1
|
Zhang J, Wang D, Liu J, Huang Y, Yang H, Deng L. How to combine SBR and A/O process for pollutant removal in treating digested effluent of swine wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124189. [PMID: 39842361 DOI: 10.1016/j.jenvman.2025.124189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/29/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
To solve the problem of low chemical oxygen demand (COD)/N and poor efficiency of single-stage sequencing batch reactor (SBR) or anoxic/oxic process (A/O) in treatment of digested effluent of swine wastewater, combined SBR-A/O and A/O-SBR processes were employed in the addition ratios of 0, 10%, 30%, and 40% (V/V)) of raw swine wastewater (RS). Analysis of pollutants removal performance of SBR-A/O and A/O-SBR systems showed no significant difference between the two systems without RS addition. However, after adding RS, the pollutants removal efficiency of the two systems increased with the increase in the ratio of RS, with SBR-A/O system presenting better pollutants removal performance than A/O-SBR system. The SBR-A/O system exhibited the best pollutant removal performance in the 40% RS addition, with the effluent concentrations of COD, ammonium nitrogen (NH4+-N), and total inorganic nitrogen (TIN) reaching 428, 8.82, and 134 mg/L, respectively. The first-stage reactor (SBR) of SBR-A/O system ensured high NH4+-N and TIN removal owing to its high COD/NOx-N and dissolved oxygen levels, while the second-stage reactor (A/O) of the SBR-A/O system ensured low effluent COD. The COD, NH4+-N, and TIN removal efficiencies of the SBR-A/O system were 3.3, 0.2, and 0.6 percentage points higher than those of the A/O-SBR system in the 40% RS addition, respectively. The better pollutants removal efficiency of SBR-A/O system could be attributed to the higher sludge concentration, sludge specific activity, and functional bacterial abundance, when compared with those in the A/O-SBR system.
Collapse
Affiliation(s)
- Jingni Zhang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China
| | - Dongxu Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China
| | - Jiaxin Liu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China
| | - Yan Huang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China
| | - Hongnan Yang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China
| | - Liangwei Deng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China.
| |
Collapse
|
2
|
Wang B, Wang Y, Fang J, Feng Z, Hu H, Zhong H, Chen S, Li J. Exogenous C6-HSL enhanced the cometabolic removal of sulfadiazine by an enriched ammonia oxidizing bacteria culture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125396. [PMID: 39586454 DOI: 10.1016/j.envpol.2024.125396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/14/2024] [Accepted: 11/23/2024] [Indexed: 11/27/2024]
Abstract
The removal of antibiotics in wastewater treatment plants (WWTPs) is generally insufficient. Studies have proved that ammonia-oxidizing bacteria (AOB) are capable of degrading antibiotics through cometabolism. However, the actual operating conditions in WWTPs are generally unfavorable for AOB to fully reach its cometabolic potential. Studies have demonstrated that exogenous N-acyl homoserine lactones (AHLs) can enhance the treatment efficiency of wastewater treatment microorganisms by regulating their quorum sensing system. However, few studies have reported the effect of exogenous AHLs on the cometabolic removal of antibiotics by AOB. In this study, a typical AHL, N-hexanoyl-L-homoserine lactone (C6-HSL), was selected to explore its effects on the cometabolic removal of a typical antibiotic, sulfadiazine (SDZ), by an enriched AOB culture and the microbial responses of the culture during the process. The results showed that the exposure to SDZ (0.1-10 mg/L) led to the decrease in ammonia oxidation rate, the concentrations of intracellular adenosine triphosphate and ammonia oxygenase (AMO) and the abundances of amoA gene and AOB, while more extracellular polymeric substances (EPS) were secreted to resist the adverse effects brought by SDZ. With the simultaneous addition of SDZ (1 and 10 mg/L) and exogenous C6-HSL (1 μM), it was found that C6-HSL significantly enhanced the removal efficiency and rate of SDZ by the enriched AOB culture. By promoting EPS secretion, strengthening energy metabolism, promoting AMO synthesis, increasing AOB and amoA gene abundances and altering microbial community structure, C6-HSL restored the microbial activity and alleviated the pressure on microorganisms induced by SDZ. It is expected that this study could provide a new strategy for enhancing antibiotics removal in wastewater.
Collapse
Affiliation(s)
- Bingzheng Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Yaqin Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Jiali Fang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Ziheng Feng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Haoxing Hu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Huiyun Zhong
- School of Urban Construction, Changzhou University, Changzhou, 213164, China
| | - Sisi Chen
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Ji Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, 215009, China.
| |
Collapse
|
3
|
Tian Y, Li Y, Zhang H, Huang T, Tian W, Wang Z, Qian J. Synergy between bacteria and fungi contributes to biodegradation and methane production of lignocellulosic anaerobic co-digestion exposing to surfactants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123579. [PMID: 39642824 DOI: 10.1016/j.jenvman.2024.123579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/02/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Surfactant is generally regarded to enhance the hydrolysis rate and favor high efficiency which however has not been revealed in the lignocellulosic anaerobic co-digestion process. In particular, the responses and functions of fungal community exposing to surfactants remain largely unknown. In this study, the roles of dodecyl dimethyl benzyl ammonium chloride (DDBAC, cationic), linear alkylbenzene sulfonate (LAS, anionic) and Triton X-100 (TX, nonionic) surfactants on the lignocellulosic anaerobic co-digestion were investigated. 1 mg/L DDBAC, LAS and TX promoted the degradation of lignocellulose and increased biogas yields by 6.85%, 62.76% and 36.96% comparing with the control group (CK). LAS and TX stimulated the growth of Prevotella, Petrimonas and Romboutsia, produced higher activities of cellulase (averagely 4.22 and 3.73 times of CK), generated more volatile fatty acids (VFAs, averagely 2.94 and 2.44 times of CK) and NH4+-N (averagely 1.91 and 1.63 times of the control group), and finally realized efficient acetoclastic methanogenesis. The abundant fungi genera, Pseudallescheria, Pseudeurotium, Monascus and Aspergillus were significantly correlated to lignin, cellulose, VFAs, ammonia nitrogen (NH4+-N), cellulase and coenzyme F420 activities (p < 0.05). Surfactants exposure damaged the connectivity of Proteobacteria with other microbes in the co-occurrence networks while increased the connectivity of Ascomycota to offset the disturbance of surfactants on the fungal community. The synergistic interaction between bacteria and fungi achieved efficient substrate degradation, contributed to the stability of microbial community and resulted in high biogas production. This research provided references for further management of surfactants exposed lignocellulosic anaerobic co-digestion process and systematically biowaste treatment in large-scale farms.
Collapse
Affiliation(s)
- Yonglan Tian
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China.
| | - Ying Li
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China
| | - Huayong Zhang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China.
| | - Tousheng Huang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China
| | - Wang Tian
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China
| | - Zhongyu Wang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China
| | - Jundong Qian
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|
4
|
Yu S, Chen Z, Li M, Qiu S, Lv Z, Ge S. Principles, challenges, and optimization of indigenous microalgae-bacteria consortium for sustainable swine wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 406:131055. [PMID: 38944316 DOI: 10.1016/j.biortech.2024.131055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Indigenous microalgae-bacteria consortium (IMBC) offers significant advantages for swine wastewater (SW) treatment including enhanced adaptability and resource recovery. In this review, the approaches for enriching IMBC both in situ and ex situ were comprehensively described, followed by symbiotic mechanisms for IMBC which involve metabolic cross-feeding and signal transmission. Strategies for enhancing treatment efficiencies of SW-originated IMBC were then introduced, including improving SW quality, optimizing system operating conditions, and adjusting microbial activities. Recommendations for maximizing treatment efficiencies were particularly proposed using a decision tree approach. Moreover, removal/recovery mechanisms for typical pollutants in SW using IMBC were critically discussed. Ultimately, a technical route termed SW-IMBC-Crop-Pig was proposed, to achieve a closed-loop economy for pig farms by integrating SW treatment with crop cultivation. This review provides a deeper understanding of the mechanism and strategies for IMBC's resource recovery from SW.
Collapse
Affiliation(s)
- Sheng Yu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Mengting Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| | - Zhe Lv
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| |
Collapse
|
5
|
de Oliveira JF, Fia R, de Melo AFSR, Fia FRL, Rodrigues FN, Siniscalchi LAB, de Matos MP. Organic stabilization and methane production under different organic loading rates in UASB treating swine wastewater. Biodegradation 2024; 35:389-405. [PMID: 37966620 DOI: 10.1007/s10532-023-10060-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 10/03/2023] [Indexed: 11/16/2023]
Abstract
This study proposes the was to evaluate the stability and methane production with organic load differents in an upflow anaerobic sludge blanket reactor (UASB) treating swine wastewater by methods of multivariate analysis. Four organic loads were used with average hydraulic holding times of one day. The methods of data analysis of linear regression, Pearson correlation, principal component analysis and hierarchical clustering analysis were used for understanding stability and methane production in the reactor. The highest concentrations of bicarbonate alkalinity of 683 mg L-1 CaCO3 and total volatile acids of 1418 mg L-1 HAc with maximum organic loading applied were obtained. The optimal stability conditions occurred at an intermediate and partial alkalinity ratio between 0.24 and 0.25 observed in initial phases with a chemical oxygen demand (COD) removal of 47-57%. Maximum methane production was 9.0 L CH4 d-1 observed with linear regression positive and occurred at the highest applied organic load, corresponding to the highest COD removal efficiency and increased microbial biomass. Positive and negative correlation between functional stability in anaerobic digestion showed regular activity between acids, alkalinity and organic matter removal. This fact was also proven by the analysis of principal components that showed three components responsible for explaining 83.2% of the data variability, and the alkalinity, organic matter influent and organic acids had the greatest effects on the stability of the UASB reactor. Hierarchical clusters detected the formation of five groupings with a similarity of 50.1%, indicating that temperature and pH were variables with unitary influences on data dimensionality.
Collapse
Affiliation(s)
- Jacineumo Falcão de Oliveira
- Department of Engineering and Technology, Federal University of the Semi-Arid Region, UFERSA, Pau dos Ferros, Rio Grande do Norte, 59900-000, Brazil
| | - Ronaldo Fia
- Department of Environmental Engineering, School of Engineering, Federal University of Lavras, UFLA, Lavras, Minas Gerais, 37200-000, Brazil
| | - Ana Flavia Santos Rabelo de Melo
- Department of Environmental Engineering, School of Engineering, Federal University of Lavras, UFLA, Lavras, Minas Gerais, 37200-000, Brazil
| | - Fátima Resende Luiz Fia
- Department of Environmental Engineering, School of Engineering, Federal University of Lavras, UFLA, Lavras, Minas Gerais, 37200-000, Brazil
| | | | - Luciene Alves Batista Siniscalchi
- Department of Environmental Engineering, School of Engineering, Federal University of Lavras, UFLA, Lavras, Minas Gerais, 37200-000, Brazil
| | - Mateus Pimentel de Matos
- Department of Environmental Engineering, School of Engineering, Federal University of Lavras, UFLA, Lavras, Minas Gerais, 37200-000, Brazil
| |
Collapse
|
6
|
Yue W, Chen Y, Sui Q, Zheng L, Ritigala T, Wei Y. The Performance and Spatial Distribution of Membrane Fouling in a Sequencing Batch Ceramic Membrane Bioreactor: A Pilot Study for Swine Wastewater Treatment. MEMBRANES 2024; 14:142. [PMID: 38921509 PMCID: PMC11206136 DOI: 10.3390/membranes14060142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/27/2024]
Abstract
The extensive application of ceramic membranes in wastewater treatment draws increasing attention due to their ultra-long service life. A cost-effective treatment for high-strength swine wastewater is an urgent and current need that is a worldwide challenge. A pilot-scale sequencing batch flat-sheet ceramic membrane bioreactor (ScMBR) coupled with a short-cut biological nitrogen removal (SBNR) process was developed to treat high-strength swine wastewater. The ScMBR achieved stable and excellent removal of COD (95.3%), NH4+-N (98.3%), and TN (92.7%), though temperature went down from 20 °C, to 15 °C, to 10 °C stepwise along three operational phases. The COD and NH4+-N concentrations in the effluent met with the discharge standards (GB18596-2001). Microbial community diversity was high, and the genera Pseudomonas and Comamonas were dominant in denitritation, and Nitrosomonas was dominant in nitritation. Ceramic membrane modules of this pilot-scale reactor were separated into six layers (A, B, C, D, E, F) from top to bottom. The total filtration resistance of both the top and bottom membrane modules was relatively low, and the resistance of the middle ones was high. These results indicate that the spatial distribution of the membrane fouling degree was different, related to different aeration scour intensities demonstrated by computational fluid dynamics (CFD). The results prove that the membrane fouling mechanism can be attributed to the cake layer formation of the middle modules and pore blocking of the top and bottom modules, which mainly consist of protein and carbohydrates. Therefore, different cleaning measures should be adopted for membrane modules in different positions. In this study, the efficient treatment of swine wastewater shows that the ScMBR system could be applied to high-strength wastewater. Furthermore, the spatial distribution characteristics of membrane fouling contribute to cleaning strategy formulation for further full-scale MBR applications.
