1
|
Lee S, Kim JH, Kim H, Kim SH, Park SS, Hong CW, Kwon KT, Lee SH, Kim KS, Choi H, Kim JB, Kim DJ. Investigating the effect of mindfulness training for stress management in military training: the relationship between the autonomic nervous system and emotional regulation. BMC Psychol 2025; 13:13. [PMID: 39773484 PMCID: PMC11706002 DOI: 10.1186/s40359-024-02322-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Military personnel face an increased risk of developing mental disorders owing to the stressful environments they encounter. Effective stress management strategies are crucial to mitigate this risk. Mindfulness training (MT) is promising as a stress management approach in such demanding settings. This study uses a quantitative approach to investigate the impact of MT on the relationship between the autonomic nervous system (ANS) and emotional regulation. METHODS The study evaluated the effectiveness of MT in reducing stress among 86 military personnel. Participants were divided into two groups: MT (n = 42) and non-MT (n = 38). The study compared the two groups using measures of heart rate variability (HRV), a reliable indicator of ANS activity. RESULTS The MT group exhibited a significant increase in HRV (14.4%, p = 0.001) and alpha asymmetry (AA) in the frontal lobe (45.7%, p < 0.001) compared to the non-MT group. Notably, the MT group achieved significantly higher scores on the parachute landing fall (PLF) training performance (p < 0.001). These improvements in HRV, AA, and PLF performance were strongly correlated. Furthermore, AA fully mediated the relationship between HRV and PLF training performance. CONCLUSIONS The findings suggest that MT has a positive impact on stress resilience, potentially by mitigating anxiety and attention deficits induced by extreme stressors. These positive effects are facilitated by concurrent modulation of the frontal cortex and autonomic nervous system. Our findings provide insight into the neural mechanisms behind MT-induced stress reduction from the perspective of neuromodulation.
Collapse
Affiliation(s)
- Seho Lee
- Department of Artificial Intelligence, Korea University, 145, Anam-ro, Seongbuk-gu, 02841, Seoul, Republic of Korea
- Department of AI Convergence, University of Ulsan, 93, Daehak-ro, Nam-gu, 44610, Ulsan, Republic of Korea
| | - Jin Hyung Kim
- Department of Brain and Cognitive Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, 02841, Seoul, Republic of Korea
| | - Hakseung Kim
- Department of Brain and Cognitive Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, 02841, Seoul, Republic of Korea
| | - Sung Ha Kim
- Department of Doctrine Development, Army Consolidated Administrative School, ROK Army, 70, Yangjeongjukchon-ro, Yeongdong-gun, Chungcheongbuk-do, Republic of Korea
| | - Sung Soo Park
- Department of Doctrine Development, Army Consolidated Administrative School, ROK Army, 70, Yangjeongjukchon-ro, Yeongdong-gun, Chungcheongbuk-do, Republic of Korea
| | - Chang Woo Hong
- Department of Doctrine Development, Army Consolidated Administrative School, ROK Army, 70, Yangjeongjukchon-ro, Yeongdong-gun, Chungcheongbuk-do, Republic of Korea
| | - Ki Tae Kwon
- Chaplaincy, Capital Corps of ROK Army, 132, Bisan-dong, Dongan-gu, Anyang-si, Republic of Korea
| | - Seung Hun Lee
- Department of Doctrine Development, Army Consolidated Administrative School, ROK Army, 70, Yangjeongjukchon-ro, Yeongdong-gun, Chungcheongbuk-do, Republic of Korea
| | - Kyoung Soo Kim
- Department of Doctrine Development, Army Consolidated Administrative School, ROK Army, 70, Yangjeongjukchon-ro, Yeongdong-gun, Chungcheongbuk-do, Republic of Korea
| | - Hoon Choi
- Department of Doctrine Development, Army Consolidated Administrative School, ROK Army, 70, Yangjeongjukchon-ro, Yeongdong-gun, Chungcheongbuk-do, Republic of Korea
| | - Jung Bin Kim
- Department of Neurology, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, 02841, Seoul, Republic of Korea
| | - Dong-Joo Kim
- Department of Artificial Intelligence, Korea University, 145, Anam-ro, Seongbuk-gu, 02841, Seoul, Republic of Korea.
- Department of Brain and Cognitive Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, 02841, Seoul, Republic of Korea.
- Department of Neurology, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, 02841, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Quinones D, Barrow M, Seidler K. Investigating the Impact of Ashwagandha and Meditation on Stress Induced Obesogenic Eating Behaviours. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2025; 44:68-88. [PMID: 39254702 DOI: 10.1080/27697061.2024.2401054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/30/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024]
Abstract
Obesity has been identified as a rapidly rising pandemic within the developed world, potentially increasing the risks of type 2 diabetes and cardiovascular disease. Various studies have identified a positive association between stress, elevated cortisol levels and obesity. Mechanisms of the stress response lead to hyperpalatable food preference and increased appetite through the activation of the HPA axis, elevated cortisol and the resulting interactions with the dopaminergic system, neuropeptide Y, ghrelin, leptin and insulin. The methodology of this review involved a Systematic Search of the Literature with a Critical Appraisal of papers considering ashwagandha, mediation and mindfulness in relation to mechanisms of the stress response. It incorporated 12 searches yielding 330 hits. A total of 51 studies met the inclusion criteria and were critically appraised with ARRIVE, SIGN50 and Strobe checklists. Data from the 51 studies was extracted, coded into key themes and summarized in a narrative analysis. Thematic analysis identified 4 key themes related to ashwagandha and 2 key themes related to meditation. Results provide an overview of evidence assessing the efficacy of ashwagandha and meditation in relation to weight loss interventions by supporting the stress response and the pathways highlighted. Results of Clinical studies indicate that ashwagandha supports weight loss through reduced stress, cortisol and food cravings. Pre-clinical studies also suggest that ashwagandha possesses the capacity to regulate food intake by improving leptin and insulin sensitivity and reducing addictive behaviors through dopamine regulation. Clinical studies on meditation indicate it may enhance a weight loss protocol by reducing the stress response, cortisol release and blood glucose and improving eating behaviors.
Collapse
Affiliation(s)
- Daniel Quinones
- CNELM (Centre for Nutrition Education and Lifestyle Management), Wokingham, Berkshire, UK
| | - Michelle Barrow
- CNELM (Centre for Nutrition Education and Lifestyle Management), Wokingham, Berkshire, UK
| | - Karin Seidler
- CNELM (Centre for Nutrition Education and Lifestyle Management), Wokingham, Berkshire, UK
| |
Collapse
|
3
|
Xiang X, Palasuberniam P, Pare R. Exploring the Feasibility of Estrogen Replacement Therapy as a Treatment for Perimenopausal Depression: A Comprehensive Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1076. [PMID: 39064505 PMCID: PMC11279181 DOI: 10.3390/medicina60071076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Perimenopausal depression (PMD) is a psychological disorder that occurs in women during perimenopause. In addition to the common clinical symptoms of depression, it often manifests as a perimenopausal complication, and its notable cause is the decline in estrogen levels. Despite numerous studies and trials confirming the benefits of estrogen replacement therapy (ERT) for PMD, ERT remains unapproved for treating PMD. Therefore, we conducted a literature search using selected keywords in PubMed and Google Scholar to write a review discussing the feasibility of using ERT for PMD. This review examines the potential of ERT for PMD in terms of its underlying mechanisms, efficacy, safety, and time window. These four aspects suggest that ERT is a viable option for PMD treatment. However, the risk of thrombosis and stroke with ERT is a matter of contention among medical experts, with a paucity of clinical data. Consequently, further clinical trial data are required to ascertain the safety of ERT.
Collapse
Affiliation(s)
| | | | - Rahmawati Pare
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia (P.P.)
| |
Collapse
|
4
|
Ben-Azu B, Adebayo OG, Moke EG, Omogbiya AI, Oritsemuelebi B, Chidebe EO, Umukoro E, Nwangwa EK, Etijoro E, Umukoro E, Mamudu EJ, Chukwuma C. Geraniol attenuates behavioral and neurochemical impairments by inhibitions of HPA-axis and oxido-inflammatory perturbations in mice exposed to post-traumatic stress disorder. J Psychiatr Res 2023; 168:165-175. [PMID: 37913743 DOI: 10.1016/j.jpsychires.2023.10.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/23/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
Geraniol is an acyclic isoprenoid monoterpenoid analogue that has been shown to elicit neuroprotective functions, primarily through its ability to stimulate antioxidant and anti-inflammatory systems. An increase in inflammatory cytokines and oxidative stress exacerbate activation hypothalamic-pituitary-adrenal axis (HPA), leading to neurochemical dysfunction, which has important roles in the pathogenesis of post-traumatic disorder (PTSD), a mental health disorder characterized of post-trauma-induced intense fear. The aim of this study was to evaluate the anti-PTSD-like effects and underlying mechanisms of geraniol against single-prolonged-stress (SPS)-induced PTSD in mice. Following concomitant exposure to SPS (triple-paradigm traumatic events) and isolation for 7 days, mice (n = 9) were treated with geraniol (50 and 100 mg/kg, p.o.) or fluoxetine (10 mg/kg, p.o.) from days 8-21. Mice were assessed for behavioral changes. Neurochemical changes, inflammatory, oxido-nitrergic markers, adrenal weight, serum glucose and corticosterone concentrations were assayed. Geraniol inhibits SPS-induced anxiety- and depressive-like features as well as behavioral despair in the depression paradigms. SPS-induced locomotor and memory impairments were also abated by geraniol treatment similarly to fluoxetine. SPS-induced adrenal hypertrophy and increased blood glucose and corticosterone concentrations, were attenuated by the geraniol treatment. Elevated levels of TNF-α and IL-6, and malondialdehyde, nitrite, acetylcholinesterase enzyme were reduced by geraniol. Geraniol also increased glutathione, superoxide-dismutase, and catalase levels as well as dopamine, serotonin concentrations and GABAergic glutamic acid decarboxylase enzyme activity in the striatum, prefrontal cortex and hippocampus in the PTSD-mice relative to SPS control. In conclusion, geraniol attenuates behavioral impairments and neurochemical dysregulations by inhibitions of HPA-axis and oxido-inflammatory perturbations in mice exposed to PTSD.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria.
