1
|
Lim XS, Lin Q, Chin R, Bay LJ, Tan WB, Yong XE, Lim TK, Lin Q. Efficient protein extraction for assessing food allergy risk in complex alternative protein matrices. Food Chem 2025; 463:141221. [PMID: 39276555 DOI: 10.1016/j.foodchem.2024.141221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Allergy to novel food proteins, due to diverse ingredients and innovative food processing technologies employed to achieve desired functional properties, is a major safety concern. Current allergy testing methods (ELISA and mass spectrometry) depend on high-quality protein extracts, meaning existing methods are often tailored to specific matrices. Therefore, a more efficient and general protein extraction method is desirable for comprehensive allergy risk assessment. Here, we developed a highly efficient and reproducible protein extraction method which achieved at least 80 % efficiency across several food matrices. Proteomics analysis of a plant-based meat using our optimized extraction method showed that higher extraction efficiency improved reproducibility of identified proteins. Moreover, higher protein extraction efficiency resulted in increased abundances of individual allergenic proteins. This underscores the relevance of our method for more accurate measurements of allergenic protein concentrations in allergy risk assessments.
Collapse
Affiliation(s)
- Xin Shan Lim
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Qifeng Lin
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Renee Chin
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Lian Jie Bay
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Wei Bin Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Xin Ee Yong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Teck Kwang Lim
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore.
| |
Collapse
|
2
|
Kowalczyk J, Kłodawska K, Zych M, Burczyk J, Malec P. Ubiquitin-like and ubiquitinylated proteins associated with the maternal cell walls of Scenedesmus obliquus 633 as identified by immunochemistry and LC-MS/MS proteomics. PROTOPLASMA 2024:10.1007/s00709-024-01994-3. [PMID: 39365352 DOI: 10.1007/s00709-024-01994-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
The cell walls of green algae Scenedesmus obliquus are complex, polymeric structures including an inner cellulose layer surrounded by an algaenan-containing trilaminar sheath. The process of autosporulation leads to the formation of sporangial (maternal) cell walls, which are released into the medium after sporangial autolysis. In this study, a fraction of maternal cell wall material (CWM) was isolated from the stationary phase cultures of Scenedesmus obliquus 633 and subjected to immunofluorescence microscopy using polyclonal anti-ubiquitin antibodies. The water-extracted polypeptide fraction from the maternal cell walls was then analyzed using immunoblotting and LC-MS/MS. An immunoanalysis showed the presence of several peptides reactive with polyclonal anti-ubiquitin serum, with apparent molecular masses of c. 12, 70, 120, 200, and > 250 kDa. Cell wall-associated peptides were identified on the basis of LC-MS/MS spectra across NCBI databases, including the Scenedesmaceae family (58 records), the Chlorophyceae class (37 records), and Chlamydomonas reinhardtii (18 records) corresponding to the signatures of 95 identified proteins. In particular, three signatures identified ubiquitin and ubiquitin-related proteins. In the maternal cell walls, immunoblotting analysis, immunofluorescence microscopy, and LC-MS/MS proteomics collectively demonstrated the presence of ubiquitin-like epitopes, ubiquitin-specific peptide signatures, and several putative ubiquitin conjugates of a higher molecular mass. These results support the presence of ubiquitin-like proteins in the extramembranous compartment of Scenedesmus obliquus 633 and suggest that protein ubiquitination plays a significant role in the formation and functional integrity of the maternal cell walls in green algae.
Collapse
Affiliation(s)
- Justyna Kowalczyk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348, Kraków, Poland
| | - Kinga Kłodawska
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| | - Maria Zych
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200, Sosnowiec, Poland
| | - Jan Burczyk
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, 41-200, Sosnowiec, Poland
- Laboratory of Biotechnology, Puńcowska 74, 43-400, Cieszyn, Poland
| | - Przemysław Malec
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Kraków, Poland.
| |
Collapse
|
3
|
Ononugbo CM, Shimura Y, Yamano-Adachi N, Omasa T, Koga Y. Rational design approach to improve the solubility of the β-sandwich domain 1 of a thermophilic protein. J Biosci Bioeng 2024; 138:271-282. [PMID: 39074993 DOI: 10.1016/j.jbiosc.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/28/2024] [Accepted: 06/20/2024] [Indexed: 07/31/2024]
Abstract
The β-sandwich domain 1 (SD1) of islandisin is a stable thermophilic protein with surface loops that can be redesigned for specific target binding, architecturally comparable to the variable domain of immunoglobulin (IgG). SD1's propensity to aggregate due to incorrect folding and subsequent accumulation in Escherichia coli inclusion bodies limits its use in biotechnological applications. We rationally designed SD1 for improved variants that were expressed in soluble forms in E. coli while maintaining the intrinsic thermal stability of the protein (melting temperature (Tm) = 73). We used FoldX's ΔΔG predictions to find beneficial mutations and aggregation-prone regions (APRs) using Tango. The S26K substitution within protein core residues did not affect protein stability. Among the soluble mutants studied, the S26K/Q91P combination significantly improved the expression and solubility of SD1. We also examined the effects of the surface residue, pH, and concentration on the solubility of SD1. We showed that the surface polarity of proteins had little or no effect on solubility, whereas surface charges played a substantial role. The storage stability of several SD1 variants was impaired at pH values near their isoelectric point, and pH levels resulting in highly charged groups. We observed that mutations that create an uneven distribution of charged groups on the SD1 surface could enhance protein solubility by eliminating favorable protein-protein surface charge interactions. Our findings suggest that SD1 is mutationally tolerant to new functionalities, thus providing a novel perspective for the application of rational design to improve the solubility of targeted proteins.
Collapse
Affiliation(s)
- Chukwuebuka M Ononugbo
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yusaku Shimura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Noriko Yamano-Adachi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Omasa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuichi Koga
- Department of Applied Chemistry, Faculty of Engineering, Okayama University of Science, 1-1 Ridaicho, Kitaku, Okayama 700-0005, Japan.
| |
Collapse
|
4
|
Khalesi M, Glenn-Davi K, Mohammadi N, FitzGerald RJ. Key Factors Influencing Gelation in Plant vs. Animal Proteins: A Comparative Mini-Review. Gels 2024; 10:575. [PMID: 39330177 PMCID: PMC11431306 DOI: 10.3390/gels10090575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
This review presents a comparative analysis of gelation properties in plant-based versus animal-based proteins, emphasizing key factors such as pH, ionic environment, temperature, and anti-nutritional factors. Gelation, a crucial process in food texture formation, is influenced by these factors in varying ways for plant and animal proteins. Animal proteins, like casein, whey, meat, and egg, generally show stable gelation properties, responding predictably to pH, temperature, and ionic changes. In contrast, plant proteins such as soy, pea, wheat, and oilseed show more variable gelation, often requiring specific conditions, like the presence of NaCl or optimal pH, to form effective gels. Animal proteins tend to gel more reliably, while plant proteins require precise environmental adjustments for similar results. Understanding these factors is crucial for selecting and processing proteins to achieve desired textures and functionalities in food products. This review highlights how changing these key factors can optimize gel properties in both plant- and animal-based proteins.
Collapse
Affiliation(s)
- Mohammadreza Khalesi
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland (N.M.); (R.J.F.)
| | | | | | | |
Collapse
|
5
|
Petersen I, Godec A, Ranjbarian F, Hofer A, Mirabello C, Hultqvist G. A charged tail on anti-α-Synuclein antibodies does not enhance their affinity to α-Synuclein fibrils. PLoS One 2024; 19:e0308521. [PMID: 39208301 PMCID: PMC11361660 DOI: 10.1371/journal.pone.0308521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
The aggregation of α-Synuclein (αSyn) is strongly linked to neuronal death in Parkinson's disease and other synucleinopathies. The spreading of aggregated αSyn between neurons is at least partly dependent on electrostatic interactions between positively charged stretches on αSyn fibrils and the negatively charged heparan sulphate proteoglycans on the cell surface. To date there is still no therapeutic option available that could halt the progression of Parkinson's disease and one of the major limitations is likely the relatively low proportion of αSyn aggregates accessible to drugs in the extracellular space. Here, we investigated whether a negatively charged peptide tail fused to the αSyn aggregate-specific antibodies SynO2 and 9E4 could enhance the antibodies' avidity to αSyn aggregates in order to improve their potential therapeutic effect through inhibiting cell-to-cell spreading and enhancing the clearance of extracellular aggregates. We performed ELISAs to test the avidity to αSyn aggregates of both monovalent and bivalent antibody formats with and without the peptide tail. Our results show that the addition of the negatively charged peptide tail decreased the binding strength of both antibodies to αSyn aggregates at physiological salt conditions, which can likely be explained by intermolecular repulsions between the tail and the negatively charged C-terminus of αSyn. Additionally, the tail might interact with the paratopes of the SynO2 antibody abolishing its binding to αSyn aggregates. Conclusively, our peptide tail did not fulfil the required characteristics to improve the antibodies' binding to αSyn aggregates. Fine-tuning the design of the peptide tail to avoid its interaction with the antibodies' CDR and to better mimic relevant characteristics of heparan sulphates for αSyn aggregate binding may help overcome the limitations observed in this study.