Collapse
Affiliation(s)
- Wenhui Yue
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.Y.); (Y.C.); (Q.S.); (L.Z.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlin Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.Y.); (Y.C.); (Q.S.); (L.Z.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qianwen Sui
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.Y.); (Y.C.); (Q.S.); (L.Z.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Libing Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.Y.); (Y.C.); (Q.S.); (L.Z.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tharindu Ritigala
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.Y.); (Y.C.); (Q.S.); (L.Z.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.Y.); (Y.C.); (Q.S.); (L.Z.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Zhou L, Liang M, Zhang D, Niu X, Li K, Lin Z, Luo X, Huang Y. Recent advances in swine wastewater treatment technologies for resource recovery: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171557. [PMID: 38460704 DOI: 10.1016/j.scitotenv.2024.171557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Swine wastewater (SW), characterized by highly complex organic and nutrient substances, poses serious impacts on aquatic environment and public health. Furthermore, SW harbors valuable resources that possess substantial economic potential. As such, SW treatment technologies place increased emphasis on resource recycling, while progressively advancing towards energy saving, sustainability, and circular economy principles. This review comprehensively encapsulates the state-of-the-art knowledge for treating SW, including conventional (i.e., constructed wetlands, air stripping and aerobic system) and resource-utilization-based (i.e., anaerobic digestion, membrane separation, anaerobic ammonium oxidation, microbial fuel cells, and microalgal-based system) technologies. Furthermore, this research also elaborates the key factors influencing the SW treatment performance, such as pH, temperature, dissolved oxygen, hydraulic retention time and organic loading rate. The potentials for reutilizing energy, biomass and digestate produced during the SW treatment processes are also summarized. Moreover, the obstacles associated with full-scale implementation, long-term treatment, energy-efficient design, and nutrient recovery of various resource-utilization-based SW treatment technologies are emphasized. In addition, future research prospective, such as prioritization of process optimization, in-depth exploration of microbial mechanisms, enhancement of energy conversion efficiency, and integration of diverse technologies, are highlighted to expand engineering applications and establish a sustainable SW treatment system.
Collapse
Affiliation(s)
- Lingling Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Ming Liang
- Bureau of Ecology and Environment, Maoming 525000, PR China
| | - Dongqing Zhang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China.
| | - Xiaojun Niu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Sino-Singapore International Joint Research Institute, Guangzhou 510700, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Kai Li
- The Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China.
| | - Zitao Lin
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Xiaojun Luo
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Yuying Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| |
Collapse
|
8
|
Li L, Ai J, He H, Hu A, Su P, Zhou H, Wang D, Zhang W. Molecular-level insights into the transformation and degradation pathways of dissolved organic matter during full-scale swine wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168604. [PMID: 37979879 DOI: 10.1016/j.scitotenv.2023.168604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
The rapid development of swine farming has resulted in the generation of a large amount of swine wastewater (SW), and dissolved organic matter (DOM) has a crucial role in determining the efficiency and safety of SW treatment. In this study, the transformation and influential mechanisms of DOM on the quality of SW effluent during full-scale SW treatment in actual engineering were systematically investigated using multispectral analysis and the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) technique. The results showed that S-containing, reduced, saturated, and less aromatic molecules were preferentially removed in the C-AF, while C-S preferentially removed reduced, unsaturated, and aromatic molecules, as well as molecules with large molecular weights. And in the two-stage A/O, the degradation of organic matter and DOM transformation occurred mainly in the A/O-1, with the A/O-2 acting as a supplement to further enhance the humification of DOM. Furthermore, the AOP preferentially removed lignin-like and highly unsaturated compounds, replacing them with a new generation of substances such as proteins and tannins with low aromaticity and unsaturation. More deeply, oxygen addition reactions dominate in both A/O and AOP. Specifically, the most common types of reactions in the A/O were the corresponding potential precursor-product pairs based on methyl to carboxylic acid (-H2 + O2) and alcohol to carboxylic acid (-H2 + O), while tri-hydroxylation (+O3) and di-hydroxylation (+H2O2) reactions were predominant in the AOP. Finally, the study's findings might suggest improving the actual engineering by prioritizing the AOP before the A/O-2 and using the C-S for safeguard treatment of the A/O-2 effluent. It is reliable that this kind of adjustment guarantees safe drainage indications and raises each process unit's efficiency in purifying.
Collapse
Affiliation(s)
- Lanfeng Li
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Jing Ai
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Hang He
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Aibin Hu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Peng Su
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Hao Zhou
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Dongsheng Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China.
| |
Collapse
|
9
|
Wang H, Yang J, Zhang H, Zhao J, Liu H, Wang J, Li G, Liang H. Membrane-based technology in water and resources recovery from the perspective of water social circulation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168277. [PMID: 37939956 DOI: 10.1016/j.scitotenv.2023.168277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
In this review, the application of membrane-based technology in water social circulation was summarized. Water social circulation encompassed the entire process from the acquirement to discharge of water from natural environment for human living and development. The focus of this review was primarily on the membrane-based technology in recovery of water and other valuable resources such as mineral ions, nitrogen and phosphorus. The main text was divided into four main sections according to water flow in the social circulation: drinking water treatment, agricultural utilization, industrial waste recycling, and urban wastewater reuse. In drinking water treatment, the acquirement of water resources was of the most importance. Pressure-driven membranes, such as ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) were considered suitable in natural surface water treatment. Additionally, electrodialysis (ED) and membrane capacitive deionization (MCDI) were also effective in brackish water desalination. Agriculture required abundant water with relative low quality for irrigation. Therefore, the recovery of water from other stages of the social circulation has become a reasonable solution. Membrane bioreactor (MBR) was a typical technique attributed to low-toxicity effluent. In industrial waste reuse, the osmosis membranes (FO and PRO) were utilized due to the complex physical and chemical properties of industrial wastewater. Especially, membrane distillation (MD) might be promising when the wastewater was preheated. Resources recovery in urban wastewater was mainly divided into recovery of bioenergy (via anaerobic membrane bioreactors, AnMBR), nitrogen (utilizing MD and gas-permeable membrane), and phosphorus (through MBR with chemical precipitation). Furthermore, hybrid/integrated systems with membranes as the core component enhanced their performance and long-term working ability in utilization. Generally, concentrate management and energy consumption control might be the key areas for future advancements of membrane-based technology.
Collapse
Affiliation(s)
- Hesong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jiaxuan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Han Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jing Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Hongzhi Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jinlong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
10
|
Hollas CE, do Amaral KGC, Lange MV, Higarashi MM, Steinmetz RLR, Mariani LF, Nakano V, Sanches-Pereira A, de Martino Jannuzzi G, Kunz A. Livestock waste management for energy recovery in Brazil: a life cycle assessment approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4705-4720. [PMID: 38110673 DOI: 10.1007/s11356-023-31452-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023]
Abstract
Livestock farming has exerted intense environmental pressure on our planet. The high emissions to the environment and the high demands of resources for the production process have encouraged the search for decarbonization and circularity in the livestock sector. In this context, the objective of this study was to evaluate and compare the environmental performance of two different uses for biogas generated in the anaerobic digestion of animal waste, either for electricity generation or biomethane. For this purpose, a life cycle assessment approach was applied to evaluate the potential of anaerobic digestion as a management technology for three different livestock wastes, related to beef cattle, dairy, and sheep in the Brazilian animal production context. The results suggest that the treatment scenarios focusing on biomethane generation were able to mitigate the highest percentage of damages (77 to 108%) in the global warming category when compared to the scenarios without the use of anaerobic digestion (3.00·102 to 3.71·103 kgCO2 eq) or in the perspective of electricity generation (mitigation of 74 to 96%). In terms of freshwater eutrophication, the generation of electricity (- 2.17·10-2 to 2.31·10-3 kg P eq) is more favorable than the purification of biogas to biomethane (- 1.73·10-2 to 2.44·10-3 kg P eq), due to the loss of methane in the upgrading process. In terms of terrestrial ecotoxicity, all scenarios are very similar, with negative values (- 1.19·101 to - 7.17·102 kg 1,4-DCB) due to the benefit of nutrient recovery, especially nitrogen, associated with the use of digestate as fertilizer, which was one of the critical points in all scenarios. Based on these results, it is evident that proper management of all stages of the treatment life cycle is the key to decarbonization and circularity in livestock waste management. The biogas use does not present different effects on the environmental performance of the scenarios studied, demonstrating that the purpose should be chosen according to the needs of each plant or management system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alessandro Sanches-Pereira
- , Instituto 17, São Paulo, SP, Brazil
- Curtin University Sustainability Policy Institute, Perth, WA, Australia
| | | | - Airton Kunz
- Embrapa Suínos e Aves, Concórdia, SC, Brazil.
| |
Collapse
|
11
|
Ding C, Chen LB, Yu LP, Wang R, Yuan LJ, Wang L, Deng LW. Applying sheet iron to enhance the treatment efficiency of digested effluent with continuous flow and the corresponding mechanism. CHEMOSPHERE 2023; 340:139912. [PMID: 37611761 DOI: 10.1016/j.chemosphere.2023.139912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/25/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Because of the unstable wastewater quantity and quality, the biological treatment efficiency of digested effluent was not as expected. A convenient and effective way was eagerly required to improve the efficiency of biological treatment. By sheet iron addition (R1), the COD and TN removal efficiencies under continuous flow condition increased by 59% and 37% respectively. The bulk pH maintained at around 7.5 which benefited most bacteria, while in the control (R0, without sheet iron addition) the pH decreased to 5.0. Both chemical and bio-removal of COD existed in R1, but the chemical removal dominated (63.71%). The enhanced COD removal efficiency came from the chemical oxidation by Fe3+ (47.43%) and Fe0 (10.86%). For the TN removal, the enhancement mainly came from the improvement of anammox activity by Fe3+ (14.87%), the bio-oxidation of ammonium with Fe3+ as electron acceptor (8.78%), and the bio-reduction of nitrate/nitrite with Fe2+ and H2 as electron donor (35.76%). By the first-order kinetic fitting analysis, the COD and TN removal rate in R1 was higher than that in R0. Thus, for a quick and high COD and TN removal from digested effluent, the addition of Fe0/Fe2+/Fe3+ was suggested, and the best form should be Fe0 (e.g., sheet iron). The addition of sheet iron reduces the cost of nitrogen removal and improves the efficiency of COD and TN removal. Comparing with the combined processes, this novel approach has potential advantages with simple operation and high efficiency. It endows the biological process much broader application in digested effluent treatment.
