1
|
Mostefaoui N, Oturan N, Bouafia SC, Hien SA, Gibert-Vilas M, Lesage G, Pechaud Y, Tassin B, Oturan M, Trellu C. Integration of electrochemical processes in a treatment system for landfill leachates based on a membrane bioreactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168841. [PMID: 38036133 DOI: 10.1016/j.scitotenv.2023.168841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
The use of electrocoagulation (EC) and anodic oxidation (AO) processes was studied for improving a treatment system for landfill leachates based on a membrane bioreactor (MBR) and a nanofiltration step. The main limitation of the current full-scale system is related to the partial removal of organic compounds that leads to operation of the nanofiltration unit with a highly concentrated feed solution. Application of the EC before the MBR participated in partial removal of the organic load (40 %) with limited energy consumption (2.8 kWh m-3) but with additional production of iron hydroxide sludge. Only AO allowed for non-selective removal of organic compounds. As a standalone process, AO would require a sharp increase of the energy consumption (116 kWh for 81 % removal of total organic carbon). But using lower electric charge and combining AO with EC and MBR processes would allow for achieving high overall removal yields with limited energy consumption. For example, the overall removal yield of total organic carbon was 65 % by application of AO after EC, with an energy consumption of 21 kWh m-3. Results also showed that such treatment strategy might allow for a significant increase of the biodegradability of the effluent before treatment by the MBR. The MBR might then be dedicated to the removal of the residual organic load as well as to the removal of the nitrogen load. The data obtained in this study also showed that the lower electric charge required for integrating AO in a coupled process would allow for strongly decreasing the formation of undesired by-products such as ClO3- and ClO4-.
Collapse
Affiliation(s)
- Nabil Mostefaoui
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France; Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering USTHB, BP 32, El-Allia, Bab-Ezzouar, Algiers 16111, Algeria
| | - Nihal Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France
| | - Souad Chergui Bouafia
- Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering USTHB, BP 32, El-Allia, Bab-Ezzouar, Algiers 16111, Algeria
| | - Sié Alain Hien
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France; Laboratoire des Procédés Industriels, de Synthèse de l'Environnement et des Energies Nouvelles (LAPISEN), Institut National Polytechnique Houphouët-Boigny, BP 1313, Yamoussoukro, Côte d'Ivoire
| | - Màxim Gibert-Vilas
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France
| | - Geoffroy Lesage
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
| | - Yoan Pechaud
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France
| | - Bruno Tassin
- Laboratoire Eau Environnement et Systèmes Urbains, LEESU, Ecole des Ponts, Université Paris-Est Créteil, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France
| | - Mehmet Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France
| | - Clément Trellu
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France.
| |
Collapse
|
2
|
Zhu Y, Guan Q, Kong L, Yang R, Wang W, Jin Y, Liu X, Qu J. Overlooked mechanism of Pb immobilization on montmorillonite mediated by dissolved organic matter in manure compost. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120706. [PMID: 36427824 DOI: 10.1016/j.envpol.2022.120706] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
In this study, three kinds of dissolved organic matter (DOM) derived from fresh chicken manure (FDOM), immature compost (IDOM) and mature compost (MDOM) were employed to compare their effects on Pb adsorption onto montmorillonite (MMT). The potential mechanism was revealed by characterization of mineral structure and calculation of interface force. The results demonstrated that the adsorption capacity (qmax) of Pb onto MMT was decreased by 14.3% and 29.8% in the presence of FDOM and IDOM, respectively, while increased by 44.4% in the presence of MDOM, resulting from the release or co-adsorption of DOM-Pb complexes. Parallel factor (PARAFAC) further indicated that Pb mainly bound to protein-like substances in FDOM and IDOM, and fulvic-like in MDOM. The X-ray diffraction (XRD) analysis proved that MDOM-Pb complex had a stronger ability to enter into the interlayer of MMT. The van der Waals force dominated the adsorption of FDOM-Pb and IDOM-Pb, while ligand exchange was involved in the case of MDOM-Pb. This study provided a comprehensive insight into the geochemical behavior of livestock manure and its compost as well as their interactions with heavy metal and soil mineral.
Collapse
Affiliation(s)
- Yuanchen Zhu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Qingkai Guan
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Linghui Kong
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Rui Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Academy of Agriculture and Science, Soil Fertilizer and Environment Resource Institute, Harbin, China
| | - Yu Jin
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xuesheng Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Juanjuan Qu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
3
|
Chen L, Li B, Wu Z, Zhao Q, Wang Q, Wang H, Singh BP, Wu W, Fu C. Interactions between lead(II) ions and dissolved organic matter derived from organic fertilizers incubated in the field. J Environ Sci (China) 2022; 121:77-89. [PMID: 35654518 DOI: 10.1016/j.jes.2021.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/27/2021] [Accepted: 09/15/2021] [Indexed: 06/15/2023]
Abstract
This work was to study composition characteristics and the subsequent effect on the lead (Pb) binding properties of dissolved organic matter (DOM) derived from seaweed-based (SWOF) and chicken manure organic fertilizers (CMOF) during a one-year field incubation experiment using the excitation-emission matrix-parallel factor (EEM-PARAFAC) and two-dimensional correlation spectroscopy (2DCOS) analysis. Results showed that high aromatic and hydrophobic fluorescent substances were enriched in CMOF-derived DOM and SWOF-derived DOM and enhanced over time. And phenolic groups in the fulvic-like substances for SWOF-derived DOM and carboxyl groups in the humic-like substances for CMOF-derived DOM had the fastest responses over time, respectively. Moreover, both non-fluorescent polysaccharides and fluorescent humic-like substances or fulvic-like substances with aromatic (C=C) groups first participated in the binding process of Pb to SWOF-derived DOM on day 0 and 180 during the lead binding process. In contrast, humic-like substances associated with aromatic (C=C) and phenolic groups gave a faster response to Pb binding on day 360. Regarding CMOF-derived DOM, the fulvic-like substances associated with aromatic (C=C) and carboxylic groups displayed a faster response to Pb ions on day 0. Nonetheless, polysaccharides and humic-like associated with phenolic groups had a faster response on days 180 and 360. It is noteworthy that the polysaccharides, which participated in Pb binding to CMOF-derived DOM, posed a higher risk of Pb in the environment after 360 days. Therefore, these findings gave new insights into the long-term applications of commercial organic fertilizers for the amendment of soil.
Collapse
Affiliation(s)
- Long Chen
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Boling Li
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Zhipeng Wu
- College of Tropical Crops, Hainan University, Haikou 570228, China.
| | - Qingjie Zhao
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Qiuyue Wang
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China.
| | - Bhupinder Pal Singh
- Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia
| | - Weidong Wu
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Chuanliang Fu
- Institute of Agricultural Environment and Soil, Hainan Academy of Agricultural Sciences, Haikou 571100, China; Key Laboratory of Arable Land Conservation of Hainan Province, Haikou 571100, China
| |
Collapse
|
4
|
He L, Yu J, Lin Z, Huang Y, He X, Shi S, Zhou J. Organic matter removal performance, pathway and microbial community succession during the construction of high-ammonia anaerobic biosystems treating anaerobic digestate food waste effluent. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115428. [PMID: 35649332 DOI: 10.1016/j.jenvman.2022.115428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/28/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to establish anaerobic biosystems which could tolerate high ammonia, and investigate the microbial community structure in these reactors. High-ammonia anaerobic biosystems that could tolerate 3600 mg L-1 total ammonia nitrogen (TAN) and 1000 mg L-1 free ammonia nitrogen (FAN) were successfully established. The removal efficiencies of COD and total volatile fatty acids (TVFAs) in R1 with dewatered sludge as inoculum were 68.8% and 69.2%, respectively. The maximum methane production rate reached 71.7 ± 1.0 mL CH4 L-1 d-1 at a TAN concentration of 3600 mg L-1. The three-dimension excitation-emission matrix analysis indicated that both easily degradable organics and refractory organics were removed from ADFE in R1 and R2. Functional microorganisms which could bear high ammonia were gradually enriched as TAN stress was elevated. Lysinibacillus, Coprothermobacter and Sporosarcina dominated the final bacterial community. Archaeal community transformed to hydrogenotrophic methanogen. The synergy of Coprothermobacter and Methanothermobacter undertook the organic matter degradation, and was enhanced by increasing TAN stress. This study offers new insights into anaerobic bioremediation of ammonia-rich wastewater.
