1
|
Rutter GA, Gresch A, Delgadillo Silva L, Benninger RKP. Exploring pancreatic beta-cell subgroups and their connectivity. Nat Metab 2024:10.1038/s42255-024-01097-6. [PMID: 39117960 DOI: 10.1038/s42255-024-01097-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Functional pancreatic islet beta cells are essential to ensure glucose homeostasis across species from zebrafish to humans. These cells show significant heterogeneity, and emerging studies have revealed that connectivity across a hierarchical network is required for normal insulin release. Here, we discuss current thinking and areas of debate around intra-islet connectivity, cellular hierarchies and potential "controlling" beta-cell populations. We focus on methodologies, including comparisons of different cell preparations as well as in vitro and in vivo approaches to imaging and controlling the activity of human and rodent islet preparations. We also discuss the analytical approaches that can be applied to live-cell data to identify and study critical subgroups of cells with a disproportionate role in control Ca2+ dynamics and thus insulin secretion (such as "first responders", "leaders" and "hubs", as defined by Ca2+ responses to glucose stimulation). Possible mechanisms by which this hierarchy is achieved, its physiological relevance and how its loss may contribute to islet failure in diabetes mellitus are also considered. A glossary of terms and links to computational resources are provided.
Collapse
Affiliation(s)
- Guy A Rutter
- CHUM Research Center and Faculty of Medicine, University of Montréal, Montréal, QC, Canada.
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| | - Anne Gresch
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Luis Delgadillo Silva
- CHUM Research Center and Faculty of Medicine, University of Montréal, Montréal, QC, Canada
| | - Richard K P Benninger
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
2
|
Šterk M, Zhang Y, Pohorec V, Leitgeb EP, Dolenšek J, Benninger RKP, Stožer A, Kravets V, Gosak M. Network representation of multicellular activity in pancreatic islets: Technical considerations for functional connectivity analysis. PLoS Comput Biol 2024; 20:e1012130. [PMID: 38739680 PMCID: PMC11115366 DOI: 10.1371/journal.pcbi.1012130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/23/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
Within the islets of Langerhans, beta cells orchestrate synchronized insulin secretion, a pivotal aspect of metabolic homeostasis. Despite the inherent heterogeneity and multimodal activity of individual cells, intercellular coupling acts as a homogenizing force, enabling coordinated responses through the propagation of intercellular waves. Disruptions in this coordination are implicated in irregular insulin secretion, a hallmark of diabetes. Recently, innovative approaches, such as integrating multicellular calcium imaging with network analysis, have emerged for a quantitative assessment of the cellular activity in islets. However, different groups use distinct experimental preparations, microscopic techniques, apply different methods to process the measured signals and use various methods to derive functional connectivity patterns. This makes comparisons between findings and their integration into a bigger picture difficult and has led to disputes in functional connectivity interpretations. To address these issues, we present here a systematic analysis of how different approaches influence the network representation of islet activity. Our findings show that the choice of methods used to construct networks is not crucial, although care is needed when combining data from different islets. Conversely, the conclusions drawn from network analysis can be heavily affected by the pre-processing of the time series, the type of the oscillatory component in the signals, and by the experimental preparation. Our tutorial-like investigation aims to resolve interpretational issues, reconcile conflicting views, advance functional implications, and encourage researchers to adopt connectivity analysis. As we conclude, we outline challenges for future research, emphasizing the broader applicability of our conclusions to other tissues exhibiting complex multicellular dynamics.
Collapse
Affiliation(s)
- Marko Šterk
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Yaowen Zhang
- Department of Pediatrics, Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Viljem Pohorec
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | | | - Jurij Dolenšek
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Richard K. P. Benninger
- Department of Bioengineering, Barbara Davis Center for Diabetes, Aurora, Colorado, United States of America
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Vira Kravets
- Department of Pediatrics, Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
- Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, California, United States of America
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Alma Mater Europaea, Maribor
| |
Collapse
|
3
|
Camunas-Soler J. Integrating single-cell transcriptomics with cellular phenotypes: cell morphology, Ca 2+ imaging and electrophysiology. Biophys Rev 2024; 16:89-107. [PMID: 38495444 PMCID: PMC10937895 DOI: 10.1007/s12551-023-01174-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/29/2023] [Indexed: 03/19/2024] Open
Abstract
I review recent technological advancements in coupling single-cell transcriptomics with cellular phenotypes including morphology, calcium signaling, and electrophysiology. Single-cell RNA sequencing (scRNAseq) has revolutionized cell type classifications by capturing the transcriptional diversity of cells. A new wave of methods to integrate scRNAseq and biophysical measurements is facilitating the linkage of transcriptomic data to cellular function, which provides physiological insight into cellular states. I briefly discuss critical factors of these phenotypical characterizations such as timescales, information content, and analytical tools. Dedicated sections focus on the integration with cell morphology, calcium imaging, and electrophysiology (patch-seq), emphasizing their complementary roles. I discuss their application in elucidating cellular states, refining cell type classifications, and uncovering functional differences in cell subtypes. To illustrate the practical applications and benefits of these methods, I highlight their use in tissues with excitable cell-types such as the brain, pancreatic islets, and the retina. The potential of combining functional phenotyping with spatial transcriptomics for a detailed mapping of cell phenotypes in situ is explored. Finally, I discuss open questions and future perspectives, emphasizing the need for a shift towards broader accessibility through increased throughput.
Collapse
Affiliation(s)
- Joan Camunas-Soler
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
4
|
Fazli M, Bertram R. Conversion of spikers to bursters in pituitary cell networks: Is it better to disperse for maximum exposure or circle the wagons? PLoS Comput Biol 2024; 20:e1011811. [PMID: 38289902 PMCID: PMC10826967 DOI: 10.1371/journal.pcbi.1011811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
The endocrine cells of the pituitary gland are electrically active, and in vivo they form small networks where the bidirectional cell-cell coupling is through gap junctions. Numerous studies of dispersed pituitary cells have shown that typical behaviors are tonic spiking and bursting, the latter being more effective at evoking secretion. In this article, we use mathematical modeling to examine the dynamics of small networks of spiking and bursting pituitary cells. We demonstrate that intrinsic bursting cells are capable of converting intrinsic spikers into bursters, and perform a fast/slow analysis to show why this occurs. We then demonstrate the sensitivity of network dynamics to the placement of bursting cells within the network, and demonstrate strategies that are most effective at maximizing secretion from the population of cells. This study provides insights into the in vivo behavior of cells such as the stress-hormone-secreting pituitary corticotrophs that are switched from spiking to bursting by hypothalamic neurohormones. While much is known about the electrical properties of these cells when isolated from the pituitary, how they behave when part of an electrically coupled network has been largely unstudied.
Collapse
Affiliation(s)
- Mehran Fazli
- Department of Mathematics, Florida State University, Tallahassee, Florida, United States of America
| | - Richard Bertram
- Department of Mathematics, Florida State University, Tallahassee, Florida, United States of America
- Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
5
|
Félix-Martínez GJ, Godínez-Fernández JR. A primer on modelling pancreatic islets: from models of coupled β-cells to multicellular islet models. Islets 2023; 15:2231609. [PMID: 37415423 PMCID: PMC10332213 DOI: 10.1080/19382014.2023.2231609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
Pancreatic islets are mini-organs composed of hundreds or thousands of ɑ, β and δ-cells, which, respectively, secrete glucagon, insulin and somatostatin, key hormones for the regulation of blood glucose. In pancreatic islets, hormone secretion is tightly regulated by both internal and external mechanisms, including electrical communication and paracrine signaling between islet cells. Given its complexity, the experimental study of pancreatic islets has been complemented with computational modeling as a tool to gain a better understanding about how all the mechanisms involved at different levels of organization interact. In this review, we describe how multicellular models of pancreatic cells have evolved from the early models of electrically coupled β-cells to models in which experimentally derived architectures and both electrical and paracrine signals have been considered.
Collapse
Affiliation(s)
- Gerardo J. Félix-Martínez
- Investigador por México CONAHCYT-Department of Electrical Engineering, Universidad Autónoma Metropolitana, Mexico, Mexico
- Department of Electrical Engineering, Universidad Autónoma Metropolitana, Mexico, Mexico
| | | |
Collapse
|
6
|
Bertram R, Marinelli I, Fletcher PA, Satin LS, Sherman AS. Deconstructing the integrated oscillator model for pancreatic β-cells. Math Biosci 2023; 365:109085. [PMID: 37802364 PMCID: PMC10991200 DOI: 10.1016/j.mbs.2023.109085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Electrical bursting oscillations in the β-cells of pancreatic islets have been a focus of investigation for more than fifty years. This has been aided by mathematical models, which are descendants of the pioneering Chay-Keizer model. This article describes the key biophysical and mathematical elements of this model, and then describes the path forward from there to the Integrated Oscillator Model (IOM). It is both a history and a deconstruction of the IOM that describes the various elements that have been added to the model over time, and the motivation for adding them. Finally, the article is a celebration of the 40th anniversary of the publication of the Chay-Keizer model.
Collapse
Affiliation(s)
- Richard Bertram
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, FL, United States.
| | - Isabella Marinelli
- Centre for Systems Modeling and Quantitative Biomedicine, University of Birmingham, United Kingdom
| | - Patrick A Fletcher
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, MD, United States
| | - Leslie S Satin
- Department of Pharmacology and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Arthur S Sherman
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Luchetti N, Filippi S, Loppini A. Multilevel synchronization of human β-cells networks. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1264395. [PMID: 37808419 PMCID: PMC10557430 DOI: 10.3389/fnetp.2023.1264395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
β-cells within the endocrine pancreas are fundamental for glucose, lipid and protein homeostasis. Gap junctions between cells constitute the primary coupling mechanism through which cells synchronize their electrical and metabolic activities. This evidence is still only partially investigated through models and numerical simulations. In this contribution, we explore the effect of combined electrical and metabolic coupling in β-cell clusters using a detailed biophysical model. We add heterogeneity and stochasticity to realistically reproduce β-cell dynamics and study networks mimicking arrangements of β-cells within human pancreatic islets. Model simulations are performed over different couplings and heterogeneities, analyzing emerging synchronization at the membrane potential, calcium, and metabolites levels. To describe network synchronization, we use the formalism of multiplex networks and investigate functional network properties and multiplex synchronization motifs over the structural, electrical, and metabolic layers. Our results show that metabolic coupling can support slow wave propagation in human islets, that combined electrical and metabolic synchronization is realized in small aggregates, and that metabolic long-range correlation is more pronounced with respect to the electrical one.
