1
|
Brazys E, Ratautaite V, Mohsenzadeh E, Boguzaite R, Ramanaviciute A, Ramanavicius A. Formation of molecularly imprinted polymers: Strategies applied for the removal of protein template (review). Adv Colloid Interface Sci 2025; 337:103386. [PMID: 39754907 DOI: 10.1016/j.cis.2024.103386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/06/2025]
Abstract
The key step in the entire molecularly imprinted polymer (MIP) preparation process is the formation of the complementary cavities in the polymer matrix through the template removal process. The template is removed using chemical treatments, leaving behind selective binding sites for target molecules within the polymer matrix. Other MIP preparation steps include mixing monomers and template molecules in the appropriate solvent(s), monomer-template complex equilibration, and polymerisation of the monomers around the template. However, template removal is the most important among all the preparation steps because the final structure, which can be accepted and recognised as the MIP, is obtained only after the template removal. A thorough analysis of the studies dedicated to MIP applications demonstrates that this MIP preparation step, namely the template removal, is relatively understudied. MIP template removal is especially challenging in the synthesis, where the molecular template is a macromolecule such as a protein. This review aims to provide a deliberate, systematic, and consistent overview of protein removal as the MIP template molecules. The most prevalent template removal methods are outlined for removing protein templates from electrochemically synthesised MIPs, particularly thin layers on electrodes used in electrochemical sensors. Five protein template removal approaches involving chemical treatment are highlighted, which include the utilisation of (i) chaotropic agents, (ii) salt, (iii) acidic cleavage, (iv) alkaline, and finally, (v) proteolytic treatment focusing on studies conducted over the past decade. In addition, we discuss the interactions driving the removal of protein templates in each approach and associated challenges. This review provides insights into MIPs protein template removal strategies while highlighting the prevalent issue of this understudied step of template removal.
Collapse
Affiliation(s)
- Ernestas Brazys
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania.
| | - Vilma Ratautaite
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania.
| | - Enayat Mohsenzadeh
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania.
| | - Raimonda Boguzaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania.
| | - Agne Ramanaviciute
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
2
|
Adeniyi K, Oyinlola K, Achadu OJ, Menard H, Grillo F, Yang Z, Adegoke O. Molecularly Imprinted Viral Protein Integrated Zn-Cu-In-Se-P Quantum Dots Superlattice for Quantitative Ratiometric Electrochemical Detection of SARS-CoV-2 Spike Protein in Saliva. ACS APPLIED NANO MATERIALS 2024; 7:17630-17647. [PMID: 39144398 PMCID: PMC11320384 DOI: 10.1021/acsanm.4c02882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024]
Abstract
Solution-processable colloidal quantum dots (QDs) are promising materials for the development of rapid and low-cost, next-generation quantum-sensing diagnostic systems. In this study, we report on the synthesis of multinary Zn-Cu-In-Se-P (ZCISeP) QDs and the application of the QDs-modified electrode (QDs/SPCE) as a solid superlattice transducer interface for the ratiometric electrochemical detection of the SARS-CoV-2-S1 protein in saliva. The ZCISeP QDs were synthesized through the formation of In(Zn)PSe QDs from InP QDs, followed by the incorporation of Cu cations into the crystal lattice via cation exchange processes. A viral-protein-imprinted polymer film was deposited onto the QDs/SPCE for the specific binding of SARS-CoV-2. Molecular imprinting of the virus protein was achieved using a surface imprinting electropolymerization strategy to create the MIP@QDs/SPCE nanosensor. Characterization through spectroscopic, microscopic, and electrochemical techniques confirmed the structural properties and electronic-band state of the ZCISeP QDs. Cyclic voltammetry studies of the QDs/SPCE superlattice confirmed efficient electron transport properties and revealed an intraband gap energy state with redox peaks attributed to the Cu1+/2+ defects. Binding of SARS-CoV-2-S1 to the MIP@QDs/SPCE cavities induced a gating effect that modulated the Fe(CN)6 3-/4- and Cu1+/2+ redox processes at the nanosensor interface, producing dual off/on ratiometric electrical current signals. Under optimal assay conditions, the nanosensor exhibited a wide linear detection range (0.001-100 pg/mL) and a low detection limit (0.34 pg/mL, 4.6 fM) for quantitative detection of SARS-CoV-2-S1 in saliva. The MIP@QDs/SPCE nanosensor demonstrated excellent selectivity against nonspecific protein targets, and the integration with a smartphone-based potentiostat confirmed the potential for point-of-care applications.
Collapse
Affiliation(s)
- Kayode
Omotayo Adeniyi
- Leverhulme
Research Centre for Forensic Science, School of Science & Engineering, University of Dundee, Dundee DD1 4GH, U.K.
| | - Kayode Oyinlola
- Leverhulme
Research Centre for Forensic Science, School of Science & Engineering, University of Dundee, Dundee DD1 4GH, U.K.
| | - Ojodomo J. Achadu
- School
of Health and Life Sciences, and National Horizon Centre, Teesside University, Middlesbrough TS1 3BA, U.K.
| | - Herve Menard
- Leverhulme
Research Centre for Forensic Science, School of Science & Engineering, University of Dundee, Dundee DD1 4GH, U.K.
| | - Federico Grillo
- School
of Chemistry, University of St Andrews, St Andrews KY16 9ST, U.K.
| | - Zhugen Yang
- School
of Water, Energy and Environment, Cranfield
University, Cranfield MK43 0AL, U.K.
| | - Oluwasesan Adegoke
- Leverhulme
Research Centre for Forensic Science, School of Science & Engineering, University of Dundee, Dundee DD1 4GH, U.K.
| |
Collapse
|
3
|
Ramya PR, Halder S, Nagamani K, Singh Chouhan R, Gandhi S. Disposable graphene-oxide screen-printed electrode integrated with portable device for detection of SARS-CoV-2 in clinical samples. Bioelectrochemistry 2024; 158:108722. [PMID: 38697015 DOI: 10.1016/j.bioelechem.2024.108722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 05/04/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnosis is the need of the hour, as cases are persistently increasing, and new variants are constantly emerging. The ever-changing nature of the virus leading to multiple variants, has brought an imminent need for early, accurate and rapid detection methods. Herein, we have reported the design and fabrication of Screen-Printed Electrodes (SPEs) with graphene oxide (GO) as working electrode and modified with specific antibodies for SARS-CoV-2 Receptor Binding Domain (RBD). Flexibility of design, and portable nature has made SPEs the superior choice for electrochemical analysis. The developed immunosensor can detect RBD as low as 0.83 fM with long-term storage capacity. The fabricated SPEs immunosensor was tested using a miniaturized portable device and potentiostat on 100 patient nasopharyngeal samples and corroborated with RT-PCR data, displayed 94 % sensitivity. Additionally, the in-house developed polyclonal antibodies detected RBD antigen of the mutated Omicron variant of SARS-CoV-2 successfully. We have not observed any cross-reactivity/binding of the fabricated immunosensor with MERS (cross-reactive antigen) and Influenza A H1N1 (antigen sharing common symptoms). Hence, the developed SPEs sensor may be applied for bedside point-of-care diagnosis of SARS-CoV-2 using miniaturized portable device, in clinical samples.
Collapse
Affiliation(s)
- P R Ramya
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, Telangana, India; DBT-Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India
| | - Sayanti Halder
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, Telangana, India
| | - K Nagamani
- Department of Microbiology, Gandhi Medical College, Gandhi Hospital, Hyderabad 500025, Telangana, India
| | - Raghuraj Singh Chouhan
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, Telangana, India; DBT-Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India.
| |
Collapse
|
4
|
Zhang X, Yarman A, Kovács N, Bognár Z, Gyurcsányi RE, Bier FF, Scheller FW. Specific features of epitope-MIPs and whole-protein MIPs as illustrated for AFP and RBD of SARS-CoV-2. Mikrochim Acta 2024; 191:242. [PMID: 38573524 DOI: 10.1007/s00604-024-06325-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Molecularly imprinted polymer (MIP) nanofilms for alpha-fetoprotein (AFP) and the receptor binding domain (RBD) of the spike protein of SARS-CoV-2 using either a peptide (epitope-MIP) or the whole protein (protein-MIP) as the template were prepared by electropolymerization of scopoletin. Conducting atomic force microscopy revealed after template removal and electrochemical deposition of gold a larger surface density of imprinted cavities for the epitope-imprinted polymers than when using the whole protein as template. However, comparable affinities towards the respective target protein (AFP and RBD) were obtained for both types of MIPs as expressed by the KD values in the lower nanomolar range. On the other hand, while the cross reactivity of both protein-MIPs towards human serum albumin (HSA) amounts to around 50% in the saturation region, the nonspecific binding to the respective epitope-MIPs is as low as that for the non-imprinted polymer (NIP). This effect might be caused by the different sizes of the imprinted cavities. Thus, in addition to the lower costs the reduced nonspecific binding is an advantage of epitope-imprinted polymers for the recognition of proteins.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476, Potsdam, Germany.
| | - Aysu Yarman
- Molecular Biotechnology, Faculty of Science, Turkish-German University, Sahinkaya Cad. Beykoz, Istanbul, 34820, Turkey
| | - Norbert Kovács
- BME "Lendület" Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Zsófia Bognár
- BME "Lendület" Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Róbert E Gyurcsányi
- BME "Lendület" Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
- HUN-REN-BME Computation Driven Chemistry Research Group, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Frank F Bier
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476, Potsdam, Germany
| | - Frieder W Scheller
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476, Potsdam, Germany
| |
Collapse
|
5
|
Zhao Y, Han J, Huang J, Huang Q, Tao Y, Gu R, Li HY, Zhang Y, Zhang H, Liu H. A miniprotein receptor electrochemical biosensor chip based on quantum dots. LAB ON A CHIP 2024; 24:1875-1886. [PMID: 38372578 DOI: 10.1039/d3lc01100c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Recently protein binders have emerged as a promising substitute for antibodies due to their high specificity and low cost. Herein, we demonstrate an electrochemical biosensor chip through the electronic labelling strategy using lead sulfide (PbS) colloidal quantum dots (CQDs) and the unnatural SARS-CoV-2 spike miniprotein receptor LCB. The unnatural receptor can be utilized as a molecular probe for the construction of CQD-based electrochemical biosensor chips, through which the specific binding of LCB and the spike protein is transduced to sensor electrical signals. The biosensor exhibits a good linear response in the concentration range of 10 pg mL-1 to 1 μg mL-1 (13.94 fM to 1.394 nM) with the limit of detection (LOD) being 3.31 pg mL-1 (4.607 fM for the three-electrode system) and 9.58 fg mL-1 (0.013 fM for the HEMT device). Due to the high sensitivity of the electrochemical biosensor, it was also used to study the binding kinetics between the unnatural receptor LCB and spike protein, which has achieved comparable results as those obtained with commercial equipment. To the best of our knowledge, this is the first example of using a computationally designed miniprotein receptor based on electrochemical methods, and it is the first kinetic assay performed with an electrochemical assay alone. The miniprotein receptor electrochemical biosensor based on QDs is desirable for fabricating high-throughput, large-area, wafer-scale biochips.
