brain infections and chronic interferon treatment are associated with increased aggression. Indeed, the effects of proinflammatory cytokines on the brain in aggressive behavior are bidirectional, depending on the type and dose of cytokine, target brain region, and type of aggression. Some studies have suggested that microglial activation and neuroinflammation influence intermale aggression in rodent models. In addition, pathological conditions as well as physiological levels of cytokines produced by microglia play an important role in social and aggressive behavior in adult animals. Furthermore, microglial function in early development is necessary for the establishment of the social brain and the expression of juvenile social behaviors, including play fighting. Overall, this review discusses the important link between the immune system and aggressive traits and the role of microglia as mediators of this link.
Collapse
Affiliation(s)
- Aki Takahashi
- Laboratory of Behavioral Neurobiology, Institute of Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
10
|
Nagamine T. Suicidality in individuals experiencing chronic orofacial pain. Oral Dis 2024. [PMID: 39155471 DOI: 10.1111/odi.15117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Affiliation(s)
- Takahiko Nagamine
- Sunlight Brain Research Center, Hofu, Yamaguchi, Japan
- Department of Psychosomatic Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
11
|
Chauveau F, Winkeler A, Chalon S, Boutin H, Becker G. PET imaging of neuroinflammation: any credible alternatives to TSPO yet? Mol Psychiatry 2024:10.1038/s41380-024-02656-9. [PMID: 38997465 DOI: 10.1038/s41380-024-02656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Over the last decades, the role of neuroinflammation in neuropsychiatric conditions has attracted an exponentially growing interest. A key driver for this trend was the ability to image brain inflammation in vivo using PET radioligands targeting the Translocator Protein 18 kDa (TSPO), which is known to be expressed in activated microglia and astrocytes upon inflammatory events as well as constitutively in endothelial cells. TSPO is a mitochondrial protein that is expressed mostly by microglial cells upon activation but is also expressed by astrocytes in some conditions and constitutively by endothelial cells. Therefore, our current understanding of neuroinflammation dynamics is hampered by the lack of alternative targets available for PET imaging. We performed a systematic search and review on radiotracers developed for neuroinflammation PET imaging apart from TSPO. The following targets of interest were identified through literature screening (including previous narrative reviews): P2Y12R, P2X7R, CSF1R, COX (microglial targets), MAO-B, I2BS (astrocytic targets), CB2R & S1PRs (not specific of a single cell type). We determined the level of development and provided a scoping review for each target. Strikingly, astrocytic biomarker MAO-B has progressed in clinical investigations the furthest, while few radiotracers (notably targeting S1P1Rs, CSF1R) are being implemented in clinical investigations. Other targets such as CB2R and P2X7R have proven disappointing in clinical studies (e.g. poor signal, lack of changes in disease conditions, etc.). While astrocytic targets are promising, development of new biomarkers and tracers specific for microglial activation has proven challenging.
Collapse
Affiliation(s)
- Fabien Chauveau
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
| | - Alexandra Winkeler
- Université Paris-Saclay, Inserm, CNRS, CEA, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France
| | - Sylvie Chalon
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France
| | - Hervé Boutin
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France.
| | - Guillaume Becker
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, Cedex, France
| |
Collapse
|
12
|
Kılıç N, Taşcı G, Kaya Ş, Özsoy F. Evaluation of peripheral inflammatory parameters of cases with suicide attempts. J Psychiatr Res 2024; 175:368-373. [PMID: 38772127 DOI: 10.1016/j.jpsychires.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/17/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
PURPOSE The purpose of the present study was to examine the inflammation markers of patients who have attempted suicide by comparing them with those of healthy controls. The leukocyte cell levels, Neutrophil/Lymphocyte Ratios (NLR), Basophil/Lymphocyte Ratios (BLR), Platelet/Lymphocyte Ratios (PLR), Monocyte/Lymphocyte Ratios (MLR), Systemic Inflammation Index (SII), Neutrophil/Albumin Ratios (NAR) values were compared with those of healthy controls. METHOD A total of 376 people were included in the study (276 patients who attempted suicide, and 100 healthy people (the control group)). The demographic data and laboratory parameters of the participants were analyzed from the hospital automation system. RESULTS The participants' female/male ratio was 158/118 (42.8%/57.1%) in the group of patients who attempted suicide and 41/59 (41/59%) in the control group. When the distribution of laboratory parameters was evaluated, although the NLR, BLR, NAR, SII, and MLR values, which are indicators of peripheral inflammation, were high in patients who attempted suicide (p = 0.049 for MLR, p = 0.000 for other values), the PLR (p = 0.586) value did not differ significantly between the groups. Patients who had attempted more than one suicide had elevated BLR (p = 0.007), SII (p = 0.003), and NAR (p = 0.003) values. DISCUSSION Based on the results obtained, it was considered that paying attention to inflammation parameters in patient follow-ups, and monitoring of SII, NLR, BLR, and NAR values of patients who had attempted suicide once would be beneficial in preventing future suicide attempts. These results strengthen the idea that inflammatory processes play roles in the pathophysiology of suicidal behavior. However, further studies are needed to elucidate the complex pathophysiological mechanisms of immune pathways underlying suicidal behavior.
Collapse
Affiliation(s)
| | - Gülay Taşcı
- Elazığ Fethi Sekin City Hospital, Elazığ, Turkey.
| | - Şuheda Kaya
- Elazığ Fethi Sekin City Hospital, Elazığ, Turkey
| | - Filiz Özsoy
- Faculty of Medicine, Department of Psychiatry, Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
13
|
Khaledi M, Sameni F, Gholipour A, Shahrjerdi S, Golmohammadi R, Gouvarchin Ghaleh HE, Poureslamfar B, Hemmati J, Mobarezpour N, Milasi YE, Rad F, Mehboodi M, Owlia P. Potential role of gut microbiota in major depressive disorder: A review. Heliyon 2024; 10:e33157. [PMID: 39027446 PMCID: PMC11254604 DOI: 10.1016/j.heliyon.2024.e33157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Interactions between the gut microbiota and host immunity are sophisticated, dynamic, and host-dependent. Scientists have recently conducted research showing that disturbances in the gut bacterial community can lead to a decrease in some metabolites and, consequently, to behaviors such as depression. Exposure to stressors dropped the relative abundance of bacteria in the genus Bacteroides while soaring the relative abundance of bacteria in the genus Clostridium, Coprococcus, Dialister, and Oscillibacter, which were also reduced in people with depression. Microbiota and innate immunity are in a bilateral relationship. The gut microbiota has been shown to induce the synthesis of antimicrobial proteins such as catalysidins, type C lectins, and defensins. Probiotic bacteria can modulate depressive behavior through GABA signaling. The gut microbiome produces essential metabolites such as neurotransmitters, tryptophan metabolites, and short-chain fatty acids (SCFAs) that can act on the CNS. In the case of dysbiosis, due to mucin changes, the ratio of intestinal-derived molecules may change and contribute to depression. Psychotropics, including Bifidobacterium longum NCC3001, Clostridium butyricum CBM588, and Lactobacillus acidophilus, have mental health benefits, and can have a positive effect on the host-brain relationship, and have antidepressant effects. This article reviews current studies on the association between gut microbiota dysbiosis and depression. Comprehensively, these findings could potentially lead to novel approaches to improving depressive symptoms via gut microbiota alterations, including probiotics, prebiotics, and fecal microbiota transplantation.
Collapse
Affiliation(s)
- Mansoor Khaledi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Sameni
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Abolfazl Gholipour
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shahnaz Shahrjerdi
- Department of Physiology and Sports Pathology, Faculty of Sport Sciences, Arak University, Arak, Iran
| | - Reza Golmohammadi
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | | - Jaber Hemmati
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Niloofar Mobarezpour
- Reference Laboratory for Bovine Tuberculosis, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Rad
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahtab Mehboodi
- Department of Microbiology and Virology, Kerman University of Medical Sciences, Kerman, Iran
| | - Parviz Owlia
- Molecular Microbiology Research Center, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
14
|
Poletti S, Mazza MG, Benedetti F. Inflammatory mediators in major depression and bipolar disorder. Transl Psychiatry 2024; 14:247. [PMID: 38851764 PMCID: PMC11162479 DOI: 10.1038/s41398-024-02921-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/10/2024] Open
Abstract
Major depressive disorder (MDD) and bipolar disorder (BD) are highly disabling illnesses defined by different psychopathological, neuroimaging, and cognitive profiles. In the last decades, immune dysregulation has received increasing attention as a central factor in the pathophysiology of these disorders. Several aspects of immune dysregulations have been investigated, including, low-grade inflammation cytokines, chemokines, cell populations, gene expression, and markers of both peripheral and central immune activation. Understanding the distinct immune profiles characterizing the two disorders is indeed of crucial importance for differential diagnosis and the implementation of personalized treatment strategies. In this paper, we reviewed the current literature on the dysregulation of the immune response system focusing our attention on studies using inflammatory markers to discriminate between MDD and BD. High heterogeneity characterized the available literature, reflecting the heterogeneity of the disorders. Common alterations in the immune response system include high pro-inflammatory cytokines such as IL-6 and TNF-α. On the contrary, a greater involvement of chemokines and markers associated with innate immunity has been reported in BD together with dynamic changes in T cells with differentiation defects during childhood which normalize in adulthood, whereas classic mediators of immune responses such as IL-4 and IL-10 are present in MDD together with signs of immune-senescence.
Collapse
Affiliation(s)
- Sara Poletti
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Mario Gennaro Mazza
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
15
|
Suzuki M, Sato I, Sato M, Iwasaki H, Saito T, Kimura M, Sako K, Maeda T, Haniu H, Tsukahara T, Matsuda Y. Pork Liver Decomposition Product May Improve Frontal Lobe Function in Humans-Open Trial. Brain Sci 2024; 14:586. [PMID: 38928586 PMCID: PMC11201879 DOI: 10.3390/brainsci14060586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Porcine Liver Decomposition Product (PLDP) was obtained by treating pig liver homogenate with protease and filling it into capsules. We have already confirmed from three clinical trials that PLDP enhances visual memory and delays memory recall, and we believe that its activity is due to various phospholipids, including phosphatidylcholine (PC). In this study, we clinically evaluated PLDP for depressive symptoms caused by a decline in cognitive function. This clinical trial was conducted using the Revised Hasegawa Dementia Scale (HDS-R). The HDS-R (maximum score is 30 points) is a test similar to the Mini-Mental State Examination (MMSE), which is commonly used in Japan. Dementia is suspected if the score falls below 20 on the HDS-R. Additionally, in a previous clinical trial, there was no change in scores in the placebo group after three doses of the HDS-R. In order to clearly confirm the effectiveness of PLDP, this study was conducted under stricter conditions (HDS-R points of 15 to 23) than previous clinical trials (all participants had scores of 20 or higher). Therefore, from ethical considerations, a clinical trial was conducted using the scores before PLDP administration as a control. In this study, PLDP was administered orally at 4 capsules per day, and the HDS-R was confirmed 2 and 4 weeks after administration. A significant increase in HDS-R scores was observed at 2 and 4 weeks after PLDP administration. Additionally, regarding each item of the HDS-R, PLDP significantly increased 2 and 4 weeks after oral administration for the question items assessing delayed recall, and the question item assessing verbal fluency tasks was recognized. From the above results, we confirmed the reproducibility of the effect of PLDP in improving the delayed recall of verbal memories. Furthermore, increasing scores on verbal fluency tasks suggest that PLDP may enhance frontal lobe function and prevent or improve depressive symptoms. The effects observed in this study may differ from the mechanisms of action of existing antidepressants, and we believe that this may lead to the discovery of new antidepressants.