Collapse
Affiliation(s)
- Nicole Luchetti
- Center for Life Nano and Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
- Engineering Department, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Simonetta Filippi
- Engineering Department, Università Campus Bio-Medico di Roma, Rome, Italy
- National Institute of Optics, National Research Council, Florence, Italy
- International Center for Relativistic Astrophysics Network, Pescara, Italy
| | - Alessandro Loppini
- Center for Life Nano and Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
- Engineering Department, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
8
|
Skelin Klemen M, Dolenšek J, Križančić Bombek L, Pohorec V, Gosak M, Slak Rupnik M, Stožer A. The effect of forskolin and the role of Epac2A during activation, activity, and deactivation of beta cell networks. Front Endocrinol (Lausanne) 2023; 14:1225486. [PMID: 37701894 PMCID: PMC10494243 DOI: 10.3389/fendo.2023.1225486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023] Open
Abstract
Beta cells couple stimulation by glucose with insulin secretion and impairments in this coupling play a central role in diabetes mellitus. Cyclic adenosine monophosphate (cAMP) amplifies stimulus-secretion coupling via protein kinase A and guanine nucleotide exchange protein 2 (Epac2A). With the present research, we aimed to clarify the influence of cAMP-elevating diterpene forskolin on cytoplasmic calcium dynamics and intercellular network activity, which are two of the crucial elements of normal beta cell stimulus-secretion coupling, and the role of Epac2A under normal and stimulated conditions. To this end, we performed functional multicellular calcium imaging of beta cells in mouse pancreas tissue slices after stimulation with glucose and forskolin in wild-type and Epac2A knock-out mice. Forskolin evoked calcium signals in otherwise substimulatory glucose and beta cells from Epac2A knock-out mice displayed a faster activation. During the plateau phase, beta cells from Epac2A knock-out mice displayed a slightly higher active time in response to glucose compared with wild-type littermates, and stimulation with forskolin increased the active time via an increase in oscillation frequency and a decrease in oscillation duration in both Epac2A knock-out and wild-type mice. Functional network properties during stimulation with glucose did not differ in Epac2A knock-out mice, but the presence of Epac2A was crucial for the protective effect of stimulation with forskolin in preventing a decline in beta cell functional connectivity with time. Finally, stimulation with forskolin prolonged beta cell activity during deactivation, especially in Epac2A knock-out mice.
Collapse
Affiliation(s)
- Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | | | - Viljem Pohorec
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Alma Mater Europaea, European Center Maribor, Maribor, Slovenia
| | - Marjan Slak Rupnik
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Alma Mater Europaea, European Center Maribor, Maribor, Slovenia
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
9
|
Aldous N, Moin ASM, Abdelalim EM. Pancreatic β-cell heterogeneity in adult human islets and stem cell-derived islets. Cell Mol Life Sci 2023; 80:176. [PMID: 37270452 DOI: 10.1007/s00018-023-04815-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 05/19/2023] [Indexed: 06/05/2023]
Abstract
Recent studies reported that pancreatic β-cells are heterogeneous in terms of their transcriptional profiles and their abilities for insulin secretion. Sub-populations of pancreatic β-cells have been identified based on the functionality and expression of specific surface markers. Under diabetes condition, β-cell identity is altered leading to different β-cell sub-populations. Furthermore, cell-cell contact between β-cells and other endocrine cells within the islet play an important role in regulating insulin secretion. This highlights the significance of generating a cell product derived from stem cells containing β-cells along with other major islet cells for treating patients with diabetes, instead of transplanting a purified population of β-cells. Another key question is how close in terms of heterogeneity are the islet cells derived from stem cells? In this review, we summarize the heterogeneity in islet cells of the adult pancreas and those generated from stem cells. In addition, we highlight the significance of this heterogeneity in health and disease conditions and how this can be used to design a stem cell-derived product for diabetes cell therapy.
Collapse
Affiliation(s)
- Noura Aldous
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, PO Box 34110, Doha, Qatar
| | - Abu Saleh Md Moin
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, PO Box 34110, Doha, Qatar
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| | - Essam M Abdelalim
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar.
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, PO Box 34110, Doha, Qatar.
| |
Collapse
|
10
|
Ruiz-Otero N, Kuruvilla R. Role of Delta/Notch-like EGF-related receptor in blood glucose homeostasis. Front Endocrinol (Lausanne) 2023; 14:1161085. [PMID: 37223028 PMCID: PMC10200888 DOI: 10.3389/fendo.2023.1161085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/18/2023] [Indexed: 05/25/2023] Open
Abstract
Cell-cell interactions are necessary for optimal endocrine functions in the pancreas. β-cells, characterized by the expression and secretion of the hormone insulin, are a major constituent of functional micro-organs in the pancreas known as islets of Langerhans. Cell-cell contacts between β-cells are required to regulate insulin production and glucose-stimulated insulin secretion, which are key determinants of blood glucose homeostasis. Contact-dependent interactions between β-cells are mediated by gap junctions and cell adhesion molecules such as E-cadherin and N-CAM. Recent genome-wide studies have implicated Delta/Notch-like EGF-related receptor (Dner) as a potential susceptibility locus for Type 2 Diabetes in humans. DNER is a transmembrane protein and a proposed Notch ligand. DNER has been implicated in neuron-glia development and cell-cell interactions. Studies herein demonstrate that DNER is expressed in β-cells with an onset during early postnatal life and sustained throughout adulthood in mice. DNER loss in adult β-cells in mice (β-Dner cKO mice) disrupted islet architecture and decreased the expression of N-CAM and E-cadherin. β-Dner cKO mice also exhibited impaired glucose tolerance, defects in glucose- and KCl-induced insulin secretion, and decreased insulin sensitivity. Together, these studies suggest that DNER plays a crucial role in mediating islet cell-cell interactions and glucose homeostasis.
Collapse
Affiliation(s)
- Nelmari Ruiz-Otero
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
11
|
Galvis D, Hodson DJ, Wedgwood KC. Spatial distribution of heterogeneity as a modulator of collective dynamics in pancreatic beta-cell networks and beyond. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:fnetp.2023.1170930. [PMID: 36987428 PMCID: PMC7614376 DOI: 10.3389/fnetp.2023.1170930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
We study the impact of spatial distribution of heterogeneity on collective dynamics in gap-junction coupled beta-cell networks comprised on cells from two populations that differ in their intrinsic excitability. Initially, these populations are uniformly and randomly distributed throughout the networks. We develop and apply an iterative algorithm for perturbing the arrangement of the network such that cells from the same population are increasingly likely to be adjacent to one another. We find that the global input strength, or network drive, necessary to transition the network from a state of quiescence to a state of synchronised and oscillatory activity decreases as network sortedness increases. Moreover, for weak coupling, we find that regimes of partial synchronisation and wave propagation arise, which depend both on network drive and network sortedness. We then demonstrate the utility of this algorithm for studying the distribution of heterogeneity in general networks, for which we use Watts-Strogatz networks as a case study. This work highlights the importance of heterogeneity in node dynamics in establishing collective rhythms in complex, excitable networks and has implications for a wide range of real-world systems that exhibit such heterogeneity.
Collapse
Affiliation(s)
- Daniel Galvis
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, UK
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Correspondence: Daniel Galvis,
| | - David J. Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
- Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Kyle C.A. Wedgwood
- Living Systems Institute, University of Exeter, Exeter, UK
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, UK
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
12
|
Šterk M, Dolenšek J, Skelin Klemen M, Križančić Bombek L, Paradiž Leitgeb E, Kerčmar J, Perc M, Slak Rupnik M, Stožer A, Gosak M. Functional characteristics of hub and wave-initiator cells in β cell networks. Biophys J 2023; 122:784-801. [PMID: 36738106 PMCID: PMC10027448 DOI: 10.1016/j.bpj.2023.01.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/22/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Islets of Langerhans operate as multicellular networks in which several hundred β cells work in synchrony to produce secretory pulses of insulin, a hormone crucial for controlling metabolic homeostasis. Their collective rhythmic activity is facilitated by gap junctional coupling and affected by their functional heterogeneity, but the details of this robust and coordinated behavior are still not fully understood. Recent advances in multicellular imaging and optogenetic and photopharmacological strategies, as well as in network science, have led to the discovery of specialized β cell subpopulations that were suggested to critically determine the collective dynamics in the islets. In particular hubs, i.e., β cells with many functional connections, are believed to significantly enhance communication capacities of the intercellular network and facilitate an efficient spreading of intercellular Ca2+ waves, whereas wave-initiator cells trigger intercellular signals in their cohorts. Here, we determined Ca2+ signaling characteristics of these two β cell subpopulations and the relationship between them by means of functional multicellular Ca2+ imaging in mouse pancreatic tissue slices in combination with methods of complex network theory. We constructed network layers based on individual Ca2+ waves to identify wave initiators, and functional correlation-based networks to detect hubs. We found that both cell types exhibit a higher-than-average active time under both physiological and supraphysiological glucose concentrations, but also that they differ significantly in many other functional characteristics. Specifically, Ca2+ oscillations in hubs are more regular, and their role appears to be much more stable over time than for initiator cells. Moreover, in contrast to wave initiators, hubs transmit intercellular signals faster than other cells, which implies a stronger intercellular coupling. Our research indicates that hubs and wave-initiator cell subpopulations are both natural features of healthy pancreatic islets, but their functional roles in principle do not overlap and should thus not be considered equal.
Collapse
Affiliation(s)
- Marko Šterk
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia; Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia; Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | | | | | | | - Jasmina Kerčmar
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Alma Mater Europaea, Maribor, Slovenia; Complexity Science Hub Vienna, Vienna, Austria; Department of Physics, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| | - Marjan Slak Rupnik
- Faculty of Medicine, University of Maribor, Maribor, Slovenia; Alma Mater Europaea, Maribor, Slovenia; Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia; Faculty of Medicine, University of Maribor, Maribor, Slovenia; Alma Mater Europaea, Maribor, Slovenia.
| |
Collapse
|
13
|
Abstract
The islets of Langerhans are highly organized structures that have species-specific, three-dimensional tissue architecture. Islet architecture is critical for proper hormone secretion in response to nutritional stimuli. Islet architecture is disrupted in all types of diabetes mellitus and in cadaveric islets for transplantation during isolation, culture, and perfusion, limiting patient outcomes. Moreover, recapitulating native islet architecture remains a key challenge for in vitro generation of islets from stem cells. In this review, we discuss work that has led to the current understanding of determinants of pancreatic islet architecture, and how this architecture is maintained or disrupted during tissue remodeling in response to normal and pathological metabolic changes. We further discuss both empirical and modeling data that highlight the importance of islet architecture for islet function.
Collapse
Affiliation(s)
- Melissa T. Adams
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Barak Blum
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
- CONTACT Barak Blum Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI53705, USA
| |
Collapse
|
14
|
Bruce N, Wei IA, Leng W, Oh Y, Chiu YC, Roper MG, Bertram R. Coordination of pancreatic islet rhythmic activity by delayed negative feedback. Am J Physiol Endocrinol Metab 2022; 323:E492-E502. [PMID: 36223522 PMCID: PMC9722252 DOI: 10.1152/ajpendo.00123.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 11/22/2022]
Abstract
Secretion of insulin from the pancreas is pulsatile, driven by intrinsic oscillations within individual islets of Langerhans. The secretions are coordinated among the many islets distributed throughout the pancreas producing a synchronized rhythm in vivo that is essential for maintaining normal glucose levels. One hypothesized mechanism for the coordination of islet activity is negative feedback, whereby sequestration of glucose in response to elevated insulin leads to a reduction in the blood glucose level that is sensed by the islet population. This global signal of glucose then coordinates the individual islets. In this study, we tested how this coordination mechanism is affected by time delays in the negative feedback, using a microfluidic system to monitor Ca2+ levels in a small population of islets and implementing glucose control through a negative feedback system. We found that islet synchronization occurs even with time delays in the feedback of up to 7 min. We also found that a second, slower closed-loop oscillation period is produced during delayed feedback in which islet oscillations are clustered into episodes. The period of this second oscillatory mode increases with the time delay and appears to be a second stable behavior that coexists with the faster synchronized oscillation. The general conclusion is that islet coordination through negative feedback is a viable means of islet coordination that is robust to delays in the timing of the feedback, and could complement other potential coordination mechanisms such as entrainment by pancreatic ganglia.NEW & NOTEWORTHY Insulin secretion from islets of Langerhans is rhythmic, and these rhythms are coordinated to produce oscillatory plasma insulin levels. Using a combination of microfluidics and computational modeling, we demonstrate that coordination can occur through negative feedback of the type provided by the liver, even if that feedback is delayed by several minutes. We also demonstrate that a second, slower, mode of oscillations can occur when feedback is delayed where faster oscillations are grouped into episodes.