| | - Olusegun G Adebayo
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| | - Emuesiri G Moke
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Adrian I Omogbiya
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Benjamin Oritsemuelebi
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Emmanuel O Chidebe
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Emuesiri Umukoro
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Medicine Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Eze K Nwangwa
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Emmanuel Etijoro
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Emmanuel Umukoro
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Elizabeth J Mamudu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Chineye Chukwuma
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| |
Collapse
|
5
|
Kant T, Koyama E, Zai CC, Sanches M, Beitchman JH, Kennedy JL. COMT Val/Met, stressful life events and externalizing behaviors in youth: A longitudinal study from the ABCD sample. Heliyon 2023; 9:e21126. [PMID: 38027832 PMCID: PMC10665666 DOI: 10.1016/j.heliyon.2023.e21126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/08/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Early adolescence is a crucial time for understanding and detecting the risk factors that may influence youth externalizing/disruptive behaviors and disorders. Previous literature reported evidence that risk factors for disruptive behaviors include catechol-O-methyltransferase (COMT) Val158Met (rs4680) polymorphism and environmental influences. An unanswered question is whether there is a change in these risk factors over stages of youth development. This longitudinal study examines the interaction effect of Val158Met and stressful life events (SLE) on youth externalizing behaviors from ages 9-11. Participants were 2363 children of European ancestry recruited as part of the Adolescent Brain Cognitive Development study. Repeated measures linear mixed models were used to examine the effect of the interaction between Val158Met and SLE (G × E) on disruptive behaviors over development. Externalizing behaviors were analyzed at both baseline and two-year follow-up. Both Val158Met genotype and SLE scores demonstrated significant main effects on disruptive behaviors in youth, and those effects were consistent at both time points. G × E was not associated with externalizing behaviors. Youth who carried the Val allele and/or were exposed to higher SLE consistently had increased externalizing behavior scores. To our knowledge, this is the first study to longitudinally examine the interaction effects of Val158Met and SLE on externalizing behaviors in youth. The results highlight the importance of understanding the genetic and environmental factors underlying externalizing behaviors for better detection of at-risk youth, helping further with early prevention efforts. The findings propose that COMT Val158Met genotype may act as a biomarker for development of novel treatment strategies for disruptive behaviors.
Collapse
Affiliation(s)
- Tuana Kant
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, M5S 1A8, Canada
- Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, M6J 1H4, Canada
| | - Emiko Koyama
- Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, M6J 1H4, Canada
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
- Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Centre for Addiction and Mental Health, Toronto, M6J 1H4, Canada
| | - Clement C. Zai
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5S 1A8, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Marcos Sanches
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, M6J 1H4, Canada
| | - Joseph H. Beitchman
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada
- Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Centre for Addiction and Mental Health, Toronto, M6J 1H4, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5S 1A8, Canada
| | - James L. Kennedy
- Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada
- Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, M6J 1H4, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5S 1A8, Canada
| |
Collapse
|
6
|
Stone BT, Antonoudiou P, Teboul E, Scarpa G, Weiss G, Maguire JL. Early life stress impairs VTA coordination of BLA network and behavioral states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.16.558081. [PMID: 37745617 PMCID: PMC10516015 DOI: 10.1101/2023.09.16.558081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Motivated behaviors, such as social interactions, are governed by the interplay between mesocorticolimbic structures, such as the ventral tegmental area (VTA), basolateral amygdala (BLA), and medial prefrontal cortex (mPFC). Adverse childhood experiences and early life stress (ELS) can impact these networks and behaviors, which is associated with increased risk for psychiatric illnesses. While it is known that the VTA projects to both the BLA and mPFC, the influence of these inputs on local network activity which govern behavioral states - and whether ELS impacts VTA-mediated network communication - remains unknown. Our study demonstrates that VTA inputs influence BLA oscillations and mPFC activity, and that ELS weakens the ability of the VTA to coordinate BLA network states, likely due to ELS-induced impairments in dopamine signaling between the VTA and BLA. Consequently, ELS mice exhibit increased social avoidance, which can be recapitulated in control mice by inhibiting VTA-BLA communication. These data suggest that ELS impacts social reward via the VTA-BLA dopamine network.
Collapse
|
7
|
Burnatowska E, Wikarek A, Oboza P, Ogarek N, Glinianowicz M, Kocelak P, Olszanecka-Glinianowicz M. Emotional Eating and Binge Eating Disorders and Night Eating Syndrome in Polycystic Ovary Syndrome-A Vicious Circle of Disease: A Systematic Review. Nutrients 2023; 15:nu15020295. [PMID: 36678165 PMCID: PMC9865055 DOI: 10.3390/nu15020295] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 01/10/2023] Open
Abstract
Obesity is an established risk factor for the development of polycystic ovary syndrome (PCOS), especially phenotype A. PCOS is an important cause of fertility disorders in a large group of women of reproductive age. For many years, effective methods of treating hormonal disorders associated with PCOS have been sought in order to restore ovulation with regular menstrual cycles. Numerous studies support obesity treatment as an effective therapeutic method for many women. A seemingly simple method of treatment may prove to be particularly difficult in this group of women. The reason for this may be the lack of recognition the primary cause of obesity development or the occurrence of a vicious circle of disease. Primary causes of developing obesity may be emotional eating (EE) and eating disorders (EDs), such as binge eating disorder (BED) and its extreme form, addictive eating, as well as night eating syndrome (NES). All of these are caused by impaired function of the reward system. Consequently, these disorders can develop or be exacerbated in women with obesity and PCOS as a result of depression and anxiety related to hirsutism and fertility disturbances. Therefore, for the effective treatment of obesity, it is very important to recognize and treat EE, BED, and NES, including the appropriate selection of pharmacotherapy and psychotherapy. Therefore, the aim of our manuscript is to analyze the available data on the relationships between EE, BED, NES, obesity, and PCOS and their impact on the treatment of obesity in women with PCOS.
Collapse
Affiliation(s)
- Ewelina Burnatowska
- Students’ Scientific Society at the Pathophysiology Unit, Department of Pathophysiology, Medical Faculty in Katowice, The Medical University of Silesia, 40-752 Katowice, Poland
| | - Agnieszka Wikarek
- Pathophysiology Unit, Department of Pathophysiology, Medical Faculty in Katowice, The Medical University of Silesia, 40-752 Katowice, Poland
| | - Paulina Oboza
- Students’ Scientific Society at the Pathophysiology Unit, Department of Pathophysiology, Medical Faculty in Katowice, The Medical University of Silesia, 40-752 Katowice, Poland
| | - Natalia Ogarek
- Pathophysiology Unit, Department of Pathophysiology, Medical Faculty in Katowice, The Medical University of Silesia, 40-752 Katowice, Poland
| | - Mateusz Glinianowicz
- Department of Psychology, Social Sciences, and Humanities, School of Health Sciences in Katowice, the Medical University of Silesia, 40-752 Katowice, Poland
| | - Piotr Kocelak
- Pathophysiology Unit, Department of Pathophysiology, Medical Faculty in Katowice, The Medical University of Silesia, 40-752 Katowice, Poland
- Correspondence:
| | - Magdalena Olszanecka-Glinianowicz
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Medical Faculty in Katowice, The Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
8
|
Berretz G, Packheiser J, Wolf OT, Ocklenburg S. A single dose of hydrocortisone does not alter interhemispheric transfer of information or transcallosal integration. Front Psychiatry 2023; 14:1054168. [PMID: 37143785 PMCID: PMC10151494 DOI: 10.3389/fpsyt.2023.1054168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/04/2023] [Indexed: 05/06/2023] Open
Abstract
Stress has been suggested as a factor that may explain the link between altered functional lateralization and psychopathology. Modulation of the function of the corpus callosum via stress hormones may be crucial in this regard. Interestingly, there is evidence that interhemispheric integration and hemispheric asymmetries are modifiable by endocrinological influences. In previous studies, our group could show an enhancing effect of acute stress on interhemispheric integration. To investigate if this effect can be attributed to an increase in the stress hormone cortisol, 50 male participants received 20 mg hydrocortisone or a placebo in a double-blind crossover design. In each test session, we collected EEG data while participants completed a lexical decision task and a Poffenberger paradigm. In the lexical decision task, we found shorter latencies of the N1 ERP component for contralateral compared to ipsilateral presentation of lexical stimuli. Similarly, we replicated the classical Poffenberger effect with shorter ERP latencies for stimuli presented in the contralateral visual field compared to the ipsilateral visual field. However, no effect of cortisol on latency differences between hemispheres could be detected. These results suggest that a temporary increase in cortisol alone might not be enough to affect the interhemispheric transfer of information via the corpus callosum. Together with previous results from our group, this suggests that chronically elevated stress hormone levels play a more central role in the relationship between altered hemispheric asymmetries and a variety of mental disorders.
