1
|
Piscitelli M, Franco CD, Bianco GV, Bruno G, Macchia E, Torsi L, Scamarcio G. Graphene-Based Opto-Electronic Platform for Ultra-Sensitive Biomarker Detection at Zeptomolar Concentrations. SMALL METHODS 2025:e2402026. [PMID: 39838731 DOI: 10.1002/smtd.202402026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/13/2025] [Indexed: 01/23/2025]
Abstract
A ground-breaking graphene-based biosensor designed for label-free detection of immunoglobulin M (IgM) achieving a remarkable concentration of 100 zeptomolar (10-19 m), is reported. The sensor is a two-terminal device and incorporates a millimeter-wide gold interface, bio-functionalized with ≈1012 anti-IgM antibodies and capacitively coupled to a bare graphene electrode through a water-soaked paper strip. In this configuration, few affinity binding events trigger a collective electrostatic reorganization of the protein layer, leading to an extended surface potential (SP) shift of the biofunctionalized Au surface. The SP shift, mediated by electrolyte capacitive coupling, induces a corresponding shift in the Fermi level of graphene. This shifts the graphene phonon frequencies, which are measured by Raman spectroscopy. Decoupling the sensing interface from the transducing graphene layer provides flexibility in surface chemistry modifications, while preserving the graphene integrity. A key aspect of this biosensor is its ability to precisely determine the graphene charge neutrality point from the voltage dependence of phonon frequency shifts, enabling detections of biomarker at unprecedented low concentrations. The integration of graphene with optical probing demonstrates a proof-of-concept and establishes a ground-breaking approach to in situ biomarker detection, setting the stage for a future generation of portable opto-electronic high-performance diagnostic tools for single-marker detection.
Collapse
Affiliation(s)
- Matteo Piscitelli
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy and CNR IFN, Bari, 70125, Italy
| | - Cinzia Di Franco
- Consiglio Nazionale delle Ricerche - Consiglio Nazionale delle Ricerche - Istituto di Fotonica e Nanotecnologie, CNR-IFN, Bari, 70125, Italy
| | - Giuseppe Valerio Bianco
- Consiglio Nazionale delle Ricerche -Istituto di Nanotecnologia, CNR-Nanotech, Bari, 70125, Italy
| | - Giovanni Bruno
- Consiglio Nazionale delle Ricerche -Istituto di Nanotecnologia, CNR-Nanotech, Bari, 70125, Italy
| | - Eleonora Macchia
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, 70125, Italy
| | - Luisa Torsi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, 70125, Italy
| | - Gaetano Scamarcio
- NEST, Istituto Nanoscienze - CNR and Scuola Normale Superiore, Pisa, I-56127, Italy
| |
Collapse
|
2
|
Di Franco C, Macchia E, Catacchio M, Caputo M, Scandurra C, Sarcina L, Bollella P, Tricase A, Innocenti M, Funari R, Piscitelli M, Scamarcio G, Torsi L. Electric Field Cycling of Physisorbed Antibodies Reduces Biolayer Polarization Dispersion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412347. [PMID: 39513396 PMCID: PMC11714235 DOI: 10.1002/advs.202412347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Indexed: 11/15/2024]
Abstract
The electric dipoles of proteins in a biolayer determine their dielectric properties through the polarization density P. Hence, its reproducibility is crucial for applications, particularly in bioelectronics. Biolayers encompassing capturing antibodies covalently bound at a biosensing interface are generally preferred for their assumed higher stability. However, surface physisorption is shown to offer advantages like easily scalable fabrication processes and high stability. The present study investigates the effects of electric-field (EF)-cycling of anti-Immunoglobulin M (anti-IgM) biolayers physisorbed on Au. The impact of EF-cycling on the dielectric, optical, and mechanical properties of anti-IgM biolayer is investigated. A reduction of the dispersion (standard deviation over a set of 31 samples) of the measured P values is observed, while the set median stays almost constant. Hence, physisorption combined with EF cycling, results in a biolayer with highly reproducible bioelectronic properties. Additionally, the study provides important insights into the mechanisms of dielectric rearrangement of dipole moments in capturing biolayers after EF-cycling. Notably, EF-cycling acts as an annealing process, driving the proteins in the biolayer into a statistically more probable and stable conformational state. Understanding these phenomena enhances the knowledge of the properties of physisorbed biolayers and can inform design strategies for bioelectronic devices.
Collapse
Affiliation(s)
- Cinzia Di Franco
- Institituto di Fotonica e Nanotecnologia (IFN) , Consiglio Nazionale delle Ricerche (CNR)CNR IFNBari70126Italy
| | - Eleonora Macchia
- Dipartimento di Farmacia‐Scienze del FarmacoUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
- Centre for Colloid and Surface Science at Università degli Studi di Bari Aldo MoroBari20125Italy
| | - Michele Catacchio
- Dipartimento di Farmacia‐Scienze del FarmacoUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
| | - Mariapia Caputo
- Dipartimento di Farmacia‐Scienze del FarmacoUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
| | - Cecilia Scandurra
- Dipartimento di Chimica and Centre for Colloid and Surface ScienceUniversità degli Studi di Bari Aldo MoroBari20125Italy
| | - Lucia Sarcina
- Dipartimento di Chimica and Centre for Colloid and Surface ScienceUniversità degli Studi di Bari Aldo MoroBari20125Italy
| | - Paolo Bollella
- Dipartimento di Chimica and Centre for Colloid and Surface ScienceUniversità degli Studi di Bari Aldo MoroBari20125Italy
| | - Angelo Tricase
- Dipartimento di Farmacia‐Scienze del FarmacoUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
- Centre for Colloid and Surface Science at Università degli Studi di Bari Aldo MoroBari20125Italy
| | - Massimo Innocenti
- Dipartimento di ChimicaUniversità degli Studi di FirenzeINSTM Consortium ℅ Dip. ChimicaVia della Lastruccia 3–13Sesto FiorentinoI‐50019FlorenceItaly
| | - Riccardo Funari
- Dipartimento Interateneo di FisicaUniversità degli Studi di Bari Aldo MoroBari70125Italy
- Istituto di Intelligenza MeccanicaScuola Superiore Sant'Anna, Via G. Moruzzi, 1Pisa56124Italy
| | - Matteo Piscitelli
- Institituto di Fotonica e Nanotecnologia (IFN) , Consiglio Nazionale delle Ricerche (CNR)CNR IFNBari70126Italy
- Dipartimento Interateneo di FisicaUniversità degli Studi di Bari Aldo MoroBari70125Italy
| | - Gaetano Scamarcio
- Dipartimento Interateneo di FisicaUniversità degli Studi di Bari Aldo MoroBari70125Italy
- CNR‐ Istituto Nanoscienze c/o Scuola Normale SuperiorePisa56127Italy
| | - Luisa Torsi
- Dipartimento di Chimica and Centre for Colloid and Surface ScienceUniversità degli Studi di Bari Aldo MoroBari20125Italy
| |
Collapse
|
3
|
Li S, Duan Y, Zhu W, Cheng S, Hu W. Sensing Interfaces Engineering for Organic Thin Film Transistors-Based Biosensors: Opportunities and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412379. [PMID: 39252633 DOI: 10.1002/adma.202412379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Organic thin film transistors (OTFTs) enable rapid and label-free high-sensitivity detection of target analytes due to their low cost, large-area processing, biocompatibility, and inherent signal amplification. At the same time, the freedom of synthesis, tailorability, and functionalization of organic semiconductor materials and their ability to be combined with flexible substrates make them one of the ideal platforms for biosensing. However, OTFTs-based biosensors still face significant challenges, such as unexpected surface adsorption, disordered conformation, inhomogeneous graft density, and flexibility of probe molecules that biological sensing probes would face during immobilization. In this review, efficient immobilization strategies based on OTFTs biological sensing probes developed in the last 5 years are highlighted. First, the biosensors are classified according to their sensing interface. Second, a comprehensive discussion of the types of biological sensing probes is presented. Third, three commonly used methods for immobilizing biological sensing probes and their challenges are briefly described. Finally, the applications of OTFTs-based biosensors for liquid phase detection are summarized. This review provides a comprehensive and timely review of optimization in sensing interface engineering so that efficient immobilization of biological sensing probes with sensing interfaces will contribute to the development of high-performance OTFTs-based biosensors.
Collapse
Affiliation(s)
- Siyu Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Yuchen Duan
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Weigang Zhu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Shanshan Cheng
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
4
|
Marchianò V, Tricase A, Macchia E, Bollella P, Torsi L. Self-powered wearable biosensor based on stencil-printed carbon nanotube electrodes for ethanol detection in sweat. Anal Bioanal Chem 2024; 416:5303-5316. [PMID: 39134727 PMCID: PMC11416403 DOI: 10.1007/s00216-024-05467-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/22/2024]
Abstract
Herein we introduce a novel water-based graphite ink modified with multiwalled carbon nanotubes, designed for the development of the first wearable self-powered biosensor enabling alcohol abuse detection through sweat analysis. The stencil-printed graphite (SPG) electrodes, printed onto a flexible substrate, were modified by casting multiwalled carbon nanotubes (MWCNTs), electrodepositing polymethylene blue (pMB) at the anode to serve as a catalyst for nicotinamide adenine dinucleotide (NADH) oxidation, and hemin at the cathode as a selective catalyst for H2O2 reduction. Notably, alcohol dehydrogenase (ADH) was additionally physisorbed onto the anodic electrode, and alcohol oxidase (AOx) onto the cathodic electrode. The self-powered biosensor was assembled using the ADH/pMB-MWCNTs/SPG||AOx/Hemin-MWCNTs/SPG configuration, enabling the detection of ethanol as an analytical target, both at the anodic and cathodic electrodes. Its performance was assessed by measuring polarization curves with gradually increasing ethanol concentrations ranging from 0 to 50 mM. The biosensor demonstrated a linear detection range from 0.01 to 0.3 mM, with a detection limit (LOD) of 3 ± 1 µM and a sensitivity of 64 ± 2 μW mM-1, with a correlation coefficient of 0.98 (RSD 8.1%, n = 10 electrode pairs). It exhibited robust operational stability (over 2800 s with continuous ethanol turnover) and excellent storage stability (approximately 93% of initial signal retained after 90 days). Finally, the biosensor array was integrated into a wristband and successfully evaluated for continuous alcohol abuse monitoring. This proposed system displays promising attributes for use as a flexible and wearable biosensor employing biocompatible water-based inks, offering potential applications in forensic contexts.