Collapse
Affiliation(s)
- N. Bruce
- Department of Mathematics, Florida State University, Tallahassee, Florida
| | - I.-A. Wei
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida
| | - W. Leng
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida
| | - Y. Oh
- Department of Mathematics, Florida State University, Tallahassee, Florida
| | - Y.-C. Chiu
- Department of Physics, Florida State University, Tallahassee, Florida
| | - M. G. Roper
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida
| | - R. Bertram
- Department of Mathematics, Florida State University, Tallahassee, Florida
- Programs in Molecular Biophysics and Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
15
|
Gosak M, Yan-Do R, Lin H, MacDonald PE, Stožer A. Ca2+ Oscillations, Waves, and Networks in Islets From Human Donors With and Without Type 2 Diabetes. Diabetes 2022; 71:2584-2596. [PMID: 36084321 PMCID: PMC9750953 DOI: 10.2337/db22-0004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 09/01/2022] [Indexed: 01/11/2023]
Abstract
Pancreatic islets are highly interconnected structures that produce pulses of insulin and other hormones, maintaining normal homeostasis of glucose and other nutrients. Normal stimulus-secretion and intercellular coupling are essential to regulated secretory responses, and these hallmarks are known to be altered in diabetes. In the current study, we used calcium imaging of isolated human islets to assess their collective behavior. The activity occurred in the form of calcium oscillations, was synchronized across different regions of islets through calcium waves, and was glucose dependent: higher glucose enhanced the activity, elicited a greater proportion of global calcium waves, and led to denser and less fragmented functional networks. Hub regions were identified in stimulatory conditions, and they were characterized by long active times. Moreover, calcium waves were found to be initiated in different subregions and the roles of initiators and hubs did not overlap. In type 2 diabetes, glucose dependence was retained, but reduced activity, locally restricted waves, and more segregated networks were detected compared with control islets. Interestingly, hub regions seemed to suffer the most by losing a disproportionately large fraction of connections. These changes affected islets from donors with diabetes in a heterogeneous manner.
Collapse
Affiliation(s)
- Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Richard Yan-Do
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Haopeng Lin
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Patrick E. MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
16
|
Functional architecture of pancreatic islets identifies a population of first responder cells that drive the first-phase calcium response. PLoS Biol 2022; 20:e3001761. [PMID: 36099294 PMCID: PMC9506623 DOI: 10.1371/journal.pbio.3001761] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 09/23/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022] Open
Abstract
Insulin-secreting β-cells are functionally heterogeneous. Whether there exist cells driving the first-phase calcium response in individual islets, has not been examined. We examine “first responder” cells, defined by the earliest [Ca2+] response during first-phase [Ca2+] elevation, distinct from previously identified “hub” and “leader” cells. We used islets isolated from Mip-CreER; Rosa-Stop-Lox-Stop-GCamP6s mice (β-GCamP6s) that show β-cell-specific GCamP6s expression following tamoxifen-induced CreER-mediated recombination. First responder cells showed characteristics of high membrane excitability and lower electrical coupling to their neighbors. The first-phase response time of β-cells in the islet was spatially organized, dependent on the cell’s distance to the first responder cell, and consistent over time up to approximately 24 h. When first responder cells were laser ablated, the first-phase [Ca2+] was slowed down, diminished, and discoordinated compared to random cell ablation. Cells that were next earliest to respond often took over the role of the first responder upon ablation. In summary, we discover and characterize a distinct first responder β-cell state, critical for the islet first-phase response to glucose. A hallmark of the early stages in diabetes is the disruption of the first-phase peak of insulin secretion. This study reveals a state of beta cells that drives the first-phase calcium response (a precursor to insulin secretion), challenging the existing paradigm that first-phase calcium response to glucose is not organized within the islet.
Collapse
|
17
|
Ren H, Li Y, Han C, Yu Y, Shi B, Peng X, Zhang T, Wu S, Yang X, Kim S, Chen L, Tang C. Pancreatic α and β cells are globally phase-locked. Nat Commun 2022; 13:3721. [PMID: 35764654 PMCID: PMC9240067 DOI: 10.1038/s41467-022-31373-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
The Ca2+ modulated pulsatile glucagon and insulin secretions by pancreatic α and β cells play a crucial role in glucose homeostasis. However, how α and β cells coordinate to produce various Ca2+ oscillation patterns is still elusive. Using a microfluidic device and transgenic mice, we recorded Ca2+ signals from islet α and β cells, and observed heterogeneous Ca2+ oscillation patterns intrinsic to each islet. After a brief period of glucose stimulation, α and β cells’ oscillations were globally phase-locked. While the activation of α cells displayed a fixed time delay of ~20 s to that of β cells, β cells activated with a tunable period. Moreover, islet α cell number correlated with oscillation frequency. We built a mathematical model of islet Ca2+ oscillation incorporating paracrine interactions, which quantitatively agreed with the experimental data. Our study highlights the importance of cell-cell interaction in generating stable but tunable islet oscillation patterns. The Ca2+ modulated pulsatile glucagon and insulin secretions by pancreatic α and β cells are critical in glucose homeostasis. Here the authors show that the Ca2+ oscillations of α and β cells are phase-locked, and that the oscillation pattern is tuned by paracrine interactions between α and β cells.
Collapse
Affiliation(s)
- Huixia Ren
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yanjun Li
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.,Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Chengsheng Han
- Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Yi Yu
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Bowen Shi
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xiaohong Peng
- Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Tianming Zhang
- Yuanpei College, Peking University, Beijing, 100871, China
| | - Shufang Wu
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Xiaojing Yang
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Sneppen Kim
- Niels Bohr Institute, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Liangyi Chen
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China. .,Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, 100871, China.
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing, 100871, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
18
|
Stožer A, Šterk M, Paradiž Leitgeb E, Markovič R, Skelin Klemen M, Ellis CE, Križančić Bombek L, Dolenšek J, MacDonald PE, Gosak M. From Isles of Königsberg to Islets of Langerhans: Examining the Function of the Endocrine Pancreas Through Network Science. Front Endocrinol (Lausanne) 2022; 13:922640. [PMID: 35784543 PMCID: PMC9240343 DOI: 10.3389/fendo.2022.922640] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Islets of Langerhans are multicellular microorgans located in the pancreas that play a central role in whole-body energy homeostasis. Through secretion of insulin and other hormones they regulate postprandial storage and interprandial usage of energy-rich nutrients. In these clusters of hormone-secreting endocrine cells, intricate cell-cell communication is essential for proper function. Electrical coupling between the insulin-secreting beta cells through gap junctions composed of connexin36 is particularly important, as it provides the required, most important, basis for coordinated responses of the beta cell population. The increasing evidence that gap-junctional communication and its modulation are vital to well-regulated secretion of insulin has stimulated immense interest in how subpopulations of heterogeneous beta cells are functionally arranged throughout the islets and how they mediate intercellular signals. In the last decade, several novel techniques have been proposed to assess cooperation between cells in islets, including the prosperous combination of multicellular imaging and network science. In the present contribution, we review recent advances related to the application of complex network approaches to uncover the functional connectivity patterns among cells within the islets. We first provide an accessible introduction to the basic principles of network theory, enumerating the measures characterizing the intercellular interactions and quantifying the functional integration and segregation of a multicellular system. Then we describe methodological approaches to construct functional beta cell networks, point out possible pitfalls, and specify the functional implications of beta cell network examinations. We continue by highlighting the recent findings obtained through advanced multicellular imaging techniques supported by network-based analyses, giving special emphasis to the current developments in both mouse and human islets, as well as outlining challenges offered by the multilayer network formalism in exploring the collective activity of islet cell populations. Finally, we emphasize that the combination of these imaging techniques and network-based analyses does not only represent an innovative concept that can be used to describe and interpret the physiology of islets, but also provides fertile ground for delineating normal from pathological function and for quantifying the changes in islet communication networks associated with the development of diabetes mellitus.
Collapse
Affiliation(s)
- Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Šterk
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Eva Paradiž Leitgeb
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Rene Markovič
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Institute of Mathematics and Physics, Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Cara E. Ellis
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Patrick E. MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| |
Collapse
|
19
|
Miranda JG, Schleicher WE, Wells KL, Ramirez DG, Landgrave SP, Benninger RKP. Dynamic changes in β-cell [Ca 2+] regulate NFAT activation, gene transcription, and islet gap junction communication. Mol Metab 2022; 57:101430. [PMID: 34979329 PMCID: PMC8804269 DOI: 10.1016/j.molmet.2021.101430] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Diabetes occurs because of insufficient insulin secretion due to β-cell dysfunction within the islet of Langerhans. Elevated glucose levels trigger β-cell membrane depolarization, action potential generation, and slow sustained free-Ca2+ ([Ca2+]) oscillations, which trigger insulin release. Nuclear factor of activated T-cell (NFAT) is a transcription factor, which is regulated by the increases in [Ca2+] and calceineurin (CaN) activation. NFAT regulation links cell activity with gene transcription in many systems and regulates proliferation and insulin granule biogenesis within the β-cell. However, the link between the regulation of β-cell electrical activity and oscillatory [Ca2+] dynamics with NFAT activation and downstream transcription is poorly understood. Here, we tested whether dynamic changes to β-cell electrical activity and [Ca2+] regulate NFAT activation and downstream transcription. METHODS In cell lines, mouse islets, and human islets, including those from donors with type 2 diabetes, we applied both agonists/antagonists of ion channels together with optogenetics to modulate β-cell electrical activity. We measured the dynamics of [Ca2+] and NFAT activation as well as performed whole transcriptome and functional analyses. RESULTS Both glucose-induced membrane depolarization and optogenetic stimulation triggered NFAT activation as well as increased the transcription of NFAT targets and intermediate early genes (IEGs). Importantly, slow, sustained [Ca2+] oscillation conditions led to NFAT activation and downstream transcription. In contrast, in human islets from donors with type2 diabetes, NFAT activation by glucose was diminished, but rescued upon pharmacological stimulation of electrical activity. NFAT activation regulated GJD2 expression and increased Cx36 gap junction permeability upon elevated oscillatory [Ca2+] dynamics. However, it is unclear if NFAT directly binds the GJD2 gene to regulate expression. CONCLUSIONS This study provides an insight into the specific patterns of electrical activity that regulate NFAT activation, gene transcription, and islet function. In addition, it provides information on how these factors are disrupted in diabetes.