Collapse
Affiliation(s)
- Cong Ding
- Department of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Li-Bin Chen
- Shaanxi Land Engineering Construction Group Co. Ltd., Xi'an, 710075, PR China.
| | - Li-Ping Yu
- Shuifa Technology Group Co. Ltp, Jinan, 250000, PR China.
| | - Ru Wang
- Department of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Lin-Jiang Yuan
- Department of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Lan Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China.
| | - Liang-Wei Deng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China.
| |
Collapse
|
12
|
Ochoa-Hernández ME, Reynoso-Varela A, Martínez-Córdova LR, Rodelas B, Durán U, Alcántara-Hernández RJ, Serrano-Palacios D, Calderón K. Linking the shifts in the metabolically active microbiota in a UASB and hybrid anaerobic-aerobic bioreactor for swine wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118435. [PMID: 37379625 DOI: 10.1016/j.jenvman.2023.118435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Due to the high concentration of pollutants, swine wastewater needs to be treated prior to disposal. The combination of anaerobic and aerobic technologies in one hybrid system allows to obtain higher removal efficiencies compared to those achieved via conventional biological treatment, and the performance of a hybrid system depends on the microbial community in the bioreactor. Here, we evaluated the community assembly of an anaerobic-aerobic hybrid reactor for swine wastewater treatment. Sequencing of partial 16S rRNA coding genes was performed using Illumina from DNA and retrotranscribed RNA templates (cDNA) extracted from samples from both sections of the hybrid system and from a UASB bioreactor fed with the same swine wastewater influent. Proteobacteria and Firmicutes were the dominant phyla and play a key role in anaerobic fermentation, followed by Methanosaeta and Methanobacterium. Several differences were found in the relative abundances of some genera between the DNA and cDNA samples, indicating an increase in the diversity of the metabolically active community, highlighting Chlorobaculum, Cladimonas, Turicibacter and Clostridium senso stricto. Nitrifying bacteria were more abundant in the hybrid bioreactor. Beta diversity analysis revealed that the microbial community structure significantly differed among the samples (p < 0.05) and between both anaerobic treatments. The main predicted metabolic pathways were the biosynthesis of amino acids and the formation of antibiotics. Also, the metabolism of C5-branched dibasic acid, Vit B5 and CoA, exhibited an important relationship with the main nitrogen-removing microorganisms. The anaerobic-aerobic hybrid bioreactor showed a higher ammonia removal rate compared to the conventional UASB system. However, further research and adjustments are needed to completely remove nitrogen from wastewater.
Collapse
Affiliation(s)
- María E Ochoa-Hernández
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N. CP., 83000, Hermosillo, Sonora, Mexico
| | - Andrea Reynoso-Varela
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur., Ciudad Obregón, Sonora, CP.85000, Mexico
| | - Luis R Martínez-Córdova
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N. CP., 83000, Hermosillo, Sonora, Mexico
| | - Belén Rodelas
- Department of Microbiology and Institute of Water Research, University of Granada, Spain
| | - Ulises Durán
- Universidad Autónoma Metropolitana, Biotechnology Dept., P.A. 55-535, 09340, Iztapalapa, Mexico City, Mexico
| | - Rocío J Alcántara-Hernández
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Del. Coyoacán, 04510, Ciudad de México, Mexico
| | - Denisse Serrano-Palacios
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur., Ciudad Obregón, Sonora, CP.85000, Mexico.
| | - Kadiya Calderón
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N. CP., 83000, Hermosillo, Sonora, Mexico.
| |
Collapse
|
13
|
Cheng HH, Whang LM. Applying metabolic flux analysis to hydrogen fermentation using a metabolic network constructed for anaerobic mixed cultures. ENVIRONMENTAL RESEARCH 2023; 235:116636. [PMID: 37442252 DOI: 10.1016/j.envres.2023.116636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
In this study, a mixed-cultural metabolic network for anaerobic digestion that included the concept of a "universal bacterium" was constructed, and metabolic flux analysis (MFA) applying this network was conducted to evaluate the flow of electrons and materials during H2 fermentation under various conditions. The MFA results from two H2 fermenters feeding glucose with (GP) or without (GA) the addition of peptone suggest that hydraulic retention time (HRT) presents a significant impact on hydrogen production, and the reversed trends could be observed at HRTs below and above 4 h. From the MFA results of lactate/acetate-fed H2 fermenter, the highest flux of H2 production is associated with more significant acetate consumption and the following pathways toward the anaplerotic reactions cycle that produces NADH. The occurrence of acetogenesis in the H2 fermenters using various types of bioethanol-fermented residues (BEFRs) was also identified according to the MFA results. By analyzing the MFA results of all 49 sets of data from H2 fermenters via Pearson's correlation, it was revealed that the flux of H2 production positively correlates to the reduction of ferredoxin with pyruvate oxidation, acetate formation, and acetate emission when lactate was produced in the system. On the contrary, negative relationships were found between the flux of H2 production and these three fluxes. The extended application of MFA provides additional information, including the fluxes between intracellular metabolites, and the information has the potential to be used in decision-making systems during the future operation of anaerobic processes by connecting operational parameters.
Collapse
Affiliation(s)
- Hai-Hsuan Cheng
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Liang-Ming Whang
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan; Sustainable Environment Research Laboratory (SERL), National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan.
| |
Collapse
|
14
|
Domingues E, Lincho J, Fernandes MJ, Gomes J, Martins RC. Low-cost materials for swine wastewater treatment using adsorption and Fenton's process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-29677-1. [PMID: 37721675 DOI: 10.1007/s11356-023-29677-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023]
Abstract
Untreated swine wastewater (SW) discharge leads to serious consequences such as water quality decreasing related to eutrophication and proliferation of harmful algae containing cyanotoxins, which can cause acute intoxication in humans. The use of untreated pig farming effluent as fertilizer can lead to the accumulation of polluting compounds. Biological treatments can degrade organic matter but have the disadvantage of requiring large areas and high retention times and demonstrating low efficiencies in the degradation of refractory compounds such as pharmaceutical compounds. In this ambit, the performance of four low-cost materials was evaluated for treatment of a swine wastewater using physical-chemical processes such as adsorption and Fenton's process. The tested materials are two natural resources, red volcanic rock from Canary (RVR) Islands and black volcanic rock (BVR) from Azores, and two industry residues, red mud (RM) and iron filings (IF). Among the tested materials, only IFs are catalytically active for Fenton's peroxidation. Still, RVR, BVR, and RM were efficient adsorbents removing up to 67% of COD. The combination between adsorption followed by Fenton's process using IF as catalyst showed interesting results. When RM is applied as adsorbent in the diluted effluent, it was able to remove 67% and 90% of COD for adsorption and adsorption followed by IF Fenton, respectively. At those conditions, the resultant treated effluent accomplishes the requirements for direct discharge in the natural water courses as well as the parameters for water reusing.
Collapse
Affiliation(s)
- Eva Domingues
- CIEPQPF-Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Polo II, 3030-790, Coimbra, Portugal
| | - João Lincho
- CIEPQPF-Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Polo II, 3030-790, Coimbra, Portugal
| | - Maria J Fernandes
- CIEPQPF-Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Polo II, 3030-790, Coimbra, Portugal
| | - João Gomes
- CIEPQPF-Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Polo II, 3030-790, Coimbra, Portugal
| | - Rui C Martins
- CIEPQPF-Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Polo II, 3030-790, Coimbra, Portugal.
| |
Collapse
|
15
|
Deng L, Zheng D, Zhang J, Yang H, Wang L, Wang W, He T, Zhang Y. Treatment and utilization of swine wastewater - A review on technologies in full-scale application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163223. [PMID: 37019235 DOI: 10.1016/j.scitotenv.2023.163223] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 05/27/2023]
Abstract
The management of swine wastewater has become the focus of attention in the farming industry. The disposal mode of swine wastewater can be classified as field application of treated waste and treatment to meet discharge standards. The status of investigation and application of unit technology in treatment and utilization such as solid-liquid separation, aerobic treatment, anaerobic treatment, digestate utilization, natural treatment, anaerobic-aerobic combined treatment, advanced treatment, are reviewed from the full-scale application perspective. The technologies of anaerobic digestion-land application is most appropriate for small and medium-sized pig farms or large pig farms with enough land around for digestate application. The process of "solid-liquid separation-anaerobic-aerobic-advanced treatment" to meet the discharge standard is most suitable for large and extra-large pig farms without enough land. Poor operation of anaerobic digestion unit in winter, hard to completely utilize liquid digestate and high treatment cost of digested effluent for meeting discharge standard are established as the main difficulties.
Collapse
Affiliation(s)
- Liangwei Deng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.
| | - Dan Zheng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Jingni Zhang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Hongnan Yang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Lan Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Wenguo Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Ting He
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Yunhong Zhang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China; Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| |
Collapse
|
16
|
Liu J, Gao J, Zhong Z, Cheng Y, Zhang B. Tracing the variation of dissolved organic matter in the two-stage anoxic/aerobic process treating swine wastewater using fluorescence excitation-emission matrix with parallel factor analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58663-58673. [PMID: 36997785 DOI: 10.1007/s11356-023-26773-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/28/2023] [Indexed: 05/10/2023]
Abstract
Swine wastewater has become one of the main agricultural pollution sources. Quantitative characterization of dissolved organic matter (DOM) is often used in various water bodies, but there are few studies on DOM analysis of swine wastewater. In this study, swine wastewater was treated by a step-feed two-stage anoxic/aerobic (SF-A/O/A/O) process. By using parallel factor (PARAFAC) analysis of fluorescence excitation-emission matrix (EEM), the main components of swine wastewater were aromatic protein-like substances (C1), tryptophan-like substances (C2), fulvic acid-like/humic-like substances (C3) and humic-like substances (C4). Protein-like substances were degraded significantly, while humic-like substances were difficult to be utilized by microorganisms. Fluorescence spectral indexes showed that the characteristics of endogenous input and humus were enhanced. Moreover, several significant correlations between DOM components, fluorescence spectral indexes and water quality indexes were observed. These findings help to understand the biochemical role and the impact of DOM in water quality monitoring and control of swine wastewater.
Collapse
Affiliation(s)
- Jingjing Liu
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- College of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, China
- School of Environmental Sciences and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jinliang Gao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhenxing Zhong
- College of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, China.
