1
|
Yang J, Mund NK, Yang L, Fang H. Engineering glycolytic pathway for improved Lacto-N-neotetraose production in pichia pastoris. Enzyme Microb Technol 2024; 184:110576. [PMID: 39742835 DOI: 10.1016/j.enzmictec.2024.110576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/25/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
Lacto-N-neotetraose (LNnT) is a primary solid component of human milk oligosaccharides (HMOs) with various promising health effects for infants. LNnT production by GRAS (generally recognized as safe) microorganisms has attracted considerable attention. However, few studies have emphasized Pichia Pastoris as a cell factory for LNnT's production. Here, we have reported the first-ever synthesis of LNnT employing P. pastoris as the host. Initially, LNnT biosynthetic pathway genes β-1,3-N-acetylglucosaminyltransferase (lgtA) and β-1,4-galactostltransferase (lgtB) along with lactose permease (lac12) and galactose epimerase (gal10) were integrated into the genome of P. pastoris, but only 0.139 g/L LNnT was obtained. Second, the titer of LNnT was improved to 0.162 g/L via up-regulating genes to strengthen the supply of precursors, UDP-GlcNAc (Uridine diphosphate N-acetylglucosamine) and UDP-Gal (Uridine diphosphate galactose), for LNnT biosynthesis. Third, by knocking out critical mediator pfk (6-phosphofructokinase) genes in glycolysis, the major glucose metabolic flux was rewired to the LNnT biosynthesis pathway. As a result, the strain accumulated 0.867 g/L LNnT in YPG medium supplemented with glucose and lactose. Finally, LNnT production was increased to 1.24 g/L in a 3 L bioreactor. The work aimed to explore the potential of P. pastoris as a for LNnT production.
Collapse
Affiliation(s)
- Jiao Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Nitesh Kumar Mund
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Lirong Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Hao Fang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
2
|
Tsuda M, Nakatani Y, Satoshi B, Nonaka K. Development of a protein production system using Ogataea minuta alcohol oxidase-deficient strain under reduced-methanol-consumption conditions. Biosci Biotechnol Biochem 2024; 89:102-109. [PMID: 39547939 DOI: 10.1093/bbb/zbae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
Methylotrophic yeast is a useful host for producing heterologous proteins using the unique and strong alcohol oxidase 1 (AOX1) promoter, which is induced by methanol and repressed by various carbon sources. However, methanol is preferably avoided in industrial-scale fermentation given its toxicity, flammability, and explosiveness. To develop a protein production system under reduced methanol supply conditions, we attempted to characterize the AOX1 promoter induction activity by comparing derepression conditions with methanol induction conditions. This comparison is important because decreasing methanol consumption would enhance the industrial value of Ogataea minuta for heterologous protein production. For such a comparison, an alcohol oxidase-deficient (Δaox) strain was generated, with methanol only being used for AOX1 promoter induction. We also developed a culture process in a jar fermentor using the O. minuta Δaox strain under mixed feed conditions to achieve heterologous protein production comparable to that of the wild-type strain under low-methanol conditions.
Collapse
Affiliation(s)
- Masashi Tsuda
- Bioprocess Technology Research Laboratories 1, Daiichi Sankyo Co., Ltd., Chiyoda, Gunma, Japan
| | - Yuki Nakatani
- Bioprocess Technology Research Laboratories 1, Daiichi Sankyo Co., Ltd., Chiyoda, Gunma, Japan
| | - Baba Satoshi
- Modality Research Laboratories II, Daiichi Sankyo Co., Ltd., Shinagawa, Tokyo, Japan
| | - Koichi Nonaka
- Technology Innovation Strategy and Intelligence, Daiichi Sankyo Co., Ltd., Chiyoda, Gunma, Japan
| |
Collapse
|
3
|
Bamba T, Munakata R, Ushiro Y, Kumokita R, Tanaka S, Hori Y, Kondo A, Yazaki K, Hasunuma T. De Novo Production of the Bioactive Phenylpropanoid Artepillin C Using Membrane-Bound Prenyltransferase in Komagataella phaffii. ACS Synth Biol 2024; 13:4040-4049. [PMID: 39530514 DOI: 10.1021/acssynbio.4c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Artepillin C is a diprenylated phenylpropanoid with various pharmacological benefits for human health. Its natural occurrence is limited to a few Asteraceae plants, such as Baccharis species, necessitating a stable supply through synthetic biology. In Saccharomyces cerevisiae, the utilization of aromatic substrates within the cell was limited, resulting in very low production of artepillin C. In this study, we used AcPT1, a p-coumaric acid (p-CA)-specific diprenyltransferase, in Komagataella phaffii to produce artepillin C. Detailed studies revealed that the critical bottleneck in K. phaffii was the supply of prenyl diphosphates, not phenylpropanoid flux. By enhancing the prenyl substrate pathway through overexpression of isopentenyl diphosphate isomerase and a truncated HMG-CoA reductase, we achieved a strong increase in artepillin C production. A major part of artepillin C was accumulated in yeast cells. One of the advantages of K. phaffii is its superior growth and ability to achieve high cell density cultivation compared to that of S. cerevisiae. Therefore, fed-batch cultivation with glycerol was performed. As a result, the dry cell weight (DCW) reached 61.0 g/L, and the intracellular amount of de novo produced artepillin C reached 187.3 μg/DCW. Analysis of intermediates revealed that the supply of p-CA constituted a bottleneck in artepillin C production in the engineered strain. By enhancing the p-CA supply, the intracellular accumulation of artepillin C reached 1200 μg/DCW even in batch cultivation. Moreover, the total intra- and extracellular amounts of artepillin C reached 12.5 mg/L, marking the highest de novo synthesis amount of artepillin C reported thus far, even under batch cultivation conditions.
Collapse
Affiliation(s)
- Takahiro Bamba
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Ryosuke Munakata
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | - Yuya Ushiro
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Ryota Kumokita
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Sayaka Tanaka
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yoshimi Hori
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kazufumi Yazaki
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
4
|
Park J, Park S, Evelina G, Kim S, Jin YS, Chi WJ, Kim IJ, Kim SR. Metabolic Engineering of Komagataella phaffii for Xylose Utilization from Cellulosic Biomass. Molecules 2024; 29:5695. [PMID: 39683854 DOI: 10.3390/molecules29235695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Cellulosic biomass hydrolysates are rich in glucose and xylose, but most microorganisms, including Komagataella phaffii, are unable to utilize xylose effectively. To address this limitation, we engineered a K. phaffii strain optimized for xylose metabolism through the xylose oxidoreductase pathway and promoter optimization. A promoter library with varying strengths was used to fine-tune the expression levels of the XYL1, XYL2, and XYL3 genes, resulting in a strain with a strong promoter for XYL2 and weaker promoters for XYL1 and XYL3. This engineered strain exhibited superior growth, achieving 14 g cells/L and a maximal growth rate of 0.4 g cells/L-h in kenaf hydrolysate, outperforming a native strain by 17%. This study is the first to report the introduction of the xylose oxidoreductase pathway into K. phaffii, demonstrating its potential as an industrial platform for producing yeast protein and other products from cellulosic biomass.
Collapse
Affiliation(s)
- Jongbeom Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sujeong Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Grace Evelina
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sunghee Kim
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Won-Jae Chi
- Species Diversity Research Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - In Jung Kim
- Department of Food Science & Technology, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52825, Republic of Korea
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
5
|
Zheng F, Zhang H, Wang J, Chen J, Zhuang H, Basit A. Expression and characterization of a novel halophilic GH10 β-1,4-xylanase from Trichoderma asperellum ND-1 and its synergism with a commercial α-L-arabinofuranosidase on arabinoxylan degradation. Int J Biol Macromol 2024; 282:136885. [PMID: 39454924 DOI: 10.1016/j.ijbiomac.2024.136885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/03/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Enzymatic hydrolysis of arabinoxylan is of cost-effective strategy to yield valuable macromolecules, e.g., xylooligosaccharides (XOS). A novel halophilic GH10 xylanase (TaXYL10) from Trichoderma asperellum ND-1 was over-expressed in Pichia pastoris and migrated as a single band (~36 kDa) in SDS-PAGE. TaXYL10 displayed >80 % activity in the presence of 4.28 M NaCl and 10 % ethanol. Moreover, TaXYL10 exhibited optimal activity at pH 6.0 and 55 °C, and remarkable pH stability (>80 % activity at pH 4.0-6.0). K+ and Al3+ could remarkably promote TaXYL10 activity, while the presence of 10 mM Fe2+, Zn2+, Cu2+ and Fe3+ decreased its activity. TaXYL10 possesses the highest catalytic activity towards beechwood xylan. TLC analysis revealed that it could rapidly degrade xylan and XOS with DP ≥ 3, yielding xylotriose and xylobiose. Site-directed mutagenesis indicated that Glu154 and Glu259 are crucial active residues for TaXYL10, while Asp295 and Glu69 played auxiliary roles in xylan hydrolysis. Additionally, TaXYL10 acted cooperatively with a commercial α-L-arabinofuranosidase (AnAra) towards arabinoxylan degradation (583.5 μg/mL), a greater synergy degree of 1.79 was obtained after optimizing enzymatic ratios. This work not only expands the diversity of Trichoderma GH10 xylanases, but also reveals the promising potential of TaXYL10 in various industrial applications.
Collapse
Affiliation(s)
- Fengzhen Zheng
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China.
| | - Hengbin Zhang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China
| | - Jiaqiang Wang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China
| | - Jun Chen
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, China
| | - Huan Zhuang
- Department of ENT and Head & Neck Surgery, Children's Hospital Zhejiang University School of Medicine, Hangzhou 310051, Zhejiang, China
| | - Abdul Basit
- Department of Microbiology, University of Jhang, Jhang 35200, Pakistan
| |
Collapse
|
6
|
Zhu Y, Li Y, Fang Y, Hu M, Zhao L, Sui M, Dong N. Boosting Expression of a Specifically Targeted Antimicrobial Peptide K in Pichia pastoris by Employing a 2A Self-Cleaving Peptide-Based Expression System. Antibiotics (Basel) 2024; 13:986. [PMID: 39452252 PMCID: PMC11505851 DOI: 10.3390/antibiotics13100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: The current epidemic of drug-resistance bacterial strains is one of the most urgent threats to human health. Antimicrobial peptides (AMPs) are known for their good activity against multidrug resistance bacteria. Specifically targeted AMPs (STAMPs) are a fraction of AMPs that target specific bacteria and maintain the balance of the healthy microbiota of a host. We reported a STAMP Peptide K (former name: peptide 13) for E. coli. The aim of this study was to effectively produce peptide K using methylotrophic yeast Pichia pastoris. Methods: Three inserts (sequence of peptide K (K), two copies of peptide K fused with 2A sequence (KTK), and two copies of peptide K fused with 2A and an extra α mating factor (KTAK)) were designed to investigate the effect of the number of repeats and the trafficking of peptide on the yield. Results: The yield from KTK was the highest-more than two-fold higher compared with K-implying the role of the 2A sequence in heterologous peptide expression apart from the co-translation. Then, the fermentation condition for KTK was optimized. The optimized yield of KTK was 6.67 mg/mL, suggesting the efficiency of the expression system. Selectivity, antibacterial activity, biocompatibility, and the stability of the fermentation product were equivalent to the chemically synthesized peptide. The actional mechanism of the fermentation product included membrane permeabilization and ROS induction. Conclusions: Together, our work provided a new perspective to augment the yield of the antimicrobial peptide in the microbial system, building a technological foundation for their large-scale production and expanding the market application of AMPs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150038, China; (Y.Z.); (Y.L.); (Y.F.); (M.H.); (L.Z.); (M.S.)
| |
Collapse
|
7
|
Bechtel A, Seitl I, Pross E, Hetzel F, Keutgen M, Fischer L. Recombinant production of Paenibacillus wynnii β-galactosidase with Komagataella phaffii. Microb Cell Fact 2024; 23:263. [PMID: 39367390 PMCID: PMC11452983 DOI: 10.1186/s12934-024-02544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND The β-galactosidase from Paenibacillus wynnii (β-gal-Pw) is a promising candidate for lactose hydrolysis in milk and dairy products, as it has a higher affinity for the substrate lactose (low KM value) compared to industrially used β-galactosidases and is not inhibited by the hydrolysis-generated product D-galactose. However, β-gal-Pw must firstly be produced cost-effectively for any potential industrial application. Accordingly, the yeast Komagataella phaffii was chosen to investigate its feasibility to recombinantly produce β-gal-Pw since it is approved for the regulated production of food enzymes. The aim of this study was to find the most suitable way to produce the β-gal-Pw in K. phaffii either extracellularly or intracellularly. RESULTS Firstly, 11 different signal peptides were tested for extracellular production of β-gal-Pw by K. phaffii under the control of the constitutive GAP promoter. None of the signal peptides resulted in a secretion of β-gal-Pw, indicating problems within the secretory pathway of this enzyme. Therefore, intracellular β-gal-Pw production was investigated using the GAP or methanol-inducible AOX1 promoter. A four-fold higher volumetric β-galactosidase activity of 7537 ± 66 µkatoNPGal/Lculture was achieved by the K. phaffii clone 27 using the AOX1 promoter in fed-batch bioreactor cultivations, compared to the clone 5 using the GAP promoter. However, a two-fold higher specific productivity of 3.14 ± 0.05 µkatoNPGal/gDCW/h was achieved when using the GAP promoter for β-gal-Pw production compared to the AOX1 promoter. After partial purification, a β-gal-Pw enzyme preparation with a total β-galactosidase activity of 3082 ± 98 µkatoNPGal was obtained from 1 L of recombinant K. phaffii culture (using AOX1 promoter). CONCLUSION This study showed that the β-gal-Pw was produced intracellularly by K. phaffii, but the secretion was not achieved with the signal peptides chosen. Nevertheless, a straightforward approach to improve the intracellular β-gal-Pw production with K. phaffii by using either the GAP or AOX1 promoter in bioreactor cultivations was demonstrated, offering insights into alternative production methods for this enzyme.