Collapse
Affiliation(s)
- Miiru Suzuki
- Division of Clinical Pharmacology, Graduate School of Pharmaceutical Science, Nihon Pharmaceutical University, Ina 362-0806, Japan; (M.S.); (M.S.); (H.I.); (T.S.); (M.K.); (K.S.); (T.M.)
| | - Ikuya Sato
- Division of Clinical Pharmacology, Graduate School of Pharmaceutical Science, Nihon Pharmaceutical University, Ina 362-0806, Japan; (M.S.); (M.S.); (H.I.); (T.S.); (M.K.); (K.S.); (T.M.)
| | - Masatsugu Sato
- Division of Clinical Pharmacology, Graduate School of Pharmaceutical Science, Nihon Pharmaceutical University, Ina 362-0806, Japan; (M.S.); (M.S.); (H.I.); (T.S.); (M.K.); (K.S.); (T.M.)
| | - Hideki Iwasaki
- Division of Clinical Pharmacology, Graduate School of Pharmaceutical Science, Nihon Pharmaceutical University, Ina 362-0806, Japan; (M.S.); (M.S.); (H.I.); (T.S.); (M.K.); (K.S.); (T.M.)
| | - Takahiro Saito
- Division of Clinical Pharmacology, Graduate School of Pharmaceutical Science, Nihon Pharmaceutical University, Ina 362-0806, Japan; (M.S.); (M.S.); (H.I.); (T.S.); (M.K.); (K.S.); (T.M.)
| | - Masahiko Kimura
- Division of Clinical Pharmacology, Graduate School of Pharmaceutical Science, Nihon Pharmaceutical University, Ina 362-0806, Japan; (M.S.); (M.S.); (H.I.); (T.S.); (M.K.); (K.S.); (T.M.)
| | - Kenichi Sako
- Division of Clinical Pharmacology, Graduate School of Pharmaceutical Science, Nihon Pharmaceutical University, Ina 362-0806, Japan; (M.S.); (M.S.); (H.I.); (T.S.); (M.K.); (K.S.); (T.M.)
| | - Tomoji Maeda
- Division of Clinical Pharmacology, Graduate School of Pharmaceutical Science, Nihon Pharmaceutical University, Ina 362-0806, Japan; (M.S.); (M.S.); (H.I.); (T.S.); (M.K.); (K.S.); (T.M.)
| | - Hisao Haniu
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan;
| | - Tamotsu Tsukahara
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan;
| | - Yoshikazu Matsuda
- Division of Clinical Pharmacology, Graduate School of Pharmaceutical Science, Nihon Pharmaceutical University, Ina 362-0806, Japan; (M.S.); (M.S.); (H.I.); (T.S.); (M.K.); (K.S.); (T.M.)
| |
Collapse
|
16
|
Averina OV, Poluektova EU, Zorkina YA, Kovtun AS, Danilenko VN. Human Gut Microbiota for Diagnosis and Treatment of Depression. Int J Mol Sci 2024; 25:5782. [PMID: 38891970 PMCID: PMC11171505 DOI: 10.3390/ijms25115782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Nowadays, depressive disorder is spreading rapidly all over the world. Therefore, attention to the studies of the pathogenesis of the disease in order to find novel ways of early diagnosis and treatment is increasing among the scientific and medical communities. Special attention is drawn to a biomarker and therapeutic strategy through the microbiota-gut-brain axis. It is known that the symbiotic interactions between the gut microbes and the host can affect mental health. The review analyzes the mechanisms and ways of action of the gut microbiota on the pathophysiology of depression. The possibility of using knowledge about the taxonomic composition and metabolic profile of the microbiota of patients with depression to select gene compositions (metagenomic signature) as biomarkers of the disease is evaluated. The use of in silico technologies (machine learning) for the diagnosis of depression based on the biomarkers of the gut microbiota is given. Alternative approaches to the treatment of depression are being considered by balancing the microbial composition through dietary modifications and the use of additives, namely probiotics, postbiotics (including vesicles) and prebiotics as psychobiotics, and fecal transplantation. The bacterium Faecalibacterium prausnitzii is under consideration as a promising new-generation probiotic and auxiliary diagnostic biomarker of depression. The analysis conducted in this review may be useful for clinical practice and pharmacology.
Collapse
Affiliation(s)
- Olga V. Averina
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Elena U. Poluektova
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Yana A. Zorkina
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Alexey S. Kovtun
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Valery N. Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| |
Collapse
|
17
|
Yamamoto M, Sakai M, Yu Z, Nakanishi M, Yoshii H. Glial Markers of Suicidal Behavior in the Human Brain-A Systematic Review of Postmortem Studies. Int J Mol Sci 2024; 25:5750. [PMID: 38891940 PMCID: PMC11171620 DOI: 10.3390/ijms25115750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Suicide is a major public health priority, and its molecular mechanisms appear to be related to glial abnormalities and specific transcriptional changes. This study aimed to identify and synthesize evidence of the relationship between glial dysfunction and suicidal behavior to understand the neurobiology of suicide. As of 26 January 2024, 46 articles that met the inclusion criteria were identified by searching PubMed and ISI Web of Science. Most postmortem studies, including 30 brain regions, have determined no density or number of total Nissl-glial cell changes in suicidal patients with major psychiatric disorders. There were 17 astrocytic, 14 microglial, and 9 oligodendroglial studies using specific markers of each glial cell and further on their specific gene expression. Those studies suggest that astrocytic and oligodendroglial cells lost but activated microglia in suicides with affective disorder, bipolar disorders, major depression disorders, or schizophrenia in comparison with non-suicided patients and non-psychiatric controls. Although the data from previous studies remain complex and cannot fully explain the effects of glial cell dysfunction related to suicidal behaviors, they provide risk directions potentially leading to suicide prevention.
Collapse
Affiliation(s)
- Mana Yamamoto
- Department of Psychiatric Nursing, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mai Sakai
- Department of Psychiatric Nursing, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Zhiqian Yu
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Miharu Nakanishi
- Department of Psychiatric Nursing, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hatsumi Yoshii
- Department of Psychiatric Nursing, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
18
|
Rog J, Wingralek Z, Nowak K, Grudzień M, Grunwald A, Banaszek A, Karakula-Juchnowicz H. The Potential Role of the Ketogenic Diet in Serious Mental Illness: Current Evidence, Safety, and Practical Advice. J Clin Med 2024; 13:2819. [PMID: 38792361 PMCID: PMC11122005 DOI: 10.3390/jcm13102819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
The ketogenic diet (KD) is a high-fat, low-carbohydrate diet that mimics the physiological state of fasting. The potential therapeutic effects in many chronic conditions have led to the gaining popularity of the KD. The KD has been demonstrated to alleviate inflammation and oxidative stress, modulate the gut microbiota community, and improve metabolic health markers. The modification of these factors has been a potential therapeutic target in serious mental illness (SMI): bipolar disorder, major depressive disorder, and schizophrenia. The number of clinical trials assessing the effect of the KD on SMI is still limited. Preliminary research, predominantly case studies, suggests potential therapeutic effects, including weight gain reduction, improved carbohydrate and lipid metabolism, decrease in disease-related symptoms, increased energy and quality of life, and, in some cases, changes in pharmacotherapy (reduction in number or dosage of medication). However, these findings necessitate further investigation through larger-scale clinical trials. Initiation of the KD should occur in a hospital setting and with strict care of a physician and dietitian due to potential side effects of the diet and the possibility of exacerbating adverse effects of pharmacotherapy. An increasing number of ongoing studies examining the KD's effect on mental disorders highlights its potential role in the adjunctive treatment of SMI.
Collapse
Affiliation(s)
- Joanna Rog
- Laboratory of Human Metabolism Research, Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 66 Str., 02-787 Warsaw, Poland
| | - Zuzanna Wingralek
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Głuska 1 Str., 20-469 Lublin, Poland; (Z.W.); (K.N.); (M.G.); (A.B.); (H.K.-J.)
| | - Katarzyna Nowak
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Głuska 1 Str., 20-469 Lublin, Poland; (Z.W.); (K.N.); (M.G.); (A.B.); (H.K.-J.)
| | - Monika Grudzień
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Głuska 1 Str., 20-469 Lublin, Poland; (Z.W.); (K.N.); (M.G.); (A.B.); (H.K.-J.)
| | - Arkadiusz Grunwald
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Głuska 1 Str., 20-469 Lublin, Poland; (Z.W.); (K.N.); (M.G.); (A.B.); (H.K.-J.)
| | - Agnieszka Banaszek
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Głuska 1 Str., 20-469 Lublin, Poland; (Z.W.); (K.N.); (M.G.); (A.B.); (H.K.-J.)
| | - Hanna Karakula-Juchnowicz
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Głuska 1 Str., 20-469 Lublin, Poland; (Z.W.); (K.N.); (M.G.); (A.B.); (H.K.-J.)
| |
Collapse
|
19
|
Sun S, Liu Q, Wang Z, Huang YY, Sublette ME, Dwork AJ, Rosoklija G, Ge Y, Galfalvy H, Mann JJ, Haghighi F. Brain and blood transcriptome profiles delineate common genetic pathways across suicidal ideation and suicide. Mol Psychiatry 2024; 29:1417-1426. [PMID: 38278992 PMCID: PMC11189724 DOI: 10.1038/s41380-024-02420-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/28/2024]
Abstract
Human genetic studies indicate that suicidal ideation and behavior are both heritable. Most studies have examined associations between aberrant gene expression and suicide behavior, but behavior risk is linked to the severity of suicidal ideation. Through a gene network approach, this study investigates how gene co-expression patterns are associated with suicidal ideation and severity using RNA-seq data in peripheral blood from 46 live participants with elevated suicidal ideation and 46 with no ideation. Associations with the presence of suicidal ideation were found within 18 co-expressed modules (p < 0.05), as well as in 3 co-expressed modules associated with suicidal ideation severity (p < 0.05, not explained by severity of depression). Suicidal ideation presence and severity-related gene modules with enrichment of genes involved in defense against microbial infection, inflammation, and adaptive immune response were identified and investigated using RNA-seq data from postmortem brain that revealed gene expression differences with moderate effect sizes in suicide decedents vs. non-suicides in white matter, but not gray matter. Findings support a role of brain and peripheral blood inflammation in suicide risk, showing that suicidal ideation presence and severity are associated with an inflammatory signature detectable in blood and brain, indicating a biological continuity between ideation and suicidal behavior that may underlie a common heritability.
Collapse
Affiliation(s)
- Shengnan Sun
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Qingkun Liu
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Zhaoyu Wang
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Yung-Yu Huang
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - M Elizabeth Sublette
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Andrew J Dwork
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Gorazd Rosoklija
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hanga Galfalvy
- James J. Peters VA Medical Center, Bronx, NY, 10468, USA
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
| | - J John Mann
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Fatemeh Haghighi
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- James J. Peters VA Medical Center, Bronx, NY, 10468, USA.
| |
Collapse
|
20
|
Tsimpolis A, Kalafatakis K, Charalampopoulos I. Recent advances in the crosstalk between the brain-derived neurotrophic factor and glucocorticoids. Front Endocrinol (Lausanne) 2024; 15:1362573. [PMID: 38645426 PMCID: PMC11027069 DOI: 10.3389/fendo.2024.1362573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a key neurotrophin within the brain, by selectively activating the TrkB receptor, exerts multimodal effects on neurodevelopment, synaptic plasticity, cellular integrity and neural network dynamics. In parallel, glucocorticoids (GCs), vital steroid hormones, which are secreted by adrenal glands and rapidly diffused across the mammalian body (including the brain), activate two different groups of intracellular receptors, the mineralocorticoid and the glucocorticoid receptors, modulating a wide range of genomic, epigenomic and postgenomic events, also expressed in the neural tissue and implicated in neurodevelopment, synaptic plasticity, cellular homeostasis, cognitive and emotional processing. Recent research evidences indicate that these two major regulatory systems interact at various levels: they share common intracellular downstream pathways, GCs differentially regulate BDNF expression, under certain conditions BDNF antagonises the GC-induced effects on long-term potentiation, neuritic outgrowth and cellular death, while GCs regulate the intraneuronal transportation and the lysosomal degradation of BDNF. Currently, the BDNF-GC crosstalk features have been mainly studied in neurons, although initial findings show that this crosstalk could be equally important for other brain cell types, such as astrocytes. Elucidating the precise neurobiological significance of BDNF-GC interactions in a tempospatial manner, is crucial for understanding the subtleties of brain function and dysfunction, with implications for neurodegenerative and neuroinflammatory diseases, mood disorders and cognitive enhancement strategies.
