1
|
Wang T, Mohammadzadeh P, Jepsen JRM, Thorsen J, Rosenberg JB, Koldbæk Lemvigh C, Brustad N, Chen L, Ali M, Vinding R, Pedersen CET, Hernández-Lorca M, Fagerlund B, Glenthøj BY, Bilenberg N, Stokholm J, Bønnelykke K, Chawes B, Ebdrup BH. Maternal Inflammatory Proteins in Pregnancy and Neurodevelopmental Disorders at Age 10 Years. JAMA Psychiatry 2025:2831151. [PMID: 40072459 PMCID: PMC11904801 DOI: 10.1001/jamapsychiatry.2025.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
IMPORTANCE Maternal inflammation during pregnancy has been associated with an increased risk of neurodevelopmental disorders (NDDs), such as attention-deficit/hyperactivity disorder (ADHD) and autism, and cognitive deficits in early childhood. However, little is known about the contributions of a wider range of inflammatory proteins to this risk. OBJECTIVE To determine whether maternal inflammatory proteins during pregnancy are associated with the risk of NDDs and executive functions (EF) in middle childhood and to identify protein patterns associated with NDDs and EF. DESIGN, SETTING, AND PARTICIPANTS This was a 10-year follow-up cohort study of the Danish Copenhagen Prospective Studies on Asthma 2010 mother-child birth cohort, using plasma samples collected at week 24 in pregnancy, where 92 inflammatory proteins were assessed. NDDs and EF were assessed in the offspring at age 10 years, between January 2019 and December 2021. Mother-offspring dyads with available maternal prenatal inflammatory proteins during pregnancy and offspring NDD psychopathology data at follow-up were included. Data analyses took place between December 2023 and August 2024. EXPOSURES Levels of 92 inflammatory proteins from panel collected at week 24 during pregnancy. MAIN OUTCOMES AND MEASURES Categorical and dimensional psychopathology of NDDs (primary outcome) and EF (secondary outcome). RESULTS A total of 555 mothers (mean [SD] age, 32.4 [4.3] years) and their children (285 male [51%]) were included. The principal component analysis showed that higher levels of maternal inflammatory proteins depicted in principal component 1 were associated with a higher risk of any NDD (OR, 1.49; 95% CI, 1.15-1.94; P = .003), particularly autism (OR, 2.76; 95% CI, 1.45-5.63; P = .003) and ADHD with predominantly inattentive presentation (OR, 1.57; 95% CI, 1.05-2.39; P = .03). The single protein analysis showed that 18 of 92 proteins reached false discovery rate (FDR) 5% significance after adjustment. Vascular endothelial growth factor A, C-C motif chemokine ligand, CD5, interleukin 12B, fibroblast growth factor-23, and monocyte chemoattractant protein-1 emerged as top proteins associated with risk of NDDs. The sparse partial least squares approach identified 34 proteins associated with any NDD, and 39 with ADHD with predominantly inattentive presentation. There were no associations with EF after FDR correction. CONCLUSIONS AND RELEVANCE The maternal inflammatory proteome during pregnancy was associated with NDDs risks in offspring at age 10 years. Further research is warranted to elucidate the specific pathways involving these proteins during pregnancy that could be targeted with prevention strategies to reduce risk of NDDs in children.
Collapse
Affiliation(s)
- Tingting Wang
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Parisa Mohammadzadeh
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Center for Neuropsychiatric Schizophrenia Research (CNSR& Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
| | - Jens Richardt Møllegaard Jepsen
- Center for Neuropsychiatric Schizophrenia Research (CNSR& Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
- Child and Adolescent Mental Health Center, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
| | - Jonathan Thorsen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Julie Bøjstrup Rosenberg
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Center for Neuropsychiatric Schizophrenia Research (CNSR& Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
| | - Cecilie Koldbæk Lemvigh
- Center for Neuropsychiatric Schizophrenia Research (CNSR& Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
| | - Nicklas Brustad
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Liang Chen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Mina Ali
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca Vinding
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Casper-Emil Tingskov Pedersen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - María Hernández-Lorca
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Center for Neuropsychiatric Schizophrenia Research (CNSR& Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
| | - Birgitte Fagerlund
- Child and Adolescent Mental Health Center, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Birte Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR& Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Niels Bilenberg
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics, Slagelse Hospital, Slagelse, Denmark
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Bo Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Bjørn H Ebdrup
- Center for Neuropsychiatric Schizophrenia Research (CNSR& Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Lv T, Wang M, Kui L, Wu J, Xiao Y. Novel Inflammatory Biomarkers for Autism Spectrum Disorder Detected by Plasma Olink Proteomics. CHILDREN (BASEL, SWITZERLAND) 2025; 12:210. [PMID: 40003312 PMCID: PMC11853758 DOI: 10.3390/children12020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
Background: Research evidence has recently shown an association between autism spectrum disorder (ASD) and inflammation. For example, the expression of inflammatory cytokines is abnormal in children with ASD, and maternal inflammation can lead to ASD-like behavior in offspring. These studies suggest that inflammation plays an important role in the occurrence and development of ASD. Inflammatory cytokines may, therefore, be potential biomarkers for ASD. In the present study, we sought to systematically identify inflammatory biomarkers of children with ASD. Methods: We used Olink proteomics to comprehensively examine differentially expressed inflammation-related proteins in 60 children with ASD and 28 children with typical development (TD). We validated our findings using published data. Results: A total of 18 inflammation-related proteins were differentially expressed between the ASD and TD groups. Compared with the TD group, the expression of all differentially expressed proteins was up-regulated in the ASD group. Furthermore, eight differentially expressed proteins showed good diagnostic efficacy, as delineated by area under the curve (AUC) values of > 0.7. To our knowledge, this is the first time that up-regulated interleukin-17C (IL-17C), chemokine ligand (CCL)-19, and CCL20 have been detected in the plasma of children with ASD (with AUC of 0.839, 0.763, and 0.756, respectively). We also found that there was a negative correlation between inflammatory cytokines and SRS scores. Conclusions: Multiple inflammatory markers were increased in children with ASD. IL-17C, CCL19, and CCL20 exhibit potential as biomarker candidates for ASD. Elevated expression levels of cytokines may enhance social ability in ASD.
Collapse
Affiliation(s)
- Tiying Lv
- Department of Integrative Medicine, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510623, China;
| | - Mingbang Wang
- Department of Neonatology, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen 518172, China;
- Microbiome Therapy Center, Department of Experiment & Research, South China Hospital, Medical School, Shenzhen University, Shenzhen 518111, China
| | - Ling Kui
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen 518067, China; (L.K.); (J.W.)
| | - Jun Wu
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen 518067, China; (L.K.); (J.W.)
| | - Yang Xiao
- Department of Integrative Medicine, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510623, China;
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen 518067, China; (L.K.); (J.W.)
| |
Collapse
|
3
|
Moreno RJ, Abu Amara R, Ashwood P. Toward a better understanding of T cell dysregulation in autism: An integrative review. Brain Behav Immun 2025; 123:1147-1158. [PMID: 39378971 DOI: 10.1016/j.bbi.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/28/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024] Open
Abstract
Autism spectrum disorder (ASD) is a highly heterogeneous disorder characterized by impairments in social, communicative, and restrictive behaviors. Over the past 20 years, research has highlighted the role of the immune system in regulating neurodevelopment and behavior. In ASD, immune abnormalities are frequently observed, such as elevations in pro-inflammatory cytokines, alterations in immune cell frequencies, and dysregulated mechanisms of immune suppression. The adaptive immune system - the branch of the immune system conferring cellular immunity - may be involved in the etiology of ASD. Specifically, dysregulated T cell activity, characterized by altered cellular function and increased cytokine release, presence of inflammatory phenotypes and altered cellular signaling, has been consistently observed in several studies across multiple laboratories and geographic regions. Similarly, mechanisms regulating their activation are also disrupted. T cells at homeostasis coordinate the healthy development of the central nervous system (CNS) during early prenatal and postnatal development, and aid in CNS maintenance into adulthood. Thus, T cell dysregulation may play a role in neurodevelopment and the behavioral and cognitive manifestations observed in ASD. Outside of the CNS, aberrant T cell activity may also be responsible for the increased frequency of immune based conditions in the ASD population, such as allergies, gut inflammation and autoimmunity. In this review, we will discuss the current understanding of T cell biology in ASD and speculate on mechanisms behind their dysregulation. This review also evaluates how aberrant T cell biology affects gastrointestinal issues and behavior in the context of ASD.
Collapse
Affiliation(s)
- R J Moreno
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA
| | - R Abu Amara
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA
| | - P Ashwood
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA.
| |
Collapse
|
4
|
Buonfiglioli A, Kübler R, Missall R, De Jong R, Chan S, Haage V, Wendt S, Lin AJ, Mattei D, Graziani M, Latour B, Gigase F, Chiu R, Zhang Y, Nygaard HB, De Jager PL, De Witte LD. A microglia-containing cerebral organoid model to study early life immune challenges. Brain Behav Immun 2025; 123:1127-1146. [PMID: 39500415 PMCID: PMC11753195 DOI: 10.1016/j.bbi.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/10/2024] [Accepted: 11/02/2024] [Indexed: 11/13/2024] Open
Abstract
Prenatal infections and activation of the maternal immune system have been proposed to contribute to causing neurodevelopmental disorders (NDDs), chronic conditions often linked to brain abnormalities. Microglia are the resident immune cells of the brain and play a key role in neurodevelopment. Disruption of microglial functions can lead to brain abnormalities and increase the risk of developing NDDs. How the maternal as well as the fetal immune system affect human neurodevelopment and contribute to NDDs remains unclear. An important reason for this knowledge gap is the fact that the impact of exposure to prenatal risk factors has been challenging to study in the human context. Here, we characterized a model of cerebral organoids (CO) with integrated microglia (COiMg). These organoids express typical microglial markers and respond to inflammatory stimuli. The presence of microglia influences cerebral organoid development, including cell density and neural differentiation, and regulates the expression of several ciliated and mesenchymal cell markers. Moreover, COiMg and organoids without microglia show similar but also distinct responses to inflammatory stimuli. Additionally, IFN-γ induced significant transcriptional and structural changes in the cerebral organoids, that appear to be regulated by the presence of microglia. Specifically, interferon-gamma (IFN-γ) was found to alter the expression of genes linked to autism. This model provides a valuable tool to study how inflammatory perturbations and microglial presence affect neurodevelopmental processes.
Collapse
Affiliation(s)
- Alice Buonfiglioli
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Raphael Kübler
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Human Genetics, Radboud UMC, Nijmegen, Netherlands (the)
| | - Roy Missall
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Renske De Jong
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephanie Chan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Verena Haage
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Stefan Wendt
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Ada J Lin
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Daniele Mattei
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mara Graziani
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Human Genetics, Radboud UMC, Nijmegen, Netherlands (the); Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, Netherlands (the)
| | - Brooke Latour
- Department of Human Genetics, Radboud UMC, Nijmegen, Netherlands (the); Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, Netherlands (the)
| | - Frederieke Gigase
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rebecca Chiu
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Ya Zhang
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Haakon B Nygaard
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Lot D De Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Human Genetics, Radboud UMC, Nijmegen, Netherlands (the); Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, Netherlands (the); Department of Psychiatry, Radboud UMC, Nijmegen, Netherlands (the)
| |
Collapse
|
5
|
Hewitson L, Mathews JA, Devlin M, Schutte C, Lee J, German DC. Blood biomarker discovery for autism spectrum disorder: A proteomic analysis. PLoS One 2024; 19:e0302951. [PMID: 39700097 DOI: 10.1371/journal.pone.0302951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/25/2024] [Indexed: 12/21/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and social interaction and restricted, repetitive patterns of behavior, interests, or activities. Given the lack of specific pharmacological therapy for ASD and the clinical heterogeneity of the disorder, current biomarker research efforts are geared mainly toward identifying markers for determining ASD risk or for assisting with a diagnosis. A wide range of putative biological markers for ASD are currently being investigated. Proteomic analyses indicate that the levels of many proteins in plasma/serum are altered in ASD, suggesting that a panel of proteins may provide a blood biomarker for ASD. Serum samples from 76 boys with ASD and 78 typically developing (TD) boys, 2-10 years of age, were analyzed to identify possible early biological markers for ASD. Proteomic analysis of serum was performed using SomaLogic's SOMAScanTM assay 1.3K platform. A total of 1,125 proteins were analyzed. There were 86 downregulated proteins and 52 upregulated proteins in ASD (FDR < 0.05). Combining three different algorithms, we found a panel of 12 proteins that identified ASD with an area under the curve (AUC) = 0.8790±0.0572, with specificity and sensitivity of 0.8530±0.1076 and 0.8324±0.1137, respectively. All 12 proteins were significantly different in ASD compared with TD boys, and 4 were significantly correlated with ASD severity as measured by ADOS total scores. Using machine learning methods, a panel of serum proteins was identified that may be useful as a blood biomarker for ASD in boys. Further verification of the protein biomarker panel with independent test sets is warranted.
Collapse
Affiliation(s)
- Laura Hewitson
- The Johnson Center for Child Health and Development, Austin, TX, United States of America
| | - Jeremy A Mathews
- Bioinformatics & Computational Biology Program, Departments of Mathematical Sciences and Biological Sciences, University of Texas at Dallas, Dallas, TX, United States of America
| | - Morgan Devlin
- The Johnson Center for Child Health and Development, Austin, TX, United States of America
| | - Claire Schutte
- The Johnson Center for Child Health and Development, Austin, TX, United States of America
| | - Jeon Lee
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Dwight C German
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, United States of America
| |
Collapse
|
6
|
Gardner RM, Brynge M, Sjöqvist H, Dalman C, Karlsson H. Maternal Immune Activation and Autism in Offspring: What Is the Evidence for Causation? Biol Psychiatry 2024:S0006-3223(24)01760-8. [PMID: 39581290 DOI: 10.1016/j.biopsych.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/21/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024]
Abstract
The maternal immune activation hypothesis has gained attention over the past 2 decades as a potential contributor to the etiology of autism. This hypothesis posits that maternal conditions associated with inflammation during pregnancy may increase the risk of autism in offspring. Autism is highly heritable, and causal environmental contributors to autism largely remain elusive. We review studies on maternal conditions during pregnancy, all associated with some degree of systemic inflammation, namely maternal infections, autoimmunity, and high body mass index. We also review studies of inflammatory markers in biological samples collected from mothers during pregnancy or from neonates and their relationship with autism assessed in children later in life. Recent reports indicate familial clustering of autism, autoimmunity, and infections, as well as genetic correlations between autism and aspects of immune function. Given this literature, there is an apparent risk of confounding of the reported associations between inflammatory exposures and autism by familial genetic factors in both clinical and epidemiological cohort studies. We highlight recent studies that have attempted to address potential confounding to assess evidence of causal effects of inflammation during early life in autism.