Collapse
Affiliation(s)
- Anna Bechtel
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Ines Seitl
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Eva Pross
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Frank Hetzel
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Mario Keutgen
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Lutz Fischer
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany.
| |
Collapse
|
8
|
Steimann T, Wegmann J, Espinosa MI, Blank LM, Büchs J, Mann M, Magnus JB. Avoiding overflow metabolite formation in Komagataella phaffii fermentations to enhance recombinant protein production. J Biol Eng 2024; 18:54. [PMID: 39363343 PMCID: PMC11448000 DOI: 10.1186/s13036-024-00453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Komagataella phaffii (K. phaffii), formerly known as Pichia pastoris, is a widely utilized yeast for recombinant protein production. However, due to the formation of overflow metabolites, carbon yields may be reduced and product recovery becomes challenging. This study investigates the impact of oxygen availability, different glucose concentrations and feeding strategies on overflow metabolite formation and recombinant protein production in K. phaffii. RESULTS High glucose concentrations in batch fermentation, as applied in literature, lead to substantial ethanol accumulation, adversely affecting biomass yield and product formation. Increasing dissolved oxygen setpoints does not significantly reduce ethanol formation, indicating that glucose surplus, rather than oxygen availability, drives overflow metabolism. Decreasing the initial glucose concentration to 5 g/L and adapting the feeding strategy of the fed-batch phase, effectively mitigates overflow metabolite formation, improving biomass yield by up to 9% and product concentration by 40% without increasing process time. CONCLUSIONS These findings underscore the importance of a suitable glucose-feeding strategy in K. phaffii fermentation processes and highlight the detrimental effects of overflow metabolites on productivity. By optimizing carbon source utilization, it is possible to enhance fermentation efficiency and recombinant protein production with K. phaffii.
Collapse
Affiliation(s)
- Thomas Steimann
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, Aachen, 52074, Germany
| | - Judith Wegmann
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, Aachen, 52074, Germany
| | - Monica I Espinosa
- iAMB - Institute of Applied Microbiology, RWTH Aachen University, Worringer Weg 1, Aachen, 52074, Germany
| | - Lars Mathias Blank
- iAMB - Institute of Applied Microbiology, RWTH Aachen University, Worringer Weg 1, Aachen, 52074, Germany
| | - Jochen Büchs
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, Aachen, 52074, Germany
| | - Marcel Mann
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, Aachen, 52074, Germany
| | - Jørgen Barsett Magnus
- AVT - Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, Aachen, 52074, Germany.
| |
Collapse
|
9
|
Wang H, Wen J, Ablimit N, Deng K, Wang W, Jiang W. Degradation of Natural Undaria pinnatifida into Unsaturated Guluronic Acid Oligosaccharides by a Single Alginate Lyase. Mar Drugs 2024; 22:453. [PMID: 39452861 PMCID: PMC11509462 DOI: 10.3390/md22100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Here, we report on a bifunctional alginate lyase (Vnalg7) expressed in Pichia pastoris, which can degrade natural Undaria pinnatifida into unsaturated guluronic acid di- and trisaccharide without pretreatment. The enzyme activity of Vnalg7 (3620.00 U/mL-culture) was 15.81-fold higher than that of the original alg (228.90 U/mL-culture), following engineering modification. The degradation rate reached 52.75%, and reducing sugar reached 30.30 mg/mL after combining Vnalg7 (200.00 U/mL-culture) and 14% (w/v) U. pinnatifida for 6 h. Analysis of the action mode indicated that Vnalg7 could degrade many substrates to produce a variety of unsaturated alginate oligosaccharides (AOSs), and the minimal substrate was tetrasaccharide. Site-directed mutagenesis showed that Glu238, Glu241, Glu312, Arg236, His307, Lys414, and Tyr418 are essential catalytic sites, while Glu334, Glu344, and Asp311 play auxiliary roles. Mechanism analysis revealed the enzymatic degradation pattern of Vnalg7, which mainly recognizes and attacks the third glycosidic linkage from the reducing end of oligosaccharide substrate. Our findings provide a novel alginate lyase tool and a sustainable and commercial production strategy for value-added biomolecules using seaweeds.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Jiang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, Beijing 100193, China; (H.W.); (J.W.); (N.A.); (K.D.); (W.W.)
| |
Collapse
|
10
|
Jaswal AS, Elangovan R, Mishra S. Optimization of dilution rate and mixed carbon feed for continuous production of recombinant plant sucrose:sucrose 1-fructosyltransferase in Komagataella phaffii. Bioprocess Biosyst Eng 2024; 47:1499-1514. [PMID: 38904715 DOI: 10.1007/s00449-024-03045-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
The trisaccharide 1-kestose, a major constituent of commercial fructooligosaccharide (FOS) formulations, shows a superior prebiotic effect compared to higher-chain FOS. The plant sucrose:sucrose 1-fructosyltransferases (1-SST) are extensively used for selective synthesis of lower chain FOS. In this study, enhanced recombinant (r) 1-SST production was achieved in Komagataella phaffii (formerly Pichia pastoris) containing three copies of a codon-optimized Festuca arundinacea 1-SST gene. R1-SST production reached 47 U/mL at the shake-flask level after a 96-h methanol induction phase. A chemostat-based strain characterization methodology was adopted to assess the influence of specific growth rate (µ) on cell-specific r1-SST productivity (Qp) and cell-specific oxygen uptake rate (Qo) under two different feeding strategies across dilution rates from 0.02 to 0.05 h-1. The methanol-sorbitol co-feeding strategy significantly reduced Qo by 46 ± 2.4% compared to methanol-only feeding without compromising r1-SST productivity. Based on the data, a dilution rate of 0.025 h-1 was applied for continuous cultivation of recombinant cells to achieve a sustained r1-SST productivity of 5000 ± 64.4 U/L/h for 15 days.
Collapse
Affiliation(s)
- Avijeet S Jaswal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi, 110016, India
| | - Ravikrishnan Elangovan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi, 110016, India
| | - Saroj Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi, 110016, India.
| |
Collapse
|
11
|
Unver Y, Ari B, Acar M, Yildiz Arslan S. A self-inducible heterologous protein expression system in Komagataella phaffii ( Pichia pastoris). 3 Biotech 2024; 14:193. [PMID: 39131177 PMCID: PMC11306816 DOI: 10.1007/s13205-024-04039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Komagataella phaffii (previously described as Pichia pastoris) is a yeast that produces high-level heterologous proteins with a wide range of applications in medicine and industry. The methanol-induced alcohol oxidase I promoter (PAOX1) is frequently used for protein expression in this yeast. However, limitations on the use of methanol have been observed in large-scale production, including its flammability, toxicity, and need for special handling. Here, we propose to develop a system using recombinant cells constitutively expressing pectinmethyl esterase for expression of two reporter proteins, GFP and azurin, under the control of PAOX1 using pectin in production medium. So, this system is coherent with yeast culture medium containing pectin and heterologous gene inserted downstream of PAOX1 can be successfully expressed without the addition of methanol. Therefore, this novel Self-inducibLe heterologous protein EXpression (SILEX) system, which does not require the addition of methanol, can be used for the production of any protein. It can also be adapted for large-scale production. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04039-x.
Collapse
Affiliation(s)
- Yagmur Unver
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Betul Ari
- Department of Molecular Biology and Genetics, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey
| | - Melek Acar
- Department of Molecular Biology and Genetics, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey
| | - Seyda Yildiz Arslan
- Department of Molecular Biology and Genetics, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey
| |
Collapse
|
12
|
Zhuang H, Zheng F, Zhang H, Wang J, Chen J. Efficacious bioconversion of alginate/cellulose to value-added oligosaccharides by alginate-degrading GH5 endoglucanase from Trichoderma asperellum. Int J Biol Macromol 2024; 270:131968. [PMID: 38704059 DOI: 10.1016/j.ijbiomac.2024.131968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Enzymatic degradation of lignocellulosic biomass provides an eco-friendly approach to produce value-added macromolecules, e.g., bioactive polysaccharides. A novel acidophilic GH5 β-1,4-endoglucanase (termed TaCel5) from Trichoderma asperellum ND-1 was efficiently expressed in Komagataella phaffii (∼1.5-fold increase, 38.42 U/mL). TaCel5 displayed both endoglucanase (486.3 U/mg) and alginate lyase (359.5 U/mg) enzyme activities. It had optimal pH 3.0 and strong pH stability (exceed 86 % activity retained over pH range 3.0-5.0). 80 % activity (both endoglucanase and alginate lyase) was retained in the presence of 15 % ethanol or 3.42 M NaCl. Analysis of action mode revealed that hydrolytic activity of TaCel5 required at least three glucose (cellotriose) residues, yielding mainly cellobiose. Glu241 and Glu352 are essential catalytic residues, while Asp106, Asp277 and Asp317 play auxiliary roles in cellulose degradation. TaCel5 displayed high hydrolysis efficiency for glucan and alginate substrates. ESI-MS analysis indicated that the enzymatic hydrolysates of alginate mainly contained disaccharides and heptasaccharides. This is the first detailed report of a bifunctional GH5 endoglucanase/alginate lyase enzyme from T. asperellum. Thus TaCel5 has strong potential in food and feed industries as a catalyst for bioconversion of cellulose- and alginate-containing waste materials into value-added products oligosaccharides, which was of great benefit both for the economy and environment.
Collapse
Affiliation(s)
- Huan Zhuang
- Department of ENT and Head & Neck Surgery, Children's Hospital Zhejiang University School of Medicine, Hangzhou 310051, Zhejiang, China
| | - Fengzhen Zheng
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China.
| | - Hengbin Zhang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China
| | - Jiaqiang Wang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China
| | - Jun Chen
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, China
| |
Collapse
|
13
|
Coetzee G, García-Aparicio MDP, Bosman CE, van Rensburg E, Görgens JF. Evaluation of different glycerol fed-batch strategies in a lab-scale bioreactor for the improved production of a novel engineered β-fructofuranosidase enzyme in Pichia pastoris. World J Microbiol Biotechnol 2024; 40:223. [PMID: 38819502 PMCID: PMC11143039 DOI: 10.1007/s11274-024-04027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/19/2024] [Indexed: 06/01/2024]
Abstract
The β-fructofuranosidase enzyme from Aspergillus niger has been extensively used to commercially produce fructooligosaccharides from sucrose. In this study, the native and an engineered version of the β-fructofuranosidase enzyme were expressed in Pichia pastoris under control of the glyceraldehyde-3-phosphate dehydrogenase promoter, and production was evaluated in bioreactors using either dissolved oxygen (DO-stat) or constant feed fed-batch feeding strategies. The DO-stat cultivations produced lower biomass concentrations but this resulted in higher volumetric activity for both strains. The native enzyme produced the highest volumetric enzyme activity for both feeding strategies (20.8% and 13.5% higher than that achieved by the engineered enzyme, for DO-stat and constant feed, respectively). However, the constant feed cultivations produced higher biomass concentrations and higher volumetric productivity for both the native as well as engineered enzymes due to shorter process time requirements (59 h for constant feed and 155 h for DO-stat feed). Despite the DO-stat feeding strategy achieving a higher maximum enzyme activity, the constant feed strategy would be preferred for production of the β-fructofuranosidase enzyme using glycerol due to the many industrial advantages related to its enhanced volumetric enzyme productivity.