Collapse
Affiliation(s)
- Yunong Zhao
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| | - Juan Han
- Department of Biotechnology, College of Life Science and Technology, MOE Key Laboratory of Molecular Biophysics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| | - Jing Huang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| | - Qing Huang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| | - Yanbing Tao
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| | - Ruiqin Gu
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| | - Hua-Yao Li
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| | - Yang Zhang
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, MOE Key Laboratory of Molecular Biophysics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| | - Huan Liu
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| |
Collapse
|
6
|
Muttaqien SE, Khoris IM, Suryanggono J, Sadhukhan PC, Pambudi S, Chowdhury AD, Park EY. Point-of-care dengue detection: polydopamine-modified electrode for rapid NS1 protein testing for clinical samples. Mikrochim Acta 2024; 191:174. [PMID: 38436801 DOI: 10.1007/s00604-024-06259-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
Early diagnosis of dengue infection by detecting the dengue virus non-structural protein 1 (DENV-NS1) is important to the patients to initiate speedy treatment. Enzyme-linked immunosorbent assay (ELISA)-based NS1 detection and RT-PCR are time-consuming and too complex to be employed in remote areas of dengue-endemic countries. Meanwhile, those of NS1 rapid test by lateral flow assay suffer from low detection limit. Electrochemical-based biosensors using screen-printed gold electrodes (SPGEs) have become a reliable detection method to convey both ELISA's high sensitivity and rapid test portability. In this research, we developed an electrochemical biosensor for DENV-NS1 detection by employing polydopamine (PDA)-modified SPGE. The electrodeposition of PDA on the surface of SPGE serves as a bioconjugation avenue for anti-NS1 antibody through a simple and low-cost immobilization procedure. The biosensor performance was evaluated to detect DENV-NS1 protein in PBS and human serum through a differential pulse voltammetric (DPV) technique. The developed sensing platform displayed a low limit of detection (LOD) of 1.63 pg mL-1 and a wide linear range of 10 pg mL-1 to 1 ng mL-1 (R2 ∼ 0.969). The sensing platform also detected DEV-NS1 from four different serotypes in the clinical samples collected from dengue patients in India and Indonesia, with acceptable sensitivity, specificity, and accuracy values of 90.00%, 80.95%, and 87.65%, respectively. This result showcased the facile and versatile method of PDA coating onto the surface of screen-printed gold electrodes for a miniaturized point-of-care (PoC) detection device.
Collapse
Affiliation(s)
- Sjaikhurrizal El Muttaqien
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-Ku, Shizuoka, 422-8529, Japan
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan, 15314, Indonesia
| | - Indra Memdi Khoris
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-Ku, Shizuoka, 422-8529, Japan
- Nanomaterials Research Division, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Jodi Suryanggono
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan, 15314, Indonesia
| | - Provash C Sadhukhan
- ICMR-NICED Virus Laboratory, Kolkata, I.D. & B.G. Hospital, Banerjee Road, Kolkata, 700010, West Bengal, India
| | - Sabar Pambudi
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan, 15314, Indonesia
| | - Ankan Dutta Chowdhury
- Amity Institute of Nanotechnology, Amity University Kolkata, Kolkata, 700084, West Bengal, India
| | - Enoch Y Park
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-Ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
7
|
Li Y, Guan C, Liu C, Li Z, Han G. Disease diagnosis and application analysis of molecularly imprinted polymers (MIPs) in saliva detection. Talanta 2024; 269:125394. [PMID: 37980173 DOI: 10.1016/j.talanta.2023.125394] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023]
Abstract
Saliva has significantly evolved as a diagnostic fluid in recent years, giving a non-invasive alternative to blood analysis. A high protein concentration in saliva is delivered directly from the bloodstream, making it a "human mirror" that reflects the body's physiological state. It plays an essential role in detecting diseases in biomedical and fitness monitoring. Molecularly imprinted polymers (MIPs) are biomimetic materials with custom-designed synthetic recognition sites that imitate biological counterparts renowned for sensitive analyte detection. This paper reviews the progress made in research about MIP biosensors for detecting saliva biomarkers. Specifically, we investigate the link between saliva biomarkers and various diseases, providing detailed insights into the corresponding biosensors. Furthermore, we discuss the principles of molecular imprinting for disease diagnostics and application analysis, including recent advances in integrated MIP-sensor technologies for high-affinity analyte detection in saliva. Notably, these biosensors exhibit high discrimination, allowing for the detection of saliva biomarkers linked explicitly to chronic stress disorders, diabetes, cancer, bacterial or viral-induced illnesses, and exposure to illicit toxic substances or tobacco smoke. Our findings indicate that MIP-based biosensors match and perhaps surpass their counterparts featuring integrated natural antibodies in terms of stability, signal-to-noise ratios, and detection limits. Additionally, we highlight the design of MIP coatings, strategies for synthesizing polymers, and the integration of advanced biodevices. These tailored biodevices, designed to assess various salivary biomarkers, are emerging as promising screening or diagnostic tools for real-time monitoring and self-health management, improving quality of life.
Collapse
Affiliation(s)
- Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Changjun Guan
- School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun, 130012, PR China
| | - Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Ze Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
8
|
Ganesh PS, Elugoke SE, Lee SH, Kim SY, Ebenso EE. Smart and emerging point of care electrochemical sensors based on nanomaterials for SARS-CoV-2 virus detection: Towards designing a future rapid diagnostic tool. CHEMOSPHERE 2024; 352:141269. [PMID: 38307334 DOI: 10.1016/j.chemosphere.2024.141269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
In the recent years, researchers from all over the world have become interested in the fabrication of advanced and innovative electrochemical and/or biosensors for respiratory virus detection with the use of nanotechnology. These fabricated sensors demonstrated a number of benefits, including precision, affordability, accessibility, and miniaturization which makes them a promising test method for point-of-care (PoC) screening for SARS-CoV-2 viral infection. In order to comprehend the principles of electrochemical sensing and the role of various types of sensing interfaces, we comprehensively explored the underlying principles of electroanalytical methods and terminologies related to it in this review. In addition, it is addressed how to fabricate electrochemical sensing devices incorporating nanomaterials as graphene, metal/metal oxides, metal organic frameworks (MOFs), MXenes, quantum dots, and polymers. We took an effort to carefully compile current developments, advantages, drawbacks, possible solutions in nanomaterials based electrochemical sensors.
Collapse
Affiliation(s)
- Pattan Siddappa Ganesh
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Saheed Eluwale Elugoke
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| | - Seok-Han Lee
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea
| | - Sang-Youn Kim
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Eno E Ebenso
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa.
| |
Collapse
|
9
|
Geng L, Wang H, Liu M, Huang J, Wang G, Guo Z, Guo Y, Sun X. Research progress on preparation methods and sensing applications of molecularly imprinted polymer-aptamer dual recognition elements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168832. [PMID: 38036131 DOI: 10.1016/j.scitotenv.2023.168832] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
The aptamer (Apt) and the molecularly imprinted polymer (MIP), as effective substitutes for antibodies, have received widespread attention from researchers because of their creation. However, the low stability of Apt in harsh detection environment and the poor specificity of MIP have hindered their development. Therefore, some researchers have attempted to combine MIP with Apt to explore whether the effect of "1 + 1 > 2" can be achieved. Since its first report in 2013, MIP-Apt dual recognition elements have become a highly focused research direction in the fields of biology and chemistry. MIP-Apt dual recognition elements not only possess the high specificity of Apt and the high stability of MIP in harsh detection environment, but also have high sensitivity and affinity. They have been successfully applied in medical diagnosis, food safety, and environmental monitoring fields. This article provides a systematic overview of three preparation methods for MIP-Apt dual recognition elements and their application in eight different types of sensors. It also provides effective insights into the problems and development directions faced by MIP-Apt dual recognition elements.
Collapse
Affiliation(s)
- Lingjun Geng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Haifang Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Mengyue Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Guangxian Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Zhen Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| |
Collapse
|
10
|
Ayankojo AG, Reut J, Syritski V. Electrochemically Synthesized MIP Sensors: Applications in Healthcare Diagnostics. BIOSENSORS 2024; 14:71. [PMID: 38391990 PMCID: PMC10886925 DOI: 10.3390/bios14020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/24/2024]
Abstract
Early-stage detection and diagnosis of diseases is essential to the prompt commencement of treatment regimens, curbing the spread of the disease, and improving human health. Thus, the accurate detection of disease biomarkers through the development of robust, sensitive, and selective diagnostic tools has remained cutting-edge scientific research for decades. Due to their merits of being selective, stable, simple, and having a low preparation cost, molecularly imprinted polymers (MIPs) are increasingly becoming artificial substitutes for natural receptors in the design of state-of-the-art sensing devices. While there are different MIP preparation approaches, electrochemical synthesis presents a unique and outstanding method for chemical sensing applications, allowing the direct formation of the polymer on the transducer as well as simplicity in tuning the film properties, thus accelerating the trend in the design of commercial MIP-based sensors. This review evaluates recent achievements in the applications of electrosynthesized MIP sensors for clinical analysis of disease biomarkers, identifying major trends and highlighting interesting perspectives on the realization of commercial MIP-endowed testing devices for rapid determination of prevailing diseases.
Collapse
Affiliation(s)
| | | | - Vitali Syritski
- Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia; (A.G.A.); (J.R.)
| |
Collapse
|
11
|
Kim YJ, Min J. Advances in nanobiosensors during the COVID-19 pandemic and future perspectives for the post-COVID era. NANO CONVERGENCE 2024; 11:3. [PMID: 38206526 PMCID: PMC10784265 DOI: 10.1186/s40580-023-00410-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
The unprecedented threat of the highly contagious virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes exponentially increased infections of coronavirus disease 2019 (COVID-19), highlights the weak spots of the current diagnostic toolbox. In the midst of catastrophe, nanobiosensors offer a new opportunity as an alternative tool to fill a gap among molecular tests, rapid antigen tests, and serological tests. Nanobiosensors surpass the potential of antigen tests because of their enhanced sensitivity, thus enabling us to see antigens as stable and easy-to-access targets. During the first three years of the COVID-19 pandemic, a substantial number of studies have reported nanobiosensors for the detection of SARS-CoV-2 antigens. The number of articles on nanobiosensors and SARS-CoV-2 exceeds the amount of nanobiosensor research on detecting previous infectious diseases, from influenza to SARS-CoV and MERS-CoV. This unprecedented publishing pace also implies the significance of SARS-CoV-2 and the present pandemic. In this review, 158 studies reporting nanobiosensors for detecting SARS-CoV-2 antigens are collected to discuss the current challenges of nanobiosensors using the criteria of point-of-care (POC) diagnostics along with COVID-specific issues. These advances and lessons during the pandemic pave the way for preparing for the post-COVID era and potential upcoming infectious diseases.