Collapse
Affiliation(s)
- Renee M Gardner
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Martin Brynge
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Hugo Sjöqvist
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Christina Dalman
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Karlsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
7
|
Zeng X, Fan L, Qin Q, Zheng D, Wang H, Li M, Jiang Y, Wang H, Liu H, Liang S, Wu L, Liang S. Exogenous PD-L1 binds to PD-1 to alleviate and prevent autism-like behaviors in maternal immune activation-induced male offspring mice. Brain Behav Immun 2024; 122:527-546. [PMID: 39182588 DOI: 10.1016/j.bbi.2024.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder caused by the interaction of multiple pathogenic factors. Epidemiological studies and animal experiments indicate that maternal immune activation (MIA) is closely related to the development of ASD in offspring. A large number of pro-inflammatory cytokines are transferred from the placenta to the fetal brain during MIA, which impedes fetal neurodevelopment and is accompanied by activation of immune cells and microglia. Programmed cell death protein 1 (PD-1) can be highly expressed on the surface of various activated immune cells, when combined with programmed cell death-ligand 1 (PD-L1), it can activate the PD-1/PD-L1 pathway and exert powerful immunosuppressive effects, suggesting that this immune checkpoint may have the potential to treat MIA-induced ASD. This study combined bioinformatics analysis and experimental validation to explore the efficacy of Fc-fused PD-L1 (PD-L1-Fc) in treating MIA-induced ASD. Bioinformatics analysis results showed that in human placental inflammation, IL-6 was upregulated, T cells proliferated significantly, and the PD-1/PD-L1 pathway was significantly enriched. The experimental results showed that intraperitoneal injection of poly(I:C) induced MIA in pregnant mice resulted in significant expression of IL-6 in their serum, placenta, and fetal brain. At the same time, the expression of PD-1 and PD-L1 in the placenta and fetal brain increased, CD4+ T cells in the spleen were significantly activated, and PD-1 expression increased. Their offspring mice exhibited typical ASD-like behaviors. In vitro experiments on primary microglia of offspring mice have confirmed that the expression of IL-6, PD-1, and PD-L1 is significantly increased, and PD-L1-Fc effectively reduced their expression levels. In the prefrontal cortex of MIA offspring mice, there was an increase in the expression of IL-6, PD-1, and PD-L1; activation of microglial cells, and colocalization with PD-1. Then we administered brain stereotaxic injections of PD-L1-Fc to MIA offspring mice and intraperitoneal injections to MIA pregnant mice. The results indicated that PD-L1-Fc effectively suppressed neuroinflammation in the frontal cortex of offspring mice and partially ameliorated ASD-like behaviors; MIA in pregnant mice was significantly alleviated, and the offspring mice they produced did not exhibit neuroinflammation or ASD-like behaviors. In summary, we have demonstrated the therapeutic ability of PD-L1-Fc for MIA-induced ASD, aiming to provide new strategies and insights for the treatment of ASD.
Collapse
Affiliation(s)
- Xin Zeng
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Linlin Fan
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Qian Qin
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Danyang Zheng
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Han Wang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Mengyue Li
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Yutong Jiang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Hui Wang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Hao Liu
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Shengjun Liang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Lijie Wu
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China.
| | - Shuang Liang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
8
|
Moreno RJ, Rose DR, Tancredi DJ, Schmidt RJ, Ozonoff SJ, Ashwood P. Cord blood cytokine profiles in children later diagnosed with autism spectrum disorder: Results from the prospective MARBLES study. Brain Behav Immun 2024; 122:339-344. [PMID: 39163910 DOI: 10.1016/j.bbi.2024.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/02/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024] Open
Abstract
In studies investigating the etiology and pathophysiology of autism spectrum disorder (ASD), immune dysregulation is commonly observed, with elevated levels of inflammatory cytokines frequently found in gestational tissues. However, studies investigating the relationship between early immune dysregulation within the umbilical cord blood (CB) compartment and neurodevelopmental outcomes remains limited. In this exploratory study, we utilized data from the prospective Markers for Autism Risk in Babies - Learning Early Signs (MARBLES) study to examine cytokine levels in the plasma fraction of CB in infants later diagnosed with ASD (n = 38) compared to infants typically developing (TD) at age 3 years (n = 103), using multiplex cytokine assays. Our findings reveal altered levels of several inflammatory cytokines in children later diagnosed with ASD, including increased granulocyte colony-stimulating factor (G-CSF) and decreased interleukin-1α (IL-1α), IL-1β, and IL-4 in CB. Furthermore, we identified several associations between behaviors and levels of cytokines, chemokines and growth factors. IL-1α, IL-17A, interferon γ-induced protein 10 (IP-10), and epidermal growth factor (EGF) were associated with worse scores on Autism Diagnostic Observation Schedule (ADOS) and the Mullen Scales of Early Learning (MSEL) assessments. In summary, our study demonstrates dysregulated levels of inflammatory cytokine mediators in the CB of children later diagnosed with ASD and that inflammatory mediators were associated with ASD severity, comorbid behaviors, and neurodevelopmental measures. These findings have important implications for the possible predictive value of early cytokine measures in neurodevelopmental outcomes and subsequent behavioral manifestations.
Collapse
Affiliation(s)
- Rachel J Moreno
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, United States; MIND Institute, University of California, Sacramento, CA, United States
| | - Destanie R Rose
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, United States; MIND Institute, University of California, Sacramento, CA, United States
| | - Daniel J Tancredi
- Department of Pediatrics, University of California, Sacramento, CA, United States
| | - Rebecca J Schmidt
- MIND Institute, University of California, Sacramento, CA, United States; Department of Public Health Sciences, University of California Davis, Davis, CA, United States
| | - Sally J Ozonoff
- MIND Institute, University of California, Sacramento, CA, United States; Department of Psychiatry and Behavioral Sciences, United States
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, United States; MIND Institute, University of California, Sacramento, CA, United States.
| |
Collapse
|
9
|
Camacho-Morales A, Cárdenas-Tueme M. Prenatal Programming of Monocyte Chemotactic Protein-1 Signaling in Autism Susceptibility. Mol Neurobiol 2024; 61:6119-6134. [PMID: 38277116 DOI: 10.1007/s12035-024-03940-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that involves functional and structural defects in selective central nervous system (CNS) regions, harming the individual capability to process and respond to external stimuli, including impaired verbal and non-verbal communications. Etiological causes of ASD have not been fully clarified; however, prenatal activation of the innate immune system by external stimuli might infiltrate peripheral immune cells into the fetal CNS and activate cytokine secretion by microglia and astrocytes. For instance, genomic and postmortem histological analysis has identified proinflammatory gene signatures, microglia-related expressed genes, and neuroinflammatory markers in the brain during ASD diagnosis. Active neuroinflammation might also occur during the developmental stage, promoting the establishment of a defective brain connectome and increasing susceptibility to ASD after birth. While still under investigation, we tested the hypothesis whether the monocyte chemoattractant protein-1 (MCP-1) signaling is prenatally programmed to favor peripheral immune cell infiltration and activate microglia into the fetal CNS, setting susceptibility to autism-like behavior. In this review, we will comprehensively provide the current understanding of the prenatal activation of MCP-1 signaling by external stimuli during the developmental stage as a new selective node to promote neuroinflammation, brain structural alterations, and behavioral defects associated to ASD diagnosis.
Collapse
Affiliation(s)
- Alberto Camacho-Morales
- College of Medicine, Department of Biochemistry, Universidad Autónoma de Nuevo Leon, Monterrey, NL, Mexico.
- Center for Research and Development in Health Sciences, Neurometabolism Unit, Universidad Autónoma de Nuevo Leon, San Nicolás de los Garza, Monterrey, NL, Mexico.
| | - Marcela Cárdenas-Tueme
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de La Salud and The Institute for Obesity Research, 64710, Monterrey, Mexico
- Nutrition Unit, Center for Research and Development in Health Sciences, Universidad Autonoma de Nuevo Leon, 64460, Monterrey, Mexico
| |
Collapse
|
10
|
Zeng X, Fan L, Li M, Qin Q, Pang X, Shi S, Zheng D, Jiang Y, Wang H, Wu L, Liang S. Resveratrol regulates Thoc5 to improve maternal immune activation-induced autism-like behaviors in adult mouse offspring. J Nutr Biochem 2024; 129:109638. [PMID: 38583499 DOI: 10.1016/j.jnutbio.2024.109638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Maternal infection during pregnancy is an important cause of autism spectrum disorder (ASD) in offspring, and inflammatory infiltration caused by maternal immune activation (MIA) can cause neurodevelopmental disorders in the fetus. Medicine food homologous (MFH) refers to a traditional Chinese medicine (TCM) concept, which effectively combines food functions and medicinal effects. However, no previous study has screened, predicted, and validated the potential targets of MFH herbs for treating ASD. Therefore, in this study, we used comprehensive bioinformatics methods to screen and analyze MFH herbs and drug targets on a large scale, and identified resveratrol and Thoc5 as the best small molecular ingredient and drug target, respectively, for the treatment of MIA-induced ASD. Additionally, the results of in vitro experiments revealed that resveratrol increased the expression of Thoc5 and effectively inhibited lipopolysaccharide-induced inflammatory factor production by BV2 cells. Moreover, in vivo, resveratrol increased the expression of Thoc5 and effectively inhibited placental and fetal brain inflammation in MIA pregnancy mice, and improved ASD-like behaviors in offspring.
Collapse
Affiliation(s)
- Xin Zeng
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Linlin Fan
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Mengyue Li
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Qian Qin
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Xiuming Pang
- Outpatient Department, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Shanyi Shi
- Traditional Chinese Medicine Prevention and Treatment Center, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Danyang Zheng
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Yutong Jiang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Han Wang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Lijie Wu
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China.
| | - Shuang Liang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
11
|
Buonfiglioli A, Kübler R, Missall R, De Jong R, Chan S, Haage V, Wendt S, Lin AJ, Mattei D, Graziani M, Latour B, Gigase F, Nygaard HB, De Jager PL, De Witte LD. A microglia-containing cerebral organoid model to study early life immune challenges. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595814. [PMID: 38826204 PMCID: PMC11142229 DOI: 10.1101/2024.05.24.595814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Prenatal infections and activation of the maternal immune system have been proposed to contribute to causing neurodevelopmental disorders (NDDs), chronic conditions often linked to brain abnormalities. Microglia are the resident immune cells of the brain and play a key role in neurodevelopment. Disruption of microglial functions can lead to brain abnormalities and increase the risk of developing NDDs. How the maternal as well as the fetal immune system affect human neurodevelopment and contribute to NDDs remains unclear. An important reason for this knowledge gap is the fact that the impact of exposure to prenatal risk factors has been challenging to study in the human context. Here, we characterized a model of cerebral organoids (CO) with integrated microglia (COiMg). These organoids express typical microglial markers and respond to inflammatory stimuli. The presence of microglia influences cerebral organoid development, including cell density and neural differentiation, and regulates the expression of several ciliated mesenchymal cell markers. Moreover, COiMg and organoids without microglia show similar but also distinct responses to inflammatory stimuli. Additionally, IFN-γ induced significant transcriptional and structural changes in the cerebral organoids, that appear to be regulated by the presence of microglia. Specifically, interferon-gamma (IFN-γ) was found to alter the expression of genes linked to autism. This model provides a valuable tool to study how inflammatory perturbations and microglial presence affect neurodevelopmental processes.
Collapse
Affiliation(s)
- Alice Buonfiglioli
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Raphael Kübler
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Human Genetics, Radboud UMC, Nijmegen, The Netherlands
| | - Roy Missall
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Renske De Jong
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Stephanie Chan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Verena Haage
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Stefan Wendt
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Ada J. Lin
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Daniele Mattei
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mara Graziani
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Human Genetics, Radboud UMC, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Brooke Latour
- Department of Human Genetics, Radboud UMC, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Frederieke Gigase
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Haakon B. Nygaard
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Lot D. De Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Human Genetics, Radboud UMC, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud UMC, Nijmegen, The Netherlands
| |
Collapse
|
12
|
McLellan J, Croen L, Iosif AM, Yoshida C, Ashwood P, Yolken RH, Van de Water J. Altered cytokine and chemokine profile linked to autoantibody and pathogen reactivity in mothers of autistic children. Front Psychiatry 2024; 15:1348092. [PMID: 38840945 PMCID: PMC11150845 DOI: 10.3389/fpsyt.2024.1348092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
Maternal autoimmunity, and more specifically, the production of specific maternal autoantibodies, has been associated with altered offspring neurodevelopment. Maternal autoantibody-related (MAR) autism is a subtype of autism that is linked to gestational exposure to certain combinations of autoantibodies to proteins known to be important for fetal neurodevelopment. We wanted to address whether mothers with autism-specific patterns of autoantibodies have a skewed cytokine and chemokine profile during an immune response to infection. To do so, we examined a subset of mothers from the Early Markers for Autism (EMA) study who either produced known patterns of MAR autoantibodies (MAR+) or did not (MAR-). We compared the cytokine/chemokine profiles of MAR+ and MAR- mothers in the context of positive immunoglobulin G (IgG) reactivity to several viral and parasitic agents. We observed that MAR+ mothers have a higher level of proinflammatory cytokine interferon-gamma regardless of IgG status. Additionally, when comparing MAR+ and MAR- mothers in the context of the different pathogens, MAR+ mothers consistently had increases in multiple proinflammatory cytokines and chemokines.
Collapse
Affiliation(s)
- Janna McLellan
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, United States
| | - Lisa Croen
- Kaiser Permanente Research Division, Oakland, CA, United States
| | - Ana-Maria Iosif
- Department of Public Health Sciences, University of California, Davis, CA, United States
| | | | - Paul Ashwood
- MIND Institute, University of California, Davis, CA, United States
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, United States
| | - Robert H. Yolken
- Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MS, United States
| | - Judy Van de Water
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, United States
- MIND Institute, University of California, Davis, CA, United States
| |
Collapse
|
13
|
Lingampelly SS, Naviaux JC, Heuer LS, Monk JM, Li K, Wang L, Haapanen L, Kelland CA, Van de Water J, Naviaux RK. Metabolic network analysis of pre-ASD newborns and 5-year-old children with autism spectrum disorder. Commun Biol 2024; 7:536. [PMID: 38729981 PMCID: PMC11549098 DOI: 10.1038/s42003-024-06102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/22/2024] [Indexed: 05/12/2024] Open
Abstract
Classical metabolomic and new metabolic network methods were used to study the developmental features of autism spectrum disorder (ASD) in newborns (n = 205) and 5-year-old children (n = 53). Eighty percent of the metabolic impact in ASD was caused by 14 shared biochemical pathways that led to decreased anti-inflammatory and antioxidant defenses, and to increased physiologic stress molecules like lactate, glycerol, cholesterol, and ceramides. CIRCOS plots and a new metabolic network parameter,V ° net, revealed differences in both the kind and degree of network connectivity. Of 50 biochemical pathways and 450 polar and lipid metabolites examined, the developmental regulation of the purine network was most changed. Purine network hub analysis revealed a 17-fold reversal in typically developing children. This purine network reversal did not occur in ASD. These results revealed previously unknown metabolic phenotypes, identified new developmental states of the metabolic correlation network, and underscored the role of mitochondrial functional changes, purine metabolism, and purinergic signaling in autism spectrum disorder.