Collapse
Affiliation(s)
- Gesa Berretz
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Gesa Berretz,
| | - Julian Packheiser
- Netherlands Institute for Neuroscience, Social Brain Lab, Amsterdam, Netherlands
| | - Oliver T. Wolf
- Department of Cognitive Psychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sebastian Ocklenburg
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
- Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
9
|
Berretz G, Packheiser J. Altered hemispheric asymmetries as an endophenotype in psychological and developmental disorders: A theory on the influence of stress on brain lateralization. Front Behav Neurosci 2022; 16:1054114. [PMID: 36408453 PMCID: PMC9672314 DOI: 10.3389/fnbeh.2022.1054114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/20/2022] [Indexed: 02/18/2024] Open
Affiliation(s)
- Gesa Berretz
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Julian Packheiser
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| |
Collapse
|
10
|
Hu W, Zhao X, Liu Y, Ren Y, Wei Z, Tang Z, Tian Y, Sun Y, Yang J. Reward sensitivity modulates the brain reward pathway in stress resilience via the inherent neuroendocrine system. Neurobiol Stress 2022; 20:100485. [PMID: 36132434 PMCID: PMC9483565 DOI: 10.1016/j.ynstr.2022.100485] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/16/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
In the previous 10 years, researchers have suggested a critical role for the brain reward system in stress resilience. However, no study has provided an empirical link between activity in the mesostriatal reward regions during stress and the recovery of cortisol stress response. Moreover, although reward sensitivity as a trait has been demonstrated to promote stress resilience, it remains unclear whether it modulates the brain reward system in stress resilience and how this effect is achieved by the inherent neuroendocrine system. To investigate these uncertainties, 70 young adults were recruited to participate in a ScanSTRESS task, and their brain imaging data and saliva samples (for cortisol assay) were collected during the task. In addition, we assessed reward sensitivity, cortisol awakening response, and intrinsic functional connectivity of the brain in all the participants. We found that left putamen activation during stress exposure positively predicted cortisol recovery. In addition, reward sensitivity was positively linked with activation of the left putamen, and this relationship was serially mediated by the cortisol awakening response and right hippocampus-left inferior frontal gyrus intrinsic connectivity. These findings suggest that reward sensitivity modulates reward pathways in stress resilience through the interplay of the diurnal stress response system and network of the hippocampus-prefrontal circuitry. Summarily, the current study built a model to highlight the dynamic and multifaceted interaction between pertinent allostatic factors in the reward-resilience pathway and uncovered new insight into the resilience function of the mesostriatal reward system during stress. Cortisol recovery can be predicted by activation of the left putamen in stress. Activation of the left putamen was positively linked with reward sensitivity. This relationship was serially mediated by the cortisol awakening response and right hippocampus-left inferior frontal gyrus intrinsic coupling.
Collapse
Affiliation(s)
- Weiyu Hu
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, 400715, China
| | - Xiaolin Zhao
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, 400715, China
| | - Yadong Liu
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, 400715, China
| | - Yipeng Ren
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, 400715, China
| | - Zhenni Wei
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, 400715, China
| | - Zihan Tang
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, 400715, China
| | - Yun Tian
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, 400715, China
| | - Yadong Sun
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Juan Yang
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, 400715, China
| |
Collapse
|
11
|
Florkowski MR, Yorzinski JL. Dopamine receptor activation elicits a possible stress-related coping behavior in a wild-caught songbird. PeerJ 2022; 10:e13520. [PMID: 35795178 PMCID: PMC9252180 DOI: 10.7717/peerj.13520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/09/2022] [Indexed: 01/17/2023] Open
Abstract
Animals experience stress throughout their lives and exhibit both physiological and behavioral responses to cope with it. The stress response can become harmful when prolonged and increasing evidence suggests that dopamine plays a critical role in extinguishing the stress response. In particular, activation of the D2 dopamine receptor reduces glucocorticoids and increases coping behavior, i.e., behavioral responses to adverse stimuli that reduce the harmful effects of stress. However, few studies have examined the effects of dopamine on the stress responses of wild species. We therefore tested the hypothesis that activation of the D2 dopamine receptor influences coping-like behavior in a wild-caught species. We recorded behavior of house sparrows (Passer domesticus) before and after they received injections of D2 dopamine agonists, D2 dopamine antagonists, or saline. House sparrows are common in urban environments and understanding how they cope with stress may help us better understand how animals cope with urban stressors. We found that the birds significantly increased biting of inanimate objects after the agonist but there was no change following the antagonist or saline. The biting of inanimate objects may be a mechanism of behavioral coping. This change in biting behavior was not correlated with general movement. This study supports the hypothesis that D2 dopamine receptor activation is involved in the regulation of the stress response in a wild bird.
Collapse
Affiliation(s)
- Melanie R. Florkowski
- Ecology and Evolutionary Biology Program, Texas A&M University, College Station, TX, United States
| | - Jessica L. Yorzinski
- Ecology and Evolutionary Biology Program, Texas A&M University, College Station, TX, United States,Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
12
|
Berretz G, Packheiser J, Wolf OT, Ocklenburg S. Acute stress increases left hemispheric activity measured via changes in frontal alpha asymmetries. iScience 2022; 25:103841. [PMID: 35198894 PMCID: PMC8850739 DOI: 10.1016/j.isci.2022.103841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/08/2021] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
Abstract
Frontal EEG alpha band asymmetries have been linked to affective processing in healthy individuals and affective disorders. As stress provides a strong source of negative affect, the present study investigated how acute stress affects frontal EEG alpha asymmetries. Continuous EEG data were acquired from 51 healthy adult participants during stress induction with the Trier Social Stress Test. EEG data were also collected during a non-stressful control condition. Furthermore, EEG resting state data were acquired after both conditions. Under stress, participants showed stronger left hemispheric activation over frontal electrodes as well as reduced left-hemispheric activation over occipital electrodes compared to the control condition. Our results are in line with predictions of the asymmetric inhibition model which postulates that the left prefrontal cortex inhibits negative distractors. Moreover, the results support the capability model of emotional regulation which states that frontal asymmetries during emotional challenge are more pronounced compared to asymmetries during rest. EEG recording during social stress induction Stronger left hemispheric frontal activation during emotional challenge No stress-related changes in resting state EEG after stress induction Support for asymmetric inhibition and the capability model of emotional regulation
Collapse
Affiliation(s)
- Gesa Berretz
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, Room: IB 6/109, 44780 Bochum, Germany
- Corresponding author
| | - Julian Packheiser
- Netherlands Institute for Neuroscience, Social Brain Lab, Amsterdam, the Netherlands
| | - Oliver T. Wolf
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Sebastian Ocklenburg
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, Room: IB 6/109, 44780 Bochum, Germany
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
- Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
13
|
Romanova Z, Hlavacova N, Jezova D. Psychotropic Drug Effects on Steroid Stress Hormone Release and Possible Mechanisms Involved. Int J Mol Sci 2022; 23:ijms23020908. [PMID: 35055090 PMCID: PMC8779609 DOI: 10.3390/ijms23020908] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 12/16/2022] Open
Abstract
There is no doubt that chronic stress accompanied by adrenocortical stress hormone release affects the development and treatment outcome of several mental disorders. Less attention has been paid to the effects of psychotropic drugs on adrenocortical steroids, particularly in clinical studies. This review focuses on the knowledge related to the possible modulation of cortisol and aldosterone secretion under non-stress and stress conditions by antipsychotic drugs, which are being used in the treatment of several psychotic and affective disorders. The molecular mechanisms by which antipsychotic drugs may influence steroid stress hormones include the modulation of central and/or adrenocortical dopamine and serotonin receptors, modulation of inflammatory cytokines, influence on regulatory mechanisms in the central part of the hypothalamic-pituitary axis, inhibition of corticotropin-releasing hormone gene promoters, influencing glucocorticoid receptor-mediated gene transcription, indirect effects via prolactin release, alteration of signaling pathways of glucocorticoid and mineralocorticoid actions. Clinical studies performed in healthy subjects, patients with psychosis, and patients with bipolar disorder suggest that single and repeated antipsychotic treatments either reduce cortisol concentrations or do not affect its secretion. A single and potentially long-term treatment with dopamine receptor antagonists, including antipsychotics, has a stimulatory action on aldosterone release.
Collapse
Affiliation(s)
- Zuzana Romanova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (Z.R.); (N.H.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, 83232 Bratislava, Slovakia
| | - Natasa Hlavacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (Z.R.); (N.H.)
| | - Daniela Jezova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (Z.R.); (N.H.)
- Correspondence:
| |
Collapse
|
14
|
Fujiwara H, Tsurumi K, Shibata M, Kobayashi K, Miyagi T, Ueno T, Oishi N, Murai T. Life Habits and Mental Health: Behavioural Addiction, Health Benefits of Daily Habits, and the Reward System. Front Psychiatry 2022; 13:813507. [PMID: 35153878 PMCID: PMC8829329 DOI: 10.3389/fpsyt.2022.813507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/05/2022] [Indexed: 11/27/2022] Open
Abstract
In this review, the underlying mechanisms of health benefits and the risk of habitual behaviours such as internet use and media multitasking were explored, considering their associations with the reward/motivation system. The review highlights that several routines that are beneficial when undertaken normally may evolve into excessive behaviour and have a negative impact, as represented by "the inverted U-curve model". This is especially critical in the current era, where technology like the internet has become mainstream despite the enormous addictive risk. The understanding of underlying mechanisms of behavioural addiction and optimal level of habitual behaviours for mental health benefits are deepened by shedding light on some findings of neuroimaging studies to have hints to facilitate better management and prevention strategies of addictive problems. With the evolution of the world, and the inevitable use of some technologies that carry the risk of addiction, more effective strategies for preventing and managing addiction are in more demand than before, and the insights of this study are also valuable foundations for future research.