Collapse
Affiliation(s)
- Young Jun Kim
- School of Integrative Engineering, Chung-Ang University, Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
12
|
Zhang X, Yarman A, Bagheri M, El-Sherbiny IM, Hassan RYA, Kurbanoglu S, Waffo AFT, Zebger I, Karabulut TC, Bier FF, Lieberzeit P, Scheller FW. Imprinted Polymers on the Route to Plastibodies for Biomacromolecules (MIPs), Viruses (VIPs), and Cells (CIPs). ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:107-148. [PMID: 37884758 DOI: 10.1007/10_2023_234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Around 30% of the scientific papers published on imprinted polymers describe the recognition of proteins, nucleic acids, viruses, and cells. The straightforward synthesis from only one up to six functional monomers and the simple integration into a sensor are significant advantages as compared with enzymes or antibodies. Furthermore, they can be synthesized against toxic substances and structures of low immunogenicity and allow multi-analyte measurements via multi-template synthesis. The affinity is sufficiently high for protein biomarkers, DNA, viruses, and cells. However, the cross-reactivity of highly abundant proteins is still a challenge.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Institute for Biochemistry and Biology, Universität Potsdam, Potsdam, Germany
| | - Aysu Yarman
- Molecular Biotechnology, Faculty of Science, Turkish-German University, Istanbul, Turkey
| | - Mahdien Bagheri
- Department of Physical Chemistry, Faculty for Chemistry, University of Vienna, Vienna, Austria
| | - Ibrahim M El-Sherbiny
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza, Egypt
- Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| | - Rabeay Y A Hassan
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza, Egypt
- Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | | | - Ingo Zebger
- Institut für Chemie, PC 14 Technische Universität Berlin, Berlin, Germany
| | | | - Frank F Bier
- Institute for Biochemistry and Biology, Universität Potsdam, Potsdam, Germany
| | - Peter Lieberzeit
- Department of Physical Chemistry, Faculty for Chemistry, University of Vienna, Vienna, Austria.
| | - Frieder W Scheller
- Institute for Biochemistry and Biology, Universität Potsdam, Potsdam, Germany.
| |
Collapse
|
13
|
du Plooy J, Kock B, Jahed N, Iwuoha E, Pokpas K. Carbon Nanostructured Immunosensing of Anti-SARS-CoV-2 S-Protein Antibodies. Molecules 2023; 28:8022. [PMID: 38138513 PMCID: PMC10745885 DOI: 10.3390/molecules28248022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The rampant spread and death rate of the recent coronavirus pandemic related to the SARS-CoV-2 respiratory virus have underscored the critical need for affordable, portable virus diagnostics, particularly in resource-limited settings. Moreover, efficient and timely monitoring of vaccine efficacy is needed to prevent future widespread infections. Electrochemical immunosensing poses an effective alternative to conventional molecular spectroscopic approaches, offering rapid, cost-effective, sensitive, and portable electroanalysis of disease biomarkers and antibodies; however, efforts to improve binding efficiency and sensitivity are still being investigated. Graphene quantum dots (GQDs) in particular have shown promise in improving device sensitivity. This study reports the development of a GQD-functionalized point-of-contamination device leveraging the selective interactions between SARS-CoV-2-specific Spike (S) Protein receptor binding domain (RBD) antigens and IgG anti-SARS-CoV-2-specific S-protein antibodies at screen-printed carbon electrode (SPCE) surfaces. The immunocomplexes formed at the GQD surfaces result in the interruption of the redox reactions that take place in the presence of a redox probe, decreasing the current response. Increased active surface area, conductivity, and binding via EDC/NHS chemistry were achieved due to the nanomaterial inclusion, with 5 nm, blue luminescent GQDs offering the best results. GQD concentration, EDC/NHS ratio, and RBD S-protein incubation time and concentration were optimized for the biosensor, and inter- and intra-screen-printed carbon electrode detection was investigated by calibration studies on multiple and single electrodes. The single electrode used for the entire calibration provided the best results. The label-free immunosensor was able to selectively detect anti-SARS-CoV-2 IgG antibodies between 0.5 and 100 ng/mL in the presence of IgM and other coronavirus antibodies with an excellent regression of 0.9599. A LOD of 2.028 ng/mL was found, offering comparable findings to the literature-reported values. The detection sensitivity of the sensor is further compared to non-specific IgM antibodies. The developed GQD immunosensor was compared to other low-oxygen content carbon nanomaterials, namely (i) carbon quantum dot (CQD), (ii) electrochemically reduced graphene oxide, and (iii) carbon black-functionalized devices. The findings suggest that improved electron transfer kinetics and increased active surface area of the CNs, along with surface oxygen content, aid in the detection of anti-SARS-CoV-2 IgG antibodies. The novel immunosensor suggests a possible application toward monitoring of IgG antibody production in SARS-CoV-2-vaccinated patients to study immune responses, vaccine efficacy, and lifetime to meet the demands for POC analysis in resource-limited settings.
Collapse
Affiliation(s)
| | | | | | | | - Keagan Pokpas
- SensorLab, Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa
| |
Collapse
|
14
|
Singh N, Khan RR, Xu W, Whitham SA, Dong L. Plant Virus Sensor for the Rapid Detection of Bean Pod Mottle Virus Using Virus-Specific Nanocavities. ACS Sens 2023; 8:3902-3913. [PMID: 37738225 DOI: 10.1021/acssensors.3c01478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
This study presents a miniaturized sensor for rapid, selective, and sensitive detection of bean pod mottle virus (BPMV) in soybean plants. The sensor employs molecularly imprinted polymer technology to generate BPMV-specific nanocavities in porous polypyrrole. Leveraging the porous structure, high surface reactivity, and electron transfer properties of polypyrrole, the sensor achieves a sensitivity of 143 μA ng-1 mL cm-2, a concentration range of 0.01-100,000 ng/mL, a detection time of less than 2 min, and a detection limit of 41 pg/mL. These capabilities outperform those of conventional methods, such as enzyme-linked immunosorbent assays and reverse transcription polymerase chain reactions. The sensor possesses the ability to distinguish BPMV-infected soybean plants from noninfected ones while rapidly quantifying virus levels. Moreover, it can reveal the spatial distribution of virus concentration across distinct leaves, a capability not previously attained by cost-effective sensors for such detailed viral data within a plant. The BPMV-specific nanocavities can also be easily restored and reactivated for multiple uses through a simple wash with acetic acid. While MIP-based sensors for plant virus detection have been relatively understudied, our findings demonstrate their potential as portable, on-site diagnostic tools that avoid complex and time-consuming sample preparation procedures. This advancement addresses a critical need in plant virology, enhancing the detection and management of plant viral diseases.
Collapse
Affiliation(s)
- Nawab Singh
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
- Microelectronics Research Center, Iowa State University, Ames, Iowa 50011, United States
| | - Raufur Rahman Khan
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
- Microelectronics Research Center, Iowa State University, Ames, Iowa 50011, United States
| | - Weihui Xu
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, Iowa 50011, United States
| | - Steven A Whitham
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, Iowa 50011, United States
| | - Liang Dong
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
- Microelectronics Research Center, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
15
|
Ni X, Tang X, Wang D, Zhang J, Zhao L, Gao J, He H, Dramou P. Research progress of sensors based on molecularly imprinted polymers in analytical and biomedical analysis. J Pharm Biomed Anal 2023; 235:115659. [PMID: 37657406 DOI: 10.1016/j.jpba.2023.115659] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
Molecularly imprinted polymers (MIPs) have had tremendous impact on biomimetic recognition due to their precise specificity and high affinity comparable to that of antibodies, which has shown the great advantages of easy preparation, good stability and low cost. The combination of MIPs with other analytical technologies can not only achieve rapid extraction and sensitive detection of target compounds, improving the level of analysis, but also achieve precise targeted delivery, in-vivo imaging and other applications. Among them, the recognition mechanism plays a vital role in chemical and biological sensing, while the improvement of the recognition element, such as the addition of new nanomaterials, can greatly improve the analytical performance of the sensor, especially in terms of selectivity. Currently, due to the need for rapid diagnosis and improved sensing properties (such as selectivity, stability, and cost-effectiveness), researchers are investigating new recognition elements and their combinations to improve the recognition capabilities of chemical sensing and bio-sensing. Therefore, this review mainly discusses the design strategies of optical sensors, electrochemical sensors and photoelectric sensors with molecular imprinting technology and their applications in environmental systems, food fields, drug detection and biology including bacteria and viruses.
Collapse
Affiliation(s)
- Xu Ni
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xue Tang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Dan Wang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jingjing Zhang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Linjie Zhao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Gao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Hua He
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China.
| | - Pierre Dramou
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
16
|
Cabaleiro-Lago C, Hasterok S, Gjörloff Wingren A, Tassidis H. Recent Advances in Molecularly Imprinted Polymers and Their Disease-Related Applications. Polymers (Basel) 2023; 15:4199. [PMID: 37959879 PMCID: PMC10649583 DOI: 10.3390/polym15214199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Molecularly imprinted polymers (MIPs) and the imprinting technique provide polymeric material with recognition elements similar to natural antibodies. The template of choice (i.e., the antigen) can be almost any type of smaller or larger molecule, protein, or even tissue. There are various formats of MIPs developed for different medical purposes, such as targeting, imaging, assay diagnostics, and biomarker detection. Biologically applied MIPs are widely used and currently developed for medical applications, and targeting the antigen with MIPs can also help in personalized medicine. The synthetic recognition sites of the MIPs can be tailor-made to function as analytics, diagnostics, and drug delivery systems. This review will cover the promising clinical applications of different MIP systems recently developed for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Celia Cabaleiro-Lago
- Department of Bioanalysis, Faculty of Natural Sciences, Kristianstad University, 291 39 Kristianstad, Sweden; (C.C.-L.); (H.T.)
| | - Sylwia Hasterok
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden;
- Biofilms-Research Center for Biointerfaces, Malmö University, 205 06 Malmö, Sweden
| | - Anette Gjörloff Wingren
- Department of Bioanalysis, Faculty of Natural Sciences, Kristianstad University, 291 39 Kristianstad, Sweden; (C.C.-L.); (H.T.)