Collapse
Affiliation(s)
- Inga Petersen
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Ana Godec
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Farahnaz Ranjbarian
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Anders Hofer
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Claudio Mirabello
- Department of Physics, Chemistry and Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Linköping University, Linköping, Sweden
| | | |
Collapse
|
6
|
Nourmohammadi N, Campanella OH, Chen D. Effect of limited proteolysis and CaCl 2 on the rheology, microstructure and in vitro digestibility of pea protein-carboxymethyl cellulose mixed gel. Food Res Int 2024; 188:114474. [PMID: 38823865 DOI: 10.1016/j.foodres.2024.114474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/09/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Limited proteolysis, CaCl2 and carboxymethyl cellulose (CMC) have individually demonstrated ability to increase the gel strength of laboratory-extracted plant proteins. However, the syneresis effects of their combination on the gelling capacity of commercial plant protein remains unclear. This was investigated by measuring the rheological property, microstructure and protein-protein interactions of gels formed from Alcalase hydrolyzed or intact pea proteins in the presence of 0.1 % CMC and 0-25 mM CaCl2. Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed the molecular weight of pea protein in the mixture were < 15 kDa after hydrolysis. The hydrolysates showed higher intrinsic fluorescence intensity and lower surface hydrophobicity than the intact proteins. Rheology showed that the storage modulus (G') of hydrolyzed pea protein (PPH)-based gels sightly decreased compared to those of native proteins. 5-15 mM CaCl2 increased the G' for both PP and PPH-based gels and decreased the strain in the creep-recovery test. Scanning electron microscopy (SEM) showed the presence of smaller protein aggregates in the PPH-based gels compared to PP gels and the gel network became denser, and more compact and heterogenous in the presence of 15 and 25 mM CaCl2. The gel dissociation assay revealed that hydrophobic interactions and hydrogen bonds were the dominant forces to maintain the gel structure. In vitro digestion showed that the soluble protein content in PPH-based gels was 10 ∼ 30 % higher compared to those of the PP counterpart. CaCl2 addition reduced protein digestibility with a concentration dependent behavior. The results obtained show contrasting effects of limited proteolysis and CaCl2 on the gelling capacity and digestibility of commercial pea proteins. These findings offer practical guidelines for developing pea protein-based food products with a balanced texture and protein nutrition through formulation and enzymatic pre-treatment.
Collapse
Affiliation(s)
- Niloufar Nourmohammadi
- Department of Animal, Veterinary and Food Sciences, University of Idaho, 875 Perimeter Drive, Moscow, ID 83844, United States
| | - Osvaldo H Campanella
- Department of Food Science and Technology, the Ohio State University, 2015 Fyffe Rd, Columbus, OH 43210, United States
| | - Da Chen
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN47907, United States.
| |
Collapse
|
7
|
Ma B, Chen H, Gong J, Liu W, Wei X, Zhang Y, Li X, Li M, Wang Y, Shang S, Tian B, Li Y, Wang R, Tan Z. Enhancing Protein Solubility via Glycosylation: From Chemical Synthesis to Machine Learning Predictions. Biomacromolecules 2024; 25:3001-3010. [PMID: 38598264 DOI: 10.1021/acs.biomac.4c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Glycosylation is a valuable tool for modulating protein solubility; however, the lack of reliable research strategies has impeded efficient progress in understanding and applying this modification. This study aimed to bridge this gap by investigating the solubility of a model glycoprotein molecule, the carbohydrate-binding module (CBM), through a two-stage process. In the first stage, an approach involving chemical synthesis, comparative analysis, and molecular dynamics simulations of a library of glycoforms was employed to elucidate the effect of different glycosylation patterns on solubility and the key factors responsible for the effect. In the second stage, a predictive mathematical formula, innovatively harnessing machine learning algorithms, was derived to relate solubility to the identified key factors and accurately predict the solubility of the newly designed glycoforms. Demonstrating feasibility and effectiveness, this two-stage approach offers a valuable strategy for advancing glycosylation research, especially for the discovery of glycoforms with increased solubility.
Collapse
Affiliation(s)
- Bo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hedi Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Jinyuan Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wenqiang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiuli Wei
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yajing Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meng Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yani Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shiying Shang
- Center of Pharmaceutical Technology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Boxue Tian
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yaohao Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ruihan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Chemical Engineering College, Hebei Normal University of Science and Technology, Qinhuangdao 066600, China
| | - Zhongping Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
8
|
Mikhaylova VV, Eronina TB. Effects of osmolytes under crowding conditions on the properties of muscle glycogen phosphorylase b. Biochimie 2024; 220:48-57. [PMID: 38128775 DOI: 10.1016/j.biochi.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
The study of the relationship between the activity and stability of enzymes under crowding conditions in the presence of osmolytes is important for understanding the functioning of a living cell. The effect of osmolytes (trehalose and betaine) on the secondary and tertiary structure and activity of muscle glycogen phosphorylase b (Phb) under crowding conditions created by PEG 2000 and PEG 20000 was investigated using dynamic light scattering, differential scanning calorimetry, circular dichroism spectroscopy, fluorimetry and enzymatic activity assay. At 25 °C PEGs increased Phb activity, but PEG 20000 to a greater extent. Wherein, PEG 20000 significantly destabilized its tertiary and secondary structure, in contrast to PEG 2000. Trehalose removed the effects of PEGs on Phb, while betaine significantly reduced the activating effect of PEG 20000 without affecting the action of PEG 2000. Under heat stress at 48 °C, the protective effect of osmolytes under crowding conditions was more pronounced than at room temperature, and the Phb activity in the presence of osmolytes was higher in these conditions than in diluted solutions. These results provide important insights into the complex mechanism, by which osmolytes affect the structure and activity of Phb under crowding conditions.
Collapse
Affiliation(s)
- Valeriya V Mikhaylova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russia.
| | - Tatiana B Eronina
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russia
| |
Collapse
|
9
|
Moon J, Hu G, Hayashi T. Application of Machine Learning in the Quantitative Analysis of the Surface Characteristics of Highly Abundant Cytoplasmic Proteins: Toward AI-Based Biomimetics. Biomimetics (Basel) 2024; 9:162. [PMID: 38534847 DOI: 10.3390/biomimetics9030162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Proteins in the crowded environment of human cells have often been studied regarding nonspecific interactions, misfolding, and aggregation, which may cause cellular malfunction and disease. Specifically, proteins with high abundance are more susceptible to these issues due to the law of mass action. Therefore, the surfaces of highly abundant cytoplasmic (HAC) proteins directly exposed to the environment can exhibit specific physicochemical, structural, and geometrical characteristics that reduce nonspecific interactions and adapt to the environment. However, the quantitative relationships between the overall surface descriptors still need clarification. Here, we used machine learning to identify HAC proteins using hydrophobicity, charge, roughness, secondary structures, and B-factor from the protein surfaces and quantified the contribution of each descriptor. First, several supervised learning algorithms were compared to solve binary classification problems for the surfaces of HAC and extracellular proteins. Then, logistic regression was used for the feature importance analysis of descriptors considering model performance (80.2% accuracy and 87.6% AUC) and interpretability. The HAC proteins showed positive correlations with negatively and positively charged areas but negative correlations with hydrophobicity, the B-factor, the proportion of beta structures, roughness, and the proportion of disordered regions. Finally, the details of each descriptor could be explained concerning adaptative surface strategies of HAC proteins to regulate nonspecific interactions, protein folding, flexibility, stability, and adsorption. This study presented a novel approach using various surface descriptors to identify HAC proteins and provided quantitative design rules for the surfaces well-suited to human cellular crowded environments.
Collapse
Affiliation(s)
- Jooa Moon
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8502, Japan
| | - Guanghao Hu
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8502, Japan
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8502, Japan
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-0882, Japan
| |
Collapse
|
10
|
Amaya JA, Manley OM, Bian JC, Rutland CD, Leschinsky N, Ratigan SC, Makris TM. Enhancing ferryl accumulation in H 2O 2-dependent cytochrome P450s. J Inorg Biochem 2024; 252:112458. [PMID: 38141432 DOI: 10.1016/j.jinorgbio.2023.112458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
A facile strategy is presented to enhance the accumulation of ferryl (iron(IV)-oxo) species in H2O2 dependent cytochrome P450s (CYPs) of the CYP152 family. We report the characterization of a highly chemoselective CYP decarboxylase from Staphylococcus aureus (OleTSA) that is soluble at high concentrations. Examination of OleTSA Compound I (CpdI) accumulation with a variety of fatty acid substrates reveals a dependence on resting spin-state equilibrium. Alteration of this equilibrium through targeted mutagenesis of the proximal pocket favors the high-spin form, and as a result, enhances Cpd-I accumulation to nearly stoichiometric yields.
Collapse
Affiliation(s)
- Jose A Amaya
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States of America
| | - Olivia M Manley
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States of America; Department of Structural and Molecular Biochemistry, North Carolina State University, Raleigh, NC 27695, United States of America
| | - Julia C Bian
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States of America
| | - Cooper D Rutland
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States of America
| | - Nicholas Leschinsky
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States of America
| | - Steven C Ratigan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States of America
| | - Thomas M Makris
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States of America; Department of Structural and Molecular Biochemistry, North Carolina State University, Raleigh, NC 27695, United States of America; Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States of America.
| |
Collapse
|
11
|
Jo BH. Improved Solubility and Stability of a Thermostable Carbonic Anhydrase via Fusion with Marine-Derived Intrinsically Disordered Solubility Enhancers. Int J Mol Sci 2024; 25:1139. [PMID: 38256209 PMCID: PMC10816239 DOI: 10.3390/ijms25021139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Carbonic anhydrase (CA), an enzyme catalyzing the reversible hydration reaction of carbon dioxide (CO2), is considered a promising biocatalyst for CO2 reduction. The α-CA of Thermovibrio ammonificans (taCA) has emerged as a compelling candidate due to its high thermostability, a critical factor for industrial applications. However, the low-level expression and poor in vitro solubility have hampered further utilization of taCA. Recently, these limitations have been addressed through the fusion of the NEXT tag, a marine-derived, intrinsically disordered small peptide that enhances protein expression and solubility. In this study, the solubility and stability of NEXT-taCA were further investigated. When the linker length between the NEXT tag and the taCA was shortened, the expression level decreased without compromising solubility-enhancing performance. A comparison between the NEXT tag and the NT11 tag demonstrated the NEXT tag's superiority in improving both the expression and solubility of taCA. While the thermostability of taCA was lower than that of the extensively engineered DvCA10, the NEXT-tagged taCA exhibited a 30% improvement in long-term thermostability compared to the untagged taCA, suggesting that enhanced solubility can contribute to enzyme thermostability. Furthermore, the bioprospecting of two intrinsically disordered peptides (Hcr and Hku tags) as novel solubility-enhancing fusion tags was explored, demonstrating their performance in improving the expression and solubility of taCA. These efforts will advance the practical application of taCA and provide tools and insights for enzyme biochemistry and bioengineering.