- School of Environmental Sciences and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Yayun Cheng
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, 150091, China
| | - Beiping Zhang
- School of Environmental Sciences and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
17
|
Hu C, Sun X, Zhang L, Wang H, Dong L, Li S. Long-term stability of reactor microbiome through bioaugmentation with Alcaligenes aquatilis AS1 promotes nitrogen removal of piggery wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117146. [PMID: 36586372 DOI: 10.1016/j.jenvman.2022.117146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Bioaugmentation is considered as an attractive method for nitrogen removal in water treatment, but its effectiveness in actual high-strength piggery wastewater has not been adequately verified and the mechanism of bioaugmentation in actual wastewater treatment system is not very clear especially from the perspectives of microbial communities and functional genes. This study investigated the mechanisms of a heterotrophic nitrifying-aerobic denitrifying strain Alcaligenes aquatilis AS1 in the bioaugmentation of continuous biological nitrogen removal of actual piggery wastewater at laboratory scale. The addition of strain AS1 significantly improved the nitrogen removal efficiency (more than 95% of NH4+-N and 75% of TN were removed) and raised the activated sludge resistance to shock loading. AS1 addition also significantly shifted the microbiota structure and interactions among microbial networks were enhanced to obtain the stable bacterial communities. Moreover, strain AS1 achieved effective proliferation and long-term colonization in activated sludge with a relative abundance of genus Alcaligenes more than 70% during the whole operation process and played a dominant role in biological nitrogen removal, while different genera were respectively enriched and involved in pollutants removal at different stages in the control group. In addition, the abundances of most functional genes involved in carbon (C) degradation, carbon fixation and nitrogen (N), phosphorus (P), sulfur (S) cycling in activated sludge were significantly increased in reactor AS1, indicating that strain AS1 not only relied on its unique C and N metabolic activities, but also recruited microorganisms with diverse functions to jointly remove pollutants in wastewater, which could be a common bioaugmentation mechanism in open reactors. This study proves the promising application prospect of strain AS1 in the treatment of high-strength piggery wastewater and shows great importance for guiding bioaugmentation application of functional strains in practical wastewater treatment systems.
Collapse
Affiliation(s)
- Chengcheng Hu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xianyun Sun
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long Zhang
- Shandong Jinniu Group Co., Ltd., Jinan, 250001, China
| | - Hongzhi Wang
- Xinjiang Herun Water Industry Co., Ltd., Urumqi, 830000, China
| | - Liang Dong
- Xinjiang Herun Water Industry Co., Ltd., Urumqi, 830000, China
| | - Shaojie Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
18
|
Palafox-Sola MF, Yebra-Montes C, Orozco-Nunnelly DA, Carrillo-Nieves D, González-López ME, Gradilla-Hernández MS. Modeling growth kinetics and community interactions in microalgal cultures for bioremediation of anaerobically digested swine wastewater. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Ha TH, Mahasti NN, Lu MC, Huang YH. Ammonium-Nitrogen recovery as Struvite from swine wastewater using various magnesium sources. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Treatment of swine wastewater using multi-soil-layer based constructed wetland: Substrates assessment and efficiency improvement. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Li G, Hao Y, Yang T, Xiao W, Pan M, Huo S, Lyu T. Enhancing Bioenergy Production from the Raw and Defatted Microalgal Biomass Using Wastewater as the Cultivation Medium. Bioengineering (Basel) 2022; 9:637. [PMID: 36354546 PMCID: PMC9687627 DOI: 10.3390/bioengineering9110637] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 09/22/2023] Open
Abstract
Improving the efficiency of using energy and decreasing impacts on the environment will be an inevitable choice for future development. Based on this direction, three kinds of medium (modified anaerobic digestion wastewater, anaerobic digestion wastewater and a standard growth medium BG11) were used to culture microalgae towards achieving high-quality biodiesel products. The results showed that microalgae culturing with anaerobic digestate wastewater could increase lipid content (21.8%); however, the modified anaerobic digestion wastewater can boost the microalgal biomass production to 0.78 ± 0.01 g/L when compared with (0.35-0.54 g/L) the other two groups. Besides the first step lipid extraction, the elemental composition, thermogravimetric and pyrolysis products of the defatted microalgal residues were also analysed to delve into the utilisation potential of microalgae biomass. Defatted microalgae from modified wastewater by pyrolysis at 650 °C resulted in an increase in the total content of valuable products (39.47%) with no significant difference in the content of toxic compounds compared to other groups. Moreover, the results of the life cycle assessment showed that the environmental impact (388.9 mPET2000) was lower than that of raw wastewater (418.1 mPET2000) and standard medium (497.3 mPET2000)-cultivated groups. Consequently, the method of culturing microalgae in modified wastewater and pyrolyzing algal residues has a potential to increase renewable energy production and reduce environmental impact.
Collapse
Affiliation(s)
- Gang Li
- School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China
| | - Yuhang Hao
- School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China
| | - Tenglun Yang
- School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China
| | - Wenbo Xiao
- School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China
| | - Minmin Pan
- Department for Solar Materials, Helmholtz Centre for Environmental Research GmbH-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tao Lyu
- School of Water, Energy and Environment, Cranfield University, College Road, Cranfield MK43 0AL, UK
| |
Collapse
|
22
|
Baria DM, Patel NY, Yagnik SM, Panchal RR, Rajput KN, Raval VH. Exopolysaccharides from marine microbes with prowess for environment cleanup. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76611-76625. [PMID: 36166130 DOI: 10.1007/s11356-022-23198-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
A variety of both small and large biologically intriguing compounds can be found abundantly in the marine environment. Researchers are particularly interested in marine bacteria because they can produce classes of bioactive secondary metabolites that are structurally diverse. The main secondary metabolites produced by marine bacteria are regarded as steroids, alkaloids, peptides, terpenoids, biopolymers, and polyketides. The global urbanization leads to the increased use of organic pollutants that are both persistent and toxic for humans, other life forms and tend to biomagnified in environment. The issue can be addressed, by using marine microbial biopolymers with ability for increased bioremediation. Amongst biopolymers, the exopolysaccharides (EPS) are the most prominent under adverse environmental stress conditions. The present review emphasizes the use of EPS as a bio-flocculent for wastewater treatment, as an adsorbent for the removal of textile dye and heavy metals from industrial effluents. The biofilm-forming ability of EPS helps with soil reclamation and reduces soil erosion. EPS are an obvious choice being environmentally friendly and cost-effective in processes for developing sustainable technology. However, a better understanding of EPS biosynthetic pathways and further developing novel sustainable technologies is desirable and certainly will pave the way for efficient usage of EPS for environment cleanup.
Collapse
Affiliation(s)
- Dhritiksha Mansukhlal Baria
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, 380 009, Ahmedabad, Gujarat, India
| | - Nidhi Yogeshbhai Patel
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, 380 009, Ahmedabad, Gujarat, India
| | | | - Rakeshkumar Ramanlal Panchal
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, 380 009, Ahmedabad, Gujarat, India
| | - Kiransinh Narendrasinh Rajput
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, 380 009, Ahmedabad, Gujarat, India
| | - Vikram Hiren Raval
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, 380 009, Ahmedabad, Gujarat, India.
| |
Collapse
|
23
|
Pereira Silva T, Guimarães de Oliveira M, Marques Mourão JM, Collere Possetti GR, Lopes Pereira E, Bezerra dos Santos A. Bioenergy recovery potential from upflow microaerobic sludge blanket reactor fed with swine wastewater. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
24
|
Cao TND, Bui XT, Le LT, Dang BT, Tran DPH, Vo TKQ, Tran HT, Nguyen TB, Mukhtar H, Pan SY, Varjani S, Ngo HH, Vo TDH. An overview of deploying membrane bioreactors in saline wastewater treatment from perspectives of microbial and treatment performance. BIORESOURCE TECHNOLOGY 2022; 363:127831. [PMID: 36029979 DOI: 10.1016/j.biortech.2022.127831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
The discharged saline wastewater has severely influenced the aquatic environment as the treatment performance of many wastewater treatment techniques is limited. In addition, the sources of saline wastewater are also plentiful from agricultural and various industrial fields such as food processing, tannery, pharmaceutical, etc. Although high salinity levels negatively impact the performance of both physicochemical and biological processes, membrane bioreactor (MBR) processes are considered as a potential technology to treat saline wastewater under different salinity levels depending on the adaption of the microbial community. Therefore, this study aims to systematically review the application of MBR widely used in the saline wastewater treatment from the perspectives of microbial structure and treatment efficiencies. At last, the concept of carbon dioxide capture and storage will be proposed for the MBR-treating saline wastewater technologies and considered toward the circular economy with the target of zero emission.
Collapse
Affiliation(s)
- Thanh Ngoc-Dan Cao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan ROC
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam.
| | - Linh-Thy Le
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam; Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City (UMP), Ward 11, District 5, Ho Chi Minh City 72714, Viet Nam
| | - Bao-Trong Dang
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Duyen Phuc-Hanh Tran
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Thi-Kim-Quyen Vo
- Faculty of Biology and Environment, Ho Chi Minh City University of Food Industry (HUFI), 140 Le Trong Tan street, Tay Thanh ward, Tan Phu district, Ho Chi Minh City 700000, Viet Nam
| | - Huu-Tuan Tran
- Department of Civil, Environmental & Architectural Engineering, The University of Kansas, Lawrence, KS 66045, United States
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Hussnain Mukhtar
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan ROC
| | - Shu-Yuan Pan
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan ROC
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Thi-Dieu-Hien Vo
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
25
|
Li S, Qu W, Chang H, Li J, Ho SH. Microalgae-driven swine wastewater biotreatment: Nutrient recovery, key microbial community and current challenges. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129785. [PMID: 36007366 DOI: 10.1016/j.jhazmat.2022.129785] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
As a promising technology, the microalgae-driven strategy can achieve environmentally sustainable and economically viable swine wastewater treatment. Currently, most microalgae-based research focuses on remediation improvement and biomass accumulation, while information on the removal mechanisms and dominant microorganisms is emerging but still limited. In this review, the major removal mechanisms of pollutants and pathogenic bacteria are systematically discussed. In addition, the bacterial and microalgal community during the swine wastewater treatment process are summarized. In general, Blastomonas, Flavobacterium, Skermanella, Calothrix and Sedimentibacter exhibit a high relative abundance. In contrast to the bacterial community, the microalgal community does not change much during swine wastewater treatment. Additionally, the effects of various parameters (characteristics of swine wastewater and cultivation conditions) on microalgal growth and current challenges in the microalgae-driven biotreatment process are comprehensively introduced. This review stresses the need to integrate bacterial and microalgal ecology information into the conventional design of full-scale swine wastewater treatment systems and operations. Herein, future research needs are also proposed, which will facilitate the development and operation of a more efficient microalgae-based swine wastewater treatment process.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Wenying Qu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China; College of Water Conservancy and Architecture Engineering, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Haixing Chang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Junfeng Li
- College of Water Conservancy and Architecture Engineering, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
26
|
Shao H, Sun Y, Jiang X, Hu J, Guo C, Lu C, Guo F, Sun C, Wang Y, Dai C. Towards biomass production and wastewater treatment by enhancing the microalgae-based nutrients recovery from liquid digestate in an innovative photobioreactor integrated with dialysis bag. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115337. [PMID: 35642812 DOI: 10.1016/j.jenvman.2022.115337] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/29/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Microalgae-based nutrients recovery from liquid anaerobic digestate of swine manure has been a hotspot in recent decades. Nevertheless, in consideration of the high NH4+-N content and poor light penetrability exhibited by the original liquid digestate, uneconomical pretreatment on liquid digestate including centrifugation and dilution are indispensable before microalgae cells inoculation. Herein, aiming at eliminating the energy-intensive and freshwater-consuming pretreatment on liquid digestate and enhancing microalgae growth, the dialysis bag which permits nutrients transferring across its wall surface whereas retains almost all matters characterized by impeding light transmission within the raw liquid digestate was integrated into a column photobioreactor (DB-PBR). Consequently, light availability of microalgae cells in DB-PBR was elevated remarkably and thus contributed to a 357.58% improvement on microalgae biomass concentration in DB-PBR than the conventional PBR under 80 μmol m-2 s-1. Likewise, superior nutrients removal efficiencies from liquid digestate were obtained in DB-PBR (NH4+-N: 74.84%, TP: 63.75%) over the conventional PBR (NH4+-N: 30.27%, TP: 16.86%). Furthermore, higher microalgae biomass concentration (1.87 g L-1) and nutrients removal efficiencies (NH4+-N: 95.12%, TP: 76.87%) were achieved in the DB-PBR by increasing the light intensity to 140 μmol m-2 s-1. More importantly, the DB-PBR may provide a simple and greener solution to purify other kinds of wastewater.