Collapse
Affiliation(s)
- Alexandros Tsimpolis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| | - Konstantinos Kalafatakis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Faculty of Medicine and Dentistry (Malta Campus), Queen Mary University of London, Victoria, Malta
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| |
Collapse
|
21
|
Cheng X, Chen J, Zhang X, Wang T, Sun J, Zhou Y, Yang R, Xiao Y, Chen A, Song Z, Chen P, Yang C, QiuxiaWu, Lin T, Chen Y, Cao L, Wei X. Characterizing the temporal dynamics of intrinsic brain activities in depressed adolescents with prior suicide attempts. Eur Child Adolesc Psychiatry 2024; 33:1179-1191. [PMID: 37284850 PMCID: PMC11032277 DOI: 10.1007/s00787-023-02242-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
Converging evidence has revealed disturbances in the corticostriatolimic system are associated with suicidal behaviors in adults with major depressive disorder. However, the neurobiological mechanism that confers suicidal vulnerability in depressed adolescents is largely unknown. A total of 86 depressed adolescents with and without prior suicide attempts (SA) and 47 healthy controls underwent resting-state functional imaging (R-fMRI) scans. The dynamic amplitude of low-frequency fluctuations (dALFF) was measured using sliding window approach. We identified SA-related alterations in dALFF variability primarily in the left middle temporal gyrus, inferior frontal gyrus, middle frontal gyrus (MFG), superior frontal gyrus (SFG), right SFG, supplementary motor area (SMA) and insula in depressed adolescents. Notably, dALFF variability in the left MFG and SMA was higher in depressed adolescents with recurrent suicide attempts than in those with a single suicide attempt. Moreover, dALFF variability was capable of generating better diagnostic and prediction models for suicidality than static ALFF. Our findings suggest that alterations in brain dynamics in regions involved in emotional processing, decision-making and response inhibition are associated with an increased risk of suicidal behaviors in depressed adolescents. Furthermore, dALFF variability could serve as a sensitive biomarker for revealing the neurobiological mechanisms underlying suicidal vulnerability.
Collapse
Affiliation(s)
- Xiaofang Cheng
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Jianshan Chen
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Xiaofei Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Ting Wang
- The Second Affiliated Hospital, School of Medicine, South China University of Technology, 1 Panfu Road, Yuexiu district, Guangzhou, 510180, Guangdong, People's Republic of China
| | - Jiaqi Sun
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Yanling Zhou
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Ruilan Yang
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Yeyu Xiao
- Guangzhou Integrated Traditional Chinese and Western Medicine, Guangzhou, 510800, Guangdong, People's Republic of China
| | - Amei Chen
- The Second Affiliated Hospital, School of Medicine, South China University of Technology, 1 Panfu Road, Yuexiu district, Guangzhou, 510180, Guangdong, People's Republic of China
| | - Ziyi Song
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Pinrui Chen
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Chanjuan Yang
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - QiuxiaWu
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Taifeng Lin
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Yingmei Chen
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Liping Cao
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China.
| | - Xinhua Wei
- The Second Affiliated Hospital, School of Medicine, South China University of Technology, 1 Panfu Road, Yuexiu district, Guangzhou, 510180, Guangdong, People's Republic of China.
| |
Collapse
|
22
|
Brusaferri L, Alshelh Z, Schnieders JH, Sandström A, Mohammadian M, Morrissey EJ, Kim M, Chane CA, Grmek GC, Murphy JP, Bialobrzewski J, DiPietro A, Klinke J, Zhang Y, Torrado-Carvajal A, Mercaldo N, Akeju O, Wu O, Rosen BR, Napadow V, Hadjikhani N, Loggia ML. Neuroimmune activation and increased brain aging in chronic pain patients after the COVID-19 pandemic onset. Brain Behav Immun 2024; 116:259-266. [PMID: 38081435 PMCID: PMC10872439 DOI: 10.1016/j.bbi.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/10/2023] [Accepted: 12/08/2023] [Indexed: 12/22/2023] Open
Abstract
The COVID-19 pandemic has exerted a global impact on both physical and mental health, and clinical populations have been disproportionally affected. To date, however, the mechanisms underlying the deleterious effects of the pandemic on pre-existing clinical conditions remain unclear. Here we investigated whether the onset of the pandemic was associated with an increase in brain/blood levels of inflammatory markers and MRI-estimated brain age in patients with chronic low back pain (cLBP), irrespective of their infection history. A retrospective cohort study was conducted on 56 adult participants with cLBP (28 'Pre-Pandemic', 28 'Pandemic') using integrated Positron Emission Tomography/ Magnetic Resonance Imaging (PET/MRI) and the radioligand [11C]PBR28, which binds to the neuroinflammatory marker 18 kDa Translocator Protein (TSPO). Image data were collected between November 2017 and January 2020 ('Pre-Pandemic' cLBP) or between August 2020 and May 2022 ('Pandemic' cLBP). Compared to the Pre-Pandemic group, the Pandemic patients demonstrated widespread and statistically significant elevations in brain TSPO levels (P =.05, cluster corrected). PET signal elevations in the Pandemic group were also observed when 1) excluding 3 Pandemic subjects with a known history of COVID infection, or 2) using secondary outcome measures (volume of distribution -VT- and VT ratio - DVR) in a smaller subset of participants. Pandemic subjects also exhibited elevated serum levels of inflammatory markers (IL-16; P <.05) and estimated BA (P <.0001), which were positively correlated with [11C]PBR28 SUVR (r's ≥ 0.35; P's < 0.05). The pain interference scores, which were elevated in the Pandemic group (P <.05), were negatively correlated with [11C]PBR28 SUVR in the amygdala (r = -0.46; P<.05). This work suggests that the pandemic outbreak may have been accompanied by neuroinflammation and increased brain age in cLBP patients, as measured by multimodal imaging and serum testing. This study underscores the broad impact of the pandemic on human health, which extends beyond the morbidity solely mediated by the virus itself.
Collapse
Affiliation(s)
- Ludovica Brusaferri
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Computer Science and Informatics, School of Engineering, London South Bank University, London, UK
| | - Zeynab Alshelh
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jack H Schnieders
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Angelica Sandström
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mehrbod Mohammadian
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Erin J Morrissey
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Minhae Kim
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Courtney A Chane
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Grace C Grmek
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jennifer P Murphy
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Julia Bialobrzewski
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexa DiPietro
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Julie Klinke
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yi Zhang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Angel Torrado-Carvajal
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
| | - Nathaniel Mercaldo
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ona Wu
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruce R Rosen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Nouchine Hadjikhani
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Gillberg Neuropsychiatry Centre, University of Gothenburg, Sweden
| | - Marco L Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Weyer MP, Strehle J, Schäfer MKE, Tegeder I. Repurposing of pexidartinib for microglia depletion and renewal. Pharmacol Ther 2024; 253:108565. [PMID: 38052308 DOI: 10.1016/j.pharmthera.2023.108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
Pexidartinib (PLX3397) is a small molecule receptor tyrosine kinase inhibitor of colony stimulating factor 1 receptor (CSF1R) with moderate selectivity over other members of the platelet derived growth factor receptor family. It is approved for treatment of tenosynovial giant cell tumors (TGCT). CSF1R is highly expressed by microglia, which are macrophages of the central nervous system (CNS) that defend the CNS against injury and pathogens and contribute to synapse development and plasticity. Challenged by pathogens, apoptotic cells, debris, or inflammatory molecules they adopt a responsive state to propagate the inflammation and eventually return to a homeostatic state. The phenotypic switch may fail, and disease-associated microglia contribute to the pathophysiology in neurodegenerative or neuropsychiatric diseases or long-lasting detrimental brain inflammation after brain, spinal cord or nerve injury or ischemia/hemorrhage. Microglia also contribute to the growth permissive tumor microenvironment of glioblastoma (GBM). In rodents, continuous treatment for 1-2 weeks via pexidartinib food pellets leads to a depletion of microglia and subsequent repopulation from the remaining fraction, which is aided by peripheral monocytes that search empty niches for engraftment. The putative therapeutic benefit of such microglia depletion or forced renewal has been assessed in almost any rodent model of CNS disease or injury or GBM with heterogeneous outcomes, but a tendency of partial beneficial effects. So far, microglia monitoring e.g. via positron emission imaging is not standard of care for patients receiving Pexidartinib (e.g. for TGCT), so that the depletion and repopulation efficiency in humans is still largely unknown. Considering the virtuous functions of microglia, continuous depletion is likely no therapeutic option but short-lasting transient partial depletion to stimulate microglia renewal or replace microglia in genetic disease in combination with e.g. stem cell transplantation or as part of a multimodal concept in treatment of glioblastoma appears feasible. The present review provides an overview of the preclinical evidence pro and contra microglia depletion as a therapeutic approach.
Collapse
Affiliation(s)
- Marc-Philipp Weyer
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Faculty of Medicine, Frankfurt, Germany
| | - Jenny Strehle
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Faculty of Medicine, Frankfurt, Germany.
| |
Collapse
|
24
|
Beach SR, Luccarelli J, Praschan N, Fusunyan M, Fricchione GL. Molecular and immunological origins of catatonia. Schizophr Res 2024; 263:169-177. [PMID: 36966063 PMCID: PMC10517087 DOI: 10.1016/j.schres.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/27/2023]
Abstract
Catatonia occurs secondary to both primary psychiatric and neuromedical etiologies. Emerging evidence suggests possible linkages between causes of catatonia and neuroinflammation. These include obvious infectious and inflammatory etiologies, common neuromedical illnesses such as delirium, and psychiatric entities such as depression and autism-spectrum disorders. Symptoms of sickness behavior, thought to be a downstream effect of the cytokine response, are common in many of these etiologies and overlap significantly with symptoms of catatonia. Furthermore, there are syndromes that overlap with catatonia that some would consider variants, including neuroleptic malignant syndrome (NMS) and akinetic mutism, which may also have neuroinflammatory underpinnings. Low serum iron, a common finding in NMS and malignant catatonia, may be caused by the acute phase response. Cellular hits involving either pathogen-associated molecular patterns (PAMP) danger signals or the damage-associated molecular patterns (DAMP) danger signals of severe psychosocial stress may set the stage for a common pathway immunoactivation state that could lower the threshold for a catatonic state in susceptible individuals. Immunoactivation leading to dysfunction in the anterior cingulate cortex (ACC)/mid-cingulate cortex (MCC)/medial prefrontal cortex (mPFC)/paralimbic cortico-striato-thalamo-cortical (CSTC) circuit, involved in motivation and movement, may be particularly important in generating the motor and behavioral symptoms of catatonia.
Collapse
Affiliation(s)
- Scott R Beach
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - James Luccarelli
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Nathan Praschan
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Mark Fusunyan
- Department of Psychiatry, Santa Clara Valley Medical Center, San Jose, CA, USA
| | - Gregory L Fricchione
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Taha A, Alassi A, Gjedde A, Wong DF. Transforming Neurology and Psychiatry: Organ-specific PET Instrumentation and Clinical Applications. PET Clin 2024; 19:95-103. [PMID: 37813719 DOI: 10.1016/j.cpet.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
PET technology has immense potential for furthering understanding of the brain and associated disorders, including advancements in high-resolution tomographs and hybrid imaging modalities. Novel radiotracers targeting specific neurotransmitter systems and molecular markers provide opportunities to unveil intricate mechanisms underlying neurologic and psychiatric conditions. As PET imaging techniques and analysis methods continue to be refined, the field is poised to make significant contributions to personalized medicine for more targeted and effective interventions. PET instrumentation has advanced the fields of neurology and psychiatry, providing insights into pathophysiology and development of effective treatments.