Collapse
Affiliation(s)
- Byung Hoon Jo
- Division of Life Science, Research Institute of Life Science, and Anti-Aging Bio Cell Factory Regional Leading Research Center (ABC-RLRC), Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
12
|
Dave U, Narain P, Mishra D, Gomes J. Aggregation of E121K mutant D-amino acid oxidase and ubiquitination-mediated autophagy mechanisms leading to amyotrophic lateral sclerosis. J Neurol Sci 2024; 456:122845. [PMID: 38134563 DOI: 10.1016/j.jns.2023.122845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 11/04/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a terminal adult-onset neuromuscular disorder. Our group has been studying this illness and previously reported novel mutations and rare mutations in a study using next-generation sequencing of DNA samples from Indian ALS patients. In this paper, we focus on the E121K mutation in the DAO gene to understand how it leads to ALS. Our experiments in SH-SY5Y cells indicate that the E121K mutation results in the accumulation of mutant protein aggregates, a change in cell morphology, and the death of neuronal cells. These protein aggregates get ubiquitinated and cause an imbalance in autophagy regulation. We observed an increase in the cellular concentrations of p62, OPTN, and LC3II. Through confocal microscopy studies, we show that the binding of p62 with ubiquitinated aggregates and its recruitment to LC3II mediates autophagosome generation. These relative changes in the key partners in autophagy increase cell death in cells harboring the E121K mutation and is a probable mechanism leading to ALS.
Collapse
Affiliation(s)
- Upma Dave
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Priyam Narain
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Dibyakanti Mishra
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - James Gomes
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
13
|
Li H, Zheng YH, Gates WP, Villacorta FJ, Ohira-Kawamura S, Kawakita Y, Ikeda K, Bordallo HN. Role of Exchange Cations and Layer Charge on the Dynamics of Confined Water. J Phys Chem A 2024; 128:261-270. [PMID: 38135662 DOI: 10.1021/acs.jpca.3c05649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Describing the dynamic behavior of water confined in clay minerals is a fascinating challenge and crucial in many research areas, ranging from materials science and geotechnical engineering to environmental sustainability. Water is the most abundant resource on Earth, and the high reactivity of naturally occurring hydrous clay minerals used since prehistoric times for a variety of applications means that water-clay interaction is a ubiquitous phenomenon in nature. We have attempted to experimentally distinguish the rotational dynamics and translational diffusion of two distinct populations of interlayer water, confined and ultraconfined, in the sodium (Na) forms of two smectite clay minerals, montmorillonite (Mt) and hectorite (Ht). Samples hydrated at a pseudo one-layer hydration (1LH) state under ambient conditions were studied with quasi-elastic neutron scattering (QENS) between 150 and 300 K. Using a simplified revised jump-diffusion and rotation-diffusion model (srJRM), we observed that while interlayer water near the ditrigonal cavity in Ht forms strong H-bonds to both adjacent surface O and structural OH, H-bonding of other more prevalent interlayer water with the surface O is weaker compared to Mt, inducing a higher temperature for dynamical changes of confined water. Given the lower layer charge and faster dynamics observed for Ht compared to Mt, we consider this strong evidence confirming the influence of the interlayer cation and surfaces on confined water dynamics.
Collapse
Affiliation(s)
- Hua Li
- Department of Physics, Jinan University, Guangzhou 510632, China
| | - Yin-Hao Zheng
- Department of Physics, Jinan University, Guangzhou 510632, China
| | - Will P Gates
- Institute for Frontier Materials, Deakin University, Melbourne-Burwood, 221 Burwood Highway, Burwood, Victoria 3125, Australia
| | - F J Villacorta
- ESS-Bilbao, Parque Científico y Tecnológico Bizkaia Nave 201, 48170 Zamudio, Spain
| | | | - Yukinobu Kawakita
- Neutron Science Section, MLF Division, J-PARC Center, Tokai 319-1106, Japan
| | - Kazutaka Ikeda
- Neutron Science Section, MLF Division, J-PARC Center, Tokai 319-1106, Japan
- Neutron Industrial Application Promotion Center, CROSS, 203-1 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1106, Japan
| | - Heloisa N Bordallo
- The Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
14
|
Mendes MSM, Rosa ME, Coutinho JAP, Freire MG, E Silva FA. Improved accuracy in pentraxin-3 quantification assisted by aqueous biphasic systems as serum pretreatment strategies. Int J Biol Macromol 2023; 253:127540. [PMID: 37863128 DOI: 10.1016/j.ijbiomac.2023.127540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Although pentraxin-3 holds promise as a diagnosis/prognosis biomarker of microbial infections and lung cancer, its analysis in human serum can be constrained by matrix effects caused by high abundance proteins - human serum albumin and immunoglobulin G. Aqueous biphasic systems composed of polymers and citrate buffer are here proposed as a serum pretreatment step to improve the accuracy of pentraxin-3 analysis. Binodal curves were determined to identify the compositions required to form two phases and to correlate the polymers' properties and performance in serum pretreatment and biomarker extraction. Aqueous biphasic systems were evaluated regarding their ability to deplete human serum albumin and immunoglobulin G at the interphase. Polymers of relatively high to intermediate hydrophobicity were unveiled as efficient components to deplete high abundance serum proteins. Considering the possibility to extract pentraxin-3 from human serum into the polymer-rich phase, the system composed of polyethylene glycol with a molecular weight of 1000 g·mol-1 simultaneously achieved >93 % of human serum albumin and immunoglobulin G depletion and complete biomarker extraction. The accuracy of analysis of pretreated human serum by enzyme-linked immunosorbent assays outperformed that of a non-pretreated sample, with a relative error of 0.8 % compared to 14.6 %, contributing to boost pentraxin-3 usefulness as a biomarker.
Collapse
Affiliation(s)
- Maria S M Mendes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Marguerita E Rosa
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - João A P Coutinho
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Mara G Freire
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| | - Francisca A E Silva
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
15
|
Wang Y, Tian Y, Sun J, Yang H. Physicochemical properties of grass carp surimi as affected by pH and NaCl concentration during washing. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2197168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
16
|
Kapoor R, Karabulut G, Mundada V, Feng H. Non-thermal ultrasonic contact drying of pea protein isolate suspensions: Effects on physicochemical and functional properties. Int J Biol Macromol 2023; 253:126816. [PMID: 37690656 DOI: 10.1016/j.ijbiomac.2023.126816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Pea protein isolate (PPI) is a popular plant-based ingredient, typically produced through alkaline-isoelectric precipitation and thermal drying. However, high temperatures and long drying times encountered in thermal drying can denature PPI and cause loss of functionality. This study investigated the use of an innovative ultrasonic dryer (US-D) at 30 °C for drying PPI suspensions, compared to conventional hot air drying (HA-D) at 60 °C. US-D led to an increase in the drying rate and correspondingly reduced the drying time by 55 %, when compared to HA-D. The average effective moisture diffusivity in the US-D process was 325 % higher than that in the HA-D process. The resulting PPI exhibited higher solubility, emulsification, and foaming properties than HA-D PPI, with a unique surface morphology and higher surface area. This study demonstrated that drying with acoustic energy is a promising approach for producing dried plant protein ingredients with improved functional properties, reduced processing time, and increased production efficiency.
Collapse
Affiliation(s)
- Ragya Kapoor
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
| | - Gulsah Karabulut
- Sakarya University, Faculty of Engineering, Department of Food Engineering, 54187, Sakarya, Turkiye
| | - Vedant Mundada
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
| | - Hao Feng
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA; Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA.
| |
Collapse
|
17
|
Hosseini AR, Zahabi N. Fabrication and rheological properties of a novel interpenetrating network hydrogel based on sage seed hydrocolloid and globulin from the hydrocolloid extraction by-product. Int J Biol Macromol 2023; 253:127452. [PMID: 37844817 DOI: 10.1016/j.ijbiomac.2023.127452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/03/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
In this study, interpenetrating polymer network hydrogels were developed based on sage seed gum (SSG) and globulin protein (Glo) extracted from the mucilage-free seeds. By combining Glo hydrogel with the SSG network the inherent weak gelation of the single SSG system was compensated. As the fraction of Glo increased, various properties of the interpenetrating polymer network (IPN) hydrogels improved substantially. Electrophoretic analysis under reducing conditions showed that Glo dissociated into subunits of approximately 30 kDa and 20 kDa, suggesting it comprises 11S globulin. FTIR spectrum revealed new peaks at 1645 cm-1 and 1537 cm-1 in the amide I and II regions, respectively, for the IPN hydrogels, indicating interactions between two hydrogel networks. Based on the weight loss measurements, the IPN hydrogels exhibited lower mass loss, particularly at higher Glo fractions up to 6 %. The IPN hydrogels also displayed enhanced elasticity, pseudoelasticity, thixotropy, and creep resistance compared to SSG hydrogel, indicating suitability for food, pharmaceutical, and biomedical applications. More broadly, this research provides a sustainable strategy toward innovative material development while advancing bio-based hydrogels.