Collapse
Affiliation(s)
- Verdiana Marchianò
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Via E. Orabona, 4, 70125, Bari, Italy
- Centre for Colloid and Surface Science, University of Bari Aldo Moro, Via E. Orabona, 4, 70125, Bari, Italy
| | - Angelo Tricase
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Via E. Orabona, 4, 70125, Bari, Italy
- Centre for Colloid and Surface Science, University of Bari Aldo Moro, Via E. Orabona, 4, 70125, Bari, Italy
| | - Eleonora Macchia
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, Via E. Orabona, 4, 70125, Bari, Italy
- Centre for Colloid and Surface Science, University of Bari Aldo Moro, Via E. Orabona, 4, 70125, Bari, Italy
- Faculty of Science and Engineering, Åbo Akademi University, 20500, Turku, Finland
| | - Paolo Bollella
- Centre for Colloid and Surface Science, University of Bari Aldo Moro, Via E. Orabona, 4, 70125, Bari, Italy.
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona, 4, 70125, Bari, Italy.
| | - Luisa Torsi
- Centre for Colloid and Surface Science, University of Bari Aldo Moro, Via E. Orabona, 4, 70125, Bari, Italy
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona, 4, 70125, Bari, Italy
| |
Collapse
|
5
|
Scandurra C, Björkström K, Caputo M, Sarcina L, Genco E, Modena F, Viola FA, Brunetti C, Kovács‐Vajna ZM, Franco CD, Haeberle L, Larizza P, Mancini MT, Österbacka R, Reeves W, Scamarcio G, Wheeler M, Caironi M, Cantatore E, Torricelli F, Esposito I, Macchia E, Torsi L. Analysis of Clinical Samples of Pancreatic Cyst's Lesions with A Multi-Analyte Bioelectronic Simot Array Benchmarked Against Ultrasensitive Chemiluminescent Immunoassay. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308141. [PMID: 38234100 PMCID: PMC11251558 DOI: 10.1002/advs.202308141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/30/2023] [Indexed: 01/19/2024]
Abstract
Pancreatic cancer, ranking as the third factor in cancer-related deaths, necessitates enhanced diagnostic measures through early detection. In response, SiMoT-Single-molecule with a large Transistor multiplexing array, achieving a Technology Readiness Level of 5, is proposed for a timely identification of pancreatic cancer precursor cysts and is benchmarked against the commercially available chemiluminescent immunoassay SIMOA (Single molecule array) SP-X System. A cohort of 39 samples, comprising 33 cyst fluids and 6 blood plasma specimens, undergoes detailed examination with both technologies. The SiMoT array targets oncoproteins MUC1 and CD55, and oncogene KRAS, while the SIMOA SP-X planar technology exclusively focuses on MUC1 and CD55. Employing Principal Component Analysis (PCA) for multivariate data processing, the SiMoT array demonstrates effective discrimination of malignant/pre-invasive high-grade or potentially malignant low-grade pancreatic cysts from benign non-mucinous cysts. Conversely, PCA analysis applied to SIMOA assay reveals less effective differentiation ability among the three cyst classes. Notably, SiMoT unique capability of concurrently analyzing protein and genetic markers with the threshold of one single molecule in 0.1 mL positions it as a comprehensive and reliable diagnostic tool. The electronic response generated by the SiMoT array facilitates direct digital data communication, suggesting potential applications in the development of field-deployable liquid biopsy.
Collapse
Affiliation(s)
- Cecilia Scandurra
- Dipartimento di Chimica and Centre for Colloid and Surface ScienceUniversità degli Studi di Bari Aldo MoroBari20125Italy
| | - Kim Björkström
- The Faculty of Science and EngineeringÅbo Akademi UniversityTurku20500Finland
| | - Mariapia Caputo
- Dipartimento di Farmacia‐Scienze del FarmacoUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
| | - Lucia Sarcina
- Dipartimento di Chimica and Centre for Colloid and Surface ScienceUniversità degli Studi di Bari Aldo MoroBari20125Italy
| | - Enrico Genco
- Department of Electrical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Francesco Modena
- Center for Nano Science and TechnologyIstituto Italiano di TecnologiaVia Rubattino 81Milan20134Italy
| | - Fabrizio Antonio Viola
- Center for Nano Science and TechnologyIstituto Italiano di TecnologiaVia Rubattino 81Milan20134Italy
- Present address:
Dipartimento di Ingegneria Elettrica ed ElettronicaUniversità degli Studi di CagliariVia Marengo 3Cagliari09123Italy
| | | | - Zsolt M. Kovács‐Vajna
- Dipartimento Ingegneria dell'InformazioneUniversità degli Studi di BresciaBrescia25123Italy
| | | | - Lena Haeberle
- Institute of PathologyHeinrich‐Heine University and University Hospital of Düsseldorf40225DuesseldorfGermany
| | - Piero Larizza
- Masmec Biomed – Masmec SpA divisionModugno (BA)70026Italy
| | | | - Ronald Österbacka
- The Faculty of Science and EngineeringÅbo Akademi UniversityTurku20500Finland
| | | | - Gaetano Scamarcio
- Dipartimento Interateneo di FisicaUniversità degli Studi di Bari Aldo MoroBari70125Italy
| | | | - Mario Caironi
- Center for Nano Science and TechnologyIstituto Italiano di TecnologiaVia Rubattino 81Milan20134Italy
| | - Eugenio Cantatore
- Department of Electrical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell'InformazioneUniversità degli Studi di BresciaBrescia25123Italy
| | - Irene Esposito
- Institute of PathologyHeinrich‐Heine University and University Hospital of Düsseldorf40225DuesseldorfGermany
| | - Eleonora Macchia
- The Faculty of Science and EngineeringÅbo Akademi UniversityTurku20500Finland
- Dipartimento di Farmacia‐Scienze del FarmacoUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
| | - Luisa Torsi
- Dipartimento di Chimica and Centre for Colloid and Surface ScienceUniversità degli Studi di Bari Aldo MoroBari20125Italy
| |
Collapse
|
6
|
Song J, Liu H, Zhao Z, Lin P, Yan F. Flexible Organic Transistors for Biosensing: Devices and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300034. [PMID: 36853083 DOI: 10.1002/adma.202300034] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Flexible and stretchable biosensors can offer seamless and conformable biological-electronic interfaces for continuously acquiring high-fidelity signals, permitting numerous emerging applications. Organic thin film transistors (OTFTs) are ideal transducers for flexible and stretchable biosensing due to their soft nature, inherent amplification function, biocompatibility, ease of functionalization, low cost, and device diversity. In consideration of the rapid advances in flexible-OTFT-based biosensors and their broad applications, herein, a timely and comprehensive review is provided. It starts with a detailed introduction to the features of various OTFTs including organic field-effect transistors and organic electrochemical transistors, and the functionalization strategies for biosensing, with a highlight on the seminal work and up-to-date achievements. Then, the applications of flexible-OTFT-based biosensors in wearable, implantable, and portable electronics, as well as neuromorphic biointerfaces are detailed. Subsequently, special attention is paid to emerging stretchable organic transistors including planar and fibrous devices. The routes to impart stretchability, including structural engineering and material engineering, are discussed, and the implementations of stretchable organic transistors in e-skin and smart textiles are included. Finally, the remaining challenges and the future opportunities in this field are summarized.
Collapse
Affiliation(s)
- Jiajun Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Hong Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials and Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
- Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
7
|
Hasan J, Bok S. Plasmonic Fluorescence Sensors in Diagnosis of Infectious Diseases. BIOSENSORS 2024; 14:130. [PMID: 38534237 DOI: 10.3390/bios14030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
The increasing demand for rapid, cost-effective, and reliable diagnostic tools in personalized and point-of-care medicine is driving scientists to enhance existing technology platforms and develop new methods for detecting and measuring clinically significant biomarkers. Humanity is confronted with growing risks from emerging and recurring infectious diseases, including the influenza virus, dengue virus (DENV), human immunodeficiency virus (HIV), Ebola virus, tuberculosis, cholera, and, most notably, SARS coronavirus-2 (SARS-CoV-2; COVID-19), among others. Timely diagnosis of infections and effective disease control have always been of paramount importance. Plasmonic-based biosensing holds the potential to address the threat posed by infectious diseases by enabling prompt disease monitoring. In recent years, numerous plasmonic platforms have risen to the challenge of offering on-site strategies to complement traditional diagnostic methods like polymerase chain reaction (PCR) and enzyme-linked immunosorbent assays (ELISA). Disease detection can be accomplished through the utilization of diverse plasmonic phenomena, such as propagating surface plasmon resonance (SPR), localized SPR (LSPR), surface-enhanced Raman scattering (SERS), surface-enhanced fluorescence (SEF), surface-enhanced infrared absorption spectroscopy, and plasmonic fluorescence sensors. This review focuses on diagnostic methods employing plasmonic fluorescence sensors, highlighting their pivotal role in swift disease detection with remarkable sensitivity. It underscores the necessity for continued research to expand the scope and capabilities of plasmonic fluorescence sensors in the field of diagnostics.
Collapse
Affiliation(s)
- Juiena Hasan
- Department of Electrical and Computer Engineering, Ritchie School of Engineering and Computer Science, University of Denver, Denver, CO 80208, USA
| | - Sangho Bok
- Department of Electrical and Computer Engineering, Ritchie School of Engineering and Computer Science, University of Denver, Denver, CO 80208, USA
| |
Collapse
|
8
|
Macchia E, Torricelli F, Caputo M, Sarcina L, Scandurra C, Bollella P, Catacchio M, Piscitelli M, Di Franco C, Scamarcio G, Torsi L. Point-Of-Care Ultra-Portable Single-Molecule Bioassays for One-Health. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309705. [PMID: 38108547 DOI: 10.1002/adma.202309705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Indexed: 12/19/2023]
Abstract
Screening asymptomatic organisms (humans, animals, plants) with a high-diagnostic accuracy using point-of-care-testing (POCT) technologies, though still visionary holds great potential. Convenient surveillance requires easy-to-use, cost-effective, ultra-portable but highly reliable, in-vitro-diagnostic devices that are ready for use wherever they are needed. Currently, there are not yet such devices available on the market, but there are a couple more promising technologies developed at readiness-level 5: the Clustered-Regularly-Interspaced-Short-Palindromic-Repeats (CRISPR) lateral-flow-strip tests and the Single-Molecule-with-a-large-Transistor (SiMoT) bioelectronic palmar devices. They both hold key features delineated by the World-Health-Organization for POCT systems and an occurrence of false-positive and false-negative errors <1-5% resulting in diagnostic-selectivity and sensitivity >95-99%, while limit-of-detections are of few markers. CRISPR-strip is a molecular assay that, can detect down to few copies of DNA/RNA markers in blood while SiMoT immunometric and molecular test can detect down to a single oligonucleotide, protein marker, or pathogens in 0.1mL of blood, saliva, and olive-sap. These technologies can prospectively enable the systematic and reliable surveillance of asymptomatic ones prior to worsening/proliferation of illnesses allowing for timely diagnosis and swift prognosis. This could establish a proactive healthcare ecosystem that results in effective treatments for all living organisms generating diffuse and well-being at efficient costs.