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden;
- Biofilms-Research Center for Biointerfaces, Malmö University, 205 06 Malmö, Sweden
| | - Helena Tassidis
- Department of Bioanalysis, Faculty of Natural Sciences, Kristianstad University, 291 39 Kristianstad, Sweden; (C.C.-L.); (H.T.)
| |
Collapse
|
17
|
Han E, Pan Y, Li L, Cai J. Bisphenol A detection based on nano gold-doped molecular imprinting electrochemical sensor with enhanced sensitivity. Food Chem 2023; 426:136608. [PMID: 37348395 DOI: 10.1016/j.foodchem.2023.136608] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
A facile electrochemical sensor based on nano gold-doped molecularly imprinted polymer (MIP) was proposed to realize the selective detection of bisphenol A (BPA) with enhanced sensitivity. Initially, gold-doped MIP (Au@MIP) film was constructed by electropolymerizing p-aminobenzoic acid (PABA) and BPA with in situ gold reduction to distribute gold nanoparticles nearby the imprinted cavities. Subsequently, the template molecules were further extracted from the polymer film, then the MIP could rebind with the template molecules to achieve specific detection of BPA. The nano gold-doped MIP increased the effective surface area and promoted conductivity when BPA was oxidized in the imprinted cavities, which improved the determination sensitivity. Under optimal conditions, the prepared sensor displayed a linear range from 0.5 to 100 μM for BPA detection with a detection limit of 52 nM. The designed sensor was further used to detect BPA in food samples, obtaining satisfactory recoveries from 96.7% to 107.6%.
Collapse
Affiliation(s)
- En Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Yingying Pan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lei Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jianrong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
18
|
Pilvenyte G, Ratautaite V, Boguzaite R, Ramanavicius S, Chen CF, Viter R, Ramanavicius A. Molecularly Imprinted Polymer-Based Electrochemical Sensors for the Diagnosis of Infectious Diseases. BIOSENSORS 2023; 13:620. [PMID: 37366985 DOI: 10.3390/bios13060620] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
The appearance of biological molecules, so-called biomarkers in body fluids at abnormal concentrations, is considered a good tool for detecting disease. Biomarkers are usually looked for in the most common body fluids, such as blood, nasopharyngeal fluids, urine, tears, sweat, etc. Even with significant advances in diagnostic technology, many patients with suspected infections receive empiric antimicrobial therapy rather than appropriate treatment, which is driven by rapid identification of the infectious agent, leading to increased antimicrobial resistance. To positively impact healthcare, new tests are needed that are pathogen-specific, easy to use, and produce results quickly. Molecularly imprinted polymer (MIP)-based biosensors can achieve these general goals and have enormous potential for disease detection. This article aimed to overview recent articles dedicated to electrochemical sensors modified with MIP to detect protein-based biomarkers of certain infectious diseases in human beings, particularly the biomarkers of infectious diseases, such as HIV-1, COVID-19, Dengue virus, and others. Some biomarkers, such as C-reactive protein (CRP) found in blood tests, are not specific for a particular disease but are used to identify any inflammation process in the body and are also under consideration in this review. Other biomarkers are specific to a particular disease, e.g., SARS-CoV-2-S spike glycoprotein. This article analyzes the development of electrochemical sensors using molecular imprinting technology and the used materials' influence. The research methods, the application of different electrodes, the influence of the polymers, and the established detection limits are reviewed and compared.
Collapse
Affiliation(s)
- Greta Pilvenyte
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Vilma Ratautaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Raimonda Boguzaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Simonas Ramanavicius
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei City 106, Taiwan
| | - Roman Viter
- Institute of Atomic Physics and Spectroscopy, University of Latvia, 19 Raina Blvd., LV-1586 Riga, Latvia
- Center for Collective Use of Scientific Equipment, Sumy State University, 31, Sanatornaya st., 40018 Sumy, Ukraine
| | - Arunas Ramanavicius
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
19
|
Laleh S, Ibarlucea B, Stadtmüller M, Cuniberti G, Medina-Sánchez M. Portable microfluidic impedance biosensor for SARS-CoV-2 detection. Biosens Bioelectron 2023; 236:115362. [PMID: 37300901 DOI: 10.1016/j.bios.2023.115362] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 06/12/2023]
Abstract
Pandemics as the one we are currently facing, where fast-spreading viruses present a threat to humanity, call for simple and reliable methods to perform early diagnosis, enabling detection of very low pathogen loads even before symptoms start showing in the host. So far, standard polymerase chain reaction (PCR) is the most reliable method for doing so, but it is rather slow and needs specialized reagents and trained personnel to operate it. Additionally, it is expensive and not easily accessible. Therefore, developing miniaturized and portable sensors which perform early detection of pathogens with high reliability is necessary to not only prevent the spreading of the disease but also to monitor the effectiveness of the developed vaccines and the appearance of new pathogenic variants. Thus, in this work we develop a sensitive microfluidic impedance biosensor for the direct detection of SARS-CoV-2, towards a mobile point-of-care (POC) platform. The operational parameters are optimized with the aid of design-of-experiment (DoE), for an accurate detection of the viral antigens using electrochemical impedance spectroscopy (EIS). We perform the biodetection of buffer samples spiked with fM concentration levels and validate the biosensor in a clinical context of relevance by analyzing 15 real patient samples up to a Ct value (cycle threshold) of 27. Finally, we demonstrate the versatility of the developed platform using different settings, including a small portable potentiostat, using multiple channels for self-validation, as well as with single biosensors for a smartphone-based readout. This work contributes to the rapid and reliable diagnostics of COVID-19 and can be extended to other infectious diseases, allowing the monitoring of viral load in vaccinated and unvaccinated people to anticipate a potential relapse of the disease.
Collapse
Affiliation(s)
- Soroush Laleh
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Emerging Electronic Technologies, Leibniz Institute for Solid State and Materials Research (Leibniz IFW Dresden), 01069, Dresden, Germany; Chair of Micro- and NanoSystems, Center for Molecular Bioengineering (B CUBE), Dresden University of Technology, 01062, Dresden, Germany
| | - Bergoi Ibarlucea
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Dresden University of Technology, Dresden, Germany.
| | | | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Dresden University of Technology, Dresden, Germany; Dresden Center for Computational Materials Science (DCMS), Dresden University of Technology, Dresden, Germany
| | - Mariana Medina-Sánchez
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Emerging Electronic Technologies, Leibniz Institute for Solid State and Materials Research (Leibniz IFW Dresden), 01069, Dresden, Germany; Chair of Micro- and NanoSystems, Center for Molecular Bioengineering (B CUBE), Dresden University of Technology, 01062, Dresden, Germany.
| |
Collapse
|
20
|
Jiang W, Ma Z, Cao F, Hu L, Bao L, Chang P, Xu C, Lv X, Xie Y. Label-free integrated microfluidic plasmonic biosensor from vertical-cavity surface-emitting lasers for SARS-CoV-2 receptor binding domain protein detection. OPTICS EXPRESS 2023; 31:12138-12149. [PMID: 37157379 DOI: 10.1364/oe.486605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The nanoplasmonic sensor of the nanograting array has a remarkable ability in label-free and rapid biological detection. The integration of the nanograting array with the standard vertical-cavity surface-emitting lasers (VCSEL) platform can achieve a compact and powerful solution to provide on-chip light sources for biosensing applications. Here, a high sensitivity and label-free integrated VCSELs sensor was developed as a suitable analysis technique for COVID-19 specific receptor binding domain (RBD) protein. The gold nanograting array is integrated on VCSELs to realize the integrated microfluidic plasmonic biosensor of on-chip biosensing. The 850 nm VCSELs are used as a light source to excite the localized surface plasmon resonance (LSPR) effect of the gold nanograting array to detect the concentration of attachments. The refractive index sensitivity of the sensor is 2.99 × 106 nW/RIU. The aptamer of RBD was modified on the surface of the gold nanograting to detect the RBD protein successfully. The biosensor has high sensitivity and a wide detection range of 0.50 ng/mL - 50 µg/mL. This VCSELs biosensor provides an integrated, portable, and miniaturized idea for biomarker detection.
Collapse
|
21
|
de Matos Morawski F, Martins G, Ramos MK, Zarbin AJ, Blanes L, Bergamini MF, Marcolino-Junior LH. A versatile 3D printed multi-electrode cell for determination of three COVID-19 biomarkers. Anal Chim Acta 2023; 1258:341169. [PMID: 37087292 DOI: 10.1016/j.aca.2023.341169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
3D-printing has shown an outstanding performance for the production of versatile electrochemical devices. However, there is a lack of studies in the field of 3D-printed miniaturized settings for multiplex biosensing. In this work, we propose a fully 3D-printed micro-volume cell containing six working electrodes (WEs) that operates with 250 μL of sample. A polylactic acid/carbon black conductive filament (PLA/CB) was used to print the WEs and subsequently modified with graphene oxide (GO), to support protein binding. Cyclic voltammetry was employed to investigate the electrochemical behaviour of the novel multi-electrode cell. In the presence of K₃[Fe(CN)₆], PLA/CB/GO showed adequate peak resolution for subsequent label-free immunosensing. The innovative 3D-printed cell was applied for multiplex voltammetric detection of three COVID-19 biomarkers as a proof-of-concept. The multiple sensors showed a wide linear range with detection limits of 5, 1 and 1 pg mL-1 for N-protein, SRBD-protein, and anti-SRBD, respectively. The sensor performance enabled the selective sequential detection of N protein, SRBD protein, and anti-SRBD at biological levels in saliva and serum. In summary, the miniaturized six-electrode cell presents an alternative for the low-cost and fast production of customizable devices for multi-target sensing with promising application in the development of point-of-care sensors.
Collapse
|
22
|
Zambry NS, Awang MS, Beh KK, Hamzah HH, Bustami Y, Obande GA, Khalid MF, Ozsoz M, Manaf AA, Aziah I. A label-free electrochemical DNA biosensor used a printed circuit board gold electrode (PCBGE) to detect SARS-CoV-2 without amplification. LAB ON A CHIP 2023; 23:1622-1636. [PMID: 36786757 DOI: 10.1039/d2lc01159j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The emergence of coronavirus disease 2019 (COVID-19) motivates continuous efforts to develop robust and accurate diagnostic tests to detect severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Detection of viral nucleic acids provides the highest sensitivity and selectivity for diagnosing early and asymptomatic infection because the human immune system may not be active at this stage. Therefore, this work aims to develop a label-free electrochemical DNA biosensor for SARS-CoV-2 detection using a printed circuit board-based gold substrate (PCBGE). The developed sensor used the nucleocapsid phosphoprotein (N) gene as a biomarker. The DNA sensor-based PCBGE was fabricated by self-assembling a thiolated single-stranded DNA (ssDNA) probe onto an Au surface, which performed as the working electrode (WE). The Au surface was then treated with 6-mercapto-1-hexanol (MCH) before detecting the target N gene to produce a well-oriented arrangement of the immobilized ssDNA chains. The successful fabrication of the biosensor was characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and atomic force microscopy (AFM). The DNA biosensor performances were evaluated using a synthetic SARS-CoV-2 genome and 20 clinical RNA samples from healthy and infected individuals through EIS. The developed DNA biosensor can detect as low as 1 copy per μL of the N gene within 5 minutes with a LOD of 0.50 μM. Interestingly, the proposed DNA sensor could distinguish the expression of SARS-CoV-2 RNA in a patient diagnosed with COVID-19 without any amplification technique. We believe that the proposed DNA sensor platform is a promising point-of-care (POC) device for COVID-19 viral infection since it offers a rapid detection time with a simple design and workflow detection system, as well as an affordable diagnostic assay.