Collapse
Affiliation(s)
- Ahmad Reza Hosseini
- Department of Food Science and Technology, Ferdowsi University of Mashhad, PO Box: 91785-1163, Mashhad, Iran; Development and Innovation Center of IMFR Co., PO Box: 25784-9172, Tehran, Iran.
| | - Nafiseh Zahabi
- Department of Food Science and Technology, Shiraz University, PO Box: 71946-8433, Shiraz, Iran
| |
Collapse
|
18
|
Han G, Zhao S, Sun F, Xia X, Liu H, Kong B. A novel strategy for improving the stability of myofibrillar protein emulsions at low ionic strength using high-intensity ultrasound combined with non-enzymatic glycation. ULTRASONICS SONOCHEMISTRY 2023; 101:106694. [PMID: 37979277 PMCID: PMC10692711 DOI: 10.1016/j.ultsonch.2023.106694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/30/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023]
Abstract
Poor emulsification of myofibrillar proteins (MPs) limits the production of meat protein emulsion-type products, and it is related to the myosin self-assembles in low-salt settings. The effect of high-intensity ultrasound (HIU) pretreatment combined with non-enzymatic glycation on MP-stabilized emulsions in low-salt settings was investigated in this study, and the potential mechanism was revealed. The results indicated that, compared to using either HIU or glycation treatment alone, HIU pretreatment in combination with glycation significantly improves the physical stability of emulsions while increasing the distribution uniformity and reducing the droplet particle size from 18.05 μm to 2.54 μm (P < 0.05). Correspondingly, the emulsion prepared using this approach exhibited a relatively high absolute zeta potential (-23.58 mV) and a high interfacial protein content (38.78 %) (P < 0.05), promoting molecular rearrangement and forming a continuous and stable interfacial layer. HIU pretreatment combined with glycation could offer reinforced electrostatic repulsion and steric hindrance to depolymerize self-assembled filamentous polymers, thus enhancing the stability of droplets. Additionally, the thermal sensitivity of the glycated MPs pretreated by HIU was remarkably reduced, thus improving the thermal stability of the corresponding emulsions.
Collapse
Affiliation(s)
- Ge Han
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Siqi Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
19
|
Romero-Romero ML, Garcia-Seisdedos H. Agglomeration: when folded proteins clump together. Biophys Rev 2023; 15:1987-2003. [PMID: 38192350 PMCID: PMC10771401 DOI: 10.1007/s12551-023-01172-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/25/2023] [Indexed: 01/10/2024] Open
Abstract
Protein self-association is a widespread phenomenon that results in the formation of multimeric protein structures with critical roles in cellular processes. Protein self-association can lead to finite protein complexes or open-ended, and potentially, infinite structures. This review explores the concept of protein agglomeration, a process that results from the infinite self-assembly of folded proteins. We highlight its differences from other better-described processes with similar macroscopic features, such as aggregation and liquid-liquid phase separation. We review the sequence, structural, and biophysical factors influencing protein agglomeration. Lastly, we briefly discuss the implications of agglomeration in evolution, disease, and aging. Overall, this review highlights the need to study protein agglomeration for a better understanding of cellular processes.
Collapse
Affiliation(s)
- M. L. Romero-Romero
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology, Dresden, Germany
| | - H. Garcia-Seisdedos
- Department of Structural and Molecular Biology, Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| |
Collapse
|
20
|
Oeller M, Kang RJD, Bolt HL, Gomes Dos Santos AL, Weinmann AL, Nikitidis A, Zlatoidsky P, Su W, Czechtizky W, De Maria L, Sormanni P, Vendruscolo M. Sequence-based prediction of the intrinsic solubility of peptides containing non-natural amino acids. Nat Commun 2023; 14:7475. [PMID: 37978172 PMCID: PMC10656490 DOI: 10.1038/s41467-023-42940-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
Non-natural amino acids are increasingly used as building blocks in the development of peptide-based drugs as they expand the available chemical space to tailor function, half-life and other key properties. However, while the chemical space of modified amino acids (mAAs) such as residues containing post-translational modifications (PTMs) is potentially vast, experimental methods for measuring the developability properties of mAA-containing peptides are expensive and time consuming. To facilitate developability programs through computational methods, we present CamSol-PTM, a method that enables the fast and reliable sequence-based prediction of the intrinsic solubility of mAA-containing peptides in aqueous solution at room temperature. From a computational screening of 50,000 mAA-containing variants of three peptides, we selected five different small-size mAAs for a total number of 37 peptide variants for experimental validation. We demonstrate the accuracy of the predictions by comparing the calculated and experimental solubility values. Our results indicate that the computational screening of mAA-containing peptides can extend by over four orders of magnitude the ability to explore the solubility chemical space of peptides and confirm that our method can accurately assess the solubility of peptides containing mAAs. This method is available as a web server at https://www-cohsoftware.ch.cam.ac.uk/index.php/camsolptm .
Collapse
Affiliation(s)
- Marc Oeller
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ryan J D Kang
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Hannah L Bolt
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Ana L Gomes Dos Santos
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Annika Langborg Weinmann
- Early Chemical Development, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Antonios Nikitidis
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Pavol Zlatoidsky
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Wu Su
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Werngard Czechtizky
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Leonardo De Maria
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Pietro Sormanni
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
21
|
Wilson C, Karttunen M, de Groot BL, Gapsys V. Accurately Predicting Protein p Ka Values Using Nonequilibrium Alchemy. J Chem Theory Comput 2023; 19:7833-7845. [PMID: 37820376 PMCID: PMC10653114 DOI: 10.1021/acs.jctc.3c00721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Indexed: 10/13/2023]
Abstract
The stability, solubility, and function of a protein depend on both its net charge and the protonation states of its individual residues. pKa is a measure of the tendency for a given residue to (de)protonate at a specific pH. Although pKa values can be resolved experimentally, theory and computation provide a compelling alternative. To this end, we assess the applicability of a nonequilibrium (NEQ) alchemical free energy method to the problem of pKa prediction. On a data set of 144 residues that span 13 proteins, we report an average unsigned error of 0.77 ± 0.09, 0.69 ± 0.09, and 0.52 ± 0.04 pK for aspartate, glutamate, and lysine, respectively. This is comparable to current state-of-the-art predictors and the accuracy recently reached using free energy perturbation methods (e.g., FEP+). Moreover, we demonstrate that our open-source, pmx-based approach can accurately resolve the pKa values of coupled residues and observe a substantial performance disparity associated with the lysine partial charges in Amber14SB/Amber99SB*-ILDN, for which an underused fix already exists.
Collapse
Affiliation(s)
- Carter
J. Wilson
- Department
of Mathematics, The University of Western
Ontario, N6A 5B7 London, Canada
- Centre
for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, N6A 5B7 London, Canada
| | - Mikko Karttunen
- Centre
for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, N6A 5B7 London, Canada
- Department
of Physics & Astronomy, The University
of Western Ontario, N6A
5B7 London, Canada
- Department
of Chemistry, The University of Western
Ontario, N6A 5B7 London, Canada
| | - Bert L. de Groot
- Computational
Biomolecular Dynamics Group, Department of Theoretical and Computational
Biophysics, Max Planck Institute for Multidisciplinary
Sciences, 37077 Göttingen, Germany
| | - Vytautas Gapsys
- Computational
Biomolecular Dynamics Group, Department of Theoretical and Computational
Biophysics, Max Planck Institute for Multidisciplinary
Sciences, 37077 Göttingen, Germany
- Computational
Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| |
Collapse
|
22
|
Beaulieu JC, Boue SM, Goufo P. Health-promoting germinated rice and value-added foods: a comprehensive and systematic review of germination effects on brown rice. Crit Rev Food Sci Nutr 2023; 63:11570-11603. [PMID: 35816149 DOI: 10.1080/10408398.2022.2094887] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the last 30 years, thousands of articles have appeared examining the effects of soaking and germinating brown rice (BR). Variable germination conditions and methods have been employed to measure different health-beneficial parameters in a diverse germplasm of BR. Research results may therefore appear inconsistent with occasional anomalies, and it may be difficult to reach consensus concerning expected trends. Herein, we amassed a comprehensive review on germinated brown rice (GBR), attempting to codify 133 peer-reviewed articles regarding the effects on 164 chemical parameters related to health and nutrition in BR and in value-added food products. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA-2020) approach was used to direct the flow of the literature search. A pair-wise comparison t-test was performed to deliver an overall approach indicating when a given compound has been found to significantly increase or decrease through germination, which was grouped into GABA and polyamines, γ-Oryzanol and phytosterols, phenolic compounds, vitamins, proteins and amino acids, starchy carbohydrates, free sugars, lipids, minerals and phytic acid. This resource will stimulate interest in germinating rice and optimistically help increase both production and consumption of highly nutritious, health-beneficial rice with pigmented bran.
Collapse
Affiliation(s)
- John C Beaulieu
- Food Processing & Sensory Quality Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana, USA
| | - Stephen M Boue
- Food Processing & Sensory Quality Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana, USA
| | - Piebiep Goufo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
23
|
Tan FH, Ng JF, Mohamed Alitheen NB, Muhamad A, Yong CY, Lee KW. A simple and high efficiency purification of His-tagged turnip yellow mosaic virus-like particle (TYMV-VLP) by nickel ion affinity precipitation. J Virol Methods 2023; 319:114771. [PMID: 37437780 DOI: 10.1016/j.jviromet.2023.114771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Virus-like particles (VLPs) is one of the most favourable subjects of study, especially in the field of nanobiotechnology and vaccine development because they possess good immunogenicity and self-adjuvant properties. Conventionally, VLPs can be tagged and purified using affinity chromatography or density gradient ultracentrifugation which is costly and time-consuming. Turnip yellow mosaic virus (TYMV) is a plant virus, where expression of the viral coat protein (TYMVc) in Escherichia coli (E. coli) has been shown to form VLP. In this study, we report a non-chromatographic method for VLP purification using C-terminally His-tagged TYMVc (TYMVcHis6) as a protein model. Firstly, the TYMVcHis6 was cloned and expressed in E. coli. Upon clarification of cell lysate, nickel (II) chloride [NiCl2; 15µM or equivalent to 0.0000194% (w/v)] was added to precipitate TYMVcHis6. Following centrifugation, the pellet was resuspended in buffer containing 1mM EDTA to chelate Ni2+, which is then removed via dialysis. A total of 50% of TYMVcHis6 was successfully recovered with purity above 0.90. Later, the purified TYMVcHis6 was analysed with sucrose density ultracentrifugation, dynamic light scattering (DLS), and transmission electron microscopy (TEM) to confirm VLP formation, which is comparable to TYMVcHis6 purified using the standard immobilized metal affinity chromatography (IMAC) column. As the current method omitted the need for IMAC column and beads while significantly reducing the time needed for column washing, nickel affinity precipitation represents a novel method for the purification of VLPs displaying poly-histidine tags (His-tags).