Collapse
Affiliation(s)
- Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Jianbo Yu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Ziyuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Yangyang Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Shuohui Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
5
|
Ding L, Luo Y, Yu X, Ouyang Z, Liu P, Guo X. Insight into interactions of polystyrene microplastics with different types and compositions of dissolved organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153883. [PMID: 35182636 DOI: 10.1016/j.scitotenv.2022.153883] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs), as newly emerging pollutants, may interact with dissolved organic matter (DOM) widely present in the environment after entering the environment, thereby influencing the migration and transformation of MPs. The interaction characteristics and mechanism between DOM and MPs are restricted by many factors, and the current mechanism remains unclear. Thus, we explored the combination of MP with different types and compositions of DOM (fulvic acid (FA) and humic acid (HA)). Adsorption experiments revealed that MP has high adsorption affinity for all four DOMs, particularly FA. Meanwhile, the affinity of MP-DOM was also examined using excitation-emission matrix (EEM) analyses and fluorescence quenching method (excitation emission matrix-parallel factor analysis (EEM-PARAFAC)). Aromatic substances and hydrophobic substances dominate all DOM samples. For all DOM types tested, the quenching curve varies considerably with the type and compositions of DOM. In addition, three fluorescent components exhibited significant fluorescence quenching over time. The interaction mechanism of MPs and DOM at the molecular level was further elucidated by utilizing two-dimensional (2D) Fourier transformation infrared (FTIR) correlation spectroscopy (COS) analysis, which revealed that the oxygen-containing functional group in MPs was the most preferred DOM binding structure. This work was facilitated to explore the environmental behavior of MPs and formation of secondary MPs under natural conditions.
Collapse
Affiliation(s)
- Ling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanyuan Luo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoqin Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhuozhi Ouyang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Peng Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
6
|
Aftab B, Truong HB, Cho J, Hur J. Enhanced performance of a direct contact membrane distillation system via in-situ thermally activated H2O2 oxidation for the treatment of landfill leachate. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Zhu Y, Jin Y, Liu X, Miao T, Guan Q, Yang R, Qu J. Insight into interactions of heavy metals with livestock manure compost-derived dissolved organic matter using EEM-PARAFAC and 2D-FTIR-COS analyses. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126532. [PMID: 34252653 DOI: 10.1016/j.jhazmat.2021.126532] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 05/10/2023]
Abstract
Dissolved organic matter (DOM), as the most active ingredient in compost, directly determines the speciation and environmental behavior of HMs. Here, the binding properties of DOM derived from chicken-manure compost (CHM), cow-manure compost (COM) and pig-manure compost (PIM) with HMs were explored by analyses of Fluorescence excitation-emission matrix parallel factor (EEM-PARAFAC) and two-dimensional correlation Fourier transform infrared spectroscopy (2D-FTIR-COS). Results showed that the binding characteristics vary with origin of DOM and type of HMs. The fulvic-like component dominated the transformation of HMs speciation, and CHM-DOM had higher affinity with HMs and greater risk causing pollution due to its higher aromaticity, molecular weight and distribution of fluorescent components. Moreover, Cu(II) can efficiently bind to DOM with the stability constants (log kM) ranging from 4.53 to 5.38, followed by Pb(II) (3.34-3.57), whereas Cd(II) can hardly bind to DOM. The amide and polysaccharide were the predominant sites for HMs binding in CHM-DOM, and polysaccharide and phenolic in COM-DOM, while phenolic and amide in PIM-DOM, respectively. Although the proportion of protein-like components and non-fluorescent polysaccharides in DOM were low, their role in HMs binding should not be ignored. In brief, the environmental risk caused by livestock manure compost may originate from interactions between DOM and HMs.
Collapse
Affiliation(s)
- Yuanchen Zhu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yu Jin
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xuesheng Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Tianlin Miao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qingkai Guan
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Rui Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Juanjuan Qu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
8
|
Hua JQ, Zhang R, Chen RP, Liu GX, Yin K, Yu L. Energy-saving preparation of a bioflocculant under high-salt condition by using strain Bacillus sp. and the interaction mechanism towards heavy metals. CHEMOSPHERE 2021; 267:129324. [PMID: 33352365 DOI: 10.1016/j.chemosphere.2020.129324] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
A highly efficient bioflocculant, i.e., Na-Bsp was successfully prepared by using a tolerant strain-Bacillus sp. under high-salt condition without sterilization. Salt-containing medium was not infected by other strains throughout the whole incubation period in 168 h. The as-prepared Na-Bsp was found to be cation-dependent, exhibiting high flocculant efficiency (FE) i.e., 97.69 ± 0.61%, towards kaolin particles by aid of Fe3+. High FE values were well maintained under a wide pH range and/or boiled water treatment, likely because of the main constituent of polysaccharide. The presence of hydroxyl, carboxyl, and amine groups on the bioflocculant surface were possibly responsible for strong interactions with heavy metals. The adsorption capacities of Pb2+, Cu2+ and Cr6+ were 1000.0, 434.8 and 384.6 mg g-1, respectively. The changing of structure and configuration of bioflocculant during the metal adsorption were explored by the scanning electron microscope with electron energy loss spectroscopy and three-dimensional excitation-emission fluorescence spectrometry. This study provided a novel production method, whereby the conventional sterilization could be avoided, which is of great environmental significance for steam-saving. Furthermore, the as-prepared Na-Bsp exhibited high adsorption capacities toward heavy metals, which sheds lights on its potential usage as an alternative adsorbent.
Collapse
Affiliation(s)
- Jing-Qiu Hua
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China; School of Environmental Science, Nanjing XiaoZhuang University, Nanjing, 211171, China
| | - Rui Zhang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Rong-Ping Chen
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Guang-Xiang Liu
- School of Environmental Science, Nanjing XiaoZhuang University, Nanjing, 211171, China
| | - Ke Yin
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Lei Yu
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China; School of Environmental Science, Nanjing XiaoZhuang University, Nanjing, 211171, China.
| |
Collapse
|
9
|
Huang M, Li Z, Chen M, Wen J, Luo N, Xu W, Ding X, Xing W. Dissolved organic matter released from rice straw and straw biochar: Contrasting molecular composition and lead binding behaviors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140378. [PMID: 32758977 DOI: 10.1016/j.scitotenv.2020.140378] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/14/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
It remains debatable whether carbonized straw reapplying is a better solution than direct straw reapplying. Comparison of the characteristics and complexation behaviors of dissolved organic matter (DOM) derived from straw (ST) and biochar (BC) may offer new insights, but little current information exists. Herein, DOM samples were characterized by Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), revealing that the molecular weight and condensed aromatic components of BCDOM (457.70 Da and 71.16%, respectively) were higher than those of STDOM (433.48 Da and 3.13%, respectively). In particular, the N-containing compounds of BCDOM was more aromatic than STDOM. By combining spectroscopic techniques, complexation modeling, and chemometric analysis, BCDOM was shown to exhibit higher binding parameters (log KM) and more binding sites for Pb than STDOM. Noteworthily, the two binding sites, aromatic NO and aromatic NO2, existed only in the interaction of BCDOM with Pb. Furthermore, while phenol-OH displayed the fastest response to Pb in both STDOM and BCDOM, the binding sequences were not exactly the same. These differences may be related to the variations in the aromaticity and N-containing structures of DOM detected by FTICR-MS. These findings have implications on the stewardship of straw- and biochar-amended soil.