Collapse
Affiliation(s)
- Hironobu Fujiwara
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan.,Artificial Intelligence Ethics and Society Team, RIKEN Center for Advanced Intelligence Project, Saitama, Japan.,The General Research Division, Osaka University Research Center on Ethical, Legal and Social Issues, Kyoto, Japan
| | - Kosuke Tsurumi
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan
| | - Mami Shibata
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan
| | - Kei Kobayashi
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan
| | - Takashi Miyagi
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan
| | - Tsukasa Ueno
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan.,Integrated Clinical Education Center, Kyoto University Hospital, Kyoto, Japan
| | - Naoya Oishi
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshiya Murai
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan
| |
Collapse
|
15
|
Glazer L, Brennan CH. Developmental Exposure to Low Concentrations of Methylmercury Causes Increase in Anxiety-Related Behaviour and Locomotor Impairments in Zebrafish. Int J Mol Sci 2021; 22:10961. [PMID: 34681620 PMCID: PMC8535691 DOI: 10.3390/ijms222010961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022] Open
Abstract
Methylmercury (MeHg) is a ubiquitous pollutant shown to cause developmental neurotoxicity, even at low levels. However, there is still a large gap in our understanding of the mechanisms linking early-life exposure to life-long behavioural impairments. Our aim was to characterise the short- and long-term effects of developmental exposure to low doses of MeHg on anxiety-related behaviours in zebrafish, and to test the involvement of neurological pathways related to stress-response. Zebrafish embryos were exposed to sub-acute doses of MeHg (0, 5, 10, 15, 30 nM) throughout embryo-development, and tested for anxiety-related behaviours and locomotor activity at larval (light/dark locomotor activity) and adult (novel tank and tap assays) life-stages. Exposure to all doses of MeHg caused increased anxiety-related responses; heightened response to the transition from light to dark in larvae, and a stronger dive response in adults. In addition, impairment in locomotor activity was observed in the higher doses in both larvae and adults. Finally, the expressions of several neural stress-response genes from the HPI-axis and dopaminergic system were found to be disrupted in both life-stages. Our results provide important insights into dose-dependent differences in exposure outcomes, the development of delayed effects over the life-time of exposed individuals and the potential mechanisms underlying these effects.
Collapse
Affiliation(s)
- Lilah Glazer
- Nanchang Joint Programme, School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Caroline H. Brennan
- Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK;
| |
Collapse
|
16
|
Hu W, Liu Y, Li J, Zhao X, Yang J. Early life stress moderated the influence of reward anticipation on acute psychosocial stress responses. Psychophysiology 2021; 58:e13892. [PMID: 34216019 DOI: 10.1111/psyp.13892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/17/2021] [Accepted: 06/01/2021] [Indexed: 11/30/2022]
Abstract
Recent studies suggest that reward anticipation decreases individuals' acute stress responses. However, individuals who have experienced early life stress (ELS) may have a blunted capacity for reward anticipation, which reduces its buffering effect on psychosocial stress responses. To investigate this phenomenon, 66 young adults completed the Trier Social Stress Test following a reward anticipation task, and their ELS levels were measured using the Childhood Trauma Questionnaire (CTQ). Meanwhile, the current study collected biological and psychological measures of stress by analysing cortisol levels, heart rates, heart rate variability (HRV) as well as subjective stress levels, in response to the Trier Social Stress test. Results showed that reward anticipation successfully decreased acute stress responses in general, and it also improved participants' HRV. However, this effect was more evident in individuals with low ELS than those with high ELS. These findings help us deepen understanding of the role of reward anticipation in fostering resilience under stress and the potentially important implications for individuals who have been exposed to ELS are also discussed.
Collapse
Affiliation(s)
- Weiyu Hu
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
| | - Yadong Liu
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
| | - Jiwen Li
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
| | - Xiaolin Zhao
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
| | - Juan Yang
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Yirun A, Ozkemahli G, Balci A, Erkekoglu P, Zeybek ND, Yersal N, Kocer-Gumusel B. Neuroendocrine disruption by bisphenol A and/or di(2-ethylhexyl) phthalate after prenatal, early postnatal and lactational exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26961-26974. [PMID: 33496947 DOI: 10.1007/s11356-021-12408-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) and di(2-ethylhexyl)phthalate (DEHP) are abundant endocrine disrupting chemicals (EDCs). In recent years, studies showed that EDCs may lead to neurodevelopmental diseases. The effects of prenatal exposure to these chemicals may have serious consequences. Moreover, exposure to EDCs as a mixture may have different effects than individual exposures. The present study aimed to determine the toxicity of BPA and/or DEHP on central nervous system (CNS) and neuroendocrine system in prenatal and lactational period in Sprague-Dawley rats. Pregnant rats were randomly divided into four groups: control (received vehicle); BPA group (received BPA at 50 mg/kg/day); DEHP group (received DEHP at 30 mg/kg/day); and combined exposure group (received both BPA at 50 mg/kg/day and DEHP at 30 mg/kg/day) during pregnancy and lactation by oral gavage. At the end of lactation, male offspring (n = 6) were randomly grouped. The alterations in the brain histopathology, neurotransmitter levels and enzyme activities in the cerebrum region, oxidative stress markers, and apoptotic effects in the hippocampus region were determined at adulthood. The results showed that exposure to EDCs at early stages of life caused significant changes in lipid peroxidation, total GSH and neurotransmitter levels, and activities of neurotransmitter-related enzymes. Moreover, BPA and/or DEHP led to apoptosis and histopathologic alterations in the hippocampus. Therefore, we can suggest that changes in oxidant/antioxidant status, as well as in neurotransmitters and related enzymes, can be considered as the underlying neurotoxicity mechanisms of BPA and DEHP. However, more mechanistic studies are needed.
Collapse
Affiliation(s)
- Anil Yirun
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara, Turkey
- Faculty of Pharmacy, Department of Toxicology, Çukurova University, Adana, Turkey
| | - Gizem Ozkemahli
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara, Turkey
- Faculty of Pharmacy, Department of Toxicology, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Aylin Balci
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara, Turkey
| | - Pinar Erkekoglu
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara, Turkey
| | - Naciye Dilara Zeybek
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Nilgun Yersal
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Belma Kocer-Gumusel
- Faculty of Pharmacy, Department of Toxicology, Lokman Hekim University, Ankara, Turkey.
| |
Collapse
|
18
|
Unmasking the relevance of hemispheric asymmetries—Break on through (to the other side). Prog Neurobiol 2020; 192:101823. [DOI: 10.1016/j.pneurobio.2020.101823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/17/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022]
|
19
|
Ocklenburg S, Berretz G, Packheiser J, Friedrich P. Laterality 2020: entering the next decade. Laterality 2020; 26:265-297. [DOI: 10.1080/1357650x.2020.1804396] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sebastian Ocklenburg
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Gesa Berretz
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Julian Packheiser
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Patrick Friedrich
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
- Groupe d’Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| |
Collapse
|
20
|
Functional lateralization in the prefrontal cortex of dopaminergic modulation of memory consolidation. Behav Pharmacol 2020; 30:514-520. [PMID: 31033526 DOI: 10.1097/fbp.0000000000000483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
There is increasing evidence of functional lateralization within the rat brain. Here, we have examined the lateralization of dopamine (DA) function in the medial prefrontal cortex (PFC) in relation to memory consolidation in the novel object recognition test (NOR). Male Wistar rats received single bilateral or unilateral injections into prelimbic-PFC of agonists (SKF81297; 0.2 µg, quinpirole; 1 µg, SB277,011; 0.5 µg) and antagonists (SCH23390; 3 µg, L-741,626; 1 µg, 7-OH-DPAT; 3 µg) at DA D1, D2, or D3 receptors, immediately following the exposure trial in the NOR, and were tested either 1 or 24 h later for discrimination between a novel and a familiar object. As previously reported, bilateral injection of a D1 antagonist (SCH23390, 3 µg/side), a D2 antagonist (L-741,626, 1 µg/side) or a D3 agonist (7-OH-DPAT, 3 µg/side) impaired NOR at 1 h, while a D1 agonist (SKF81297, 0.2 µg/side), a D2 agonist (quinpirole, 1 µg/side) or a D3 antagonist (SB277,011, 0.5 µg/side) improved NOR at 24 h. The same effects were seen with left-sided unilateral injections. No effects were seen with right-sided unilateral injections. Endogenous DA release in the prelimbic-PFC promotes memory consolidation in the NOR, but only on the left side of the brain.