Collapse
Affiliation(s)
- Foo Hou Tan
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Jeck Fei Ng
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | | | - Azira Muhamad
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Kajang, Selangor, Malaysia
| | - Chean Yeah Yong
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Khai Wooi Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
24
|
Baradaran M, Mahdavinia M, Naderi Soorki M, Jorfi S. Identification, Characterization, and Modeling of a Bioinsecticide Protein Isolated from Scorpion Venom gland: A Three-Finger Protein. IRANIAN BIOMEDICAL JOURNAL 2023; 27:158-66. [PMID: 37553755 PMCID: PMC10507287 DOI: 10.52547/ibj.3885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/24/2023] [Indexed: 08/10/2023]
Abstract
Background The majority of insecticides target sodium channels. The increasing emergence of resistance to the current insecticides has persuaded researchers to search for alternative compounds. Scorpion venom gland as a reservoir of peptides or proteins, which selectively target insect sodium channels. These proteins would be an appropriate source for finding new suitable anti-insect components. Methods Transcriptome of venom gland of scorpion Mesobuthus eupeus was obtained by RNA extraction and complementary DNA library synthesis. The obtained transcriptome was blasted against protein databases to find insect toxins against sodium channel based on the statistically significant similarity in sequence. Physicochemical properties of the identified protein were calculated using bioinformatics software. The three-dimensional structure of this protein was determined using homology modeling, and the final structure was assessed by molecular dynamics simulation. Results The sodium channel blocker found in the transcriptome of M. eupeus venom gland was submitted to the GenBank under the name of meuNa10, a stable hydrophilic protein consisting of 69 amino acids, with the molecular weight of 7721.77 g/mol and pI of 8.7. The tertiary structure of meuNa10 revealed a conserved LCN-type cysteine-stabilized alpha/beta domain stabilized by eight cysteine residues. The meuNa10 is a member of the 3FP superfamily consisting of three finger-like beta strands. Conclusion This study identified meuNa10 as a small insect sodium channel-interacting protein with some physicochemical properties, including stability and water-solubility, which make it a good candidate for further in vivo and in vitro experiments in order to develop a new bioinsecticide.
Collapse
Affiliation(s)
- Masoumeh Baradaran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Mahdavinia
- Department of Toxicology, School of Pharmacy, Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Naderi Soorki
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sahand Jorfi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
25
|
Baradaran M, Mahdavinia M, Naderi Soorki M, Jorfi S. Identification, Characterization, and Modeling of a Bioinsecticide Protein Isolated from Scorpion Venom gland: A Three-Finger Protein. IRANIAN BIOMEDICAL JOURNAL 2023; 27:158-66. [PMID: 37553755 PMCID: PMC10507287 DOI: 10.61186/ibj.3885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/24/2023] [Indexed: 12/17/2023]
Abstract
Background The majority of insecticides target sodium channels. The increasing emergence of resistance to the current insecticides has persuaded researchers to search for alternative compounds. Scorpion venom gland as a reservoir of peptides or proteins, which selectively target insect sodium channels. These proteins would be an appropriate source for finding new suitable anti-insect components. Methods Transcriptome of venom gland of scorpion Mesobuthus eupeus was obtained by RNA extraction and complementary DNA library synthesis. The obtained transcriptome was blasted against protein databases to find insect toxins against sodium channel based on the statistically significant similarity in sequence. Physicochemical properties of the identified protein were calculated using bioinformatics software. The three-dimensional structure of this protein was determined using homology modeling, and the final structure was assessed by molecular dynamics simulation. Results The sodium channel blocker found in the transcriptome of M. eupeus venom gland was submitted to the GenBank under the name of meuNa10, a stable hydrophilic protein consisting of 69 amino acids, with the molecular weight of 7721.77 g/mol and pI of 8.7. The tertiary structure of meuNa10 revealed a conserved LCN-type cysteine-stabilized alpha/beta domain stabilized by eight cysteine residues. The meuNa10 is a member of the 3FP superfamily consisting of three finger-like beta strands. Conclusion This study identified meuNa10 as a small insect sodium channel-interacting protein with some physicochemical properties, including stability and water-solubility, which make it a good candidate for further in vivo and in vitro experiments in order to develop a new bioinsecticide.
Collapse
Affiliation(s)
- Masoumeh Baradaran
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Mahdavinia
- Department of Toxicology, School of Pharmacy, Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Naderi Soorki
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sahand Jorfi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
26
|
Yolandani, Ma H, Li Y, Liu D, Zhou H, Liu X, Wan Y, Zhao X. Ultrasound-assisted limited enzymatic hydrolysis of high concentrated soy protein isolate: Alterations on the functional properties and its relation with hydrophobicity and molecular weight. ULTRASONICS SONOCHEMISTRY 2023; 95:106414. [PMID: 37098311 PMCID: PMC10149311 DOI: 10.1016/j.ultsonch.2023.106414] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/23/2023] [Accepted: 04/17/2023] [Indexed: 08/17/2023]
Abstract
The effects of power ultrasound (US) pretreatment on the preparation of soy protein isolate hydrolysate (SPIH) prepared at the same degree of hydrolysis (DH) of 12 % were measured. Cylindrical power ultrasound was modified into mono-frequency (20, 28, 35, 40, 50 kHz) ultrasonic cup coupled with an agitator to make it applicable for high density SPI (soy protein isolate) solutions (14 %, w/v). A comparative study of the alterations of the hydrolysates molecular weight, hydrophobics, antioxidants and functional properties change as well as their relation were explored. The results showed that under the same DH, ultrasound pretreatment decelerated the degradation of protein molecular mass and the decrease rate of the degradation lessened with the increase of ultrasonic frequency. Meanwhile, the pretreatments improved the hydrophobics and antioxidants properties of SPIH. Both surface hydrophobicity (H0) and relative hydrophobicity (RH) of the pretreated groups increased with the decrease of ultrasonic frequency. Lowest frequency (20 kHz) ultrasound pretreatment had the most improved emulsifying properties and water holding capacities, although decrease in the viscosity and solubility were found. Most of these alterations were correspondence toward the change in hydrophobics properties and molecular mass. In conclusion, the frequency selection of ultrasound pretreatment is essential for the alteration of SPIH functional qualities prepared at the same DH.
Collapse
Affiliation(s)
- Yolandani
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, People's Republic of China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, People's Republic of China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Yunliang Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, People's Republic of China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Dandan Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, People's Republic of China
| | - Hongchang Zhou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, People's Republic of China
| | - Xiaoshuang Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, People's Republic of China
| | - Yuming Wan
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, People's Republic of China
| | - Xiaoxue Zhao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
27
|
Rosace A, Bennett A, Oeller M, Mortensen MM, Sakhnini L, Lorenzen N, Poulsen C, Sormanni P. Automated optimisation of solubility and conformational stability of antibodies and proteins. Nat Commun 2023; 14:1937. [PMID: 37024501 PMCID: PMC10079162 DOI: 10.1038/s41467-023-37668-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Biologics, such as antibodies and enzymes, are crucial in research, biotechnology, diagnostics, and therapeutics. Often, biologics with suitable functionality are discovered, but their development is impeded by developability issues. Stability and solubility are key biophysical traits underpinning developability potential, as they determine aggregation, correlate with production yield and poly-specificity, and are essential to access parenteral and oral delivery. While advances for the optimisation of individual traits have been made, the co-optimization of multiple traits remains highly problematic and time-consuming, as mutations that improve one property often negatively impact others. In this work, we introduce a fully automated computational strategy for the simultaneous optimisation of conformational stability and solubility, which we experimentally validate on six antibodies, including two approved therapeutics. Our results on 42 designs demonstrate that the computational procedure is highly effective at improving developability potential, while not affecting antigen-binding. We make the method available as a webserver at www-cohsoftware.ch.cam.ac.uk.
Collapse
Affiliation(s)
- Angelo Rosace
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield road, CB2 1EW, Cambridge, UK
- Master in Bioinformatics for Health Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Anja Bennett
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield road, CB2 1EW, Cambridge, UK
- Department of Mammalian Expression, Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
- BRIC, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Marc Oeller
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield road, CB2 1EW, Cambridge, UK
| | - Mie M Mortensen
- Department of Purification Technologies, Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
- Faculty of Engineering and Science, Department of Biotechnology, Chemistry and Environmental Engineering, University of Aalborg, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Laila Sakhnini
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield road, CB2 1EW, Cambridge, UK
- Department of Biophysics and Injectable Formulation 2, Global Research Technologies, Novo Nordisk A/S, Måløv, 2760, Denmark
| | - Nikolai Lorenzen
- Department of Biophysics and Injectable Formulation 2, Global Research Technologies, Novo Nordisk A/S, Måløv, 2760, Denmark
| | - Christian Poulsen
- Department of Mammalian Expression, Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park 1, 2760, Måløv, Denmark
| | - Pietro Sormanni
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield road, CB2 1EW, Cambridge, UK.
| |
Collapse
|
28
|
Rembert KB, Zhang J, Lee YJ. Effects of Salts and Surface Charge on the Biophysical Stability of a Low pI Monoclonal Antibody. J Pharm Sci 2023; 112:947-953. [PMID: 36395898 DOI: 10.1016/j.xphs.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
The impact of five representative Hofmeister salts (NaCl, KCl, MgCl2, Na2SO4, and NaSCN) on the thermal stability and aggregation kinetics of a slightly acidic monoclonal antibody (mAb) were investigated under different pH conditions. The thermal stability of the mAb was assessed by measuring the lowest unfolding transition temperature, Tm, with differential scanning fluorimetry. MgCl2 and NaSCN significantly decreased Tm at all three charged states of the mAb, but to the greatest extent when the mAb surface charge was net positive. Non-native aggregation kinetics was monitored by measuring Rayleigh light scattering. When the mAb surface charge was net positive or net neutral, the nucleation rate increased non-monotonically with MgCl2 and NaSCN but decreased monotonically with NaCl, KCl, and Na2SO4. By contrast, when the mAb surface was negatively charged, there were only minor changes in the nucleation rate with all salts tested. Furthermore, there was less structural perturbation and slower aggregation rates when the mAb was net negatively charged than when it was net neutrally or positively charged. The observed salt effects on thermal unfolding are consistent with ion-specific mechanisms dominated by short-range amide backbone binding. On the other hand, the salt effects on nucleation rates appear to be influenced by both amide backbone binding and long-range electrostatic binding of ions to charged amino acid side chains.