Collapse
Affiliation(s)
- Mei Huang
- College of Resources and Environmental Sciences, Hunan Normal University, Changsha 410081, PR China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhongwu Li
- College of Resources and Environmental Sciences, Hunan Normal University, Changsha 410081, PR China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiajun Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ninglin Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Weihua Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiang Ding
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wenle Xing
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
10
|
Cui HY, Zhang SB, Zhao MY, Zhao Y, Wei ZM. Parallel faction analysis combined with two-dimensional correlation spectroscopy reveal the characteristics of mercury-composting-derived dissolved organic matter interactions. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121395. [PMID: 31628057 DOI: 10.1016/j.jhazmat.2019.121395] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/25/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Dissolved organic matter (DOM) is regarded as the environmentally friendly substance. Strong complexes could be formed between DOM and heavy metals. Thus, the distribution, bioavailability, toxicity, and fate of heavy metals could be controlled in the environment. The widely spread method for characterizing metal-organic interactions is restricted to combine parallel faction analysis (PARAFAC) with the complexation model. However, a DOM PARAFAC component always contains two or more peaks. Therefore, the traditional method cannot reveal the inner changes of PARAFAC components or whether all the DOM peaks in one PARAFAC component are bound with metal during the metal-organic binding process. In this work, two-dimensional correlation spectroscopy (2DCOS) combined with PARAFAC and the complexation model were employed to reveal the binding speed and ability of different fluorescent peaks from DOM PARAFAC components during the binding process of mercury (Hg2+) to DOM. The results in this study showed that during the Hg2+-DOM binding process, fluorescent peaks in tryptophan-like component all presented Hg2+-binding ability. However, only humic-like component ligands showed Hg2+-binding ability. With these promising results, the true Hg2+ binding rate and ability of different DOM ligands can be revealed, which is helpful for addressing environmental pollution.
Collapse
Affiliation(s)
- Hong-Yang Cui
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China; Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Shu-Bo Zhang
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Mao-Yuan Zhao
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China.
| | - Zi-Min Wei
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China.
| |
Collapse
|
11
|
Aftab B, Cho J, Shin HS, Hur J. Using EEM-PARAFAC to probe NF membrane fouling potential of stabilized landfill leachate pretreated by various options. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 102:260-269. [PMID: 31693970 DOI: 10.1016/j.wasman.2019.10.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 09/02/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
Pretreatment processes substantially modify the organic composition of landfill leachate, which affect the fouling behavior in the post-treatment of membrane filtration. In this study, the changes in the chemical composition of stabilized landfill leachate upon various pretreatments, which encompassed coagulation/flocculation (C/F), ion exchange resins (MIEX), granular activated carbon (GAC) adsorption, and their combinations, were tracked via excitation emission matrix - parallel factor analysis (EEM-PARAFAC), and the membrane fouling potentials were assessed in the subsequent processes of nanofiltration (NF). Fluorescence components, fulvic-like (C1), protein-like (C2), and humic-like (C3), were identified and validated using EEM-PARAFAC. MIEX and C/F pretreatments were not effective to remove C1 and C2, which were associated with relatively small sized and hydrophilic molecules. GAC adsorption did not show any preference with the removal towards different components. These differences in the chemical heterogeneity among the variously pretreated leachates led to the discrepancies in membrane fluxes at a similar leachate concentration. The result also signified the importance of probing the chemical composition of pretreated leachate for the optimization of the post membrane filtration. The sum of C2 and C3 in the pretreated leachate showed a good correlation with reversible membrane fouling resistance (r = 0.93; p < 0.05), while C1 was highly correlated with irreversible membrane resistance (r = 0.872; P < 0.05). These findings provided a new insight into the applicability of fluorescence spectroscopy for tracking the changes in the membrane fouling potential of stabilized landfill leachate after various pretreatments.
Collapse
Affiliation(s)
- Bilal Aftab
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | - Hyun Sang Shin
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea.
| |
Collapse
|
12
|
Hanc A, Enev V, Hrebeckova T, Klucakova M, Pekar M. Characterization of humic acids in a continuous-feeding vermicomposting system with horse manure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 99:1-11. [PMID: 31454594 DOI: 10.1016/j.wasman.2019.08.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
The increasing numbers of kept horses create problems with processing horse manure as important local waste. This work was focused on horse manure vermicomposting in a real-field continuous-feeding system under controlled conditions, and on the complex study of the maturity and stability of the produced vermicompost. Commonly used simple indicators such as the C/N ratio, N-NH4+/N-NO3- ratio, DOC or ion exchange capacity, and also more advanced spectroscopic and thermoanalytic techniques were used and applied on the humic substances isolated from the vermicompost during its maturation (12 months in total). When compared with the original horse manure, vermicomposting decreased the aliphatic, protein-like, and polysaccharide humic components, whereas vermicomposting increased the aromaticity and contents of oxygen-containing functional groups. The typical tryptophan-like fluorophores in the manure, corresponding to the freshly produced organic matter of biological or microbial origin, were progressively transformed to humic-like fluorophores during vermicomposting. The most thermally labile humic fraction disappeared quickly during the very early vermicomposting stages. The results of spectroscopic and thermogravimetric analyses suggest that stable and mature vermicompost was produced after 6-9 months of vermicomposting, which was also supported by biologically-based maturity indicators.
Collapse
Affiliation(s)
- Ales Hanc
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamycka 129, 165 00, Prague 6, Czech Republic.
| | - Vojtech Enev
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkynova 118, Brno 612 00, Czech Republic
| | - Tereza Hrebeckova
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamycka 129, 165 00, Prague 6, Czech Republic
| | - Martina Klucakova
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkynova 118, Brno 612 00, Czech Republic
| | - Miloslav Pekar
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkynova 118, Brno 612 00, Czech Republic
| |
Collapse
|
13
|
Gu L, Huang B, Han F, Pan B, Xu Z, Gu X, Xu H, Pan X, Dionysiou DD. Spontaneous changes in dissolved organic matter affect the bio-removal of steroid estrogens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:616-624. [PMID: 31279207 DOI: 10.1016/j.scitotenv.2019.06.477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
Microbial action is the main pathway removing steroid estrogens (SEs) from both aerobic and anaerobic natural waters. The rate is influenced by other active substances present, particularly dissolved organic matter (DOM). DOM in natural surface waters has unstable components which undergo spontaneous photochemical oxidation, biological oxidation, chemical oxidation changes. How these changes influence the biosorption and bio-removal of SEs was the subject of this research. Photo oxidation-induced DOM increased the proportion of the fluorescence in area V, but biological oxidation and chemical oxidation caused fluorescence area V to decrease. All three oxidation processes can reduce the proportions of molecular weight (MW) > 5 kg·mol-1 and increase the proportions of MW < 5 kg·mol-1. Both the electron transfer capacity decreased monotonically with photo oxidation and chemical oxidation ageing, but biological oxidation ageing increased them. 17β-estradiol (E2) was the SEs used in the experiments. In aerobic conditions, fresh river humic acids (RHA) and aged RHA had the stronger mediating effect on the rate of E2 bio-removal under aerobic conditions. Its greater effectiveness was probably related to its binding with E2. Binding, biosorption of E2 and bio-removal of E2 were strongly positively correlated with the elemental C (R > 0.8, p ≤ 0.01) and SUVA254 (R > 0.8, p ≤ 0.01) by correlation matrix. Besides, fresh river fulvic acids (RFA) and aged RFA had the bigger mediating effect on E2 bio-removal under anaerobic conditions, and this imply that changes in aged DOM affected by other electron transfer groups in an anaerobic water environment. In anaerobic conditions, biosorption of E2 and binding action could cluster together with SUVA254, p(v), and 1 kg·mol-1 < MW < 5 kg·mol-1 by redundancy analysis, and but bio-removal of E2 could be well polymerized with EAC, EDC, p(iv), and MW > 5 kg·mol-1.