Collapse
Affiliation(s)
- Jose G Miranda
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora CO, 80045, USA
| | - Wolfgang E Schleicher
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora CO, 80045, USA
| | - Kristen L Wells
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - David G Ramirez
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora CO, 80045, USA
| | - Samantha P Landgrave
- Program in Cell Biology, Stem Cell and Development, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Richard K P Benninger
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora CO, 80045, USA; Program in Cell Biology, Stem Cell and Development, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
20
|
Martinez C, Maschio DA, de Fontes CC, Vanzela EC, Benfato ID, Gazarini ML, Carneiro EM, de Oliveira CA, Collares-Buzato CB, de F. Carvalho CP. EARLY DECREASE IN CX36 IS ASSOCIATED WITH INCREASED CELL ADHESION MOLECULES (CAMs) JUNCTIONAL CONTENT IN MOUSE PANCREATIC ISLETS AFTER SHORT-TERM HIGH-FAT DIET FEEDING. Ann Anat 2022; 241:151891. [DOI: 10.1016/j.aanat.2022.151891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/29/2022]
|
21
|
Benninger RKP, Kravets V. The physiological role of β-cell heterogeneity in pancreatic islet function. Nat Rev Endocrinol 2022; 18:9-22. [PMID: 34667280 PMCID: PMC8915749 DOI: 10.1038/s41574-021-00568-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 01/03/2023]
Abstract
Endocrine cells within the pancreatic islets of Langerhans are heterogeneous in terms of transcriptional profile, protein expression and the regulation of hormone release. Even though this heterogeneity has long been appreciated, only within the past 5 years have detailed molecular analyses led to an improved understanding of its basis. Although we are beginning to recognize why some subpopulations of endocrine cells are phenotypically different to others, arguably the most important consideration is how this heterogeneity affects the regulation of hormone release to control the homeostasis of glucose and other energy-rich nutrients. The focus of this Review is the description of how endocrine cell heterogeneity (and principally that of insulin-secreting β-cells) affects the regulation of hormone secretion within the islets of Langerhans. This discussion includes an overview of the functional characteristics of the different islet cell subpopulations and describes how they can communicate to influence islet function under basal and glucose-stimulated conditions. We further discuss how changes to the specific islet cell subpopulations or their numbers might underlie islet dysfunction in type 2 diabetes mellitus. We conclude with a discussion of several key open questions regarding the physiological role of islet cell heterogeneity.
Collapse
Affiliation(s)
- Richard K P Benninger
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Vira Kravets
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
22
|
Ferri G, Pesce L, Tesi M, Marchetti P, Cardarelli F. β-Cell Pathophysiology: A Review of Advanced Optical Microscopy Applications. Int J Mol Sci 2021; 22:ijms222312820. [PMID: 34884624 PMCID: PMC8657725 DOI: 10.3390/ijms222312820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
β-cells convert glucose (input) resulting in the controlled release of insulin (output), which in turn has the role to maintain glucose homeostasis. β-cell function is regulated by a complex interplay between the metabolic processing of the input, its transformation into second-messenger signals, and final mobilization of insulin-containing granules towards secretion of the output. Failure at any level in this process marks β-cell dysfunction in diabetes, thus making β-cells obvious potential targets for therapeutic purposes. Addressing quantitatively β-cell (dys)function at the molecular level in living samples requires probing simultaneously the spatial and temporal dimensions at the proper resolution. To this aim, an increasing amount of research efforts are exploiting the potentiality of biophysical techniques. In particular, using excitation light in the visible/infrared range, a number of optical-microscopy-based approaches have been tailored to the study of β-cell-(dys)function at the molecular level, either in label-free mode (i.e., exploiting intrinsic autofluorescence of cells) or by the use of organic/genetically-encoded fluorescent probes. Here, relevant examples from the literature are reviewed and discussed. Based on this, new potential lines of development in the field are drawn.
Collapse
Affiliation(s)
- Gianmarco Ferri
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (G.F.); (L.P.)
| | - Luca Pesce
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (G.F.); (L.P.)
| | - Marta Tesi
- Islet Cell Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, 56127 Pisa, Italy; (M.T.); (P.M.)
| | - Piero Marchetti
- Islet Cell Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, 56127 Pisa, Italy; (M.T.); (P.M.)
| | - Francesco Cardarelli
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (G.F.); (L.P.)
- Correspondence:
| |
Collapse
|
23
|
Trogden KP, Lee J, Bracey KM, Ho KH, McKinney H, Zhu X, Arpag G, Folland TG, Osipovich AB, Magnuson MA, Zanic M, Gu G, Holmes WR, Kaverina I. Microtubules regulate pancreatic β-cell heterogeneity via spatiotemporal control of insulin secretion hot spots. eLife 2021; 10:59912. [PMID: 34783306 PMCID: PMC8635970 DOI: 10.7554/elife.59912] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/08/2021] [Indexed: 12/25/2022] Open
Abstract
Heterogeneity of glucose-stimulated insulin secretion (GSIS) in pancreatic islets is physiologically important but poorly understood. Here, we utilize mouse islets to determine how microtubules (MTs) affect secretion toward the vascular extracellular matrix at single cell and subcellular levels. Our data indicate that MT stability in the β-cell population is heterogenous, and that GSIS is suppressed in cells with highly stable MTs. Consistently, MT hyper-stabilization prevents, and MT depolymerization promotes the capacity of single β-cell for GSIS. Analysis of spatiotemporal patterns of secretion events shows that MT depolymerization activates otherwise dormant β-cells via initiation of secretion clusters (hot spots). MT depolymerization also enhances secretion from individual cells, introducing both additional clusters and scattered events. Interestingly, without MTs, the timing of clustered secretion is dysregulated, extending the first phase of GSIS and causing oversecretion. In contrast, glucose-induced Ca2+ influx was not affected by MT depolymerization yet required for secretion under these conditions, indicating that MT-dependent regulation of secretion hot spots acts in parallel with Ca2+ signaling. Our findings uncover a novel MT function in tuning insulin secretion hot spots, which leads to accurately measured and timed response to glucose stimuli and promotes functional β-cell heterogeneity.
Collapse
Affiliation(s)
- Kathryn P Trogden
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Justin Lee
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Kai M Bracey
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Kung-Hsien Ho
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Hudson McKinney
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Xiaodong Zhu
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States.,Department of Medicine, Vanderbilt University, Nashville, United States
| | - Goker Arpag
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Thomas G Folland
- Department of Mechanical Engineering, Vanderbilt University, Nashville, United States
| | - Anna B Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States.,Center for Stem Cell Biology, Vanderbilt University, Nashville, United States
| | - Mark A Magnuson
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States.,Center for Stem Cell Biology, Vanderbilt University, Nashville, United States
| | - Marija Zanic
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, United States.,Department of Biochemistry, Vanderbilt University, Nashville, United States
| | - Guoqiang Gu
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - William R Holmes
- Department of Physics and Astronomy, Vanderbilt University, Nashville, United States.,Department of Mathematics, Vanderbilt University, Nashville, United States.,Quantitative Systems Biology Center, Vanderbilt University, Nashville, United States
| | - Irina Kaverina
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| |
Collapse
|
24
|
Langlhofer G, Kogel A, Schaefer M. Glucose-induced [Ca2+]i oscillations in β cells are composed of trains of spikes within a subplasmalemmal microdomain. Cell Calcium 2021; 99:102469. [PMID: 34509871 DOI: 10.1016/j.ceca.2021.102469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
Electrical activity and oscillations of cytosolic Ca2+ concentrations ([Ca2+]i) that trigger insulin release in response to glucose are key functions of pancreatic β cells. Although oscillatory Ca2+ signals have been intensively studied in β cells, their lower frequency did not match that of electrical activity. In addition, the measured peak [Ca2+]i did not reach levels that are typically required by synaptotagmins to elicit the release of insulin-containing vesicles in live-cell experiments. We therefore sought to resolve the Ca2+ dynamics in the subplasmalemmal microdomain that is critical for triggering fast exocytosis. Applying total internal reflection fluorescence (TIRF) microscopy in insulin-producing INS-1E and primary mouse β cells, we resolved extraordinary fast trains of Ca2+ spiking (frequency > 3 s-1) in response to glucose exposure. Using a low-affinity [Ca2+]i indicator dye, we provide experimental evidence that Ca2+ spikes reach low micromolar apparent concentrations in the vicinity of the plasma membrane. Analysis of Ca2+ spikes evoked by repeated depolarization for 10 ms closely matched the Ca2+ dynamics observed upon glucose application. To our knowledge, this is the first study that experimentally demonstrates Ca2+ spikes in β cells with velocities that resemble those of bursting or continuously appearing trains of action potentials (APs) in non-patched cells.
Collapse
Affiliation(s)
- Georg Langlhofer
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Alexander Kogel
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Michael Schaefer
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
25
|
Stožer A, Skelin Klemen M, Gosak M, Križančić Bombek L, Pohorec V, Slak Rupnik M, Dolenšek J. Glucose-dependent activation, activity, and deactivation of beta cell networks in acute mouse pancreas tissue slices. Am J Physiol Endocrinol Metab 2021; 321:E305-E323. [PMID: 34280052 DOI: 10.1152/ajpendo.00043.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022]
Abstract
Many details of glucose-stimulated intracellular calcium changes in β cells during activation, activity, and deactivation, as well as their concentration-dependence, remain to be analyzed. Classical physiological experiments indicated that in islets, functional differences between individual cells are largely attenuated, but recent findings suggest considerable intercellular heterogeneity, with some cells possibly coordinating the collective responses. To address the above with an emphasis on heterogeneity and describing the relations between classical physiological and functional network properties, we performed functional multicellular calcium imaging in mouse pancreas tissue slices over a wide range of glucose concentrations. During activation, delays to activation of cells and any-cell-to-first-responder delays are shortened, and the sizes of simultaneously responding clusters increased with increasing glucose concentrations. Exactly the opposite characterized deactivation. The frequency of fast calcium oscillations during activity increased with increasing glucose up to 12 mM glucose concentration, beyond which oscillation duration became longer, resulting in a homogenous increase in active time. In terms of functional connectivity, islets progressed from a very segregated network to a single large functional unit with increasing glucose concentration. A comparison between classical physiological and network parameters revealed that the first-responders during activation had longer active times during plateau and the most active cells during the plateau tended to deactivate later. Cells with the most functional connections tended to activate sooner, have longer active times, and deactivate later. Our findings provide a common ground for recent differing views on β cell heterogeneity and an important baseline for future studies of stimulus-secretion and intercellular coupling.NEW & NOTEWORTHY We assessed concentration-dependence in coupled β cells, degree of functional heterogeneity, and uncovered possible specialized subpopulations during the different phases of the response to glucose at the level of many individual cells. To this aim, we combined acute mouse pancreas tissue slices with functional multicellular calcium imaging over a wide range from threshold (7 mM) and physiological (8 and 9 mM) to supraphysiological (12 and 16 mM) glucose concentrations, classical physiological, and advanced network analyses.
Collapse
Affiliation(s)
- Andraž Stožer
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Maša Skelin Klemen
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Marko Gosak
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | | | - Viljem Pohorec
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Marjan Slak Rupnik
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Alma Mater Europaea-European Center Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| |
Collapse
|
26
|
Adams MT, Dwulet JM, Briggs JK, Reissaus CA, Jin E, Szulczewski JM, Lyman MR, Sdao SM, Kravets V, Nimkulrat SD, Ponik SM, Merrins MJ, Mirmira RG, Linnemann AK, Benninger RKP, Blum B. Reduced synchroneity of intra-islet Ca 2+ oscillations in vivo in Robo-deficient β cells. eLife 2021; 10:e61308. [PMID: 34231467 PMCID: PMC8289414 DOI: 10.7554/elife.61308] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/06/2021] [Indexed: 12/13/2022] Open
Abstract
The spatial architecture of the islets of Langerhans is hypothesized to facilitate synchronized insulin secretion among β cells, yet testing this in vivo in the intact pancreas is challenging. Robo βKO mice, in which the genes Robo1 and Robo2 are deleted selectively in β cells, provide a unique model of altered islet spatial architecture without loss of β cell differentiation or islet damage from diabetes. Combining Robo βKO mice with intravital microscopy, we show here that Robo βKO islets have reduced synchronized intra-islet Ca2+ oscillations among β cells in vivo. We provide evidence that this loss is not due to a β cell-intrinsic function of Robo, mis-expression or mis-localization of Cx36 gap junctions, or changes in islet vascularization or innervation, suggesting that the islet architecture itself is required for synchronized Ca2+ oscillations. These results have implications for understanding structure-function relationships in the islets during progression to diabetes as well as engineering islets from stem cells.