Collapse
Grants
- UL1 TR001442 NCATS NIH HHS
- 7274 Autism Speaks (Autism Speaks Inc.)
- This work was funded in part by philanthropic gifts to the Naviaux Lab from the UCSD Christini Fund, the Lennox Foundation, the William Wright Family Foundation, Malone Family Foundation, the Brain Foundation, the Westreich Foundation, the Aloe family, the Harb family, Marc Spilo and all the others who contributed to the Aloe family autism research fund, the N of One Autism Research Foundation, the UCSD Mitochondrial Disease Research Fund, the JMS Fund, Linda Clark, Jeanne Conrad, David Cannistraro, the Kirby and Katie Mano Family, Simon and Evelyn Foo, Wing-kun Tam, Gita and Anurag Gupta, the Brent Kaufman Family, and the Daniel and Kelly White Family, and grassroots support from over 2000 individuals from around the world who have each provided gifts in the past year to support Naviaux Lab research. The REDCap software system used in this study was provided by the UCSD Clinical and Translational Research Center and supported by Award Number UL1TR001442 from the National Center for Research Resources. Financial supporters for this study had no role in study design, data collection, analysis, interpretation, writing, or publication of this work.
Collapse
Affiliation(s)
- Sai Sachin Lingampelly
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, 92103-8467, USA
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, 92103-8467, USA
| | - Jane C Naviaux
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, 92103-8467, USA
- Department of Neuroscience, University of California, San Diego School of Medicine, San Diego, CA, 92103-8467, USA
| | - Luke S Heuer
- The UC Davis MIND Institute, University of California, Davis, Davis, CA, 95616, USA
| | - Jonathan M Monk
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, 92103-8467, USA
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, 92103-8467, USA
| | - Kefeng Li
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, 92103-8467, USA
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, 92103-8467, USA
- Macao Polytechnic University, Macau, China
| | - Lin Wang
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, 92103-8467, USA
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, 92103-8467, USA
| | - Lori Haapanen
- The UC Davis MIND Institute, University of California, Davis, Davis, CA, 95616, USA
| | - Chelsea A Kelland
- The UC Davis MIND Institute, University of California, Davis, Davis, CA, 95616, USA
| | - Judy Van de Water
- The UC Davis MIND Institute, University of California, Davis, Davis, CA, 95616, USA
- Department of Rheumatology and Allergy, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - Robert K Naviaux
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA, 92103-8467, USA.
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, 92103-8467, USA.
- Department of Pediatrics, University of California, San Diego School of Medicine, San Diego, CA, 92103-8467, USA.
- Department of Pathology, University of California, San Diego School of Medicine, San Diego, CA, 92103-8467, USA.
| |
Collapse
|
14
|
McLellan J, Croen LA, Iosif AM, Ashwood P, Yoshida C, Berger K, Van de Water J. Differences in mid-gestational and early postnatal neonatal cytokines and chemokines are associated with patterns of maternal autoantibodies in the context of autism. Cereb Cortex 2024; 34:50-62. [PMID: 38696596 PMCID: PMC11065110 DOI: 10.1093/cercor/bhae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/25/2024] [Accepted: 01/06/2024] [Indexed: 05/04/2024] Open
Abstract
Associations between maternal immune dysregulation (including autoimmunity and skewed cytokine/chemokine profiles) and offspring neurodevelopmental disorders such as autism have been reported. In maternal autoantibody-related autism, specific maternally derived autoantibodies can access the fetal compartment to target eight proteins critical for neurodevelopment. We examined the relationship between maternal autoantibodies to the eight maternal autoantibody-related autism proteins and cytokine/chemokine profiles in the second trimester of pregnancy in mothers of children later diagnosed with autism and their neonates' cytokine/chemokine profiles. Using banked maternal serum samples from 15 to 19 weeks of gestation from the Early Markers for Autism Study and corresponding banked newborn bloodspots, we identified three maternal/offspring groups based on maternal autoantibody status: (1) mothers with autoantibodies to one or more of the eight maternal autoantibody-related autismassociated proteins but not a maternal autoantibody-related autism-specific pattern, (2) mothers with a known maternal autoantibody-related autism pattern, and (3) mothers without autoantibodies to any of the eight maternal autoantibody-related autism proteins. Using a multiplex platform, we measured maternal second trimester and neonatal cytokine/chemokine levels. This combined analysis aimed to determine potential associations between maternal autoantibodies and the maternal and neonatal cytokine/chemokine profiles, each of which has been shown to have implications on offspring neurodevelopment independently.
Collapse
Affiliation(s)
- Janna McLellan
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis, 451 Health Sciences Drive, Suite 6505C, Davis, CA 95616, United States
| | - Lisa A Croen
- Division of Research, Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA 94612, United States
| | - Ana-Maria Iosif
- Department of Public Health Sciences, Division of Biostatistics, University of California Davis, Medical Sciences 1C, Davis, CA, 95616, United States
| | - Paul Ashwood
- MIND Institute, University of California Davis, 2805 Wet Lab Building, Sacramento, CA 95817, United States
- Department of Medical Microbiology and Immunology, University of California Davis, 3146 One Shields Avenue, Tupper Hall, Davis, CA 95616, United States
| | - Cathleen Yoshida
- Division of Research, Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA 94612, United States
| | - Kimberly Berger
- Sequoia Foundation, 741 Addison Suite B, Berkeley, CA 94710, United States
| | - Judy Van de Water
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis, 451 Health Sciences Drive, Suite 6505C, Davis, CA 95616, United States
- MIND Institute, University of California Davis, 2805 Wet Lab Building, Sacramento, CA 95817, United States
| |
Collapse
|
15
|
Vacharasin JM, Ward JA, McCord MM, Cox K, Imitola J, Lizarraga SB. Neuroimmune mechanisms in autism etiology - untangling a complex problem using human cellular models. OXFORD OPEN NEUROSCIENCE 2024; 3:kvae003. [PMID: 38665176 PMCID: PMC11044813 DOI: 10.1093/oons/kvae003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/13/2024] [Accepted: 01/31/2024] [Indexed: 04/28/2024]
Abstract
Autism spectrum disorder (ASD) affects 1 in 36 people and is more often diagnosed in males than in females. Core features of ASD are impaired social interactions, repetitive behaviors and deficits in verbal communication. ASD is a highly heterogeneous and heritable disorder, yet its underlying genetic causes account only for up to 80% of the cases. Hence, a subset of ASD cases could be influenced by environmental risk factors. Maternal immune activation (MIA) is a response to inflammation during pregnancy, which can lead to increased inflammatory signals to the fetus. Inflammatory signals can cross the placenta and blood brain barriers affecting fetal brain development. Epidemiological and animal studies suggest that MIA could contribute to ASD etiology. However, human mechanistic studies have been hindered by a lack of experimental systems that could replicate the impact of MIA during fetal development. Therefore, mechanisms altered by inflammation during human pre-natal brain development, and that could underlie ASD pathogenesis have been largely understudied. The advent of human cellular models with induced pluripotent stem cell (iPSC) and organoid technology is closing this gap in knowledge by providing both access to molecular manipulations and culturing capability of tissue that would be otherwise inaccessible. We present an overview of multiple levels of evidence from clinical, epidemiological, and cellular studies that provide a potential link between higher ASD risk and inflammation. More importantly, we discuss how stem cell-derived models may constitute an ideal experimental system to mechanistically interrogate the effect of inflammation during the early stages of brain development.
Collapse
Affiliation(s)
- Janay M Vacharasin
- Department of Biological Sciences, and Center for Childhood Neurotherapeutics, Univ. of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
- Department of Biological Sciences, Francis Marion University, 4822 East Palmetto Street, Florence, S.C. 29506, USA
| | - Joseph A Ward
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute of Brain Science, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Mikayla M McCord
- Department of Biological Sciences, and Center for Childhood Neurotherapeutics, Univ. of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Kaitlin Cox
- Department of Biological Sciences, and Center for Childhood Neurotherapeutics, Univ. of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Jaime Imitola
- Laboratory of Neural Stem Cells and Functional Neurogenetics, UConn Health, Departments of Neuroscience, Neurology, Genetics and Genome Sciences, UConn Health, 263 Farmington Avenue, Farmington, CT 06030-5357, USA
| | - Sofia B Lizarraga
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute of Brain Science, Brown University, 70 Ship Street, Providence, RI 02903, USA
| |
Collapse
|
16
|
Nour-Eldine W, Manaph NPA, Ltaief SM, Abdel Aati N, Mansoori MH, Al Abdulla S, Al-Shammari AR. Discovery of a novel cytokine signature for the diagnosis of autism spectrum disorder in young Arab children in Qatar. Front Psychiatry 2024; 15:1333534. [PMID: 38414501 PMCID: PMC10896998 DOI: 10.3389/fpsyt.2024.1333534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
Background Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized by impaired social interaction and communication and the occurrence of stereotyped and repetitive behaviors. Several studies have reported altered cytokine profiles in ASD and hence may serve as potential diagnostic biomarkers of the disorder. This study aims to identify diagnostic biomarkers for ASD in a well-defined study cohort in Qatar. Methods We measured the protein levels of 45 cytokines in the plasma samples of age- and gender-matched children (2-4 years) with ASD (n = 100) and controls (n = 60) using a Luminex multiplex assay. We compared the differences in the levels of these cytokines between the two study groups and then fitted the significantly altered cytokines into a logistic regression model to examine their diagnostic potential for ASD. Results We found elevated levels of IFN-γ, FGF-2, IL-1RA, and IL-13 and reduced levels of eotaxin, HGF, IL-1 alpha, IL-22, IL-9, MCP-1, SCF, SDF-1 alpha, VEGFA, and IP-10 in the plasma of children with ASD compared to controls. Furthermore, we observed that elevated levels of IFN-γ (odds ratio (OR) = 1.823; 95% (confidence interval) CI = 1.206, 2.755; p = 0.004) and FGF-2 (OR = 2.528; 95% CI = 1.457, 4.385; p < 0.001) were significantly associated with increased odds of ASD, whereas reduced levels of eotaxin (OR = 0.350; 95% CI = 0.160, 0.765; p = 0.008) and HGF (OR = 0.220; 95% CI = 0.070, 0.696; p = 0.010) were significantly associated with lower odds of ASD relative to controls. The combination of these four cytokines revealed an area under the curve (ROC-AUC) of 0.829 (95% CI = 0.767, 0.891; p < 0.001), which demonstrates the diagnostic accuracy of the four-cytokine signature. Conclusions Our results identified a panel of cytokines that could discriminate between children with ASD and controls in Qatar. In addition, our findings support the predominance of a Th1 immune phenotype in ASD children and emphasize the need to validate these results in larger populations.
Collapse
Affiliation(s)
- Wared Nour-Eldine
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | | | - Samia M Ltaief
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Nazim Abdel Aati
- Child Development Center, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | | | - Samya Al Abdulla
- Department of Operations, Primary Health Care Corporation, Doha, Qatar
| | - Abeer R Al-Shammari
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
17
|
Tamayo JM, Osman HC, Schwartzer JJ, Ashwood P. The influence of asthma on neuroinflammation and neurodevelopment: From epidemiology to basic models. Brain Behav Immun 2024; 116:218-228. [PMID: 38070621 DOI: 10.1016/j.bbi.2023.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Asthma is a highly heterogeneous inflammatory disease that can have a significant effect on both the respiratory system and central nervous system. Population based studies and animal models have found asthma to be comorbid with a number of neurological conditions, including depression, anxiety, and neurodevelopmental disorders. In addition, maternal asthma during pregnancy has been associated with neurodevelopmental disorders in the offspring, such as autism spectrum disorders and attention deficit hyperactivity disorder. In this article, we review the most current epidemiological studies of asthma that identify links to neurological conditions, both as it relates to individuals that suffer from asthma and the impacts asthma during pregnancy may have on offspring neurodevelopment. We also discuss the relevant animal models investigating these links, address the gaps in knowledge, and explore the potential future directions in this field.
Collapse
Affiliation(s)
- Juan M Tamayo
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, CA 95817, USA
| | - Hadley C Osman
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, CA 95817, USA
| | - Jared J Schwartzer
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, CA 95817, USA.
| |
Collapse
|
18
|
Traetta ME, Chaves Filho AM, Akinluyi ET, Tremblay MÈ. Neurodevelopmental and Neuropsychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:457-495. [PMID: 39207708 DOI: 10.1007/978-3-031-55529-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This chapter will focus on microglial involvement in neurodevelopmental and neuropsychiatric disorders, particularly autism spectrum disorder (ASD), schizophrenia and major depressive disorder (MDD). We will describe the neuroimmune risk factors that contribute to the etiopathology of these disorders across the lifespan, including both in early life and adulthood. Microglia, being the resident immune cells of the central nervous system, could play a key role in triggering and determining the outcome of these disorders. This chapter will review preclinical and clinical findings where microglial morphology and function were examined in the contexts of ASD, schizophrenia and MDD. Clinical evidence points out to altered microglial morphology and reactivity, as well as increased expression of pro-inflammatory cytokines, supporting the idea that microglial abnormalities are involved in these disorders. Indeed, animal models for these disorders found altered microglial morphology and homeostatic functions which resulted in behaviours related to these disorders. Additionally, as microglia have emerged as promising therapeutic targets, we will also address in this chapter therapies involving microglial mechanisms for the treatment of neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | - Elizabeth Toyin Akinluyi
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology and Therapeutics, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de Médecine Moléculaire, Université Laval, Quebec City, QC, Canada.