Collapse
Affiliation(s)
- Lipeng Gu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming 650500, Yunnan, China.
| | - Fengxia Han
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Bo Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming 650500, Yunnan, China
| | - Zhixiang Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xiao Gu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Huayu Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming 650500, Yunnan, China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
14
|
Aftab B, Ok YS, Cho J, Hur J. Targeted removal of organic foulants in landfill leachate in forward osmosis system integrated with biochar/activated carbon treatment. WATER RESEARCH 2019; 160:217-227. [PMID: 31152947 DOI: 10.1016/j.watres.2019.05.076] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
Forward osmosis (FO) has been adopted to treat complex wastewater such as landfill leachate due to its high rejection of organics. In this study, the in-line adsorptive process using biochar (BC) or powdered activated carbon (PAC) was applied to a cross flow FO system to enhance the mitigation of the FO membrane fouling from landfill leachate. The changes in the leachate composition along the treatments were tracked by excitation emission matrix-parallel factor analysis (EEM-PARAFAC) to identify tryptophan-like (C1), fulvic-like (C2), and humic-like (C3) components. After a single operation of FO, the C1 was found to be the main constituent responsible for membrane fouling irrespective of varying operation conditions regarding draw solute concentrations and flow rates. Both sorbents (i.e., BC and PAC) exhibited the preferential removal behavior towards C1 > C2 > C3, which was well supported by their individual adsorption isotherm model parameters. The addition of in-line adsorption treatment to FO resulted in substantial improvements in the filtered volume (>57%) and the flux recovery (>80%) compared to the single FO operation. Without chemical cleaning of membrane, the flux was fully recovered at a dose of 10 g/L BC or 0.3 g/L of PAC. A significant and negative correlation was found between the flux recovery and the C1 of the feed leachate or the corresponding spectral peak intensity (p < 0.05) for the integrated FO system, suggesting the potential of using on-line fluorescence monitoring for the performance of the integrated system in terms of fouling mitigation. This study provided a new insight into the effectiveness of BC or PAC adsorption as the in-line integration with an FO system for the targeted removal of FO membrane foulants in landfill leachate.
Collapse
Affiliation(s)
- Bilal Aftab
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea
| | - Yong Sik Ok
- Korea Biochar Research Center, Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea.
| |
Collapse
|
15
|
Xie J, Dong A, Liu J, Su J, Hu P, Xu C, Chen J, Wu Q. Relevance of dissolved organic matter generated from green manuring of Chinese milk vetch in relation to water-soluble cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:16409-16421. [PMID: 30982193 DOI: 10.1007/s11356-019-05114-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
Dissolved organic matter (DOM) can become a carrier of soil contaminants. Therefore, an understanding of the evolution and characteristics of DOM produced by Chinese milk vetch during green manuring is crucial. In this study, DOM solutions from 28 days' manuring with three different organic materials were characterized using three-dimensional fluorescence excitation-emission matrix (3D-EEM) with parallel factor (PARAFAC) analysis, and ultraviolet-visible spectroscopy. With the green manuring milk vetch at flowering period (MVFP), the DOC and water-soluble cadmium (WS-Cd) in soil solution reached 1875 mg/l and 2.64 μg/l, respectively, on day 6 after manuring. The PARAFAC analysis modeled three components: protein-like (tryptophan) and two humic-like components (humic acid and fulvic acid); DOM produced by MVFP was primarily protein-like during the early stage of decomposition. The aromaticity and molecular weight of DOM in the MVFP treatment was lower than in the other treatments, which could promote the release of soil particle-adsorbed Cd to soil solution. Principal components analysis showed that aromaticity was the main factor affecting Cd solubility, and the negative linear correlation of aromaticity with WS-Cd reached 0.4827. The results of this study supported the idea that manuring with MVFP might accelerate Cd infiltration to deep soil with water under gravity.
Collapse
Affiliation(s)
- Jie Xie
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Soil Fertilizer & Environmental and Resources Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
- Key Laboratory of Crop Ecophysiology and Farming System for the Middle and Lower Reaches of the Yangtze River, Ministry of Agriculture, P.R. China, Nanchang, 330200, Jiangxi, China
| | - Aiqin Dong
- Department of Assets and Laboratory Management, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Jia Liu
- Soil Fertilizer & Environmental and Resources Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
- Key Laboratory of Crop Ecophysiology and Farming System for the Middle and Lower Reaches of the Yangtze River, Ministry of Agriculture, P.R. China, Nanchang, 330200, Jiangxi, China
| | - Jinping Su
- Soil Fertilizer & Environmental and Resources Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
- Key Laboratory of Crop Ecophysiology and Farming System for the Middle and Lower Reaches of the Yangtze River, Ministry of Agriculture, P.R. China, Nanchang, 330200, Jiangxi, China
| | - Po Hu
- Soil Fertilizer & Environmental and Resources Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
- Key Laboratory of Crop Ecophysiology and Farming System for the Middle and Lower Reaches of the Yangtze River, Ministry of Agriculture, P.R. China, Nanchang, 330200, Jiangxi, China
| | - Changxu Xu
- Soil Fertilizer & Environmental and Resources Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
- Key Laboratory of Crop Ecophysiology and Farming System for the Middle and Lower Reaches of the Yangtze River, Ministry of Agriculture, P.R. China, Nanchang, 330200, Jiangxi, China
| | - Jingrui Chen
- Soil Fertilizer & Environmental and Resources Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
- Key Laboratory of Crop Ecophysiology and Farming System for the Middle and Lower Reaches of the Yangtze River, Ministry of Agriculture, P.R. China, Nanchang, 330200, Jiangxi, China
| | - Qitang Wu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
16
|
Zhang Y, Tian Y, Hu D, Fan J, Shen M, Zeng G. Is vermicompost the possible in situ sorbent? Immobilization of Pb, Cd and Cr in sediment with sludge derived vermicompost, a column study. JOURNAL OF HAZARDOUS MATERIALS 2019; 367:83-90. [PMID: 30594726 DOI: 10.1016/j.jhazmat.2018.12.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
The goal of this study was to investigate the immobilization effect of vermicomposted sewage sludge for Pb, Cd and Cr in the sediment under simulated in situ conditions using column test. Positioning 10% dw of vermicompost at the bottom layer of the column resulted in an average decrease of Pb, Cd and Cr in the leachate of 93, 97 and 75.5%, with the accumulated adsorbed amount of 11.80, 4.81 and 5.62 mg g-1, respectively. Fluorescence Excitation‒Emission Matrix (EEM) combined with parallel factor analysis (PARAFAC) was adopted to identify the components in DOM (dissolved organic matter) that were efficient for the immobilization of heavy metals. The 4‒component PARAFAC model established showed that DOM was dominated by a protein‒like material (component C1), and three humic‒like materials (component C2, C3 and C4). The humic substances formed the organo‒metal complexes with Pb, Cr and Cd, hence, the metal ions were sequestered by the sorbent. Also, as calculated by the bivariate coefficients, the C2/C1 ratios can be liable parameters for assessing the retaining capability of vermicompost for heavy metals. Generally, vermicompost can be used as a promising in situ sorbent for the remediation of heavy metal polluted sediments.
Collapse
Affiliation(s)
- Yaxin Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Ye Tian
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Duofei Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Jinshi Fan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Maocai Shen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
17
|
Yang R, Li Z, Huang M, Luo N, Wen J, Zeng G. Characteristics of fulvic acid during coprecipitation and adsorption to iron oxides‑copper aqueous system. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Huang M, Li Z, Luo N, Yang R, Wen J, Huang B, Zeng G. Application potential of biochar in environment: Insight from degradation of biochar-derived DOM and complexation of DOM with heavy metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:220-228. [PMID: 30053666 DOI: 10.1016/j.scitotenv.2018.07.282] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Biochar-derived dissolved organic matter (DOM) is important for determining the application potential of biochar in soil remediation. However, little is known about the degradation behavior of biochar-derived DOM and its interaction with heavy metals. Here, incubation experiments combined with quenching titration experiments, which analyzed by spectroscopic technology and chemometric method, were conducted to reveal such behaviors and mechanisms. Ultraviolet-visible (UV-Vis) spectra showed that high aromatic and hydrophobic fractions were enriched in biochar-derived DOM and enhanced during the cultivation process, thus the biochar-derived DOM may retain a high aromaticity, stability, and resistance. However, the environmental risk of Cu caused by the increase of DOM hydrophobicity cannot be overlooked while applying biochar to polluted soil. One fulvic-like (C1), one protein-like (C2) and two humic-like (C3, C4) substances were identified from biochar-derived DOM by using parallel factor analysis of excitation-emission matrix. Additionally, the fluorescence intensity variations of these components in DOM offered an additional interpretation for the observations from UV-Vis spectra. Two-dimensional correlation spectroscopy revealed that Cd binding to biochar-derived DOM first occurred in the protein- and fulvic-like fraction while protein- and humic-like substances had a stronger affinity for Cu. Furthermore, both phenolic and carboxyl groups firstly participated in the binding process of Cd with biochar-derived DOM, while polysaccharide gave the fastest response to Cu binding. These results clearly demonstrated the differences in specific heavy metal binding features of individual fluorescent substances and functional groups in biochar-derived DOM and contribute to improving the application effect of biochar in a multi-heavy metal polluted soil system.