Collapse
Affiliation(s)
- Eleonora Macchia
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, 70125, Italy
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, Brescia, 25123, Italy
| | - Mariapia Caputo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, 70125, Italy
| | - Lucia Sarcina
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Cecilia Scandurra
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Paolo Bollella
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Michele Catacchio
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Matteo Piscitelli
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, Bari, 70125, Italy
- CNR IFN, Bari, 70126, Italy
| | | | - Gaetano Scamarcio
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, Bari, 70125, Italy
- CNR IFN, Bari, 70126, Italy
| | - Luisa Torsi
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| |
Collapse
|
9
|
Jiang X, Shi C, Wang Z, Huang L, Chi L. Healthcare Monitoring Sensors Based on Organic Transistors: Surface/Interface Strategy and Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308952. [PMID: 37951211 DOI: 10.1002/adma.202308952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Indexed: 11/13/2023]
Abstract
Organic transistors possess inherent advantages such as flexibility, biocompatibility, customizable chemical structures, solution-processability, and amplifying capabilities, making them highly promising for portable healthcare sensor applications. Through convenient and diverse modifications at the material and device surfaces or interfaces, organic transistors allow for a wide range of sensor applications spanning from chemical and biological to physical sensing. In this comprehensive review, the surface and interface engineering aspect associated with four types of typical healthcare sensors is focused. The device operation principles and sensing mechanisms are systematically analyzed and highlighted, and particularly surface/interface functionalization strategies that contribute to the enhancement of sensing performance are focused. An outlook and perspective on the critical issues and challenges in the field of healthcare sensing using organic transistors are provided as well.
Collapse
Affiliation(s)
- Xingyu Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Cheng Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Zi Wang
- Suzhou Laboratory, 388 Ruoshui Road, Suzhou, 215123, P. R. China
| | - Lizhen Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
10
|
Sailapu SK, Liébana S, Merino-Jimenez I, Esquivel JP, Sabaté N. Towards a REASSURED reality: A less-is-more electronic design strategy for self-powered glucose test. Biosens Bioelectron 2024; 243:115708. [PMID: 37862757 DOI: 10.1016/j.bios.2023.115708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/22/2023]
Abstract
Sensing strategies adopting minimal electronic systems help in realizing REASSURED diagnostic tests. However, the challenge in developing such strategies escalates with demand in power and electronics during pursuit of reliable and accurate sensing. Herein, we present an electronic design strategy using a smart strip, operating with power generated from 3.5 μL of serum sample, to reveal glucose concentration through a response preserved in a capacitor. Further, by integrating an NFC tag alongside the strip, we devised a self-powered glucose measuring card, mobile-glucocard (or mGlucocard) for retrieving this stored digital response using smartphone, enabling 'connected mobile-health diagnostics'. The response from our device relates linearly to glucose concentration offering a sensitivity of 11.3 mV/mM and good correlation (R = 0.974) with colorimetric reference method. Interestingly, the design strategy uses only four components - two resistors, diode, and capacitor - of simple architecture likely transferable to printed technologies to deliver advanced self-powered sustainable devices.
Collapse
Affiliation(s)
- Sunil Kumar Sailapu
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/ Del Til⋅lers, Campus UAB, Bellaterra, 08193, Barcelona, Spain.
| | - Susana Liébana
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/ Del Til⋅lers, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Irene Merino-Jimenez
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/ Del Til⋅lers, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Juan Pablo Esquivel
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/ Del Til⋅lers, Campus UAB, Bellaterra, 08193, Barcelona, Spain; BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Neus Sabaté
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/ Del Til⋅lers, Campus UAB, Bellaterra, 08193, Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), P.L. Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
11
|
Ramalingam M, Jaisankar A, Cheng L, Krishnan S, Lan L, Hassan A, Sasmazel HT, Kaji H, Deigner HP, Pedraz JL, Kim HW, Shi Z, Marrazza G. Impact of nanotechnology on conventional and artificial intelligence-based biosensing strategies for the detection of viruses. DISCOVER NANO 2023; 18:58. [PMID: 37032711 PMCID: PMC10066940 DOI: 10.1186/s11671-023-03842-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Recent years have witnessed the emergence of several viruses and other pathogens. Some of these infectious diseases have spread globally, resulting in pandemics. Although biosensors of various types have been utilized for virus detection, their limited sensitivity remains an issue. Therefore, the development of better diagnostic tools that facilitate the more efficient detection of viruses and other pathogens has become important. Nanotechnology has been recognized as a powerful tool for the detection of viruses, and it is expected to change the landscape of virus detection and analysis. Recently, nanomaterials have gained enormous attention for their value in improving biosensor performance owing to their high surface-to-volume ratio and quantum size effects. This article reviews the impact of nanotechnology on the design, development, and performance of sensors for the detection of viruses. Special attention has been paid to nanoscale materials, various types of nanobiosensors, the internet of medical things, and artificial intelligence-based viral diagnostic techniques.
Collapse
Affiliation(s)
- Murugan Ramalingam
- School of Basic Medical Sciences, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106 China
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116 Republic of Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116 Republic of Korea
- BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116 Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116 Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116 South Korea
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Atilim University, 06836 Ankara, Turkey
| | - Abinaya Jaisankar
- Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014 India
| | - Lijia Cheng
- School of Basic Medical Sciences, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106 China
| | - Sasirekha Krishnan
- Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014 India
| | - Liang Lan
- School of Basic Medical Sciences, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106 China
| | - Anwarul Hassan
- Department of Mechanical and Industrial Engineering, Biomedical Research Center, Qatar University, 2713, Doha, Qatar
| | - Hilal Turkoglu Sasmazel
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Atilim University, 06836 Ankara, Turkey
| | - Hirokazu Kaji
- Department of Biomechanics, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, 101-0062 Japan
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, 78054 Villingen-Schwenningen, Germany
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine, 28029 Madrid, Spain
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116 Republic of Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116 Republic of Korea
- BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116 Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116 Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116 South Korea
| | - Zheng Shi
- School of Basic Medical Sciences, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106 China
| | - Giovanna Marrazza
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
12
|
Yadav A, Patil R, Dutta S. Advanced Self-Powered Biofuel Cells with Capacitor and Nanogenerator for Biomarker Sensing. ACS APPLIED BIO MATERIALS 2023; 6:4060-4080. [PMID: 37787456 DOI: 10.1021/acsabm.3c00640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Self-powered biofuel cells (BFCs) have evolved for highly sensitive detection of biomarkers such as noncodon micro ribonucleic acids (miRNAs) in the presence of interfering substrates. Self-charging supercapacitive BFCs for in vivo and in vitro cellular microenvironments represent the most prevalent sensing mechanism for diagnosis. Therefore, self-powered biosensing (SPB) with a capacitor and contact separation with a triboelectric nanogenerator (TENG) offers electrochemical and colorimetric dual-mode detection via improved electrical signal intensity. In this review, we discuss three major components: stretchable self-powered BFC design, miRNA sensing, and impedance spectroscopy. A specific focus is given to 1) assembling of sensors for biomarkers, 2) electrical output signal intensification, and 3) role of supercapacitors and nanogenerators in SPBs. We outline the key features of stretchable SPBs and the sequence of miRNA sensing by SPBs. We have emphasized the need of a supercapacitor and nanogenerator for SPBs in the context of advanced assembly of the sensing unit. Finally, we outline the role of impedance spectroscopy in the detection and estimation of biomarkers. We highlight key challenges in SPBs for biomarker sensing, which needs improved sensing accuracy, integration strategies of electrochemical biosensing for in vitro and in vivo microenvironments, and the impact of miRNA sensing on cancer diagnostics. This article attempts a specific focus on the accuracy and limitations of sensing unit for miRNA biomarkers and associated tool for boosting electrical signal intensity for a potential big step further.
Collapse
Affiliation(s)
- Anubha Yadav
- Electrochemical Energy & Sensor Research Laboratory Amity Institute of Click Chemistry Research & Studies, Amity University, Sector 125, Noida 201301, Uttar Pradesh, India
| | - Rahul Patil
- Electrochemical Energy & Sensor Research Laboratory Amity Institute of Click Chemistry Research & Studies, Amity University, Sector 125, Noida 201301, Uttar Pradesh, India
| | - Saikat Dutta
- Electrochemical Energy & Sensor Research Laboratory Amity Institute of Click Chemistry Research & Studies, Amity University, Sector 125, Noida 201301, Uttar Pradesh, India
| |
Collapse
|
13
|
Yao Y, Huang W, Chen J, Liu X, Bai L, Chen W, Cheng Y, Ping J, Marks TJ, Facchetti A. Flexible and Stretchable Organic Electrochemical Transistors for Physiological Sensing Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209906. [PMID: 36808773 DOI: 10.1002/adma.202209906] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Flexible and stretchable bioelectronics provides a biocompatible interface between electronics and biological systems and has received tremendous attention for in situ monitoring of various biological systems. Considerable progress in organic electronics has made organic semiconductors, as well as other organic electronic materials, ideal candidates for developing wearable, implantable, and biocompatible electronic circuits due to their potential mechanical compliance and biocompatibility. Organic electrochemical transistors (OECTs), as an emerging class of organic electronic building blocks, exhibit significant advantages in biological sensing due to the ionic nature at the basis of the switching behavior, low driving voltage (<1 V), and high transconductance (in millisiemens range). During the past few years, significant progress in constructing flexible/stretchable OECTs (FSOECTs) for both biochemical and bioelectrical sensors has been reported. In this regard, to summarize major research accomplishments in this emerging field, this review first discusses structure and critical features of FSOECTs, including working principles, materials, and architectural engineering. Next, a wide spectrum of relevant physiological sensing applications, where FSOECTs are the key components, are summarized. Last, major challenges and opportunities for further advancing FSOECT physiological sensors are discussed.