Collapse
Affiliation(s)
- Ahmed Taha
- Mallinckrodt Institute of Radiology, Washington University in St Louis, Saint Louis, MO, USA
| | - Amer Alassi
- Mallinckrodt Institute of Radiology, Washington University in St Louis, Saint Louis, MO, USA
| | - Albert Gjedde
- Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Denmark; Department of Neuroscience, University of Copenhagen, Denmark
| | - Dean F Wong
- Mallinckrodt Institute of Radiology, Departments of Radiology, Psychiatry, Neurology, Neuroscience, Washington University in St Louis, Saint Louis, MO, USA.
| |
Collapse
|
26
|
Fricchione G. Brain evolution and the meaning of catatonia - An update. Schizophr Res 2024; 263:139-150. [PMID: 36754715 DOI: 10.1016/j.schres.2023.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
Back in 2004, in a chapter titled "Brain Evolution and the Meaning of Catatonia", a case was made that the syndrome's core meaning is embedded in millions of years of vertebrate brain evolution. (Fricchione, 2004) In this update, advances over the last almost 20 years, in catatonia theory and research in particular, and pertinent neuropsychiatry in general, will be applied to this question of meaning. The approach will rely heavily on a number of thought leaders, including Nicos Tinbergen, Paul MacLean, John Bowlby, M. Marsel Mesulam, Bruce McEwen and Karl Friston. Their guidance will be supplemented with a selected survey of 21sty century neuropsychiatry, neurophysiology, molecular biology, neuroimaging and neurotherapeutics as applied to the catatonic syndrome. In an attempt to address the question of the meaning of the catatonic syndrome in human life, we will employ two conceptual networks representing the intersubjectivity of the quantitative conceptual network of physical terms and the subjectivity of the qualitative conceptual network of mental and spiritual terms. In the process, a common referent providing extensional identity may emerge (Goodman, 1991). The goal of this exercise is to enhance our attunement with the experience of patients suffering with catatonia. A deeper understanding of catatonia's origins in brain evolution and of the challenges of individual epigenetic development in the setting of environmental events coupled with appreciation of what has been described as the most painful mammalian condition, that of separation, has the potential to foster greater efforts on the part of clinicians to diagnose and treat patients who present with catatonia. In addition, in this ancient and extreme tactic, evolved to provide safety from extreme survival threat, one can speculate what is at the core of human fear and the challenge it presents to all of us. And when the biology, psychology and sociology of catatonia are examined, the nature of solutions to the challenge may emerge.
Collapse
Affiliation(s)
- Gregory Fricchione
- Benson-Henry Institute for Mind Body Medicine Division of Psychiatry and Medicine Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Kokkosis AG, Madeira MM, Hage Z, Valais K, Koliatsis D, Resutov E, Tsirka SE. Chronic psychosocial stress triggers microglial-/macrophage-induced inflammatory responses leading to neuronal dysfunction and depressive-related behavior. Glia 2024; 72:111-132. [PMID: 37675659 PMCID: PMC10842267 DOI: 10.1002/glia.24464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
Chronic environmental stress and traumatic social experiences induce maladaptive behavioral changes and is a risk factor for major depressive disorder (MDD) and various anxiety-related psychiatric disorders. Clinical studies and animal models of chronic stress have reported that symptom severity is correlated with innate immune responses and upregulation of neuroinflammatory cytokine signaling in brain areas implicated in mood regulation (mPFC; medial Prefrontal Cortex). Despite increasing evidence implicating impairments of neuroplasticity and synaptic signaling deficits into the pathophysiology of stress-related mental disorders, how microglia may modulate neuronal homeostasis in response to chronic stress has not been defined. Here, using the repeated social defeat stress (RSDS) mouse model we demonstrate that microglial-induced inflammatory responses are regulating neuronal plasticity associated with psychosocial stress. Specifically, we show that chronic stress induces a rapid activation and proliferation of microglia as well as macrophage infiltration in the mPFC, and these processes are spatially related to neuronal activation. Moreover, we report a significant association of microglial inflammatory responses with susceptibility or resilience to chronic stress. In addition, we find that exposure to chronic stress exacerbates phagocytosis of synaptic elements and deficits in neuronal plasticity. Importantly, by utilizing two different CSF1R inhibitors (the brain penetrant PLX5622 and the non-penetrant PLX73086) we highlight a crucial role for microglia (and secondarily macrophages) in catalyzing the pathological manifestations linked to psychosocial stress in the mPFC and the resulting behavioral deficits usually associated with depression.
Collapse
Affiliation(s)
- Alexandros G. Kokkosis
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Miguel M. Madeira
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Zachary Hage
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Kimonas Valais
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Dimitris Koliatsis
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Emran Resutov
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Stella E. Tsirka
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| |
Collapse
|
28
|
Alfaifi B, Hinz R, Jackson A, Wadeson A, Pathmanaban ON, Hammerbeck-Ward C, Rutherford SA, King AT, Lewis D, Coope DJ. Evidence for inflammation in normal-appearing brain regions in patients with growing sporadic vestibular schwannoma: A PET study. Neurooncol Adv 2024; 6:vdae094. [PMID: 38962752 PMCID: PMC11221070 DOI: 10.1093/noajnl/vdae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Background Nonauditory symptoms can be a prominent feature in patients with sporadic vestibular schwannoma (VS), but the cause of these symptoms is unknown. Inflammation is hypothesized to play a key role in the growth and symptomatic presentation of sporadic VS, and in this study, we investigated through translocator protein (TSPO) positron emission tomography (PET) whether inflammation occurred within the "normal appearing" brain of such patients and its association with tumor growth. Methods Dynamic PET datasets from 15 patients with sporadic VS (8 static and 7 growing) who had been previously imaged using the TSPO tracer [11C](R)-PK11195 were included. Parametric images of [11C](R)-PK11195 binding potential (BPND) and the distribution volume ratio (DVR) were derived and compared across VS growth groups within both contralateral and ipsilateral gray (GM) and white matter (WM) regions. Voxel-wise cluster analysis was additionally performed to identify anatomical regions of increased [11C](R)-PK11195 binding. Results Compared with static tumors, growing VS demonstrated significantly higher cortical (GM, 1.070 vs. 1.031, P = .03) and whole brain (GM & WM, 1.045 vs. 1.006, P = .03) [11C](R)-PK11195 DVR values. The voxel-wise analysis supported the region-based analysis and revealed clusters of high TSPO binding within the precentral, postcentral, and prefrontal cortex in patients with growing VS. Conclusions We present the first in vivo evidence of increased TSPO expression and inflammation within the brains of patients with growing sporadic VS. These results provide a potential mechanistic insight into the development of nonauditory symptoms in these patients and highlight the need for further studies interrogating the role of neuroinflammation in driving VS symptomatology.
Collapse
Affiliation(s)
- Bandar Alfaifi
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| | - Rainer Hinz
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| | - Alan Jackson
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| | - Andrea Wadeson
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
| | - Omar N Pathmanaban
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Charlotte Hammerbeck-Ward
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Scott A Rutherford
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
| | - Andrew T King
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, UK
| | - Daniel Lewis
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester, UK
| | - David J Coope
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
29
|
Rao S, Chen X, Ou OY, Chair SY, Chien WT, Liu G, Waye MMY. A Positive Causal Effect of Shrimp Allergy on Major Depressive Disorder Mediated by Allergy- and Immune-Related Pathways in the East Asian Population. Nutrients 2023; 16:79. [PMID: 38201909 PMCID: PMC10780813 DOI: 10.3390/nu16010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Observational studies have implied a potential correlation between allergic diseases and major depressive disorder (MDD). However, the relationship is still inconclusive as it is likely to be interfered with by substantial confounding factors and potential reverse causality. The present study aimed to investigate causal correlation of the two diseases by a Mendelian randomization (MR) study and further elucidate the underlying molecular mechanisms. METHODS With the biggest summary datasets of a genome-wide association study (GWAS) in the East Asian population, we conducted a two-sample, bidirectional MR study to assess the causal correlation between shrimp allergy (SA) and MDD. Subsequently, we identified the pleiotropic genes' susceptibility to the two diseases at whole-genome and tissue-specific levels, respectively. Enriched GO sets and KEGG pathways were also discovered to elucidate the potential underlying mechanisms. RESULTS With the most suitable MR method, SA was identified as a causal risk factor for MDD based on three different groups of independent genetic instruments, respectively (p < 2.81 × 10-2). In contrast, we did not observe a significant causal effect of MDD on SA. The GWAS-pairwise program successfully identified seven pleiotropic genetic variants (PPA3 > 0.8), indicating that the two diseases indeed have a shared genetic basis. At a whole-genome level, the MAGMA program identified 44 pleiotropic genes, which were enriched in allergy-related pathways, such as antigen processing and presentation pathway (p = 1.46 × 10-2). In brain-specific tissue, the S-MultiXcan program found 17 pleiotropic genes that were significantly enriched in immune-related pathways and GO sets, including asthma-related pathway, T-cell activation-related, and major histocompatibility complex protein-related GO sets. Regarding whole-blood tissue, the program identified six pleiotropic genes that are significantly enriched in tolerance induction-related GO sets. CONCLUSIONS The present study for the first time indicated a significant causal effect of SA on the occurrence of MDD, but the reverse was not true. Enrichment analyses of pleiotropic genes at whole-genome and tissue-specific levels implied the involvement of allergy and immune-related pathways in the shared genetic mechanism of the two diseases. Elucidating the causal effect and the acting direction may be beneficial in reducing the incidence rate of MDD for the massive group of SA patients in the East Asian region.
Collapse
Affiliation(s)
- Shitao Rao
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, Institute of Precision Medicine, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China; (S.R.); (X.C.)
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaotong Chen
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, Institute of Precision Medicine, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China; (S.R.); (X.C.)
| | - Olivia Yanlai Ou
- Department of Psychology, University of Toronto, Toronto, ON M5S 1A1, Canada;
| | - Sek Ying Chair
- Croucher Laboratory for Human Genomics, Asia-Pacific Genomic and Genetic Nursing Centre, The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong, China; (S.Y.C.); (W.T.C.)
| | - Wai Tong Chien
- Croucher Laboratory for Human Genomics, Asia-Pacific Genomic and Genetic Nursing Centre, The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong, China; (S.Y.C.); (W.T.C.)
| | - Guangming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, China
| | - Mary Miu Yee Waye
- Croucher Laboratory for Human Genomics, Asia-Pacific Genomic and Genetic Nursing Centre, The Nethersole School of Nursing, The Chinese University of Hong Kong, Hong Kong, China; (S.Y.C.); (W.T.C.)
| |
Collapse
|
30
|
Yuan Z, Qi Z, Wang R, Cui Y, An S, Wu G, Feng Q, Lin R, Dai R, Li A, Gong H, Luo Q, Fu L, Luo M. A corticoamygdalar pathway controls reward devaluation and depression using dynamic inhibition code. Neuron 2023; 111:3837-3853.e5. [PMID: 37734380 DOI: 10.1016/j.neuron.2023.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/03/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Reward devaluation adaptively controls reward intake. It remains unclear how cortical circuits causally encode reward devaluation in healthy and depressed states. Here, we show that the neural pathway from the anterior cingulate cortex (ACC) to the basolateral amygdala (BLA) employs a dynamic inhibition code to control reward devaluation and depression. Fiber photometry and imaging of ACC pyramidal neurons reveal reward-induced inhibition, which weakens during satiation and becomes further attenuated in depression mouse models. Ablating or inhibiting these neurons desensitizes reward devaluation, causes reward intake increase and ultimate obesity, and ameliorates depression, whereas activating the cells sensitizes reward devaluation, suppresses reward consumption, and produces depression-like behaviors. Among various ACC neuron subpopulations, the BLA-projecting subset bidirectionally regulates reward devaluation and depression-like behaviors. Our study thus uncovers a corticoamygdalar circuit that encodes reward devaluation via blunted inhibition and suggests that enhancing inhibition within this circuit may offer a therapeutic approach for treating depression.