- Axe Neurosciences, Center de Recherche du CHU de Québec, Université Laval, Quebec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
19
|
Mostallino R, Santoni M, Sagheddu C, Serra V, Orrù V, Pistis M, Castelli MP. The PPARα agonist fenofibrate reduces the cytokine imbalance in a maternal immune activation model of schizophrenia. Eur J Pharmacol 2023; 961:176172. [PMID: 37939988 DOI: 10.1016/j.ejphar.2023.176172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
Maternal infections during pregnancy may increase the risk of psychiatric disorders in offspring. We recently demonstrated that activation of peroxisome proliferator-activate receptor-α (PPARα), with the clinically available agonist fenofibrate (FEN), attenuates the neurodevelopmental disturbances induced by maternal immune activation (MIA) in rat offspring. We hypothesized that fenofibrate might reduce MIA-induced cytokine imbalance using a MIA model based on the viral mimetic polyriboinosinic-polyribocytidilic acid [poly (I:C)]. By using the Bio-Plex Multiplex-Immunoassay-System, we measured cytokine/chemokine/growth factor levels in maternal serum and in the fetal brain of rats treated with fenofibrate, at 6 and 24 h after poly (I:C). We found that MIA induced time-dependent changes in the levels of several cytokines/chemokines/colony-stimulating factors (CSFs). Specifically, the maternal serum of the poly (I:C)/control (CTRL) group showed increased levels of (i) proinflammatory chemokine macrophage inflammatory protein 1-alpha (MIP-1α), (ii) tumor necrosis factor-alpha (TNF-α), the monocyte chemoattractant protein-1 (MCP-1), the macrophage (M-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF). Conversely, in the fetal brain of the poly (I:C)/CTRL group, interleukin 12p70 and MIP-1α levels were lower than in vehicle (veh)/CTRL group. Notably, MIP-1α, TNF-α, keratinocyte derived chemokine (GRO/KC), GM-CSF, and M-CSF levels were lower in the poly (I:C)/FEN than in poly (I:C)/CTRL rats, suggesting the protective role of the PPARα agonist. PPARα might represent a therapeutic target to attenuate MIA-induced inflammation.
Collapse
Affiliation(s)
- Rafaela Mostallino
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Michele Santoni
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Claudia Sagheddu
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Valentina Serra
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Lanusei, Italy
| | - Valeria Orrù
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Lanusei, Italy
| | - Marco Pistis
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy; Neuroscience Institute, National Research Council of Italy, Section of Cagliari, Italy; Unit of Clinical Pharmacology, University Hospital, Cagliari, Italy.
| | - M Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy.
| |
Collapse
|
20
|
Jain S, Oltman S, Rogers E, Ryckman K, Petersen M, Baer RJ, Rand L, Piao X, Jelliffe-Pawlowski L. Assessing for prenatal risk factors associated with infant neurologic morbidity using a multivariate analysis. J Perinatol 2023; 43:1486-1493. [PMID: 37950045 PMCID: PMC10716040 DOI: 10.1038/s41372-023-01820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE To characterize the biochemical and demographic profiles of pregnant people with maternal immune activation (MIA) and identify the prenatal characteristics associated with neurologic morbidity in offspring. STUDY DESIGN This was a retrospective cohort study of 602 mother-infant dyads with births between 2009 and 2010 in California. Multivariable logistic regression was used to build a MIA vulnerability profile including mid-pregnancy biochemical markers and maternal demographic characteristics, and its relationship with infant neurologic morbidity was examined. RESULTS Of the 602 mother-infant dyads, 80 mothers and 61 infants had diagnoses suggestive of MIA and neurologic morbidity, respectively. Our model, including two demographic and seven biochemical characteristics, identified mothers with MIA with good performance (AUC:0.814; 95% CI:0.7-0.8). Three demographic and five inflammatory markers together identified 80% of infants with neurological morbidity (AUC:0.802, 95% CI:0.7-0.8). CONCLUSION Inflammatory environment in mothers with pre-existing risk factors like obesity, poverty, and prematurity renders offspring more susceptible to neurologic morbidities.
Collapse
Affiliation(s)
- Samhita Jain
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco, CA, USA.
| | - Scott Oltman
- California Preterm Birth Initiative, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
| | - Elizabeth Rogers
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Kelli Ryckman
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, USA
| | - Mark Petersen
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Rebecca J Baer
- California Preterm Birth Initiative, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Larry Rand
- California Preterm Birth Initiative, University of California San Francisco, San Francisco, CA, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Xianhua Piao
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco, CA, USA
- Newborn Brain Research Institute, University of California, San Francisco, CA, USA
- Weill Institute for Neuroscience, University of California, San Francisco, CA, USA
| | - Laura Jelliffe-Pawlowski
- California Preterm Birth Initiative, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
| |
Collapse
|
21
|
Bolognesi E, Guerini FR, Carta A, Chiappedi M, Sotgiu S, Mensi MM, Agliardi C, Zanzottera M, Clerici M. The Role of SNAP-25 in Autism Spectrum Disorders Onset Patterns. Int J Mol Sci 2023; 24:14042. [PMID: 37762342 PMCID: PMC10531097 DOI: 10.3390/ijms241814042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Autism spectrum disorders (ASD) can present with different onset and timing of symptom development; children may manifest symptoms early in their first year of life, i.e., early onset (EO-ASD), or may lose already achieved skills during their second year of life, thus showing a regressive-type onset (RO-ASD). It is still controversial whether regression represents a neurobiological subtype of ASD, resulting from distinct genetic and environmental causes. We focused this study on the 25 kD synaptosomal-associated protein (SNAP-25) gene involved in both post-synaptic formation and adhesion and considered a key player in the pathogenesis of ASD. To this end, four single nucleotide polymorphisms (SNPs) of the SNAP-25 gene, rs363050, rs363039, rs363043, and rs1051312, already known to be involved in neurodevelopmental and psychiatric disorders, were analyzed in a cohort of 69 children with EO-ASD and 58 children with RO-ASD. Both the rs363039 G allele and GG genotype were significantly more frequently carried by patients with EO-ASD than those with RO-ASD and healthy controls (HC). On the contrary, the rs1051312 T allele and TT genotype were more frequent in individuals with RO-ASD than those with EO-ASD and HC. Thus, two different SNAP-25 alleles/genotypes seem to discriminate between EO-ASD and RO-ASD. Notably, rs1051312 is located in the 3' untranslated region (UTR) of the gene and is the target of microRNA (miRNA) regulation, suggesting a possible epigenetic role in the onset of regressive autism. These SNPs, by discriminating two different onset patterns, may represent diagnostic biomarkers of ASD and may provide insight into the different biological mechanisms towards the development of better tailored therapeutic and rehabilitative approaches.
Collapse
Affiliation(s)
- Elisabetta Bolognesi
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy; (E.B.); (C.A.); (M.Z.); (M.C.)
| | - Franca Rosa Guerini
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy; (E.B.); (C.A.); (M.Z.); (M.C.)
| | - Alessandra Carta
- Unit of Child Neuropsychiatry, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (S.S.)
| | - Matteo Chiappedi
- Child Neuropsychiatry Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.C.); (M.M.M.)
| | - Stefano Sotgiu
- Unit of Child Neuropsychiatry, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (S.S.)
| | - Martina Maria Mensi
- Child Neuropsychiatry Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.C.); (M.M.M.)
| | - Cristina Agliardi
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy; (E.B.); (C.A.); (M.Z.); (M.C.)
| | - Milena Zanzottera
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy; (E.B.); (C.A.); (M.Z.); (M.C.)
| | - Mario Clerici
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy; (E.B.); (C.A.); (M.Z.); (M.C.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| |
Collapse
|
22
|
Teng P, Li Y, Ku L, Wang F, Goldsmith DR, Wen Z, Yao B, Feng Y. The human lncRNA GOMAFU suppresses neuronal interferon response pathways affected in neuropsychiatric diseases. Brain Behav Immun 2023; 112:175-187. [PMID: 37301236 PMCID: PMC10527610 DOI: 10.1016/j.bbi.2023.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/26/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play multifaceted roles in regulating brain gene networks. LncRNA abnormalities are thought to underlie the complex etiology of numerous neuropsychiatric disorders. One example is the human lncRNA gene GOMAFU, which is found dysregulated in schizophrenia (SCZ) postmortem brains and harbors genetic variants that contribute to the risk of SCZ. However, transcriptome-wide biological pathways regulated by GOMAFU have not been determined. How GOMAFU dysregulation contributes to SCZ pathogenesis remains elusive. Here we report that GOMAFU is a novel suppressor of human neuronal interferon (IFN) response pathways that are hyperactive in the postmortem SCZ brains. We analyzed recently released transcriptomic profiling datasets in clinically relevant brain areas derived from multiple SCZ cohorts and found brain region-specific dysregulation of GOMAFU. Using CRISPR-Cas9 to delete the GOMAFU promoter in a human neural progenitor cell model, we identified transcriptomic alterations caused by GOMAFU deficiency in pathways commonly affected in postmortem brains of SCZ and autism spectrum disorder (ASD), with the most striking effects on upregulation of numerous genes underlying IFN signaling. In addition, expression levels of GOMAFU target genes in the IFN pathway are differentially affected in SCZ brain regions and negatively associated with GOMAFU alterations. Furthermore, acute exposure to IFN-γ causes a rapid decline of GOMAFU and activation of a subclass of GOMAFU targets in stress and immune response pathways that are affected in SCZ brains, which form a highly interactive molecular network. Together, our studies unveiled the first evidence of lncRNA-governed neuronal response pathways to IFN challenge and suggest that GOMAFU dysregulation may mediate environmental risks and contribute to etiological neuroinflammatory responses by brain neurons of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Peng Teng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, United States
| | - Yangping Li
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, United States
| | - Li Ku
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, United States
| | - Feng Wang
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, United States
| | - David R Goldsmith
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States; Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, United States.
| | - Yue Feng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, United States.
| |
Collapse
|
23
|
Kim DHJ, Iosif AM, Ramirez-Celis A, Ashwood P, Ames JL, Lyall K, Berger K, Croen LA, Van de Water J. Neonatal immune signatures differ by sex regardless of neurodevelopmental disorder status: Macrophage migration inhibitory factor (MIF) alone reveals a sex by diagnosis interaction effect. Brain Behav Immun 2023; 111:328-333. [PMID: 37164311 PMCID: PMC10796272 DOI: 10.1016/j.bbi.2023.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/10/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Immune dysregulation, including aberrant peripheral cytokine/chemokine levels, is implicated in neurodevelopmental disorders (NDD) such as autism spectrum disorder (ASD). While the diagnosis of ASD is more common in males compared to females, sex effects in immune dysregulation related to neurodevelopment remain understudied. The aim of this exploratory study was to determine whether there are sex-specific effects in neonatal immune dysregulation with respect to an ASD or delayed development (DD) diagnosis. We utilized the data from the Early Markers for Autism study, a population based case-control study of prenatal and neonatal biomarkers of ASD. The immune profile of newborns later diagnosed with ASD (n = 482, 91 females), DD (n = 140, 61 females) and sex-matched general population controls (GP; n = 378, 67 females) were analyzed using neonatal bloodspots (NBS) via 42-plex multiplex assay. Multiple linear regression analysis was performed to identify whether sex was associated with differences in cytokine/chemokine levels of children with ASD, DD, and GP. A sex by diagnosis interaction effect was observed only for the chemokine macrophage migration inhibitory factor (MIF), with males displaying higher levels of NBS MIF than females in the GP control group (p = 0.02), but not in ASD (p = 0.52) or DD (p = 0.29) groups. We found that regardless of child diagnosis, newborn bloodspot eluates from females had a significantly higher concentration than males with the same diagnosis of the chemokines granulocyte chemotactic protein 2 (GCP-2; p < 0.0001), macrophage inflammatory protein 2-alpha (GROβ; p = 0.002), interferon-inducible t-cell alpha chemoattractant (I-TAC; p < 0.0001), stromal cell-derived factor 1 alpha and beta (SDF-1α-β; p = 0.03), innate inflammatory chemokines interferon-gamma induced protein 10 (IP-10; p = 0.02), macrophage inflammatory protein 1-alpha (MIP-1α; p = 0.02), and Th1-related pro-inflammatory cytokine interleukin-12 active heterodimer (IL-12p70; p = 0.002). In contrast, males had a higher concentration than females of secondary lymphoid-tissue chemokine (6CKINE; p = 0.02), monocyte chemotactic protein 1 (MCP-1; p = 0.005) and myeloid progenitor inhibitory factor 1 (MPIF-1; p = 0.03). Results were similar when analyses were restricted to NBS from DD and ASD further classified as ASD with intellectual disability (ID), ASD without ID, and DD (GCP-2, p = 0.007; I-TAC, p = 0.001; IP-10, p = 0.005; IL-12p70, p = 0.03 higher in females; MPIF-1, p = 0.03 higher in male). This study is the first to examine sex differences in neonatal cytokine/chemokine concentrations, and whether these differences are associated with neurodevelopmental outcomes. Results highlight the importance of considering sex as a critical factor in understanding the immune system as it relates to child development.
Collapse
Affiliation(s)
- Danielle H J Kim
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA
| | - Ana-Maria Iosif
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Alexandra Ramirez-Celis
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA
| | - Paul Ashwood
- MIND Institute, University of California, Davis, CA, USA
| | | | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, USA
| | | | - Lisa A Croen
- Kaiser Permanente Northern California-Oakland, USA
| | - Judy Van de Water
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA.
| |
Collapse
|
24
|
Al-Ayadhi L, Bhat RS, Alghamdi FA, Alhadlaq AS, El-Ansary A. Influence of Auditory Integrative Training on Casein Kinase 2 and Its Impact on Behavioral and Social Interaction in Children with Autism Spectrum Disorder. Curr Issues Mol Biol 2023; 45:4317-4330. [PMID: 37232743 DOI: 10.3390/cimb45050274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
Considerable disturbances in post-translational protein phosphorylation have recently been discovered in multiple neurological disorders. Casein kinase-2 (CK2) is a tetrameric Ser/Thr protein kinase that phosphorylates a large number of substrates and contributes in several cellular physiological and pathological processes. CK2 is highly expressed in the mammalian brain and catalyzes the phosphorylation of a large number of substrates that are crucial in neuronal or glial homeostasis and inflammatory signaling processes across synapses. In this study, we investigated the impact of auditory integration therapy (AIT) for the treatment of sensory processing abnormalities in autism on plasma CK2 levels. A total of 25 ASD children, aged between 5 and 12 years, were enrolled and participated in the present research study. AIT was performed for two weeks, for a period of 30 min, twice a day, with a 3 h interval between sessions. Before and after AIT, the Childhood Autism Rating Scale (CARS), Social Responsiveness Scale (SRS), and Short Sensory Profile (SSP) scores were calculated, and plasma CK2 levels were assayed using an ELISA test. The CARS and SRS indices of autism severity improved as a result of AIT, which could be related to the decreased level of plasma CK2. However, the mean value of the SSP scores was not significantly increased after AIT. The relationship between CK2 downregulation and glutamate excitotoxicity, neuro-inflammation, and leaky gut, as etiological mechanisms in ASD, was proposed and discussed. Further research, conducted on a larger scale and with a longer study duration, are required to assess whether the cognitive improvement in ASD children after AIT is related to the downregulation of CK2.