Collapse
Affiliation(s)
- Yao Yao
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
| | - Wei Huang
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, P. R. China
| | - Jianhua Chen
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
| | - Xiaoxue Liu
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Libing Bai
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, P. R. China
| | - Wei Chen
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Yuhua Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, P. R. China
| | - Jianfeng Ping
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 60174, Sweden
| |
Collapse
|
14
|
Zhang X, Pu Z, Su X, Li C, Zheng H, Li D. Flexible organic field-effect transistors-based biosensors: progress and perspectives. Anal Bioanal Chem 2023; 415:1607-1625. [PMID: 36719440 PMCID: PMC9888355 DOI: 10.1007/s00216-023-04553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Abstract
Organic field-effect transistors (OFETs) have been proposed beyond three decades while becoming a research hotspot again in recent years because of the fast development of flexible electronics. Many novel flexible OFETs-based devices have been reported in these years. Among these devices, flexible OFETs-based sensors made great strides because of the extraordinary sensing capability of FET. Most of these flexible OFETs-based sensors were designed for biological applications due to the advantages of flexibility, reduced complexity, and lightweight. This paper reviews the materials, fabrications, and applications of flexible OFETs-based biosensors. Besides, the challenges and opportunities of the flexible OFETs-based biosensors are also discussed.
Collapse
Affiliation(s)
- Xingguo Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China
| | - Zhihua Pu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China.
| | - Xiao Su
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China
| | - Chengcheng Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China
| | - Hao Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China
| | - Dachao Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China.
| |
Collapse
|
15
|
Galyamin D, Liébana S, Esquivel JP, Sabaté N. Immuno-battery: A single use self-powered immunosensor for REASSURED diagnostics. Biosens Bioelectron 2023; 220:114868. [DOI: 10.1016/j.bios.2022.114868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
|
16
|
Ghasemi F, Salimi A. Advances in 2d Based Field Effect Transistors as Biosensing Platforms: From Principle to Biomedical Applications. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Runfang H, Yangfan Y, Leilei L, Jianlong J, Qiang Z, Lifeng D, Shengbo S, Qiang L. P3HT-based organic field effect transistor for low-cost, label-free detection of immunoglobulin G. J Biotechnol 2022; 359:75-81. [DOI: 10.1016/j.jbiotec.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022]
|
18
|
Sailapu SK, Menon C. Engineering Self-Powered Electrochemical Sensors Using Analyzed Liquid Sample as the Sole Energy Source. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203690. [PMID: 35981885 PMCID: PMC9561779 DOI: 10.1002/advs.202203690] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Many healthcare and environmental monitoring devices use electrochemical techniques to detect and quantify analytes. With sensors progressively becoming smaller-particularly in point-of-care (POC) devices and wearable platforms-it creates the opportunity to operate them using less energy than their predecessors. In fact, they may require so little power that can be extracted from the analyzed fluids themselves, for example, blood or sweat in case of physiological sensors and sources like river water in the case of environmental monitoring. Self-powered electrochemical sensors (SPES) can generate a response by utilizing the available chemical species in the analyzed liquid sample. Though SPESs generate relatively low power, capable devices can be engineered by combining suitable reactions, miniaturized cell designs, and effective sensing approaches for deciphering analyte information. This review details various such sensing and engineering approaches adopted in different categories of SPES systems that solely use the power available in liquid sample for their operation. Specifically, the categories discussed in this review cover enzyme-based systems, battery-based systems, and ion-selective electrode-based systems. The review details the benefits and drawbacks with these approaches, as well as prospects of and challenges to accomplishing them.
Collapse
Affiliation(s)
- Sunil Kumar Sailapu
- Biomedical and Mobile Health Technology (BMHT) labDepartment of Health Sciences and TechnologyETH ZürichZürich8008Switzerland
| | - Carlo Menon
- Biomedical and Mobile Health Technology (BMHT) labDepartment of Health Sciences and TechnologyETH ZürichZürich8008Switzerland
| |
Collapse
|
19
|
Macchia E, Kovács-Vajna ZM, Loconsole D, Sarcina L, Redolfi M, Chironna M, Torricelli F, Torsi L. A handheld intelligent single-molecule binary bioelectronic system for fast and reliable immunometric point-of-care testing. SCIENCE ADVANCES 2022; 8:eabo0881. [PMID: 35857467 PMCID: PMC9258948 DOI: 10.1126/sciadv.abo0881] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Molecular tests are highly reliable and sensitive but lack portability and are not simple to use; conversely, easy-to-use antigenic tests still lack high performance. BioScreen combines single-molecule sensitivity and outstanding reliability with ultraportability and simplicity of use. This digital platform is capable of artificial intelligence-based binary classification at the limit of identification of a single marker/virus in 0.1 ml. The diagnostic sensitivity, specificity, and accuracy reach 99.2% as validated through 240 assays, including a pilot clinical trial. The versatile immunometric system can detect the SARS-CoV-2 virus, spike S1, and immunoglobulin G antigen proteins in saliva, blood serum, and swab. BioScreen has a small footprint comprising a disposable cartridge and a handheld electronic reader connected to a smart device. The sample handling is minimal, and the assay time to result is 21 min. Reliable and sensitive self-testing with an ultraportable and easy-to-use diagnostic system operated directly by a patient holds the potential to revolutionize point-of-care testing and early diagnosis.
Collapse
Affiliation(s)
- Eleonora Macchia
- Dipartimento di Farmacia-Scienze del Farmaco, Universit. degli Studi di Bari “Aldo Moro,” 70125 Bari, Italy
- Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Zsolt M. Kovács-Vajna
- Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, 25123 Brescia, Italy
| | - Daniela Loconsole
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università degli Studi di Bari “Aldo Moro,” 70125 Bari, Italy
| | - Lucia Sarcina
- Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro,” 70125 Bari, Italy
| | | | - Maria Chironna
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università degli Studi di Bari “Aldo Moro,” 70125 Bari, Italy
| | - Fabrizio Torricelli
- Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, 25123 Brescia, Italy
- Corrresponding author. (F.T.); (L.T.)
| | - Luisa Torsi
- Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro,” 70125 Bari, Italy
- Corrresponding author. (F.T.); (L.T.)
| |
Collapse
|
20
|
Macchia E, De Caro L, Torricelli F, Franco CD, Mangiatordi GF, Scamarcio G, Torsi L. Why a Diffusing Single-Molecule can be Detected in Few Minutes by a Large Capturing Bioelectronic Interface. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104381. [PMID: 35522000 PMCID: PMC9284160 DOI: 10.1002/advs.202104381] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/29/2022] [Indexed: 05/28/2023]
Abstract
Single-molecule detection at a nanometric interface in a femtomolar solution, can take weeks as the encounter rate between the diffusing molecule to be detected and the transducing nanodevice is negligibly small. On the other hand, several experiments prove that macroscopic label-free sensors based on field-effect-transistors, engaging micrometric or millimetric detecting interfaces are capable to assay a single-molecule in a large volume within few minutes. The present work demonstrates why at least a single molecule out of a few diffusing in a 100 µL volume has a high probability to hit a large capturing and detecting electronic interface. To this end, sensing data, measured with an electrolyte-gated FET whose gate is functionalized with 1012 capturing anti-immunoglobulin G, are here provided along with a Brownian diffusion-based modeling. The EG-FET assays solutions down to some tens of zM in concentrations with volumes ranging from 25 µL to 1 mL in which the functionalized gates are incubated for times ranging from 30 s to 20 min. The high level of accordance between the experimental data and a model based on the Einstein's diffusion-theory proves how the single-molecule detection process at large-capturing interfaces is controlled by Brownian diffusion and yet is highly probable and fast.
Collapse
Affiliation(s)
- Eleonora Macchia
- Faculty of Science and EngineeringÅbo Akademi UniversityTurku20500Finland
- CSGI (Centre for Colloid and Surface Science)Bari70125Italy
| | - Liberato De Caro
- Institute of CrystallographyNational Research Councilvia Amendola 122/OBari70126Italy
| | - Fabrizio Torricelli
- CSGI (Centre for Colloid and Surface Science)Bari70125Italy
- Dipartimento Ingegneria dell'InformazioneUniversità degli Studi di Bresciavia Branze 38Brescia25123Italy
| | - Cinzia Di Franco
- CSGI (Centre for Colloid and Surface Science)Bari70125Italy
- Dipartimento di ChimicaUniversità degli Studi di Bari “Aldo Moro,”Bari70125Italy
- CNRIstituto di Fotonica e NanotecnologieSede di BariBari70125Italy
| | | | - Gaetano Scamarcio
- CSGI (Centre for Colloid and Surface Science)Bari70125Italy
- CNRIstituto di Fotonica e NanotecnologieSede di BariBari70125Italy
- Dipartimento Interateneo di Fisica “M. Merlin,”Università degli Studi di Bari “Aldo Moro,”Bari70125Italy
| | - Luisa Torsi
- CSGI (Centre for Colloid and Surface Science)Bari70125Italy
- Dipartimento di ChimicaUniversità degli Studi di Bari “Aldo Moro,”Bari70125Italy
| |
Collapse
|
21
|
Sarcina L, Macchia E, Tricase A, Scandurra C, Imbriano A, Torricelli F, Cioffi N, Torsi L, Bollella P. Enzyme based field effect transistor: State‐of‐the‐art and future perspectives. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Lucia Sarcina
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Eleonora Macchia
- Faculty of Science and Engineering Åbo Akademi University Turku Finland
| | - Angelo Tricase
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Cecilia Scandurra
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Anna Imbriano
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
- Centre for Colloid and Surface Science ‐ Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell'Informazione Università degli Studi di Brescia Brescia Italy
| | - Nicola Cioffi
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
- Centre for Colloid and Surface Science ‐ Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Luisa Torsi
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
- Faculty of Science and Engineering Åbo Akademi University Turku Finland
- Centre for Colloid and Surface Science ‐ Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Paolo Bollella
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
- Centre for Colloid and Surface Science ‐ Università degli Studi di Bari “Aldo Moro” Bari Italy
| |
Collapse
|
22
|
Tricase A, Imbriano A, Macchia E, Sarcina L, Scandurra C, Torricelli F, Cioffi N, Torsi L, Bollella P. Enzyme based amperometric wide field biosensors: Is single‐molecule detection possible? ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Angelo Tricase
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Anna Imbriano
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
- Centre for Colloid and Surface Science Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Eleonora Macchia
- Faculty of Science and Engineering Åbo Akademi University Turku Finland
| | - Lucia Sarcina
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Cecilia Scandurra
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell'Informazione Università degli Studi di Brescia Brescia Italy
| | - Nicola Cioffi
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
- Centre for Colloid and Surface Science Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Luisa Torsi
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
- Faculty of Science and Engineering Åbo Akademi University Turku Finland
- Centre for Colloid and Surface Science Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Paolo Bollella
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
- Centre for Colloid and Surface Science Università degli Studi di Bari “Aldo Moro” Bari Italy
| |
Collapse
|
23
|
Macchia E, Torricelli F, Bollella P, Sarcina L, Tricase A, Di Franco C, Österbacka R, Kovács-Vajna ZM, Scamarcio G, Torsi L. Large-Area Interfaces for Single-Molecule Label-free Bioelectronic Detection. Chem Rev 2022; 122:4636-4699. [PMID: 35077645 DOI: 10.1021/acs.chemrev.1c00290] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioelectronic transducing surfaces that are nanometric in size have been the main route to detect single molecules. Though enabling the study of rarer events, such methodologies are not suited to assay at concentrations below the nanomolar level. Bioelectronic field-effect-transistors with a wide (μm2-mm2) transducing interface are also assumed to be not suited, because the molecule to be detected is orders of magnitude smaller than the transducing surface. Indeed, it is like seeing changes on the surface of a one-kilometer-wide pond when a droplet of water falls on it. However, it is a fact that a number of large-area transistors have been shown to detect at a limit of detection lower than femtomolar; they are also fast and hence innately suitable for point-of-care applications. This review critically discusses key elements, such as sensing materials, FET-structures, and target molecules that can be selectively assayed. The amplification effects enabling extremely sensitive large-area bioelectronic sensing are also addressed.