Collapse
Affiliation(s)
- Mei Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhongwu Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Ninglin Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ren Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiajun Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Bin Huang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environment Science & Technology, Guangzhou 510650, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
19
|
Song F, Wu F, Feng W, Tang Z, Giesy JP, Guo F, Shi D, Liu X, Qin N, Xing B, Bai Y. Fluorescence regional integration and differential fluorescence spectroscopy for analysis of structural characteristics and proton binding properties of fulvic acid sub-fractions. J Environ Sci (China) 2018; 74:116-125. [PMID: 30340665 DOI: 10.1016/j.jes.2018.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
Structural characteristics and proton binding properties of sub-fractions (FA3-FA13) of fulvic acid (FA), eluted stepwise by pyrophosphate buffer were examined by use of fluorescence titration combined with fluorescence regional integration (FRI) and differential fluorescence spectroscopy (DFS). Humic-like (H-L) and fulvic-like (F-L) materials, which accounted for more than 80% of fluorescence response, were dominant in five sub-fractions of FA. Based on FRI analysis, except the response of F-L materials in FA9 and FA13, maximum changes in percent fluorescence response were less than 10% as pH was increased from 2.5 to 11.5. Contents of carboxylic and phenolic groups were compared for fluorescence peaks of FA sub-fractions based on pH-dependent fluorescence derived from DFS. Static quenching was the dominant mechanism for binding of protons by FA sub-fractions. Dissociation constants (pKa) were calculated by use of results of DFS and the modified Stern-Volmer relationship. The pKa of H-L, F-L, tryptophan-like and tyrosine-like materials of FA sub-fractions exhibited ranges of 3.17-4.06, 3.12-3.97, 4.14-4.45 and 4.25-4.76, respectively, for acidic pHs. At basic pHs, values of pKa for corresponding materials were in ranges of 9.71-10.24, 9.62-10.99, 9.67-10.31 and 9.33-10.28, respectively. At acidic pH, protein-like (P-L) materials had greater affinities for protons than did either H-L or F-L materials. The di-carboxylic and phenolic groups were likely predominant sites of protonation for both H-L and F-L materials at both acidic and basic pHs. Amino acid groups were significant factors during proton binding to protein-like materials of FA sub-fractions at basic pH.
Collapse
Affiliation(s)
- Fanhao Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 10012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 10012, China.
| | - Weiying Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 10012, China
| | - Zhi Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 10012, China
| | - John P Giesy
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 10012, China; Department of Biomedical and Veterinary Biosciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, SK S7N 5B3, Canada
| | - Fei Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 10012, China
| | - Di Shi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 10012, China
| | - Xiaofei Liu
- College of Resources, Environment and Tourism, Capital Normal University, Beijing 100048, China
| | - Ning Qin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 10012, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 10012, China.
| |
Collapse
|
20
|
Three-Dimensional Excitation and Emission Fluorescence-Based Method for Evaluation of Maillard Reaction Products in Food Waste Treatment. J CHEM-NY 2018. [DOI: 10.1155/2018/6758794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hydrothermal treatment (HT) of food waste (FW) can form Maillard reaction products (MRPs), the biorefractory organic matter due to the occurrence of Maillard reaction. However, the integrating qualitative and quantitative approach to assess MRPs is scarce. The goal of this study was to develop a method to characterize and quantify MRPs created by HT of FW. MRPs were identified by molecular weight fractionation, indirect spectrometric indicators, and three-dimensional excitation-emission fluorescence (3DEEM) analysis. The 3DEEM method combined with fluorescence regional integration (FRI) and parallel factor (PARAFAC) analyses was able to differentiate clearly between MRPs and other dissolved organic compounds compared to other approaches. The volume of fluorescence Φ from FRI and maximum fluorescence intensity Fmax from PARAFAC were found to be suitable quantitative parameters for determination of MRPs in the hydrothermal FW system. These two parameters were validated with samples from hydrothermal FW under various operating temperatures and pH.
Collapse
|
21
|
Mao X, Xiong L, Hu X, Yan Z, Wang L, Xu G. Remediation of ammonia-contaminated groundwater in landfill sites with electrochemical reactive barriers: A bench scale study. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 78:69-78. [PMID: 32559961 DOI: 10.1016/j.wasman.2018.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 06/11/2023]
Abstract
Leachate plumes originating from leaking landfills often cause the contamination of groundwater in subsurface. Ammonia nitrogen in the contaminated groundwater is usually hard to be attenuated due to the hypoxic condition in subsurface environment. In this study, an active chlorine mediated electrochemical reactive barrier (ACM-ERB) consisting of inert electrodes is proposed for the remediation of ammonia-contaminated groundwater because an elevated level of chloride ions was often found in the groundwater polluted by leachate plumes. Bench-scale experiments were conducted to evaluate the prototype of this remedial technology and to study the variables affecting the performance of ACM-ERB. The results showed that ammonia in the simulated groundwater can be effectively converted into nitrogen rather than undesirable nitrite/nitrate. RuO2/Ti anode was better than PbO2/Ti anode for the sake of ammonia removal. In the presence of naturally occurring level of bicarbonate, the electrode arrangement with an upstream cathode offered weak alkaline pH and therefore favored the removal of ammonia in the initial stage of experiment. Higher current densities and bicarbonate concentrations were favorable to the removal of ammonia. An ammonia removal efficiency up to 70% was achieved for 20 mg/L NH4+-N influent, when the operating conditions were 250 mg/L chloride ions, 500 mA current, -80 mm water level and 6 mL/min flow rate. Polarity reversal could prevent the formation of scale on electrodes, thereby allowing the long-term operation of the ACM-ERB system in groundwater. Moreover, in the experiment using diluted leachate as influent solution, ammonia was preferentially removed relative to the organic contaminants. The present study demonstrates that ACM-ERB is a promising method to cope with the ammonia-contaminated groundwater in landfill sites.
Collapse
Affiliation(s)
- Xuhui Mao
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China.
| | - Lili Xiong
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Xinyu Hu
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Zhiping Yan
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Lei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Gang Xu
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China; Technology Transfer Center of Wuhan University in Zhongshan City, Lonkee Membrane Company, Zhongshan 528400, China
| |
Collapse
|
22
|
Huang M, Li Z, Huang B, Luo N, Zhang Q, Zhai X, Zeng G. Investigating binding characteristics of cadmium and copper to DOM derived from compost and rice straw using EEM-PARAFAC combined with two-dimensional FTIR correlation analyses. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:539-548. [PMID: 29101883 DOI: 10.1016/j.jhazmat.2017.10.022] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/08/2017] [Accepted: 10/10/2017] [Indexed: 06/07/2023]
Abstract
The binding of Cd and Cu to dissolved organic matter (DOM) derived from compost (CP) and rice straw (ST) was studied through an approach combining parallel factor (PARAFAC) analysis and two-dimensional correlation spectroscopy (2DCOS). Both humic-like and protein-like substances have been observed in CP and ST. Comparing with the Cu, Cd exhibited a lower affinity to DOM, and the quenching curve of Cd failed to be fitted by the Ryan and Weber Model, indicating that the environmental risk caused by applying CP or ST to Cd-polluted soil should be considered. The stability constants (log KM) of Cu ranged from 3.87 to 5.03, and a larger value was found in CP than those in ST. Protein-like component also showed obvious fluorescence quenching with heavy metals addition. Besides, in CP, phenol-OH and carboxyl showed the fastest response to Cd and Cu, respectively; however, in ST, amide group and phenol-OH displayed the fastest response to Cd and Cu, respectively. These results provide a more detailed knowledge of the interaction mechanism of heavy metals with DOM at the molecular level, which is of great significance for reasonable application of compost and rice straw and efficient control of heavy metal in farmland soil.