Collapse
Affiliation(s)
- Melissa T Adams
- Department of Cell and Regenerative Biology, University of Wisconsin-MadisonMadisonUnited States
| | - JaeAnn M Dwulet
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical CampusAuroraUnited States
| | - Jennifer K Briggs
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical CampusAuroraUnited States
| | - Christopher A Reissaus
- Herman B Wells Center for Pediatric Research and Center for Diabetes and Metabolic Diseases, Indiana University School of MedicineIndianapolisUnited States
| | - Erli Jin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-MadisonMadisonUnited States
| | - Joseph M Szulczewski
- Department of Cell and Regenerative Biology, University of Wisconsin-MadisonMadisonUnited States
| | - Melissa R Lyman
- Department of Cell and Regenerative Biology, University of Wisconsin-MadisonMadisonUnited States
| | - Sophia M Sdao
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-MadisonMadisonUnited States
| | - Vira Kravets
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical CampusAuroraUnited States
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Sutichot D Nimkulrat
- Department of Cell and Regenerative Biology, University of Wisconsin-MadisonMadisonUnited States
| | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin-MadisonMadisonUnited States
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-MadisonMadisonUnited States
| | - Raghavendra G Mirmira
- Kovler Diabetes Center and the Department of Medicine, University of ChicagoChicagoUnited States
| | - Amelia K Linnemann
- Herman B Wells Center for Pediatric Research and Center for Diabetes and Metabolic Diseases, Indiana University School of MedicineIndianapolisUnited States
| | - Richard KP Benninger
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical CampusAuroraUnited States
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Barak Blum
- Department of Cell and Regenerative Biology, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
27
|
Stožer A, Paradiž Leitgeb E, Pohorec V, Dolenšek J, Križančić Bombek L, Gosak M, Skelin Klemen M. The Role of cAMP in Beta Cell Stimulus-Secretion and Intercellular Coupling. Cells 2021; 10:1658. [PMID: 34359828 PMCID: PMC8304079 DOI: 10.3390/cells10071658] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
Pancreatic beta cells secrete insulin in response to stimulation with glucose and other nutrients, and impaired insulin secretion plays a central role in development of diabetes mellitus. Pharmacological management of diabetes includes various antidiabetic drugs, including incretins. The incretin hormones, glucagon-like peptide-1 and gastric inhibitory polypeptide, potentiate glucose-stimulated insulin secretion by binding to G protein-coupled receptors, resulting in stimulation of adenylate cyclase and production of the secondary messenger cAMP, which exerts its intracellular effects through activation of protein kinase A or the guanine nucleotide exchange protein 2A. The molecular mechanisms behind these two downstream signaling arms are still not fully elucidated and involve many steps in the stimulus-secretion coupling cascade, ranging from the proximal regulation of ion channel activity to the central Ca2+ signal and the most distal exocytosis. In addition to modifying intracellular coupling, the effect of cAMP on insulin secretion could also be at least partly explained by the impact on intercellular coupling. In this review, we systematically describe the possible roles of cAMP at these intra- and inter-cellular signaling nodes, keeping in mind the relevance for the whole organism and translation to humans.
Collapse
Affiliation(s)
- Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Eva Paradiž Leitgeb
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Viljem Pohorec
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
- Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
| | - Lidija Križančić Bombek
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
- Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
| | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| |
Collapse
|
28
|
Ng XW, Chung YH, Piston DW. Intercellular Communication in the Islet of Langerhans in Health and Disease. Compr Physiol 2021; 11:2191-2225. [PMID: 34190340 PMCID: PMC8985231 DOI: 10.1002/cphy.c200026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Blood glucose homeostasis requires proper function of pancreatic islets, which secrete insulin, glucagon, and somatostatin from the β-, α-, and δ-cells, respectively. Each islet cell type is equipped with intrinsic mechanisms for glucose sensing and secretory actions, but these intrinsic mechanisms alone cannot explain the observed secretory profiles from intact islets. Regulation of secretion involves interconnected mechanisms among and between islet cell types. Islet cells lose their normal functional signatures and secretory behaviors upon dispersal as compared to intact islets and in vivo. In dispersed islet cells, the glucose response of insulin secretion is attenuated from that seen from whole islets, coordinated oscillations in membrane potential and intracellular Ca2+ activity, as well as the two-phase insulin secretion profile, are missing, and glucagon secretion displays higher basal secretion profile and a reverse glucose-dependent response from that of intact islets. These observations highlight the critical roles of intercellular communication within the pancreatic islet, and how these communication pathways are crucial for proper hormonal and nonhormonal secretion and glucose homeostasis. Further, misregulated secretions of islet secretory products that arise from defective intercellular islet communication are implicated in diabetes. Intercellular communication within the islet environment comprises multiple mechanisms, including electrical synapses from gap junctional coupling, paracrine interactions among neighboring cells, and direct cell-to-cell contacts in the form of juxtacrine signaling. In this article, we describe the various mechanisms that contribute to proper islet function for each islet cell type and how intercellular islet communications are coordinated among the same and different islet cell types. © 2021 American Physiological Society. Compr Physiol 11:2191-2225, 2021.
Collapse
Affiliation(s)
- Xue W Ng
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| | - Yong H Chung
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| | - David W Piston
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| |
Collapse
|
29
|
Scialla S, Loppini A, Patriarca M, Heinsalu E. Hubs, diversity, and synchronization in FitzHugh-Nagumo oscillator networks: Resonance effects and biophysical implications. Phys Rev E 2021; 103:052211. [PMID: 34134340 DOI: 10.1103/physreve.103.052211] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/03/2021] [Indexed: 11/06/2022]
Abstract
Using the FitzHugh-Nagumo equations to represent the oscillatory electrical behavior of β-cells, we develop a coupled oscillator network model with cubic lattice topology, showing that the emergence of pacemakers or hubs in the system can be viewed as a natural consequence of oscillator population diversity. The optimal hub to nonhub ratio is determined by the position of the diversity-induced resonance maximum for a given set of FitzHugh-Nagumo equation parameters and is predicted by the model to be in a range that is fully consistent with experimental observations. The model also suggests that hubs in a β-cell network should have the ability to "switch on" and "off" their pacemaker function. As a consequence, their relative amount in the population can vary in order to ensure an optimal oscillatory performance of the network in response to environmental changes, such as variations of an external stimulus.
Collapse
Affiliation(s)
- Stefano Scialla
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Á. del Portillo 21, 00128 Rome, Italy
| | - Alessandro Loppini
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Á. del Portillo 21, 00128 Rome, Italy
| | - Marco Patriarca
- National Institute of Chemical Physics and Biophysics, Rävala 10, Tallinn 15042, Estonia
| | - Els Heinsalu
- National Institute of Chemical Physics and Biophysics, Rävala 10, Tallinn 15042, Estonia
| |
Collapse
|
30
|
Saadati M, Jamali Y. The effects of beta-cell mass and function, intercellular coupling, and islet synchrony on [Formula: see text] dynamics. Sci Rep 2021; 11:10268. [PMID: 33986325 PMCID: PMC8119479 DOI: 10.1038/s41598-021-89333-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/26/2021] [Indexed: 11/30/2022] Open
Abstract
Type 2 diabetes (T2D) is a challenging metabolic disorder characterized by a substantial loss of [Formula: see text]-cell mass and alteration of [Formula: see text]-cell function in the islets of Langerhans, disrupting insulin secretion and glucose homeostasis. The mechanisms for deficiency in [Formula: see text]-cell mass and function during the hyperglycemia development and T2D pathogenesis are complex. To study the relative contribution of [Formula: see text]-cell mass to [Formula: see text]-cell function in T2D, we make use of a comprehensive electrophysiological model of human [Formula: see text]-cell clusters. We find that defect in [Formula: see text]-cell mass causes a functional decline in single [Formula: see text]-cell, impairment in intra-islet synchrony, and changes in the form of oscillatory patterns of membrane potential and intracellular [Formula: see text] concentration, which can lead to changes in insulin secretion dynamics and in insulin levels. The model demonstrates a good correspondence between suppression of synchronizing electrical activity and published experimental measurements. We then compare the role of gap junction-mediated electrical coupling with both [Formula: see text]-cell synchronization and metabolic coupling in the behavior of [Formula: see text] concentration dynamics within human islets. Our results indicate that inter-[Formula: see text]-cellular electrical coupling depicts a more important factor in shaping the physiological regulation of islet function and in human T2D. We further predict that varying the whole-cell conductance of delayed rectifier [Formula: see text] channels modifies oscillatory activity patterns of [Formula: see text]-cell population lacking intercellular coupling, which significantly affect [Formula: see text] concentration and insulin secretion.
Collapse
Affiliation(s)
- Maryam Saadati
- Biomathematics Laboratory, Department of Applied Mathematics, School of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yousef Jamali
- Biomathematics Laboratory, Department of Applied Mathematics, School of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
31
|
Small subpopulations of β-cells do not drive islet oscillatory [Ca2+] dynamics via gap junction communication. PLoS Comput Biol 2021; 17:e1008948. [PMID: 33939712 PMCID: PMC8118513 DOI: 10.1371/journal.pcbi.1008948] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 05/13/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
The islets of Langerhans exist as multicellular networks that regulate blood glucose levels. The majority of cells in the islet are excitable, insulin-producing β-cells that are electrically coupled via gap junction channels. β-cells are known to display heterogeneous functionality. However, due to gap junction coupling, β-cells show coordinated [Ca2+] oscillations when stimulated with glucose, and global quiescence when unstimulated. Small subpopulations of highly functional β-cells have been suggested to control [Ca2+] dynamics across the islet. When these populations were targeted by optogenetic silencing or photoablation, [Ca2+] dynamics across the islet were largely disrupted. In this study, we investigated the theoretical basis of these experiments and how small populations can disproportionality control islet [Ca2+] dynamics. Using a multicellular islet model, we generated normal, skewed or bimodal distributions of β-cell heterogeneity. We examined how islet [Ca2+] dynamics were disrupted when cells were targeted via hyperpolarization or populations were removed; to mimic optogenetic silencing or photoablation, respectively. Targeted cell populations were chosen based on characteristics linked to functional subpopulation, including metabolic rate of glucose oxidation or [Ca2+] oscillation frequency. Islets were susceptible to marked suppression of [Ca2+] when ~10% of cells with high metabolic activity were hyperpolarized; where hyperpolarizing cells with normal metabolic activity had little effect. However, when highly metabolic cells were removed from the model, [Ca2+] oscillations remained. Similarly, when ~10% of cells with either the highest frequency or earliest elevations in [Ca2+] were removed from the islet, the [Ca2+] oscillation frequency remained largely unchanged. Overall, these results indicate small populations of β-cells with either increased metabolic activity or increased frequency are unable to disproportionately control islet-wide [Ca2+] via gap junction coupling. Therefore, we need to reconsider the physiological basis for such small β-cell populations or the mechanism by which they may be acting to control normal islet function. Many biological systems can be studied using network theory. How heterogeneous cell subpopulations come together to create complex multicellular behavior is of great value in understanding function and dysfunction in tissues. The pancreatic islet of Langerhans is a highly coupled structure that is important for maintaining blood glucose homeostasis. β-cell electrical activity is coordinated via gap junction communication. The function of the insulin-producing β-cell within the islet is disrupted in diabetes. As such, to understand the causes of islet dysfunction we need to understand how different cells within the islet contribute to its overall function via gap junction coupling. Using a computational model of β-cell electrophysiology, we investigated how small highly functional β-cell populations within the islet contribute to its function. We found that when small populations with greater functionality were introduced into the islet, they displayed signatures of this enhanced functionality. However, when these cells were removed, the islet, retained near-normal function. Thus, in a highly coupled system, such as an islet, the heterogeneity of cells allows small subpopulations to be dispensable, and thus their absence is unable to disrupt the larger cellular network. These findings can be applied to other electrical systems that have heterogeneous cell populations.