Collapse
Affiliation(s)
- Kelvin B Rembert
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Jifeng Zhang
- Department of Drug Delivery and Device Development, Medimmune-AstraZeneca, Gaithersburg, MD 20878, United States.
| | - Young Jong Lee
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States.
| |
Collapse
|
29
|
Kohler V, Andréasson C. Reversible protein assemblies in the proteostasis network in health and disease. Front Mol Biosci 2023; 10:1155521. [PMID: 37021114 PMCID: PMC10067754 DOI: 10.3389/fmolb.2023.1155521] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
While proteins populating their native conformations constitute the functional entities of cells, protein aggregates are traditionally associated with cellular dysfunction, stress and disease. During recent years, it has become clear that large aggregate-like protein condensates formed via liquid-liquid phase separation age into more solid aggregate-like particles that harbor misfolded proteins and are decorated by protein quality control factors. The constituent proteins of the condensates/aggregates are disentangled by protein disaggregation systems mainly based on Hsp70 and AAA ATPase Hsp100 chaperones prior to their handover to refolding and degradation systems. Here, we discuss the functional roles that condensate formation/aggregation and disaggregation play in protein quality control to maintain proteostasis and why it matters for understanding health and disease.
Collapse
Affiliation(s)
- Verena Kohler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Claes Andréasson
- Department of Molecular Biosciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
30
|
Gravel A, Doyen A. Pulse Globulins 11S and 7S: Origins, Purification Methods, and Techno-functional Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2704-2717. [PMID: 36722439 DOI: 10.1021/acs.jafc.2c07507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A growing interest in pulse proteins in recent years results from their crucial role in the transition toward sustainable food systems. Consequently, current research is mainly focused on the production of protein ingredients and the evaluation of their nutritional and techno-functional properties for the development of animal product analogues. However, the individual impacts of the major proteins 11S legumin and 7S vicilin on pulse techno-functionalities remains unclear. Thus, this review aims to represent current knowledge on pulse 11S and 7S globulin origins, extraction, separation, and purification methods as well as their techno-functionalities. This paper also discusses the principal challenges related to pulse vicilin and legumin purification methods, such as efficiency and environmental concerns, as well as 11S/7S ratio variability. This review highlights the fact that 11S and 7S fractions serve different purposes in pulse functionality and that more efficient and eco-friendly purification techniques are required to properly assess their respective functional attributes. Such research would allow the determination of optimal 11S/7S ratios for the integration of pulse protein ingredients in various food formulations. Hence, food industries would be able to select species/varieties, agronomical methods, and processing methods to produce ingredients with suitable 11S/7S ratios, catering to consumers' ethical, environmental, and nutritional concerns.
Collapse
Affiliation(s)
- Alexia Gravel
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Laval University, Quebec City, Quebec G1V 0A6, Canada
| | - Alain Doyen
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Laval University, Quebec City, Quebec G1V 0A6, Canada
| |
Collapse
|
31
|
Wang H, Sun H, Gao C, Chen Q, Dong W, Chang Y, Luo H. A phase separation process induced by pH change for purification of His-tagged protein at low salt concentration. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2022.108792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Effect of Enzymatic Hydrolysis on Solubility and Emulsifying Properties of Lupin Proteins (Lupinus luteus). COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Solubility and emulsifying properties are important functional properties associated with proteins. However, many plant proteins have lower techno-functional properties, which limit their functional performance in many formulations. Therefore, the objective of this study was to investigate the effect of protein hydrolysis by commercial enzymes to improve their solubility and emulsifying properties. Lupin protein isolate (LPI) was hydrolyzed by 7 commercial proteases using different E/S ratios and hydrolysis times while the solubility and emulsifying properties were evaluated. The results showed that neutral and alkaline proteases are most efficient in hydrolyzing lupin proteins than acidic proteases. Among the proteases, Protamex® (alkaline protease) showed the highest DH values after 5 h of protein hydrolysis. Meanwhile, protein solubility of LPI hydrolysates was significantly higher (p < 0.05) than untreated LPI at all pH analyzed values. Moreover, the emulsifying capacity (EC) of undigested LPI was lower than most of the hydrolysates, except for acidic proteases, while emulsifying stability (ES) was significantly higher (p < 0.05) than most LPI hydrolysates by acidic proteases, except for LPI hydrolyzed with Acid Stable Protease with an E/S ratio of 0.04. In conclusion, the solubility, and emulsifying properties of lupin (Lupinus luteus) proteins can be improved by enzymatic hydrolysis using commercial enzymes.
Collapse
|
33
|
Current insights into protein solubility: A review of its importance for alternative proteins. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
El-Sohaimy SA, Androsova NV, Toshev AD, El Enshasy HA. Nutritional Quality, Chemical, and Functional Characteristics of Hemp (Cannabis sativa ssp. sativa) Protein Isolate. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212825. [PMID: 36365277 PMCID: PMC9656340 DOI: 10.3390/plants11212825] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 06/01/2023]
Abstract
(1) Background: Hemp seeds are a source of plant-based protein, making them an appropriate supplement to a plant-based diet. The current work was focused on the preparation of the protein isolate from the hemp seeds with eco-friendly and cheap technology. Moreover, it evaluated the physicochemical and functional properties of hemp protein isolate for its potential application in food manufacturing. (2) Methods: The protein content of hemp seeds has been isolated through two main steps: (1) extraction of the protein content of an alkaline pH (10-12); (2) precipitation of the extracted protein on an acidic pH as an isoelectric point (pH = 4.5). (3) Results: The edastin protein is the most predominant protein in the protein profile with a molecular weight of 58.1 KDa beside albumin with a molecular weight of 31.5 KDa. The FTIR spectrum detected the absorption peaks of the amide I at 1750 and 1600 cm-1, which pointed to C=O stretching while N-H stretching at 1650-1580 cm-1. The peak at 3250 is found to be related to N-H stretching of the aliphatic primary amine (3400-3300 cm-1) and the N-H stretching for the secondary (II) amine appeared at 3350-3310 cm-1. The Hemp protein isolate (HPI) showed a high content of arginine (15.52 g/100 g), phenylalanine + tyrosine (9.63 g/100 g), methionine + cysteine (5.49 g/100 g), leucine + isoleucine (5.21 g/100 g), and valine (4.53 g/100 g). It contains a moderate level of threonine (3.29 g/100 g) and lysine (2.50 g/100 g) with tryptophan as the limiting amino acid (0.22 g/100 g). The HPI showed an appropriate water-and-oil holding capacity (4.5 ± 2.95 and 2.33 ± 1.88 mL/g, respectively). The foaming capacity of the HPI was increased with increasing the pH values to reach the maximum value at pH 11 (67.23 ± 3.20%). The highest emulsion ability index of the HPI was noted at pH 9 (91.3 ± 2.57 m2/g) with low stability (19.15 ± 2.03). (4) Conclusions: A strong positive correlation (r = 0.623) was shown between protein concentration and solubility. The current easy-to-use, cheap, and eco-friendly technology provides the industrial sector with a cheap protein isolate for manufacturing protein-rich diet and beverages. The HPI showed a good nutritional quality and functional properties that might be helpful in utilizing it in different food products such as beverages and bakery products.
Collapse
Affiliation(s)
- Sobhy Ahmed El-Sohaimy
- Department of Technology and Organization of Public Catering, Institute of Sport Tourism and Service, South Ural State University, 4544080 Chelyabinsk, Russia
- Department of Food Technology, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt
| | - Natalia Vladimirovna Androsova
- Department of Technology and Organization of Public Catering, Institute of Sport Tourism and Service, South Ural State University, 4544080 Chelyabinsk, Russia
| | - Abduvali Djabarovich Toshev
- Department of Technology and Organization of Public Catering, Institute of Sport Tourism and Service, South Ural State University, 4544080 Chelyabinsk, Russia
| | - Hesham Ali El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai 81310, Malaysia
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Malaysia
- City of Scientific Research and Technology Applications (SRTA), New Burg Al Arab, Alexandria 21934, Egypt
| |
Collapse
|
35
|
Averina E, Konnerth J, van Herwijnen HWG. Protein Adhesives: Investigation of Factors Affecting Wet Strength of Alkaline Treated Proteins Crosslinked with Glyoxal. Polymers (Basel) 2022; 14:polym14204351. [PMID: 36297929 PMCID: PMC9612214 DOI: 10.3390/polym14204351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Proteins obtained as side-products from starch production (potato and corn proteins) were investigated for wood adhesives application. To improve the wet strength of protein-based adhesives, glyoxal was added as a crosslinking agent. The effect of glyoxal on the wet strength of protein-based adhesives was investigated at different pH, protein: glyoxal ratios and solid content. The alkaline pretreatment of proteins was carried out by two different methods which reduced the molecular weight of proteins to different extents. The effect of molecular weight reduction on the wet strength of protein-glyoxal adhesives was also observed. It was found that pH level affects wet strength more significantly compared to solid content and protein-to-crosslinker ratio. Potato and corn proteins crosslinked with glyoxal showed maximal wet strength results in an acidic pH range.