Collapse
Affiliation(s)
- Nor Syafirah Zambry
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Mohd Syafiq Awang
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Level 1, Block C, No. 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Pulau Pinang, Malaysia.
| | - Khi Khim Beh
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Level 1, Block C, No. 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Pulau Pinang, Malaysia.
| | - Hairul Hisham Hamzah
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia.
| | - Yazmin Bustami
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Godwin Attah Obande
- Department of Medical Microbiology and Parasitology, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
- Department of Microbiology, Faculty of Science, Federal University of Lafia, Lafia, Nasarawa State, Nigeria
| | - Muhammad Fazli Khalid
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Mehmet Ozsoz
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, Turkey
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Level 1, Block C, No. 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Pulau Pinang, Malaysia.
| | - Ismail Aziah
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
23
|
Soosani Z, Rezaei B, Heydari-Bafrooei E, Ensafi AA. Chemical Sensors Based on Molecularly Imprinted Polymers Can Determine Drug Release Kinetics from Nanocarriers without Filtration, Centrifugation, and Dialysis Steps. ACS Sens 2023; 8:1891-1900. [PMID: 36877535 DOI: 10.1021/acssensors.2c02436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
With the development of drug delivery systems, the use of nanomaterials for slow, targeted, and effective drug release has grown significantly. To ensure the quality of performance, it is essential to obtain drug release profiles from therapeutic nanoparticles prior to in vivo testing. Typically, the methods of monitoring the drug release profile from nanoparticle drug delivery systems include one or more filtration, separation, and sampling steps, with or without membrane, which cause several systematic errors and make the process time-consuming. Here, the release rate of doxorubicin as a model drug from liposome as a nanocarrier was determined via highly selective binding of released doxorubicin to the doxorubicin-imprinted electropolymerized polypyrrole as a molecularly imprinted polymer (MIP). Incubation of the MIP-modified substrate with imprinted cavities complementary to doxorubicin molecules in the releasing medium leads to the binding of released doxorubicin molecules to cavities. The drug trapped in the cavities is determined by one of the analytical methods depending on its signaling properties. In this work, due to the favorable electrochemical properties of doxorubicin, the voltammetry method was used for quantitative analysis of released doxorubicin. The voltammetric oxidation peak current intensity of doxorubicin on the surface of the electrode was enhanced by increasing the release time. This membranelle platform allows fast, reliable, and simple monitoring of drug release profiles without any sample preparation, filtration, and centrifugation in buffer and blood serum samples.
Collapse
Affiliation(s)
- Zeynab Soosani
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | | | - Ali A Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.,Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
24
|
Cetinkaya A, Kaya SI, Ozkan SA. A Comprehensive Overview of Sensors Applications for the Diagnosis of SARS-CoV-2 and of Drugs Used in its Treatment. Crit Rev Anal Chem 2023; 54:2517-2537. [PMID: 36877165 DOI: 10.1080/10408347.2023.2186693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
During the COVID-19 process, determination-based analytical chemistry studies have had a major place at every stage. Many analytical techniques have been used in both diagnostic studies and drug analysis. Among these, electrochemical sensors are frequently preferred due to their high sensitivity, selectivity, short analysis time, reliability, ease of sample preparation, and low use of organic solvents. For the determination of drugs used in the SARS-CoV-2, such as favipiravir, molnupiravir, ribavirin, etc., electrochemical (nano)sensors are widely used in both pharmaceutical and biological samples. Diagnosis is the most critical step in the management of the disease, and electrochemical sensor tools are widely preferred for this purpose. Diagnostic electrochemical sensor tools can be biosensor-, nano biosensor-, or MIP-based sensors and utilize a wide variety of analytes such as viral proteins, viral RNA, antibodies, etc. This review overviews the sensor applications in SARS-CoV-2 in terms of diagnosis and determination of drugs by evaluating the most recent studies in the literature. In this way, it is aimed to compile the developments so far by shedding light on the most recent studies and giving ideas to researchers for future studies.
Collapse
Affiliation(s)
- Ahmet Cetinkaya
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Türkiye
- Graduate School of Health Sciences, Ankara University, Ankara, Türkiye
| | - S Irem Kaya
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Türkiye
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Türkiye
| |
Collapse
|
25
|
Ferreira MDP, Yamada-Ogatta SF, Teixeira Tarley CR. Electrochemical and Bioelectrochemical Sensing Platforms for Diagnostics of COVID-19. BIOSENSORS 2023; 13:336. [PMID: 36979548 PMCID: PMC10046778 DOI: 10.3390/bios13030336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/15/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Rapid transmission and high mortality rates caused by the SARS-CoV-2 virus showed that the best way to fight against the pandemic was through rapid, accurate diagnosis in parallel with vaccination. In this context, several research groups around the world have endeavored to develop new diagnostic methods due to the disadvantages of the gold standard method, reverse transcriptase polymerase chain reaction (RT-PCR), in terms of cost and time consumption. Electrochemical and bioelectrochemical platforms have been important tools for overcoming the limitations of conventional diagnostic platforms, including accuracy, accessibility, portability, and response time. In this review, we report on several electrochemical sensors and biosensors developed for SARS-CoV-2 detection, presenting the concepts, fabrication, advantages, and disadvantages of the different approaches. The focus is devoted to highlighting the recent progress of electrochemical devices developed as next-generation field-deployable analytical tools as well as guiding future researchers in the manufacture of devices for disease diagnosis.
Collapse
Affiliation(s)
| | | | - César Ricardo Teixeira Tarley
- Department of Chemistry, State University of Londrina (UEL), Londrina 86051-990, Brazil
- National Institute of Science and Technology in Bioanalysis (INCTBio), Institute of Chemistry, State University of Campinas (UNICAMP), Campinas 13083-970, Brazil
| |
Collapse
|
26
|
Vásquez V, Orozco J. Detection of COVID-19-related biomarkers by electrochemical biosensors and potential for diagnosis, prognosis, and prediction of the course of the disease in the context of personalized medicine. Anal Bioanal Chem 2023; 415:1003-1031. [PMID: 35970970 PMCID: PMC9378265 DOI: 10.1007/s00216-022-04237-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023]
Abstract
As a more efficient and effective way to address disease diagnosis and intervention, cutting-edge technologies, devices, therapeutic approaches, and practices have emerged within the personalized medicine concept depending on the particular patient's biology and the molecular basis of the disease. Personalized medicine is expected to play a pivotal role in assessing disease risk or predicting response to treatment, understanding a person's health status, and, therefore, health care decision-making. This work discusses electrochemical biosensors for monitoring multiparametric biomarkers at different molecular levels and their potential to elucidate the health status of an individual in a personalized manner. In particular, and as an illustration, we discuss several aspects of the infection produced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a current health care concern worldwide. This includes SARS-CoV-2 structure, mechanism of infection, biomarkers, and electrochemical biosensors most commonly explored for diagnostics, prognostics, and potentially assessing the risk of complications in patients in the context of personalized medicine. Finally, some concluding remarks and perspectives hint at the use of electrochemical biosensors in the frame of other cutting-edge converging/emerging technologies toward the inauguration of a new paradigm of personalized medicine.
Collapse
Affiliation(s)
- Viviana Vásquez
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 N° 52-20, Medellín, 050010, Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 N° 52-20, Medellín, 050010, Colombia.
| |
Collapse
|
27
|
Bacon A, Wang W, Lee H, Umrao S, Sinawang PD, Akin D, Khemtonglang K, Tan A, Hirshfield S, Demirci U, Wang X, Cunningham BT. Review of HIV Self Testing Technologies and Promising Approaches for the Next Generation. BIOSENSORS 2023; 13:298. [PMID: 36832064 PMCID: PMC9954708 DOI: 10.3390/bios13020298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 05/28/2023]
Abstract
The ability to self-test for HIV is vital to preventing transmission, particularly when used in concert with HIV biomedical prevention modalities, such as pre-exposure prophylaxis (PrEP). In this paper, we review recent developments in HIV self-testing and self-sampling methods, and the potential future impact of novel materials and methods that emerged through efforts to develop more effective point-of-care (POC) SARS-CoV-2 diagnostics. We address the gaps in existing HIV self-testing technologies, where improvements in test sensitivity, sample-to-answer time, simplicity, and cost are needed to enhance diagnostic accuracy and widespread accessibility. We discuss potential paths toward the next generation of HIV self-testing through sample collection materials, biosensing assay techniques, and miniaturized instrumentation. We discuss the implications for other applications, such as self-monitoring of HIV viral load and other infectious diseases.
Collapse
Affiliation(s)
- Amanda Bacon
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Weijing Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hankeun Lee
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Saurabh Umrao
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Genomic Diagnostics, Woese Institute for Genomic Biology, Urbana, IL 61801, USA
| | - Prima Dewi Sinawang
- Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Demir Akin
- Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Center for Cancer Nanotechnology Excellence for Translational Diagnostics (CCNE-TD), School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kodchakorn Khemtonglang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anqi Tan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sabina Hirshfield
- Special Treatment and Research (STAR) Program, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York, NY 11203, USA
| | - Utkan Demirci
- Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Xing Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Genomic Diagnostics, Woese Institute for Genomic Biology, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brian T. Cunningham
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Genomic Diagnostics, Woese Institute for Genomic Biology, Urbana, IL 61801, USA
| |
Collapse
|
28
|
Cardoso AG, Viltres H, Ortega GA, Phung V, Grewal R, Mozaffari H, Ahmed SR, Rajabzadeh AR, Srinivasan S. Electrochemical sensing of analytes in saliva: Challenges, progress, and perspectives. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
29
|
Dong T, Matos Pires NM, Yang Z, Jiang Z. Advances in Electrochemical Biosensors Based on Nanomaterials for Protein Biomarker Detection in Saliva. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205429. [PMID: 36585368 PMCID: PMC9951322 DOI: 10.1002/advs.202205429] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/20/2022] [Indexed: 06/02/2023]
Abstract
The focus on precise medicine enhances the need for timely diagnosis and frequent monitoring of chronic diseases. Moreover, the recent pandemic of severe acute respiratory syndrome coronavirus 2 poses a great demand for rapid detection and surveillance of viral infections. The detection of protein biomarkers and antigens in the saliva allows rapid identification of diseases or disease changes in scenarios where and when the test response at the point of care is mandated. While traditional methods of protein testing fail to provide the desired fast results, electrochemical biosensors based on nanomaterials hold perfect characteristics for the detection of biomarkers in point-of-care settings. The recent advances in electrochemical sensors for salivary protein detection are critically reviewed in this work, with emphasis on the role of nanomaterials to boost the biosensor analytical performance and increase the reliability of the test in human saliva samples. Furthermore, this work identifies the critical factors for further modernization of the nanomaterial-based electrochemical sensors, envisaging the development and implementation of next-generation sample-in-answer-out systems.