Collapse
Affiliation(s)
- Han Shao
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yahui Sun
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China; School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China; Hebei Provincial Lab of Water Environmental Sciences, Hebei Provincial Academy of Ecological and Environmental Sciences, Shijiazhuang, 050037, China.
| | - Xiaoxiang Jiang
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Jun Hu
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Chenglong Guo
- School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Chenjia Lu
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Feihong Guo
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Chihe Sun
- Key Laboratory of Industrial Biotechnology of MOE, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yunjun Wang
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Chuanchao Dai
- School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
27
|
Zhou T, Li X, Zhang Q, Dong S, Liu H, Liu Y, Chaves AV, Ralph PJ, Ruan R, Wang Q. Ecotoxicological response of Spirulina platensis to coexisted copper and zinc in anaerobic digestion effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155874. [PMID: 35568173 DOI: 10.1016/j.scitotenv.2022.155874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Copper ion (Cu2+) and zinc ion (Zn2+) are widely co-existent in anaerobic digestion effluent as typical contaminants. This work aims to explore how Cu2+-Zn2+ association affects physiological properties of S. platensis using Schlösser medium (SM) and sterilized anaerobic digestion effluent (SADE). Microalgae cells viability, biochemical properties, uptake of Cu2+ and Zn2+, and risk assessment associated with the biomass reuse as additives to pigs were comprehensively assessed. Biomass production ranged from 0.03 to 0.28 g/L in SM and 0.63 to 0.79 g/L in SADE due to the presence of Cu2+ and Zn2+. Peak value of chlorophyll-a and carotenoid content during the experiment decreased by 70-100% and 40-100% in SM, and by 70-77% and 30-55% in SADE. Crude protein level reduced by 4-41% in SM and by 65-75% in SADE. The reduction ratio of these compounds was positively related to the Cu2+ and Zn2+ concentrations. Maximum value of saturated and unsaturated fatty acids was both obtained at 0.3 Cu + 2.0 Zn (50.8% and 22.8%, respectively) and 25% SADE reactors (33.8% and 27.7%, respectively). Uptake of Cu in biomass was facilitated by Zn2+ concentration (> 4.0 mg/L). Risk of S. platensis biomass associated with Cu2+ was higher than Zn2+. S. platensis from SM (Cu2+ ≤ 0.3 mg/L and Zn2+ ≤ 4.0 mg/L) and diluted SADE (25% and 50% SADE) reactors could be used as feed additives without any risk (hazard index <1), which provides sufficient protein and fatty acids for pig consumption. These results revealed the promising application of using S. platensis for bioremediation of Cu2+ and Zn2+ in anaerobic digestion effluent and harvesting biomass for animal feed additives.
Collapse
Affiliation(s)
- Ting Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Qi Zhang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Shiman Dong
- College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Alex V Chaves
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Peter J Ralph
- Climate Change Cluster (C3), University of Technology Sydney, NSW 2007, Australia
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
28
|
Wang N, Feng Y, Li Y, Zhang L, Liu J, Li N, He W. Effects of ammonia on electrochemical active biofilm in microbial electrolysis cells for synthetic swine wastewater treatment. WATER RESEARCH 2022; 219:118570. [PMID: 35597221 DOI: 10.1016/j.watres.2022.118570] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
When facing wastewater with high organic and ammonia, e. g. swine wastewater, microbial electrolysis cell (MEC) is emerging for energy extraction as hydrogen and methane. However, the effects of highly concentrated ammonia on MEC haven't been fully evaluated. In this study, single-chamber MECs were operated with acetate and sucrose as substrates under various ammonia concentrations. The current generally increased with ammonia loading from 80 to 3000 mg L-1. Yet, the substrate consumption in MECs was inhibited with ammonia concentrations above 1000 mg L-1. As a combined result, the energy recovery efficiency of MECs was stable. The electrochemical activity of anode biofilm reached the peak under 1000 mg L-1 ammonia and was restricted under higher ammonia loadings. Under neutral pH, the NH4+ increases the cell membrane permeability, which benefited the electrochemical activity of exoelectrogens to a proper extent. Nevertheless, the toxic ammonia also accelerated the anode biomass loss and stimulated the extracellular polymeric substance (EPS) secretion. Due to the current increase, the abundance of exoelectrogens generally raised with ammonia loading from 80 to 3000 mg L-1. However, except for anode biomass loss, the carbon and methane metabolism pathways were inhibited in acetate-fed MEC, while the glycolysis acted as the rate-limiting step for substrate degradation in sucrose-fed conditions. This study systematically examined the influences of high ammonia loading on MEC performances, bio-community and anode electrochemical activities, and evaluated practical feasibility and application inch of MECs for the energy recovery and pollutant removal of high concentration organic and ammonia wastewater.
Collapse
Affiliation(s)
- Naiyu Wang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, PR China.
| | - Yunfei Li
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Lijuan Zhang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Weihua He
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, PR China.
| |
Collapse
|
29
|
Continuous Production of Volatile Fatty Acids (VFAs) from Swine Manure: Determination of Process Conditions, VFAs Composition Distribution and Fermentation Broth Availability Analysis. WATER 2022. [DOI: 10.3390/w14121935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For pollution control and waste utilization, a promising future direction is to obtain high-value carbon sources from organic waste. In this experiment, swine manure was efficiently converted into high concentration volatile fatty acids through continuous hydrolysis-acidification bioreactors. This study determined the process conditions, the composition distribution of volatile fatty acids and the availability of fermentation broth. The results showed that the reactor with a hydraulic retention time of 1.5 days had the optimal production performance of volatile fatty acids. The highest hydrolysis degree (62.2%) and acidification degree (42.5%) were realized in this reactor at the influent soluble chemical oxygen demand of 5460 mg/L. Furthermore, when the influent soluble chemical oxygen demand was 7660 mg/L, volatile fatty acids of 6065 mg-COD/L could be produced stably, and the proportion of volatile fatty acids in soluble chemical oxygen demand was the largest (75%). Additionally, the fermentation broth rich in volatile fatty acids could be applied to deep nitrogen and phosphorus removal. This work provides a productive approach to resource recovery from swine manure.
Collapse
|
30
|
Narindri Rara Winayu B, Chang YL, Hsueh HT, Chu H. Simultaneous 17β-estradiol degradation, carbon dioxide fixation, and carotenoid accumulation by Thermosynechococcus sp. CL-1. BIORESOURCE TECHNOLOGY 2022; 354:127197. [PMID: 35460842 DOI: 10.1016/j.biortech.2022.127197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Thermosynechococcus sp. CL-1 (TCL-1) has a high potency to utilize CO2 under extreme conditions including high temperature, alkaline condition, and the occurrence of 17β-estradiol (E2). In this study, TCL-1 cultivation with E2 addition in the range of 0-20 mg/L was combined with various growth arrangements (light intensity and dissolved inorganic nitrogen/DIN level). After 120 h cultivation, the 1.0 mg/L E2, 200 µmol photons/m2/s light intensity, and 5.8 mM available nitrogen performed the best growth with 4.58 ± 0.18 mg/L/h biomass productivity, 94.9 ± 3.3% total estrogen removal, and 11.41 ± 0.11 mg/L/h CO2 fixation rate. Estrogen degradation was mainly carried out by biodegradation route which started from E2 conversion into estrone/E1 and with only 4-6% influence from the abiotic factors. Compared with the accumulated zeaxanthin, β-carotene was dominantly generated with a productivity of 0.043 ± 0.019 mg/L/h. Therefore, TCL-1 cultivation is an efficient strategy for simultaneous CO2 fixation, estrogen removal, and carotenoid accumulation as valuable byproducts.
Collapse
Affiliation(s)
| | - Yu-Ling Chang
- Department of Environmental Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsin-Ta Hsueh
- Sustainable Environment Research Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsin Chu
- Department of Environmental Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
31
|
Feng X, Qian Y, Xi P, Cao R, Qin L, Zhang S, Chai G, Huang M, Li K, Xiao Y, Xie L, Song Y, Wang D. Partial Nitrification and Enhanced Biological Phosphorus Removal in a Sequencing Batch Reactor Treating High-Strength Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095653. [PMID: 35565048 PMCID: PMC9105176 DOI: 10.3390/ijerph19095653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022]
Abstract
Complex and high levels of various pollutants in high-strength wastewaters hinder efficient and stable biological nutrient removal. In this study, the changes in pollutant removal performance and microbial community structure in a laboratory-scale anaerobic/aerobic sequencing batch reactor (SBR) treating simulated pre-fermented high-strength wastewater were investigated under different influent loading conditions. The results showed that when the influent chemical oxygen demand (COD), total nitrogen (TN), and orthophosphate (PO43−-P) concentrations in the SBR increased to 983, 56, and 20 mg/L, respectively, the COD removal efficiency was maintained above 85%, the TN removal efficiency was 64.5%, and the PO43−-P removal efficiency increased from 78.3% to 97.5%. Partial nitrification with simultaneous accumulation of ammonia (NH4+-N) and nitrite (NO2−-N) was observed, which may be related to the effect of high influent load on ammonia- and nitrite-oxidising bacteria. The biological phosphorus removal activity was higher when propionate was used as the carbon source instead of acetate. The relative abundance of glycogen accumulating organisms (GAOs) increased significantly with the increase in organic load, while Tetrasphaera was the consistently dominant polyphosphate accumulating organism (PAO) in the reactor. Under high organic loading conditions, there was no significant PAO–GAO competition in the reactor, thus the phosphorus removal performance was not affected.
Collapse
Affiliation(s)
- Xiaojun Feng
- Xi’an Modern Chemistry Research Institute, Xi’an 710065, China; (X.F.); (Y.Q.); (P.X.)
| | - Yishi Qian
- Xi’an Modern Chemistry Research Institute, Xi’an 710065, China; (X.F.); (Y.Q.); (P.X.)
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Peng Xi
- Xi’an Modern Chemistry Research Institute, Xi’an 710065, China; (X.F.); (Y.Q.); (P.X.)
| | - Rui Cao
- Department of Municipal and Environmental Engineering, Xi’an University of Technology, Xi’an 710048, China; (R.C.); (L.Q.); (S.Z.); (G.C.); (M.H.); (K.L.); (Y.X.); (L.X.); (Y.S.)
| | - Lu Qin
- Department of Municipal and Environmental Engineering, Xi’an University of Technology, Xi’an 710048, China; (R.C.); (L.Q.); (S.Z.); (G.C.); (M.H.); (K.L.); (Y.X.); (L.X.); (Y.S.)
| | - Shengwei Zhang
- Department of Municipal and Environmental Engineering, Xi’an University of Technology, Xi’an 710048, China; (R.C.); (L.Q.); (S.Z.); (G.C.); (M.H.); (K.L.); (Y.X.); (L.X.); (Y.S.)
| | - Guodong Chai
- Department of Municipal and Environmental Engineering, Xi’an University of Technology, Xi’an 710048, China; (R.C.); (L.Q.); (S.Z.); (G.C.); (M.H.); (K.L.); (Y.X.); (L.X.); (Y.S.)
| | - Mengbo Huang
- Department of Municipal and Environmental Engineering, Xi’an University of Technology, Xi’an 710048, China; (R.C.); (L.Q.); (S.Z.); (G.C.); (M.H.); (K.L.); (Y.X.); (L.X.); (Y.S.)
| | - Kailong Li
- Department of Municipal and Environmental Engineering, Xi’an University of Technology, Xi’an 710048, China; (R.C.); (L.Q.); (S.Z.); (G.C.); (M.H.); (K.L.); (Y.X.); (L.X.); (Y.S.)
| | - Yi Xiao
- Department of Municipal and Environmental Engineering, Xi’an University of Technology, Xi’an 710048, China; (R.C.); (L.Q.); (S.Z.); (G.C.); (M.H.); (K.L.); (Y.X.); (L.X.); (Y.S.)
| | - Lin Xie
- Department of Municipal and Environmental Engineering, Xi’an University of Technology, Xi’an 710048, China; (R.C.); (L.Q.); (S.Z.); (G.C.); (M.H.); (K.L.); (Y.X.); (L.X.); (Y.S.)
| | - Yuxin Song
- Department of Municipal and Environmental Engineering, Xi’an University of Technology, Xi’an 710048, China; (R.C.); (L.Q.); (S.Z.); (G.C.); (M.H.); (K.L.); (Y.X.); (L.X.); (Y.S.)
| | - Dongqi Wang
- Department of Municipal and Environmental Engineering, Xi’an University of Technology, Xi’an 710048, China; (R.C.); (L.Q.); (S.Z.); (G.C.); (M.H.); (K.L.); (Y.X.); (L.X.); (Y.S.)