Collapse
Affiliation(s)
- Zhengwei Yuan
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; National Institute of Biological Sciences, Beijing 102206, China; Chinese Institute for Brain Research, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), Beijing 102206, China
| | - Zhongyang Qi
- National Institute of Biological Sciences, Beijing 102206, China; Wuhan National Laboratory for Optoelectronics-Huazhong, Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ruiyu Wang
- National Institute of Biological Sciences, Beijing 102206, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Yuting Cui
- National Institute of Biological Sciences, Beijing 102206, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Sile An
- Wuhan National Laboratory for Optoelectronics-Huazhong, Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guoli Wu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qiru Feng
- National Institute of Biological Sciences, Beijing 102206, China
| | - Rui Lin
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), Beijing 102206, China
| | - Ruicheng Dai
- National Institute of Biological Sciences, Beijing 102206, China; School of Life Sciences, Peking University, Beijing 100871, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Anan Li
- Wuhan National Laboratory for Optoelectronics-Huazhong, Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Gong
- Wuhan National Laboratory for Optoelectronics-Huazhong, Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingming Luo
- Wuhan National Laboratory for Optoelectronics-Huazhong, Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ling Fu
- Wuhan National Laboratory for Optoelectronics-Huazhong, Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Minmin Luo
- National Institute of Biological Sciences, Beijing 102206, China; Chinese Institute for Brain Research, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), Beijing 102206, China; Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 100005, China; New Cornerstone Science Laboratory, Shenzhen 518054, China; Beijing Tiantan Hospital, 100070 Beijing, China.
| |
Collapse
|
31
|
de Souza PB, de Araujo Borba L, Castro de Jesus L, Valverde AP, Gil-Mohapel J, Rodrigues ALS. Major Depressive Disorder and Gut Microbiota: Role of Physical Exercise. Int J Mol Sci 2023; 24:16870. [PMID: 38069198 PMCID: PMC10706777 DOI: 10.3390/ijms242316870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Major depressive disorder (MDD) has a high prevalence and is a major contributor to the global burden of disease. This psychiatric disorder results from a complex interaction between environmental and genetic factors. In recent years, the role of the gut microbiota in brain health has received particular attention, and compelling evidence has shown that patients suffering from depression have gut dysbiosis. Several studies have reported that gut dysbiosis-induced inflammation may cause and/or contribute to the development of depression through dysregulation of the gut-brain axis. Indeed, as a consequence of gut dysbiosis, neuroinflammatory alterations caused by microglial activation together with impairments in neuroplasticity may contribute to the development of depressive symptoms. The modulation of the gut microbiota has been recognized as a potential therapeutic strategy for the management of MMD. In this regard, physical exercise has been shown to positively change microbiota composition and diversity, and this can underlie, at least in part, its antidepressant effects. Given this, the present review will explore the relationship between physical exercise, gut microbiota and depression, with an emphasis on the potential of physical exercise as a non-invasive strategy for modulating the gut microbiota and, through this, regulating the gut-brain axis and alleviating MDD-related symptoms.
Collapse
Affiliation(s)
- Pedro Borges de Souza
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Laura de Araujo Borba
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Louise Castro de Jesus
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Ana Paula Valverde
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Joana Gil-Mohapel
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Ana Lúcia S. Rodrigues
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| |
Collapse
|
32
|
Lengvenyte A, Belzeaux R, Olié E, Hamzeh-Cognasse H, Sénèque M, Strumila R, Cognasse F, Courtet P. Associations of potential plasma biomarkers with suicide attempt history, current suicidal ideation and subsequent suicidal events in patients with depression: A discovery study. Brain Behav Immun 2023; 114:242-254. [PMID: 37648005 DOI: 10.1016/j.bbi.2023.08.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023] Open
Abstract
A growing body of evidences suggests that suicidal ideation (SI) and suicidal behaviors have biological bases. However, no biological marker is currently available to evaluate the suicide risk in individuals with SI or suicide attempt (SA). Moreover, the current risk assessment techniques poorly predict future suicidal events. The aim of this study was to examine the association of 39 new and already described peripheral cells and proteins (implicated in the immune system, oxidative stress and plasticity) with lifetime SA, past month SA, current SI, and future suicidal events (visit to the Emergency Department for SI or SA) in 266 treatment-seeking individuals with mood disorders. Equal parts of patients with and without past history of SA were recruited. All individuals at inclusion gave blood, were evaluated for SA recency, current SI, and were followed for two years afterwards. The 39 peripheral blood cellular and protein markers were entered separately for each outcome in Elastic Net models with 10-fold cross-validation, followed by single-analyte covariate-adjusted regression analyses for pre-selected analytes. Past month SA was associated with increased plasma levels of thrombospondin-2 and C-reactive protein, whereas current SI was associated with lower plasma serotonin levels. These associations were robust to adjustments for key covariates and corrections for multiple testing. The Cox proportional hazards regression showed that higher levels of thrombospondin-1 and of platelet-derived growth factor-AB predicted a future suicidal event. These two associations remained after adjustment for sex, age, and SA history, and outperformed the predictive value of past SA. Thrombospondins and platelet-derived growth factors have never been investigated in the context of suicide. Altogether, our results highlight the involvement in the suicidal process of platelet biological response and plasticity modifiers and also of inflammatory factors. They also suggest that SI and SA may have different biological correlates and that biomarkers associated with past SA or current SI do not automatically also predict future events.
Collapse
Affiliation(s)
- Aiste Lengvenyte
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France; Faculty of Medicine, Institute of Clinical Medicine, Psychiatric Clinic, Vilnius University, Vilnius, Lithuania.
| | - Raoul Belzeaux
- INT-UMR7289, CNRS Aix-Marseille Université, Marseille, France; University Department of Adult Psychiatry, CHU Montpellier, Montpellier, France; Fondation Fondamental
| | - Emilie Olié
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France; Fondation Fondamental
| | - Hind Hamzeh-Cognasse
- Université Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, Saint-Étienne, France
| | - Maude Sénèque
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Robertas Strumila
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France; Faculty of Medicine, Institute of Clinical Medicine, Psychiatric Clinic, Vilnius University, Vilnius, Lithuania
| | - Fabrice Cognasse
- Université Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, Saint-Étienne, France; Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | - Philippe Courtet
- Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France; IGF, University of Montpellier, CNRS, INSERM, Montpellier, France; Fondation Fondamental
| |
Collapse
|
33
|
Barone JC, Wenzel E, Alluri V, Moriarity D, Pinna G, Walsh E, Rubinow DR, Morrow AL, Eisenlohr-Moul TA. Effects of estrogen and progesterone on neuroactive steroids and cytokines in patients with suicidality. Psychoneuroendocrinology 2023; 157:106359. [PMID: 37611527 PMCID: PMC10543480 DOI: 10.1016/j.psyneuen.2023.106359] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND In ovulating psychiatric patients experiencing suicidality, suicidal ideation (SI) often peaks perimenstrually. Our recent double-blind, placebo-controlled, crossover randomized clinical trial (RCT; NCT03720847) showed that perimenstrual administration of estradiol and progesterone (EP) can prevent this peak in SI and depressed mood. In this pre-registered follow-up analysis, we studied how the menstrual cycle and experimental manipulation affected two neurobiological systems associated with the menstrual cycle and suicide risk: GABAergic neuroactive steroids (NAS) and peripheral cytokines. METHODS In 26 psychiatric outpatients with natural menstrual cycles and past-month SI, we analyzed serum samples from three blood draws (midluteal, perimenstrual, midfollicular) per experimental condition (EP vs placebo) timed to a luteinizing hormone-surge ovulation test. Using gas chromatography/mass spectrometry (GC/MS), we measured the progesterone (P4)-derived pregnane NAS (3α,5α)- 3-hydroxypregnan20-one (3α,5α-THP), (3α,5β)- 3-hydroxypregnan-20-one (3α,5β-THP), (3α,5α)- 3,21-dihydroxypregnan-20-one (3α,5α-THDOC), (3α,5α)- 3-hydroxyandrostan-17-one (3α,5α-A), the androstane NAS (3α,5β)- 3-hydroxyandrostan-17-one (3α,5β-A), (3α,5α,17β)-androstane-3,17-diol (3α,5α-A-diol), (3α,5β,17β)-androstane-3,17-diol (3α,5β-A-diol), and their precursor pregnenolone. High sensitivity multiplex assay kits quantified peripheral cytokines IL-1β, IL-6, and TNF-α. RESULTS P4-derived NAS fluctuated in parallel with P4 and increased with exogenous perimenstrual administration of EP. Conversely, androstane NAS either did not fluctuate or fluctuated inversely from P4, and these NAS decreased with exogenous EP. Peripheral cytokines did not show cyclical patterns, but each significantly predicted SI, depressed mood, or anxiousness. Concomitant SSRI medication use predicted lower androstane NAS. CONCLUSIONS While preliminary and exploratory, our findings provide critical descriptive context for future studies. Further, our work presents menstrual cycle-related patterns for ten frequently-studied biomarkers, allowing for improved quality of comparisons involving naturally-cycling populations in research.
Collapse
Affiliation(s)
- Jordan C Barone
- University of Illinois at Chicago, Dept of Psychiatry, 912 S Wood St, Chicago, IL 60612, USA.
| | - Elizabeth Wenzel
- University of Illinois at Chicago, Dept of Psychiatry, 912 S Wood St, Chicago, IL 60612, USA
| | - Viraja Alluri
- University of Illinois at Chicago, Dept of Psychiatry, 912 S Wood St, Chicago, IL 60612, USA
| | - Daniel Moriarity
- University of California, Los Angeles, Department of Psychiatry and Biobehavioral Sciences, 757 Westwood Plaza #4, Los Angeles, CA 90095, USA; Stanford University, Department of Genetics, 291 Campus Drive, Stanford, CA 94305, USA
| | - Graziano Pinna
- University of Illinois at Chicago, Dept of Psychiatry, 912 S Wood St, Chicago, IL 60612, USA
| | - Erin Walsh
- University of North Carolina-Chapel Hill, Department of Psychiatry, 101 Manning Dr. #1, Chapel Hill, NC 27514, USA
| | - David R Rubinow
- University of North Carolina-Chapel Hill, Department of Psychiatry, 101 Manning Dr. #1, Chapel Hill, NC 27514, USA
| | - A Leslie Morrow
- University of North Carolina-Chapel Hill, Department of Psychiatry, 101 Manning Dr. #1, Chapel Hill, NC 27514, USA
| | - Tory A Eisenlohr-Moul
- University of Illinois at Chicago, Dept of Psychiatry, 912 S Wood St, Chicago, IL 60612, USA
| |
Collapse
|
34
|
Scheepstra KWF, Mizee MR, van Scheppingen J, Adelia A, Wever DD, Mason MRJ, Dubbelaar ML, Hsiao CC, Eggen BJL, Hamann J, Huitinga I. Microglia Transcriptional Profiling in Major Depressive Disorder Shows Inhibition of Cortical Gray Matter Microglia. Biol Psychiatry 2023; 94:619-629. [PMID: 37121366 DOI: 10.1016/j.biopsych.2023.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/01/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Microglia have been implicated in the pathophysiology of major depressive disorder (MDD), but information on biological mechanisms is limited. Therefore, we investigated the gene expression profile of microglial cells in relation to neuronal regulators of microglia activity in well-characterized MDD and control autopsy brains. METHODS Pure, intact microglia were isolated at brain autopsy from occipital cortex gray matter (GM) and corpus callosum white matter of 13 donors with MDD and 10 age-matched control donors for RNA sequencing. Top differentially expressed genes were validated using immunohistochemistry staining. Because gene expression changes were only detected in GM microglia, neuronal regulators of microglia were investigated in cortical tissue and synaptosomes from the cortex by reverse transcriptase-quantitative polymerase chain reaction and Western blot. RESULTS Transcriptome analysis revealed 92 genes differentially expressed in microglia isolated from GM, but none in microglia from white matter in donors with MDD, compared with control donors. Of these, 81 genes were less abundantly expressed in GM in MDD, including CD163, MKI67, SPP1, CD14, FCGR1A/C, and C1QA/B/C. Accordingly, pathways related to effector mechanisms, such as the complement system and phagocytosis, were differentially regulated in GM microglia in MDD. Immunohistochemistry staining revealed significantly lower expression of CD163 protein in MDD. Whole tissue analysis showed an increase in CD200 (p = .0009) and CD47 (p = .068) messenger RNA, and CD47 protein was significantly elevated (p = .0396) in synaptic fractions of MDD cases. CONCLUSIONS Transcriptional profiling indicates an immune-suppressed microglial phenotype in MDD that is possibly caused by neuronal regulation.