Collapse
|
32
|
Šterk M, Križančić Bombek L, Skelin Klemen M, Slak Rupnik M, Marhl M, Stožer A, Gosak M. NMDA receptor inhibition increases, synchronizes, and stabilizes the collective pancreatic beta cell activity: Insights through multilayer network analysis. PLoS Comput Biol 2021; 17:e1009002. [PMID: 33974632 PMCID: PMC8139480 DOI: 10.1371/journal.pcbi.1009002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/21/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
NMDA receptors promote repolarization in pancreatic beta cells and thereby reduce glucose-stimulated insulin secretion. Therefore, NMDA receptors are a potential therapeutic target for diabetes. While the mechanism of NMDA receptor inhibition in beta cells is rather well understood at the molecular level, its possible effects on the collective cellular activity have not been addressed to date, even though proper insulin secretion patterns result from well-synchronized beta cell behavior. The latter is enabled by strong intercellular connectivity, which governs propagating calcium waves across the islets and makes the heterogeneous beta cell population work in synchrony. Since a disrupted collective activity is an important and possibly early contributor to impaired insulin secretion and glucose intolerance, it is of utmost importance to understand possible effects of NMDA receptor inhibition on beta cell functional connectivity. To address this issue, we combined confocal functional multicellular calcium imaging in mouse tissue slices with network science approaches. Our results revealed that NMDA receptor inhibition increases, synchronizes, and stabilizes beta cell activity without affecting the velocity or size of calcium waves. To explore intercellular interactions more precisely, we made use of the multilayer network formalism by regarding each calcium wave as an individual network layer, with weighted directed connections portraying the intercellular propagation. NMDA receptor inhibition stabilized both the role of wave initiators and the course of waves. The findings obtained with the experimental antagonist of NMDA receptors, MK-801, were additionally validated with dextrorphan, the active metabolite of the approved drug dextromethorphan, as well as with experiments on NMDA receptor KO mice. In sum, our results provide additional and new evidence for a possible role of NMDA receptor inhibition in treatment of type 2 diabetes and introduce the multilayer network paradigm as a general strategy to examine effects of drugs on connectivity in multicellular systems.
Collapse
Affiliation(s)
- Marko Šterk
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | | | | | - Marjan Slak Rupnik
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Alma Mater Europaea–ECM, Maribor, Slovenia
| | - Marko Marhl
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Education, University of Maribor, Maribor, Slovenia
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Gosak
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| |
Collapse
|
33
|
Hogan JP, Peercy BE. Flipping the switch on the hub cell: Islet desynchronization through cell silencing. PLoS One 2021; 16:e0248974. [PMID: 33831017 PMCID: PMC8031451 DOI: 10.1371/journal.pone.0248974] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/08/2021] [Indexed: 11/18/2022] Open
Abstract
Pancreatic β cells, responsible for secreting insulin into the bloodstream and maintaining glucose homeostasis, are organized in the islets of Langerhans as clusters of electrically coupled cells. Gap junctions, connecting neighboring cells, coordinate the behavior of the islet, leading to the synchronized oscillations in the intracellular calcium and insulin secretion in healthy islets. Recent experimental work has shown that silencing special hub cells can lead to a disruption in the coordinated behavior, calling into question the democratic paradigm of islet insulin secretion with more or less equal input from each β cell. Islets were shown to have scale-free functional connectivity and a hub cell whose silencing would lead to a loss of functional connectivity and activity in the islet. A mechanistic model representing the electrical and calcium dynamics of β cells during insulin secretion was applied to a network of cells connected by gap junctions to test the hypothesis of hub cells. Functional connectivity networks were built from the simulated calcium traces, with some networks classified as scale-free, confirming experimental results. Potential hub cells were identified using previously defined centrality measures, but silencing them was unable to desynchronize the islet. Instead, switch cells, which were able to turn off the activity of the islet but were not highly functionally connected, were found via systematically silencing each cell in the network.
Collapse
Affiliation(s)
- Janita P. Hogan
- Department of Mathematics & Statistics, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Bradford E. Peercy
- Department of Mathematics & Statistics, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| |
Collapse
|
34
|
Zmazek J, Klemen MS, Markovič R, Dolenšek J, Marhl M, Stožer A, Gosak M. Assessing Different Temporal Scales of Calcium Dynamics in Networks of Beta Cell Populations. Front Physiol 2021; 12:612233. [PMID: 33833686 PMCID: PMC8021717 DOI: 10.3389/fphys.2021.612233] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/26/2021] [Indexed: 01/06/2023] Open
Abstract
Beta cells within the pancreatic islets of Langerhans respond to stimulation with coherent oscillations of membrane potential and intracellular calcium concentration that presumably drive the pulsatile exocytosis of insulin. Their rhythmic activity is multimodal, resulting from networked feedback interactions of various oscillatory subsystems, such as the glycolytic, mitochondrial, and electrical/calcium components. How these oscillatory modules interact and affect the collective cellular activity, which is a prerequisite for proper hormone release, is incompletely understood. In the present work, we combined advanced confocal Ca2+ imaging in fresh mouse pancreas tissue slices with time series analysis and network science approaches to unveil the glucose-dependent characteristics of different oscillatory components on both the intra- and inter-cellular level. Our results reveal an interrelationship between the metabolically driven low-frequency component and the electrically driven high-frequency component, with the latter exhibiting the highest bursting rates around the peaks of the slow component and the lowest around the nadirs. Moreover, the activity, as well as the average synchronicity of the fast component, considerably increased with increasing stimulatory glucose concentration, whereas the stimulation level did not affect any of these parameters in the slow component domain. Remarkably, in both dynamical components, the average correlation decreased similarly with intercellular distance, which implies that intercellular communication affects the synchronicity of both types of oscillations. To explore the intra-islet synchronization patterns in more detail, we constructed functional connectivity maps. The subsequent comparison of network characteristics of different oscillatory components showed more locally clustered and segregated networks of fast oscillatory activity, while the slow oscillations were more global, resulting in several long-range connections and a more cohesive structure. Besides the structural differences, we found a relatively weak relationship between the fast and slow network layer, which suggests that different synchronization mechanisms shape the collective cellular activity in islets, a finding which has to be kept in mind in future studies employing different oscillations for constructing networks.
Collapse
Affiliation(s)
- Jan Zmazek
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | | | - Rene Markovič
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Education, University of Maribor, Maribor, Slovenia
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
35
|
A Practical Guide to Rodent Islet Isolation and Assessment Revisited. Biol Proced Online 2021; 23:7. [PMID: 33641671 PMCID: PMC7919091 DOI: 10.1186/s12575-021-00143-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Insufficient insulin secretion is a key component of both type 1 and type 2 diabetes. Since insulin is released by the islets of Langerhans, obtaining viable and functional islets is critical for research and transplantation. The effective and efficient isolation of these small islands of endocrine cells from the sea of exocrine tissue that is the rest of the pancreas is not necessarily simple or quick. Choosing and administering the digestive enzyme, separation of the islets from acinar tissue, and culture of islets are all things that must be considered. The purpose of this review is to provide a history of the development of islet isolation procedures and to serve as a practical guide to rodent islet research for newcomers to islet biology. We discuss key elements of mouse islet isolation including choosing collagenase, the digestion process, purification of islets using a density gradient, and islet culture conditions. In addition, this paper reviews techniques for assessing islet viability and function such as visual assessment, glucose-stimulated insulin secretion and intracellular calcium measurements. A detailed protocol is provided that describes a common method our laboratory uses to obtain viable and functional mouse islets for in vitro study. This review thus provides a strong foundation for successful procurement and purification of high-quality mouse islets for research purposes.
Collapse
|
36
|
Chabosseau P, Rutter GA, Millership SJ. Importance of Both Imprinted Genes and Functional Heterogeneity in Pancreatic Beta Cells: Is There a Link? Int J Mol Sci 2021; 22:1000. [PMID: 33498234 PMCID: PMC7863946 DOI: 10.3390/ijms22031000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 02/02/2023] Open
Abstract
Diabetes mellitus now affects more than 400 million individuals worldwide, with significant impacts on the lives of those affected and associated socio-economic costs. Although defects in insulin secretion underlie all forms of the disease, the molecular mechanisms which drive them are still poorly understood. Subsets of specialised beta cells have, in recent years, been suggested to play critical roles in "pacing" overall islet activity. The molecular nature of these cells, the means through which their identity is established and the changes which may contribute to their functional demise and "loss of influence" in both type 1 and type 2 diabetes are largely unknown. Genomic imprinting involves the selective silencing of one of the two parental alleles through DNA methylation and modified imprinted gene expression is involved in a number of diseases. Loss of expression, or loss of imprinting, can be shown in mouse models to lead to defects in beta cell function and abnormal insulin secretion. In the present review we survey the evidence that altered expression of imprinted genes contribute to loss of beta cell function, the importance of beta cell heterogeneity in normal and disease states, and hypothesise whether there is a direct link between the two.
Collapse
Affiliation(s)
| | | | - Steven J. Millership
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK; (P.C.); (G.A.R.)
| |
Collapse
|
37
|
Hudish LI, Reusch JE, Sussel L. β Cell dysfunction during progression of metabolic syndrome to type 2 diabetes. J Clin Invest 2020; 129:4001-4008. [PMID: 31424428 DOI: 10.1172/jci129188] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In a society where physical activity is limited and food supply is abundant, metabolic diseases are becoming a serious epidemic. Metabolic syndrome (MetS) represents a cluster of metabolically related symptoms such as obesity, hypertension, dyslipidemia, and carbohydrate intolerance, and significantly increases type 2 diabetes mellitus risk. Insulin resistance and hyperinsulinemia are consistent characteristics of MetS, but which of these features is the initiating insult is still widely debated. Regardless, both of these conditions trigger adverse responses from the pancreatic β cell, which is responsible for producing, storing, and releasing insulin to maintain glucose homeostasis. The observation that the degree of β cell dysfunction correlates with the severity of MetS highlights the need to better understand β cell dysfunction in the development of MetS. This Review focuses on the current understanding from rodent and human studies of the progression of β cell responses during the development of MetS, as well as recent findings addressing the complexity of β cell identity and heterogeneity within the islet during disease progression. The differential responses observed in β cells together with the heterogeneity in disease phenotypes within the patient population emphasize the need to better understand the mechanisms behind β cell adaptation, identity, and dysfunction in MetS.