Collapse
Affiliation(s)
- Laila Al-Ayadhi
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh 11495, Saudi Arabia
- Autism Research and Treatment Center, Riyadh 12713, Saudi Arabia
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Farah Ali Alghamdi
- College of Medicine, Dar Al Uloom University, Riyadh 13314, Saudi Arabia
| | | | - Afaf El-Ansary
- Autism Research and Treatment Center, Riyadh 12713, Saudi Arabia
- Autism Center, Lotus Holistic Medical Center, Abu Dhabi 110281, United Arab Emirates
| |
Collapse
|
25
|
Aldossari AA, Ansari MA, Nadeem A, Attia SM, Bakheet SA, Al-Ayadhi LY, Alanazi MM, Shahid M, Alwetaid MY, Hussein MH, Ahmad SF. Upregulation of Inflammatory Mediators in Peripheral Blood CD40 + Cells in Children with Autism Spectrum Disorder. Int J Mol Sci 2023; 24:ijms24087475. [PMID: 37108638 PMCID: PMC10138695 DOI: 10.3390/ijms24087475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is a common and severe neurodevelopmental disorder in early childhood, defined as social and communication deficits and repetitive and stereotypic behaviours. The aetiology is unknown in most cases. However, several studies have identified immune dysregulation as potentially promoting ASD. Among the numerous immunological findings in ASD, reports of increased pro-inflammatory markers remain the most consistently observed. C-C chemokine receptor type 1 (CCR1) activation is pro-inflammatory in several neurological disorders. Previous evidence has implied that the expression of chemokine receptors, inflammatory mediators, and transcription factors play a pivotal role in several neuroinflammatory disorders. There have also been reports on the association between increased levels of proinflammatory cytokines and ASD. In this study, we aimed to investigate the possible involvement of CCR1, inflammatory mediators, and transcription factor expression in CD40+ cells in ASD compared to typically developing controls (TDC). Flow cytometry analysis was used to determine the levels of CCR1-, IFN-γ-, T-box transcription factor (T-bet-), IL-17A-, retinoid-related orphan receptor gamma t (RORγt-), IL-22- and TNF-α-expressing CD40 cells in PBMCs in children with ASD and the TDC group. We further examined the mRNA and protein expression levels of CCR1 using real-time PCR and western blot analysis. Our results revealed that children with ASD had significantly increased numbers of CD40+CCR1+, CD40+IFN-γ+, CD40+T-bet+, CD40+IL-17A+, CD40+RORγt+, CD4+IL-22+, and CD40+TNF-α+ cells compared with the TDC group. Furthermore, children with ASD had higher CCR1 mRNA and protein expression levels than those in the TDC group. These results indicate that CCR1, inflammatory mediators, and transcription factors expressed in CD40 cells play vital roles in disease progression.
Collapse
Affiliation(s)
- Abdullah A Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila Y Al-Ayadhi
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Y Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa H Hussein
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
26
|
Gervasi MT, Romero R, Cainelli E, Veronese P, Tran MR, Jung E, Suksai M, Bosco M, Gotsch F. Intra-amniotic inflammation in the mid-trimester of pregnancy is a risk factor for neuropsychological disorders in childhood. J Perinat Med 2023; 51:363-378. [PMID: 36173676 PMCID: PMC10010737 DOI: 10.1515/jpm-2022-0255] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/17/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Intra-amniotic inflammation is a subclinical condition frequently caused by either microbial invasion of the amniotic cavity or sterile inflammatory stimuli, e.g., alarmins. An accumulating body of evidence supports a role for maternal immune activation in the genesis of fetal neuroinflammation and the occurrence of neurodevelopmental disorders such as cerebral palsy, schizophrenia, and autism. The objective of this study was to determine whether fetal exposure to mid-trimester intra-amniotic inflammation is associated with neurodevelopmental disorders in children eight to 12 years of age. METHODS This is a retrospective case-control study comprising 20 children with evidence of prenatal exposure to intra-amniotic inflammation in the mid-trimester and 20 controls matched for gestational age at amniocentesis and at delivery. Amniotic fluid samples were tested for concentrations of interleukin-6 and C-X-C motif chemokine ligand 10, for bacteria by culture and molecular microbiologic methods as well as by polymerase chain reaction for eight viruses. Neuropsychological testing of children, performed by two experienced psychologists, assessed cognitive and behavioral domains. Neuropsychological dysfunction was defined as the presence of an abnormal score (<2 standard deviations) on at least two cognitive tasks. RESULTS Neuropsychological dysfunction was present in 45% (9/20) of children exposed to intra-amniotic inflammation but in only 10% (2/20) of those in the control group (p=0.03). The relative risk (RR) of neuropsychological dysfunction conferred by amniotic fluid inflammation remained significant after adjusting for gestational age at delivery [aRR=4.5 (1.07-16.7)]. Of the 11 children diagnosed with neuropsychological dysfunction, nine were delivered at term and eight of them had mothers with intra-amniotic inflammation. Children exposed to intra-amniotic inflammation were found to have abnormalities in neuropsychological tasks evaluating complex skills, e.g., auditory attention, executive functions, and social skills, whereas the domains of reasoning, language, and memory were not affected in the cases and controls. CONCLUSIONS Asymptomatic sterile intra-amniotic inflammation in the mid-trimester of pregnancy, followed by a term birth, can still confer to the offspring a substantial risk for neurodevelopmental disorders in childhood. Early recognition and treatment of maternal immune activation in pregnancy may be a strategy for the prevention of subsequent neurodevelopmental disorders in offspring.
Collapse
Affiliation(s)
- Maria Teresa Gervasi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Gynaecology and Obstetrics Unit, Department of Women’s and Children’s Health, University Hospital of Padua, Padua, Italy
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, MI, USA
| | - Elisa Cainelli
- Department of General Psychology, University of Padova, Padova, Italy
| | - Paola Veronese
- Maternal-Fetal Medicine Unit, Department of Women’s and Children’s Health, AOPD, Padua, Italy
| | - Maria Rosa Tran
- Gynaecology and Obstetrics Unit, Department of Women’s and Children’s Health, University Hospital of Padua, Padua, Italy
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mariachiara Bosco
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
27
|
Lipkin WI, Bresnahan M, Susser E. Cohort-guided insights into gene-environment interactions in autism spectrum disorders. Nat Rev Neurol 2023; 19:118-125. [PMID: 36646930 PMCID: PMC9841497 DOI: 10.1038/s41582-022-00764-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 01/18/2023]
Abstract
Prospective birth cohorts offer unprecedented opportunities to investigate the pathogenesis of complex disorders such as autism, in which gene-environment interactions must be appreciated in a temporal context. This Perspective article considers the history of autism research, including missteps that reflected an incomplete understanding of the epidemiology of autistic spectrum disorders, the effects of advocacy and philanthropy on the trajectory of scientific inquiry, and the current and future roles of prospective birth cohort research in illuminating the pathology of these and other complex disorders wherein exposures during gestation might not manifest until later in life.
Collapse
Affiliation(s)
- W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA.
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Michaeline Bresnahan
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Ezra Susser
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
28
|
Lampiasi N, Bonaventura R, Deidda I, Zito F, Russo R. Inflammation and the Potential Implication of Macrophage-Microglia Polarization in Human ASD: An Overview. Int J Mol Sci 2023; 24:2703. [PMID: 36769026 PMCID: PMC9916462 DOI: 10.3390/ijms24032703] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous collection of neurodevelopmental disorders, difficult to diagnose and currently lacking treatment options. The possibility of finding reliable biomarkers useful for early identification would offer the opportunity to intervene with treatment strategies to improve the life quality of ASD patients. To date, there are many recognized risk factors for the development of ASD, both genetic and non-genetic. Although genetic and epigenetic factors may play a critical role, the extent of their contribution to ASD risk is still under study. On the other hand, non-genetic risk factors include pollution, nutrition, infection, psychological states, and lifestyle, all together known as the exposome, which impacts the mother's and fetus's life, especially during pregnancy. Pathogenic and non-pathogenic maternal immune activation (MIA) and autoimmune diseases can cause various alterations in the fetal environment, also contributing to the etiology of ASD in offspring. Activation of monocytes, macrophages, mast cells and microglia and high production of pro-inflammatory cytokines are indeed the cause of neuroinflammation, and the latter is involved in ASD's onset and development. In this review, we focused on non-genetic risk factors, especially on the connection between inflammation, macrophage polarization and ASD syndrome, MIA, and the involvement of microglia.
Collapse
Affiliation(s)
- Nadia Lampiasi
- Istituto per la Ricerca e l’Innovazione Biomedica IRIB, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | | | | | | | | |
Collapse
|
29
|
The Role of Oxytocin in Abnormal Brain Development: Effect on Glial Cells and Neuroinflammation. Cells 2022; 11:cells11233899. [PMID: 36497156 PMCID: PMC9740972 DOI: 10.3390/cells11233899] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
The neonatal period is critical for brain development and determinant for long-term brain trajectory. Yet, this time concurs with a sensitivity and risk for numerous brain injuries following perinatal complications such as preterm birth. Brain injury in premature infants leads to a complex amalgam of primary destructive diseases and secondary maturational and trophic disturbances and, as a consequence, to long-term neurocognitive and behavioral problems. Neuroinflammation is an important common factor in these complications, which contributes to the adverse effects on brain development. Mediating this inflammatory response forms a key therapeutic target in protecting the vulnerable developing brain when complications arise. The neuropeptide oxytocin (OT) plays an important role in the perinatal period, and its importance for lactation and social bonding in early life are well-recognized. Yet, novel functions of OT for the developing brain are increasingly emerging. In particular, OT seems able to modulate glial activity in neuroinflammatory states, but the exact mechanisms underlying this connection are largely unknown. The current review provides an overview of the oxytocinergic system and its early life development across rodent and human. Moreover, we cover the most up-to-date understanding of the role of OT in neonatal brain development and the potential neuroprotective effects it holds when adverse neural events arise in association with neuroinflammation. A detailed assessment of the underlying mechanisms between OT treatment and astrocyte and microglia reactivity is given, as well as a focus on the amygdala, a brain region of crucial importance for socio-emotional behavior, particularly in infants born preterm.
Collapse
|
30
|
Majerczyk D, Ayad E, Brewton K, Saing P, Hart P. Systemic maternal inflammation promotes ASD via IL-6 and IFN-γ. Biosci Rep 2022; 42:BSR20220713. [PMID: 36300375 PMCID: PMC9670245 DOI: 10.1042/bsr20220713] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 07/25/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurological disorder that manifests during early development, impacting individuals through their ways of communicating, social behaviors, and their ability to perform day-to-day activities. There have been different proposed mechanisms on how ASD precipitates within a patient, one of which being the impact cytokines have on fetal development once a mother's immune system has been activated (referred to as maternal immune activation, MIA). The occurrence of ASD has long been associated with elevated levels of several cytokines, including interleukin-6 (IL-6) and interferon gamma (IFN-γ). These proinflammatory cytokines can achieve high systemic levels in response to immune activating pathogens from various extrinsic sources. Transfer of cytokines such as IL-6 across the placental barrier allows accumulation in the fetus, potentially inducing neuroinflammation and consequently altering neurodevelopmental processes. Individuals who have been later diagnosed with ASD have been observed to have elevated levels of IL-6 and other proinflammatory cytokines during gestation. Moreover, the outcome of MIA has been associated with neurological effects such as impaired social interaction and an increase in repetitive behavior in animal models, supporting a mechanistic link between gestational inflammation and development of ASD-like characteristics. The present review attempts to provide a concise overview of the available preclinical and clinical data that suggest cross-talk between IL-6 and IFN-γ through both extrinsic and intrinsic factors as a central mechanism of MIA that may promote the development of ASD.
Collapse
Affiliation(s)
- Daniel Majerczyk
- College of Science, Health and Pharmacy, Roosevelt University, Illinois 60173, U.S.A
- Loyola Medicine, Berwyn, Illinois 60402, U.S.A
| | - Elizabeth G. Ayad
- College of Science, Health and Pharmacy, Roosevelt University, Illinois 60173, U.S.A
| | - Kari L. Brewton
- College of Science, Health and Pharmacy, Roosevelt University, Illinois 60173, U.S.A
| | - Pichrasmei Saing
- College of Science, Health and Pharmacy, Roosevelt University, Illinois 60173, U.S.A
| | - Peter C. Hart
- College of Science, Health and Pharmacy, Roosevelt University, Illinois 60173, U.S.A
| |
Collapse
|
31
|
Schreiner C, Powell TL, Palmer C, Jansson T. Placental proteins with predicted roles in fetal development decrease in premature infants. Pediatr Res 2022; 92:1316-1324. [PMID: 35132128 PMCID: PMC9357234 DOI: 10.1038/s41390-022-01942-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Emerging evidence from animal experiments indicate that factors secreted by the placenta are critical for normal fetal organ development. Our objective was to characterize the umbilical vein and artery proteome in preterm infants and identify proteins that decrease in the neonatal circulation following delivery. METHODS Cord blood at delivery and neonatal blood at 48-72 h of life was collected in 25 preterm infants. Plasma protein abundance was determined using the SomaLogic platform. RESULTS When comparing protein levels of umbilical venous to arterial cord blood, 434 proteins were significantly higher indicating placental secretion into the fetal circulation. Moreover, when comparing neonatal blood to umbilical vein levels, 142 proteins were significantly lower. These proteins included Endoplasmic reticulum resident protein 29, CD59, Fibroblast growth factor 2 and Dynactin subunit 2, which are involved in brain development and prevention of brain damage as well as Fibroblast growth factor 1 which prevents lung fibrosis. CONCLUSIONS The late second trimester human placenta secretes proteins into the fetal circulation which decrease following delivery. Many of these proteins are predicted to be important in the development of fetal organs. Further studies are needed to directly link placental proteins to organ development and poor outcomes in preterm infants. IMPACT Prematurity remains a leading cause of morbidity and mortality requiring the development of novel treatments. Emerging evidence from animal studies suggest that factors secreted from the placenta may be critical in the development of the fetus. We report that the preterm human placenta secretes an array of proteins into the fetal circulation. Some of these proteins are predicted to be involved in the development of the brain and the lung. When born prematurely, infants are deprived of these placental proteins, which may contribute to their poor outcomes.
Collapse
Affiliation(s)
- Cynthia Schreiner
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Pediatrics at Renown Children's Hospital, Reno, NV, USA.
| | - Theresa L Powell
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Obstetrics, Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Claire Palmer
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas Jansson
- Department of Obstetrics, Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
32
|
Nour-Eldine W, Ltaief SM, Abdul Manaph NP, Al-Shammari AR. In search of immune cellular sources of abnormal cytokines in the blood in autism spectrum disorder: A systematic review of case-control studies. Front Immunol 2022; 13:950275. [PMID: 36268027 PMCID: PMC9578337 DOI: 10.3389/fimmu.2022.950275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
Abnormal cytokine levels in circulating blood have been repeatedly reported in autism; however, the underlying cause remains unclear. This systematic review aimed to investigate cytokine levels in peripheral blood compartments and identify their potential immune cellular sources in subjects with autism through comparison with controls. We conducted an electronic database search (PubMed, Scopus, ProQuest Central, Ovid, SAGE Journals, and Wiley Online Library) from inception (no time limits) to July 9, 2020, and identified 75 relevant articles. Our qualitative data synthesis focused on results consistently described in at least three independent studies, and we reported the results according to the PRISMA protocol. We found that compared with controls, in subjects with autism, cytokines IL-6, IL-17, TNF-α, and IL-1β increased in the plasma and serum. We also identified monocytes, neutrophils, and CD4+ T cells as potential sources of these elevated cytokines in autism. Cytokines IFN-γ, TGF-β, RANTES, and IL-8 were increased in the plasma/serum of subjects with autism, and IFN-γ was likely produced by CD4+ T cells and natural killer (NK) cells, although conflicting evidence is present for IFN-γ and TGF-β. Other cytokines-IL-13, IL-10, IL-5, and IL-4-were found to be unaltered in the plasma/serum and post-stimulated blood immune cells in autistic individuals as compared with controls. The frequencies of T cells, monocytes, B cells, and NK cells were unchanged in subjects with autism as opposed to controls, suggesting that abnormal cytokines were unlikely due to altered cell numbers but might be due to altered functioning of these cells in autism. Our results support existing studies of abnormal cytokines in autism and provide comprehensive evidence of potential cellular sources of these altered cytokines in the context of autism. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020205224, identifier [CRD42020205224].