Collapse
Affiliation(s)
- Karel W F Scheepstra
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Psychiatric Program of the Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Department of Psychiatry, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, the Netherlands.
| | - Mark R Mizee
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Psychiatric Program of the Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Jackelien van Scheppingen
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Psychiatric Program of the Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Adelia Adelia
- Psychiatric Program of the Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Dennis D Wever
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Psychiatric Program of the Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Matthew R J Mason
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Marissa L Dubbelaar
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, Groningen, the Netherlands
| | - Cheng-Chih Hsiao
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, Groningen, the Netherlands
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Psychiatric Program of the Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
35
|
Zhu H, Guan A, Liu J, Peng L, Zhang Z, Wang S. Noteworthy perspectives on microglia in neuropsychiatric disorders. J Neuroinflammation 2023; 20:223. [PMID: 37794488 PMCID: PMC10548593 DOI: 10.1186/s12974-023-02901-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
Microglia are so versatile that they not only provide immune surveillance for central nervous system, but participate in neural circuitry development, brain blood vessels formation, blood-brain barrier architecture, and intriguingly, the regulation of emotions and behaviors. Microglia have a profound impact on neuronal survival, brain wiring and synaptic plasticity. As professional phagocytic cells in the brain, they remove dead cell debris and neurotoxic agents via an elaborate mechanism. The functional profile of microglia varies considerately depending on age, gender, disease context and other internal or external environmental factors. Numerous studies have demonstrated a pivotal involvement of microglia in neuropsychiatric disorders, including negative affection, social deficit, compulsive behavior, fear memory, pain and other symptoms associated with major depression disorder, anxiety disorder, autism spectrum disorder and schizophrenia. In this review, we summarized the latest discoveries regarding microglial ontogeny, cell subtypes or state spectrum, biological functions and mechanistic underpinnings of emotional and behavioral disorders. Furthermore, we highlight the potential of microglia-targeted therapies of neuropsychiatric disorders, and propose outstanding questions to be addressed in future research of human microglia.
Collapse
Affiliation(s)
- Hongrui Zhu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Ao Guan
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jiayuan Liu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Li Peng
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Zhi Zhang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Sheng Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
36
|
Fonseca C, Ettcheto M, Bicker J, Fernandes MJ, Falcão A, Camins A, Fortuna A. Under the umbrella of depression and Alzheimer's disease physiopathology: Can cannabinoids be a dual-pleiotropic therapy? Ageing Res Rev 2023; 90:101998. [PMID: 37414155 DOI: 10.1016/j.arr.2023.101998] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/17/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Depression and Alzheimer´s disease (AD) are two disorders highly prevalent worldwide. Depression affects more than 300 million people worldwide while AD affects 60-80% of the 55 million cases of dementia. Both diseases are affected by aging with high prevalence in elderly and share not only the main brain affected areas but also several physiopathological mechanisms. Depression disease is already ascribed as a risk factor to the development of AD. Despite the wide diversity of pharmacological treatments currently available in clinical practice for depression management, they remain associated to a slow recovery process and to treatment-resistant depression. On the other hand, AD treatment is essentially based in symptomatology relieve. Thus, the need for new multi-target treatments arises. Herein, we discuss the current state-of-art regarding the contribution of the endocannabinoid system (ECS) in synaptic transmission processes, synapses plasticity and neurogenesis and consequently the use of exogenous cannabinoids in the treatment of depression and on delaying the progression of AD. Besides the well-known imbalance of neurotransmitter levels, including serotonin, noradrenaline, dopamine and glutamate, recent scientific evidence highlights aberrant spine density, neuroinflammation, dysregulation of neurotrophic factor levels and formation of amyloid beta (Aβ) peptides, as the main physiopathological mechanisms compromised in depression and AD. The contribution of the ECS in these mechanisms is herein specified as well as the pleiotropic effects of phytocannabinoids. At the end, it became evident that Cannabinol, Cannabidiol, Cannabigerol, Cannabidivarin and Cannabichromene may act in novel therapeutic targets, presenting high potential in the pharmacotherapy of both diseases.
Collapse
Affiliation(s)
- Carla Fonseca
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal; Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain
| | - Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Maria José Fernandes
- Departamento de Neurologia/Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo-UNIFESP, Rua Pedro de Toledo, 669, CEP, São Paulo 04039-032, Brazil
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
37
|
Zhang W, Rutlin J, Eisenstein SA, Wang Y, Barch DM, Hershey T, Bogdan R, Bijsterbosch JD. Neuroinflammation in the Amygdala Is Associated With Recent Depressive Symptoms. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:967-975. [PMID: 37164312 DOI: 10.1016/j.bpsc.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/03/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Converging evidence suggests that elevated inflammation may contribute to depression. Yet, the link between peripheral inflammation and neuroinflammation in depression is unclear. Here, using data from the UK Biobank, we estimated associations among depression, C-reactive protein (CRP) as a measure of peripheral inflammation, and neuroinflammation as indexed by diffusion basis spectral imaging-based restricted fraction (DBSI-RF). METHODS DBSI-RF was derived from diffusion-weighted imaging data (N = 11,512) for whole-brain gray matter (global-RF), and regions of interest in the bilateral amygdala (amygdala-RF) and hippocampus (hippocampus-RF), and CRP was estimated from blood (serum) samples. Self-reported recent depression symptoms were measured using a 4-item assessment. Linear regressions were used to estimate associations between CRP and DBSI-RFs with depression while adjusting for the following covariates: age, sex, body mass index, smoking, drinking, and medical conditions. RESULTS Elevated CRP was associated with higher depression symptoms (β = 0.04, false discovery rate-corrected p < .005) and reduced global-RF (β = -0.03, false discovery rate-corrected p < .001). Higher amygdala-RF was associated with elevated depression-an effect resilient to added covariates and CRP (β = 0.02, false discovery rate-corrected p < .05). Interestingly, this association was stronger in individuals with a lifetime history of depression (β = 0.07, p < .005) than in those without (β = 0.03, p < .05). Associations between global-RF or hippocampus-RF with depression were not significant, and no DBSI-RF indices indirectly linked CRP with depression (i.e., mediation effect). CONCLUSIONS Peripheral inflammation and DBSI-RF neuroinflammation in the amygdala are independently associated with depression, consistent with animal studies suggesting distinct pathways of peripheral inflammation and neuroinflammation in the pathophysiology of depression and with investigations highlighting the role of the amygdala in stress-induced inflammation and depression.
Collapse
Affiliation(s)
- Wei Zhang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri.
| | - Jerrel Rutlin
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Sarah A Eisenstein
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Yong Wang
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri; Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri
| | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Psychological & Brain Sciences, Washington University, St. Louis, Missouri
| | - Tamara Hershey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Psychological & Brain Sciences, Washington University, St. Louis, Missouri; Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University, St. Louis, Missouri.
| | - Janine D Bijsterbosch
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
38
|
Ekblad LL, Tuisku J, Koivumäki M, Helin S, Rinne JO, Snellman A. Insulin resistance and body mass index are associated with TSPO PET in cognitively unimpaired elderly. J Cereb Blood Flow Metab 2023; 43:1588-1600. [PMID: 37113066 PMCID: PMC10414007 DOI: 10.1177/0271678x231172519] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/27/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023]
Abstract
Metabolic risk factors are associated with peripheral low-grade inflammation and an increased risk for dementia. We evaluated if metabolic risk factors i.e. insulin resistance, body mass index (BMI), serum cholesterol values, or high sensitivity C-reactive protein associate with central inflammation or beta-amyloid (Aβ) accumulation in the brain, and if these associations are modulated by APOE4 gene dose. Altogether 60 cognitively unimpaired individuals (mean age 67.7 years (SD 4.7); 63% women; 21 APOE3/3, 20 APOE3/4 and 19 APOE4/4) underwent positron emission tomography with [11C]PK11195 targeting TSPO (18 kDa translocator protein) and [11C]PIB targeting fibrillar Aβ. [11C]PK11195 distribution value ratios and [11C]PIB standardized uptake values were calculated in a cortical composite region of interest typical for Aβ accumulation in Alzheimer's disease. Associations between metabolic risk factors, [11C]PK11195, and [11C]PIB uptake were evaluated with linear models adjusted for age and sex. Higher logarithmic HOMA-IR (standardized beta 0.40, p = 0.002) and BMI (standardized beta 0.27, p = 0.048) were associated with higher TSPO availability. Voxel-wise analyses indicated that this association was mainly seen in the parietal cortex. Higher logarithmic HOMA-IR was associated with higher [11C]PIB (standardized beta 0.44, p = 0.02), but only in APOE4/4 homozygotes. BMI and HOMA-IR seem to influence TSPO availability in the brain.
Collapse
Affiliation(s)
- Laura L Ekblad
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Jouni Tuisku
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Mikko Koivumäki
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Semi Helin
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Juha O Rinne
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
- InFLAMES Reseach Flagship Center, University of Turku, Turku, Finland
| | - Anniina Snellman
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
39
|
Mudra Rakshasa-Loots A. Depression and HIV: a scoping review in search of neuroimmune biomarkers. Brain Commun 2023; 5:fcad231. [PMID: 37693812 PMCID: PMC10489482 DOI: 10.1093/braincomms/fcad231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/13/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023] Open
Abstract
People with HIV are at increased risk for depression, though the neurobiological mechanisms underlying this are unclear. In the last decade, there has been a substantial rise in interest in the contribution of (neuro)inflammation to depression, coupled with rapid advancements in the resolution and sensitivity of biomarker assays such as Luminex, single molecular array and newly developed positron emission tomography radioligands. Numerous pre-clinical and clinical studies have recently leveraged these next-generation immunoassays to identify biomarkers that may be associated with HIV and depression (separately), though few studies have explored these biomarkers in co-occurring HIV and depression. Using a systematic search, we detected 33 publications involving a cumulative N = 10 590 participants which tested for associations between depressive symptoms and 55 biomarkers of inflammation and related processes in participants living with HIV. Formal meta-analyses were not possible as statistical reporting in the field was highly variable; future studies must fully report test statistics and effect size estimates. The majority of included studies were carried out in the United States, with samples that were primarily older and primarily men. Substantial further work is necessary to diversify the geographical, age, and sex distribution of samples in the field. This review finds that alterations in concentrations of certain biomarkers of neuroinflammation (interleukin-6, tumour necrosis factor-α, neopterin) may influence the association between HIV and depression. Equally, the chemokines monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8) or the metabolic index kynurenine:tryptophan (Kyn:Trp), which have been the focus of several studies, do not appear to be associated with depressive symptoms amongst people living with HIV, as all (MCP-1) or most (IL-8 and Kyn:Trp) available studies of these biomarkers reported non-significant associations. We propose a biomarker-driven hypothesis of the neuroimmunometabolic mechanisms that may precipitate the increased risk of depression among people with HIV. Chronically activated microglia, which trigger key neuroinflammatory cascades shown to be upregulated in people with HIV, may be the central link connecting HIV infection in the central nervous system with depressive symptoms. Findings from this review may inform research design in future studies of HIV-associated depression and enable concerted efforts towards biomarker discovery.