Collapse
Affiliation(s)
- Tao Dong
- Department of Microsystems‐ IMSFaculty of TechnologyNatural Sciences and Maritime SciencesUniversity of South‐Eastern Norway‐USNP.O. Box 235Kongsberg3603Norway
| | - Nuno Miguel Matos Pires
- Chongqing Key Laboratory of Micro‐Nano Systems and Intelligent TransductionCollaborative Innovation Center on Micro‐Nano Transduction and Intelligent Eco‐Internet of ThingsChongqing Key Laboratory of Colleges and Universities on Micro‐Nano Systems Technology and Smart TransducingNational Research Base of Intelligent Manufacturing ServiceChongqing Technology and Business UniversityNan'an DistrictChongqing400067China
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro‐Nano Systems and Intelligent TransductionCollaborative Innovation Center on Micro‐Nano Transduction and Intelligent Eco‐Internet of ThingsChongqing Key Laboratory of Colleges and Universities on Micro‐Nano Systems Technology and Smart TransducingNational Research Base of Intelligent Manufacturing ServiceChongqing Technology and Business UniversityNan'an DistrictChongqing400067China
| | - Zhuangde Jiang
- Chongqing Key Laboratory of Micro‐Nano Systems and Intelligent TransductionCollaborative Innovation Center on Micro‐Nano Transduction and Intelligent Eco‐Internet of ThingsChongqing Key Laboratory of Colleges and Universities on Micro‐Nano Systems Technology and Smart TransducingNational Research Base of Intelligent Manufacturing ServiceChongqing Technology and Business UniversityNan'an DistrictChongqing400067China
- State Key Laboratory for Manufacturing Systems EngineeringInternational Joint Laboratory for Micro/Nano Manufacturing and Measurement TechnologyXi'an Jiaotong UniversityXi'an710049China
| |
Collapse
|
30
|
Abstract
The SARS-CoV-2 spike glycoprotein (SARS-CoV-2-S) was used as a template molecule and polypyrrole (Ppy) was applied as an electro-generated conducting polymer, which was acting as a matrix for the formation of molecular imprints. Two types of Ppy-layers: molecularly imprinted polypyrrole (MIP-Ppy) and non-imprinted polypyrrole (NIP-Ppy) were electrochemically deposited on the working platinum electrode. The performance of electrodes modified by MIP-Ppy and NIP-Ppy layers was evaluated by pulsed amperometric detection (PAD). During the assessment of measurement results registered by PAD, the integrated Cottrell equation (Anson plot) was used to calculate the amount of charge passed through the MIP-Ppy and NIP-Ppy layers. The interaction between SARS-CoV-2 spike glycoproteins and molecularly imprinted polypyrrole (MIP-Ppy) was assessed by the Anson plot based calculations. This assessment reveals that SARS-CoV-2-S glycoproteins are interacting with MIP-Ppy more strongly than with NIP-Ppy.
Collapse
|
31
|
Zhang X, Waffo AT, Yarman A, Kovács N, Bognár Z, Wollenberger U, El-Sherbiny IM, Hassan RYA, Bier FF, Gyurcsányi RE, Zebger I, Scheller FW. How an ACE2 mimicking epitope-MIP nanofilm recognizes template-related peptides and the receptor binding domain of SARS-CoV-2. NANOSCALE 2022; 14:18106-18114. [PMID: 36448745 DOI: 10.1039/d2nr03898f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Here we aim to gain a mechanistic understanding of the formation of epitope-imprinted polymer nanofilms using a non-terminal peptide sequence, i.e. the peptide GFNCYFP (G485 to P491) of the SARS-CoV-2 receptor binding domain (RBD). This epitope is chemisorbed on the gold surface through the central cysteine 488 followed by the electrosynthesis of a ∼5 nm thick polyscopoletin film around the surface confined templates. The interaction of peptides and the parent RBD and spike protein with the imprinted polyscopoletin nanofilm was followed by electrochemical redox marker gating, surface enhanced infrared absorption spectroscopy and conductive AFM. Because the use of non-terminal epitopes is especially intricate, here we characterize the binding pockets through their interaction with 5 peptides rationally derived from the template sequence, i.e. implementing central single amino acid mismatch as well as elongations and truncations at its C- and N- termini. Already a single amino acid mismatch, i.e. the central Cys488 substituted by a serine, results in ca. 15-fold lower affinity. Further truncation of the peptides to tetrapeptide (EGFN) and hexapeptide (YFPLQS) results also in a significantly lower affinity. We concluded that the affinity towards the different peptides is mainly determined by the four amino acid motif CYFP present in the sequence of the template peptide. A higher affinity than that for the peptides is found for the parent proteins RBD and spike protein, which seems to be due to out of cavity effects caused by their larger footprint on the nanofilm surface.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476 Potsdam, Germany.
| | - Armel T Waffo
- Institut für Chemie, PC 14 Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Aysu Yarman
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476 Potsdam, Germany.
- Molecular Biotechnology, Faculty of Science, Turkish-German University, Sahinkaya Cad, 86, Beykoz, Istanbul 34820, Turkey
| | - Norbert Kovács
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.
| | - Zsófia Bognár
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.
- ELKH-BME Computation Driven Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Ulla Wollenberger
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476 Potsdam, Germany.
| | - Ibrahim M El-Sherbiny
- Nanoscience Program, University of Science and Technology (UST) & Center for Materials Science (CMS), Zewail City of Science and Technology, Giza 12578, Egypt
| | - Rabeay Y A Hassan
- Nanoscience Program, University of Science and Technology (UST) & Center for Materials Science (CMS), Zewail City of Science and Technology, Giza 12578, Egypt
| | - Frank F Bier
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476 Potsdam, Germany.
| | - Róbert E Gyurcsányi
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.
- ELKH-BME Computation Driven Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Ingo Zebger
- Institut für Chemie, PC 14 Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Frieder W Scheller
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476 Potsdam, Germany.
| |
Collapse
|
32
|
Shah NS, Thotathil V, Zaidi SA, Sheikh H, Mohamed M, Qureshi A, Sadasivuni KK. Picomolar or beyond Limit of Detection Using Molecularly Imprinted Polymer-Based Electrochemical Sensors: A Review. BIOSENSORS 2022; 12:1107. [PMID: 36551073 PMCID: PMC9775238 DOI: 10.3390/bios12121107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Over the last decades, molecularly imprinted polymers (MIPs) have emerged as selective synthetic receptors that have a selective binding site for specific analytes/target molecules. MIPs are synthetic analogues to the natural biological antigen-antibody system. Owing to the advantages they exhibit, such as high stability, simple synthetic procedure, and cost-effectiveness, MIPs have been widely used as receptors/sensors for the detection and monitoring of a variety of analytes. Moreover, integrating electrochemical sensors with MIPs offers a promising approach and demonstrates greater potential over traditional MIPs. In this review, we have compiled the methods and techniques for the production of MIP-based electrochemical sensors along with the applications of reported MIP sensors for a variety of analytes. A comprehensive in-depth analysis of recent trends reported on picomolar (pM/10-12 M)) and beyond picomolar concentration LOD (≥pM) achieved using MIPs sensors is reported. Finally, we discuss the challenges faced and put forward future perspectives along with our conclusion.
Collapse
Affiliation(s)
- Naheed Sidiq Shah
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Vandana Thotathil
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Shabi Abbas Zaidi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Hanan Sheikh
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Maimoona Mohamed
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Ahmadyar Qureshi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | | |
Collapse
|
33
|
Ma C, Lu D, Gan H, Yao Z, Zhu DZ, Luo J, Fu Q, Kurup P. The critical experimental aspects for developing pathogen electrochemical biosensors: A lesson during the COVID-19 pandemic. Talanta 2022:124009. [PMCID: PMC9562616 DOI: 10.1016/j.talanta.2022.124009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Though the bitter global pandemic posed a severe public health threat, it set an unprecedented stage for different research teams to present various technologies for detecting SARS-CoV-2, providing a rare and hard-won lesson for one to comprehensively survey the core experimental aspects in developing pathogens electrochemical biosensors. Apart from collecting all the published biosensor studies, we focused on the effects and consequences of using different receptors, such as antibodies, aptamers, ACE 2, and MIPs, which are one of the core topics of developing a pathogen biosensor. In addition, we tried to find an appropriate and distinctive application scenario (e.g., wastewater-based epidemiology) to maximize the advantages of using electrochemical biosensors to detect pathogens. Based on the enormous amount of information from those published studies, features that fit and favor wastewater pathogen detection can be picked up and integrated into a specific strategy to perform quantitative measurements in wastewater samples.
Collapse
Affiliation(s)
- Chen Ma
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China
| | - Dingnan Lu
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China,Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA,Corresponding author. Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China
| | - Huihui Gan
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China
| | - Zhiyuan Yao
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China
| | - David Z. Zhu
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China,Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Jiayue Luo
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China,Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
| | - Qiang Fu
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
| | - Pradeep Kurup
- Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA,Corresponding author
| |
Collapse
|
34
|
Farzin MA, Abdoos H, Saber R. AuNP-based biosensors for the diagnosis of pathogenic human coronaviruses: COVID-19 pandemic developments. Anal Bioanal Chem 2022; 414:7069-7084. [PMID: 35781591 PMCID: PMC9251037 DOI: 10.1007/s00216-022-04193-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/15/2022]
Abstract
The outbreak rate of human coronaviruses (CoVs) especially highly pathogenic CoVs is increasing alarmingly. Early detection of these viruses allows treatment interventions to be provided more quickly to people at higher risk, as well as helping to identify asymptomatic carriers and isolate them as quickly as possible, thus preventing the disease transmission chain. The current diagnostic methods such as RT-PCR are not ideal due to high cost, low accuracy, low speed, and probability of false results. Therefore, a reliable and accurate method for the detection of CoVs in biofluids can become a front-line tool in order to deal with the spread of these deadly viruses. Currently, the nanomaterial-based sensing devices for detection of human coronaviruses from laboratory diagnosis to point-of-care (PoC) diagnosis are progressing rapidly. Gold nanoparticles (AuNPs) have revolutionized the field of biosensors because of the outstanding optical and electrochemical properties. In this review paper, a detailed overview of AuNP-based biosensing strategies with the varied transducers (electrochemical, optical, etc.) and also different biomarkers (protein antigens and nucleic acids) was presented for the detection of human coronaviruses including SARS-CoV-2, SARS-CoV-1, and MERS-CoV and lowly pathogenic CoVs. The present review highlights the newest trends in the SARS-CoV-2 nanobiosensors from the beginning of the COVID-19 epidemic until 2022. We hope that the presented examples in this review paper convince readers that AuNPs are a suitable platform for the designing of biosensors.