Collapse
Affiliation(s)
- Mei Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhongwu Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Bin Huang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environment Science & Technology, Guangzhou 510650, PR China
| | - Ninglin Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qiu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiuqing Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
23
|
Cai W, Liu Y. Comparative study of dissolved organic matter generated from activated sludge during exposure to hypochlorite, hydrogen peroxide, acid and alkaline: Implications for on-line chemical cleaning of MBR. CHEMOSPHERE 2018; 193:295-303. [PMID: 29145090 DOI: 10.1016/j.chemosphere.2017.11.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Although on-line chemical cleaning has been extensively employed for maintaining the MBR permeability, little attention has been given to the negative impacts of such prevalent membrane cleaning practice. This study thus comparatively investigated the potential release of dissolved organic matter (DOM) from activated sludge upon the exposure to different kinds of frequently-used cleaning reagents, i.e. NaClO, H2O2, HCl and NaOH. It was found that NaClO at 50 and 80 mg L-1 triggered significant release of DOM, while NaOH strongly promoted soluble nitrogen release. However, the DOM generation induced by H2O2 in the range of 0-80 mg L-1 was nearly negligible. The combined analysis by EEM-PARAFAC and LC-OCD-OND further revealed that NaClO-triggered DOM mainly originated from the breakdown of humic substances and other small humics with molecular weight (MW) less than 500 Da. In contrast, proteins and other biopolymers with higher MW highly contributed to DOM induced by NaOH. Most of DOM detected in this study belonged to low molecular weight (LMW) substances, which were not considered readily biodegradable or physically retainable by microfiltration membrane. It appears from this study that DOM generated from suspended activated sludge during membrane cleaning with different chemicals should be taken into serious consideration when water recycle and reuse are concerned.
Collapse
Affiliation(s)
- Weiwei Cai
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
24
|
Wang B, Cai C, Li G, Liu H. Assessing the stability in dry mycelial fertilizer of Penicillium chrysogenum as soil amendment via fluorescence excitation-emission matrix spectra: organic matter's transformation and maturity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:28258-28267. [PMID: 29027076 DOI: 10.1007/s11356-017-0086-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/03/2017] [Indexed: 06/07/2023]
Abstract
Utilization as dry mycelial fertilizer (DMF) produced from penicillin fermentation fungi mycelium (PFFM) with an acid-heating pretreatment is a potential way. To study the transformation and stability of water-extractable organic matter in DMF-amended soil via fluorescence regional integration (FRI) of fluorescence excitation-emission matrix (EEM), a soil experiment in pot was carried out. The results showed that residual penicillin (about 32 mg/kg) was almost degraded in the first 5 days, indicating that the drug pollution was in control. The pH value, DOC, DON, and DOC/DON presented a classical profile, but germination index (GI) leveled off about 0.13 till day 13 in DMF-12% treatment due to the severe phytotoxicity. The addition of DMF significantly increased the soil microbial populations in contrast to the CON treatment. The EEM showed that the protein-like and microbial byproduct-like matters vanished on the 25th and 33rd days, whereas the fulvic-like substances appeared on the 7th day. The humic-like substances existed in original samples but their content greatly enhanced finally. The FRI results showed that P V, n/P III, n reached the highest value of 1.84 on the 25th day, suggesting that DMF maintained stable in amended soil. Because of its consistency with the results of GI and DOC/DON, the EEM-FRI has a potential to evaluate the stability of DMF in soil.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Chen Cai
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Guomin Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Huiling Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
25
|
Jiang G, Liu D, Chen W, Ye Z, Liu H, Li Q. Impact of vent pipe diameter on characteristics of waste degradation in semi-aerobic bioreactor landfill. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2017; 35:1064-1071. [PMID: 28825363 DOI: 10.1177/0734242x17723979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The evolution mechanism of a vent pipe diameter on a waste-stabilization process in semi-aerobic bioreactor landfills was analyzed from the organic-matter concentration, biodegradability, spectral characteristics of dissolved organic matter, correlations and principal-component analysis. Waste samples were collected at different distances from the vent pipe and from different landfill layers in semi-aerobic bioreactor landfills with different vent pipe diameters. An increase in vent pipe diameter favored waste degradation. Waste degradation in landfills can be promoted slightly when the vent pipe diameter increases from 25 to 50 mm. It could be promoted significantly when the vent pipe diameter was increased to 75 mm. The vent pipe diameter is important in waste degradation in the middle layer of landfills. The dissolved organic matter in the waste is composed mainly of long-wave humus (humin), short-wave humus (fulvic acid) and tryptophan. The humification levels of the waste that was located at the center of vent pipes with 25-, 50- and 75-mm diameters were 2.2682, 4.0520 and 7.6419 Raman units, respectively. The appropriate vent pipe diameter for semi-aerobic bioreactor landfills with an 800-mm diameter was 75 mm. The effect of different vent pipe diameters on the degree of waste stabilization is reflected by two main components. Component 1 is related mainly to the content of fulvic acid, biologically degradable material and organic matter. Component 2 is related mainly to the content of tryptophan and humin from the higher vascular plants.
Collapse
Affiliation(s)
- Guobin Jiang
- 1 Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, China
| | - Dan Liu
- 1 Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, China
| | - Weiming Chen
- 1 Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, China
| | - Zhicheng Ye
- 1 Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, China
| | - Hong Liu
- 1 Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, China
| | - Qibin Li
- 1 Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, China
- 2 Laboratory of Treatment for Special Wastewater of Sichuan Province Higher Education System, China
| |
Collapse
|
26
|
Cui HY, Zhao Y, Chen YN, Zhang X, Wang XQ, Lu Q, Jia LM, Wei ZM. Assessment of phytotoxicity grade during composting based on EEM/PARAFAC combined with projection pursuit regression. JOURNAL OF HAZARDOUS MATERIALS 2017; 326:10-17. [PMID: 27987445 DOI: 10.1016/j.jhazmat.2016.09.059] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/14/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Improper treatment of organic waste may result in environmental pollution and harm to plant growth due to the high concentration of phytotoxin. Composting has widely been used for recycling organic waste and reducing phytotoxin to improve soil properties. Assessing the phytotoxicity grades of compost products is essential for achieving high quality compost to guarantee its marketability. In this study, a technique combined parallel factor (PARAFAC) of excitation-emission matrices (EEMs) spectroscopy with projection pursuit regression (PPR) was applied to improve the sensitivity of phytotoxicity assessment during composting. Results showed that composting reduced the concentration of phytotoxin, and increased the germination index (GI). Composts were divided into four grades based on GI values. Five components containing simple DOM (component C1 and C2) and complex DOM (component C3-C5) were successfully developed by PARAFAC. Correlation analysis between phytotoxicity, chemical indices and fluorescence components demonstrated that C1, C4, complex DOM, and the ratio of simple/complex DOM components were more suitable to assess phytotoxicity of composting products. These results revealed that PARAFAC/PPR enabled a rapid and accurate method to assess the phytotoxicity of compost materials for composting plant.
Collapse
Affiliation(s)
- Hong-Yang Cui
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan-Ni Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xu Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xue-Qin Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Qian Lu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Li-Ming Jia
- Environmental Monitoring Center of Heilongjiang Province, China
| | - Zi-Min Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
27
|
Ye Z, Zhang H, Yang L, Wu L, Qian Y, Geng J, Chen M. Effect of a solar Fered-Fenton system using a recirculation reactor on biologically treated landfill leachate. JOURNAL OF HAZARDOUS MATERIALS 2016; 319:51-60. [PMID: 26847521 DOI: 10.1016/j.jhazmat.2016.01.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/23/2015] [Accepted: 01/10/2016] [Indexed: 06/05/2023]
Abstract
The effects of electrochemical oxidation (EO), Fered-Fenton and solar Fered-Fenton processes using a recirculation flow system containing an electrochemical cell and a solar photo-reactor on biochemically treated landfill leachate were investigated. The most successful method was solar Fered-Fenton which achieved 66.5% COD removal after 120min treatment utilizing the optimum operating conditions of 47mM H2O2, 0.29mM Fe(2+), pH0 of 3.0 and a current density of 60mA/cm(2). The generation of hydroxyl radicals (OH) are mainly from Fered-Fenton process, which is enhanced by the introduction of renewable solar energy. Moreover, Fe(2+)/chlorine and UV/chlorine processes taking place in this system also result in additional production of OH due to the relatively high concentration of chloride ions contained in the leachate. The energy consumption was 74.5kWh/kg COD and the current efficiency was 36.4% for 2h treatment. In addition, the molecular weight (MW) distribution analysis and PARAFAC analysis of excitation emission matrix (EEM) fluorescence spectroscopy for different leachate samples indicated that the organics in the leachate were significantly degraded into either small molecular weight species or inorganics.