Collapse
Affiliation(s)
- Arish Mudra Rakshasa-Loots
- Edinburgh Neuroscience, School of Biomedical Sciences, The University of Edinburgh, Edinburgh EH8 9JZ, UK
- Family Centre for Research with Ubuntu (FAMCRU), Tygerberg Hospital, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town 7505, South Africa
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton BN2 5BE, UK
| |
Collapse
|
40
|
Lin HY, Cathomas F, Li L, Cuttoli RDD, Guevara C, Bayrak CS, Wang Q, Gupta S, Chan KL, Shimo Y, Parise LF, Yuan C, Aubry AV, Chen F, Wong J, Morel C, Huntley GW, Zhang B, Russo SJ, Wang J. Chemokine receptor 5 signaling in PFC mediates stress susceptibility in female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.18.553789. [PMID: 37662400 PMCID: PMC10473611 DOI: 10.1101/2023.08.18.553789] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Chronic stress induces changes in the periphery and the central nervous system (CNS) that contribute to neuropathology and behavioral abnormalities associated with psychiatric disorders. In this study, we examined the impact of peripheral and central inflammation during chronic social defeat stress (CSDS) in female mice. Compared to male mice, we found that female mice exhibited heightened peripheral inflammatory response and identified C-C motif chemokine ligand 5 (CCL5), as a stress-susceptibility marker in females. Blocking CCL5 signaling in the periphery promoted resilience to CSDS. In the brain, stress-susceptible mice displayed increased expression of C-C chemokine receptor 5 (CCR5), a receptor for CCL5, in microglia in the prefrontal cortex (PFC). This upregulation was associated with microglia morphological changes, their increased migration to the blood vessels, and enhanced phagocytosis of synaptic components and vascular material. These changes coincided with neurophysiological alterations and impaired blood-brain barrier (BBB) integrity. By blocking CCR5 signaling specifically in the PFC were able to prevent stress-induced physiological changes and rescue social avoidance behavior. Our findings are the first to demonstrate that stress-mediated dysregulation of the CCL5-CCR5 axis triggers excessive phagocytosis of synaptic materials and neurovascular components by microglia, resulting in disruptions in neurotransmission, reduced BBB integrity, and increased stress susceptibility. Our study provides new insights into the role of cortical microglia in female stress susceptibility and suggests that the CCL5-CCR5 axis may serve as a novel sex-specific therapeutic target for treating psychiatric disorders in females.
Collapse
|
41
|
Olayinka JN, Akawa OB, Ogbu EK, Eduviere AT, Ozolua RI, Soliman M. Apigenin attenuates depressive-like behavior via modulating monoamine oxidase A enzyme activity in chronically stressed mice. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2023; 5:100161. [PMID: 37501771 PMCID: PMC10368777 DOI: 10.1016/j.crphar.2023.100161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
Chronic stress is a risk factor for depression and is characterized by elevated levels of brain monoamine oxidase A (MAOA). Mounting evidence has shown that MAOA is a biochemical link between stress and depression. Apigenin (API), a natural flavonoid, as demonstrated in vitro inhibitory effect on MAOA, is suggestive of antidepressant-like activity. However, the in vivo inhibitory effect of API on MAOA and how it affects depression still remain unclear. Here, we report the probable mechanisms of action of API in chronic unpredictable mild stress (CUMS)-induced depression in mice. Treatment with API reversed anhedonia, and reduced anxiety and immobility time in behavioral studies. API reduced brain corticosterone and malondialdehyde (MDA) levels but increased brain levels of glutathione and superoxide dismutase. Furthermore, interleukin-6 and tumor necrosis factor-α were attenuated by API. It also restored cell loss and inhibited the activity of MAOA in the hippocampal brain regions and prefrontal cortex. Comparative binding affinity of API for MAOA (-7.7 kcal/mol) through molecular docking studies was greater than that of reference compound, clorgyline (-6.8 kcal/mol). Favorable hydrophobic interactions important to API binding at MAOA binding cavity was revealed to include conventional hydrogen bond (Cys323 and Tyr444), π-Sulfur (Cys323), π-π Stacked (Tyr407), π-π T-shaped (Phe208), π-lone pair and π-alkyl (Ile335, Ile180) interactions. These results suggest that API is a potent, selective, reversible inhibitor of MAOA with capability of attenuating CUMS-induced depression via inhibiting MAOA enzyme activity and altering other pathomechanisms.
Collapse
Affiliation(s)
- Juliet N. Olayinka
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State, Nigeria
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Benin, Benin City, 300001, Nigeria
| | - Oluwole B. Akawa
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State, Nigeria
- Molecular Bio-computation and Drug Design Laboratory, Discipline of Pharmaceutical Chemistry, University of Kwazulu-Natal, South Africa
| | - Emmanuela K. Ogbu
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, Ekiti State, Nigeria
| | - Anthony T. Eduviere
- Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Raymond I. Ozolua
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Benin, Benin City, 300001, Nigeria
| | - Mahmoud Soliman
- Molecular Bio-computation and Drug Design Laboratory, Discipline of Pharmaceutical Chemistry, University of Kwazulu-Natal, South Africa
| |
Collapse
|
42
|
Williams ZA, Szyszkowicz JK, Osborne N, Allehyany B, Nadon C, Udechukwu MC, Santos A, Audet MC. Sex-specific effects of voluntary wheel running on behavior and the gut microbiota-immune-brain axis in mice. Brain Behav Immun Health 2023; 30:100628. [PMID: 37396336 PMCID: PMC10308214 DOI: 10.1016/j.bbih.2023.100628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 07/04/2023] Open
Abstract
Physical exercise has been positioned as a promising strategy to prevent and/or alleviate anxiety and depression, but the biological processes associated with its effects on mental health have yet to be entirely determined. Although the prevalence of depression and anxiety in women is about twice that of men, very few studies have examined whether physical exercise could affect mental health differently according to sex. This study examined, in singly-housed mice, the sex-specific effects of voluntary exercise on depressive- and anxiety-like behaviors as well as on different markers along the gut microbiota-immune-brain axis. Male and female C57BL/6N mice had voluntary access to running wheels in their home-cages for 24 days or were left undisturbed in identical home-cages without running wheels. Behaviors were then examined in the open field, splash, elevated plus maze, and tail suspension tests. Gene expression of pro-inflammatory cytokines, microglia activation-related genes, and tight junction proteins was determined in the jejunum and the hippocampus, while microbiota composition and predicted function were verified in cecum contents. Voluntary exercise reduced anxiety-like behaviors and altered grooming patterns in males exclusively. Although the exercise intervention resulted in changes to brain inflammatory activity and to cecal microbiota composition and inferred function in both sexes, reductions in the jejunal expression of pro-inflammatory markers were observed in females only. These findings support the view that voluntary exercise, even when performed during a short period, is beneficial for mental and intestinal health and that its sex-specific effects on behavior could be, at least in part, related to some components of the gut microbiota-immune-brain axis.
Collapse
Affiliation(s)
| | - Joanna Kasia Szyszkowicz
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Canada
| | - Natasha Osborne
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | | | - Christophe Nadon
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | | | - Ana Santos
- Department of Neuroscience, Carleton University, Ottawa, Canada
| | - Marie-Claude Audet
- Department of Neuroscience, Carleton University, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- School of Nutrition Sciences, University of Ottawa, Ottawa, Canada
| |
Collapse
|
43
|
Turkheimer FE, Veronese M, Mondelli V, Cash D, Pariante CM. Sickness behaviour and depression: An updated model of peripheral-central immunity interactions. Brain Behav Immun 2023; 111:202-210. [PMID: 37076054 DOI: 10.1016/j.bbi.2023.03.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/15/2023] [Accepted: 03/26/2023] [Indexed: 04/21/2023] Open
Abstract
Current research into mood disorders indicates that circulating immune mediators participating in the pathophysiology of chronic somatic disorders have potent influences on brain function. This paradigm has brought to the fore the use of anti-inflammatory therapies as adjunctive to standard antidepressant therapy to improve treatment efficacy, particularly in subjects that do not respond to standard medication. Such new practice requires biomarkers to tailor these new therapies to those most likely to benefit but also validated mechanisms of action describing the interaction between peripheral immunity and brain function to optimize target intervention. These mechanisms are generally studied in preclinical models that try to recapitulate the human disease, MDD, through peripherally induced sickness behaviour. In this proposal paper, after an appraisal of the data in rodent models and their adherence to the data in clinical cohorts, we put forward a modified model of periphery-brain interactions that goes beyond the currently established view of microglia cells as the drivers of depression. Instead, we suggest that, for most patients with mild levels of peripheral inflammation, brain barriers are the primary actors in the pathophysiology of the disease and in treatment resistance. We then highlight data gaps in this proposal and suggest novel lines of research.
Collapse
Affiliation(s)
- Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Department of Information Engineering, University of Padova, Padova, Italy
| | - Valeria Mondelli
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
44
|
Escobar AP, Bonansco C, Cruz G, Dagnino-Subiabre A, Fuenzalida M, Negrón I, Sotomayor-Zárate R, Martínez-Pinto J, Jorquera G. Central and Peripheral Inflammation: A Common Factor Causing Addictive and Neurological Disorders and Aging-Related Pathologies. Int J Mol Sci 2023; 24:10083. [PMID: 37373230 PMCID: PMC10298583 DOI: 10.3390/ijms241210083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Many diseases and degenerative processes affecting the nervous system and peripheral organs trigger the activation of inflammatory cascades. Inflammation can be triggered by different environmental conditions or risk factors, including drug and food addiction, stress, and aging, among others. Several pieces of evidence show that the modern lifestyle and, more recently, the confinement associated with the COVID-19 pandemic have contributed to increasing the incidence of addictive and neuropsychiatric disorders, plus cardiometabolic diseases. Here, we gather evidence on how some of these risk factors are implicated in activating central and peripheral inflammation contributing to some neuropathologies and behaviors associated with poor health. We discuss the current understanding of the cellular and molecular mechanisms involved in the generation of inflammation and how these processes occur in different cells and tissues to promote ill health and diseases. Concomitantly, we discuss how some pathology-associated and addictive behaviors contribute to worsening these inflammation mechanisms, leading to a vicious cycle that promotes disease progression. Finally, we list some drugs targeting inflammation-related pathways that may have beneficial effects on the pathological processes associated with addictive, mental, and cardiometabolic illnesses.
Collapse
Affiliation(s)
- Angélica P. Escobar
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Christian Bonansco
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Gonzalo Cruz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Alexies Dagnino-Subiabre
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Marco Fuenzalida
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Ignacio Negrón
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Jonathan Martínez-Pinto
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gonzalo Jorquera
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile
| |
Collapse
|
45
|
Decker Ramirez EB, Arnold ME, McConnell KT, Solomon MG, Amico KN, Schank JR. The effects of lipopolysaccharide exposure on social interaction, cytokine expression, and alcohol consumption in male and female mice. Physiol Behav 2023; 265:114159. [PMID: 36931488 PMCID: PMC10121933 DOI: 10.1016/j.physbeh.2023.114159] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/10/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Much recent research has demonstrated a role of inflammatory pathways in depressive-like behavior and excess alcohol consumption. Lipopolysaccharide (LPS) is a cell wall component of gram-negative bacteria that can be used to trigger a strong inflammatory response in rodents in a preclinical research setting to study the mechanisms behind this relationship. In our study, we exposed male and female mice to LPS and assessed depressive-like behavior using the social interaction (SI) test, alcohol consumption in the two-bottle choice procedure, and expression of inflammatory mediators using quantitative PCR. We found that LPS administration decreased SI in female mice but had no significant impact on male mice when assessed 24 h after injection. LPS resulted in increased proinflammatory cytokine expression in both male and female mice; however, some aspects of the cytokine upregulation observed was greater in female mice as compared to males. A separate cohort of male and female mice underwent drinking for 12 days before receiving a saline or LPS injection, which we found to increase alcohol intake in both males and females. We have previously observed a role of the neurokinin-1 receptor (NK1R) in escalated alcohol intake, and in the inflammatory and behavioral response to LPS. The NK1R is the endogenous target of the neuropeptide SP, and this system has wide ranging roles in depression, anxiety, drug/alcohol seeking, pain, and inflammation. Thus, we administered a NK1R antagonist prior to alcohol access. This treatment reduced escalated alcohol consumption in female mice treated with LPS but did not affect drinking in males. Taken together, these results indicate that females are more sensitive to some physiological and behavioral effects of LPS administration, but that LPS escalates alcohol consumption in both sexes. Furthermore, NK1R antagonism can reduce alcohol consumption that is escalated by LPS treatment, in line with our previous findings.