Collapse
Affiliation(s)
- Mohammad Ali Farzin
- Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, P. O. Box: 35131-19111, Semnan, Iran
| | - Hassan Abdoos
- Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, P. O. Box: 35131-19111, Semnan, Iran.
| | - Reza Saber
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Amouzadeh Tabrizi M, Acedo P. An electrochemical membrane-based aptasensor for detection of severe acute respiratory syndrome coronavirus-2 receptor-binding domain. APPLIED SURFACE SCIENCE 2022; 598:153867. [PMID: 35669218 PMCID: PMC9158412 DOI: 10.1016/j.apsusc.2022.153867] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/29/2022] [Accepted: 05/29/2022] [Indexed: 05/11/2023]
Abstract
Herein, we report an electrochemical membrane-based aptasensor for the determination of the SARS-CoV-2 receptor-binding domain (SARS-CoV-2-RBD). For this purpose, the nanoporous anodic aluminium oxide membrane (NPAOM) was first fabricated electrochemically. The NPAOM was then functionalized with 3-mercaptopropyl trimethoxysilane (NPAOM-Si-SH). After that, the NPAOM-Si-SH was decorated with gold nanoparticles by using gold ion and sodium borohydride. The NPAOM-Si-S-Aunano was then attached to the surface of the working electrode of a laser-engraved graphene electrode (LEGE). Subsequently, the LEGE/NPAOM-Si-S-Aunano was fixed inside a flow cell that was made by using a three-dimensional (3D) printer, and then thiolated aptamer was transferred into the flow cell using a pump. The electrochemical behavior of the LEGE/NPAOM-Si-S-Aunano-Aptamer was studied using square wave voltammetry (SWV) in the presence of potassium ferrocyanide as a redox probe. The response of the LEGE/NPAOM-Si-S-Aunano-Aptamer to the different concentrations of the SARS-CoV-2-RBD in human saliva sample was investigated in the concentration range of 2.5-40.0 ng/mL. The limit of the detection was found to be 0.8 ng/mL. The LEGE/NPAOM-Si-S-Aunano-Aptamer showed good selectivity to 5.0 ng/mL of SARS-CoV-2-RBD in the presence of five times of the interfering agents like hemagglutinin and neuraminidase as the influenza A virus major surface glycoproteins.
Collapse
Affiliation(s)
| | - Pablo Acedo
- Electronic Technology Department, Universidad Carlos III de Madrid, Leganés, Spain
| |
Collapse
|
36
|
Mao S, Fu L, Yin C, Liu X, Karimi-Maleh H. The role of electrochemical biosensors in SARS-CoV-2 detection: a bibliometrics-based analysis and review. RSC Adv 2022; 12:22592-22607. [PMID: 36105989 PMCID: PMC9372877 DOI: 10.1039/d2ra04162f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Abstract
The global pandemic of COVID-19, which began in late 2019, has resulted in extremely high morbidity and severe mortality worldwide, with important implications for human health, international trade, and national politics. Severe acute respiratory syndrome coronavirus (SARS-CoV-2) is the primary pathogen causing COVID-19. Analytical chemistry played an important role in this global epidemic event, and detection of SARS-CoV-2 even became a part of daily life. Analytical chemists have devoted much effort and enthusiasm to this event, and different analytical techniques have shown very rapid development. Electrochemical biosensors are highly efficient, sensitive, and cost-effective and have been used to detect many highly pathogenic viruses long before this event. However, another fact is that electrochemical biosensors are not the technology of choice for most detection applications. This review describes for the first time the role played by electrochemical biosensors in SARS-CoV-2 detection from a bibliometric perspective. This paper analyzed 254 relevant research papers up to June 2022. The contributions of different countries and institutions to this topic were analyzed. Keyword analysis was used to explore different methodological attempts of electrochemical detection techniques. More importantly, we are trying to find an answer to the question: do electrochemical biosensors have the potential to become a genuinely employable detection technology in an outbreak of infectious disease?
Collapse
Affiliation(s)
- Shudan Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University Hangzhou 310021 PR China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University Hangzhou 310018 China
| | - Chengliang Yin
- National Engineering Laboratory for Medical Big Data Application Technology, Chinese PLA General Hospital Beijing China
- Medical Big Data Research Center, Medical Innovation Research Division of PLA General Hospital Beijing China
| | - Xiaozhu Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China Xiyuan Ave 611731 Chengdu China
- Department of Chemical Engineering, Quchan University of Technology Quchan 9477177870 Iran
- Department of Chemical Sciences, University of Johannesburg Doornfontein Campus, 2028 Johannesburg 17011 South Africa
| |
Collapse
|
37
|
KILIÇ NM, ODACI DEMİRKOL D. Virus detection using bio-based analysis systems: a review of biorecognition strategies. Turk J Chem 2022; 46:1802-1816. [PMID: 37621347 PMCID: PMC10446939 DOI: 10.55730/1300-0527.3481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/19/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022] Open
Abstract
Infectious illnesses are on the rise in today's world, with serious consequences for animals, plants, and humans. Several infections, including the human immunodeficiency virus, affect a large number of individuals in various countries, particularly in the poorer portions of contemporary society, and continue to cause a variety of health problems. Viruses are tiny parasitic organisms. They are infectious agents that can only reproduce within a live cell of an organism. Viruses may infect any living organism. For clinical point-of-care applications, early detections for harmful agents such as bacteria, viruses are critical. The possibility of worldwide epidemics as a result of viral propagation emphasizes the importance of creating speedy, precise, and sensitive early detection systems. Furthermore, because certain viruses have a long latent phase and can evolve from one person to another, early detection during the incubation period is critical for improving recovery rates and avoiding pandemics. Nowadays, there has been various bio-based detection systems that have rapid reaction times, user-friendly, cost-effective, and repeatable. In this review, biological molecule-based detection technologies which focus on virus analysis are examined.
Collapse
Affiliation(s)
- Nur Melis KILIÇ
- Department of Biochemistry, Faculty of Science, Ege University, İzmir,
Turkey
| | | |
Collapse
|
38
|
Ning Q, Feng S, Cheng Y, Li T, Cui D, Wang K. Point-of-care biochemical assays using electrochemical technologies: approaches, applications, and opportunities. Mikrochim Acta 2022; 189:310. [PMID: 35918617 PMCID: PMC9345663 DOI: 10.1007/s00604-022-05425-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/21/2022] [Indexed: 12/12/2022]
Abstract
Against the backdrop of hidden symptoms of diseases and limited medical resources of their investigation, in vitro diagnosis has become a popular mode of real-time healthcare monitoring. Electrochemical biosensors have considerable potential for use in wearable products since they can consistently monitor the physiological information of the patient. This review classifies and briefly compares commonly available electrochemical biosensors and the techniques of detection used. Following this, the authors focus on recent studies and applications of various types of sensors based on a variety of methods to detect common compounds and cancer biomarkers in humans. The primary gaps in research are discussed and strategies for improvement are proposed along the dimensions of hardware and software. The work here provides new guidelines for advanced research on and a wider scope of applications of electrochemical biosensors to in vitro diagnosis.
Collapse
Affiliation(s)
- Qihong Ning
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaoqing Feng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuemeng Cheng
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tangan Li
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Daxiang Cui
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kan Wang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
39
|
A Review on Potential Electrochemical Point-of-Care Tests Targeting Pandemic Infectious Disease Detection: COVID-19 as a Reference. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070269] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fast and accurate point-of-care testing (POCT) of infectious diseases is crucial for diminishing the pandemic miseries. To fight the pandemic coronavirus disease 2019 (COVID-19), numerous interesting electrochemical point-of-care (POC) tests have been evolved to rapidly identify the causal organism SARS-CoV-2 virus, its nucleic acid and antigens, and antibodies of the patients. Many of those electrochemical biosensors are impressive in terms of miniaturization, mass production, ease of use, and speed of test, and they could be recommended for future applications in pandemic-like circumstances. On the other hand, self-diagnosis, sensitivity, specificity, surface chemistry, electrochemical components, device configuration, portability, small analyzers, and other features of the tests can yet be improved. Therefore, this report reviews the developmental trend of electrochemical POC tests (i.e., test platforms and features) reported for the rapid diagnosis of COVID-19 and correlates any significant advancements with relevant references. POCTs incorporating microfluidic/plastic chips, paper devices, nanomaterial-aided platforms, smartphone integration, self-diagnosis, and epidemiological reporting attributes are also surfed to help with future pandemic preparedness. This review especially screens the low-cost and easily affordable setups so that management of pandemic disease becomes faster and easier. Overall, the review is a wide-ranging package for finding appropriate strategies of electrochemical POCT targeting pandemic infectious disease detection.
Collapse
|
40
|
Molecularly Imprinted Polymer-Based Sensors for SARS-CoV-2: Where Are We Now? Biomimetics (Basel) 2022; 7:biomimetics7020058. [PMID: 35645185 PMCID: PMC9149885 DOI: 10.3390/biomimetics7020058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 01/27/2023] Open
Abstract
Since the first reported case of COVID-19 in 2019 in China and the official declaration from the World Health Organization in March 2021 as a pandemic, fast and accurate diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has played a major role worldwide. For this reason, various methods have been developed, comprising reverse transcriptase-polymerase chain reaction (RT-PCR), immunoassays, clustered regularly interspaced short palindromic repeats (CRISPR), reverse transcription loop-mediated isothermal amplification (RT-LAMP), and bio(mimetic)sensors. Among the developed methods, RT-PCR is so far the gold standard. Herein, we give an overview of the MIP-based sensors utilized since the beginning of the pandemic.