Collapse
Affiliation(s)
- Eleonora Macchia
- Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, 25123 Brescia, Italy
| | - Paolo Bollella
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy.,Centre for Colloid and Surface Science - Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Lucia Sarcina
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Angelo Tricase
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Cinzia Di Franco
- CNR, Istituto di Fotonica e Nanotecnologie, Sede di Bari, 70125 Bari, Italy
| | - Ronald Österbacka
- Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Zsolt M Kovács-Vajna
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, 25123 Brescia, Italy
| | - Gaetano Scamarcio
- CNR, Istituto di Fotonica e Nanotecnologie, Sede di Bari, 70125 Bari, Italy.,Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Luisa Torsi
- Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland.,Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy.,Centre for Colloid and Surface Science - Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| |
Collapse
|
24
|
Affiliation(s)
- Liang Luo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) Lanzhou University Lanzhou P. R. China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) Lanzhou University Lanzhou P. R. China
| |
Collapse
|
25
|
Modeling the Double Layer Capacitance Effect in Electrolyte Gated FETs with Gel and Aqueous Electrolytes. MICROMACHINES 2021; 12:mi12121569. [PMID: 34945419 PMCID: PMC8704607 DOI: 10.3390/mi12121569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022]
Abstract
Potential implementation of bio-gel Electrolyte Double Layer capacitors (bio-gel EDLCs) and electrolyte-gated FET biosensors, two commonly reported configurations of bio-electrolytic electronic devices, requires a robust analysis of their complex internal capacitive behavior. Presently there is neither enough of the parameter extraction literature, nor an effective simulation model to represent the transient behavior of these systems. Our work aims to supplement present transient thin film transistor modelling techniques with the reported parameter extraction method, to accurately model both bio-gel EDLC and the aqueous electrolyte gated FET devices. Our parameter extraction method was tested with capacitors analogous to polymer-electrolyte gated FETs, electrolyte gated Field effect transistor (EGOFET) and Organic Electrolyte Gated Field Effect Transistor (OEGFET) capacitance stacks. Our method predicts the input/output electrical behavior of bio-gel EDLC and EGOFET devices far more accurately than conventional DLC techniques, with less than 5% error. It is also more effective in capturing the characteristic aqueous electrolyte charging behavior and maximum charging capability which are unique to these systems, than the conventional DLC Zubieta and the Two branch models. We believe this significant improvement in device simulation is a pivotal step towards further integration and commercial implementation of organic bio-electrolyte devices. The effective reproduction of the transient response of the OEGFET equivalent system also predicts the transient capacitive effects observed in our previously reported label-free OEGFET biosensor devices. This is the first parameter extraction method specifically designed for electrical parameter-based modelling of organic bio-electrolytic capacitor devices.
Collapse
|
26
|
Murugasenapathi NK, Ghosh R, Ramanathan S, Ghosh S, Chinnappan A, Mohamed SAJ, Esther Jebakumari KA, Gopinath SCB, Ramakrishna S, Palanisamy T. Transistor-Based Biomolecule Sensors: Recent Technological Advancements and Future Prospects. Crit Rev Anal Chem 2021; 53:1044-1065. [PMID: 34788167 DOI: 10.1080/10408347.2021.2002133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Transistor-based sensors have been widely recognized to be highly sensitive and reliable for point-of-care/bed-side diagnosis. In this line, a range of cutting-edge technologies has been generated to elevate the role of transistors for biomolecule detection. Detection of a wide range of clinical biomarkers has been reported using various configurations of transistors. The inordinate sensitivity of transistors to the field-effect imparts high sensitivity toward wide range of biomolecules. This overview has gleaned the present achievements with the technological advancements using high performance transistor-based sensors. This review encloses transistors incorporated with a variety of functional nanomaterials and organic elements for their excellence in selectivity and sensitivity. In addition, the technological advancements in fabrication of these microdevices or nanodevices and functionalization of the sensing elements have also been discussed. The technological gap in the realization of sensors in transistor platforms and the resulted scope for research has been discussed. Finally, foreseen technological advancements and future research perspectives are described.
Collapse
Affiliation(s)
- Natchimuthu Karuppusamy Murugasenapathi
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rituparna Ghosh
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore
| | | | - Soumalya Ghosh
- Department of Production Engineering, Jadavpur University, Kolkata, West Bengal, India
| | - Amutha Chinnappan
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Syed Abuthahir Jamal Mohamed
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, India
| | - Krishnan Abraham Esther Jebakumari
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Perlis, Malaysia
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Arau, Perlis, Malaysia
| | - Seeram Ramakrishna
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Tamilarasan Palanisamy
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
27
|
Abstract
Potentiometric sensors induce a spontaneous voltage that indicates ion activity in real time. We present here an advanced self-powered potentiometric sensor with memory. Specifically, the approach allows for one to record a deviation from the analyte's original concentration or determine whether the analyte concentration has surpassed a threshold in a predefined time interval. The sensor achieves this by harvesting energy in a capacitor and preserving it with the help of a diode. While the analyte concentration is allowed to return to an original value following a perturbation over time, this may not influence the sensor readout. To achieve the diode function, the sensor utilizes an additional pair of driving electrodes to move the potentiometric signal to a sufficiently high base voltage that is required for operating the diode placed in series with the capacitor and between the sensing probes. A single voltage measurement across the capacitor at the end of a chosen time interval is sufficient to reveal any altered ion activity occurring during that period. We demonstrate the applicability of the sensor to identify incurred pH changes in a river water sample during an interval of 2 h. This approach is promising for achieving deployable sensors to monitor ion activity relative to a defined threshold during a time interval with minimal electronic components in a self-powered design.
Collapse
Affiliation(s)
- Sunil Kumar Sailapu
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/del Til·lers, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Neus Sabaté
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/del Til·lers, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), P.L. Companys 23, 08010 Barcelona, Spain
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| |
Collapse
|
28
|
Burtscher B, Manco Urbina PA, Diacci C, Borghi S, Pinti M, Cossarizza A, Salvarani C, Berggren M, Biscarini F, Simon DT, Bortolotti CA. Sensing Inflammation Biomarkers with Electrolyte-Gated Organic Electronic Transistors. Adv Healthc Mater 2021; 10:e2100955. [PMID: 34423579 PMCID: PMC11469060 DOI: 10.1002/adhm.202100955] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/16/2021] [Indexed: 01/08/2023]
Abstract
An overview of cytokine biosensing is provided, with a focus on the opportunities provided by organic electronic platforms for monitoring these inflammation biomarkers which manifest at ultralow concentration levels in physiopathological conditions. Specifically, two of the field's state-of-the-art technologies-organic electrochemical transistors (OECTs) and electrolyte gated organic field effect transistors (EGOFETs)-and their use in sensing cytokines and other proteins associated with inflammation are a particular focus. The overview will include an introduction to current clinical and "gold standard" quantification techniques and their limitations in terms of cost, time, and required infrastructure. A critical review of recent progress with OECT- and EGOFET-based protein biosensors is presented, alongside a discussion onthe future of these technologies in the years and decades ahead. This is especially timely as the world grapples with limited healthcare diagnostics during the Coronavirus disease (COVID-19)pandemic where one of the worst-case scenarios for patients is the "cytokine storm." Clearly, low-cost point-of-care technologies provided by OECTs and EGOFETs can ease the global burden on healthcare systems and support professionals by providing unprecedented wealth of data that can help to monitor disease progression in real time.
Collapse
Affiliation(s)
- Bernhard Burtscher
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | | | - Chiara Diacci
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Simone Borghi
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia Campi 103Modena41125Italy
| | - Marcello Pinti
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia Campi 103Modena41125Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and AdultsUniversity of Modena and Reggio EmiliaVia Campi 287Modena41125Italy
| | - Carlo Salvarani
- Rheumatology UnitUniversity of Modena and Reggio EmiliaMedical SchoolAzienda Ospedaliero‐UniversitariaPoliclinico di ModenaModena41124Italy
| | - Magnus Berggren
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Fabio Biscarini
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia Campi 103Modena41125Italy
- Center for Translation NeurophysiologyIstituto Italiano di TecnologiaVia Fossato di Mortara 17–19Ferrara44100Italy
| | - Daniel T. Simon
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Carlo A. Bortolotti
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia Campi 103Modena41125Italy
| |
Collapse
|
29
|
Sher M, Faheem A, Asghar W, Cinti S. Nano-engineered screen-printed electrodes: A dynamic tool for detection of viruses. Trends Analyt Chem 2021; 143:116374. [PMID: 34177011 PMCID: PMC8215883 DOI: 10.1016/j.trac.2021.116374] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is a growing interest in the development of portable, cost-effective, and easy-to-use biosensors for the rapid detection of diseases caused by infectious viruses: COVID-19 pandemic has highlighted the central role of diagnostics in response to global outbreaks. Among all the existing technologies, screen-printed electrodes (SPEs) represent a valuable technology for the detection of various viral pathogens. During the last five years, various nanomaterials have been utilized to modify SPEs to achieve convincing effects on the analytical performances of portable SPE-based diagnostics. Herein we would like to provide the readers a comprehensive investigation about the recent combination of SPEs and various nanomaterials for detecting viral pathogens. Manufacturing methods and features advances are critically discussed in the context of early-stage detection of diseases caused by HIV-1, HBV, HCV, Zika, Dengue, and Sars-CoV-2. A detailed table is reported to easily guide readers toward the "right" choice depending on the virus of interest.