Collapse
Affiliation(s)
- Elena Averina
- Institute of Wood Technology and Renewable Materials, Department of Material Sciences and Process Engineering, University of Natural Resources and Life Science, Konrad-Lorenz-Strasse 24, 3430 Tulln an der Donau, Austria
- Wood K Plus—Kompetenzzentrum Holz GmbH, Altenberger Straße 69, 4040 Linz, Austria
- Correspondence:
| | - Johannes Konnerth
- Institute of Wood Technology and Renewable Materials, Department of Material Sciences and Process Engineering, University of Natural Resources and Life Science, Konrad-Lorenz-Strasse 24, 3430 Tulln an der Donau, Austria
| | | |
Collapse
|
36
|
Smułek W, Kaczorek E. Factors Influencing the Bioavailability of Organic Molecules to Bacterial Cells-A Mini-Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196579. [PMID: 36235114 PMCID: PMC9570905 DOI: 10.3390/molecules27196579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/26/2022]
Abstract
The bioavailability of organic compounds to bacterial cells is crucial for their vital activities. This includes both compounds that are desirable to the cells (e.g., sources of energy, carbon, nitrogen, and other nutrients) and undesirable compounds that are toxic to the cells. For this reason, bioavailability is an issue of great importance in many areas of human activity that are related to bacteria, e.g., biotechnological production, bioremediation of organic pollutants, and the use of antibiotics. This article proposes a classification of factors determining bioavailability, dividing them into factors at the physicochemical level (i.e., those related to the solubility of a chemical compound and its transport in aqueous solution) and factors at the microbiological level (i.e., those related to adsorption on the cell surface and those related to transport into the cell). Awareness of the importance of and the mechanisms governing each of the factors described allows their use to change bioavailability in the desired direction.
Collapse
|
37
|
Influence of the fractionation method on the protein composition and functional properties. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Nazarian Z, Arab SS. Discovery of carboxylesterases via metagenomics: Putative enzymes that contribute to chemical kinetic resolution. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Effect of industrial process conditions of fava bean (Vicia faba L.) concentrates on physico-chemical and functional properties. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Qing R, Hao S, Smorodina E, Jin D, Zalevsky A, Zhang S. Protein Design: From the Aspect of Water Solubility and Stability. Chem Rev 2022; 122:14085-14179. [PMID: 35921495 PMCID: PMC9523718 DOI: 10.1021/acs.chemrev.1c00757] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Water solubility and structural stability are key merits for proteins defined by the primary sequence and 3D-conformation. Their manipulation represents important aspects of the protein design field that relies on the accurate placement of amino acids and molecular interactions, guided by underlying physiochemical principles. Emulated designer proteins with well-defined properties both fuel the knowledge-base for more precise computational design models and are used in various biomedical and nanotechnological applications. The continuous developments in protein science, increasing computing power, new algorithms, and characterization techniques provide sophisticated toolkits for solubility design beyond guess work. In this review, we summarize recent advances in the protein design field with respect to water solubility and structural stability. After introducing fundamental design rules, we discuss the transmembrane protein solubilization and de novo transmembrane protein design. Traditional strategies to enhance protein solubility and structural stability are introduced. The designs of stable protein complexes and high-order assemblies are covered. Computational methodologies behind these endeavors, including structure prediction programs, machine learning algorithms, and specialty software dedicated to the evaluation of protein solubility and aggregation, are discussed. The findings and opportunities for Cryo-EM are presented. This review provides an overview of significant progress and prospects in accurate protein design for solubility and stability.
Collapse
Affiliation(s)
- Rui Qing
- State
Key Laboratory of Microbial Metabolism, School of Life Sciences and
Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shilei Hao
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Eva Smorodina
- Department
of Immunology, University of Oslo and Oslo
University Hospital, Oslo 0424, Norway
| | - David Jin
- Avalon GloboCare
Corp., Freehold, New Jersey 07728, United States
| | - Arthur Zalevsky
- Laboratory
of Bioinformatics Approaches in Combinatorial Chemistry and Biology, Shemyakin−Ovchinnikov Institute of Bioorganic
Chemistry RAS, Moscow 117997, Russia
| | - Shuguang Zhang
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
41
|
Lattice-model analysis of the effect of protein surface charge distribution on amorphous aggregation and condensation. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Soranno A, Incicco JJ, De Bona P, Tomko EJ, Galburt EA, Holehouse AS, Galletto R. Shelterin Components Modulate Nucleic Acids Condensation and Phase Separation in the Context of Telomeric DNA. J Mol Biol 2022; 434:167685. [PMID: 35724929 PMCID: PMC9378516 DOI: 10.1016/j.jmb.2022.167685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/26/2022] [Accepted: 06/10/2022] [Indexed: 01/13/2023]
Abstract
Telomeres are nucleoprotein complexes that protect the ends of chromosomes and are essential for chromosome stability in Eukaryotes. In cells, individual telomeres form distinct globules of finite size that appear to be smaller than expected for bare DNA. Moreover, telomeres can cluster together, form telomere-induced-foci or co-localize with promyelocytic leukemia (PML) nuclear bodies. The physical basis for collapse of individual telomeres and coalescence of multiple ones remains unclear, as does the relationship between these two phenomena. By combining single-molecule force spectroscopy measurements, optical microscopy, turbidity assays, and simulations, we show that the telomere scaffolding protein TRF2 can condense individual DNA chains and drives coalescence of multiple DNA molecules, leading to phase separation and the formation of liquid-like droplets. Addition of the TRF2 binding protein hRap1 modulates phase boundaries and tunes the specificity of solution demixing while simultaneously altering the degree of DNA compaction. Our results suggest that the condensation of single telomeres and formation of biomolecular condensates containing multiple telomeres are two different outcomes driven by the same set of molecular interactions. Moreover, binding partners, such as other telomere components, can alter those interactions to promote single-chain DNA compaction over multiple-chain phase separation.
Collapse
Affiliation(s)
- Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States; Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, United States.
| | - J Jeremías Incicco
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Paolo De Bona
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Eric J Tomko
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Eric A Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States; Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
43
|
Impact of SARS-CoV-2 RBD Mutations on the Production of a Recombinant RBD Fusion Protein in Mammalian Cells. Biomolecules 2022; 12:biom12091170. [PMID: 36139010 PMCID: PMC9496381 DOI: 10.3390/biom12091170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
SARS-CoV-2 receptor-binding domain (RBD) is a major target for the development of diagnostics, vaccines and therapeutics directed against COVID-19. Important efforts have been dedicated to the rapid and efficient production of recombinant RBD proteins for clinical and diagnostic applications. One of the main challenges is the ongoing emergence of SARS-CoV-2 variants that carry mutations within the RBD, resulting in the constant need to design and optimise the production of new recombinant protein variants. We describe here the impact of naturally occurring RBD mutations on the secretion of a recombinant Fc-tagged RBD protein expressed in HEK 293 cells. We show that mutation E484K of the B.1.351 variant interferes with the proper disulphide bond formation and folding of the recombinant protein, resulting in its retention into the endoplasmic reticulum (ER) and reduced protein secretion. Accumulation of the recombinant B.1.351 RBD-Fc fusion protein in the ER correlated with the upregulation of endogenous ER chaperones, suggestive of the unfolded protein response (UPR). Overexpression of the chaperone and protein disulphide isomerase PDIA2 further impaired protein secretion by altering disulphide bond formation and increasing ER retention. This work contributes to a better understanding of the challenges faced in producing mutant RBD proteins and can assist in the design of optimisation protocols.
Collapse
|
44
|
Badonyi M, Marsh JA. Large protein complex interfaces have evolved to promote cotranslational assembly. eLife 2022; 11:79602. [PMID: 35899946 PMCID: PMC9365393 DOI: 10.7554/elife.79602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Assembly pathways of protein complexes should be precise and efficient to minimise misfolding and unwanted interactions with other proteins in the cell. One way to achieve this efficiency is by seeding assembly pathways during translation via the cotranslational assembly of subunits. While recent evidence suggests that such cotranslational assembly is widespread, little is known about the properties of protein complexes associated with the phenomenon. Here, using a combination of proteome-specific protein complex structures and publicly available ribosome profiling data, we show that cotranslational assembly is particularly common between subunits that form large intermolecular interfaces. To test whether large interfaces have evolved to promote cotranslational assembly, as opposed to cotranslational assembly being a non-adaptive consequence of large interfaces, we compared the sizes of first and last translated interfaces of heteromeric subunits in bacterial, yeast, and human complexes. When considering all together, we observe the N-terminal interface to be larger than the C-terminal interface 54% of the time, increasing to 64% when we exclude subunits with only small interfaces, which are unlikely to cotranslationally assemble. This strongly suggests that large interfaces have evolved as a means to maximise the chance of successful cotranslational subunit binding.