Collapse
Affiliation(s)
- Zhihong Ye
- Department of Environmental Engineering, Wuhan University, Wuhan 430079, China
| | - Hui Zhang
- Department of Environmental Engineering, Wuhan University, Wuhan 430079, China; Shenzhen Research Institute of Wuhan University, Shenzhen 518057, China.
| | - Lin Yang
- Department of Environmental Engineering, Wuhan University, Wuhan 430079, China
| | - Luxue Wu
- Department of Environmental Engineering, Wuhan University, Wuhan 430079, China
| | - Yue Qian
- Department of Environmental Engineering, Wuhan University, Wuhan 430079, China
| | - Jinyao Geng
- Department of Environmental Engineering, Wuhan University, Wuhan 430079, China
| | - Mengmeng Chen
- Department of Environmental Engineering, Wuhan University, Wuhan 430079, China
| |
Collapse
|
28
|
Hou J, Li M, Xia T, Hao Y, Ding J, Liu D, Xi B, Liu H. Simultaneous removal of ammonia and hydrogen sulfide gases using biofilter media from the biodehydration stage and curing stage of composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:20628-20636. [PMID: 27464668 DOI: 10.1007/s11356-016-7238-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
Biofiltration of NH3 and H2S with different packing media, biodehydration stage compost (BSC), and curing stage compost (CSC) was studied. Meanwhile, fluorescence excitation-emission matrix (EEM) spectroscopy was used to characterize the conversion mechanisms of organic matter during these biofiltration processes. Both biofilters were effective for the simultaneous removal of NH3 and H2S when inlet concentrations of NH3 and H2S were 0-50 and 50-250 mg/m3, respectively. An abrupt increase in the inlet gas concentrations of NH3 and H2S to 100-150 and 200-250 mg/m3, respectively, caused the decrease in the removal efficiencies (REs) of NH3 and H2S in the BSC biofilter, followed by a slow upturn. By contrast, relatively steady REs of both NH3 and H2S were observed in the CSC biofilter. After 60 days of operation, the average REs of NH3 and H2S were more than 95 % in the CSC biofilter. During the operation of CSC, nitrate and nitrite peaked around the 30th day, whereas sulfate showed a steady increase. The excitation-emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC) indicated that the simultaneous inlet of NH3 and H2S facilitated the degradation of protein-like substances, whereas humic-like substances played an important role in the packing filters for the treatment of the two odorous pollutants.
Collapse
Affiliation(s)
- Jiaqi Hou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 8, Dayangfang, Beiyuan Road, Beijing, 100875, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Mingxiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Tianming Xia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yan Hao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jie Ding
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Dongming Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Beidou Xi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 8, Dayangfang, Beiyuan Road, Beijing, 100875, China.
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Hongliang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 8, Dayangfang, Beiyuan Road, Beijing, 100875, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
29
|
He XS, Xi BD, Gao RT, Zhang H, Dang QL, Li D, Huang CH. Insight into the composition and degradation potential of dissolved organic matter with different hydrophobicity in landfill leachates. CHEMOSPHERE 2016; 144:75-80. [PMID: 26347928 DOI: 10.1016/j.chemosphere.2015.08.071] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/14/2015] [Accepted: 08/23/2015] [Indexed: 06/05/2023]
Abstract
Dissolved organic matter (DOM) isolated from the leachates with different landfill ages was fractionated into hydrophobic acid (HOA), hydrophobic neutral (HON), hydrophobic base (HOB) fractions and hydrophilic matter (HIM) based on hydrophobicity, and the composition and degradation potential of the bulk DOM and its fractions were investigated by excitation-emission matrix fluorescence spectra coupled with parallel factor analysis. Results showed that the bulk DOM comprised fulvic-, humic-, tryptophan- and tyrosine-like substances, as well as component C1, whose composition and origin was unidentified. Landfill process increased the content of component C1, fulvic- and humic-like matter. The HON fractions comprised primarily component C1 and tyrosine-like matter. The HOA, HOB and HIM fractions isolated from the young leachates consisted mainly of tryptophan- and tyrosine-like substances. As to the intermediate and old leachates, the HOA and HOB fractions comprised mainly component C1, while the HIM comprised mainly fulvic-like matter. The HIM showed the most resistant against biodegradation among the four fractions, and was the main component of leachate treatment. Advanced oxidation and/or membrane treatment are recommended to remove the HIM fraction due to its hydrophilic and stable characteristics.
Collapse
Affiliation(s)
- Xiao-Song He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bei-Dou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Ru-Tai Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hui Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qiu-Ling Dang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Dan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Cai-Hong Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Innovation Base of Groundwater & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
30
|
Lu X, Chen S, Luo J, Qian G, Liu J, Zhen G, Li YY. Application of a CO2-stripping system for calcium removal to upgrade organic matter removal and sludge granulation in a leachate-fed EGSB bioreactor. RSC Adv 2016. [DOI: 10.1039/c5ra26444h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The application of a CO2-stripping system for calcium removal to upgrade organic matter removal and sludge granulation in a leachate-fed EGSB bioreactor was evaluated.
Collapse
Affiliation(s)
- Xueqin Lu
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai 2004444
- PR China
- Department of Civil and Environmental Engineering
| | - Shanping Chen
- Shanghai Environment Engineering Design Institute Co., Ltd
- Shanghai 200232
- P. R. China
| | - Jinghuan Luo
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai 2004444
- PR China
| | - Guangren Qian
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai 2004444
- PR China
| | - Jianyong Liu
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai 2004444
- PR China
| | - Guangyin Zhen
- Center for Material Cycles and Waste Management Research
- National Institute for Environmental Studies
- Tsukuba
- Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering
- Graduate School of Engineering
- Tohoku University
- Sendai
- Japan
| |
Collapse
|
31
|
Wang Q, Wang W, He X, Zhang W, Song K, Han S. Role and Variation of the Amount and Composition of Glomalin in Soil Properties in Farmland and Adjacent Plantations with Reference to a Primary Forest in North-Eastern China. PLoS One 2015; 10:e0139623. [PMID: 26430896 PMCID: PMC4592192 DOI: 10.1371/journal.pone.0139623] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/14/2015] [Indexed: 11/30/2022] Open
Abstract
The glycoprotein known as glomalin-related soil protein (GRSP) is abundantly produced on the hyphae and spores of arbuscular mycorrhizal fungi (AMF) in soil and roots. Few studies have focused on its amount, composition and associations with soil properties and possible land-use influences, although the data hints at soil rehabilitation. By choosing a primary forest soil as a non-degraded reference, it is possible to explore whether afforestation can improve degraded farmland soil by altering GRSP. In this paper, close correlations were found between various soil properties (soil organic carbon, nitrogen, pH, electrical conductivity (EC), and bulk density) and the GRSP amount, between various soil properties and GRSP composition (main functional groups, fluorescent substances, and elements). Afforestation on farmland decreased the EC and bulk density (p < 0.05). The primary forest had a 2.35–2.56-fold higher GRSP amount than those in the plantation forest and farmland, and GRSP composition (tryptophan-like and fulvic acid-like fluorescence; functional groups of C–H, C–O, and O–H; elements of Al, O, Si, C, Ca, and N) in primary forest differed from those in plantation forest and farmland (p < 0.05). However, no evident differences in GRSP amount and composition were observed between the farmland and the plantation forest. Our finding highlights that 30 years poplar afforestation on degraded farmland is not enough to change GRSP-related properties. A longer period of afforestation with close-to-nature managements may favor the AMF-related underground recovery processes.