Collapse
Affiliation(s)
- Gerhardt Coetzee
- Department of Chemical Engineering, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - María Del Prado García-Aparicio
- Department of Chemical Engineering, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
- The Centre for Energy, Environmental and Technological Research, Department of Energy, Avda Complutense 40, Madrid, 28040, Spain
| | - Catharine Elizabeth Bosman
- Department of Chemical Engineering, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa.
| | - Eugéne van Rensburg
- Department of Chemical Engineering, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - Johann Ferdinand Görgens
- Department of Chemical Engineering, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| |
Collapse
|
14
|
Steimann T, Heite Z, Germer A, Blank LM, Büchs J, Mann M, Magnus JB. Understanding exopolysaccharide byproduct formation in Komagataella phaffii fermentation processes for recombinant protein production. Microb Cell Fact 2024; 23:131. [PMID: 38711081 DOI: 10.1186/s12934-024-02403-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Komagataella phaffii (Pichia pastoris) has emerged as a common and robust biotechnological platform organism, to produce recombinant proteins and other bioproducts of commercial interest. Key advantage of K. phaffii is the secretion of recombinant proteins, coupled with a low host protein secretion. This facilitates downstream processing, resulting in high purity of the target protein. However, a significant but often overlooked aspect is the presence of an unknown polysaccharide impurity in the supernatant. Surprisingly, this impurity has received limited attention in the literature, and its presence and quantification are rarely addressed. RESULTS This study aims to quantify this exopolysaccharide in high cell density recombinant protein production processes and identify its origin. In stirred tank fed-batch fermentations with a maximal cell dry weight of 155 g/L, the polysaccharide concentration in the supernatant can reach up to 8.7 g/L. This level is similar to the achievable target protein concentration. Importantly, the results demonstrate that exopolysaccharide production is independent of the substrate and the protein production process itself. Instead, it is directly correlated with biomass formation and proportional to cell dry weight. Cell lysis can confidently be ruled out as the source of this exopolysaccharide in the culture medium. Furthermore, the polysaccharide secretion can be linked to a mutation in the HOC1 gene, featured by all derivatives of strain NRRL Y-11430, leading to a characteristic thinner cell wall. CONCLUSIONS This research sheds light on a previously disregarded aspect of K. phaffii fermentations, emphasizing the importance of monitoring and addressing the exopolysaccharide impurity in biotechnological applications, independent of the recombinant protein produced.
Collapse
Affiliation(s)
- Thomas Steimann
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Zoe Heite
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Andrea Germer
- iAMB-Institute of Applied Microbiology, RWTH Aachen University, Worringer Weg 1, 52074, Aachen, Germany
| | - Lars Mathias Blank
- iAMB-Institute of Applied Microbiology, RWTH Aachen University, Worringer Weg 1, 52074, Aachen, Germany
| | - Jochen Büchs
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Marcel Mann
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Jørgen Barsett Magnus
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany.
| |
Collapse
|
15
|
Weiss F, Requena-Moreno G, Pichler C, Valero F, Glieder A, Garcia-Ortega X. Scalable protein production by Komagataella phaffii enabled by ARS plasmids and carbon source-based selection. Microb Cell Fact 2024; 23:116. [PMID: 38643119 PMCID: PMC11031860 DOI: 10.1186/s12934-024-02368-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/18/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Most recombinant Komagataella phaffii (Pichia pastoris) strains for protein production are generated by genomic integration of expression cassettes. The clonal variability in gene copy numbers, integration loci and consequently product titers limit the aptitude for high throughput applications in drug discovery, enzyme engineering or most comparative analyses of genetic elements such as promoters or secretion signals. Circular episomal plasmids with an autonomously replicating sequence (ARS), an alternative which would alleviate some of these limitations, are inherently unstable in K. phaffii. Permanent selection pressure, mostly enabled by antibiotic resistance or auxotrophy markers, is crucial for plasmid maintenance and hardly scalable for production. The establishment and use of extrachromosomal ARS plasmids with key genes of the glycerol metabolism (glycerol kinase 1, GUT1, and triosephosphate isomerase 1, TPI1) as selection markers was investigated to obtain a system with high transformation rates that can be directly used for scalable production processes in lab scale bioreactors. RESULTS In micro-scale deep-well plate experiments, ARS plasmids employing the Ashbya gossypii TEF1 (transcription elongation factor 1) promoter to regulate transcription of the marker gene were found to deliver high transformation efficiencies and the best performances with the reporter protein (CalB, lipase B of Candida antarctica) for both, the GUT1- and TPI1-based, marker systems. The GUT1 marker-bearing strain surpassed the reference strain with integrated expression cassette by 46% upon re-evaluation in shake flask cultures regarding CalB production, while the TPI1 system was slightly less productive compared to the control. In 5 L bioreactor methanol-free fed-batch cultivations, the episomal production system employing the GUT1 marker led to 100% increased CalB activity in the culture supernatant compared to integration construct. CONCLUSIONS For the first time, a scalable and methanol-independent expression system for recombinant protein production for K. phaffii using episomal expression vectors was demonstrated. Expression of the GUT1 selection marker gene of the new ARS plasmids was refined by employing the TEF1 promoter of A. gossypii. Additionally, the antibiotic-free marker toolbox for K. phaffii was expanded by the TPI1 marker system, which proved to be similarly suited for the use in episomal plasmids as well as integrative expression constructs for the purpose of recombinant protein production.
Collapse
Affiliation(s)
- Florian Weiss
- Christian Doppler Laboratory for Innovative Pichia pastoris host and vector systems, Institute of Molecular Biotechnology, Graz University of Technology, Graz, A-8010, Austria
| | - Guillermo Requena-Moreno
- Christian Doppler Laboratory for Innovative Pichia Pastoris Host and Vector Systems, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193, Spain
| | - Carsten Pichler
- Christian Doppler Laboratory for Innovative Pichia pastoris host and vector systems, Institute of Molecular Biotechnology, Graz University of Technology, Graz, A-8010, Austria
| | - Francisco Valero
- Christian Doppler Laboratory for Innovative Pichia Pastoris Host and Vector Systems, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193, Spain
| | - Anton Glieder
- Christian Doppler Laboratory for Innovative Pichia pastoris host and vector systems, Institute of Molecular Biotechnology, Graz University of Technology, Graz, A-8010, Austria.
| | - Xavier Garcia-Ortega
- Christian Doppler Laboratory for Innovative Pichia Pastoris Host and Vector Systems, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193, Spain
| |
Collapse
|
16
|
Kumar V, Barwal A, Sharma N, Mir DS, Kumar P, Kumar V. Therapeutic proteins: developments, progress, challenges, and future perspectives. 3 Biotech 2024; 14:112. [PMID: 38510462 PMCID: PMC10948735 DOI: 10.1007/s13205-024-03958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Proteins are considered magic molecules due to their enormous applications in the health sector. Over the past few decades, therapeutic proteins have emerged as a promising treatment option for various diseases, particularly cancer, cardiovascular disease, diabetes, and others. The formulation of protein-based therapies is a major area of research, however, a few factors still hinder the large-scale production of these therapeutic products, such as stability, heterogenicity, immunogenicity, high cost of production, etc. This review provides comprehensive information on various sources and production of therapeutic proteins. The review also summarizes the challenges currently faced by scientists while developing protein-based therapeutics, along with possible solutions. It can be concluded that these proteins can be used in combination with small molecular drugs to give synergistic benefits in the future.
Collapse
Affiliation(s)
- Vimal Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Arti Barwal
- Department of Microbial Biotechnology, Panjab University, South Campus, Sector-25, Chandigarh, 160014 India
| | - Nitin Sharma
- Department of Biotechnology, Chandigarh Group of Colleges, Mohali, Punjab 140307 India
| | - Danish Shafi Mir
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Pradeep Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| | - Vikas Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| |
Collapse
|
17
|
Rebnegger C, Coltman BL, Kowarz V, Peña DA, Mentler A, Troyer C, Hann S, Schöny H, Koellensperger G, Mattanovich D, Gasser B. Protein production dynamics and physiological adaptation of recombinant Komagataella phaffii at near-zero growth rates. Microb Cell Fact 2024; 23:43. [PMID: 38331812 PMCID: PMC10851509 DOI: 10.1186/s12934-024-02314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Specific productivity (qP) in yeast correlates with growth, typically peaking at intermediate or maximum specific growth rates (μ). Understanding the factors limiting productivity at extremely low μ might reveal decoupling strategies, but knowledge of production dynamics and physiology in such conditions is scarce. Retentostats, a type of continuous cultivation, enable the well-controlled transition to near-zero µ through the combined retention of biomass and limited substrate supply. Recombinant Komagataella phaffii (syn Pichia pastoris) secreting a bivalent single domain antibody (VHH) was cultivated in aerobic, glucose-limited retentostats to investigate recombinant protein production dynamics and broaden our understanding of relevant physiological adaptations at near-zero growth conditions. RESULTS By the end of the retentostat cultivation, doubling times of approx. two months were reached, corresponding to µ = 0.00047 h-1. Despite these extremely slow growth rates, the proportion of viable cells remained high, and de novo synthesis and secretion of the VHH were observed. The average qP at the end of the retentostat was estimated at 0.019 mg g-1 h-1. Transcriptomics indicated that genes involved in protein biosynthesis were only moderately downregulated towards zero growth, while secretory pathway genes were mostly regulated in a manner seemingly detrimental to protein secretion. Adaptation to near-zero growth conditions of recombinant K. phaffii resulted in significant changes in the total protein, RNA, DNA and lipid content, and lipidomics revealed a complex adaptation pattern regarding the lipid class composition. The higher abundance of storage lipids as well as storage carbohydrates indicates that the cells are preparing for long-term survival. CONCLUSIONS In conclusion, retentostat cultivation proved to be a valuable tool to identify potential engineering targets to decouple growth and protein production and gain important insights into the physiological adaptation of K. phaffii to near-zero growth conditions.
Collapse
Affiliation(s)
- Corinna Rebnegger
- CD-Laboratory for Growth-Decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190, Vienna, Austria
| | - Benjamin L Coltman
- CD-Laboratory for Growth-Decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Viktoria Kowarz
- CD-Laboratory for Growth-Decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - David A Peña
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Axel Mentler
- Department of Forest- and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Peter-Jordan-Straße 82, 1190, Vienna, Austria
| | - Christina Troyer
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Stephan Hann
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Harald Schöny
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, 1090, Vienna, Austria
| | - Gunda Koellensperger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, 1090, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Diethard Mattanovich
- CD-Laboratory for Growth-Decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190, Vienna, Austria
| | - Brigitte Gasser
- CD-Laboratory for Growth-Decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria.
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190, Vienna, Austria.
| |
Collapse
|
18
|
Kumokita R, Bamba T, Yasueda H, Tsukida A, Nakagawa K, Kitagawa T, Yoshioka T, Matsuyama H, Yamamoto Y, Maruyama S, Hayashi T, Kondo A, Hasunuma T. High-level phenol bioproduction by engineered Pichia pastoris in glycerol fed-batch fermentation using an efficient pertraction system. BIORESOURCE TECHNOLOGY 2024; 393:130144. [PMID: 38042432 DOI: 10.1016/j.biortech.2023.130144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
This study aimed to establish a high-level phenol bioproduction system from glycerol through metabolic engineering of the yeast Pichia pastoris (Komagataella phaffii). Introducing tyrosine phenol-lyase to P. pastoris led to a production of 59 mg/L of phenol in flask culture. By employing a strain of P. pastoris that overproduces tyrosine-a precursor to phenol-we achieved a phenol production of 1052 mg/L in glycerol fed-batch fermentation. However, phenol concentrations exceeding 1000 mg/L inhibited P. pastoris growth. A phenol pertraction system utilizing a hollow fiber membrane contactor and tributyrin as the organic solvent was developed to reduce phenol concentration in the culture medium. Integrating this system with glycerol fed-batch fermentation resulted in a 214 % increase in phenol titer (3304 mg/L) compared to glycerol fed-batch fermentation alone. These approaches offer a significant framework for the microbial production of chemicals and materials that are highly toxic to microorganisms.
Collapse
Affiliation(s)
- Ryota Kumokita
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Takahiro Bamba
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Hisashi Yasueda
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Research and Development Center for Precision Medicine, University of Tsukuba, 1-2 Kasuga, Tsukuba, 305-8550, Japan
| | - Ayato Tsukida
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Keizo Nakagawa
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Tooru Kitagawa
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tomohisa Yoshioka
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Yasuhito Yamamoto
- Biotechnology Laboratory, Science and Innovation Center, Mitsubishi Chemical Corporation, 1000 Kamoshida, Aoba, Yokohama, 227-8502, Japan
| | - Satoshi Maruyama
- Biotechnology Laboratory, Science and Innovation Center, Mitsubishi Chemical Corporation, 1000 Kamoshida, Aoba, Yokohama, 227-8502, Japan
| | - Takahiro Hayashi
- Biotechnology Laboratory, Science and Innovation Center, Mitsubishi Chemical Corporation, 1000 Kamoshida, Aoba, Yokohama, 227-8502, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045, Japan.
| |
Collapse
|
19
|
Zheng F, Chen J, Wang J, Zhuang H. Transformation of corncob into high-value xylooligosaccharides using glycoside hydrolase families 10 and 11 xylanases from Trichoderma asperellum ND-1. BIORESOURCE TECHNOLOGY 2024; 394:130249. [PMID: 38154735 DOI: 10.1016/j.biortech.2023.130249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Effective production of xylooligosaccharides (XOS) with lower proportion of xylose entails unique and robust xylanases. In this study, two novel xylanases from Trichoderma asperellum ND-1 belonging to glycoside hydrolase families 10 (XynTR10) and 11 (XynTR11) were over-expressed in Komagataella phaffii X-33 and characterized to be robust enzymes with high halotolerance and ethanol tolerant. Both enzymes displayed strict substrate specificity towards beechwood xylan and wheat arabinoxylan. (Glu153/Glu258) and (Glu161/Glu252) were key catalytic sites for XynTR10 and XynTR11. Notably, XynTR11 could rapidly degrade xylan/XOS into xylobiose without xylose via transglycosylation. Direct degradation of corncob using XynTR10 and XynTR111 displayed that while XynTR10 yielded 77% xylobiose and 25% xylose, XynTR11 yielded much less xylose (11%) and comparable amounts of xylobiose (63%). XynTR10 or XynTR111 has great potential as a catalyst for bioconversion of xylan-containing agricultural waste into high-value products (biofuel or XOS), which is of significant benefit for the economy and environment.