Collapse
Affiliation(s)
| | | | | | - Abeer R. Al-Shammari
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
33
|
Klein L, Van Steenwinckel J, Fleiss B, Scheuer T, Bührer C, Faivre V, Lemoine S, Blugeon C, Schwendimann L, Csaba Z, Bokobza C, Vousden DA, Lerch JP, Vernon AC, Gressens P, Schmitz T. A unique cerebellar pattern of microglia activation in a mouse model of encephalopathy of prematurity. Glia 2022; 70:1699-1719. [PMID: 35579329 PMCID: PMC9545095 DOI: 10.1002/glia.24190] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022]
Abstract
Preterm infants often show pathologies of the cerebellum, which are associated with impaired motor performance, lower IQ and poor language skills at school ages. Using a mouse model of inflammation-induced encephalopathy of prematurity driven by systemic administration of pro-inflammatory IL-1β, we sought to uncover causes of cerebellar damage. In this model, IL-1β is administered between postnatal day (P) 1 to day 5, a timing equivalent to the last trimester for brain development in humans. Structural MRI analysis revealed that systemic IL-1β treatment induced specific reductions in gray and white matter volumes of the mouse cerebellar lobules I and II (5% false discovery rate [FDR]) from P15 onwards. Preceding these MRI-detectable cerebellar volume changes, we observed damage to oligodendroglia, with reduced proliferation of OLIG2+ cells at P10 and reduced levels of the myelin proteins myelin basic protein (MBP) and myelin-associated glycoprotein (MAG) at P10 and P15. Increased density of IBA1+ cerebellar microglia were observed both at P5 and P45, with evidence for increased microglial proliferation at P5 and P10. Comparison of the transcriptome of microglia isolated from P5 cerebellums and cerebrums revealed significant enrichment of pro-inflammatory markers in microglia from both regions, but cerebellar microglia displayed a unique type I interferon signaling dysregulation. Collectively, these data suggest that perinatal inflammation driven by systemic IL-1β leads to specific cerebellar volume deficits, which likely reflect oligodendrocyte pathology downstream of microglial activation. Further studies are now required to confirm the potential of protective strategies aimed at preventing sustained type I interferon signaling driven by cerebellar microglia as an important therapeutic target.
Collapse
Affiliation(s)
- Luisa Klein
- Department of NeonatologyCharité University Medicine BerlinBerlinGermany
| | | | - Bobbi Fleiss
- NeuroDiderot, InsermUniversité de ParisParisFrance
- School of Health and Biomedical SciencesRMIT UniversityMelbourneVictoriaAustralia
| | - Till Scheuer
- Department of NeonatologyCharité University Medicine BerlinBerlinGermany
| | - Christoph Bührer
- Department of NeonatologyCharité University Medicine BerlinBerlinGermany
| | | | - Sophie Lemoine
- Genomics Core Facility, Département de Biologie, École Normale Supérieure, Institut de Biologie de l'ENS (IBENS), CNRS, INSERMUniversité PSLParisFrance
| | - Corinne Blugeon
- Genomics Core Facility, Département de Biologie, École Normale Supérieure, Institut de Biologie de l'ENS (IBENS), CNRS, INSERMUniversité PSLParisFrance
| | | | - Zsolt Csaba
- NeuroDiderot, InsermUniversité de ParisParisFrance
| | | | - Dulcie A. Vousden
- Mouse Imaging CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Jason P. Lerch
- Mouse Imaging CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
- Wellcome Trust Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| | - Anthony C. Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| | | | - Thomas Schmitz
- Department of NeonatologyCharité University Medicine BerlinBerlinGermany
| |
Collapse
|
34
|
Ramirez-Celis A, Croen LA, Yoshida CK, Alexeeff SE, Schauer J, Yolken RH, Ashwood P, Van de Water J. Maternal autoantibody profiles as biomarkers for ASD and ASD with co-occurring intellectual disability. Mol Psychiatry 2022; 27:3760-3767. [PMID: 35618885 PMCID: PMC9708563 DOI: 10.1038/s41380-022-01633-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 02/08/2023]
Abstract
Maternal autoantibody-related ASD (MAR ASD) is a subtype of autism in which pathogenic maternal autoantibodies (IgG) cross the placenta, access the developing brain, and cause neurodevelopmental alterations and behaviors associated with autism in the exposed offspring. We previously reported maternal IgG response to eight proteins (CRMP1, CRMP2, GDA LDHA, LDHB, NSE, STIP1, and YBOX) and that reactivity to nine specific combinations of these proteins (MAR ASD patterns) was predictive of ASD risk. The aim of the current study was to validate the previously identified MAR ASD patterns (CRMP1 + GDA, CRMP1 + CRMP2, NSE + STIP1, CRMP2 + STIP1, LDHA + YBOX, LDHB + YBOX, GDA + YBOX, STIP1 + YBOX, and CRMP1 + STIP1) and their accuracy in predicting ASD risk in a prospective cohort employing maternal samples collected prior to parturition. We used prenatal plasma from mothers of autistic children with or without co-occurring intellectual disability (ASD = 540), intellectual disability without autism (ID = 184) and general population controls (GP = 420) collected by the Early Markers for Autism (EMA) study. We found reactivity to one or more of the nine previously identified MAR ASD patterns in 10% of the ASD group compared with 4% of the ID group and 1% of the GP controls (ASD vs GP: Odds Ratio (OR) = 7.81, 95% Confidence Interval (CI) 3.32 to 22.43; ASD vs ID: OR = 2.77, 95% CI (1.19-7.47)) demonstrating that the MAR ASD patterns are strongly associated with the ASD group and could be used to assess ASD risk prior to symptom onset. The pattern most strongly associated with ASD was CRMP1 + CRMP2 and increased the odds for an ASD diagnosis 16-fold (3.32 to >999.99). In addition, we found that several of these specific MAR ASD patterns were strongly associated with ASD with intellectual disability (ASD + ID) and others associated with ASD without ID (ASD-no ID). Prenatal screening for these MAR patterns may lead to earlier identification of ASD and facilitate access to the appropriate early intervention services based on each child's needs.
Collapse
Affiliation(s)
- Alexandra Ramirez-Celis
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, One Shields Avenue, University of California, Davis, CA, 95616, USA
| | - Lisa A Croen
- Kaiser Permanente Division of Research, 2000 Broadway, Oakland, CA, 94612, USA
| | - Cathleen K Yoshida
- Kaiser Permanente Division of Research, 2000 Broadway, Oakland, CA, 94612, USA
| | - Stacey E Alexeeff
- Kaiser Permanente Division of Research, 2000 Broadway, Oakland, CA, 94612, USA
| | - Joseph Schauer
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, One Shields Avenue, University of California, Davis, CA, 95616, USA
| | - Robert H Yolken
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul Ashwood
- UC Davis MIND Institute, 2825 50th St, Sacramento, CA, 95817, USA
- Department of Medical Microbiology and Immunology, One Shields Avenue, University of California, Davis, CA, 95616, USA
| | - Judy Van de Water
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, One Shields Avenue, University of California, Davis, CA, 95616, USA.
- UC Davis MIND Institute, 2825 50th St, Sacramento, CA, 95817, USA.
| |
Collapse
|
35
|
Zhou J, Teng Y, Zhang F, Ru X, Li P, Wang J, Yan S, Zhu P, Tao F, Huang K. Sex-specific association between placental inflammatory cytokine mRNA expression and preschoolers' behavioral development: The Ma'anshan birth cohort study. Brain Behav Immun 2022; 104:110-121. [PMID: 35661681 DOI: 10.1016/j.bbi.2022.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/25/2022] [Accepted: 05/29/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Placental inflammation may contribute to brain abnormalities and childhood neuropsychiatric disorders, but limited knowledge is available on the association of placental inflammatory cytokine levels and offspring's behavioral development. This study aimed to examine the sex-specific association between placental inflammatory cytokine mRNA expression and preschoolers' behavioral development. METHODS 3474 pregnant women were recruited as the initial study population in the Ma'anshan birth cohort (MABC) study. Placentas (n = 2519) were collected during childbirth, and the mRNA expression of IL-8, IL-1β, CRP, TNF-α, IL-6, IL-10, and IL-4 was assessed. The Child Behavior Checklist 1.5-5 (CBCL 1.5-5) was used to assess children's behavioral development at 4 years old. A T-score ≥ 60 on summary scales or a score ≥ 65 on syndrome scales was regarded as the borderline clinical range. Multiple linear regression models and binary logistic regression models were applied to explore the sex-specific associations between placental inflammatory cytokines mRNA transcript levels and preschoolers' behavioral development. RESULTS Sex-specific associations between placental inflammatory cytokines mRNA expression and preschoolers' behavioral development were observed. There was a positive association between IL-8 and CBCL scores for boys on anxious/depressed problems, aggressive behaviors, externalizing problems and total problems. Logistic regression models showed that high levels of IL-8 were associated with a higher risk of girls' emotionally reactive problems and sleep problems compared to low/medium levels. High TNF-α was correlated with increased sleep problem scores in boys, and medium TNF-α (vs. low levels) was associated with an increased risk of girls' externalizing problems. Medium levels of CRP, IL-1β, and IL-6 were found to be associated with a decreased risk of girls' behavioral problems compared to low/high levels. For anti-inflammatory cytokines, medium IL-10 and IL-4 (vs. low levels) were observed to be associated with a lower risk of internalizing problems in boys and externalizing problems in girls, respectively. High IL-10 was correlated with decreased attention problem scores in boys. CONCLUSION This study indicates that placental inflammatory cytokine mRNA expression of IL-8, CRP, TNF-α, IL-1β, IL-4 and IL-10 may be associated with preschoolers' behavioral development in a sex-specific manner.
Collapse
Affiliation(s)
- Jixing Zhou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei 230032, China
| | - Yuzhu Teng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei 230032, China
| | - Fu Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei 230032, China
| | - Xue Ru
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei 230032, China
| | - Peixuan Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei 230032, China
| | - Jianqing Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University
| | - Shuangqin Yan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University; Maternal and Child Health Care Center of Ma'anshan, No 24 Jiashan Road, Ma'anshan 243011, Anhui, China
| | - Peng Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei 230032, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei 230032, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University; Key Laboratory of Population Health Across Life Cycle (AHMU), MOE, Hefei 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei 230032, China; Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, Anhui Province, China.
| |
Collapse
|
36
|
Jiang CC, Lin LS, Long S, Ke XY, Fukunaga K, Lu YM, Han F. Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. Signal Transduct Target Ther 2022; 7:229. [PMID: 35817793 PMCID: PMC9273593 DOI: 10.1038/s41392-022-01081-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent and complex neurodevelopmental disorder which has strong genetic basis. Despite the rapidly rising incidence of autism, little is known about its aetiology, risk factors, and disease progression. There are currently neither validated biomarkers for diagnostic screening nor specific medication for autism. Over the last two decades, there have been remarkable advances in genetics, with hundreds of genes identified and validated as being associated with a high risk for autism. The convergence of neuroscience methods is becoming more widely recognized for its significance in elucidating the pathological mechanisms of autism. Efforts have been devoted to exploring the behavioural functions, key pathological mechanisms and potential treatments of autism. Here, as we highlight in this review, emerging evidence shows that signal transduction molecular events are involved in pathological processes such as transcription, translation, synaptic transmission, epigenetics and immunoinflammatory responses. This involvement has important implications for the discovery of precise molecular targets for autism. Moreover, we review recent insights into the mechanisms and clinical implications of signal transduction in autism from molecular, cellular, neural circuit, and neurobehavioural aspects. Finally, the challenges and future perspectives are discussed with regard to novel strategies predicated on the biological features of autism.
Collapse
Affiliation(s)
- Chen-Chen Jiang
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Li-Shan Lin
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Sen Long
- Department of Pharmacy, Hangzhou Seventh People's Hospital, Mental Health Center Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Xiao-Yan Ke
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Ying-Mei Lu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Feng Han
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China.
| |
Collapse
|
37
|
Distinct effects of interleukin-6 and interferon-γ on differentiating human cortical neurons. Brain Behav Immun 2022; 103:97-108. [PMID: 35429607 PMCID: PMC9278892 DOI: 10.1016/j.bbi.2022.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/29/2022] [Accepted: 04/10/2022] [Indexed: 01/17/2023] Open
Abstract
Translational evidence suggests that cytokines involved in maternal immune activation (MIA), such as interleukin-6 (IL-6) and interferon-γ (IFN-γ), can cross the placenta, injure fetal brain, and predispose to neuropsychiatric disorders. To elaborate developmental neuronal sequelae of MIA, we differentiated human pluripotent stem cells to cortical neurons over a two-month period, exposing them to IL-6 or IFN-γ. IL-6 impacted expression of genes regulating extracellular matrix, actin cytoskeleton and TGF-β signaling while IFN-γ impacted genes regulating antigen processing, major histocompatibility complex and endoplasmic reticulum biology. IL-6, but not IFN-γ, altered mitochondrial respiration while IFN-γ, but not IL-6, induced reduction in dendritic spine density. Pre-treatment with folic acid, which has known neuroprotective and anti-inflammatory properties, ameliorated IL-6 effects on mitochondrial respiration and IFN-γ effects on dendritic spine density. These findings suggest distinct mechanisms for how fetal IL-6 and IFN-γ exposure influence risk for neuropsychiatric disorders, and how folic acid can mitigate such risk.