Collapse
Affiliation(s)
- Qiong Wang
- Urban Forests and Wetlands Research Group, Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, China
| | - Wenjie Wang
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin, China
- * E-mail:
| | - Xingyuan He
- Urban Forests and Wetlands Research Group, Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, China
| | - Wentian Zhang
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin, China
| | - Kaishan Song
- Urban Forests and Wetlands Research Group, Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, China
| | - Shijie Han
- Research Institute of Forest Ecology and Forestry Ecological Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
32
|
Albrecht R, Verrecchia E, Pfeifer HR. The use of solid-phase fluorescence spectroscopy in the characterisation of organic matter transformations. Talanta 2015; 134:453-459. [DOI: 10.1016/j.talanta.2014.11.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/19/2014] [Accepted: 11/22/2014] [Indexed: 11/28/2022]
|
33
|
Wu C, Li Y, Li W, Wang K. Characterizing the distribution of organic matter during composting of sewage sludge using a chemical and spectroscopic approach. RSC Adv 2015. [DOI: 10.1039/c5ra16050b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present study aimed to investigate the evolution of organic matters during sewage sludge composting with different carbon additives including glucose, sucrose and straw.
Collapse
Affiliation(s)
- Chuandong Wu
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Yunbei Li
- School of Environment
- Henan Normal University
- Xinxiang 453007
- China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWER)
- Harbin Institute of Technology
- Harbin 150090
- China
- School of Municipal and Environmental Engineering
| | - Ke Wang
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
| |
Collapse
|
34
|
Lv B, Xing M, Zhao C, Yang J, Xiang L. Towards understanding the stabilization process in vermicomposting using PARAFAC analysis of fluorescence spectra. CHEMOSPHERE 2014; 117:216-222. [PMID: 25068534 DOI: 10.1016/j.chemosphere.2014.06.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 06/03/2023]
Abstract
In this study, fluorescence excitation-emission matrix (EEM) combined with parallel factor analysis (PARAFAC) was employed to trace the behavior of water extractable organic matter and assess the stabilization process during vermicomposting of sewage sludge and cattle dung. Experiments using different mixing ratios of sewage sludge and cattle dung were conducted using Eisenia fetida. The results showed that vermicomposting reduced the DOC, DOC/DON ratio and ammonia, while increased the nitrate content. A three-component model containing two humic-like materials (components 1 and 2) and a protein-like material (component 3) was successfully developed using PARAFAC analysis. Moreover, the initial waste composition had a significant effect on the distribution of each component and the addition of cattle dung improved the stability of sewage sludge in vermicomposting. The PARAFAC results also indicated that protein-like materials were degraded and humic acid-like compounds were evolved during vermicomposting. Pearson correlation analysis showed that components 2 and 3 are more suitable to assess vermicompost maturity than component 1. In all, EEM-PARAFAC can be used to track organic transformation and assess biological stability during the vermicomposting process.
Collapse
Affiliation(s)
- Baoyi Lv
- Institute of Biofilm Technology (IBT), Key Laboratory of Yangtze River Water Environment, Ministry of Education, State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Meiyan Xing
- Institute of Biofilm Technology (IBT), Key Laboratory of Yangtze River Water Environment, Ministry of Education, State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Chunhui Zhao
- Institute of Biofilm Technology (IBT), Key Laboratory of Yangtze River Water Environment, Ministry of Education, State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jian Yang
- Institute of Biofilm Technology (IBT), Key Laboratory of Yangtze River Water Environment, Ministry of Education, State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Liang Xiang
- Institute of Biofilm Technology (IBT), Key Laboratory of Yangtze River Water Environment, Ministry of Education, State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
35
|
Li M, Xia T, Zhu C, Xi B, Jia X, Wei Z, Zhu J. Effect of short-time hydrothermal pretreatment of kitchen waste on biohydrogen production: fluorescence spectroscopy coupled with parallel factor analysis. BIORESOURCE TECHNOLOGY 2014; 172:382-390. [PMID: 25280046 DOI: 10.1016/j.biortech.2014.09.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/05/2014] [Accepted: 09/06/2014] [Indexed: 06/03/2023]
Abstract
The enhancement of bio-hydrogen production from kitchen waste by a short-time hydrothermal pretreatment at different temperatures (i.e., 90°C, 120°C, 150°C and 200°C) was evaluated. The effects of temperature for the short-time hydrothermal pretreatment on kitchen waste protein conversion and dissolved organic matter characteristics were investigated in this study. A maximum bio-hydrogen yield of 81.27mL/g VS was acquired at 200°C by the short-time hydrothermal pretreatment during the anaerobic fermentative hydrogen production. Analysis of the dissolved organic matter composition showed that the protein-like peak dominated and that three fluorescent components were separated using fluorescence excitation-emission matrix spectra coupled with the parallel factor model. The maximum fluorescence intensities of protein-like components decomposed through the parallel factor analysis has a significant correlation with the raw protein concentration, showed by further correlation analysis. This directly impacted the hydrogen production ability.
Collapse
Affiliation(s)
- Mingxiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tianming Xia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Chaowei Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuan Jia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zimin Wei
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Jinlong Zhu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
36
|
He XS, Xi BD, Li X, Pan HW, An D, Bai SG, Li D, Cui DY. Fluorescence excitation-emission matrix spectra coupled with parallel factor and regional integration analysis to characterize organic matter humification. CHEMOSPHERE 2013; 93:2208-2215. [PMID: 23706894 DOI: 10.1016/j.chemosphere.2013.04.039] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 04/02/2013] [Accepted: 04/17/2013] [Indexed: 06/02/2023]
Abstract
The present several humification indexes cannot provide the whole fluorescence information on organic matter composition and the evaluation results from them are inconsistent sometimes. In this study, fluorescence excitation-emission matrix spectra coupled with parallel factor analysis and fluorescence regional integration analysis were utilized to investigate organic matter humification, and the projection pursuit cluster (PPC) model was applied to form a suitable index for overcoming the difficulties in multi-index evaluation. The result showed that the ratio between the volume of humic- and fulvic-like fluorescence region and the volume of protein-like fluorescence region not only revealed the heterogeneity of organic matter, but also provided more accurate information on organic matter humification. In addition, the results showed that the PPC model could be used to characterize integrally the humification, and the projected characteristic value calculated from the PPC model could be used as the integrated humification evaluation index.
Collapse
Affiliation(s)
- Xiao-Song He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Laboratory of Water Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhou J, Wang JJ, Baudon A, Chow AT. Improved fluorescence excitation-emission matrix regional integration to quantify spectra for fluorescent dissolved organic matter. JOURNAL OF ENVIRONMENTAL QUALITY 2013; 42:925-930. [PMID: 23673961 DOI: 10.2134/jeq2012.0460] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The purpose of this short communication is to demonstrate the importance of numerical analysis and wavelength increment selection when characterizing fluorescent dissolved organic matter (FDOM) using fluorescence excitation-emission matrix (EEM) regional integration. A variety of water samples, representing a landscape gradient and different types of FDOM, were analyzed for their percentage distribution of five operationally defined FDOM fractions (aromatic protein I, aromatic protein II, fulvic acid-like, soluble microbial byproduct-like, and humic acid-like) using three numerical methods in integrating volume under the surface of the fluorescence EEMs: Riemann summation, composite trapezoidal rule, and composite Simpson's rule. The influence of wavelength increment was also examined for the precision of the percentage distribution of each fraction. Our results show that the FDOM fraction estimated by Riemann summation with a 10- or 5-nm excitation wavelength can cause >40% or >5% errors, respectively, when compared with the best estimated values obtained by averaging results from composite trapezoidal rule and composite Simpson's rule with 1-nm excitation wavelength at the same emission increment. Also, our experiments show that fluorescence matrix regional integration could underestimate the two aromatic protein fractions but could overestimate the soluble microbial byproduct-like and humic acid-like fractions if improper increment and integral methods are used. The error can be reduced if a smaller wavelength increment is used. The smallest increment in a spectrofluorometer and composite Simpson's rule should be used for scanning fluorescence EEMs and calculating the percentage distribution of each FDOM fraction. Alternatively, 5-nm wavelength increments with composite Simpson's rule could be cost effective, and the error of each FDOM fraction commonly falls within 5% compared with those estimated by 1-nm increments.
Collapse
|