Collapse
Affiliation(s)
- Fengzhen Zheng
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China.
| | - Jun Chen
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, China
| | - Jiaqiang Wang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China
| | - Huan Zhuang
- Department of ENT and Head & Neck Surgery, The Children's Hospital Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310051, China
| |
Collapse
|
20
|
Mahboudi S, Abbas Shojaosadati S, Maghsoudi A, Mahmoudi B. Development of a continuous fermentation process for the production of recombinant uricase enzyme by Pichia pastoris. Biotechnol Appl Biochem 2024; 71:123-131. [PMID: 37846178 DOI: 10.1002/bab.2526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023]
Abstract
Recent studies in the biopharmaceutical industry have shown an increase in the productivity and production efficiency of recombinant proteins by continuous culture. In this research, a new upstream fermentation process was developed for the production of recombinant uricase in the methylotrophic yeast Pichia pastoris. Expression of recombinant protein in this system is under the control of the AOX1 promoter and therefore requires methanol as an inducing agent and carbon/energy source. Considering the biphasic growth characteristics of conventional fed-batch fermentation, physical separation of the growth and induction stages for better control of the continuous fermentation process resulted in higher dry-cell weight (DCW) and enhanced recombinant urate oxidase activity. The DCW and recombinant uricase activity enzyme for fed-batch fermentation were 79 g/L and 6.8 u/mL. During the continuous process, in the growth fermenter at a constant dilution rate of 0.025 h-1 , DCW increased to 88.39 g/L. In the induction fermenter, at methanol feeding rates of 30, 60, and 80 mL/h, a recombinant uricase activity was 4.13, 7.2, and 0 u/mL, respectively. The optimum methanol feeding regime in continuous fermentation resulted in a 4.5-fold improvement in productivity compared with fed-batch fermentation from 0.04 u/mL/h (0.0017 mg/mL/h) to 0.18 u/mL/h (0.0078 mg/mL/h).
Collapse
Affiliation(s)
- Sanaz Mahboudi
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Seyed Abbas Shojaosadati
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Amir Maghsoudi
- Department of Research and Development, PersisGen Par Company, Tehran, Iran
| | - Behrouz Mahmoudi
- Department of Medical Biotechnology, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
21
|
Sales‐Vallverdú A, Gasset A, Requena‐Moreno G, Valero F, Montesinos‐Seguí JL, Garcia‐Ortega X. Synergic kinetic and physiological control to improve the efficiency of Komagataella phaffii recombinant protein production bioprocesses. Microb Biotechnol 2024; 17:e14411. [PMID: 38376073 PMCID: PMC10877992 DOI: 10.1111/1751-7915.14411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/28/2023] [Accepted: 01/07/2024] [Indexed: 02/21/2024] Open
Abstract
The yeast Komagataella phaffii (Pichia pastoris) is currently considered a versatile and highly efficient host for recombinant protein production (RPP). Interestingly, the regulated application of specific stress factors as part of bioprocess engineering strategies has proven potential for increasing the production of recombinant products. This study aims to evaluate the impact of controlled oxygen-limiting conditions on the performance of K. phaffii bioprocesses for RPP in combination with the specific growth rate (μ) in fed-batch cultivations. In this work, Candida rugosa lipase 1 (Crl1) production, regulated by the constitutive GAP promoter, growing at different nominal μ (0.030, 0.065, 0.100 and 0.120 h-1 ) under both normoxic and hypoxic conditions in carbon-limiting fed-batch cultures is analysed. Hypoxic fermentations were controlled at a target respiratory quotient (RQ) of 1.4, with excellent performance, using an innovative automated control based on the stirring rate as the manipulated variable developed during this study. The results conclude that oxygen limitation positively affects bioprocess efficiency under all growing conditions compared. The shift from respiratory to respiro-fermentative metabolism increases bioprocess productivity by up to twofold for the specific growth rates evaluated. Moreover, the specific product generation rate (qp ) increases linearly with μ, regardless of oxygen availability. Furthermore, this hypoxic boosting effect was also observed in the production of Candida antarctica lipase B (CalB) and pro-Rhizopus oryzae lipase (proRol), thus proving the synergic effect of kinetic and physiological stress control. Finally, the Crl1 production scale-up was conducted successfully, confirming the strategy's scalability and the robustness of the results obtained at the bench-scale level.
Collapse
Affiliation(s)
- Albert Sales‐Vallverdú
- Department of Chemical, Biological and Environmental EngineeringSchool of Engineering, Universitat Autònoma de BarcelonaBellaterra (Barcelona)Spain
| | - Arnau Gasset
- Department of Chemical, Biological and Environmental EngineeringSchool of Engineering, Universitat Autònoma de BarcelonaBellaterra (Barcelona)Spain
| | - Guillermo Requena‐Moreno
- Department of Chemical, Biological and Environmental EngineeringSchool of Engineering, Universitat Autònoma de BarcelonaBellaterra (Barcelona)Spain
| | - Francisco Valero
- Department of Chemical, Biological and Environmental EngineeringSchool of Engineering, Universitat Autònoma de BarcelonaBellaterra (Barcelona)Spain
| | - José Luis Montesinos‐Seguí
- Department of Chemical, Biological and Environmental EngineeringSchool of Engineering, Universitat Autònoma de BarcelonaBellaterra (Barcelona)Spain
| | - Xavier Garcia‐Ortega
- Department of Chemical, Biological and Environmental EngineeringSchool of Engineering, Universitat Autònoma de BarcelonaBellaterra (Barcelona)Spain
| |
Collapse
|
22
|
Fischer A, Castagna V, Omer S, Marmorstein M, Wu J, Ceballos S, Skoog E, Lebrilla CB, Suarez C, Schnitzler A. Characterization of the exopolysaccharides produced by the industrial yeast Komagataella phaffii. J Ind Microbiol Biotechnol 2024; 51:kuae046. [PMID: 39577844 PMCID: PMC11630240 DOI: 10.1093/jimb/kuae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/21/2024] [Indexed: 11/24/2024]
Abstract
The yeast Komagataella phaffii has become a popular host strain among biotechnology start-up companies for producing recombinant proteins for food and adult nutrition applications. Komagataella phaffii is a host of choice due to its long history of safe use, open access to protocols and strains, a secretome free of host proteins and proteases, and contract manufacturing organizations with deep knowledge in bioprocess scale-up. However, a recent publication highlighted the abundance of an unknown polysaccharide that accumulates in the supernatant during fermentation. This poses a significant challenge in using K. phaffii as a production host. This polysaccharide leads to difficulties in achieving high purity products and requires specialized and costly downstream processing steps for removal. In this study, we describe the use of the common K. phaffii host strain YB-4290 for production of the bioactive milk protein lactoferrin. Upon purification of lactoferrin using membrane-based separation methods, significant amounts of carbohydrate were copurified with the protein. It was determined that the carbohydrate is mostly composed of mannose residues with minor amounts of glucose and glucosamine. The polysaccharide fraction has an average molecular weight of 50 kDa and consists mainly of mannan, galactomannan, and amylose. In addition, a large fraction of the carbohydrate has an unknown structure likely composed of oligosaccharides. Additional strains were tested in fermentation to further understand the source of the carbohydrates. The commonly used industrial hosts, BG10 and YB-4290, produce a basal level of exopolysaccharide; YB-4290 producing slightly more than BG10. Overexpression of recombinant protein stimulates exopolysaccharide production well above levels produced by the host strains alone. Overall, this study aims to provide a foundation for developing methods to improve the economics of recombinant protein production using K. phaffii as a production host. ONE-SENTENCE SUMMARY Overexpression of recombinant protein stimulates the hyperproduction of high-molecular-weight, mannose-based, exopolysaccharides by the industrial yeast Komagataella phaffii.
Collapse
Affiliation(s)
- Amanda Fischer
- TurtleTree, 1100 Main Street, Suite 300, Woodland, CA 95695, USA
| | - Vanessa Castagna
- TurtleTree, 1100 Main Street, Suite 300, Woodland, CA 95695, USA
| | - Shafraz Omer
- TurtleTree, 1100 Main Street, Suite 300, Woodland, CA 95695, USA
| | | | - Junqi Wu
- TurtleTree, 1100 Main Street, Suite 300, Woodland, CA 95695, USA
| | - Shannon Ceballos
- TurtleTree, 1100 Main Street, Suite 300, Woodland, CA 95695, USA
| | - Emma Skoog
- TurtleTree, 1100 Main Street, Suite 300, Woodland, CA 95695, USA
| | | | - Chris Suarez
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
23
|
Coltman BL, Rebnegger C, Gasser B, Zanghellini J. Characterising the metabolic rewiring of extremely slow growing Komagataella phaffii. Microb Biotechnol 2024; 17:e14386. [PMID: 38206275 PMCID: PMC10832545 DOI: 10.1111/1751-7915.14386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
Retentostat cultivations have enabled investigations into substrate-limited near-zero growth for a number of microbes. Quantitative physiology at these near-zero growth conditions has been widely discussed, yet characterisation of the fluxome is relatively under-reported. We investigated the rewiring of metabolism in the transition of a recombinant protein-producing strain of Komagataella phaffii to glucose-limited near-zero growth rates. We used cultivation data from a 200-fold range of growth rates and comprehensive biomass composition data to integrate growth rate dependent biomass equations, generated using a number of different approaches, into a K. phaffii genome-scale metabolic model. Here, we show that a non-growth-associated maintenance value of 0.65 mmol ATP g CDW - 1 h - 1 and a growth-associated maintenance value of 108 mmol ATP g CDW - 1 lead to accurate growth rate predictions. In line with its role as energy source, metabolism is rewired to increase the yield of ATP per glucose. This includes a reduction of flux through the pentose phosphate pathway, and a greater utilisation of glycolysis and the TCA cycle. Interestingly, we observed activity of an external, non-proton translocating NADH dehydrogenase in addition to the malate-aspartate shuttle. Regardless of the method used for the generation of biomass equations, a similar, yet different, growth rate dependent rewiring was predicted. As expected, these differences between the different methods were clearer at higher growth rates, where the biomass equation provides a much greater constraint than at slower growth rates. When placed on an increasingly limited glucose diet, the metabolism of K. phaffii adapts, enabling it to continue to drive critical processes sustaining its high viability at near-zero growth rates.
Collapse
Affiliation(s)
- Benjamin Luke Coltman
- CD‐Laboratory for Growth‐decoupled Protein Production in Yeast at Department of BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
- Department of Biotechnology, Institute of Microbiology and Microbial BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
| | - Corinna Rebnegger
- CD‐Laboratory for Growth‐decoupled Protein Production in Yeast at Department of BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
- Department of Biotechnology, Institute of Microbiology and Microbial BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
- Austrian Centre of Industrial BiotechnologyViennaAustria
| | - Brigitte Gasser
- CD‐Laboratory for Growth‐decoupled Protein Production in Yeast at Department of BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
- Department of Biotechnology, Institute of Microbiology and Microbial BiotechnologyUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
- Austrian Centre of Industrial BiotechnologyViennaAustria
| | - Jürgen Zanghellini
- Austrian Centre of Industrial BiotechnologyViennaAustria
- Department of Analytical ChemistryUniversity of ViennaViennaAustria
| |
Collapse
|
24
|
Zheng F, Basit A, Wang J, Zhuang H, Chen J, Zhang J. Characterization of a novel acidophilic, ethanol tolerant and halophilic GH12 β-1,4-endoglucanase from Trichoderma asperellum ND-1 and its synergistic hydrolysis of lignocellulosic biomass. Int J Biol Macromol 2024; 254:127650. [PMID: 38287580 DOI: 10.1016/j.ijbiomac.2023.127650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 01/31/2024]
Abstract
A novel acidophilic GH5 β-1,4-endoglucanase (TaCel12) from Trichoderma asperellum ND-1 was efficiently expressed in Pichia pastoris (a 1.5-fold increase). Deglycosylated TaCel12 migrated as a single band (26.5 kDa) in SDS-PAGE. TaCel12 was acidophilic with a pH optimum of 4.0 and displayed great pH stability (>80 % activity over pH 3.0-5.0). TaCel12 exhibited considerable activity towards sodium carboxymethyl cellulose and sodium alginate with Vmax values of 197.97 μmol/min/mg and 119.06 μmol/min/mg, respectively. Moreover, TaCel12 maintained >80 % activity in the presence of 20 % ethanol and 4.28 M NaCl. Additionally, Mn2+, Pb2+ and Cu2+ negatively affected TaCel12 activity, while the presence of 5 mM Co2+ significantly increased the enzyme activity. Analysis of action mode revealed that TaCel12 required at least four glucose (cellotetraose) residues for hydrolysis to yield cellobiose and cellotriose. Site-directed mutagenesis results suggested that Glu133 and Glu217 of TaCel12 are crucial catalytic residues, with Asp116 displaying an auxiliary function. Production of soluble sugars from lignocellulose is a crucial step in bioethanol development, and it is noteworthy that TaCel12 could synergistically yield fermentable sugars from corn stover and bagasse, respectively. Thus TaCel12 with excellent properties will be considered a potential biocatalyst for applications in various industries, especially for lignocellulosic biomass conversion.