Collapse
Affiliation(s)
| | - Jane Eb Reusch
- Division of Endocrinology, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | | |
Collapse
|
38
|
Hu J, Li X, Judd RL, Easley CJ. Rapid lipolytic oscillations in ex vivo adipose tissue explants revealed through microfluidic droplet sampling at high temporal resolution. LAB ON A CHIP 2020; 20:1503-1512. [PMID: 32239045 PMCID: PMC7380261 DOI: 10.1039/d0lc00103a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Our understanding of adipose tissue biology has steadily evolved. While structural and energy storage functionalities have been in the forefront, a key endocrine role for adipocytes was revealed only over the last few decades. In contrast to the wealth of information on dynamic function of other endocrine tissues, few studies have focused on dynamic adipose tissue function or on tool development toward that end. Here, we apply our unique droplet-based microfluidic devices to culture, perfuse, and sample secretions from primary murine epididymal white adipose tissue (eWAT), and from predifferentiated clusters of 3T3-L1 adipocytes. Through automated control, oil-segmented aqueous droplets (∼2.6 nL) were sampled from tissue or cells at 3.5 second temporal resolution (including sample and reference droplets), with integrated enzyme assays enabling real-time quantification of glycerol (down to 1.9 fmol per droplet). This high resolution revealed previously unreported oscillations in secreted glycerol at frequencies of 0.2 to 2.0 min-1 (∼30-300 s periods) present in the primary tissue but not in clustered cells. Low-level bursts (∼50 fmol) released in basal conditions were contrasted with larger bursts (∼300 fmol) during stimulation. Further, both fold changes and burst magnitudes were decreased in eWAT of aged and obese mice. These results, combined with immunostaining and photobleaching analyses, suggest that gap-junctional coupling or nerve cell innervation within the intact ex vivo tissue explants play important roles in this apparent tissue-level, lipolytic synchronization. High-resolution, quantitative sampling by droplet microfluidics thus permitted unique biological information to be observed, giving an analytical framework poised for future studies of dynamic oscillatory function of adipose and other tissues.
Collapse
Affiliation(s)
- Juan Hu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | | | | | | |
Collapse
|
39
|
SNAP-25 Puts SNAREs at Center Stage in Metabolic Disease. Neuroscience 2019; 420:86-96. [DOI: 10.1016/j.neuroscience.2018.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/12/2018] [Accepted: 07/19/2018] [Indexed: 12/20/2022]
|
40
|
Montefusco F, Cortese G, Pedersen MG. Heterogeneous alpha-cell population modeling of glucose-induced inhibition of electrical activity. J Theor Biol 2019; 485:110036. [PMID: 31585105 DOI: 10.1016/j.jtbi.2019.110036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/12/2019] [Accepted: 09/28/2019] [Indexed: 12/22/2022]
Abstract
Glucagon release from the pancreatic alpha-cells is regulated by glucose, but the underlying mechanisms are far from understood. It is known that the alpha-cell population is very heterogeneous, but - compared to the insulin-secreting beta-cells - the consequences of this cell-to-cell variation are much less studied. Since the alpha-cells are not electrically coupled, large differences in the single cell responses are to be expected, and this variation may contribute to the confusion regarding the mechanisms of glucose-induced suppression of glucagon release. Using mathematical modeling of alpha-cells with realistic cell-to-cell parameter variation based on recent experimental results, we show that the simulated alpha-cells exhibit great diversity in their electrophysiological behavior. To robustly reproduce experimental recordings from alpha-cell exposed to a rise in glucose levels, we must assume that both intrinsic mechanisms and paracrine signals contribute to glucose-induced changes in electrical activity. Our simulations suggest that the sum of different electrophysiological responses due to alpha-cell heterogeneity is involved in glucose-suppressed glucagon secretion, and that more than one mechanism contribute to control the alpha-cell populations' behavior. Finally, we apply regression analysis to our synthetic alpha-cell population to infer which membrane currents influence electrical activity in alpha-cells at different glucose levels. The results from such statistical modeling suggest possible disturbances underlying defect regulation of alpha-cell electrical behavior in diabetics. Thus, although alpha-cells appear to be inherently complex and heterogeneous as reflected in published data, realistic modeling of the alpha-cells at the population level provides insight into the mechanisms of glucagon release.
Collapse
Affiliation(s)
| | - Giuliana Cortese
- Department of Statistical Sciences, University of Padova, Padova, Italy
| | - Morten G Pedersen
- Department of Information Engineering, University of Padova, Padova, Italy; Department of Mathematics "Tullio Levi-Civita", University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy.
| |
Collapse
|
41
|
Da Silva Xavier G, Rutter GA. Metabolic and Functional Heterogeneity in Pancreatic β Cells. J Mol Biol 2019; 432:1395-1406. [PMID: 31419404 DOI: 10.1016/j.jmb.2019.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/17/2019] [Accepted: 08/05/2019] [Indexed: 01/01/2023]
Abstract
Metabolic and secretory heterogeneity are fundamental properties of pancreatic islet β cells. Emerging data suggest that stable differences in the transcriptome and proteome of individual cells may create cellular hierarchies, which, in turn, establish coordinated functional networks. These networks appear to govern the secretory activity of the whole islet and be affected in some forms of diabetes mellitus. Functional imaging, for example, of intracellular calcium dynamics, has led to the demonstration of "small worlds" behavior, and the identification of highly connected "hub" (or "leader") cells and of follower populations subservient to them. Subsequent inactivation of members of either population, for example, using optogenetic approaches or photoablation, has confirmed the importance of hub cells as possible pacemakers. Hub cells appear to be enriched for the glucose phosphorylating enzyme glucokinase and for genes encoding other enzymes involved in glucose metabolism compared to follower cells. Recent findings have shown the relevance of cellular hierarchy in islets from multiple species including human, mouse and fish, and shown that it is preserved in vivo in the context of the fully vascularized and innervated islet. Importantly, connectivity is impaired by insults, which mimic the diabetic milieu, including high glucose and/or fatty levels, and by the ablation of genes associated with type 2 diabetes risk in genome-wide association studies. We discuss here the evidence for the existence of these networks and their failure in disease settings. We also briefly survey the challenges in understanding their properties.
Collapse
Affiliation(s)
- Gabriela Da Silva Xavier
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, United Kingdom.
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, United Kingdom; Lee Kong Chian School of Medicine, Nan Yang Technological University, Singapore
| |
Collapse
|
42
|
Loppini A, Chiodo L. Biophysical modeling of β-cells networks: Realistic architectures and heterogeneity effects. Biophys Chem 2019; 254:106247. [PMID: 31472460 DOI: 10.1016/j.bpc.2019.106247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 11/29/2022]
Abstract
The β-cells dynamics is the regulator of insulin secretion in the pancreas, and its investigation is a central aspect in designing effective treatment strategies for diabetes. Despite great efforts, much is still unknown about the complex organization of such endocrine cells and realistic mathematical modeling represents a useful tool to elucidate key aspects of glucose control in humans. In this contribution, we study the human β-cells collective behaviour, by modeling their electric and metabolic coupling in a cluster, of size and architecture similar to human islets of Langerhans. We focus on the effect of coupling on various dynamics regimes observed in the islets, that are spiking and bursting on multiple timescales. In particular, we test the effect of hubs, that are highly glucose-sensitive β-cells, on the overall network dynamics, observing different modulation depending on the timescale of the dynamics. By properly taking into account the role of cells heterogeneity, recently emerged, our model effectively describes the effect of hubs on the synchronization of the islet response and the correlation of β-cells activity.
Collapse
Affiliation(s)
- A Loppini
- Department of Engineering, University Campus Bio-Medico of Rome, Via Á. del Portillo 21, 00128 Rome, Italy.
| | - L Chiodo
- Department of Engineering, University Campus Bio-Medico of Rome, Via Á. del Portillo 21, 00128 Rome, Italy
| |
Collapse
|
43
|
Stožer A, Markovič R, Dolenšek J, Perc M, Marhl M, Slak Rupnik M, Gosak M. Heterogeneity and Delayed Activation as Hallmarks of Self-Organization and Criticality in Excitable Tissue. Front Physiol 2019; 10:869. [PMID: 31333504 PMCID: PMC6624746 DOI: 10.3389/fphys.2019.00869] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022] Open
Abstract
Self-organized critical dynamics is assumed to be an attractive mode of functioning for several real-life systems and entails an emergent activity in which the extent of observables follows a power-law distribution. The hallmarks of criticality have recently been observed in a plethora of biological systems, including beta cell populations within pancreatic islets of Langerhans. In the present study, we systematically explored the mechanisms that drive the critical and supercritical behavior in networks of coupled beta cells under different circumstances by means of experimental and computational approaches. Experimentally, we employed high-speed functional multicellular calcium imaging of fluorescently labeled acute mouse pancreas tissue slices to record calcium signals in a large number of beta cells simultaneously, and with a high spatiotemporal resolution. Our experimental results revealed that the cellular responses to stimulation with glucose are biphasic and glucose-dependent. Under physiological as well as under supraphysiological levels of stimulation, an initial activation phase was followed by a supercritical plateau phase with a high number of global intercellular calcium waves. However, the activation phase displayed fingerprints of critical behavior under lower stimulation levels, with a progressive recruitment of cells and a power-law distribution of calcium wave sizes. On the other hand, the activation phase provoked by pathophysiologically high glucose concentrations, differed considerably and was more rapid, less continuous, and supercritical. To gain a deeper insight into the experimentally observed complex dynamical patterns, we built up a phenomenological model of coupled excitable cells and explored empirically the model’s necessities that ensured a good overlap between computational and experimental results. It turned out that such a good agreement between experimental and computational findings was attained when both heterogeneous and stimulus-dependent time lags, variability in excitability levels, as well as a heterogeneous cell-cell coupling were included into the model. Most importantly, since our phenomenological approach involved only a few parameters, it naturally lends itself not only for determining key mechanisms of self-organized criticality at the tissue level, but also points out various features for comprehensive and realistic modeling of different excitable systems in nature.
Collapse
Affiliation(s)
- Andraž Stožer
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Rene Markovič
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia.,Faculty of Education, University of Maribor, Maribor, Slovenia.,Faculty of Energy Technology, University of Maribor, Krško, Slovenia
| | - Jurij Dolenšek
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.,Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia.,Center for Applied Mathematics and Theoretical Physics, University of Maribor, Maribor, Slovenia.,Complexity Science Hub Vienna, Vienna, Austria
| | - Marko Marhl
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.,Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia.,Faculty of Education, University of Maribor, Maribor, Slovenia
| | - Marjan Slak Rupnik
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.,Institute of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.,Alma Mater Europaea - ECM, Maribor, Slovenia
| | - Marko Gosak
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.,Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| |
Collapse
|
44
|
Emfinger CH, Lőrincz R, Wang Y, York NW, Singareddy SS, Ikle JM, Tryon RC, McClenaghan C, Shyr ZA, Huang Y, Reissaus CA, Meyer D, Piston DW, Hyrc K, Remedi MS, Nichols CG. Beta-cell excitability and excitability-driven diabetes in adult Zebrafish islets. Physiol Rep 2019; 7:e14101. [PMID: 31161721 PMCID: PMC6546968 DOI: 10.14814/phy2.14101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
Islet β-cell membrane excitability is a well-established regulator of mammalian insulin secretion, and defects in β-cell excitability are linked to multiple forms of diabetes. Evolutionary conservation of islet excitability in lower organisms is largely unexplored. Here we show that adult zebrafish islet calcium levels rise in response to elevated extracellular [glucose], with similar concentration-response relationship to mammalian β-cells. However, zebrafish islet calcium transients are nor well coupled, with a shallower glucose-dependence of cytoplasmic calcium concentration. We have also generated transgenic zebrafish that conditionally express gain-of-function mutations in ATP-sensitive K+ channels (KATP -GOF) in β-cells. Following induction, these fish become profoundly diabetic, paralleling features of mammalian diabetes resulting from equivalent mutations. KATP -GOF fish become severely hyperglycemic, with slowed growth, and their islets lose glucose-induced calcium responses. These results indicate that, although lacking tight cell-cell coupling of intracellular Ca2+ , adult zebrafish islets recapitulate similar excitability-driven β-cell glucose responsiveness to those in mammals, and exhibit profound susceptibility to diabetes as a result of inexcitability. While illustrating evolutionary conservation of islet excitability in lower vertebrates, these results also provide important validation of zebrafish as a suitable animal model in which to identify modulators of islet excitability and diabetes.