Collapse
|
38
|
Cai C, Yin Z, Liu A, Wang H, Zeng S, Wang Z, Qiu H, Li S, Zhou J, Wang M. Identifying Rare Genetic Variants of Immune Mediators as Risk Factors for Autism Spectrum Disorder. Genes (Basel) 2022; 13:1098. [PMID: 35741860 PMCID: PMC9223212 DOI: 10.3390/genes13061098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/30/2022] Open
Abstract
Autism spectrum disorder (ASD) affects more than 1% of children, and there is no viable pharmacotherapeutic agent to treat the core symptoms of ASD. Studies have shown that children with ASD show changes in their levels of immune response molecules. Our previous studies have shown that ASD is more common in children with folate receptor autoantibodies. We also found that children with ASD have abnormal gut immune function, which was characterized by a significant increase in the content of immunoglobulin A and an increase in gut-microbiota-associated epitope diversity. These studies suggest that the immune mechanism plays an important role in the occurrence of ASD. The present study aims to systematically assess gene mutations in immune mediators in patients with ASD. We collected genetic samples from 72 children with ASD (2−12 years old) and 107 healthy controls without ASD (20−78 years old). We used our previously-designed immune gene panel, which can capture cytokine and receptor genes, the coding regions of MHC genes, and genes of innate immunity. Target region sequencing (500×) and bioinformatics analytical methods were used to identify variants in immune response genes associated with patients with ASD. A total of 4 rare variants were found to be associated with ASD, including HLA-B: p.A93G, HLA-DQB1: p.S229N, LILRB2: p.R322H, and LILRB2: c.956-4C>T. These variants were present in 44.44% (32/72) of the ASD patients and were detected in 3.74% (4/107) of the healthy controls. We expect these genetic variants will serve as new targets for the clinical genetic assessment of ASD, and our findings suggest that immune abnormalities in children with ASD may have a genetic basis.
Collapse
Affiliation(s)
- Chunquan Cai
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children’s Hospital (Children’s Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin 300134, China;
| | - Zhaoqing Yin
- Division of Neonatology, The People’s Hospital of Dehong Autonomous Prefecture, Mangshi 678400, China;
| | - Aiping Liu
- The Department of Laboratory, Public Health Service Center of Bao’an District, Bao’an District, Shenzhen 518018, China;
| | - Hui Wang
- Xiamen Branch of Children’s Hospital of Fudan University (Xiamen Children’s Hospital), Xiamen 361006, China;
| | - Shujuan Zeng
- Division of Neonatology, Longgang Central Hospital of Shenzhen, Shenzhen 518116, China; (S.Z.); (H.Q.)
| | - Zhangxing Wang
- Division of Neonatology, Shenzhen Longhua People’s Hospital, Shenzhen 518109, China;
| | - Huixian Qiu
- Division of Neonatology, Longgang Central Hospital of Shenzhen, Shenzhen 518116, China; (S.Z.); (H.Q.)
| | - Shijun Li
- Department of Radiology, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Jiaxiu Zhou
- Division of Psychology, Shenzhen Children’s Hospital, Shenzhen 518038, China
| | - Mingbang Wang
- Microbiome Therapy Center, South China Hospital of Shenzhen University, Shenzhen 518111, China
- Shanghai Key Laboratory of Birth Defects, Division of Neonatology, Children’s Hospital of Fudan University, Shanghai 201102, China
| |
Collapse
|
39
|
Brynge M, Gardner RM, Sjöqvist H, Lee BK, Dalman C, Karlsson H. Maternal Levels of Cytokines in Early Pregnancy and Risk of Autism Spectrum Disorders in Offspring. Front Public Health 2022; 10:917563. [PMID: 35712277 PMCID: PMC9197505 DOI: 10.3389/fpubh.2022.917563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
Previous studies indicate a role of immune disturbances during early development in the etiology of autism spectrum disorders (ASD). Any potential disturbances during fetal development are best addressed by prospective evaluation of maternal markers of inflammation. Previous studies have investigated maternal cytokines, a group of powerful effectors of the immune system, with inconsistent results. In this study, we aimed to clarify the relationship between maternal cytokines and ASD by evaluating levels of 17 cytokines in first trimester maternal serum samples, from 318 mothers to ASD-cases and 429 mothers to ASD-unaffected controls, nested within the register-based Stockholm Youth Cohort. Overall, we observed no consistent associations between levels of maternal cytokines and ASD. While we observed a number of individual associations, the patterns varied across the diagnostic sub-groups. Levels above the 90th percentile of IL-1β (OR = 2.31, 95% CI 1.16-4.60), IL-7 (OR = 2.28, 95% CI 1.20-4.33), IL-13 (OR = 2.42, 95% CI 1.29-4.55), and MCP-1 (OR = 2.09, 95% CI 1.03-4.24) were associated with increased odds of ASD with co-occurring intellectual disability (ID), whereas GMCSF (OR = 2.06, 95% CI 1.03-4.11) and TNF-α (OR = 2.31, 95% CI 1.18-4.50) were associated with increased odds of ASD with ADHD but none survived correction for multiple comparisons. Also, none of the measured maternal cytokines were associated with ASD without co-occurring ID or ADHD. Implementing a data-driven approach using machine learning (Random Forest's Variable Importance measurement), we found no evidence to suggest that adding these cytokines and other markers of maternal immunity, to register-based maternal factors (e.g., psychiatric history) improves prediction of ASD. In summary, we found no robust evidence of an association between maternal immune markers during early pregnancy and ASD.
Collapse
Affiliation(s)
- Martin Brynge
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Renee M. Gardner
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Hugo Sjöqvist
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Brian K. Lee
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
- Department of Epidemiology and Biostatistics, Drexel University School of Public Health, Philadelphia, PA, United States
- A.J. Drexel Autism Institute, Philadelphia, PA, United States
| | - Christina Dalman
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
- Centre for Epidemiology and Community Medicine, Region Stockholm, Stockholm, Sweden
| | - Håkan Karlsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW There are currently no approved medications for the core symptoms of autism spectrum disorder (ASD), and only limited data on the management of co-occurring mental health and behavioural symptoms. The purpose of this review is to synthesize recent trials on novel treatments in ASD, with a focus on research trends in the past 2 years. RECENT FINDINGS No new pharmacologic agents received regulatory approval for use in ASD. Several large randomized controlled trials (RCTs) had negative or ambiguous results (e.g. fluoxetine, oxytocin). A cross-over RCT of an oral cannabinoid suggested possible benefits for disruptive behaviours. Two large-scale multicentre trials of bumetanide were terminated early for lack of efficacy. Multicenter trials using repetitive transcranial magnetic stimulation are underway. Recent meta-analyses indicate that specific behavioural and psychological interventions can support social communication and treat anxiety. Numerous novel treatment targets informed by biological mechanisms are under investigation. SUMMARY Recent data support the use of behavioural and psychological interventions for social communication and anxiety in ASD; data are more limited regarding pharmacotherapy for core and associated symptoms. Next steps include replication of early findings, trials of new molecular targets, and the identification of novel biomarkers, including genetic predictors, of treatment response.
Collapse
Affiliation(s)
- Danielle Baribeau
- University of Toronto
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Jacob Vorstman
- University of Toronto
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Evdokia Anagnostou
- University of Toronto
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Velloso FJ, Wadhwa A, Kumari E, Carcea I, Gunal O, Levison SW. Modestly increasing systemic interleukin-6 perinatally disturbs secondary germinal zone neurogenesis and gliogenesis and produces sociability deficits. Brain Behav Immun 2022; 101:23-36. [PMID: 34954074 PMCID: PMC8885860 DOI: 10.1016/j.bbi.2021.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/07/2021] [Accepted: 12/18/2021] [Indexed: 12/14/2022] Open
Abstract
Epidemiologic studies have demonstrated that infections during pregnancy increase the risk of offspring developing Schizophrenia, Autism, Depression and Bipolar Disorder and have implicated interleukin-6 (IL-6) as a causal agent. However, other cytokines have been associated with the developmental origins of psychiatric disorders; therefore, it remains to be established whether elevating IL-6 is sufficient to alter the trajectory of neural development. Furthermore, most rodent studies have manipulated the maternal immune system at mid-gestation, which affects the stem cells and progenitors in both the primary and secondary germinal matrices. Therefore, a question that remains to be addressed is whether elevating IL-6 when the secondary germinal matrices are most active will affect brain development. Here, we have increased IL-6 from postnatal days 3-6 when the secondary germinal matrices are rapidly expanding. Using Nestin-CreERT2 fate mapping we show that this transient increase in IL-6 decreased neurogenesis in the dentate gyrus of the dorsal hippocampus, reduced astrogliogenesis in the amygdala and decreased oligodendrogenesis in the body and splenium of the corpus callosum all by ∼ 50%. Moreover, the IL-6 treatment elicited behavioral changes classically associated with neurodevelopmental disorders. As adults, IL-6 injected male mice lost social preference in the social approach test, spent ∼ 30% less time socially engaging with sexually receptive females and produced ∼ 50% fewer ultrasonic vocalizations during mating. They also engaged ∼ 50% more time in self-grooming behavior and had an increase in inhibitory avoidance. Altogether, these data provide new insights into the biological mechanisms linking perinatal immune activation to complex neurodevelopmental brain disorders.
Collapse
Affiliation(s)
- Fernando Janczur Velloso
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| | - Anna Wadhwa
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA 07103
| | - Ekta Kumari
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA 07103
| | - Ioana Carcea
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| | - Ozlem Gunal
- Department of Psychiatry, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| | - Steven W. Levison
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA 07103,Correspondence should be addressed to: Steven W. Levison, PhD, Department Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, 205 S. Orange Ave, Newark, NJ 07103, Phone: 973-972-5162;
| |
Collapse
|
42
|
Kim DH, Krakowiak P, Meltzer A, Hertz-Picciotto I, Van de Water J. Neonatal chemokine markers predict subsequent diagnosis of autism spectrum disorder and delayed development. Brain Behav Immun 2022; 100:121-133. [PMID: 34808292 PMCID: PMC10846151 DOI: 10.1016/j.bbi.2021.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/21/2021] [Accepted: 11/13/2021] [Indexed: 12/17/2022] Open
Abstract
Immune dysregulation has been found to be related to a diagnosis of autism spectrum disorder (ASD). However, investigations in very early childhood examining immunological abnormalities such as altered neonatal cytokine/chemokine profiles in association with an aberrant developmental trajectory, are sparse. We assessed neonatal blood spots from 398 children, including 171 with ASD, which were subdivided according to severity (121 severe, 50 mild/moderate) and cognitive/adaptive levels (144 low-functioning, 27 typical to high-functioning). The remainder were 69 children with developmental delay (DD), and 158 with typical development (TD), who served as controls in the Childhood Autism Risks from Genetics and the Environment (CHARGE) study. Exploratory analysis suggested that, in comparisons with TD and DD, CTACK (CCL27) and MPIF-1 (CCL23), respectively, were independently associated with ASD. Higher neonatal levels of CTACK were associated with decreased odds of ASD compared to TD (odds ratio [OR] = 0.40, 95% confidence interval [Cl] 0.21, 0.77), whereas higher levels of MPIF-1 were associated with increased odds of ASD (OR = 2.38, 95% Cl 1.42, 3.98) compared to DD but not to TD. MPIF-1 was positively associated with better scores in several developmental domains. Dysregulation of chemokine levels in early life can impede normal immune and neurobehavioral development, which can lead to diagnosis of ASD or DD. This study collectively suggests that certain peripheral chemokines at birth are associated with ASD progression during childhood and that children with ASD and DD have distinct neonatal chemokine profiles that can differentiate their diagnoses.
Collapse
Affiliation(s)
- Danielle Hj Kim
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA
| | - Paula Krakowiak
- Department of Public Health Sciences, Division of Epidemiology, University of California, Davis, CA, USA
| | - Amory Meltzer
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, Division of Epidemiology, University of California, Davis, CA, USA
| | - Judy Van de Water
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA.
| |
Collapse
|
43
|
Hu C, Li H, Li J, Luo X, Hao Y. Microglia: Synaptic modulator in autism spectrum disorder. Front Psychiatry 2022; 13:958661. [PMID: 36465285 PMCID: PMC9714329 DOI: 10.3389/fpsyt.2022.958661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by variable impairment of social communication and repetitive behaviors, highly restricted interests, and/or sensory behaviors beginning early in life. Many individuals with ASD have dysfunction of microglia, which may be closely related to neuroinflammation, making microglia play an important role in the pathogenesis of ASD. Mounting evidence indicates that microglia, the resident immune cells of the brain, are required for proper brain function, especially in the maintenance of neuronal circuitry and control of behavior. Dysfunction of microglia will ultimately affect the neural function in a variety of ways, including the formation of synapses and alteration of excitatory-inhibitory balance. In this review, we provide an overview of how microglia actively interact with neurons in physiological conditions and modulate the fate and functions of synapses. We put a spotlight on the multi-dimensional neurodevelopmental roles of microglia, especially in the essential influence of synapses, and discuss how microglia are currently thought to influence ASD progression.
Collapse
Affiliation(s)
- Cong Hu
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heli Li
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinhui Li
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Hao
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Sato A, Kotajima-Murakami H, Tanaka M, Katoh Y, Ikeda K. Influence of Prenatal Drug Exposure, Maternal Inflammation, and Parental Aging on the Development of Autism Spectrum Disorder. Front Psychiatry 2022; 13:821455. [PMID: 35222122 PMCID: PMC8863673 DOI: 10.3389/fpsyt.2022.821455] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2022] Open
Abstract
Autism spectrum disorder (ASD) affects reciprocal social interaction and produces abnormal repetitive, restrictive behaviors and interests. The diverse causes of ASD are divided into genetic alterations and environmental risks. The prevalence of ASD has been rising for several decades, which might be related to environmental risks as it is difficult to consider that the prevalence of genetic disorders related to ASD would increase suddenly. The latter includes (1) exposure to medications, such as valproic acid (VPA) and selective serotonin reuptake inhibitors (SSRIs) (2), maternal complications during pregnancy, including infection and hypertensive disorders of pregnancy, and (3) high parental age. Epidemiological studies have indicated a pathogenetic role of prenatal exposure to VPA and maternal inflammation in the development of ASD. VPA is considered to exert its deleterious effects on the fetal brain through several distinct mechanisms, such as alterations of γ-aminobutyric acid signaling, the inhibition of histone deacetylase, the disruption of folic acid metabolism, and the activation of mammalian target of rapamycin. Maternal inflammation that is caused by different stimuli converges on a higher load of proinflammatory cytokines in the fetal brain. Rodent models of maternal exposure to SSRIs generate ASD-like behavior in offspring, but clinical correlations with these preclinical findings are inconclusive. Hypertensive disorders of pregnancy and advanced parental age increase the risk of ASD in humans, but the mechanisms have been poorly investigated in animal models. Evidence of the mechanisms by which environmental factors are related to ASD is discussed, which may contribute to the development of preventive and therapeutic interventions for ASD.