Collapse
Affiliation(s)
- Fengzhen Zheng
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China.
| | - Abdul Basit
- Department of Microbiology, University of Jhang, Jhang 35200, Pakistan
| | - Jiaqiang Wang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China
| | - Huan Zhuang
- Department of ENT and Head & Neck Surgery, The Children's Hospital Zhejiang University School of Medicine, Zhejiang, Hangzhou 310051, China
| | - Jun Chen
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, China
| | - Jianfen Zhang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China
| |
Collapse
|
25
|
Eskandari A, Nezhad NG, Leow TC, Rahman MBA, Oslan SN. Current achievements, strategies, obstacles, and overcoming the challenges of the protein engineering in Pichia pastoris expression system. World J Microbiol Biotechnol 2023; 40:39. [PMID: 38062216 DOI: 10.1007/s11274-023-03851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
Yeasts serve as exceptional hosts in the manufacturing of functional protein engineering and possess industrial or medical utilities. Considerable focus has been directed towards yeast owing to its inherent benefits and recent advancements in this particular cellular host. The Pichia pastoris expression system is widely recognized as a prominent and widely accepted instrument in molecular biology for the purpose of generating recombinant proteins. The advantages of utilizing the P. pastoris system for protein production encompass the proper folding process occurring within the endoplasmic reticulum (ER), as well as the subsequent secretion mediated by Kex2 as a signal peptidase, ultimately leading to the release of recombinant proteins into the extracellular environment of the cell. In addition, within the P. pastoris expression system, the ease of purifying recombinant protein arises from its restricted synthesis of endogenous secretory proteins. Despite its achievements, scientists often encounter persistent challenges when attempting to utilize yeast for the production of recombinant proteins. This review is dedicated to discussing the current achievements in the usage of P. pastoris as an expression host. Furthermore, it sheds light on the strategies employed in the expression system and the optimization and development of the fermentative process of this yeast. Finally, the impediments (such as identifying high expression strains, improving secretion efficiency, and decreasing hyperglycosylation) and successful resolution of certain difficulties are put forth and deliberated upon in order to assist and promote the expression of complex proteins in this prevalent recombinant host.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
26
|
Joseph JA, Akkermans S, Van Impe JF. Macroscopic modeling of the growth and substrate consumption of wild type and genetically modified Pichia pastoris. Biotechnol J 2023; 18:e2300164. [PMID: 37688402 DOI: 10.1002/biot.202300164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
Pichia pastoris is a popular yeast platform to generate several industrially relevant products which have applications in a wide range of sectors. The complexities in the processes due to the addition of a foreign gene are not widely explored. Since these complexities can be dependent on the strain characteristics, promoter, and type of protein produced, it is vital to investigate the growth and substrate consumption patterns of the host to facilitate customized process optimization. In this study, the growth rates of P. pastoris GS115 wild type (WT) and genetically modified (GM) strains grown on glycerol and methanol in batch cultivation mode were estimated and the model providing the best representation of the true growth kinetics based on substrate consumption was identified. It was observed that the growth of P. pastoris exhibits Haldane kinetics on glycerol rather than the most commonly used Monod kinetics due to the inability of the latter to describe growth inhibition at high concentrations of glycerol. Whereas, the cardinal parameter model, a newly proposed model for this application, was found to be the best fitting to describe the growth of P. pastoris on methanol due to its ability to describe methanol toxicity. Interestingly, the findings from this study concluded that in both substrates, the genetically engineered strain exhibited a higher growth rate compared to the WT strain. Such an observation has not been established yet in other published works, indicating an opportunity to further optimize the carbon source feeding strategies when the host is grown in fed-batch mode.
Collapse
Affiliation(s)
- Jewel Ann Joseph
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Simen Akkermans
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Jan F Van Impe
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| |
Collapse
|
27
|
Wen J, Miao T, Basit A, Li Q, Tan S, Chen S, Ablimit N, Wang H, Wang Y, Zheng F, Jiang W. Highly efficient synergistic activity of an α-L-arabinofuranosidase for degradation of arabinoxylan in barley/wheat. Front Microbiol 2023; 14:1230738. [PMID: 38029111 PMCID: PMC10655120 DOI: 10.3389/fmicb.2023.1230738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/13/2023] [Indexed: 12/01/2023] Open
Abstract
Here, an α-L-arabinofuranosidase (termed TtAbf62) from Thermothelomyces thermophilus is described, which efficiently removes arabinofuranosyl side chains and facilitates arabinoxylan digestion. The specific activity of TtAbf62 (179.07 U/mg) toward wheat arabinoxylan was the highest among all characterized glycoside hydrolase family 62 enzymes. TtAbf62 in combination with endoxylanase and β-xylosidase strongly promoted hydrolysis of barley and wheat. The release of reducing sugars was significantly higher for the three-enzyme combination relative to the sum of single-enzyme treatments: 85.71% for barley hydrolysis and 33.33% for wheat hydrolysis. HPLC analysis showed that TtAbf62 acted selectively on monosubstituted (C-2 or C-3) xylopyranosyl residues rather than double-substituted residues. Site-directed mutagenesis and interactional analyses of enzyme-substrate binding structures revealed the catalytic sites of TtAbf62 formed different polysaccharide-catalytic binding modes with arabinoxylo-oligosaccharides. Our findings demonstrate a "multienzyme cocktail" formed by TtAbf62 with other hydrolases strongly improves the efficiency of hemicellulose conversion and increases biomass hydrolysis through synergistic interaction.
Collapse
Affiliation(s)
- Jiaqi Wen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ting Miao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Abdul Basit
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Microbiology, University of Jhang, Jhang, Punjab, Pakistan
| | - Qunhong Li
- Little Tiger Biotechnology Company Limited, Hangzhou, Zhejiang, China
| | - Shenglin Tan
- Little Tiger Biotechnology Company Limited, Hangzhou, Zhejiang, China
| | - Shuqing Chen
- Little Tiger Biotechnology Company Limited, Hangzhou, Zhejiang, China
| | - Nuraliya Ablimit
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hui Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yan Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fengzhen Zheng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Wei Jiang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
28
|
Lisov A, Belova O, Lisova Z, Nagel A, Shadrin A, Andreeva-Kovalevskaya Z, Nagornykh M, Zakharova M, Leontievsky A. Two β-glucanases from bacterium Cellulomonas flavigena: expression in Pichia pastoris, properties, biotechnological potential. Prep Biochem Biotechnol 2023; 53:1313-1321. [PMID: 37093814 DOI: 10.1080/10826068.2023.2201934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
In the genome of Cellulomonas flavigena, two genes that potentially encode endoglucanases - Cfla_2912 and Cfla_2913 were identified. We cloned the genes and created Pichia pastoris-based recombinant producers of two proteins that were expressed from the AOX1 promoter. Each of the endoglucanase molecules contains a GH6 catalytic domain, CBM2 carbohydrate-binding module, and TAT signal peptide. The fermentation of the producers was carried out in a 10 L fermenter; Cfla_2912 and Cfla_2913 were purified using affinity chromatography. The yield comprised 10.3 mg/ml (430 U/ml) for Cfla_2913 and 9 mg/ml (370 U/ml) for Cfla_2912. Cfla_2912 and Cfla_2913 were found to have a high activity against barley β-glucan and lichenan, a weak activity against carboxymethyl cellulose (CMC), phosphoric-acid treated cellulose, and no activity against laminarin, xylan, soluble starch, microcrystalline cellulose, cellobiose, and cellotriose. Thus, the proteins exhibited β-glucanase activity. Both proteins had a neutral pH optimum of about 7.0 and were more stable at neutral and slightly alkaline pH ranging from 7.0 to 9.0. Cfla_2912 and Cfla_2913 showed a moderate thermal stability. The products of barley β-glucan hydrolysis by Cfla_2912 and Cfla_2913 were trisaccharide, tetrasaccharide, and cellobiose. Cfla_2912 and Cfla_2913 efficiently hydrolyzed cereal polysaccharides, which indicate that they may have biotechnological potential.
Collapse
Affiliation(s)
- Alexander Lisov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow, Russia
| | - Oksana Belova
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow, Russia
| | - Zoya Lisova
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Nagel
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Shadrin
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow, Russia
| | - Zhanna Andreeva-Kovalevskaya
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow, Russia
| | - Maxim Nagornykh
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow, Russia
| | - Marina Zakharova
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Leontievsky
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
29
|
Wang Y, Wang B, Gao Y, Nakanishi H, Gao XD, Li Z. Highly efficient expression and secretion of human lysozyme using multiple strategies in Pichia pastoris. Biotechnol J 2023; 18:e2300259. [PMID: 37470505 DOI: 10.1002/biot.202300259] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Human lysozyme (hLYZ), an emerging antibacterial agent, has extensive application in the food and pharmaceutical industries. However, the source of hLYZ is particularly limited. RESULTS To achieve highly efficient expression and secretion of hLYZ in Pichia pastoris, multiple strategies including G418 sulfate screening, signal sequence optimization, vacuolar sorting receptor VPS10 disruption, and chaperones/transcription factors co-expression were applied. The maximal enzyme activity of extracellular hLYZ in a shaking flask was 81,600 ± 5230 U mL-1 , which was about five times of original strain. To further reduce the cost, the optimal medium RDMY was developed and the highest hLYZ activity reached 352,000 ± 16,696.5 U mL-1 in a 5 L fermenter. CONCLUSION This research provides a very useful and cost-effective approach for the hLYZ production in P. pastoris and can also be applied to the production of other recombinant proteins.
Collapse
Affiliation(s)
- Yasen Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Buqing Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Yahui Gao
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
30
|
Schwob M, Kugler V, Wagner R. Cloning and Overexpressing Membrane Proteins Using Pichia pastoris (Komagataella phaffii). Curr Protoc 2023; 3:e936. [PMID: 37933574 DOI: 10.1002/cpz1.936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Understanding the structure and function of key proteins located within biological membranes is essential for fundamental knowledge and therapeutic applications. Robust cell systems allowing their actual overexpression are required, among which stands the methylotrophic yeast Pichia pastoris. This system proves highly efficient in producing many eukaryotic membrane proteins of various functions and structures at levels and quality compatible with their subsequent isolation and molecular investigation. This article describes a set of basic guidelines and directions to clone and select recombinant P. pastoris clones overexpressing eukaryotic membrane proteins. Illustrative results obtained for a panel of mammalian membrane proteins are presented, and hints are given on a series of experimental parameters that may substantially improve the amount and/or the functionality of the expressed proteins. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Designing and cloning a P. pastoris expression vector Basic Protocol 2: Integrative transformation of P. pastoris and selection of recombinant clones Basic Protocol 3: Culturing transformed P. pastoris for membrane protein expression Basic Protocol 4: Yeast cell lysis and membrane preparation Basic Protocol 5: Immunodetection of expressed membrane proteins: western blot Alternate Protocol 1: Immunodetection of expressed membrane proteins: dot blot Alternate Protocol 2: Immunodetection of expressed membrane proteins: yeastern blot Basic Protocol 6: Activity assay: ligand-binding analysis of an expressed GPCR.