Collapse
Affiliation(s)
- Mazhar Sher
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Aroosha Faheem
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Waseem Asghar
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
- Department of Biological Sciences (Courtesy Appointment), Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Stefano Cinti
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli "Federico II", 80055 Naples, Italy
| |
Collapse
|
30
|
Monteil S, Casson AJ, Jones ST. Electronic and electrochemical viral detection for point-of-care use: A systematic review. PLoS One 2021; 16:e0258002. [PMID: 34591907 PMCID: PMC8483417 DOI: 10.1371/journal.pone.0258002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/15/2021] [Indexed: 12/27/2022] Open
Abstract
Detecting viruses, which have significant impact on health and the economy, is essential for controlling and combating viral infections. In recent years there has been a focus towards simpler and faster detection methods, specifically through the use of electronic-based detection at the point-of-care. Point-of-care sensors play a particularly important role in the detection of viruses. Tests can be performed in the field or in resource limited regions in a simple manner and short time frame, allowing for rapid treatment. Electronic based detection allows for speed and quantitative detection not otherwise possible at the point-of-care. Such approaches are largely based upon voltammetry, electrochemical impedance spectroscopy, field effect transistors, and similar electrical techniques. Here, we systematically review electronic and electrochemical point-of-care sensors for the detection of human viral pathogens. Using the reported limits of detection and assay times we compare approaches both by detection method and by the target analyte of interest. Compared to recent scoping and narrative reviews, this systematic review which follows established best practice for evidence synthesis adds substantial new evidence on 1) performance and 2) limitations, needed for sensor uptake in the clinical arena. 104 relevant studies were identified by conducting a search of current literature using 7 databases, only including original research articles detecting human viruses and reporting a limit of detection. Detection units were converted to nanomolars where possible in order to compare performance across devices. This approach allows us to identify field effect transistors as having the fastest median response time, and as being the most sensitive, some achieving single-molecule detection. In general, we found that antigens are the quickest targets to detect. We also observe however, that reports are highly variable in their chosen metrics of interest. We suggest that this lack of systematisation across studies may be a major bottleneck in sensor development and translation. Where appropriate, we use the findings of the systematic review to give recommendations for best reporting practice.
Collapse
Affiliation(s)
- Solen Monteil
- Department of Materials, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
- The Henry Royce Institute, Manchester, United Kingdom
| | - Alexander J. Casson
- The Henry Royce Institute, Manchester, United Kingdom
- Department of Electrical and Electronic Engineering, School of Engineering, University of Manchester, Manchester, United Kingdom
| | - Samuel T. Jones
- Department of Materials, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
- The Henry Royce Institute, Manchester, United Kingdom
| |
Collapse
|
31
|
Bukkitgar SD, Shetti NP, Aminabhavi TM. Electrochemical investigations for COVID-19 detection-A comparison with other viral detection methods. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 420:127575. [PMID: 33162783 PMCID: PMC7605744 DOI: 10.1016/j.cej.2020.127575] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/07/2020] [Accepted: 10/26/2020] [Indexed: 05/02/2023]
Abstract
Virus-induced infection such as SARS-CoV-2 is a serious threat to human health and the economic setback of the world. Continued advances in the development of technologies are required before the viruses undergo mutation. The low concentration of viruses in environmental samples makes the detection extremely challenging; simple, accurate and rapid detection methods are in urgent need. Of all the analytical techniques, electrochemical methods have the established capabilities to address the issues. Particularly, the integration of nanotechnology would allow miniature devices to be made available at the point-of-care. This review outlines the capabilities of electrochemical methods in conjunction with nanotechnology for the detection of SARS-CoV-2. Future directions and challenges of the electrochemical biosensors for pathogen detection are covered including wearable and conformal biosensors, detection of plant pathogens, multiplexed detection, and reusable biosensors for on-site monitoring, thereby providing low-cost and disposable biosensors.
Collapse
Key Words
- AIV H5N1, Avian influenza
- AIV, Avian influenza virus
- ASFV, African swine fever virus
- BVDV, Bovine viral diarrhea virus
- CGV, Chikungunya viruses
- CMV, Cucumber mosaic virus
- COVID-19
- CSFV, Classic swine fever virus
- CV, Cyclic voltammetry
- DAstV-1, Duck astrovirus 1
- DAstV-2, Duck astrovirus 2
- DENV, Dengue virus
- DEV, Duck enteritis virus
- DHAV-1, Duck hepatitis A virus 1
- DHAV-3, Duck hepatitis A virus 3
- DPV, Differential pulse voltammetry
- DRV-1, Duck reovirus 1
- DRV-2, Duck reovirus 2
- Detection
- EBV, Epstein-Barr virus
- EIS, Electric impedance spectroscopy
- EPC, External positive controls
- EV, Human enterovirus
- EV71, Human enterovirus 71
- Electrochemical sensor
- FMI SMOF, Fluorescence molecularly imprinted sensor based on a metal–organic framework
- GCE, Glassy carbon electrode
- GCFaV-1, Ginger chlorotic fleck associated virus 1
- GCFaV-2, Ginger chlorotic fleck-associated virus 2
- GEV VN-96, Gastroenteritis virus VN-96
- GPV, Goose parvovirus
- HHV, Human herpes virus 6
- HIAV, Human influenza A viruses
- HPB19, Human parvovirus B19
- HSV, Herpes simplex
- IAV, influenza A virus
- IEA, Interdigitated electrode array
- IMA, Interdigitated microelectrode array
- INAA, Isothermal nucleic acid amplification-based
- JEV, Japanese encephalitis virus
- LAMP, Loop-Mediated Isothermal Amplification
- LSV, Linear sweep voltammetry
- MERS, Middle East respiratory syndrome
- MIEC, Molecularly imprinted electrochemiluminescence
- MNV, Murine norovirus
- MeV, Measles virus
- NNV, Nervous necrosis virus
- Nanotechnology
- PBoV, Porcine bocavirus
- PCNAME, Pt-coated nanostructured alumina membrane electrode
- PCR
- PCRLFS, Polymerase Chain Reaction with a lateral flow strip with a lateral flow strip
- PCV, Porcine circovirus 3
- PEDV, Porcine epidemic diarrhoea virus
- PRRSV, porcine reproductive and respiratory syndrome virus
- PSV, Pseudorabies virus
- RCA, Rolling circle amplification
- RGO, Reduced graphene oxide
- RT-LAMP-VF, RT-LAMP and a vertical flow visualization strip
- RV, Rubella virus
- SARS, Severe acute respiratory syndrome
- SIVH1N1, Swine influenza virus
- SWV, Square wave voltammetry
- TGEV, transmissible gastroenteritis coronavirus
- TMUV, Tembusu virus
- USEGFET, Ultra-sensitive electrolyte-gated field-effect transistor
- VZV, Varicella-zoster virus
- VZV, varicella-Zoster virus
- Viruses
- ZV, Zika virus
Collapse
Affiliation(s)
- Shikandar D Bukkitgar
- Centre for Electrochemical Science and Materials, Department of Chemistry, K.L.E. Institute of Technology, Gokul, Hubballi 580030, Karnataka, India
| | - Nagaraj P Shetti
- Centre for Electrochemical Science and Materials, Department of Chemistry, K.L.E. Institute of Technology, Gokul, Hubballi 580030, Karnataka, India
| | - Tejraj M Aminabhavi
- Pharmaceutical Engineering, Soniya College of Pharmacy, Dharwad 580-007, India
| |
Collapse
|
32
|
Molazemhosseini A, Viola FA, Berger FJ, Zorn NF, Zaumseil J, Caironi M. A Rapidly Stabilizing Water-Gated Field-Effect Transistor Based on Printed Single-Walled Carbon Nanotubes for Biosensing Applications. ACS APPLIED ELECTRONIC MATERIALS 2021; 3:3106-3113. [PMID: 34485915 PMCID: PMC8411763 DOI: 10.1021/acsaelm.1c00332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Biosensors are expected to revolutionize disease management through provision of low-cost diagnostic platforms for molecular and pathogenic detection with high sensitivity and short response time. In this context, there has been an ever-increasing interest in using electrolyte-gated field-effect transistors (EG-FETs) for biosensing applications owing to their expanding potential of being employed for label-free detection of a broad range of biomarkers with high selectivity and sensitivity while operating at sub-volt working potentials. Although organic semiconductors have been widely utilized as the channel in EG-FETs, primarily due to their compatibility with cost-effective low-temperature solution-processing fabrication techniques, alternative carbon-based platforms have the potential to provide similar advantages with improved electronic performances. Here, we propose the use of inkjet-printed polymer-wrapped monochiral single-walled carbon nanotubes (s-SWCNTs) for the channel of EG-FETs in an aqueous environment. In particular, we show that our EG-CNTFETs require only an hour of stabilization before producing a highly stable response suitable for biosensing, with a drastic time reduction with respect to the most exploited organic semiconductor for biosensors. As a proof-of-principle, we successfully employed our water-gated device to detect the well-known biotin-streptavidin binding event.
Collapse
Affiliation(s)
- Alireza Molazemhosseini
- Center
for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milano, Italy
| | - Fabrizio Antonio Viola
- Center
for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milano, Italy
| | - Felix J. Berger
- Institute
for Physical Chemistry and Centre for Advanced Materials, Universitaẗ Heidelberg, D-69120 Heidelberg, Germany
| | - Nicolas F. Zorn
- Institute
for Physical Chemistry and Centre for Advanced Materials, Universitaẗ Heidelberg, D-69120 Heidelberg, Germany
| | - Jana Zaumseil
- Institute
for Physical Chemistry and Centre for Advanced Materials, Universitaẗ Heidelberg, D-69120 Heidelberg, Germany
| | - Mario Caironi
- Center
for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milano, Italy
| |
Collapse
|
33
|
Sarcina L, Mangiatordi GF, Torricelli F, Bollella P, Gounani Z, Österbacka R, Macchia E, Torsi L. Surface Plasmon Resonance Assay for Label-Free and Selective Detection of HIV-1 p24 Protein. BIOSENSORS 2021; 11:180. [PMID: 34204930 PMCID: PMC8229864 DOI: 10.3390/bios11060180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/23/2022]
Abstract
The early detection of the human immunodeficiency virus (HIV) is of paramount importance to achieve efficient therapeutic treatment and limit the disease spreading. In this perspective, the assessment of biosensing assay for the HIV-1 p24 capsid protein plays a pivotal role in the timely and selective detection of HIV infections. In this study, multi-parameter-SPR has been used to develop a reliable and label-free detection method for HIV-1 p24 protein. Remarkably, both physical and chemical immobilization of mouse monoclonal antibodies against HIV-1 p24 on the SPR gold detecting surface have been characterized for the first time. The two immobilization techniques returned a capturing antibody surface coverage as high as (7.5 ± 0.3) × 1011 molecule/cm2 and (2.4 ± 0.6) × 1011 molecule/cm2, respectively. However, the covalent binding of the capturing antibodies through a mixed self-assembled monolayer (SAM) of alkanethiols led to a doubling of the p24 binding signal. Moreover, from the modeling of the dose-response curve, an equilibrium dissociation constant KD of 5.30 × 10-9 M was computed for the assay performed on the SAM modified surface compared to a much larger KD of 7.46 × 10-5 M extracted for the physisorbed antibodies. The chemically modified system was also characterized in terms of sensitivity and selectivity, reaching a limit of detection of (4.1 ± 0.5) nM and an unprecedented selectivity ratio of 0.02.