Collapse
Affiliation(s)
- Christopher H. Emfinger
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Department of MedicineDivision of Endocrinology, Metabolism, and Lipid ResearchWashington University in St. Louis School of MedicineSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Réka Lőrincz
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
- Institute of Molecular Biology/CMBILeopold‐Franzens‐University InnsbruckInnsbruckAustria
| | - Yixi Wang
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Nathaniel W. York
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Soma S. Singareddy
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Jennifer M. Ikle
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
- Department of PediatricsWashington University in St. Louis School of MedicineSt. LouisMissouri
- Present address:
Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Robert C. Tryon
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Conor McClenaghan
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Zeenat A. Shyr
- Department of MedicineDivision of Endocrinology, Metabolism, and Lipid ResearchWashington University in St. Louis School of MedicineSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Yan Huang
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
- Department of PediatricsWashington University in St. Louis School of MedicineSt. LouisMissouri
- Present address:
Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Christopher A. Reissaus
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
| | - Dirk Meyer
- Institute of Molecular Biology/CMBILeopold‐Franzens‐University InnsbruckInnsbruckAustria
| | - David W. Piston
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Krzysztof Hyrc
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Maria S. Remedi
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Department of MedicineDivision of Endocrinology, Metabolism, and Lipid ResearchWashington University in St. Louis School of MedicineSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| | - Colin G. Nichols
- Department of Cell Biology and PhysiologyWashington University in St. LouisSt. LouisMissouri
- Center for the Investigation of Membrane Excitability DiseasesWashington University in St. Louis School of MedicineSt. LouisMissouri
| |
Collapse
|
45
|
Slepchenko KG, Corbin KL, Nunemaker CS. Comparing methods to normalize insulin secretion shows the process may not be needed. J Endocrinol 2019; 241:JOE-18-0542.R2. [PMID: 30870813 PMCID: PMC6983291 DOI: 10.1530/joe-18-0542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/14/2019] [Indexed: 01/06/2023]
Abstract
Glucose-stimulated insulin secretion (GSIS) is a well-accepted method to investigate the physiological and pathophysiological function of islets. However, there is little consensus about which method is best for normalizing and presenting GSIS data. In this study, we evaluated the sufficiency of islet area, total protein, total DNA, and total insulin content as parameters to normalize GSIS data. First, we tested if there is a linear correlation between each parameter and the number of islets (10, 20, 30, and 40 islets). Islet area, total protein, and insulin content produced excellent linear correlations with islet number (R2 >0.9 for each) from the same islet material. Insulin secretion in 11mM glucose also correlated reasonably well for islet area (R2=0.69), protein (R2=0.49), and insulin content (R2=0.58). DNA content was difficult to reliably measure and was excluded from additional comparisons. We next measured GSIS for 18 replicates of 20 islets each, measuring 3mM and 11mM glucose to calculate the stimulation index and to compare each normalization parameter. Using these similar islet masses for each replicate, none of the parameters produced linear correlations with GSIS (R2<0.05), suggesting that inherent differences in GSIS dominate small differences in islet mass. We conclude that when comparing GSIS for islets of reasonably similar size (<50% variance), normalization does not improve the representation of GSIS data. Normalization may be beneficial when substantial differences in islet mass are involved. In such situations, we suggest that using islet cross-sectional area is superior to other commonly used techniques for normalizing GSIS data.
Collapse
Affiliation(s)
- Kira G. Slepchenko
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
| | - Kathryn L. Corbin
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
| | - Craig S. Nunemaker
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
| |
Collapse
|
46
|
Farack L, Golan M, Egozi A, Dezorella N, Bahar Halpern K, Ben-Moshe S, Garzilli I, Tóth B, Roitman L, Krizhanovsky V, Itzkovitz S. Transcriptional Heterogeneity of Beta Cells in the Intact Pancreas. Dev Cell 2018; 48:115-125.e4. [PMID: 30503750 DOI: 10.1016/j.devcel.2018.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/14/2018] [Accepted: 10/31/2018] [Indexed: 12/27/2022]
Abstract
Pancreatic beta cells have been shown to be heterogeneous at multiple levels. However, spatially interrogating transcriptional heterogeneity in the intact tissue has been challenging. Here, we developed an optimized protocol for single-molecule transcript imaging in the intact pancreas and used it to identify a sub-population of "extreme" beta cells with elevated mRNA levels of insulin and other secretory genes. Extreme beta cells contain higher ribosomal and proinsulin content but lower levels of insulin protein in fasted states, suggesting they may be tuned for basal insulin secretion. They exhibit a distinctive intra-cellular polarization pattern, with elevated mRNA concentrations in an apical ER-enriched compartment, distinct from the localization of nascent and mature proteins. The proportion of extreme cells increases in db/db diabetic mice, potentially facilitating the required increase in basal insulin. Our results thus highlight a sub-population of beta cells that may carry distinct functional roles along physiological and pathological timescales.
Collapse
Affiliation(s)
- Lydia Farack
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Matan Golan
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Adi Egozi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nili Dezorella
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Keren Bahar Halpern
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shani Ben-Moshe
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Immacolata Garzilli
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Beáta Tóth
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lior Roitman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Valery Krizhanovsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
47
|
Huising MO, van der Meulen T, Huang JL, Pourhosseinzadeh MS, Noguchi GM. The Difference δ-Cells Make in Glucose Control. Physiology (Bethesda) 2018; 33:403-411. [PMID: 30303773 PMCID: PMC6347098 DOI: 10.1152/physiol.00029.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022] Open
Abstract
The role of beta and α-cells to glucose control are established, but the physiological role of δ-cells is poorly understood. Delta-cells are ideally positioned within pancreatic islets to modulate insulin and glucagon secretion at their source. We review the evidence for a negative feedback loop between delta and β-cells that determines the blood glucose set point and suggest that local δ-cell-mediated feedback stabilizes glycemic control.
Collapse
Affiliation(s)
- Mark O Huising
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California , Davis, California
- Department of Physiology and Membrane Biology, School of Medicine, University of California , Davis, California
| | - Talitha van der Meulen
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California , Davis, California
| | - Jessica L Huang
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California , Davis, California
| | - Mohammad S Pourhosseinzadeh
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California , Davis, California
| | - Glyn M Noguchi
- Department of Neurobiology, Physiology & Behavior, College of Biological Sciences, University of California , Davis, California
| |
Collapse
|
48
|
Hughes JW, Ustione A, Lavagnino Z, Piston DW. Regulation of islet glucagon secretion: Beyond calcium. Diabetes Obes Metab 2018; 20 Suppl 2:127-136. [PMID: 30230183 PMCID: PMC6148361 DOI: 10.1111/dom.13381] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/03/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022]
Abstract
The islet of Langerhans plays a key role in glucose homeostasis through regulated secretion of the hormones insulin and glucagon. Islet research has focused on the insulin-secreting β-cells, even though aberrant glucagon secretion from α-cells also contributes to the aetiology of diabetes. Despite its importance, the mechanisms controlling glucagon secretion remain controversial. Proper α-cell function requires the islet milieu, where β- and δ-cells drive and constrain α-cell dynamics. The response of glucagon to glucose is similar between isolated islets and that measured in vivo, so it appears that the glucose dependence requires only islet-intrinsic factors and not input from blood flow or the nervous system. Elevated intracellular free Ca2+ is needed for α-cell exocytosis, but interpreting Ca2+ data is tricky since it is heterogeneous among α-cells at all physiological glucose levels. Total Ca2+ activity in α-cells increases slightly with glucose, so Ca2+ may serve a permissive, rather than regulatory, role in glucagon secretion. On the other hand, cAMP is a more promising candidate for controlling glucagon secretion and is itself driven by paracrine signalling from β- and δ-cells. Another pathway, juxtacrine signalling through the α-cell EphA receptors, stimulated by β-cell ephrin ligands, leads to a tonic inhibition of glucagon secretion. We discuss potential combinations of Ca2+ , cAMP, paracrine and juxtacrine factors in the regulation of glucagon secretion, focusing on recent data in the literature that might unify the field towards a quantitative understanding of α-cell function.
Collapse
Affiliation(s)
- Jing W. Hughes
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Alessandro Ustione
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Zeno Lavagnino
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - David W. Piston
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
49
|
Nasteska D, Hodson DJ. The role of beta cell heterogeneity in islet function and insulin release. J Mol Endocrinol 2018; 61:R43-R60. [PMID: 29661799 PMCID: PMC5976077 DOI: 10.1530/jme-18-0011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/16/2018] [Indexed: 12/15/2022]
Abstract
It is becoming increasingly apparent that not all insulin-secreting beta cells are equal. Subtle differences exist at the transcriptomic and protein expression levels, with repercussions for beta cell survival/proliferation, calcium signalling and insulin release. Notably, beta cell heterogeneity displays plasticity during development, metabolic stress and type 2 diabetes mellitus (T2DM). Thus, heterogeneity or lack thereof may be an important contributor to beta cell failure during T2DM in both rodents and humans. The present review will discuss the molecular and cellular features of beta cell heterogeneity at both the single-cell and islet level, explore how this influences islet function and insulin release and look into the alterations that may occur during obesity and T2DM.
Collapse
Affiliation(s)
- Daniela Nasteska
- Institute of Metabolism and Systems Research (IMSR)University of Birmingham, Edgbaston, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- COMPARE University of Birmingham and University of Nottingham MidlandsBirmingham, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR)University of Birmingham, Edgbaston, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- COMPARE University of Birmingham and University of Nottingham MidlandsBirmingham, UK
| |
Collapse
|
50
|
Abstract
Endocrine organs secrete a variety of hormones involved in the regulation of a multitude of body functions. Although pancreatic islets were discovered at the turn of the 19th century, other endocrine glands remained commonly described as diffuse endocrine systems. Over the last two decades, development of new imaging techniques and genetically-modified animals with cell-specific fluorescent tags or specific hormone deficiencies have enabled in vivo imaging of endocrine organs and revealed intricate endocrine cell network structures and plasticity. Overall, these new tools have revolutionized our understanding of endocrine function. The overarching aim of this Review is to describe the current mechanistic understanding that has emerged from imaging studies of endocrine cell network structure/function relationships in animal models, with a particular emphasis on the pituitary gland and the endocrine pancreas.
Collapse
Affiliation(s)
- Patrice Mollard
- Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, F-34094, Montpellier, France
| | - Marie Schaeffer
- Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, F-34094, Montpellier, France.
| |
Collapse
|