Collapse
Affiliation(s)
- Magali Schwob
- IMPReSs Facility, Biotechnology and Cell Signaling, University of Strasbourg-CNRS, Illkirch, France
- Department of Structural Biology, NovAliX, Strasbourg, France
| | - Valérie Kugler
- IMPReSs Facility, Biotechnology and Cell Signaling, University of Strasbourg-CNRS, Illkirch, France
| | - Renaud Wagner
- IMPReSs Facility, Biotechnology and Cell Signaling, University of Strasbourg-CNRS, Illkirch, France
| |
Collapse
|
31
|
Shishparenok AN, Gladilina YA, Zhdanov DD. Engineering and Expression Strategies for Optimization of L-Asparaginase Development and Production. Int J Mol Sci 2023; 24:15220. [PMID: 37894901 PMCID: PMC10607044 DOI: 10.3390/ijms242015220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Genetic engineering for heterologous expression has advanced in recent years. Model systems such as Escherichia coli, Bacillus subtilis and Pichia pastoris are often used as host microorganisms for the enzymatic production of L-asparaginase, an enzyme widely used in the clinic for the treatment of leukemia and in bakeries for the reduction of acrylamide. Newly developed recombinant L-asparaginase (L-ASNase) may have a low affinity for asparagine, reduced catalytic activity, low stability, and increased glutaminase activity or immunogenicity. Some successful commercial preparations of L-ASNase are now available. Therefore, obtaining novel L-ASNases with improved properties suitable for food or clinical applications remains a challenge. The combination of rational design and/or directed evolution and heterologous expression has been used to create enzymes with desired characteristics. Computer design, combined with other methods, could make it possible to generate mutant libraries of novel L-ASNases without costly and time-consuming efforts. In this review, we summarize the strategies and approaches for obtaining and developing L-ASNase with improved properties.
Collapse
Affiliation(s)
- Anastasiya N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
| | - Yulia A. Gladilina
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.N.S.); (Y.A.G.)
- Department of Biochemistry, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Miklukho—Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
32
|
Pentjuss A, Bolmanis E, Suleiko A, Didrihsone E, Suleiko A, Dubencovs K, Liepins J, Kazaks A, Vanags J. Pichia pastoris growth-coupled heme biosynthesis analysis using metabolic modelling. Sci Rep 2023; 13:15816. [PMID: 37739976 PMCID: PMC10516909 DOI: 10.1038/s41598-023-42865-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023] Open
Abstract
Soy leghemoglobin is one of the most important and key ingredients in plant-based meat substitutes that can imitate the colour and flavour of the meat. To improve the high-yield production of leghemoglobin protein and its main component-heme in the yeast Pichia pastoris, glycerol and methanol cultivation conditions were studied. Additionally, in-silico metabolic modelling analysis of growth-coupled enzyme quantity, suggests metabolic gene up/down-regulation strategies for heme production. First, cultivations and metabolic modelling analysis of P. pastoris were performed on glycerol and methanol in different growth media. Glycerol cultivation uptake and production rates can be increased by 50% according to metabolic modelling results, but methanol cultivation-is near the theoretical maximum. Growth-coupled metabolic optimisation results revealed the best feasible upregulation (33 reactions) (1.47% of total reactions) and 66 downregulation/deletion (2.98% of total) reaction suggestions. Finally, we describe reaction regulation suggestions with the highest potential to increase heme production yields.
Collapse
Affiliation(s)
- Agris Pentjuss
- Microbiology and Biotechnology Institute, University of Latvia, Jelgavas Street 1, Riga, 1004, Latvia.
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, Riga, 1006, Latvia.
| | - Emils Bolmanis
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1 K-1, Riga, 1067, Latvia
| | - Anastasija Suleiko
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, Riga, 1006, Latvia
- Bioreactors.Net AS, Dzerbenes Street 27, Riga, 1006, Latvia
| | - Elina Didrihsone
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, Riga, 1006, Latvia
| | - Arturs Suleiko
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, Riga, 1006, Latvia
- Bioreactors.Net AS, Dzerbenes Street 27, Riga, 1006, Latvia
| | - Konstantins Dubencovs
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, Riga, 1006, Latvia
- Bioreactors.Net AS, Dzerbenes Street 27, Riga, 1006, Latvia
| | - Janis Liepins
- Microbiology and Biotechnology Institute, University of Latvia, Jelgavas Street 1, Riga, 1004, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1 K-1, Riga, 1067, Latvia
| | - Juris Vanags
- Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, Riga, 1006, Latvia
- Bioreactors.Net AS, Dzerbenes Street 27, Riga, 1006, Latvia
| |
Collapse
|
33
|
Cardoso SL, Souza PM, Rodrigues K, Mota IDS, Filho EF, Fávaro LCDL, Saldanha-Araujo F, Homem-de-Mello M, Pessoa A, Silveira D, Fonseca-Bazzo YM, Magalhães PO. l-Asparaginase Type II from Fusarium proliferatum: Heterologous Expression and In Silico Analysis. Pharmaceutics 2023; 15:2352. [PMID: 37765320 PMCID: PMC10534586 DOI: 10.3390/pharmaceutics15092352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The search for new drug-producing microorganisms is one of the most promising situations in current world scientific scenarios. The use of molecular biology as well as the cloning of protein and compound genes is already well established as the gold standard method of increasing productivity. Aiming at this increase in productivity, this work aims at the cloning, purification and in silico analysis of l-asparaginase from Fusarium proliferatum in Komagataella phaffii (Pichia pastoris) protein expression systems. The l-asparaginase gene (NCBI OQ439985) has been cloned into Pichia pastoris strains. Enzyme production was analyzed via the quantification of aspartic B-hydroxamate, followed by purification on a DEAE FF ion exchange column. The in silico analysis was proposed based on the combined use of various technological tools. The enzymatic activity found intracellularly was 2.84 IU/g. A purification factor of 1.18 was observed. The in silico analysis revealed the position of five important amino acid residues for enzymatic activity, and likewise, it was possible to predict a monomeric structure with a C-score of 1.59. The production of the enzyme l-asparaginase from F. proliferatum in P. pastoris was demonstrated in this work, being of great importance for the analysis of new methodologies in search of the production of important drugs in therapy.
Collapse
Affiliation(s)
- Samuel Leite Cardoso
- Health Science School, University of Brasilia, Brasilia 70910-900, Brazil; (S.L.C.); (P.M.S.); (I.d.S.M.); (F.S.-A.); (M.H.-d.-M.); (D.S.); (Y.M.F.-B.)
| | - Paula Monteiro Souza
- Health Science School, University of Brasilia, Brasilia 70910-900, Brazil; (S.L.C.); (P.M.S.); (I.d.S.M.); (F.S.-A.); (M.H.-d.-M.); (D.S.); (Y.M.F.-B.)
| | - Kelly Rodrigues
- Brazilian Agricultural Research Corporation—EMBRAPA Agroenergia, Brasilia 70770-901, Brazil; (K.R.); (L.C.d.L.F.)
| | - Isabella de Souza Mota
- Health Science School, University of Brasilia, Brasilia 70910-900, Brazil; (S.L.C.); (P.M.S.); (I.d.S.M.); (F.S.-A.); (M.H.-d.-M.); (D.S.); (Y.M.F.-B.)
| | | | - Léia Cecilia de Lima Fávaro
- Brazilian Agricultural Research Corporation—EMBRAPA Agroenergia, Brasilia 70770-901, Brazil; (K.R.); (L.C.d.L.F.)
| | - Felipe Saldanha-Araujo
- Health Science School, University of Brasilia, Brasilia 70910-900, Brazil; (S.L.C.); (P.M.S.); (I.d.S.M.); (F.S.-A.); (M.H.-d.-M.); (D.S.); (Y.M.F.-B.)
| | - Mauricio Homem-de-Mello
- Health Science School, University of Brasilia, Brasilia 70910-900, Brazil; (S.L.C.); (P.M.S.); (I.d.S.M.); (F.S.-A.); (M.H.-d.-M.); (D.S.); (Y.M.F.-B.)
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Dâmaris Silveira
- Health Science School, University of Brasilia, Brasilia 70910-900, Brazil; (S.L.C.); (P.M.S.); (I.d.S.M.); (F.S.-A.); (M.H.-d.-M.); (D.S.); (Y.M.F.-B.)
| | - Yris Maria Fonseca-Bazzo
- Health Science School, University of Brasilia, Brasilia 70910-900, Brazil; (S.L.C.); (P.M.S.); (I.d.S.M.); (F.S.-A.); (M.H.-d.-M.); (D.S.); (Y.M.F.-B.)
| | - Pérola Oliveira Magalhães
- Health Science School, University of Brasilia, Brasilia 70910-900, Brazil; (S.L.C.); (P.M.S.); (I.d.S.M.); (F.S.-A.); (M.H.-d.-M.); (D.S.); (Y.M.F.-B.)
| |
Collapse
|
34
|
Zheng F, Basit A, Zhang Z, Zhuang H, Chen J, Zhang J. Improved production of recombinant β-mannanase (TaMan5) in Pichia pastoris and its synergistic degradation of lignocellulosic biomass. Front Bioeng Biotechnol 2023; 11:1244772. [PMID: 37744260 PMCID: PMC10513448 DOI: 10.3389/fbioe.2023.1244772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Mannan, a highly abundant and cost-effective natural resource, holds great potential for the generation of high-value compounds such as bioactive polysaccharides and biofuels. In this study, we successfully enhanced the expression of constructed GH5 β-mannanase (TaMan5) from Trichoderma asperellum ND-1 by employing propeptide in Pichia pastoris. By replacing the α-factor with propeptide (MGNRALNSMKFFKSQALALLAATSAVA), TaMan5 activity was significantly increased from 67.5 to 91.7 U/mL. It retained higher activity in the presence of 20% ethanol and 15% NaCl. When incubated with a high concentration of mannotriose or mannotetraose, the transglycosylation action of TaMan5 can be detected, yielding the corresponding production of mannotetraose or mannooligosaccharides. Moreover, the unique mechanism whereby TaMan5 catalyzes the degradation of mannan into mannobiose involves the transglycosylation of mannose to mannotriose or mannotetraose as a substrate to produce a mannotetraose or mannopentose intermediate, respectively. Additionally, the production of soluble sugars from lignocellulose is a crucial step in bioethanol development, and it is noteworthy that TaMan5 could synergistically yield fermentable sugars from corn stover and bagasse. These findings offered valuable insights and strategies for enhancing β-mannanase expression and efficient conversion of lignocellulosic biomass, providing cost-effective and sustainable approaches for high-value biomolecule and biofuel production.
Collapse
Affiliation(s)
- Fengzhen Zheng
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Abdul Basit
- Department of Microbiology, University of Jhang, Jhang, Pakistan
| | - Zhiyue Zhang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Huan Zhuang
- Department of ENT and Head and Neck Surgery, The Children’s Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Chen
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, China
| | - Jianfen Zhang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
35
|
Robainas-Del-Pino Y, Viader-Salvadó JM, Herrera-Estala AL, Guerrero-Olazarán M. Functional characterization of the Komagataella phaffii 1033 gene promoter and transcriptional terminator. World J Microbiol Biotechnol 2023; 39:246. [PMID: 37420160 DOI: 10.1007/s11274-023-03682-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 06/16/2023] [Indexed: 07/09/2023]
Abstract
The methylotrophic yeast Komagataella phaffii (syn. Pichia pastoris) is a widely used host for extracellularly producing heterologous proteins via an expression cassette integrated into the yeast genome. A strong promoter in the expression cassette is not always the most favorable choice for heterologous protein production, especially if the correct folding of the protein and/or post-translational processing is the limiting step. The transcriptional terminator is another regulatory element in the expression cassette that can modify the expression levels of the heterologous gene. In this work, we identified and functionally characterized the promoter (P1033) and transcriptional terminator (T1033) of a constitutive gene (i.e., the 1033 gene) with a weak non-methanol-dependent transcriptional activity. We constructed two K. phaffii strains with two combinations of the regulatory DNA elements from the 1033 and AOX1 genes (i.e., P1033-TAOX1 and P1033-T1033 pairs) and evaluated the impact of the regulatory element combinations on the transcript levels of the heterologous gene and endogenous 1033 and GAPDH genes in cells grown in glucose or glycerol, and on the extracellular product/biomass yield. The results indicate that the P1033 has a 2-3% transcriptional activity of the GAP promoter and it is tunable by cell growth and the carbon source. The combinations of the regulatory elements rendered different transcriptional activity of the heterologous and endogenous genes that were dependent on the carbon source. The promoter-terminator pair and the carbon source affected the heterologous gene translation and/or protein secretion pathway. Moreover, low heterologous gene-transcript levels along with glycerol cultures increased translation and/or protein secretion.