Collapse
|
21
|
Holloway ZR, Paige NB, Comstock JF, Nolen HG, Sable HJ, Lester DB. Cerebellar Modulation of Mesolimbic Dopamine Transmission Is Functionally Asymmetrical. THE CEREBELLUM 2020; 18:922-931. [PMID: 31478166 DOI: 10.1007/s12311-019-01074-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cerebral and cerebellar hemispheres are known to be asymmetrical in structure and function, and previous literature supports that asymmetry extends to the neural dopamine systems. Using in vivo fixed potential amperometry with carbon fiber microelectrodes in anesthetized mice, the current study assessed hemispheric lateralization of stimulation-evoked dopamine in the nucleus accumbens (NAc) and the influence of the cerebellum in regulating this reward-associated pathway. Our results suggest that cerebellar output can modulate mesolimbic dopamine transmission, and this modulation contributes to asymmetrically lateralized dopamine release. Dopamine release did not differ between hemispheres when evoked by medial forebrain bundle (MFB) stimulation; however, dopamine release was significantly greater in the right NAc relative to the left when evoked by electrical stimulation of the cerebellar dentate nucleus (DN). Furthermore, cross-hemispheric talk between the left and right cerebellar DN does not seem to influence mesolimbic release given that lidocaine infused into the DN opposite to the stimulated DN did not alter release. These studies may provide a neurochemical mechanism for studies identifying the cerebellum as a relevant node for reward, motivational behavior, saliency, and inhibitory control. An increased understanding of the lateralization of dopaminergic systems may reveal novel targets for pharmacological interventions in neuropathology of the cerebellum and extending projections.
Collapse
Affiliation(s)
- Zade R Holloway
- Department of Psychology, University of Memphis, Memphis, TN, 38152-3520, USA
| | - Nick B Paige
- Department of Psychology, University of Memphis, Memphis, TN, 38152-3520, USA
| | - Josiah F Comstock
- Department of Psychology, University of Memphis, Memphis, TN, 38152-3520, USA
| | - Hunter G Nolen
- Department of Psychology, University of Memphis, Memphis, TN, 38152-3520, USA
| | - Helen J Sable
- Department of Psychology, University of Memphis, Memphis, TN, 38152-3520, USA
| | - Deranda B Lester
- Department of Psychology, University of Memphis, Memphis, TN, 38152-3520, USA.
| |
Collapse
|
22
|
Esteves M, Ganz E, Sousa N, Leite-Almeida H. Asymmetrical Brain Plasticity: Physiology and Pathology. Neuroscience 2020; 454:3-14. [PMID: 32027996 DOI: 10.1016/j.neuroscience.2020.01.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/11/2020] [Accepted: 01/14/2020] [Indexed: 10/25/2022]
Abstract
The brain is inherently asymmetrical. How that attribute, manifest both structurally (volumetric, cytological, molecular) as well as functionally, relates to cognitive function, is not fully understood. Since the early descriptions of Paul Broca and Marc Dax it has been known that the processing of language in the brain is fundamentally asymmetrical. Contemporary imaging studies have corroborated early observations, and have also revealed significant functional links to multiple other systems, such as those sub serving memory or emotion. Recent studies have demonstrated that laterality is both plastic and adaptive. Learning and training have shown to affect regional changes in asymmetry, such as that observed in the volume of the planum temporale associated with musical practice. Increasing task complexity has been demonstrated to induce recruitment of contralateral regions, suggesting that laterality is a manifestation of functional reserve. Indeed, in terms of cognitive function, successful aging is often associated with a reduction of asymmetrical activity. The goal of this review is to survey and critically appraise the current literature addressing brain laterality, both morphological and functional, with particular emphasis on the asymmetrical plasticity associated with environmental factors and training. The plastic recruitment of contralateral areas associated with aging and unilateral lesions will be discussed in the context of the loss of asymmetry as a compensatory mechanism, and specific instances of maladaptive plasticity will be explored.
Collapse
Affiliation(s)
- M Esteves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Clinical Academic Center - Braga, Braga, Portugal
| | - E Ganz
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Clinical Academic Center - Braga, Braga, Portugal
| | - N Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Clinical Academic Center - Braga, Braga, Portugal
| | - H Leite-Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Clinical Academic Center - Braga, Braga, Portugal.
| |
Collapse
|
23
|
Bajgarova Z, Bajgar A. The relationships among MAOA, COMT Val158Met, and 5-HTTLPR polymorphisms, newborn stress reactivity, and infant temperament. Brain Behav 2020; 10:e01511. [PMID: 31884721 PMCID: PMC7010585 DOI: 10.1002/brb3.1511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/23/2019] [Accepted: 11/27/2019] [Indexed: 01/23/2023] Open
Abstract
INTRODUCTION Variance in hypothalamic-pituitary-adrenal (HPA) axis reactivity is considered to be one of the sources of differences in infant temperament. The cortisol enters into interactions with dopamine and serotonin, so it is expected that polymorphisms in genes coding monoamine metabolism influence both HPA axis reactivity and temperament. METHODS We therefore explore the relationship among 5-HTTLPR S/L, MAOA H/L, and COMT Val158Met polymorphisms, the stress reaction of newborn infants after a heel stick blood draw (measured by determining salivary cortisol at three time points), and temperament assessed at the age of 3 months using Rothbart's Infant Behavior Questionnaire-Revised (IBQ-R) with a sample of 84 infants. RESULTS The decrease in the salivary cortisol correlated with nine primary scales and all three secondary scales of IBQ-R. Children with a greater cortisol decrease were assessed as less susceptible to negative emotions, more extraverted, and more regulated. The polymorphisms that were observed were related both to the course of the stress reaction and to temperament. The 5-HTTLPR S allele was connected to higher scores for Negative Emotionality and lower scores for Orienting/Regulatory Capacity. The presence of the MAOA L allele predisposed its carriers to higher scores for Negative Emotionality, lower scores for Orienting/Regulatory Capacity, and a lower decrease in cortisol. The Met allele of COMT Val158Met polymorphism was connected to a higher Positive Affectivity/Surgency and Orienting/Regulatory Capacity and a greater cortisol decrease. CONCLUSIONS Contrary to previous studies referring mainly basal cortisol and its increase, the results of our study emphasize the importance of cortisol elimination in infant temperament. Another interesting finding was a higher cortisol increase, higher Distress to Limitations, Negative Emotionality, and Approach in MAOA LL homozygotes which are traditionally understood as more vulnerable toward early stress in developing later externalizing behavior.
Collapse
Affiliation(s)
- Zdenka Bajgarova
- Department of Pedagogy and Psychology, Faculty of Education, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Adam Bajgar
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| |
Collapse
|
24
|
Ullah I, Zuberi A, Rehman H, Ali Z, Thörnqvist PO, Winberg S. Effects of early rearing enrichments on modulation of brain monoamines and hypothalamic-pituitary-interrenal axis (HPI axis) of fish mahseer (Tor putitora). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:75-88. [PMID: 31515639 DOI: 10.1007/s10695-019-00697-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Enriching rearing environment is the strategy suggested for improving the post release survivorship of captive-reared animals. Here, an attempt has been made to evaluate the impact of early rearing enrichment on the hypothalamic-pituitary-interrenal axis (HPI axis), blood glucose, and brain dopaminergic and serotonergic systems of Tor putitora. Fifteen-day-old hatchlings of T. putitora were reared up to advanced fry stage in barren, semi-natural, and physically enriched environments and compared them with regard to pre-stress and post-stress levels of whole-body cortisol, blood glucose, brain serotonergic activity (5HIAA/5HT ratio), dopaminergic activity (DOPAC/DA and HVA/DA ratios) and norepinephrine (NE) levels. Significantly low basal whole-body cortisol, glucose and brain NE levels were observed in a physically enriched group of fish as compared to the other two groups. However, after acute stress, all rearing groups showed elevated levels of cortisol, blood glucose, brain 5HIAA/5HT, DOPAC/DA and HVA/DA ratios and NE levels but the magnitude of response was different among different rearing groups. The barren reared group showed a higher magnitude of response as compared to semi-natural and physically enriched groups. Similarly, the recovery rate of whole-body cortisol, blood glucose, and whole-brain monoamines were long-lasting in barren-reared mahseer. We illustrate that increased structural complexity (physical enrichment) during the early rearing significantly modulates various physiological and stress-coping mechanisms of mahseer.
Collapse
Affiliation(s)
- Imdad Ullah
- Department of Zoology, Abbottabad University of Science and Technology, Havelian, Abbottabad, Pakistan.
- Department of Neuroscience, Physiology, Uppsala Biomedical Centre, Uppsala University, PO Box 593, 751 24, Uppsala, Sweden.
| | - Amina Zuberi
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| | - Humaira Rehman
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Zulfiqar Ali
- Department of Statistics, Quaid-I-Azam University, Islamabad, Pakistan
| | - Per-Ove Thörnqvist
- Department of Neuroscience, Physiology, Uppsala Biomedical Centre, Uppsala University, PO Box 593, 751 24, Uppsala, Sweden
| | - Svante Winberg
- Department of Neuroscience, Physiology, Uppsala Biomedical Centre, Uppsala University, PO Box 593, 751 24, Uppsala, Sweden
| |
Collapse
|
25
|
Atypical lateralization in neurodevelopmental and psychiatric disorders: What is the role of stress? Cortex 2020; 125:215-232. [PMID: 32035318 DOI: 10.1016/j.cortex.2019.12.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/07/2019] [Accepted: 12/23/2019] [Indexed: 02/08/2023]
Abstract
Hemispheric asymmetries are a major organizational principle of the human brain. In different neurodevelopmental and psychiatric disorders, like schizophrenia, autism spectrum disorders, depression, dyslexia and posttraumatic stress disorder, functional and/or structural hemispheric asymmetries are altered compared to healthy controls. The question, why these disorders all share the common characteristic of altered hemispheric asymmetries despite vastly different etiologies and symptoms remains one of the unsolved mysteries of laterality research. This review is aimed at reviewing potential reasons for why atypical lateralization is so common in many neurodevelopmental and psychiatric disorders. To this end, we review the evidence for overlaps in the genetic and non-genetic factors involved in the ontogenesis of different disorders and hemispheric asymmetries. While there is evidence for genetic overlap between different disorders, only few asymmetry-related loci have also been linked to disorders and importantly, those effects are mostly specific to single disorders. However, there is evidence for shared non-genetic influences between disorders and hemispheric asymmetries. Most neurodevelopmental and psychiatric disorders show alterations in the hypothalamic-pituitary adrenocortical (HPA) axis and maternal as well as early life stress have been implicated in their etiology. Stress has also been suggested to affect hemispheric asymmetries. We propose a model in which early life stress as well as chronic stress not only increases the risk for psychiatric and neurodevelopmental disorders but also changes structural and functional hemispheric asymmetries leading to the aberrant lateralization patterns seen in these disorders. Thus, pathology-related changes in hemispheric asymmetries are not a factor causing disorders, but rather a different phenotype that is affected by partly overlapping ontogenetic factors, primarily stress.