Collapse
Affiliation(s)
- Lucia Sarcina
- Dipartimento di Chimica, Universita’ degli Studi di Bari A. Moro, 70125 Bari, Italy; (L.S.); (P.B.); (L.T.)
| | | | - Fabrizio Torricelli
- Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, 25123 Brescia, Italy;
| | - Paolo Bollella
- Dipartimento di Chimica, Universita’ degli Studi di Bari A. Moro, 70125 Bari, Italy; (L.S.); (P.B.); (L.T.)
| | - Zahra Gounani
- Physics, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (Z.G.); (R.Ö.)
| | - Ronald Österbacka
- Physics, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (Z.G.); (R.Ö.)
| | - Eleonora Macchia
- Physics, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (Z.G.); (R.Ö.)
| | - Luisa Torsi
- Dipartimento di Chimica, Universita’ degli Studi di Bari A. Moro, 70125 Bari, Italy; (L.S.); (P.B.); (L.T.)
- Physics, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (Z.G.); (R.Ö.)
- CSGI (Centre for Colloid and Surface Science), 70125 Bari, Italy
| |
Collapse
|
34
|
Thomas MS, Adrahtas DZ, Frisbie CD, Dorfman KD. Modeling of Quasi-Static Floating-Gate Transistor Biosensors. ACS Sens 2021; 6:1910-1917. [PMID: 33886283 DOI: 10.1021/acssensors.1c00261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Floating-gate transistors (FGTs) are a promising class of electronic sensing architectures that separate the transduction elements from molecular sensing components, but the factors leading to optimum device design are unknown. We developed a model, generalizable to many different semiconductor/dielectric materials and channel dimensions, to predict the sensor response to changes in capacitance and/or charge at the sensing surface upon target binding or other changes in surface chemistry. The model predictions were compared to experimental data obtained using a floating-gate (extended gate) electrochemical transistor, a variant of the generic FGT architecture that facilitates low-voltage operation and rapid, simple fabrication using printing. Self-assembled monolayer (SAM) chemistry and quasi-statically measured resistor-loaded inverters were utilized to obtain experimentally either the capacitance signals (with alkylthiol SAMs) or charge signals (with acid-terminated SAMs) of the FGT. Experiments reveal that the model captures the inverter gain and charge signals over 3 orders of magnitude variation in the size of the sensing area and the capacitance signals over 2 orders of magnitude but deviates from experiments at lower capacitances of the sensing surface (<1 nF). To guide future device design, model predictions for a large range of sensing area capacitances and characteristic voltages are provided, enabling the calculation of the optimum sensing area size for maximum charge and capacitance sensitivity.
Collapse
Affiliation(s)
- Mathew S. Thomas
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Demetra Z. Adrahtas
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - C. Daniel Frisbie
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Kevin D. Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
35
|
Jain S, Nehra M, Kumar R, Dilbaghi N, Hu T, Kumar S, Kaushik A, Li CZ. Internet of medical things (IoMT)-integrated biosensors for point-of-care testing of infectious diseases. Biosens Bioelectron 2021; 179:113074. [PMID: 33596516 PMCID: PMC7866895 DOI: 10.1016/j.bios.2021.113074] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
On global scale, the current situation of pandemic is symptomatic of increased incidences of contagious diseases caused by pathogens. The faster spread of these diseases, in a moderately short timeframe, is threatening the overall population wellbeing and conceivably the economy. The inadequacy of conventional diagnostic tools in terms of time consuming and complex laboratory-based diagnosis process is a major challenge to medical care. In present era, the development of point-of-care testing (POCT) is in demand for fast detection of infectious diseases along with “on-site” results that are helpful in timely and early action for better treatment. In addition, POCT devices also play a crucial role in preventing the transmission of infectious diseases by offering real-time testing and lab quality microbial diagnosis within minutes. Timely diagnosis and further treatment optimization facilitate the containment of outbreaks of infectious diseases. Presently, efforts are being made to support such POCT by the technological development in the field of internet of medical things (IoMT). The IoMT offers wireless-based operation and connectivity of POCT devices with health expert and medical centre. In this review, the recently developed POC diagnostics integrated or future possibilities of integration with IoMT are discussed with focus on emerging and re-emerging infectious diseases like malaria, dengue fever, influenza A (H1N1), human papilloma virus (HPV), Ebola virus disease (EVD), Zika virus (ZIKV), and coronavirus (COVID-19). The IoMT-assisted POCT systems are capable enough to fill the gap between bioinformatics generation, big rapid analytics, and clinical validation. An optimized IoMT-assisted POCT will be useful in understanding the diseases progression, treatment decision, and evaluation of efficacy of prescribed therapy.
Collapse
Affiliation(s)
- Shikha Jain
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India; Department of Mechanical Engineering, UIET, Panjab University, Chandigarh, 160014, India
| | - Rajesh Kumar
- Department of Mechanical Engineering, UIET, Panjab University, Chandigarh, 160014, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - TonyY Hu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India.
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL, 33805-8531, United States.
| | - Chen-Zhong Li
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA; Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, USA.
| |
Collapse
|
36
|
Sensi M, Berto M, Gentile S, Pinti M, Conti A, Pellacani G, Salvarani C, Cossarizza A, Bortolotti CA, Biscarini F. Anti-drug antibody detection with label-free electrolyte-gated organic field-effect transistors. Chem Commun (Camb) 2021; 57:367-370. [PMID: 33325465 DOI: 10.1039/d0cc03399e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The efficacy of immunotherapy can be undermined by the development of an immune response against a drug/antibody mediated by anti-drug antibodies (ADAs) in treated patients. We present the first label-free EGOFET immunosensor that integrates a biological drug, Nivolumab (Opdivo©), as a specific recognition moiety to quantitatively and selectively detect ADAs against the drug. The limit of detection is 100 fM. This demonstration is a prelude to the detection of ADAs in a clinical setting in the treatment of different pathologies, and it also enables rapid screening of biological drugs for immunogenicity.
Collapse
Affiliation(s)
- Matteo Sensi
- Dipartimento di Scienze della Vita - Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yuan X, Yang C, He Q, Chen J, Yu D, Li J, Zhai S, Qin Z, Du K, Chu Z, Qin P. Current and Perspective Diagnostic Techniques for COVID-19. ACS Infect Dis 2020; 6:1998-2016. [PMID: 32677821 PMCID: PMC7409380 DOI: 10.1021/acsinfecdis.0c00365] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 02/08/2023]
Abstract
Since late December 2019, the coronavirus pandemic (COVID-19; previously known as 2019-nCoV) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been surging rapidly around the world. With more than 1,700,000 confirmed cases, the world faces an unprecedented economic, social, and health impact. The early, rapid, sensitive, and accurate diagnosis of viral infection provides rapid responses for public health surveillance, prevention, and control of contagious diffusion. More than 30% of the confirmed cases are asymptomatic, and the high false-negative rate (FNR) of a single assay requires the development of novel diagnostic techniques, combinative approaches, sampling from different locations, and consecutive detection. The recurrence of discharged patients indicates the need for long-term monitoring and tracking. Diagnostic and therapeutic methods are evolving with a deeper understanding of virus pathology and the potential for relapse. In this Review, a comprehensive summary and comparison of different SARS-CoV-2 diagnostic methods are provided for researchers and clinicians to develop appropriate strategies for the timely and effective detection of SARS-CoV-2. The survey of current biosensors and diagnostic devices for viral nucleic acids, proteins, and particles and chest tomography will provide insight into the development of novel perspective techniques for the diagnosis of COVID-19.
Collapse
Affiliation(s)
- Xi Yuan
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong 518055, China
| | - Chengming Yang
- Southern
University of Science and Technology Hospital, Shenzhen, Guangdong 518055, China
| | - Qian He
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong 518055, China
| | - Junhu Chen
- National
Institute of Parasitic Diseases, Chinese
Center for Disease Control and Prevention, Shanghai 200025, China
| | - Dongmei Yu
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong 518055, China
- Department
of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jie Li
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong 518055, China
- Kunming
Dog Base of Police Security, Ministry of Public Security, Kunming, Yunnan 650204, China
| | - Shiyao Zhai
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong 518055, China
| | - Zhifeng Qin
- Animal &
Plant Inspection and Quarantine Technology Center, Shenzhen Customs District People’s Republic of China, Shenzhen, Guangdong 518045, China
| | - Ke Du
- Department
of Mechanical Engineering, Rochester Institute
of Technology, Rochester, New York 14623, United States
| | - Zhenhai Chu
- Southern
University of Science and Technology Hospital, Shenzhen, Guangdong 518055, China
| | - Peiwu Qin
- Center
of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong 518055, China
| |
Collapse
|
38
|
Macchia E, Manoli K, Di Franco C, Scamarcio G, Torsi L. New trends in single-molecule bioanalytical detection. Anal Bioanal Chem 2020; 412:5005-5014. [PMID: 32185439 PMCID: PMC7338812 DOI: 10.1007/s00216-020-02540-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 11/25/2022]
Abstract
Single-molecule sensing is becoming a major driver in biomarker assays as it is foreseen to enable precision medicine to enter into everyday clinical practice. However, among the single-molecule detection methods proposed so far, only a few are fully exploitable for the ultrasensitive label-free assay of biofluids. Firstly introduced single-molecule sensing platforms encompass low-background-noise fluorescent microscopy as well as plasmonic and electrical nanotransducers; these are generally able to sense at the nanomolar concentration level or higher. Label-based single-molecule technologies relying on optical transduction and microbeads that can scavenge and detect a few biomarkers in the bulk of real biofluids, reaching ultralow detection limits, have been recently commercialized. These assays, thanks to the extremely high sensitivity and convenient handling, are new trends in the field as they are paving the way to a revolution in early diagnostics. Very recently, another new trend is the label-free, organic bioelectronic electrolyte-gated large transistors that can potentially be produced by means of large-area low-cost technologies and have been proven capable to detect a protein at the physical limit in real bovine serum. This article offers a bird's-eye view on some of the more significant single-molecule bioanalytical technologies and highlights their sensing principles and figures-of-merit such as limit of detection, need for a labelling step, and possibility to operate, also as an array, directly in real biofluids. We also discuss the new trend towards single-molecule proof-of-principle extremely sensitive technologies that can detect a protein at the zeptomolar concentration level involving label-free devices that potentially offer low-cost production and easy scalability.