Collapse
Affiliation(s)
- E B Decker Ramirez
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602 USA
| | - M E Arnold
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602 USA
| | - K T McConnell
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602 USA
| | - M G Solomon
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602 USA
| | - K N Amico
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602 USA
| | - J R Schank
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602 USA.
| |
Collapse
|
46
|
Sun S, Liu Q, Wang Z, Huang YY, Sublette M, Dwork A, Rosoklija G, Ge Y, Galfalvy H, Mann JJ, Haghighi F. Functional Architecture of Brain and Blood Transcriptome Delineate Biological Continuity Between Suicidal Ideation and Suicide. RESEARCH SQUARE 2023:rs.3.rs-2958575. [PMID: 37398042 PMCID: PMC10312911 DOI: 10.21203/rs.3.rs-2958575/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Human genetic studies indicate that suicidal ideation and behavior are both heritable. Most studies have examined associations between aberrant gene expression and suicide behavior, but behavior risk is linked to severity of suicidal ideation. Through a gene network approach, this study investigates how gene co-expression patterns are associated with suicidal ideation and severity using RNA-seq data in peripheral blood from 46 live participants with elevated suicidal ideation and 46 with no ideation. Associations with presence and severity of suicidal ideation were found within 18 and 3 co-expressed modules respectively (p < 0.05), not explained by severity of depression. Suicidal ideation presence and severity-related gene modules with enrichment of genes involved in defense against microbial infection, inflammation, and adaptive immune response were identified, and tested using RNA-seq data from postmortem brain that revealed gene expression differences in suicide decedents vs. non-suicides in white matter, but not gray matter. Findings support a role of brain and peripheral blood inflammation in suicide risk, showing that suicidal ideation presence and severity is associated with an inflammatory signature detectable in blood and brain, indicating a biological continuity between ideation and suicidal behavior that may underlie a common heritability.
Collapse
|
47
|
Zhang J, Li L, Liu Q, Zhao Z, Su D, Xiao C, Jin T, Chen L, Xu C, You Z, Zhou T. Gastrodin programs an Arg-1 + microglial phenotype in hippocampus to ameliorate depression- and anxiety-like behaviors via the Nrf2 pathway in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154725. [PMID: 36867963 DOI: 10.1016/j.phymed.2023.154725] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/05/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Regulating the microglial phenotype is an attractive strategy for treating diseases of the central nervous system such as depression and anxiety. Gastrodin can quickly cross the blood-brain barrier and mitigate microglia-mediated inflammation, which widely used to treat a variety of central nervous system diseases associated with microglial dysfunction. However, the molecular mechanism by which gastrodin regulates the functional phenotype of microglia remains unclear. PURPOSE Since the transcription factor "nuclear factor erythroid 2-related factor 2″ (Nrf2) is associated with the anti-inflammatory effects of gastrodin, we hypothesized that gastrodin induces Nrf2 expression in microglia and thereby programs an anti-inflammatory phenotype. STUDY DESIGN Male C57BL/6 mice, treated or not with gastrodin, were given lipopolysaccharide (LPS) at 0.25 mg/kg/d for 10 days to induce chronic neuroinflammation. The effects of gastrodin on microglial phenotypes, neuroinflammation and depression- and anxiety-like behaviors were evaluated. In another experiment, animals were treated with Nrf2 inhibitor ML385 throughout the 13-day gastrodin intervention period. METHODS The effects of gastrodin on depression- and anxiety-like behaviors were evaluated through the sucrose preference test, forced swimming test, open field test and elevated plus-maze test; as well as its effects on morphology and molecular and functional phenotypes of hippocampal microglia through immunohistochemistry, real-time PCR and enzyme-linked immunosorbent assays. RESULTS Chronic exposure to LPS caused hippocampal microglia to secrete inflammatory cytokines, their somata to enlarge, and their dendrites to lose branches. These changes were associated with depression- and anxiety-like behaviors. Gastrodin blocked these LPS-induced alterations and promoted an Arg-1+ microglial phenotype that protected neurons from injury. The effects of gastrodin were associated with Nrf2 activation, whereas blockade of Nrf2 antagonized gastrodin. CONCLUSION These results suggest that gastrodin acts via Nrf2 to promote an Arg-1+ microglial phenotype, which buffers the harmful effects of LPS-induced neuroinflammation. Gastrodin may be a promising drug against central nervous system diseases that involve microglial dysfunction.
Collapse
Affiliation(s)
- Jinqiang Zhang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Liangyuan Li
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Qin Liu
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Zhihuang Zhao
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Dapeng Su
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Chenghong Xiao
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Ting Jin
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Li Chen
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Chunyun Xu
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Zili You
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Tao Zhou
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
48
|
Vandeloo KL, Burhunduli P, Bouix S, Owsia K, Cho KIK, Fang Z, Van Geel A, Pasternak O, Blier P, Phillips JL. Free-Water Diffusion Magnetic Resonance Imaging Differentiates Suicidal Ideation From Suicide Attempt in Treatment-Resistant Depression. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:471-481. [PMID: 36906445 PMCID: PMC11421579 DOI: 10.1016/j.bpsc.2022.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/21/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Suicide attempt is highly prevalent in treatment-resistant depression (TRD); however, the neurobiological profile of suicidal ideation versus suicide attempt is unclear. Neuroimaging methods including diffusion magnetic resonance imaging-based free-water imaging may identify neural correlates underlying suicidal ideation and attempts in individuals with TRD. METHODS Diffusion magnetic resonance imaging data were obtained from 64 male and female participants (mean age 44.5 ± 14.2 years), including 39 patients with TRD (n = 21 and lifetime history of suicidal ideation but no attempts [SI group]; n = 18 with lifetime history of suicide attempt [SA group]), and 25 age- and sex-matched healthy control participants. Depression and suicidal ideation severity were examined using clinician-rated and self-report measures. Whole-brain neuroimaging analysis was conducted using tract-based spatial statistics via FSL to identify differences in white matter microstructure in the SI versus SA groups and in patients versus control participants. RESULTS Free-water imaging revealed elevated axial diffusivity and extracellular free water in fronto-thalamo-limbic white matter tracts of the SA group compared with the SI group. In a separate comparison, patients with TRD had widespread reductions in fractional anisotropy and axial diffusivity, as well as elevated radial diffusivity compared with control participants (thresholded p < .05, familywise error corrected). CONCLUSIONS A unique neural signature consisting of elevated axial diffusivity and free water was identified in patients with TRD and suicide attempt history. Findings of reduced fractional anisotropy, axial diffusivity, and elevated radial diffusivity in patients versus control participants are consistent with previously published studies. Multimodal and prospective investigations are recommended to better understand biological correlates of suicide attempt in TRD.
Collapse
Affiliation(s)
- Katie L Vandeloo
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Patricia Burhunduli
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Sylvain Bouix
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kimia Owsia
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Kang Ik K Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Zhuo Fang
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Amanda Van Geel
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Pierre Blier
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada
| | - Jennifer L Phillips
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
49
|
He Y, Wang Y, Yu H, Tian Y, Chen X, Chen C, Ren Y, Chen Z, Ren Y, Gong X, Cheng K, Liu X, Zhong L, Guo Y, Xie P. Protective effect of Nr4a2 (Nurr1) against LPS-induced depressive-like behaviors via regulating activity of microglia and CamkII neurons in anterior cingulate cortex. Pharmacol Res 2023; 191:106717. [PMID: 36948326 DOI: 10.1016/j.phrs.2023.106717] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/24/2023]
Abstract
Neuroinflammation is tightly associated with onset of depression. The nuclear receptor related 1 protein (Nurr1, also called Nr4a2), its roles in dopaminergic neurons is well understood, which can alleviate inflammation. Nevertheless, potential effects of Nr4a2 on neuroinflammation associated with depression still remains unclear. Chronic lipopolysaccharides (LPS) stress induced depressive-behaviors were confirmed via behavioral tests. Differentially expressed genes were detected by using RNA-sequencing. The anterior cingulate cortex (ACC) tissues were collected for biochemical experiments. The Golgi-Cox staining and virus labeling were used to evaluate the dendritic spines. We applied fluoxetine (FLX) and amodiaquine dihydrochloride (AQ, a highly selective agonist of Nr4a2) in mice. Overexpression experiments were performed by injecting with AAV-Nr4a2-EGFP into ACC. Chemogenetic activation of CamkII neurons via injecting the hM3Dq virus. Mice treated with LPS displayed depressive- and anxiety-like behaviors. The reduction of Nr4a2 and FosB induced by LPS were rescued by pretreatment with FLX or AQ. More importantly, LPS-induced behavior deficits in mice were also alleviated via fluoxetine treatment and pharmacological activation the expression of Nr4a2. Meanwhile, enhancing the level of Nr4a2 could improve dendritic spines loss of neuron and morphological changes in microglia. Overexpression of Nr4a2 in ACC reversed the depressive- and anxiety-like behaviors caused by LPS administration. Activation of CamkII neurons in ACC could robustly increase the expression of Nr4a2 and improve LPS-induced behavior deficits. Our findings demonstrate that the Nr4a2 may regulate depressive-like behaviors via alleviating the impairment of morphology and function on microglia and CamkII neurons induced by chronic neuroinflammation.
Collapse
Affiliation(s)
- Yong He
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yue Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Heming Yu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yu Tian
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiangyu Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chong Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yikun Ren
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yi Ren
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xue Gong
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ke Cheng
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaolei Liu
- Neurology Department of the First affiliated hospital of Kunming Medical University, Kunming, China
| | - Lianmei Zhong
- Neurology Department of the First affiliated hospital of Kunming Medical University, Kunming, China.
| | - Yi Guo
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
50
|
Pate BS, Bouknight SJ, Harrington EN, Mott SE, Augenblick LM, Smiley CE, Morgan CG, Calatayud BM, Martínez-Muñiz GA, Thayer JF, Wood SK. Site-Specific knockdown of microglia in the locus coeruleus regulates hypervigilant responses to social stress in female rats. Brain Behav Immun 2023; 109:190-203. [PMID: 36682513 PMCID: PMC11195023 DOI: 10.1016/j.bbi.2023.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Women are at increased risk for psychosocial stress-related anxiety disorders, yet mechanisms regulating this risk are unknown. Psychosocial stressors activate microglia, and the resulting neuroimmune responses that females exhibit heightened sensitivity to may serve as an etiological factor in their elevated risk. However, studies examining the role of microglia during stress in females are lacking. METHODS Microglia were manipulated in the stress-sensitive locus coeruleus (LC) of female rats in the context of social stress in two ways. First, intra-LC lipopolysaccharide (LPS; 0 or 3 μg/side, n = 5-6/group), a potent TLR4 agonist and microglial activator, was administered. One hour later, rats were exposed to control or an aggressive social defeat encounter between two males (WS, 15-min). In a separate study, females were treated with intra-LC or intra-central amygdala mannosylated liposomes containing clodronate (m-CLD; 0 or 25 μg/side, n = 13-14/group), a compound toxic to microglia. WS-evoked burying, cardiovascular responses, and sucrose preference were measured. Brain and plasma cytokines were quantified, and cardiovascular telemetry assessed autonomic balance. RESULTS Intra-LC LPS augmented the WS-induced burying response and increased plasma corticosterone and interleukin-1β (IL-1β). Further, the efficacy and selectivity of microinjected m-CLD was fully characterized. In the context of WS, intra-LC m-CLD attenuated the hypervigilant burying response during WS as well as the accumulation of intra-LC IL-1β. Intra-central amygdala m-CLD had no effect on WS-evoked behavior. CONCLUSIONS These studies highlight an innovative method for depleting microglia in a brain region specific manner and indicate that microglia in the LC differentially regulate hypervigilant WS-evoked behavioral and autonomic responses.
Collapse
Affiliation(s)
- Brittany S Pate
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA; Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Samantha J Bouknight
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Evelynn N Harrington
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Sarah E Mott
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Lee M Augenblick
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Cora E Smiley
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA; WJB Dorn VA Medical Center, Columbia, SC, USA
| | - Christopher G Morgan
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Brittney M Calatayud
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Gustavo A Martínez-Muñiz
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Julian F Thayer
- Department of Psychological Science, University of California, Irvine, CA, USA
| | - Susan K Wood
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA; WJB Dorn VA Medical Center, Columbia, SC, USA.
| |
Collapse
|