Collapse
|
26
|
Yong SJ, Tong T, Chew J, Lim WL. Antidepressive Mechanisms of Probiotics and Their Therapeutic Potential. Front Neurosci 2020; 13:1361. [PMID: 32009871 PMCID: PMC6971226 DOI: 10.3389/fnins.2019.01361] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022] Open
Abstract
The accumulating knowledge of the host-microbiota interplay gives rise to the microbiota-gut-brain (MGB) axis. The MGB axis depicts the interkingdom communication between the gut microbiota and the brain. This communication process involves the endocrine, immune and neurotransmitters systems. Dysfunction of these systems, along with the presence of gut dysbiosis, have been detected among clinically depressed patients. This implicates the involvement of a maladaptive MGB axis in the pathophysiology of depression. Depression refers to symptoms that characterize major depressive disorder (MDD), a mood disorder with a disease burden that rivals that of heart diseases. The use of probiotics to treat depression has gained attention in recent years, as evidenced by increasing numbers of animal and human studies that have supported the antidepressive efficacy of probiotics. Physiological changes observed in these studies allow for the elucidation of probiotics antidepressive mechanisms, which ultimately aim to restore proper functioning of the MGB axis. However, the understanding of mechanisms does not yet complete the endeavor in applying probiotics to treat MDD. Other challenges remain which include the heterogeneous nature of both the gut microbiota composition and depressive symptoms in the clinical setting. Nevertheless, probiotics offer some advantages over standard pharmaceutical antidepressants, in terms of residual symptoms, side effects and stigma involved. This review outlines antidepressive mechanisms of probiotics based on the currently available literature and discusses therapeutic potentials of probiotics for depression.
Collapse
Affiliation(s)
- Shin Jie Yong
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| | - Tommy Tong
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| | - Jactty Chew
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| | - Wei Ling Lim
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| |
Collapse
|
27
|
Mulcahy MJ, Huard SM, Paulo JA, Wang JH, McKinney S, Henderson BJ, Lester HA. Brain Region-Specific nAChR and Associated Protein Abundance Alterations Following Chronic Nicotine and/or Menthol Exposure. J Proteome Res 2019; 19:36-48. [PMID: 31657575 DOI: 10.1021/acs.jproteome.9b00286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The identification of biomarkers that are altered following nicotine/tobacco exposure can facilitate the investigation of tobacco-related diseases. Nicotinic acetylcholine receptors (nAChRs) are pentameric cation channels expressed in the mammalian central and peripheral nervous systems and the neuromuscular junction. Neuronal nAChR subunits (11) have been identified in mammals (α2-7, α9-10, β2-4). We examined changes in β2 nAChR subunit protein levels after chronic nicotine, (±)-menthol, or nicotine co-administered with (±)-menthol in nine murine brain regions. Our investigation of β2 nAChR subunit level changes identified the hypothalamus as a novel region of interest for menthol exposure that demonstrated increased β2 nAChR levels after (±)-menthol plus nicotine exposure compared to nicotine exposure alone. Using mass spectrometry, we further characterized changes in membrane protein abundance profiles in the hypothalamus to identify potential biomarkers of (±)-menthol plus nicotine exposure and proteins that may contribute to the elevated β2 nAChR subunit levels. In the hypothalamus, 272 membrane proteins were identified with altered abundances after chronic nicotine plus menthol exposure with respect to chronic nicotine exposure without menthol. A comprehensive investigation of changes in nAChR and non-nAChR protein expression resulting from (±)-menthol plus nicotine in the brain may establish biomarkers to better understand the effects of these drugs on addiction and addiction-related diseases.
Collapse
Affiliation(s)
- Matthew J Mulcahy
- Division of Biology and Biological Engineering , California Institute of Technology , 1200 East California Boulevard , Pasadena , California 91125-2900 , United States
| | - Stephanie M Huard
- Division of Biology and Biological Engineering , California Institute of Technology , 1200 East California Boulevard , Pasadena , California 91125-2900 , United States
| | - Joao A Paulo
- Department of Cell Biology , Harvard Medical School , 240 Longwood Avenue , Boston , Massachusetts 02115 , United States
| | - Jonathan H Wang
- Division of Biology and Biological Engineering , California Institute of Technology , 1200 East California Boulevard , Pasadena , California 91125-2900 , United States
| | - Sheri McKinney
- Division of Biology and Biological Engineering , California Institute of Technology , 1200 East California Boulevard , Pasadena , California 91125-2900 , United States
| | - Brandon J Henderson
- Division of Biology and Biological Engineering , California Institute of Technology , 1200 East California Boulevard , Pasadena , California 91125-2900 , United States.,Department of Biomedical Sciences , Joan C. Edwards School of Medicine, Marshall University , Huntington , West Virginia 25701 , United States
| | - Henry A Lester
- Division of Biology and Biological Engineering , California Institute of Technology , 1200 East California Boulevard , Pasadena , California 91125-2900 , United States
| |
Collapse
|
28
|
Ditzen B, Eckstein M, Fischer M, Aguilar-Raab C. Partnerschaft und Gesundheit. PSYCHOTHERAPEUT 2019. [DOI: 10.1007/s00278-019-00379-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
29
|
Gemikonakli G, Keay KA, Kendig MD, Kang JWM, Corbit LH, Mor D. Altered monoamine levels in the dorsal striatum of the rat are associated with alterations in behavioural selection and motivation following peripheral nerve injury and acute stress. Eur J Neurosci 2019; 50:2786-2800. [PMID: 31325375 DOI: 10.1111/ejn.14518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 07/05/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022]
Abstract
Chronic neuropathic pain and psychological stress interact to compromise goal-directed control over behaviour following mild psychological stress. The dorsomedial (DMS) and dorsolateral (DLS) striatum in the rat are crucial for the expression of goal-directed and habitual behaviours, respectively. This study investigated whether changes in monoamine levels in the DMS and DLS following nerve injury and psychological stress reflect these behavioural differences. Neuropathic pain was induced by a chronic constriction injury (CCI) of the sciatic nerve in Sprague-Dawley rats. Acute stress was induced using a 15-min restraint. Behavioural flexibility was assessed using the outcome devaluation paradigm. Noradrenaline, serotonin, dopamine and associated metabolites were measured bilaterally from the DLS and DMS. In uninjured rats, restraint increased dopaminergic markers in the left and serotonergic markers in the right of both the DMS and DLS, indicating a possible left hemisphere-mediated dominance. CCI led to a slightly different lateralised effect, with a larger effect in the DMS than in the DLS. Individual differences in behavioural flexibility following CCI negatively correlated with dopaminergic markers in the right DLS, but positively correlated with these markers in the left DMS. A combination of CCI and restraint reduced behavioural flexibility, which was associated with the loss of the left/DMS dominance. These data suggest that behavioural flexibility following psychological stress or pain is associated with a left hemisphere dominance within the dorsal striatum. The loss of behavioural flexibility following the combined stressors is then associated with a transition from left to right, and DMS to DLS dominance.
Collapse
Affiliation(s)
- Gizem Gemikonakli
- Discipline of Anatomy & Histology, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Kevin A Keay
- Discipline of Anatomy & Histology, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Michael D Kendig
- School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
| | - James W M Kang
- Discipline of Anatomy & Histology, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Laura H Corbit
- School of Psychology, The University of Sydney, Sydney, New South Wales, Australia.,Department of Psychology, The University of Toronto, Toronto, Ontario, Canada
| | - David Mor
- Discipline of Anatomy & Histology, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
30
|
Malikowska-Racia N, Sałat K, Nowaczyk A, Fijałkowski Ł, Popik P. Dopamine D2/D3 receptor agonists attenuate PTSD-like symptoms in mice exposed to single prolonged stress. Neuropharmacology 2019; 155:1-9. [PMID: 31085186 DOI: 10.1016/j.neuropharm.2019.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 04/28/2019] [Accepted: 05/09/2019] [Indexed: 01/19/2023]
Abstract
Medications that enhance dopaminergic neurotransmission can be useful in the pharmacotherapy of posttraumatic stress disorder (PTSD), which manifests as fearful memory retrieval, anxiety and depression. We examined the effects of subchronic (15 days) treatment with select dopaminergic medications, including bromocriptine, modafinil, dihydrexidine, rotigotine and pramipexole, in a mouse model of PTSD induced by single prolonged stress (mSPS). The potential antidepressant-like and anxiolytic effects of the medications were measured by the forced swim test (FST) and the elevated plus maze (EPM) test, respectively. In addition, we studied the effects of these medications on memory retrieval in an auditory fear conditioning (FC) test, on ultrasonic vocalizations (USVs) induced by restraint stress, and on spontaneous locomotor activity (SLA). We report that a single exposure to a severe and complex set of stressors several days before testing increased immobility time in the FST and freezing in the FC paradigm and reduced the time spent in the open arms of the EPM. The stressed mice also displayed increased USVs, especially the short type. While none of the tested dopamine-mimetics exhibited anxiolytic-like effects, rotigotine produced antidepressant-like activity specifically in the mSPS-exposed animals. Moreover, both rotigotine and pramipexole shortened the duration of freezing in the fear conditioning test, but only in the mSPS-exposed mice. This study supports the hypothesis that the activation of dopaminergic D2/D3 receptors may be a promising pharmacotherapy for PTSD.