Collapse
Affiliation(s)
- Yanelis Robainas-Del-Pino
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León UANL, Av. Universidad S/N Col. Ciudad Universitaria, 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - José María Viader-Salvadó
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León UANL, Av. Universidad S/N Col. Ciudad Universitaria, 66455, San Nicolás de los Garza, Nuevo León, Mexico.
| | - Ana Lucía Herrera-Estala
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León UANL, Av. Universidad S/N Col. Ciudad Universitaria, 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - Martha Guerrero-Olazarán
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León UANL, Av. Universidad S/N Col. Ciudad Universitaria, 66455, San Nicolás de los Garza, Nuevo León, Mexico.
| |
Collapse
|
36
|
Popova LG, Khramov DE, Nedelyaeva OI, Volkov VS. Yeast Heterologous Expression Systems for the Study of Plant Membrane Proteins. Int J Mol Sci 2023; 24:10768. [PMID: 37445944 DOI: 10.3390/ijms241310768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Researchers are often interested in proteins that are present in cells in small ratios compared to the total amount of proteins. These proteins include transcription factors, hormones and specific membrane proteins. However, sufficient amounts of well-purified protein preparations are required for functional and structural studies of these proteins, including the creation of artificial proteoliposomes and the growth of protein 2D and 3D crystals. This aim can be achieved by the expression of the target protein in a heterologous system. This review describes the applications of yeast heterologous expression systems in studies of plant membrane proteins. An initial brief description introduces the widely used heterologous expression systems of the baker's yeast Saccharomyces cerevisiae and the methylotrophic yeast Pichia pastoris. S. cerevisiae is further considered a convenient model system for functional studies of heterologously expressed proteins, while P. pastoris has the advantage of using these yeast cells as factories for producing large quantities of proteins of interest. The application of both expression systems is described for functional and structural studies of membrane proteins from plants, namely, K+- and Na+-transporters, various ATPases and anion transporters, and other transport proteins.
Collapse
Affiliation(s)
- Larissa G Popova
- K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia
| | - Dmitrii E Khramov
- K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia
| | - Olga I Nedelyaeva
- K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia
| | - Vadim S Volkov
- K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia
| |
Collapse
|
37
|
Zheng F, Basit A, Wang J, Zhuang H, Chen J, Zhang J. Biochemical analyses of a novel acidophilic GH5 β-mannanase from Trichoderma asperellum ND-1 and its application in mannooligosaccharides production from galactomannans. Front Microbiol 2023; 14:1191553. [PMID: 37362936 PMCID: PMC10288326 DOI: 10.3389/fmicb.2023.1191553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
In this study, an acidophilic GH5 β-mannanase (TaMan5) from Trichoderma asperellum ND-1 was efficiently expressed in Pichia pastoris (a 2.0-fold increase, 67.5 ± 1.95 U/mL). TaMan5 displayed the highest specificity toward locust bean gum (Km = 1.34 mg/mL, Vmax = 749.14 μmol/min/mg) at pH 4.0 and 65°C. Furthermore, TaMan5 displayed remarkable tolerance to acidic environments, retaining over 80% of its original activity at pH 3.0-5.0. The activity of TaMan5 was remarkably decreased by Cu2+, Mn2+, and SDS, while Fe2+/Fe3+ improved the enzyme activity. A thin-layer chromatography (TLC) analysis of the action model showed that TaMan5 could rapidly degrade mannan/MOS into mannobiose without mannose via hydrolysis action as well as transglycosylation. Site-directed mutagenesis results suggested that Glu205, Glu313, and Asp357 of TaMan5 are crucial catalytic residues, with Asp152 playing an auxiliary function. Additionally, TaMan5 and commercial α-galactosidase displayed a remarkable synergistic effect on the degradation of galactomannans. This study provided a novel β-mannanase with ideal characteristics and can be considered a potential candidate for the production of bioactive polysaccharide mannobiose.
Collapse
Affiliation(s)
- Fengzhen Zheng
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Abdul Basit
- Department of Microbiology, University of Jhang, Jhang, Pakistan
| | - Jiaqiang Wang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Huan Zhuang
- Department of ENT and Head and Neck Surgery, The Children's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Chen
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, China
| | - Jianfen Zhang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
38
|
De Brabander P, Uitterhaegen E, Delmulle T, De Winter K, Soetaert W. Challenges and progress towards industrial recombinant protein production in yeasts: A review. Biotechnol Adv 2023; 64:108121. [PMID: 36775001 DOI: 10.1016/j.biotechadv.2023.108121] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Recombinant proteins (RP) are widely used as biopharmaceuticals, industrial enzymes, or sustainable food source. Yeasts, with their ability to produce complex proteins through a broad variety of cheap carbon sources, have emerged as promising eukaryotic production hosts. As such, the prevalence of yeasts as favourable production organisms in commercial RP production is expected to increase. Yet, with the selection of a robust production host on the one hand, successful scale-up is dependent on a thorough understanding of the challenging environment and limitations of large-scale bioreactors on the other hand. In the present work, several prominent yeast species, including Saccharomyces cerevisiae, Pichia pastoris, Yarrowia lipolytica, Kluyveromyces lactis and Kluyveromyces marxianus are reviewed for their current state and performance in commercial RP production. Thereafter, the impact of principal process control parameters, including dissolved oxygen, pH, substrate concentration, and temperature, on large-scale RP production are discussed. Finally, technical challenges of process scale-up are identified. To that end, process intensification strategies to enhance industrial feasibility are summarized, specifically highlighting fermentation strategies to ensure sufficient cooling capacity, overcome oxygen limitation, and increase protein quality and productivity. As such, this review aims to contribute to the pursuit of sustainable yeast-based RP production.
Collapse
Affiliation(s)
- Pieter De Brabander
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium
| | - Evelien Uitterhaegen
- Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium
| | - Tom Delmulle
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Karel De Winter
- Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium.
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Ghent (Desteldonk), Belgium
| |
Collapse
|
39
|
Li Y, Xie S, Chen M, Li H, Wang Y, Fan Y, An K, Wu Y, Xiao W. Development of an antibody-ligand fusion protein scFvCD16A -sc4-1BBL in Komagataella phaffii with stimulatory activity for Natural Killer cells. Microb Cell Fact 2023; 22:67. [PMID: 37041591 PMCID: PMC10091686 DOI: 10.1186/s12934-023-02082-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/04/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Natural killer (NK) cell-based immunotherapies have demonstrated substantial potential for the treatment of hematologic malignancies. However, its application is limited due to the difficulty in the production of a large number of NK cells in vitro and the insufficient therapeutic efficacy against solid tumors in vivo. Engineered antibodies or fusion proteins targeting activating receptors and costimulatory molecules of NK cells have been developed to encounter these problems. They are mostly produced in mammalian cells with high cost and long processing times. Yeast systems, such as Komagataella phaffii, present a convenient manipulation of microbial systems with the key advantages of improved folding machinery and low cost. RESULTS In this study, we designed an antibody fusion protein scFvCD16A-sc4-1BBL, composed of the single chain variant fragment (scFv) of anti-CD16A antibody and the three extracellular domains (ECDs) of human 4-1BBL in a single-chain format (sc) with the GS linker, aiming to boost NK cell proliferation and activation. This protein complex was produced in the K. phaffii X33 system and purified by affinity chromatography and size exclusion chromatography. The scFvCD16A-sc4-1BBL complex showed comparable binding abilities to its two targets human CD16A and 4-1BB as its two parental moieties (scFvCD16A and monomer ECD (mn)4-1BBL). scFvCD16A-sc4-1BBL specifically stimulated the expansion of peripheral blood mononuclear cell (PBMC)-derived NK cells in vitro. Furthermore, in the ovarian cancer xenograft mouse model, adoptive NK cell infusion combined with intraperitoneal (i.p) injection of scFvCD16A-sc4-1BBL further reduced the tumor burden and prolonged the survival time of mice. CONCLUSION Our studies demonstrate the feasibility of the expression of the antibody fusion protein scFvCD16A-sc4-1BBL in K. phaffii with favourable properties. scFvCD16A-sc4-1BBL stimulates PBMC-derived NK cell expansion in vitro and improves the antitumor activity of adoptively transferred NK cells in a murine model of ovarian cancer and may serve as a synergistic drug for NK immunotherapy in future research and applications.
Collapse
Affiliation(s)
- Yangyang Li
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Siqi Xie
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Minhua Chen
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Hao Li
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Yehai Wang
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Yan Fan
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Kang An
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Yu Wu
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Weihua Xiao
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| |
Collapse
|
40
|
Xu Y, Geng Z, Yang C, Zhou H, Wang Y, Kuerban B, Luo G. Effect of N-acetyl-l-cysteine on Cell Phenotype and Autophagy in Pichia pastoris Expressing Human Serum Albumin and Porcine Follicle-Stimulating Hormone Fusion Protein. Molecules 2023; 28:molecules28073041. [PMID: 37049804 PMCID: PMC10095845 DOI: 10.3390/molecules28073041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Pichia pastoris is widely used for the production of recombinant proteins, but the low secretion efficiency hinders its wide application in biopharmaceuticals. Our previous study had shown that N-acetyl-l-cysteine (NAC) promotes human serum albumin and porcine follicle-stimulating hormone fusion protein (HSA-pFSHβ) secretion by increasing intracellular GSH levels, but the downstream impact mechanism is not clear. In this study, we investigated the roles of autophagy as well as cell phenotype in NAC promoting HSA-pFSHβ secretion. Our results showed that NAC slowed down the cell growth rate, and its effects were unaffected by Congo Red and Calcofluor White. Moreover, NAC affected cell wall composition by increasing chitin content and decreasing β-1,3-glucan content. In addition, the expressions of vesicular pathway and autophagy-related genes were significantly decreased after NAC treatment. Further studies revealed that autophagy, especially the cytoplasm-to-vacuole targeting (Cvt) pathway, mitophagy and pexophagy, was significantly increased with time, and NAC has a promoting effect on autophagy, especially at 48 h and 72 h of NAC treatment. However, the disruption of mitophagy receptor Atg32, but not pexophagy receptor Atg30, inhibited HSA-pFSHβ production, and neither of them inhibited the NAC-promoted effect of HSA-pFSHβ. In conclusion, vesicular transport, autophagy and cell wall are all involved in the NAC-promoted HSA-pFSHβ secretion and that disruption of the autophagy receptor alone does not inhibit the effect of NAC.
Collapse
Affiliation(s)
- Yingqing Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Zijian Geng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Chengxi Yang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Hongwei Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Yixing Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Buayisham Kuerban
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Gang Luo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
41
|
Bernat-Camps N, Ebner K, Schusterbauer V, Fischer JE, Nieto-Taype MA, Valero F, Glieder A, Garcia-Ortega X. Enabling growth-decoupled Komagataella phaffii recombinant protein production based on the methanol-free P DH promoter. Front Bioeng Biotechnol 2023; 11:1130583. [PMID: 37034257 PMCID: PMC10076887 DOI: 10.3389/fbioe.2023.1130583] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/01/2023] [Indexed: 04/07/2023] Open
Abstract
The current transition towards the circular bioeconomy requires a rational development of biorefineries to sustainably fulfill the present demands. The use of Komagataella phaffii (Pichia pastoris) can meet this challenge, since it has the capability to use crude glycerol as a carbon-source, a by-product from the biodiesel industry, while producing high- and low-added value products. Recombinant protein production (RPP) using K. phaffii has often been driven either by the methanol induced AOX1 promoter (PAOX1) and/or the constitutive GAP promoter (PGAP). In the last years, strong efforts have been focused on developing novel expression systems that expand the toolbox variety of K. phaffii to efficiently produce diverse proteins that requires different strategies. In this work, a study was conducted towards the development of methanol-free expression system based on a heat-shock gene promoter (PDH) using glycerol as sole carbon source. Using this promoter, the recombinant expression is strongly induced in carbon-starving conditions. The classical PGAP was used as a benchmark, taking for both strains the lipase B from Candida antarctica (CalB) as model protein. Titer of CalB expressed under PDH outperformed PGAP controlled expression in shake-flask cultivations when using a slow-release continuous feeding technology, confirming that PDH is induced under pseudo-starving conditions. This increase was also confirmed in fed-batch cultivations. Several optimization rounds were carried out for PDH under different feeding and osmolarity conditions. In all of them the PDH controlled process outperformed the PGAP one in regard to CalB titer. The best PDH approach reached 3.6-fold more specific productivity than PGAP fed-batch at low μ. Compared to the optimum approach for PGAP-based process, the best PDH fed-batch strategy resulted in 2.3-fold higher titer, while the specific productivity was very similar. To summarize, PDH is an inducible promoter that exhibited a non-coupled growth regulation showing high performance, which provides a methanol-free additional solution to the usual growth-coupled systems for RPP. Thus, this novel system emerges as a potential alternative for K. phaffii RPP bioprocess and for revaluing crude glycerol, promoting the transition towards a circular economy.
Collapse
Affiliation(s)
- Núria Bernat-Camps
- Department of Chemical, Biological, and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
| | | | | | | | - Miguel Angel Nieto-Taype
- Department of Chemical, Biological, and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Francisco Valero
- Department of Chemical, Biological, and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
| | | | - Xavier Garcia-Ortega
- Department of Chemical, Biological, and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
- *Correspondence: Xavier Garcia-Ortega,
| |
Collapse
|
42
|
Tian KK, Qian ZG, Xia XX. Synthetic biology-guided design and biosynthesis of protein polymers for delivery. Adv Drug Deliv Rev 2023; 194:114728. [PMID: 36791475 DOI: 10.1016/j.addr.2023.114728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/28/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
Vehicles derived from genetically engineered protein polymers have gained momentum in the field of biomedical engineering due to their unique designability, remarkable biocompatibility and excellent biodegradability. However, the design and production of these protein polymers with on-demand sequences and supramolecular architectures remain underexplored, particularly from a synthetic biology perspective. In this review, we summarize the state-of-the art strategies for constructing the highly repetitive genes encoding the protein polymers, and highlight the advanced approaches for metabolically engineering expression hosts towards high-level biosynthesis of the target protein polymers. Finally, we showcase the typical protein polymers utilized to fabricate delivery vehicles.