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Shaanxi Key Laboratory of Water Resources and Environment, Xi’an University of Technology, Xi’an 710048, China
- Correspondence:
| |
Collapse
|
32
|
Zhao G, Wang X, Hong Y, Liu X, Wang Q, Zhai Q, Zhang H. Attached cultivation of microalgae on rational carriers for swine wastewater treatment and biomass harvesting. BIORESOURCE TECHNOLOGY 2022; 351:127014. [PMID: 35307525 DOI: 10.1016/j.biortech.2022.127014] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Attachment effects of six carrier materials on the cultivation of high-value microalga Scenedesmus sp. LX1 in diluted swine wastewater were investigated. The results showed that when the initial algal densities were 5×105 cells/mL and 1×106 cells/mL in sterilized wastewater with 20-fold dilution, the biomass of microalgae attaching to geotextile was the highest. The contact angle and surface structure of the material affected the attachment of microalgae. Further, among the four dilutions, the highest attached biomass on geotextile was 414.47 mg/L in the sterilized wastewater at 20-fold, but the pollutants removal rate and attached biomass were higher in the non-sterile wastewater in the other three dilutions (original wastewater, 5-fold, 10-fold). Next, the microalgae were able to remove pollutants with the highest removal rates of COD, TN, NH4+-N and TP reaching to 86.92%, 60.75%, 71.81% and 96.13%. Moreover, the microalga was found to accumulate high-value products especially protein as high as 44.57%.
Collapse
Affiliation(s)
- Guangpu Zhao
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyan Wang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Hong
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Xiaoya Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qiao Wang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qingyu Zhai
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hongkai Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
33
|
Xie D, Ji X, Zhou Y, Dai J, He Y, Sun H, Guo Z, Yang Y, Zheng X, Chen B. Chlorella vulgaris cultivation in pilot-scale to treat real swine wastewater and mitigate carbon dioxide for sustainable biodiesel production by direct enzymatic transesterification. BIORESOURCE TECHNOLOGY 2022; 349:126886. [PMID: 35217166 DOI: 10.1016/j.biortech.2022.126886] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 05/28/2023]
Abstract
This study firstly addressed real swine wastewater (RSW) treatment by an indigenous Chlorella vulgaris MBFJNU-1 in 5-m3 outdoor open raceway ponds and then direct enzymatic transesterification of the resulting lipids from the wet biomass for sustainable biodiesel production. Compared to the control group, C. vulgaris MBFJNU-1 at 3% CO2 achieved higher microalgal biomass (478.5 mg/L) and total fatty acids content (21.3%), higher CO2 bio-fixation (63.2 mg/L/d) and lipid (9.1 mg/L/d) productivities, and greater nutrients removals (total nitrogen, 82.1%; total phosphorus, 28.4%; chemical oxygen demand, 37.1%). The highest biodiesel conversion (93.3%) was attained by enzymatic transesterification of wet disrupted Chlorella biomass with 5% lipase TL and 5% phospholipase PLA. Moreover, the enzymatic transesterification gave around 83% biodiesel conversion in a 15-L stirred tank bioreactor. Furthermore, the integrated process was a cost-effective approach to treat RSW and mitigate CO2 for microalgal biodiesel production, based on the mass and energy balances analysis.
Collapse
Affiliation(s)
- Dian Xie
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Xiaowei Ji
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Youcai Zhou
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Jingxuan Dai
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China.
| | - Han Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Aarhus University, Gustav WiedsVej 10, 8000 Aarhus C, Denmark
| | - Yi Yang
- Fuqing King Dnarmsa Spirulina Co., LTD, Fuzhou 350300, China
| | - Xing Zheng
- Fuqing King Dnarmsa Spirulina Co., LTD, Fuzhou 350300, China
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
34
|
Effects of Sulfamethazine and Cupric Ion on Treatment of Anaerobically Digested Swine Wastewater with Growing Duckweed. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19041949. [PMID: 35206138 PMCID: PMC8872130 DOI: 10.3390/ijerph19041949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/04/2022]
Abstract
Duckweed (Spirodela polyrrhiza) has the potential to treat anaerobically digested swine wastewater (ADSW), but the effects of antibiotics and heavy metals in ADSW on the treatment performance and mechanism of Spirodela polyrrhiza are not clear. Herein, an experiment was conducted to investigate the effects of sulfamethazine (SMZ) and cupric ion on NH4+-N and total phosphorus (TP) removal from synthetic ADSW. The activity of superoxide dismutase (SOD) and the contents of photosynthetic pigments, vitamin E, and proteins in duckweed were also evaluated. Under the stress of SMZ, duckweed showed excellent removal efficiency of nutrients, and the results of SOD activity and photosynthetic pigments content indicated that duckweed had good tolerance to SMZ. Interestingly, a combined application of SMZ and cupric ion would inhibit the nutrient removal by duckweed, but significantly increased the contents of photosynthetic pigments, proteins, and vitamin E. In addition, the consequence indicated that high value-added protein and vitamin E products could be produced and harvested by cultivating duckweed in ADSW. Furthermore, possible degradation pathways of SMZ in the duckweed system were proposed based on the analysis with LC-MS/MS. This research proposed a novel view for using duckweed system to remove nutrients from ADSW and produce value-added products under the stress of SMZ and cupric ion.
Collapse
|
35
|
Tang J, Pu Y, Zeng T, Hu Y, Huang J, Pan S, Wang XC, Li Y, Abomohra AEF. Enhanced methane production coupled with livestock wastewater treatment using anaerobic membrane bioreactor: Performance and membrane filtration properties. BIORESOURCE TECHNOLOGY 2022; 345:126470. [PMID: 34863846 DOI: 10.1016/j.biortech.2021.126470] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
The present study introduced a new method for enhanced biomethane production and pollution control of swine wastewater (SW) using anaerobic membrane bioreactor (AnMBR). Results confirmed 35 °C as the optimum temperature for enhanced anaerobic digestion which resulted in relatively higher methane production rate and potential. In AnMBR system, robust pollutants removal and conversion rate were achieved under various hydraulic retention time (HRT) ranging from 20 to 10 days, while the highest methane yield (0.24 L/g-CODremoved) and microbial activity (6.65 mg-COD/g-VSS·h) were recorded at HRT of 15 days. Reduction of HRT to 10 days resulted in serious membrane fouling due to accumulation of extracellularpolymericsubstances(EPS) and cake layer on the membrane. However, cake layer as the dominant membrane foulant could be effectively removed through periodic physical backwash to recover the membrane permeability. Overall, the suggested AnMBR is a promising technology to enhance SW treatment and energy recovery.
Collapse
Affiliation(s)
- Jialing Tang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yunhui Pu
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China; Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610225, Sichuan, China
| | - Ting Zeng
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yisong Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China
| | - Jin Huang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Shengwang Pan
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China
| | - Yuyou Li
- Department of Civil and Environmental Engineering, Tohoku University, Sendai 9808579, Japan
| | - Abd El-Fatah Abomohra
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
36
|
Zhang W, Xia R, Wang H, Pu S, Jiang D, Hao X, Bai L. Swine wastewater treatment by combined process of iron carbon microelectrolysis-physical adsorption-microalgae cultivation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:914-924. [PMID: 35166710 DOI: 10.2166/wst.2021.619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Combined treatments were designed based on iron-carbon micro-electrolysis treatment (ICME), physical adsorption (PA) with zeolite (Z) or vermiculite (V) and microalgae cultivation (MC, Chlorella vulgaris) for removing pollutants from swine wastewater (SW): ICME + MC (IM), ICME + Z + MC (IZM) and ICME + V + MC (IVM). Results showed that the minimum total nitrogen (TN) of 43.66 mg L-1, NH4+-N of 1.33 mg-1 and total phosphorus (TP) of 0.14 mg-1 were obtained by IVM, while the minimum chemical oxygen demand (COD) was 105 mg-1 via IM. During the process of combined treatments, ICME contributed most to the removal of TN (84.52% by IZM), TP (97.78% by IVM and IZM) and COD (62.44% by IVM), and maximum NH4+-N removal (55.64%) was obtained by MC procedure in IM process. Vermiculite performed better than zeolite during all the combined treatments. Besides, the maximum cell dry weight (CDW, 0.74 g-1) of C. vulgaris was obtained by IM on day 13. The results provide an efficient integrated method for swine wastewater treatment.
Collapse
Affiliation(s)
- Wenjin Zhang
- Laboratory of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China E-mail: ; Chongqing Academy of Animal Sciences, Scientific Observation and Experiment Engineering in Southwest for Ministry of Agriculture and Rural Affairs, Chongqing 402460, China
| | - Rongbin Xia
- Laboratory of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China E-mail:
| | - Hao Wang
- Chongqing Academy of Animal Sciences, Scientific Observation and Experiment Engineering in Southwest for Ministry of Agriculture and Rural Affairs, Chongqing 402460, China
| | - Shihua Pu
- Chongqing Academy of Animal Sciences, Scientific Observation and Experiment Engineering in Southwest for Ministry of Agriculture and Rural Affairs, Chongqing 402460, China
| | - Dongmei Jiang
- Laboratory of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China E-mail:
| | - Xiaoxia Hao
- Laboratory of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China E-mail:
| | - Lin Bai
- Laboratory of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China E-mail:
| |
Collapse
|
37
|
Sharma R, Mishra A, Pant D, Malaviya P. Recent advances in microalgae-based remediation of industrial and non-industrial wastewaters with simultaneous recovery of value-added products. BIORESOURCE TECHNOLOGY 2022; 344:126129. [PMID: 34655783 DOI: 10.1016/j.biortech.2021.126129] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
The ability of microalgae to grow in a broad spectrum of wastewaters manifests great potentials for removing contaminants from effluents of industries and urban areas. Since the post-treatment microalgae biomass is also a significant source of high-value products, microalgae-based wastewater treatment is an economical and sustainable solution to wastewater management. Adding more value, the integration of microalgae with living/non-living materials looks more promising. Microalgae-based treatment technology has certain limitations like high operational costs, problematic harvesting, large land requirements, and hindrance in photosynthesis due to turbid wastewater. These challenges need to be essentially addressed to achieve enhanced wastewater remediation. This review has highlighted the potential applications of microalgae in contaminant removal from wastewaters, simultaneous resource recovery, efficient microalgae-based hybrid systems along with bottlenecks and prospects. This state-of-the-art article will edify the role of microalgae in wastewater remediation, biomass valorization for bio-based products, and present numerous possibilities in strengthening the circular bioeconomy.