Collapse
Affiliation(s)
- Atsushi Sato
- Department of Pediatrics, The University of Tokyo Hospital, Tokyo, Japan.,Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | - Miho Tanaka
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihisa Katoh
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
45
|
McLellan J, Kim DHJ, Bruce M, Ramirez-Celis A, Van de Water J. Maternal Immune Dysregulation and Autism-Understanding the Role of Cytokines, Chemokines and Autoantibodies. Front Psychiatry 2022; 13:834910. [PMID: 35722542 PMCID: PMC9201050 DOI: 10.3389/fpsyt.2022.834910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/20/2022] [Indexed: 11/29/2022] Open
Abstract
Autism spectrum disorder (ASD) is acknowledged as a highly heterogeneous, behaviorally defined neurodevelopmental disorder with multiple etiologies. In addition to its high heritability, we have come to recognize a role for maternal immune system dysregulation as a prominent risk factor for the development of ASD in the child. Examples of these risk factors include altered cytokine/chemokine activity and the presence of autoantibodies in mothers that are reactive to proteins in the developing brain. In addition to large clinical studies, the development of pre-clinical models enables the ability to evaluate the cellular and molecular underpinnings of immune-related pathology. For example, the novel animal models of maternal autoantibody-related (MAR) ASD described herein will serve as a preclinical platform for the future testing of targeted therapeutics for one 'type' of ASD. Identification of the cellular targets will advance precision medicine efforts toward tailored therapeutics and prevention. This minireview highlights emerging evidence for the role of maternal immune dysregulation as a potential biomarker, as well as a pathologically relevant mechanism for the development of ASD in offspring. Further, we will discuss the current limitations of these models as well as potential avenues for future research.
Collapse
Affiliation(s)
- Janna McLellan
- Division of Rheumatology, Department of Internal Medicine, Allergy, and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Danielle H J Kim
- Division of Rheumatology, Department of Internal Medicine, Allergy, and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Matthew Bruce
- Division of Rheumatology, Department of Internal Medicine, Allergy, and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Alexandra Ramirez-Celis
- Division of Rheumatology, Department of Internal Medicine, Allergy, and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Judy Van de Water
- Division of Rheumatology, Department of Internal Medicine, Allergy, and Clinical Immunology, University of California, Davis, Davis, CA, United States.,MIND Institute, University of California, Davis, Davis, CA, United States
| |
Collapse
|
46
|
Carter M, Casey S, O'Keeffe GW, Gibson L, Gallagher L, Murray DM. Maternal Immune Activation and Interleukin 17A in the Pathogenesis of Autistic Spectrum Disorder and Why It Matters in the COVID-19 Era. Front Psychiatry 2022; 13:823096. [PMID: 35250672 PMCID: PMC8891512 DOI: 10.3389/fpsyt.2022.823096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/21/2022] [Indexed: 11/30/2022] Open
Abstract
Autism spectrum disorder (ASD) is the commonest neurodevelopmental disability. It is a highly complex disorder with an increasing prevalence and an unclear etiology. Consensus indicates that ASD arises as a genetically modulated, and environmentally influenced condition. Although pathogenic rare genetic variants are detected in around 20% of cases of ASD, no single factor is responsible for the vast majority of ASD cases or that explains their characteristic clinical heterogeneity. However, a growing body of evidence suggests that ASD susceptibility involves an interplay between genetic factors and environmental exposures. One such environmental exposure which has received significant attention in this regard is maternal immune activation (MIA) resulting from bacterial or viral infection during pregnancy. Reproducible rodent models of ASD are well-established whereby induction of MIA in pregnant dams, leads to offspring displaying neuroanatomical, functional, and behavioral changes analogous to those seen in ASD. Blockade of specific inflammatory cytokines such as interleukin-17A during gestation remediates many of these observed behavioral effects, suggesting a causative or contributory role. Here, we review the growing body of animal and human-based evidence indicating that interleukin-17A may mediate the observed effects of MIA on neurodevelopmental outcomes in the offspring. This is particularly important given the current corona virus disease-2019 (COVID-19) pandemic as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during pregnancy is a potent stimulator of the maternal immune response, however the long-term effects of maternal SARS-CoV-2 infection on neurodevelopmental outcomes is unclear. This underscores the importance of monitoring neurodevelopmental outcomes in children exposed to SARS-CoV-2-induced MIA during gestation.
Collapse
Affiliation(s)
- Michael Carter
- INFANT Research Centre, University College Cork, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.,National Children's Research Centre, Dublin, Ireland
| | - Sophie Casey
- INFANT Research Centre, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard W O'Keeffe
- INFANT Research Centre, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Louise Gibson
- INFANT Research Centre, University College Cork, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Deirdre M Murray
- INFANT Research Centre, University College Cork, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| |
Collapse
|
47
|
Erbescu A, Papuc SM, Budisteanu M, Arghir A, Neagu M. Re-emerging concepts of immune dysregulation in autism spectrum disorders. Front Psychiatry 2022; 13:1006612. [PMID: 36339838 PMCID: PMC9626859 DOI: 10.3389/fpsyt.2022.1006612] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by communication and social interaction deficits, and by restricted interests and stereotyped, repetitive behavior patterns. ASD has a strong genetic component and a complex architecture characterized by the interplay of rare and common genetic variants. Recently, increasing evidence suggest a significant contribution of immune system dysregulation in ASD. The present paper reviews the latest updates regarding the altered immune landscape of this complex disorder highlighting areas with potential for biomarkers discovery as well as personalization of therapeutic approaches. Cross-talk between the central nervous system and immune system has long been envisaged and recent evidence brings insights into the pathways connecting the brain to the immune system. Disturbance of cytokine levels plays an important role in the establishment of a neuroinflammatory milieu in ASD. Several other immune molecules involved in antigen presentation and inflammatory cellular phenotypes are also at play in ASD. Maternal immune activation, the presence of brain-reactive antibodies and autoimmunity are other potential prenatal and postnatal contributors to ASD pathophysiology. The molecular players involved in oxidative-stress response and mitochondrial system function, are discussed as contributors to the pro-inflammatory pattern. The gastrointestinal inflammation pathways proposed to play a role in ASD are also discussed. Moreover, the body of evidence regarding some of the genetic factors linked to the immune system dysregulation is reviewed and discussed. Last, but not least, the epigenetic traits and their interactions with the immune system are reviewed as an expanding field in ASD research. Understanding the immune-mediated pathways that influence brain development and function, metabolism, and intestinal homeostasis, may lead to the identification of robust diagnostic or predictive biomarkers for ASD individuals. Thus, novel therapeutic approaches could be developed, ultimately aiming to improve their quality of life.
Collapse
Affiliation(s)
- Alina Erbescu
- Victor Babes National Institute of Pathology, Bucharest, Romania.,Faculty of Biology, Doctoral School, University of Bucharest, Bucharest, Romania
| | | | - Magdalena Budisteanu
- Victor Babes National Institute of Pathology, Bucharest, Romania.,Prof. Dr. Alex. Obregia Clinical Hospital of Psychiatry, Bucharest, Romania.,Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Aurora Arghir
- Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Monica Neagu
- Victor Babes National Institute of Pathology, Bucharest, Romania.,Faculty of Biology, Doctoral School, University of Bucharest, Bucharest, Romania.,Colentina Clinical Hospital, Bucharest, Romania
| |
Collapse
|
48
|
Nadeem A, Ahmad SF, Al-Harbi NO, Al-Ayadhi LY, Sarawi W, Attia SM, Bakheet SA, Alqarni SA, Ali N, AsSobeai HM. Imbalance in pro-inflammatory and anti-inflammatory cytokines milieu in B cells of children with autism. Mol Immunol 2021; 141:297-304. [PMID: 34915269 DOI: 10.1016/j.molimm.2021.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 11/01/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022]
Abstract
B cells play multiple roles in preservation of healthy immune system including management of immune responses by expression of pro- and anti-inflammatory cytokines. Several earlier studies have documented that B cells express both pro-inflammatory cytokines such as IL-6, TNF-α as well as anti-inflammatory cytokines such as IL-10. However, it is yet to be examined whether these pro-/anti-inflammatory cytokines are expressed in B cells of children with autism spectrum disorder (ASD). Pathophysiology of ASD begins in early childhood and is characterized by repetitive/restricted behavioral patterns, and dysfunction in communal/communication skills. ASD pathophysiology also has a strong component of immune dysfunction which has been highlighted in numerous earlier publications. In this study, we specifically explored pro-/anti-inflammatory cytokines (IL-6, IL-17A, IFN-γ, TNF-α, IL-10) in B cells of ASD subjects and compared them typically developing control (TDC) children. Present study shows that inflammatory cytokines such as IL-6 and TNF-α are elevated in B cells of ASD subjects, while anti-inflammatory cytokine, IL-10 is decreased in ASD group when compared to TDC group. Further, TLR4 activation by its ligand, lipopolysaccharide (LPS) further upregulates inflammatory potential of B cells from ASD group by increasing IL-6 expression, whereas LPS has no significant effect on IL-10 expression in ASD group. Furthermore, LPS-induced inflammatory signaling of IL-6 in B cells of ASD subjects was partially mitigated by the pretreatment with NF-kB inhibitor. Present study propounds the idea that B cells could be crucial players in causing immune dysfunction in ASD subjects through an imbalance in expression of pro-/anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Laila Y Al-Ayadhi
- Autism Research and Treatment Center, AL-Amodi Autism Research Chair, Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Wedad Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Alqarni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Homood M AsSobeai
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
49
|
Carter M, Casey S, O’Keeffe GW, Gibson L, Murray DM. Mid-gestation cytokine profiles in mothers of children affected by autism spectrum disorder: a case-control study. Sci Rep 2021; 11:22315. [PMID: 34785716 PMCID: PMC8595633 DOI: 10.1038/s41598-021-01662-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022] Open
Abstract
Autism Spectrum disorder is one of the commonest and most important neurodevelopmental conditions affecting children today. With an increasing prevalence and an unclear aetiology, it is imperative we find early markers of autism, which may facilitate early identification and intervention. Alterations of gestational cytokine profiles have been reported in mothers of autistic children. Increasing evidence suggests that the intrauterine environment is an important determinant of autism risk. This study aims to examine the mid-gestational serum cytokine profiles of the mothers of autistic children from a well-characterised birth cohort. A nested sub-cohort within a large mother-child birth cohort were identified based on a confirmed multi-disciplinary diagnosis of autism before the age 10 years and neuro-typical matched controls in a 2:1 ratio. IFN-γ, IL-1β, IL-4, IL-6, IL-8, IL-17A, GMCSF and TNFα were measured in archived maternal 20-week serum using MesoScale Diagnostics multiplex technology and validation of our IL-17A measurements was performed using an ultrasensitive assay. From a cohort of 2137 children, 25 had confirmed autism before 10 years and stored maternal serum from mid-gestation. We examined the sera of these 25 cases and 50 matched controls. The sex ratio was 4:1 males to females in each group, and the mean age at diagnosis was 5.09 years (SD 2.13). We found that concentrations of IL-4 were significantly altered between groups. The other analytes did not differ significantly using either multiplex or ultra-sensitive assays. In our well-characterised prospective cohort of autistic children, we confirmed mid-gestational alterations in maternal IL-4 concentrations in autism affected pregnancies versus matched controls. These findings add to promising evidence from animal models and retrospective screening programmes and adds to the knowledge in this field.
Collapse
Affiliation(s)
- Michael Carter
- The Irish Centre for Maternal and Child Health Research, University College Cork, Cork, Ireland. .,National Children's Research Centre, Crumlin, Dublin 12, Ireland. .,Department of Paediatrics and Child Health, University College Cork (UCC), Cork, Ireland.
| | - Sophie Casey
- grid.7872.a0000000123318773The Irish Centre for Maternal and Child Health Research, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773Department of Anatomy and Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Gerard W. O’Keeffe
- grid.7872.a0000000123318773The Irish Centre for Maternal and Child Health Research, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773Department of Anatomy and Neuroscience, University College Cork (UCC), Cork, Ireland
| | - Louise Gibson
- grid.7872.a0000000123318773The Irish Centre for Maternal and Child Health Research, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773Department of Paediatrics and Child Health, University College Cork (UCC), Cork, Ireland
| | - Deirdre M. Murray
- grid.7872.a0000000123318773The Irish Centre for Maternal and Child Health Research, University College Cork, Cork, Ireland ,grid.7872.a0000000123318773Department of Paediatrics and Child Health, University College Cork (UCC), Cork, Ireland
| |
Collapse
|
50
|
Zhu B, Deng F, Yan S, Huang K, Wu X, Tao X, Wang S, Tao F. Gestational diabetes mellitus, autistic traits and ADHD symptoms in toddlers: Placental inflammatory and oxidative stress cytokines do not play an intermediary role. Psychoneuroendocrinology 2021; 134:105435. [PMID: 34649104 DOI: 10.1016/j.psyneuen.2021.105435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/24/2021] [Accepted: 09/30/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To evaluate whether gestational diabetes mellitus (GDM) is associated with increased risks of autistic traits and attention deficit/hyperactivity disorder (ADHD) among offspring and whether placental inflammatory and oxidative stress cytokines play an intermediary role. METHODS Based on a prospective cohort study from China, namely, the Ma'anshan Birth Cohort study (MABC), 3260 mother-child pairs were included. Autistic traits and ADHD symptoms among children were assessed at 18 months and 36 months, respectively. The mRNA expression levels of fourteen placental cytokines were determined using PCR. Logistic regression analysis was used to examine the associations between GDM and the risks of autistic traits or ADHD symptoms. Mediation analysis was used to assess the potential mediation effects of certain placental inflammatory factors. RESULTS Of the 3260 children, 419 (12.85%) were exposed to GDM. The prevalence rates of autistic traits and ADHD symptoms were 13.86% and 6.4%, respectively. A 48.6% increased risk of autistic traits was observed among offspring born to mothers with GDM [odds ratio (OR) = 1.49, 95% confidence interval (95%CI): 1.11-2.00)], while no significant association was found in terms of ADHD symptoms. There were significant positive associations between GDM and IL-10 expression and between HIF1-α and CRP mRNA expression and a significant negative association between GDM and CD206 mRNA expression. The expression of MCP-1 mRNA was negatively associated with the risk of autistic traits [adjusted OR = 0.73 (95%CI: 0.73-0.55)]. The levels of TNF-α were positively associated with the risk of ADHD symptoms [OR = 2.11 (95%CI: 1.39-3.21)], while GRP78 was inversely associated with it [OR = 0.64 (95%CI: 0.44-0.94)]. However, none of the 14 placental cytokines was involved as a key mediator. CONCLUSION Our findings suggest that GDM may act as a risk factor for autistic traits in offspring, while the biological mechanisms may not involve the 14 placental cytokines studied. No significant association between GDM and ADHD symptoms was observed.
Collapse
Affiliation(s)
- Beibei Zhu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University; No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Fen Deng
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University; No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Shuangqin Yan
- Ma'anshan Maternal and Child Health Care Center, Ma'anshan, China
| | - Kun Huang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University; No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xiaoyan Wu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University; No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xingyong Tao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University; No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Sufang Wang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University; No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University; No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|