Collapse
|
41
|
Zhang Y, Chen F, Xie H, Zhou B. Electrochemical biosensors for the detection of SARS-CoV-2 pathogen and protein biomarkers. INT J ELECTROCHEM SC 2022; 17:220541. [PMID: 37360860 PMCID: PMC10276346 DOI: 10.20964/2022.05.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/01/2022] [Indexed: 09/21/2024]
Abstract
Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV CoV-2) pathogen and protein biomarkers can improve the diagnosis accuracy for Coronavirus disease 2019 (COVID-19). Electrochemical biosensors have attracted extensive attention in the scientific community because of their simple design, fast response, good portability, high sensitivity and high selectivity. In this review, we summarized the progress in the electrochemical detection of COVID-19 pathogen and SARS-CoV-2 biomarkers, including SARS-CoV-2 spike protein and nucleocapsid protein and their antibodies.
Collapse
Affiliation(s)
- Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, P. R. China
- Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, P. R. China
| | - Fang Chen
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, P. R. China
- Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, P. R. China
| | - Hao Xie
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Binbin Zhou
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| |
Collapse
|
42
|
Wu CC, Chiang YH, Chiang HY. A Label-Free Electrochemical Impedimetric Immunosensor with Biotinylated-Antibody for SARS-CoV-2 Nucleoprotein Detection in Saliva. BIOSENSORS 2022; 12:bios12050265. [PMID: 35624566 PMCID: PMC9138907 DOI: 10.3390/bios12050265] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 05/05/2023]
Abstract
The timely detecting of SARS-CoV-2 coronavirus antigens for infection validation is an urgent request for COVID-19 pandemic control. This study constructed label-free electrochemical impedance spectroscopy (EIS)-based immunosensors based on gold nanostructured screen-printed carbon electrodes (AuNS/SPCEs) to detect the SARS-CoV-2 nucleocapsid protein (N-protein) in saliva. Using short-chain 3-mercaptopropionic acid (MPA) as a linker to covalently bond streptavidin (SA) and bovine serum albumin (BSA) for controlling the oriented immobilization of the biotinylated anti-N-protein antibody (BioAb) can offer a greater sensitivity, a lower limit of detection (LOD), and better reproducibility of immunosensors (defined as BioAb/SA-BSA/MPA/AuNS/SPCEs) than the antibody randomly immobilized immunosensors and the long-chain 11-mercaptoundecanoic acid (MUA)-modified immunosensors (BioAb/SA-BSA/MUA/AuNS/SPCEs). The BioAb/SA-BSA/MPA/AuNS/SPCE-based immunosensors presented good linearity from 0.01 ng/mL to 100 ng/mL and a low LOD of 6 pg/mL in a phosphate buffer solution (PBS) and PBS-diluted saliva. Moreover, the immunosensor exhibited little cross-activity with other viral antigens such as MERS-CoV N-protein, influenza A N-protein, influenza B N-protein, and SARS-CoV-2 spike protein, indicating the high specificity of the immunosensors. The disposable label-free EIS-based immunosensors have promising potential in facilitating the rapid and sensitive tests of saliva-based COVID-19 diagnostics.
Collapse
Affiliation(s)
- Ching-Chou Wu
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, Taichung 402, Taiwan;
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: ; Tel.: +886-4-2285-1268
| | - Yu-Huan Chiang
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, Taichung 402, Taiwan;
| | | |
Collapse
|
43
|
Amouzadeh Tabrizi M, Acedo P. An Electrochemical Impedance Spectroscopy-Based Aptasensor for the Determination of SARS-CoV-2-RBD Using a Carbon Nanofiber-Gold Nanocomposite Modified Screen-Printed Electrode. BIOSENSORS 2022; 12:bios12030142. [PMID: 35323412 PMCID: PMC8945915 DOI: 10.3390/bios12030142] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 05/17/2023]
Abstract
Worldwide, human health is affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hence, the fabrication of the biosensors to diagnose SARS-CoV-2 is critical. In this paper, we report an electrochemical impedance spectroscopy (EIS)-based aptasensor for the determination of the SARS-CoV-2 receptor-binding domain (SARS-CoV-2-RBD). For this purpose, the carbon nanofibers (CNFs) were first decorated with gold nanoparticles (AuNPs). Then, the surface of the carbon-based screen-printed electrode (CSPE) was modified with the CNF-AuNP nanocomposite (CSPE/CNF-AuNP). After that, the thiol-terminal aptamer probe was immobilized on the surface of the CSPE/CNF-AuNP. The surface coverage of the aptamer was calculated to be 52.8 pmol·cm-2. The CSPE/CNF-AuNP/Aptamer was then used for the measurement of SARS-CoV-2-RBD by using the EIS method. The obtained results indicate that the signal had a linear-logarithmic relationship in the range of 0.01-64 nM with a limit of detection of 7.0 pM. The proposed aptasensor had a good selectivity to SARS-CoV-2-RBD in the presence of human serum albumin; human immunoglobulins G, A, and M, hemagglutinin, and neuraminidase. The analytical performance of the aptasensor was studied in human saliva samples. The present study indicates a practical application of the CSPE/CNF-AuNP/Aptamer for the determination of SARS-CoV-2-RBD in human saliva samples with high sensitivity and accuracy.
Collapse
|
44
|
Park R, Jeon S, Jeong J, Park SY, Han DW, Hong SW. Recent Advances of Point-of-Care Devices Integrated with Molecularly Imprinted Polymers-Based Biosensors: From Biomolecule Sensing Design to Intraoral Fluid Testing. BIOSENSORS 2022; 12:136. [PMID: 35323406 PMCID: PMC8946830 DOI: 10.3390/bios12030136] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 05/11/2023]
Abstract
Recent developments of point-of-care testing (POCT) and in vitro diagnostic medical devices have provided analytical capabilities and reliable diagnostic results for rapid access at or near the patient's location. Nevertheless, the challenges of reliable diagnosis still remain an important factor in actual clinical trials before on-site medical treatment and making clinical decisions. New classes of POCT devices depict precise diagnostic technologies that can detect biomarkers in biofluids such as sweat, tears, saliva or urine. The introduction of a novel molecularly imprinted polymer (MIP) system as an artificial bioreceptor for the POCT devices could be one of the emerging candidates to improve the analytical performance along with physicochemical stability when used in harsh environments. Here, we review the potential availability of MIP-based biorecognition systems as custom artificial receptors with high selectivity and chemical affinity for specific molecules. Further developments to the progress of advanced MIP technology for biomolecule recognition are introduced. Finally, to improve the POCT-based diagnostic system, we summarized the perspectives for high expandability to MIP-based periodontal diagnosis and the future directions of MIP-based biosensors as a wearable format.
Collapse
Affiliation(s)
- Rowoon Park
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (R.P.); (S.J.); (J.J.); (D.-W.H.)
| | - Sangheon Jeon
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (R.P.); (S.J.); (J.J.); (D.-W.H.)
| | - Jeonghwa Jeong
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (R.P.); (S.J.); (J.J.); (D.-W.H.)
| | - Shin-Young Park
- Department of Dental Education and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Korea;
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (R.P.); (S.J.); (J.J.); (D.-W.H.)
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (R.P.); (S.J.); (J.J.); (D.-W.H.)
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Korea
| |
Collapse
|
45
|
Molecularly imprinted polypyrrole based sensor for the detection of SARS-CoV-2 spike glycoprotein. Electrochim Acta 2022; 403:139581. [PMID: 34898691 PMCID: PMC8643074 DOI: 10.1016/j.electacta.2021.139581] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/25/2022]
Abstract
This study describes the application of a polypyrrole-based sensor for the determination of SARS-CoV-2-S spike glycoprotein. The SARS-CoV-2-S spike glycoprotein is a spike protein of the coronavirus SARS-CoV-2 that recently caused the worldwide spread of COVID-19 disease. This study is dedicated to the development of an electrochemical determination method based on the application of molecularly imprinted polymer technology. The electrochemical sensor was designed by molecular imprinting of polypyrrole (Ppy) with SARS-CoV-2-S spike glycoprotein (MIP-Ppy). The electrochemical sensors with MIP-Ppy and with polypyrrole without imprints (NIP-Ppy) layers were electrochemically deposited on a platinum electrode surface by a sequence of potential pulses. The performance of polymer layers was evaluated by pulsed amperometric detection. According to the obtained results, a sensor based on MIP-Ppy is more sensitive to the SARS-CoV-2-S spike glycoprotein than a sensor based on NIP-Ppy. Also, the results demonstrate that the MIP-Ppy layer is more selectively interacting with SARS-CoV-2-S glycoprotein than with bovine serum albumin. This proves that molecularly imprinted MIP-Ppy-based sensors can be applied for the detection of SARS-CoV-2 virus proteins.
Collapse
|
46
|
Drobysh M, Ramanaviciene A, Viter R, Chen CF, Samukaite-Bubniene U, Ratautaite V, Ramanavicius A. Biosensors for the Determination of SARS-CoV-2 Virus and Diagnosis of COVID-19 Infection. Int J Mol Sci 2022; 23:666. [PMID: 35054850 PMCID: PMC8776074 DOI: 10.3390/ijms23020666] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Monitoring and tracking infection is required in order to reduce the spread of the coronavirus disease 2019 (COVID-19), induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To achieve this goal, the development and deployment of quick, accurate, and sensitive diagnostic methods are necessary. The determination of the SARS-CoV-2 virus is performed by biosensing devices, which vary according to detection methods and the biomarkers which are inducing/providing an analytical signal. RNA hybridisation, antigen-antibody affinity interaction, and a variety of other biological reactions are commonly used to generate analytical signals that can be precisely detected using electrochemical, electrochemiluminescence, optical, and other methodologies and transducers. Electrochemical biosensors, in particular, correspond to the current trend of bioanalytical process acceleration and simplification. Immunosensors are based on the determination of antigen-antibody interaction, which on some occasions can be determined in a label-free mode with sufficient sensitivity.
Collapse
Affiliation(s)
- Maryia Drobysh
- State Research Institute Center for Physical and Technological Sciences, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (M.D.); (U.S.-B.); (V.R.)
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania;
| | - Almira Ramanaviciene
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania;
| | - Roman Viter
- Center for Collective Use of Scientific Equipment, Sumy State University, Sanatornaya Str. 31, 40018 Sumy, Ukraine
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University 1, Sec. 4, Roosevelt Rd., Da’an Dist., Taipei 106, Taiwan;
| | - Urte Samukaite-Bubniene
- State Research Institute Center for Physical and Technological Sciences, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (M.D.); (U.S.-B.); (V.R.)
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania;
| | - Vilma Ratautaite
- State Research Institute Center for Physical and Technological Sciences, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (M.D.); (U.S.-B.); (V.R.)
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania;
| | - Arunas Ramanavicius
- State Research Institute Center for Physical and Technological Sciences, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (M.D.); (U.S.-B.); (V.R.)
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania;
| |
Collapse
|