Collapse
Affiliation(s)
- Natalia Malikowska-Racia
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Krakow, Poland.
| | - Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Krakow, Poland
| | - Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 dr. A. Jurasza St., 85-094, Bydgoszcz, Poland
| | - Łukasz Fijałkowski
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 dr. A. Jurasza St., 85-094, Bydgoszcz, Poland
| | - Piotr Popik
- Faculty of Health Sciences, Jagiellonian University Medical College, 12 Michalowskiego St., 31-126, Krakow, Poland; Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343, Krakow, Poland
| |
Collapse
|
31
|
Opendak M, Sullivan RM. Unique infant neurobiology produces distinctive trauma processing. Dev Cogn Neurosci 2019; 36:100637. [PMID: 30889546 PMCID: PMC6969239 DOI: 10.1016/j.dcn.2019.100637] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/11/2018] [Accepted: 03/07/2019] [Indexed: 12/31/2022] Open
Abstract
Trauma experienced in early life has unique neurobehavioral outcomes related to later life psychiatric sequelae. Recent evidence has further highlighted the context of infant trauma as critical, with trauma experienced within species-atypical aberrations in caregiving quality as particularly detrimental. Using data from primarily rodent models, we review the literature on the interaction between trauma and attachment in early life, which highlights the role of the caregiver's presence in engagement of attachment brain circuitry and suppressing threat processing by the amygdala. Together these data suggest that infant trauma processing and its enduring effects are impacted by both the immaturity of brain areas for processing trauma and the unique functioning of the early-life brain, which is biased towards forming robust attachments regardless of the quality of care. Understanding the critical role of the caregiver in further altering early life brain processing of trauma is important for developing age-relevant treatment and interventions.
Collapse
Affiliation(s)
- Maya Opendak
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, USA.
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, USA
| |
Collapse
|
32
|
Mokler DJ, McGaughy JA, Bass D, Morgane PJ, Rosene DL, Amaral AC, Rushmore RJ, Galler JR. Prenatal Protein Malnutrition Leads to Hemispheric Differences in the Extracellular Concentrations of Norepinephrine, Dopamine and Serotonin in the Medial Prefrontal Cortex of Adult Rats. Front Neurosci 2019; 13:136. [PMID: 30890908 PMCID: PMC6411819 DOI: 10.3389/fnins.2019.00136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/06/2019] [Indexed: 12/02/2022] Open
Abstract
Exposure to prenatal protein malnutrition (PPM) leads to a reprogramming of the brain, altering executive functions involving the prefrontal cortex (PFC). In this study we used in vivo microdialysis to assess the effects of PPM on extracellular concentrations of norepinephrine (NE), dopamine (DA) and serotonin (5-HT) bilaterally in the ventral portion of the medial prefrontal cortex (vmPFC; ventral prelimbic and infralimbic cortices) of adult Long-Evans rats. Female Long-Evans rats were fed either a low protein (6%) or adequate protein diet (25%) prior to mating and throughout pregnancy. At birth, all litters were culled and fostered to dams fed a 25% (adequate) protein diet. At 120 days of age, 2 mm microdialysis probes were placed into left and right vmPFC. Basal extracellular concentrations of NE, DA, and 5-HT were determined over a 1-h period using HPLC. In rats exposed to PPM there was a decrease in extracellular concentrations of NE and DA in the right vmPFC and an increase in the extracellular concentration of 5-HT in the left vmPFC compared to controls (prenatally malnourished: N = 10, well-nourished: N = 20). Assessment of the cerebral laterality of extracellular neurotransmitters in the vmPFC showed that prenatally malnourished animals had a significant shift in laterality from the right to the left hemisphere for NE and DA but not for serotonin. In a related study, these animals showed cognitive inflexibility in an attentional task. In animals in the current study, NE levels in the right vmPFC of well-nourished animals correlated positively with performance in an attention task, while 5-HT in the left vmPFC of well-nourished rats correlated negatively with performance. These data, in addition to previously published studies, suggest a long-term reprogramming of the vmPFC in rats exposed to PPM which may contribute to attention deficits observed in adult animals exposed to PPM.
Collapse
Affiliation(s)
- David J. Mokler
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| | - Jill A. McGaughy
- Department of Psychology, University of New Hampshire, Durham, NH, United States
| | - Donna Bass
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| | - Peter J. Morgane
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| | - Douglas L. Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Ana C. Amaral
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - R. Jarrett Rushmore
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Janina R. Galler
- Division of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
33
|
Malikowska-Racia N, Salat K. Recent advances in the neurobiology of posttraumatic stress disorder: A review of possible mechanisms underlying an effective pharmacotherapy. Pharmacol Res 2019; 142:30-49. [PMID: 30742899 DOI: 10.1016/j.phrs.2019.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/24/2019] [Accepted: 02/01/2019] [Indexed: 12/24/2022]
Abstract
Recent progress in the field of neurobiology supported by clinical evidence gradually reveals the mystery of human brain functioning. So far, many psychiatric disorders have been described in great detail, although there are still plenty of cases that are misunderstood. These include posttraumatic stress disorder (PTSD), which is a unique disease that combines a wide range of neurobiological changes, which involve disturbances of the hypothalamic-pituitary-adrenal gland axis, hyperactivation of the amygdala complex, and attenuation of some hippocampal and cortical functions. Such multiplicity results in differential symptomatology, including elevated anxiety, nightmares, fear retrieval episodes that may trigger delusions and hallucinations, sleep disturbances, and many others that strongly interfere with the quality of the patient's life. Because of widespread neurological changes and the disease manifestation, the pharmacotherapy of PTSD remains unclear and requires a multidimensional approach and involvement of polypharmacotherapy. Hopefully, more and more neuroscientists and clinicians will study PTSD, which will provide us with new information that would possibly accelerate establishment of well-tolerated and effective pharmacotherapy. In this review, we have focused on neurobiological changes regarding PTSD, addressing the most disturbed brain structures and neurotransmissions, as well as discussing in detail the recently taken and novel therapeutic paths.
Collapse
Affiliation(s)
- Natalia Malikowska-Racia
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland.
| | - Kinga Salat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| |
Collapse
|
34
|
Wei CL, Wang S, Yen JT, Cheng YF, Liao CL, Hsu CC, Wu CC, Tsai YC. Antidepressant-like activities of live and heat-killed Lactobacillus paracasei PS23 in chronic corticosterone-treated mice and possible mechanisms. Brain Res 2019; 1711:202-213. [PMID: 30684456 DOI: 10.1016/j.brainres.2019.01.025] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/04/2019] [Accepted: 01/22/2019] [Indexed: 02/07/2023]
Abstract
Emerging evidence indicates that ingestion of specific probiotics, known as "psychobiotics", confer beneficial effects on mental health. This study investigated antidepressant-like effects and possible underlying mechanisms of Lactobacillus paracasei PS23 (PS23), live or heat-killed, in a mouse model of corticosterone-induced depression using fluoxetine as standard drug. PS23 were orally gavaged to mice from day 1 to 41 or fluoxetine from day 17 to 41 and injected with corticosterone from day 17 to 37. After the last corticosterone treatment, anxiety- and depression-like behaviors were tested within 4 days. On day 42, serum and brain tissue were collected 24 min after forced swim stress. Abnormal behavioral changes induced by corticosterone were ameliorated by treatment with live PS23 in open field and sucrose preference tests, with heat-killed PS23 in open field, forced swim and sucrose preference tests, and with fluoxetine in open field and forced swim tests. Furthermore, both live and heat-killed PS23 and fluoxetine reversed corticosterone-reduced protein levels of brain-derived neurotropic factor, mineralocorticoid, and glucocorticoid receptors in the hippocampus. In addition, live PS23 also reverses corticosterone-reduced serotonin levels in hippocampus, prefrontal cortex and striatum; whereas heat-killed PS23 reverses corticosterone-reduced dopamine levels in hippocampus and prefrontal cortex. And fluoxetine normalized reduced corticosterone level in serum. These studies showed that both live and heat-killed PS23 can reverse chronic corticosterone-induced anxiety- and depression-like behaviors and that may provide insights into the mechanism and a potential psychobiotic for depression management.