Collapse
Affiliation(s)
- Kai-Kai Tian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| |
Collapse
|
43
|
Pouzet S, Cruz-Ramón J, Le Bec M, Cordier C, Banderas A, Barral S, Castaño-Cerezo S, Lautier T, Truan G, Hersen P. Optogenetic control of beta-carotene bioproduction in yeast across multiple lab-scales. Front Bioeng Biotechnol 2023; 11:1085268. [PMID: 36814715 PMCID: PMC9939774 DOI: 10.3389/fbioe.2023.1085268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Optogenetics arises as a valuable tool to precisely control genetic circuits in microbial cell factories. Light control holds the promise of optimizing bioproduction methods and maximizing yields, but its implementation at different steps of the strain development process and at different culture scales remains challenging. In this study, we aim to control beta-carotene bioproduction using optogenetics in Saccharomyces cerevisiae and investigate how its performance translates across culture scales. We built four lab-scale illumination devices, each handling different culture volumes, and each having specific illumination characteristics and cultivating conditions. We evaluated optogenetic activation and beta-carotene production across devices and optimized them both independently. Then, we combined optogenetic induction and beta-carotene production to make a light-inducible beta-carotene producer strain. This was achieved by placing the transcription of the bifunctional lycopene cyclase/phytoene synthase CrtYB under the control of the pC120 optogenetic promoter regulated by the EL222-VP16 light-activated transcription factor, while other carotenogenic enzymes (CrtI, CrtE, tHMG) were expressed constitutively. We show that illumination, culture volume and shaking impact differently optogenetic activation and beta-carotene production across devices. This enabled us to determine the best culture conditions to maximize light-induced beta-carotene production in each of the devices. Our study exemplifies the stakes of scaling up optogenetics in devices of different lab scales and sheds light on the interplays and potential conflicts between optogenetic control and metabolic pathway efficiency. As a general principle, we propose that it is important to first optimize both components of the system independently, before combining them into optogenetic producing strains to avoid extensive troubleshooting. We anticipate that our results can help designing both strains and devices that could eventually lead to larger scale systems in an effort to bring optogenetics to the industrial scale.
Collapse
Affiliation(s)
- Sylvain Pouzet
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Jessica Cruz-Ramón
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Matthias Le Bec
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Céline Cordier
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Alvaro Banderas
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Simon Barral
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Sara Castaño-Cerezo
- Toulouse Biotechnology Institute, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l′Agriculture, l′Alimentation et l′Environnement (INRAE), Institut National des Sciences Appliquées (INSA), Toulouse, France
| | - Thomas Lautier
- Toulouse Biotechnology Institute, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l′Agriculture, l′Alimentation et l′Environnement (INRAE), Institut National des Sciences Appliquées (INSA), Toulouse, France,CNRS@CREATE, Singapore Institute of Food and Biotechnology Innovation, Agency for Science Technology and Research, Singapore, Singapore
| | - Gilles Truan
- Toulouse Biotechnology Institute, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l′Agriculture, l′Alimentation et l′Environnement (INRAE), Institut National des Sciences Appliquées (INSA), Toulouse, France
| | - Pascal Hersen
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France,*Correspondence: Pascal Hersen,
| |
Collapse
|
44
|
Kantipudi S, Harder D, Fotiadis D. Characterization of substrates and inhibitors of the human heterodimeric transporter 4F2hc-LAT1 using purified protein and the scintillation proximity radioligand binding assay. Front Physiol 2023; 14:1148055. [PMID: 36895635 PMCID: PMC9989278 DOI: 10.3389/fphys.2023.1148055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Amino acids have diverse and essential roles in many cellular functions such as in protein synthesis, metabolism and as precursors of different hormones. Translocation of amino acids and derivatives thereof across biological membranes is mediated by amino acid transporters. 4F2hc-LAT1 is a heterodimeric amino acid transporter that is composed of two subunits belonging to the SLC3 (4F2hc) and SLC7 (LAT1) solute carrier families. The ancillary protein 4F2hc is responsible for the correct trafficking and regulation of the transporter LAT1. Preclinical studies have identified 4F2hc-LAT1 as a valid anticancer target due to its importance in tumor progression. The scintillation proximity assay (SPA) is a valuable radioligand binding assay that allows the identification and characterization of ligands of membrane proteins. Here, we present a SPA ligand binding study using purified recombinant human 4F2hc-LAT1 protein and the radioligand [3H]L-leucine as tracer. Binding affinities of different 4F2hc-LAT1 substrates and inhibitors determined by SPA are comparable with previously reported K m and IC 50 values from 4F2hc-LAT1 cell-based uptake assays. In summary, the SPA is a valuable method for the identification and characterization of ligands of membrane transporters including inhibitors. In contrast to cell-based assays, where the potential interference with other proteins such as endogenous transporters persists, the SPA uses purified protein making target engagement and characterization of ligands highly reliable.
Collapse
Affiliation(s)
- Satish Kantipudi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Daniel Harder
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
45
|
Barroca-Ferreira J, Maia CJ, Passarinha LA. Mini-Bioreactor Platform for Membrane Protein Production in Komagataella pastoris. Methods Mol Biol 2023; 2652:35-54. [PMID: 37093469 DOI: 10.1007/978-1-0716-3147-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Membrane proteins (MPs) play vital roles across various cellular functions, biological processes, physiological signaling pathways, and human-related disorders. Considering the clinical relevance of MPs and their application as therapeutic targets, it is crucial to explore highly effective production platforms and purification approaches to ultimately obtain a high-resolution structure of the target. Therefore, it would be possible to gather detailed knowledge on their mechanism of action which will be the basis for the rational design of novel and stronger drugs. Unfortunately, when compared to their soluble counterparts, 3D structures of MPs are really scarce (<2%), mainly due to poorly natural abundance, challenges associated with protein solubility and stability, and difficulties in producing bioactive and properly structural folded targets. These drawbacks could significantly impair the use of MPs as therapeutic targeting and demand efforts to develop tailor-made strategies for their appropriate handling. Therefore, this chapter is focused on describing a detailed and high-throughput procedure for the biosynthesis of MPs using Komagataella pastoris cell cultures as expression system in a mini-bioreactor platform. Additionally, insights on a purification strategy that combines immobilized-metal affinity and ion-exchange chromatography are described to further obtain the target protein with a significant degree of purity.
Collapse
Affiliation(s)
- Jorge Barroca-Ferreira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Claudio J Maia
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Luís A Passarinha
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
- Laboratório de Fármaco-Toxicologia - UBIMedical, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
46
|
Govindan P, Manjusha P, Saravanan KM, Natesan V, Salmen SH, Alfarraj S, Wainwright M, Shakila H. RETRACTED ARTICLE: Expression and preliminary characterization of the potential vaccine candidate LipL32 of leptospirosis. APPLIED NANOSCIENCE 2023; 13:1801. [PMID: 34608427 PMCID: PMC8483425 DOI: 10.1007/s13204-021-02097-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Pothiaraj Govindan
- grid.10214.360000 0001 2186 7912Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai-21, Tamil Nadu India
| | - Packiyadass Manjusha
- grid.10214.360000 0001 2186 7912Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai-21, Tamil Nadu India
| | - Konda Mani Saravanan
- Scigen Research and Innovation Pvt Ltd, Periyar Technology Business Incubator, Thanjavur, Tamil Nadu 613403 India
| | - Vijayakumar Natesan
- grid.411408.80000 0001 2369 7742Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu 608002 India
| | - Saleh H. Salmen
- grid.56302.320000 0004 1773 5396Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451 Saudi Arabia
| | - Saleh Alfarraj
- grid.56302.320000 0004 1773 5396Zoology Department, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Milton Wainwright
- grid.11835.3e0000 0004 1936 9262Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN UK
| | - Harshavardhan Shakila
- grid.10214.360000 0001 2186 7912Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai-21, Tamil Nadu India
| |
Collapse
|
47
|
Cloning, protein expression and biochemical characterization of Carica papaya esterase. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
48
|
Onur H, Tülek A, Yildirim D, Aslan ES, Binay B. A new highly enantioselective stable epoxide hydrolase from Hypsibius dujardini: Expression in Pichia pastoris and immobilization in ZIF-8 for asymmetric hydrolysis of racemic styrene oxide. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Ko H, Sung BH, Kim MJ, Sohn JH, Bae JH. Fructan Biosynthesis by Yeast Cell Factories. J Microbiol Biotechnol 2022; 32:1373-1381. [PMID: 36310357 PMCID: PMC9720074 DOI: 10.4014/jmb.2207.07062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022]
Abstract
Fructan is a polysaccharide composed of fructose and can be classified into several types, such as inulin, levan, and fructo-oligosaccharides, based on their linkage patterns and degree of polymerization. Owing to its structural and functional diversity, fructan has been used in various fields including prebiotics, foods and beverages, cosmetics, and pharmaceutical applications. With increasing interest in fructans, efficient and straightforward production methods have been explored. Since the 1990s, yeast cells have been employed as producers of recombinant enzymes for enzymatic conversion of fructans including fructosyltransferases derived from various microbes and plants. More recently, yeast cell factories are highlighted as efficient workhorses for fructan production by direct fermentation. In this review, recent advances and strategies for fructan biosynthesis by yeast cell factories are discussed.
Collapse
Affiliation(s)
- Hyunjun Ko
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Mi-Jin Kim
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jung-Hoon Sohn
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,Cellapy Bio Inc., Bio-Venture Center 211, Daejeon 34141, Republic of Korea,Corresponding authors J.H. Sohn Phone: +82-42-860-4458 Fax: +82-42-860-4489 E-mail:
| | - Jung-Hoon Bae
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,
J.H. Bae Phone: +82-42-860-4484 Fax: +82-42-860-4489 E-mail:
| |
Collapse
|
50
|
Cordeiro FA, Amorim FG, Boldrini-França J, Pinheiro-Júnior EL, Cardoso IA, Zoccal KF, Peigneur S, Faccioli LH, Tytgat J, Arantes EC. Heterologous expression of Ts8, a neurotoxin from Tityus serrulatus venom, evidences its antifungal activity. Toxicon 2022; 218:47-56. [PMID: 36063971 DOI: 10.1016/j.toxicon.2022.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022]
Abstract
In this study we expressed the Ts8, a neurotoxin from Tityus serrulatus scorpion venom, in Pichia pastoris yeast. We evaluated the peptide expression in different conditions, such as pH, temperature, and addition of casamino acids supplement. Analyses of expressed products by mass spectrometry and Edman degradation showed that rTs8 has sites that allow its cleavage by yeast proteases released into the culture medium. The casamino acids addition was favourable for toxin expression, however, was not sufficient to minimize proteolytic degradation. Functional assays with recombinant toxin fragments and native toxins have demonstrated the release of cytokines such as TNF-α and IL-1β in some peptides tested. In addition, the toxins were shown to inhibit the Pichia pastoris growth in antifungal test and were not toxic to alveolar macrophages cells at the concentrations analyzed The electrophysiological screening, by voltage clamp technique, showed that the rTs8 fragment with the highest molecular weight inhibited the Kv1.3 channel, whereas the N-terminal fragment had no activity on the ion channels tested.
Collapse
Affiliation(s)
- Francielle Almeida Cordeiro
- Department of BioMolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Av. do Café s/n, Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil.
| | - Fernanda Gobbi Amorim
- Mass Spectrometry Laboratory, Department of Chemistry, Faculty of Sciences, University of Liège, Bât. B6C Laboratoire de spectrométrie de Masse (L.S.M.), Quartier Agora, Allée du six Août 11, 4000, Liège, Belgium
| | - Johara Boldrini-França
- School of Biochemistry, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Bristol, BS8 1TD, UK
| | | | - Iara Aimê Cardoso
- Department of BioMolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Av. do Café s/n, Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - Karina Furlani Zoccal
- Center University Barão of Mauá, St. Ramos of Azavedo, N 423, 14090-062, Ribeirão Preto, SP, Brazil
| | - Steve Peigneur
- Toxicology and Pharmacology, KU Leuven, O&N II Herestraat 49 - PO Box 922, 3000, Leuven, Belgium
| | - Lucia Helena Faccioli
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, O&N II Herestraat 49 - PO Box 922, 3000, Leuven, Belgium
| | - Eliane Candiani Arantes
- Department of BioMolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Av. do Café s/n, Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|