Collapse
Affiliation(s)
- Mihaly Badonyi
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
45
|
Su C, He Z, Wang Z, Zhang D, Li H. The Structural Rearrangement and Depolymerization Induced by
High‐Pressure
Homogenization Inhibit the Thermal Aggregation of Myofibrillar Protein. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chang Su
- College of Food Science Southwest University, No.2 Tiansheng Road, Beibei District Chongqing 400715 China
| | - Zhifei He
- College of Food Science Southwest University, No.2 Tiansheng Road, Beibei District Chongqing 400715 China
- Chongqing Engineering Research Center of Regional Food, No.2 Tiansheng Road, Beibei District Chongqing 400715 China
- Chongqing Key Laboratory of Speciality Food Co‐Built by Sichuan and Chongqing, No.2 Tiansheng Road, Beibei District Chongqing 400715 China
| | - Zefu Wang
- College of Food Science and Technology, Guangdong Ocean University, No. 1, Haida Road, Mazhang District Zhanjiang 524088 China
| | - Dong Zhang
- School of Food and Biological Engineering Xihua University, No.999 Jinzhou Road, Jinniu District Chengdu 610039 China
| | - Hongjun Li
- College of Food Science Southwest University, No.2 Tiansheng Road, Beibei District Chongqing 400715 China
- Chongqing Engineering Research Center of Regional Food, No.2 Tiansheng Road, Beibei District Chongqing 400715 China
- Chongqing Key Laboratory of Speciality Food Co‐Built by Sichuan and Chongqing, No.2 Tiansheng Road, Beibei District Chongqing 400715 China
| |
Collapse
|
46
|
Aliyeva M, Brandão P, Gomes JRB, Coutinho JA, Ferreira O, Pinho SP. Solubilities of Amino Acids in Aqueous Solutions of Chloride or Nitrate Salts of Divalent (Mg 2+ or Ca 2+) Cations. JOURNAL OF CHEMICAL AND ENGINEERING DATA 2022; 67:1565-1572. [PMID: 36568723 PMCID: PMC9777878 DOI: 10.1021/acs.jced.2c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The solubilities of glycine, l-leucine, l-phenylalanine, and l-aspartic acid were measured in aqueous MgCl2, Mg(NO3)2, CaCl2,, and Ca(NO3)2 solutions with concentrations ranging from 0 to 2 mol/kg at 298.2 K. The isothermal analytical method was used combined with the refractive index measurements for composition analysis guaranteeing good accuracy. All salts induced a salting-in effect with a higher magnitude for those containing the Ca2+ cation. The nitrate anions also showed stronger binding with the amino acids, thus increasing their relative solubility more than the chloride anions. In particular, calcium nitrate induces an increase in the amino acid solubility from 2.4 (glycine) to 4.6 fold (l-aspartic acid) compared to the corresponding value in water. Amino acid solubility data in aqueous MgCl2 and CaCl2 solutions collected from the open literature were combined with that from this work, allowing us to analyze the relations between the amino acid structure and the salting-in magnitude.
Collapse
Affiliation(s)
- Mehriban Aliyeva
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paula Brandão
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José R. B. Gomes
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João A.
P. Coutinho
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Olga Ferreira
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Simão P. Pinho
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
47
|
Isogai Y, Imamura H, Sumi T, Shirai T. Improvement of Protein Solubility in Macromolecular Crowding during Myoglobin Evolution. Biochemistry 2022; 61:1543-1547. [PMID: 35674519 DOI: 10.1021/acs.biochem.2c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The inside of living cells is crowded by extremely high concentrations of biomolecules, and thus globular proteins should have been developed to increase their solubility under such crowding conditions during organic evolution. The O2-storage protein myoglobin (Mb) is known to be expressed in myocytes of diving mammals in much larger quantities than those of land mammals. We have previously resurrected ancient whale and pinniped Mbs and experimentally demonstrated that the diving animal Mbs have evolved to maintain high solubility under the crowding conditions or to increase their tolerance against macromolecular precipitants, rather than solubility in a dilute buffer solution. However, the detail of chemical mechanisms of the precipitant tolerance remains unclear. Here, we investigated pH dependence of the precipitant tolerance (β, slope of the solubility against precipitant concentration) of extant Mbs and plotted the β values, as well as those of ancestral Mbs, against their surface net charges (ZMb). The results demonstrated that the precipitant tolerance was approximated by the square of ZMb, that is, β = aZMb2 + b, in which a and b are constants. This effect of ZMb against the precipitation is not predicted by a classical excluded volume theory that gives constant β for Mbs but can be explained by electrostatic repulsion between Mb molecules. The present study elucidates how Mb molecules have evolved to increase their in vivo solubility and shows the physiological significance of either neutral or basic isoelectric points (pI) of the natural Mbs, rather than acidic pI.
Collapse
Affiliation(s)
- Yasuhiro Isogai
- Department of Pharmaceutical Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Hiroshi Imamura
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Tomonari Sumi
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Tsuyoshi Shirai
- Department of Computer Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-Cho, Nagahama, Shiga 526-0829, Japan
| |
Collapse
|
48
|
Chakraborty S, Chaudhuri D, Chaudhuri D, Singh V, Banerjee S, Chowdhury D, Haldar S. Connecting conformational stiffness of the protein with energy landscape by a single experiment. NANOSCALE 2022; 14:7659-7673. [PMID: 35546109 DOI: 10.1039/d1nr07582a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The structure-function dynamics of a protein as a flexible polymer is essential to describe its biological functions. Here, using single-molecule magnetic tweezers, we have studied the effect of ionic strength on the folding mechanics of protein L, and probed its folding-associated physical properties by re-measuring the same protein in a range of ammonium sulfate concentrations from 150 mM to 650 mM. We observed an electrolyte-dependent conformational dynamics and folding landscape of the protein in a single experiment. Salt increases the refolding kinetics, while decreasing the unfolding kinetics under force, which in turn modifies the barrier heights towards the folded state. Additionally, salt enhances the molecular compaction by decreasing the Kuhn length of the protein polymer from 1.18 nm to 0.58 nm, which we have explained by modifying the freely jointed chain model. Finally, we correlated polymer chain physics to the folding dynamics, and thus provided an analytical framework for understanding compaction-induced folding mechanics across a range of ionic strengths from a single experiment.
Collapse
Affiliation(s)
- Soham Chakraborty
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India.
| | - Deep Chaudhuri
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India.
| | - Dyuti Chaudhuri
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India.
| | - Vihan Singh
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India.
| | - Souradeep Banerjee
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India.
| | - Debojyoti Chowdhury
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India.
| | - Shubhasis Haldar
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India.
| |
Collapse
|
49
|
Taha A, Casanova F, Šimonis P, Stankevič V, Gomaa MAE, Stirkė A. Pulsed Electric Field: Fundamentals and Effects on the Structural and Techno-Functional Properties of Dairy and Plant Proteins. Foods 2022; 11:foods11111556. [PMID: 35681305 PMCID: PMC9180040 DOI: 10.3390/foods11111556] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Dairy and plant-based proteins are widely utilized in various food applications. Several techniques have been employed to improve the techno-functional properties of these proteins. Among them, pulsed electric field (PEF) technology has recently attracted considerable attention as a green technology to enhance the functional properties of food proteins. In this review, we briefly explain the fundamentals of PEF devices, their components, and pulse generation and discuss the impacts of PEF treatment on the structure of dairy and plant proteins. In addition, we cover the PEF-induced changes in the techno-functional properties of proteins (including solubility, gelling, emulsifying, and foaming properties). In this work, we also discuss the main challenges and the possible future trends of PEF applications in the food proteins industry. PEF treatments at high strengths could change the structure of proteins. The PEF treatment conditions markedly affect the treatment results with respect to proteins' structure and techno-functional properties. Moreover, increasing the electric field strength could enhance the emulsifying properties of proteins and protein-polysaccharide complexes. However, more research and academia-industry collaboration are recommended to build highly effective PEF devices with controlled processing conditions.
Collapse
Affiliation(s)
- Ahmed Taha
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania; (A.T.); (P.Š.); (V.S.)
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Federico Casanova
- Food Production Engineering, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Correspondence: (F.C.); (A.S.)
| | - Povilas Šimonis
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania; (A.T.); (P.Š.); (V.S.)
| | - Voitech Stankevič
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania; (A.T.); (P.Š.); (V.S.)
| | - Mohamed A. E. Gomaa
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Arūnas Stirkė
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania; (A.T.); (P.Š.); (V.S.)
- Micro and Nanodevices Laboratory, Institute of Solid State Physics, University of Latvia, Kengaraga Str. 8, LV-1063 Riga, Latvia
- Correspondence: (F.C.); (A.S.)
| |
Collapse
|
50
|
Iddir M, Vahid F, Merten D, Larondelle Y, Bohn T. Influence of Proteins on the Absorption of Lipophilic Vitamins, Carotenoids and Curcumin - A Review. Mol Nutr Food Res 2022; 66:e2200076. [PMID: 35506751 DOI: 10.1002/mnfr.202200076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/26/2022] [Indexed: 12/13/2022]
Abstract
While proteins have been widely used to encapsulate, protect, and regulate the release of bioactive food compounds, little is known about the influence of co-consumed proteins on the absorption of lipophilic constituents following digestion, such as vitamins (A, D, E, K), carotenoids, and curcumin. Their bioavailability is often low and very variable, depending on the food matrix and host factors. Some proteins can act as emulsifiers during digestion. Their liberated peptides have amphiphilic properties that can facilitate the absorption of microconstituents, by improving their transition from lipid droplets into mixed micelles. Contrarily, the less well digested proteins could negatively impinge on enzymatic accessibility to the lipid droplets, slowing down their processing into mixed micelles and entrapping apolar food compounds. Interactions with mixed micelles and proteins are also plausible, as shown earlier for drugs. This review focuses on the ability of proteins to act as effective emulsifiers of lipophilic vitamins, carotenoids, and curcumin during digestion. The functional properties of proteins, their chemical interactions with enzymes and food constituents during gastro-intestinal digestion, potentials and limitations for their use as emulsifiers are emphasized and data from human, animal, and in vitro trials are summarized.
Collapse
Affiliation(s)
- Mohammed Iddir
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Science and Technology, 1 A-B, rue Thomas Edison, Strassen, L-1445, Luxembourg.,Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Farhad Vahid
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Science and Technology, 1 A-B, rue Thomas Edison, Strassen, L-1445, Luxembourg
| | - Diane Merten
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Science and Technology, 1 A-B, rue Thomas Edison, Strassen, L-1445, Luxembourg
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Science and Technology, 1 A-B, rue Thomas Edison, Strassen, L-1445, Luxembourg
| |
Collapse
|