Collapse
Affiliation(s)
- Rozi Sharma
- Department of Environmental Science, University of Jammu, Jammu-180006, Jammu and Kashmir, India
| | - Arti Mishra
- Amity Institute of Microbial Technology, Amity University, Noida-201303, Uttar Pradesh, India
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium
| | - Piyush Malaviya
- Department of Environmental Science, University of Jammu, Jammu-180006, Jammu and Kashmir, India.
| |
Collapse
|
38
|
Guimarães de Oliveira M, Marques Mourão JM, Souza Silva FS, Bezerra Dos Santos A, Lopes Pereira E. Effect of microaerophilic treatment on swine wastewater (SWW) treatment: Engineering and microbiological aspects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113598. [PMID: 34481377 DOI: 10.1016/j.jenvman.2021.113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/22/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
The microaerobic process on swine wastewater (SWW) treatment was investigated, evaluating its effect on organic matter hydrolysis and removal, biogas production, operational stability, and microbial community structure. UASB reactors operating under higher organic loading rates (OLRs) and lower hydraulic retention times (HRTs) than those found in the SWW treatment literature were also assessed. The microaerophilic reactor R2 presented a higher total and particulate organic matter removals and operational stability than the anaerobic reactor R1, reaching CODP removals of 79.4 ± 4.6%. In the specific methanogenic activity (SMA) tests, the microaerobic sludge (R2) showed hydrolytic and acetogenic/methanogenic activity superior to inoculum and anaerobic sludge (R1). The microbiological evaluation of R2 revealed the high presence of hydrolytic microorganisms, therefore justifying the higher hydrolytic activity found in the SMA tests and higher particulate organic matter removal found in the microaerobic reactor.
Collapse
Affiliation(s)
| | - José Marcos Marques Mourão
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Erlon Lopes Pereira
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
39
|
Kołodziejczak-Radzimska A, Zembrzuska J, Siwińska-Ciesielczyk K, Jesionowski T. Catalytic and Physicochemical Evaluation of a TiO 2/ZnO/Laccase Biocatalytic System: Application in the Decolorization of Azo and Anthraquinone Dyes. MATERIALS 2021; 14:ma14206030. [PMID: 34683638 PMCID: PMC8537205 DOI: 10.3390/ma14206030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 11/25/2022]
Abstract
A TiO2/ZnO oxide system was proposed as a support for the immobilization of laccase from Trametes versicolor (LTV). The obtained TiO2/ZnO/LTV biocatalytic system was then applied in the decolorization/degradation of C.I. Reactive Black 5 and C.I. Acid Green 25 dyes. The efficiency of immobilization was evaluated based on catalytic properties (Bradford method, oxidation reaction of 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) and physicochemical (spectroscopic, porous, electrokinetic) analysis. The immobilization process was carried out with high performance (99.4%). Immobilized laccase retained about 40% of its activity in the whole analyzed temperature range and after 10 reaction cycles. Immobilization efficiency was also indirectly confirmed by the presence of characteristic functional groups (–C–H and –C–O), nitrogen and carbon on the TiO2/ZnO/LTV biocatalytic surface, identified by spectroscopic analyses. The increase in the surface area to 126 m2/g, change of isoelectric point (2.0) and zeta potential ranges (from +12.0 to −20.0 mV) after the immobilization process were also observed. The results show that the designed biocatalytic system enables the removal of acid dyes (C.I. Reactive Black 5 and C.I. Acid Green 25) with high efficiency (99% and 70%, respectively). Mass spectroscopy analysis indicated possible degradation products formed by the cleavage of N=N and C–N bonds.
Collapse
Affiliation(s)
- Agnieszka Kołodziejczak-Radzimska
- Institute of Technology and Chemical Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo, PL-60965 Poznan, Poland; (K.S.-C.); (T.J.)
- Correspondence:
| | - Joanna Zembrzuska
- Institute of Chemistry and Technical Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo, PL-60965 Poznan, Poland;
| | - Katarzyna Siwińska-Ciesielczyk
- Institute of Technology and Chemical Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo, PL-60965 Poznan, Poland; (K.S.-C.); (T.J.)
| | - Teofil Jesionowski
- Institute of Technology and Chemical Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo, PL-60965 Poznan, Poland; (K.S.-C.); (T.J.)
| |
Collapse
|
40
|
Silveira CF, Assis LRD, Oliveira APDS, Calijuri ML. Valorization of swine wastewater in a circular economy approach: Effects of hydraulic retention time on microalgae cultivation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147861. [PMID: 34049147 DOI: 10.1016/j.scitotenv.2021.147861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
To optimize the swine wastewater (SWW) treatment, this study investigated different hydraulic retention times (HRTs) for microalgae cultivation. For this purpose, five pilot-scale reactors operated in semi-continuous flow, with HRTs equal to 9, 12, 15, 18, 21 days were evaluated in terms of SWW polishing and biomass production. The effluent treatment was discussed accompanied by principal component analysis, which allowed identification of causes of variance in the data set, ideal for studies with real effluent and influenced by environmental conditions. All reactors show satisfactory removals of N-NH4+ (91.6-95.3%), COD (15.8-39.9%), DO increment (in average 7.5 mg O2/L) and, only the longest HRT (21 days) was able to remove Ps (21%). The results obtained indicated that a consortium of microalgae and bacteria was developed for all the tested HRTs. On the other hand, HRT = 12 days provided a healthier culture of photosynthesizing organisms (chl-a/VSS = 3.04%). Carbohydrates (20.8-31.3%) and proteins (2.7-16.2%) were the compounds of commercial interest in the highest proportion in the biomass of all reactors, with contents comparable to that of terrestrial crops. Thus, it was suggested a valorization route of these compounds of high added value to return to pig farming, where the nutrients were intended to supplement the swine feed and clarified water for cleaning the pig stalls. Thus, in the circular economy context, this research contributes to water footprint reduction and the sustainability of the pig farming production chain. The economic and environmental analysis of the route is suggested to enable its implementation on a large scale, as well as further technical feasibility research (reactor types, exposure to external environment, evaluation of pathogen removal and animal feed supplementation from SWW microalgae biomass).
Collapse
Affiliation(s)
| | | | | | - Maria Lúcia Calijuri
- Department of Civil Engineering, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
41
|
Ryu HD, Kim SJ, Baek UI, Kim DW, Lee HJ, Chung EG, Kim MS, Kim K, Lee JK. Identifying nitrogen sources in intensive livestock farming watershed with swine excreta treatment facility using dual ammonium (δ 15N NH4) and nitrate (δ 15N NO3) nitrogen isotope ratios axes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146480. [PMID: 34030231 DOI: 10.1016/j.scitotenv.2021.146480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/15/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
We proposed a novel approach based on dual ammonium and nitrate nitrogen isotope ratios (δ15NNH4 and δ15NNO3, respectively) axes to identify nitrogen sources in intensive livestock farming watersheds, especially those with swine excreta treatment facilities. The δ15NNH4 and δ15NNO3 values in water samples were measured monthly in 2016-2017. Soil and mineral fertilizers, sewage, sewage effluent, manure, and swine effluents were the five sources considered to identify nitrogen sources. The results showed that nitrogen pollution from agricultural activities was well reflected by the seasonal δ15NNH4 and δ15NNO3 patterns in the river, and microbial nitrification was suggested as the dominant nitrogen transformation process in the river. This study revealed that δ15NNH4 and δ15NNO3 axes provided better results than the traditionally used nitrate oxygen (δ18ONO3) and δ15NNO3 axes for identifying nitrogen sources in agricultural watersheds with swine excreta treatment facilities. The mixing model results showed that stream water was severely contaminated with swine effluents (e.g., a mean minimum contribution of 31%), thus affecting the quality of the mainstream (p = 0.068 < 0.10). This study was the first successful application of dual δ15NNH4 and δ15NNO3 axes to better understand nitrogen sources in intensive livestock farming watersheds with swine excreta treatment facilities.
Collapse
Affiliation(s)
- Hong-Duck Ryu
- Water Environment Research Department, National Institute of Environmental Research, Hwangyoung-ro 42, Seo-gu, Incheon 22689, Republic of Korea
| | - Sun-Jung Kim
- Water Environment Research Department, National Institute of Environmental Research, Hwangyoung-ro 42, Seo-gu, Incheon 22689, Republic of Korea
| | - Un-Il Baek
- Water Environment Research Department, National Institute of Environmental Research, Hwangyoung-ro 42, Seo-gu, Incheon 22689, Republic of Korea
| | - Deok-Woo Kim
- Water Environment Research Department, National Institute of Environmental Research, Hwangyoung-ro 42, Seo-gu, Incheon 22689, Republic of Korea
| | - Hyun-Jeoung Lee
- Water Environment Research Department, National Institute of Environmental Research, Hwangyoung-ro 42, Seo-gu, Incheon 22689, Republic of Korea
| | - Eu Gene Chung
- Water Environment Research Department, National Institute of Environmental Research, Hwangyoung-ro 42, Seo-gu, Incheon 22689, Republic of Korea.
| | - Min-Seob Kim
- Environment Measurement and Analysis Center, National Institute of Environmental Research (NIER), Hwangyoung-ro 42, Seo-gu, Incheon 22689, Republic of Korea
| | - Kyunghyun Kim
- Water Environment Research Department, National Institute of Environmental Research, Hwangyoung-ro 42, Seo-gu, Incheon 22689, Republic of Korea
| | - Jae Kwan Lee
- Water Environment Research Department, National Institute of Environmental Research, Hwangyoung-ro 42, Seo-gu, Incheon 22689, Republic of Korea
| |
Collapse
|
42
|
Highly effective removal of presence of toxic metal concentrations in the wastewater using microalgae and pre-treatment processing. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01795-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Vučić V, Müller S. New developments in biological phosphorus accessibility and recovery approaches from soil and waste streams. Eng Life Sci 2021; 21:77-86. [PMID: 33716607 PMCID: PMC7923555 DOI: 10.1002/elsc.202000076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 01/18/2023] Open
Abstract
Phosphorus (P) is a non-renewable resource and is on the European Union's list of critical raw materials. It is predicted that the P consumption peak will occur in the next 10 to 20 years. Therefore, there is an urgent need to find accessible sources in the immediate environment, such as soil, and to use alternative resources of P such as waste streams. While enormous progress has been made in chemical P recovery technologies, most biological technologies for P recovery are still in the developmental stage and are not reaching industrial application. Nevertheless, biological P recovery could offer good solutions as these technologies can return P to the human P cycle in an environmentally friendly way. This mini-review provides an overview of the latest approaches to make P available in soil and to recover P from plant residues, animal and human waste streams by exploiting the universal trait of P accumulation and P turnover in microorganisms and plants.
Collapse
Affiliation(s)
- Vedran Vučić
- Department of Environmental MicrobiologyHelmholtz Centre for Environmental Research ‐ UFZDepartment Environmental MicrobiologyLeipzigGermany
| | - Susann Müller
- Department of Environmental MicrobiologyHelmholtz Centre for Environmental Research ‐ UFZDepartment Environmental MicrobiologyLeipzigGermany
| |
Collapse
|
44
|
Abstract
The need to safeguard our planet by reducing carbon dioxide emissions has led to a significant development of research in the field of alternative energy sources. Hydrogen has proved to be the most promising molecule, as a fuel, due to its low environmental impact. Even if various methods already exist for producing hydrogen, most of them are not sustainable. Thus, research focuses on the biological sector, studying microalgae, and other microorganisms’ ability to produce this precious molecule in a natural way. In this review, we provide a description of the biochemical and molecular processes for the production of biohydrogen and give a general overview of one of the most interesting technologies in which hydrogen finds application for electricity production: fuel cells.