Collapse
Affiliation(s)
- Eleonora Macchia
- Center for Functional materials, The Faculty of Science and Engineering, Åbo Akademi University, 20500, Turku, Finland
| | - Kyriaki Manoli
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125, Bari, Italy
| | - Cincia Di Franco
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125, Bari, Italy
- CNR - Istituto di Fotonica e Nanotecnologie, Sede di Bari, 70125, Bari, Italy
| | - Gaetano Scamarcio
- CNR - Istituto di Fotonica e Nanotecnologie, Sede di Bari, 70125, Bari, Italy
- Dipartimento di Fisica, "M. Merlin" - Università degli Studi di Bari "Aldo Moro", 70125, Bari, Italy
| | - Luisa Torsi
- Center for Functional materials, The Faculty of Science and Engineering, Åbo Akademi University, 20500, Turku, Finland.
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125, Bari, Italy.
- Centre for Colloid and Surface Science (CSGI), 70125, Bari, Italy.
| |
Collapse
|
39
|
Aspermair P, Ramach U, Reiner-Rozman C, Fossati S, Lechner B, Moya SE, Azzaroni O, Dostalek J, Szunerits S, Knoll W, Bintinger J. Dual Monitoring of Surface Reactions in Real Time by Combined Surface-Plasmon Resonance and Field-Effect Transistor Interrogation. J Am Chem Soc 2020; 142:11709-11716. [PMID: 32407629 DOI: 10.1021/jacs.9b11835] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
By combining surface plasmon resonance (SPR) and electrolyte gated field-effect transistor (EG-FET) methods in a single analytical device we introduce a novel tool for surface investigations, enabling simultaneous measurements of the surface mass and charge density changes in real time. This is realized using a gold sensor surface that simultaneously serves as a gate electrode of the EG-FET and as the SPR active interface. This novel platform has the potential to provide new insights into (bio)adsorption processes on planar solid surfaces by directly relating complementary measurement principles based on (i) detuning of SPR as a result of the modification of the interfacial refractive index profile by surface adsorption processes and (ii) change of output current as a result of the emanating effective gate voltage modulations. Furthermore, combination of the two complementary sensing concepts allows for the comparison and respective validation of both analytical techniques. A theoretical model is derived describing the mass uptake and evolution of surface charge density during polyelectrolyte multilayer formation. We demonstrate the potential of this combined platform through the observation of layer-by-layer assembly of PDADMAC and PSS. These simultaneous label-free and real-time measurements allow new insights into complex processes at the solid-liquid interface (like non-Fickian ion diffusion), which are beyond the scope of each individual tool.
Collapse
Affiliation(s)
- Patrik Aspermair
- Biosensor Technologies, Austrian Institute of Technology, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria.,CEST Competence Center for Electrochemical Surface Technologies, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria.,CNRS, Centrale Lille, ISEN, Universite Valenciennes, UMR 8520-IEMN, Universite de Lille, 59000 Lille, France
| | - Ulrich Ramach
- CEST Competence Center for Electrochemical Surface Technologies, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Ciril Reiner-Rozman
- Biosensor Technologies, Austrian Institute of Technology, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Stefan Fossati
- Biosensor Technologies, Austrian Institute of Technology, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Bernadette Lechner
- Biosensor Technologies, Austrian Institute of Technology, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Sergio E Moya
- CIC biomaGUNE, Paseo Miramon 182 C, 20014 San Sebastian, Spain
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET, Suc. 4, CC 16, 1900 La Plata, Argentina
| | - Jakub Dostalek
- Biosensor Technologies, Austrian Institute of Technology, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Sabine Szunerits
- CNRS, Centrale Lille, ISEN, Universite Valenciennes, UMR 8520-IEMN, Universite de Lille, 59000 Lille, France
| | - Wolfgang Knoll
- Biosensor Technologies, Austrian Institute of Technology, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria.,CEST Competence Center for Electrochemical Surface Technologies, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Johannes Bintinger
- Biosensor Technologies, Austrian Institute of Technology, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| |
Collapse
|
40
|
Sarcina L, Torsi L, Picca RA, Manoli K, Macchia E. Assessment of Gold Bio-Functionalization for Wide-Interface Biosensing Platforms. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3678. [PMID: 32630091 PMCID: PMC7374319 DOI: 10.3390/s20133678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 12/20/2022]
Abstract
The continuous improvement of the technical potential of bioelectronic devices for biosensing applications will provide clinicians with a reliable tool for biomarker quantification down to the single molecule. Eventually, physicians will be able to identify the very moment at which the illness state begins, with a terrific impact on the quality of life along with a reduction of health care expenses. However, in clinical practice, to gather enough information to formulate a diagnosis, multiple biomarkers are normally quantified from the same biological sample simultaneously. Therefore, it is critically important to translate lab-based bioelectronic devices based on electrolyte gated thin-film transistor technology into a cost-effective portable multiplexing array prototype. In this perspective, the assessment of cost-effective manufacturability represents a crucial step, with specific regard to the optimization of the bio-functionalization protocol of the transistor gate module. Hence, we have assessed, using surface plasmon resonance technique, a sustainable and reliable cost-effective process to successfully bio-functionalize a gold surface, suitable as gate electrode for wide-field bioelectronic sensors. The bio-functionalization process herein investigated allows to reduce the biorecognition element concentration to one-tenth, drastically impacting the manufacturing costs while retaining high analytical performance.
Collapse
Affiliation(s)
- Lucia Sarcina
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy; (L.S.); (L.T.); (R.A.P.)
| | - Luisa Torsi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy; (L.S.); (L.T.); (R.A.P.)
- CSGI (Centre for Colloid and Surface Science), Department of Chemistry, 70125 Bari, Italy
- The Faculty of Science and Engineering, Åbo Akademi University, FI-20500 Turku, Finland;
| | - Rosaria Anna Picca
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy; (L.S.); (L.T.); (R.A.P.)
- CSGI (Centre for Colloid and Surface Science), Department of Chemistry, 70125 Bari, Italy
| | - Kyriaki Manoli
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy; (L.S.); (L.T.); (R.A.P.)
- CSGI (Centre for Colloid and Surface Science), Department of Chemistry, 70125 Bari, Italy
| | - Eleonora Macchia
- The Faculty of Science and Engineering, Åbo Akademi University, FI-20500 Turku, Finland;
| |
Collapse
|
41
|
Macchia E, Manoli K, Di Franco C, Picca RA, Österbacka R, Palazzo G, Torricelli F, Scamarcio G, Torsi L. Organic Field-Effect Transistor Platform for Label-Free, Single-Molecule Detection of Genomic Biomarkers. ACS Sens 2020; 5:1822-1830. [PMID: 32495625 DOI: 10.1021/acssensors.0c00694] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The increasing interest in technologies capable of tracking a biomarker down to the physical limit points toward new opportunities in early diagnostics of progressive diseases. Indeed, single-molecule detection technologies are foreseen to enable clinicians to associate the tiniest increase in a biomarker with the progression of a disease, particularly at its early stage. Bioelectronic organic transistors represent an extremely powerful tool to achieve label-free and single-molecule detection of clinically relevant biomarkers. These electronic devices are millimetric in size and in the future could be mass-produced at low cost. The core of the single molecule with a large transistor (SiMoT) platform, based on an electrolyte-gated field-effect transistor, is a gold gate electrode biofunctionalized with a self-assembled monolayer, a densely packed layer of recognition elements. So far, only the SiMoT detection of proteins, using the corresponding antibodies as recognition elements, has been reported. In this study, the SiMoT sensing response toward genomic biomarkers is proposed. Herein, the gate is functionalized with a genomic biomarker for multiple sclerosis (miR-182). This is relevant, not only because a limit of detection of a single molecule is achieved but also because it proves that the SiMoT label-free, single-molecule detection principle is the only one of its kind that can detect, by means of the same platform, both protein and genomic markers.
Collapse
Affiliation(s)
- Eleonora Macchia
- The Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Kyriaki Manoli
- Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy
| | - Cinzia Di Franco
- Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy
- CNR, Istituto di Fotonica e Nanotecnologie, Sede di Bari, 70125 Bari, Italy
| | - Rosaria Anna Picca
- Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy
| | - Ronald Österbacka
- The Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Gerardo Palazzo
- Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy
- CSGI (Centre for Colloid and Surface Science), 70125 Bari, Italy
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell’Informazione, Università degli Studi di Brescia, 25121 Brescia, Italy
| | - Gaetano Scamarcio
- Dipartimento Interateneo di Fisica “M. Merlin”, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy
- CNR, Istituto di Fotonica e Nanotecnologie, Sede di Bari, 70125 Bari, Italy
| | - Luisa Torsi
- The Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
- Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy
- CSGI (Centre for Colloid and Surface Science), 70125 Bari, Italy
| |
Collapse
|
42
|
Leydecker T, Wang ZM, Torricelli F, Orgiu E. Organic-based inverters: basic concepts, materials, novel architectures and applications. Chem Soc Rev 2020; 49:7627-7670. [DOI: 10.1039/d0cs00106f] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The review article covers the materials and techniques employed to fabricate organic-based inverter circuits and highlights their novel architectures, ground-breaking performances and potential applications.
Collapse
Affiliation(s)
- Tim Leydecker
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
- Institut National de la Recherche Scientifique (INRS)
| | - Zhiming M. Wang
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Fabrizio Torricelli
- Department of Information Engineering
- University of Brescia
- 25123 Brescia
- Italy
| | - Emanuele Orgiu
- Institut National de la Recherche Scientifique (INRS)
- EMT Center
- Varennes J3X 1S2
- Canada
| |
Collapse
|