Collapse
|
45
|
Zheng S, Chen S, Zou S, Yan Y, Gao G, He M, Wang C, Chen H, Wang Q. Bioremediation of Pyropia-processing wastewater coupled with lipid production using Chlorella sp. BIORESOURCE TECHNOLOGY 2021; 321:124428. [PMID: 33272824 DOI: 10.1016/j.biortech.2020.124428] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Pyropia-processing wastewater (PPW) contains diverse organic nutrients and causes environmental pollution. To explore the nutrient removal efficiency and growth performance of Chlorella sp. on PPW, the cultures were conducted in different culture substrates. Results showed that, after 7 days of incubation, the removal rates of total nitrogen (TN), total phosphorus (TP) and phycobiliprotein (PP) all reached more than 90% by cultivating Chlorella sp. C2 and C. sorokiniana F-275 in PPW. The chemical oxygen demand (COD) removal efficiencies could be over 50%. Meanwhile, the increments of biomass in two tested Chlorella strains were 1.39 and 4.89 times higher than those of BG11 and BBM substrates and the increases in lipid productivity were 1.34 and 10.18- fold, respectively. The C18:3 fatty acid proportions were markedly reduced by 27.89% and 29.10%. These results suggest that Chlorella sp. could efficiently reduce various nutrients in PPW and simultaneously accumulate higher biomass with higher biodiesel characteristics.
Collapse
Affiliation(s)
- Shiyan Zheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shanyi Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shangyun Zou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yiwen Yan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guang Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Meilin He
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Changhai Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hui Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
46
|
Chen Y, Sui Q, Yu D, Zheng L, Chen M, Ritigala T, Wei Y. Development of a Short-Cut Combined Magnetic Coagulation-Sequence Batch Membrane Bioreactor for Swine Wastewater Treatment. MEMBRANES 2021; 11:83. [PMID: 33498712 PMCID: PMC7911319 DOI: 10.3390/membranes11020083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/10/2021] [Accepted: 01/20/2021] [Indexed: 11/17/2022]
Abstract
A high concentration of suspended solids (SS) in swine wastewater reduces the efficiency of the biological treatment process. The current study developed a short-cut combined magnetic coagulation (MC)-sequence batch membrane bioreactor (SMBR) process to treat swine wastewater. Compared with the single SMBR process, the combined process successfully achieved similarly high removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN), ammonium nitrogen (NH4+-N), and total phosphorous (TP) of 96.0%, 97.6%, 99.0%, and 69.1%, respectively, at dosages of 0.5 g/L of poly aluminium chloride (PAC), 2 mg/L of polyacrylamide (PAM), and 1 g/L of magnetic seeds in Stage II, and concentrations of TN, COD, and NH4+-N in effluent can meet the discharge standards for pollutants for livestock and poultry breeding (GB18596-2001, China). The nitrogen removal loading (NRL) was increased from 0.21 to 0.28 kg/(m3·d), and the hydraulic retention time (HRT) was shortened from 5.0 days to 4.3 days. High-throughput sequencing analysis was carried out to investigate microbial community evolution, and the results showed that the relative abundance of ammonia-oxidizing bacteria (AOB) in the SMBR increased from 0.1% without pre-treatment to 1.78% with the pre-treatment of MC.
Collapse
Affiliation(s)
- Yanlin Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (Y.C.); (Q.S.); (D.Y.); (L.Z.); (M.C.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianwen Sui
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (Y.C.); (Q.S.); (D.Y.); (L.Z.); (M.C.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dawei Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (Y.C.); (Q.S.); (D.Y.); (L.Z.); (M.C.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Libing Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (Y.C.); (Q.S.); (D.Y.); (L.Z.); (M.C.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Meixue Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (Y.C.); (Q.S.); (D.Y.); (L.Z.); (M.C.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tharindu Ritigala
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (Y.C.); (Q.S.); (D.Y.); (L.Z.); (M.C.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (Y.C.); (Q.S.); (D.Y.); (L.Z.); (M.C.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Energy, Jiangxi Academy of Sciences, Nanchang 330029, China
| |
Collapse
|
47
|
López-Pacheco IY, Silva-Núñez A, García-Perez JS, Carrillo-Nieves D, Salinas-Salazar C, Castillo-Zacarías C, Afewerki S, Barceló D, Iqbal HNM, Parra-Saldívar R. Phyco-remediation of swine wastewater as a sustainable model based on circular economy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 278:111534. [PMID: 33129031 DOI: 10.1016/j.jenvman.2020.111534] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 08/24/2020] [Accepted: 10/19/2020] [Indexed: 02/08/2023]
Abstract
Pork production has expanded in the world in recent years. This growth has caused a significant increase in waste from this industry, especially of wastewater. Although there has been an increase in wastewater treatment, there is a lack of useful technologies for the treatment of wastewater from the pork industry. Swine farms generate high amounts of organic pollution, with large amounts of nitrogen and phosphorus with final destination into water bodies. Sadly, little attention has been devoted to animal wastes, which are currently treated in simple systems, such as stabilization ponds or just discharged to the environment without previous treatment. This uncontrolled release of swine wastewater is a major cause of eutrophication processes. Among the possible treatments, phyco-remediation seems to be a sustainable and environmentally friendly option of removing compounds from wastewater such as nitrogen, phosphorus, and some metal ions. Several studies have demonstrated the feasibility of treating swine wastewater using different microalgae species. Nevertheless, the practicability of applying this procedure at pilot-scale has not been explored before as an integrated process. This work presents an overview of the technological applications of microalgae for the treatment of wastewater from swine farms and the by-products (pigments, polysaccharides, lipids, proteins) and services of commercial interest (biodiesel, biohydrogen, bioelectricity, biogas) generated during this process. Furthermore, the environmental benefits while applying microalgae technologies are discussed.
Collapse
Affiliation(s)
- Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Arisbe Silva-Núñez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - J Saúl García-Perez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Nuevo México, C.P. 45138, Zapopan, Jalisco, Mexico
| | | | | | - Samson Afewerki
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA; Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Damiá Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona 18-26, 08034, Barcelona, Spain; Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, 17003, Girona, Spain; College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Hafiz N M Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| | | |
Collapse
|
48
|
Bhatia SK, Mehariya S, Bhatia RK, Kumar M, Pugazhendhi A, Awasthi MK, Atabani AE, Kumar G, Kim W, Seo SO, Yang YH. Wastewater based microalgal biorefinery for bioenergy production: Progress and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141599. [PMID: 32890799 DOI: 10.1016/j.scitotenv.2020.141599] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 05/05/2023]
Abstract
Treatment of industrial and domestic wastewater is very important to protect downstream users from health risks and meet the freshwater demand of the ever-increasing world population. Different types of wastewater (textile, dairy, pharmaceutical, swine, municipal, etc.) vary in composition and require different treatment strategies. Wastewater management and treatment is an expensive process; hence, it is important to integrate relevant technology into this process to make it more feasible and cost-effective. Wastewater treatment using microalgae-based technology could be a global solution for resource recovery from wastewater and to provide affordable feedstock for bioenergy (biodiesel, biohydrogen, bio-alcohol, methane, and bioelectricity) production. Various microalgal cultivation systems (open or closed photobioreactors), turf scrubber, and hybrid systems have been developed. Although many algal biomass harvesting methods (physical, chemical, biological, and electromagnetic) have been reported, it is still an expensive process. In this review article, resource recovery from wastewater using algal cultivation, biomass harvesting, and various technologies applied in converting algal biomass into bioenergy, along with the various challenges that are encountered are discussed in brief.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Sanjeet Mehariya
- Department of Engineering, University of Campania "Luigi Vanvitelli", Real Casa dell'Annunziata, Via Roma 29, 81031 Aversa (CE), Italy
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Shimla 171005, India
| | - Manu Kumar
- Department of Life Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - A E Atabani
- Alternative Fuels Research Laboratory (AFRL), Energy Division, Department of Mechanical Engineering, Faculty of Engineering, Erciyes University, 38039 Kayseri, Turkey
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus 4036 Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Wooseong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seung-Oh Seo
- Department of Food Science and Nutrition, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
49
|
Narindri Rara Winayu B, Tung Lai K, Ta Hsueh H, Chu H. Production of phycobiliprotein and carotenoid by efficient extraction from Thermosynechococcus sp. CL-1 cultivation in swine wastewater. BIORESOURCE TECHNOLOGY 2021; 319:124125. [PMID: 32977095 DOI: 10.1016/j.biortech.2020.124125] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
In this study, the performance of TCL-1 cultivation in swine wastewater was observed under various light intensity, treatment type of swine wastewater, and initial biomass concentration. Furthermore, pigments production (phycobiliprotein and carotenoid), was the main target in this study along with optimum extraction method. Under the cultivation in the anoxic treated swine wastewater (ATSW), highest biomass increment (1.001 ± 0.104 g/L) was achieved with 2 g/L initial biomass concentration and 1,000 µE/m2/s light intensity whereas cultivation in the anoxic and aerobic treated swine wastewater (AATSW) presented better performance on pigments production with the highest production in allophycocyanin which reached 12.07 ± 0.3% dwc. Extraction time and ultrasonication have significant influence on the phycobiliprotein extraction, yet different temperature and incubation time give similar extraction result for β-carotene. Carotenoids production with AATSW cultivation were two times higher than the cultivation in ATSW. However, ammonium-N degradation was performed better in the ATSW cultivation.
Collapse
Affiliation(s)
| | - Ko Tung Lai
- Department of Environmental Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsin Ta Hsueh
- Sustainable Environment Research Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsin Chu
- Department of Environmental Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
50
|
Zhang DM, Teng Q, Zhang D, Jilani G, Ken WM, Yang ZP, Alam T, Ikram M, Iqbal Z. Performance and microbial community dynamics in anaerobic continuously stirred tank reactor and sequencing batch reactor (CSTR-SBR) coupled with magnesium-ammonium-phosphate (MAP)-precipitation for treating swine wastewater. BIORESOURCE TECHNOLOGY 2021; 320:124336. [PMID: 33217692 DOI: 10.1016/j.biortech.2020.124336] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
The impacts of magnesium-ammonium-phosphate (MAP) precipitation on the performance and microbial dynamics in an anaerobic continuously stirred tank reactor (CSTR) coupled with sequencing batch reactor (SBR) for swine wastewater treatment were investigated. In CSTR-SBR systems, an overall higher removal efficiency for COD, NH4+ and PO43-as 98.6%, 98.7% and 97.9% was achieved with MAP precipitation, compared to CSTR-SBR without MAP pretreatment (i.e., 97.5, 74.3% and 19.9% for COD, NH4+ and PO43-, respectively). With MAP precipitation, the high C/N ratio of 6.6 after anaerobic CSTR was observed. The increase in the richness and diversity of microbial communities in CSTR with MAP was conducive to nitrogen and phosphorus removal, as well as biogas production. The core community was affiliated with bacterial phyla Firmicutes, Bacteroidetes, Proteobacteria, Cloacimonetes, and Spirochaetae. The study provide a new insight into the potential application of MAP precipitation as pretreatment for dealing with nutrient recovery from high-strength swine wastewater.
Collapse
Affiliation(s)
- Dong-Mei Zhang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Qing Teng
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Dongqing Zhang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China.
| | - Ghulam Jilani
- Institute of Soil Science, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Wei-Ming Ken
- School of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhi-Peng Yang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; Guangdong Zhong Lian Xing Environmental Technology Co. Ltd, Guangdong Province 525000, China
| | - Tajwar Alam
- Institute of Soil Science, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Muhammad Ikram
- Institute of Soil Science, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Zahid Iqbal
- Institute of Soil Science, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan
| |
Collapse
|