Collapse
Affiliation(s)
- Chia-Li Wei
- Department of Biochemical Science and Technology, National Chiayi University, 300 Syuefu Rd., Chiayi City 60004, Taiwan.
| | - Sabrina Wang
- Institute of Anatomy and Cell Biology, National Yang-Ming University, 155, Sec. 2, Li-Nong St., Taipei 11221, Taiwan
| | - Jui-Ting Yen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Sec. 2, Li-Nong St., Taipei 11221, Taiwan
| | - Yun-Fang Cheng
- Bened Biomedical Co., Ltd., 2F-2, No. 129, Sec. 2, Zhongshan N. Rd., Taipei 10448, Taiwan
| | - Chia-Li Liao
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Sec. 2, Li-Nong St., Taipei 11221, Taiwan
| | - Chih-Chieh Hsu
- Bened Biomedical Co., Ltd., 2F-2, No. 129, Sec. 2, Zhongshan N. Rd., Taipei 10448, Taiwan
| | - Chien-Chen Wu
- Bened Biomedical Co., Ltd., 2F-2, No. 129, Sec. 2, Zhongshan N. Rd., Taipei 10448, Taiwan
| | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Sec. 2, Li-Nong St., Taipei 11221, Taiwan; Microbiome Research Center, National Yang-Ming University, 155, Sec. 2, Li-Nong St., Taipei 11221, Taiwan.
| |
Collapse
|
35
|
Zietlow AL, Eckstein M, Hernández C, Nonnenmacher N, Reck C, Schaer M, Bodenmann G, Heinrichs M, Ditzen B. Dyadic Coping and Its Underlying Neuroendocrine Mechanisms - Implications for Stress Regulation. Front Psychol 2019; 9:2600. [PMID: 30687147 PMCID: PMC6333675 DOI: 10.3389/fpsyg.2018.02600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/04/2018] [Indexed: 11/23/2022] Open
Abstract
Previous research suggests that neuroendocrine mechanisms underlie inter-individual stress coping in couples. The neuropeptide oxytocin (OT), while regulating stress-sensitive HPA-axis activity might be crucial in this process. The purpose of this study was to examine the impact of dyadic coping abilities and OT on HPA-axis outcomes and constructive behavior during couple conflict. We conducted a secondary analysis of our previous database (Ditzen et al., 2009), assessing the modulating role of dyadic coping and intranasal OT on couple conflict behavior. The data revealed a significant interaction effect of the dyadic coping by oneself score and OT on cortisol responses during couple conflict, suggesting that particularly individuals with low a priori dyadic coping benefit from OT in terms of dampened HPA-activity. The results are in line with previous research suggesting OT’s central role for stress regulation and prosocial behavior. Furthermore, an interaction with dyadic coping indicates adaptations in the sensitivity of the OT system during the individual attachment and relationship history. These data add to the evidence that the neuroendocrine attachment systems influence couple behavior. Future studies of neurobiological mechanisms underlying dyadic coping will be of high relevance for the development of prevention and intervention programs.
Collapse
Affiliation(s)
- Anna-Lena Zietlow
- Center for Psychosocial Medicine, Institute of Medical Psychology, Heidelberg University Hospital, Heidelberg, Germany
| | - Monika Eckstein
- Center for Psychosocial Medicine, Institute of Medical Psychology, Heidelberg University Hospital, Heidelberg, Germany
| | - Cristóbal Hernández
- Center for Psychosocial Medicine, Institute of Medical Psychology, Heidelberg University Hospital, Heidelberg, Germany.,School of Psychology, Pontifical Catholic University of Chile, Santiago, Chile
| | - Nora Nonnenmacher
- Center for Psychosocial Medicine, General Psychiatry, Heidelberg University Hospital, Heidelberg, Germany
| | - Corinna Reck
- Department of Psychology, Ludwig-Maximilians-University, Munich, Germany
| | - Marcel Schaer
- School of Applied Psychology, ZHAW Zurich University of Applied Sciences, Zurich, Switzerland
| | - Guy Bodenmann
- Department of Clinical Psychology, Children, Youth and Family, Institute for Psychology, University of Zurich, Zurich, Switzerland
| | - Markus Heinrichs
- Laboratory for Biological and Personality Psychology, Department of Psychology, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Beate Ditzen
- Center for Psychosocial Medicine, Institute of Medical Psychology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
36
|
Dutcher JM, Creswell JD. The role of brain reward pathways in stress resilience and health. Neurosci Biobehav Rev 2018; 95:559-567. [DOI: 10.1016/j.neubiorev.2018.10.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/10/2018] [Accepted: 10/22/2018] [Indexed: 01/26/2023]
|
37
|
Tielbeek JJ, Al-Itejawi Z, Zijlmans J, Polderman TJC, Buckholtz JW, Popma A. The impact of chronic stress during adolescence on the development of aggressive behavior: A systematic review on the role of the dopaminergic system in rodents. Neurosci Biobehav Rev 2018; 91:187-197. [DOI: 10.1016/j.neubiorev.2016.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/04/2016] [Accepted: 10/12/2016] [Indexed: 12/22/2022]
|
38
|
Mancera KF, Besson M, Lisle A, Allavena R, Phillips CJ. The effects of mining machinery noise of different amplitudes on the behaviour, faecal corticosterone and tissue morphology of wild mice ( Mus musculus ). Appl Anim Behav Sci 2018. [DOI: 10.1016/j.applanim.2018.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Curiosity in old age: A possible key to achieving adaptive aging. Neurosci Biobehav Rev 2018; 88:106-116. [PMID: 29545165 DOI: 10.1016/j.neubiorev.2018.03.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/11/2018] [Accepted: 03/07/2018] [Indexed: 02/08/2023]
Abstract
Curiosity is a fundamental part of human motivation that supports a variety of human intellectual behaviors ranging from early learning in children to scientific discovery. However, there has been little attention paid to the role of curiosity in aging populations. By bringing together broad but sparse neuroscientific and psychological literature on curiosity and related concepts (e.g., novelty seeking in older adults), we propose that curiosity, although it declines with age, plays an important role in maintaining cognitive function, mental health, and physical health in older adults. We identify the dopaminergic reward system and the noradrenergic system as the key brain systems implicated in curiosity processing and discuss how these brain systems contribute to the relationship between curiosity and adaptive aging.
Collapse
|
40
|
Cowell WJ, Wright RJ. Sex-Specific Effects of Combined Exposure to Chemical and Non-chemical Stressors on Neuroendocrine Development: a Review of Recent Findings and Putative Mechanisms. Curr Environ Health Rep 2018; 4:415-425. [PMID: 29027649 DOI: 10.1007/s40572-017-0165-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE OF REVIEW Environmental toxicants and psychosocial stressors share many biological substrates and influence overlapping physiological pathways. Increasing evidence indicates stress-induced changes to the maternal milieu may prime rapidly developing physiological systems for disruption by concurrent or subsequent exposure to environmental chemicals. In this review, we highlight putative mechanisms underlying sex-specific susceptibility of the developing neuroendocrine system to the joint effects of stress or stress correlates and environmental toxicants (bisphenol A, alcohol, phthalates, lead, chlorpyrifos, and traffic-related air pollution). RECENT FINDINGS We provide evidence indicating that concurrent or tandem exposure to chemical and non-chemical stressors during windows of rapid development is associated with sex-specific synergistic, potentiated and reversed effects on several neuroendocrine endpoints related to hypothalamic-pituitary-adrenal axis function, sex steroid levels, neurotransmitter circuits, and innate immune function. We additionally identify gaps, such as the role that the endocrine-active placenta plays, in our understanding of these complex interactions. Finally, we discuss future research needs, including the investigation of non-hormonal biomarkers of stress. We demonstrate multiple physiologic systems are impacted by joint exposure to chemical and non-chemical stressors differentially among males and females. Collectively, the results highlight the importance of evaluating sex-specific endpoints when investigating the neuroendocrine system and underscore the need to examine exposure to chemical toxicants within the context of the social environment.
Collapse
Affiliation(s)
- Whitney J Cowell
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA. .,Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 12th Floor, Mailman School of Public Health, 722 West 168th St, New York, NY, 10032, USA.
| | - Rosalind J Wright
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
41
|
Cory-Slechta DA, Sobolewski M, Varma G, Schneider JS. Developmental Lead and/or Prenatal Stress Exposures Followed by Different Types of Behavioral Experience Result in the Divergence of Brain Epigenetic Profiles in a Sex, Brain Region, and Time-Dependent Manner: Implications for Neurotoxicology. CURRENT OPINION IN TOXICOLOGY 2017; 6:60-70. [PMID: 29430559 DOI: 10.1016/j.cotox.2017.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over a lifetime, early developmental exposures to neurocognitive risk factors, such as lead (Pb) exposures and prenatal stress (PS), will be followed by multiple varied behavioral experiences. Pb, PS and behavioral experience can each influence brain epigenetic profiles. Our recent studies show a greater level of complexity, however, as all three factors interact within each sex to generate differential adult variation in global post-translational histone modifications (PTHMs), which may result in fundamentally different consequences for life-long learning and behavioral function. We have reported that PTHM profiles differ by sex, brain region and time point of measurement following developmental exposures to Pb±PS, resulting in different profiles for each unique combination of these parameters. Imposing differing behavioral experience following developmental Pb±PS results in additional divergence of PTHM profiles, again in a sex, brain region and time-dependent manner, further increasing complexity. Such findings underscore the need to link highly localized and variable epigenetic changes along single genes to the highly-integrated brain functional connectome that is ultimately responsible for governing behavioral function. Here we advance the idea that increased understanding may be achieved through iterative reductionist and holistic approaches. Implications for experimental design of animal studies of developmental exposures to neurotoxicants include the necessity of a 'no behavioral experience' group, given that epigenetic changes in response to behavioral testing can confound effects of the neurotoxicant itself. They also suggest the potential utility of the inclusion of salient behavioral experiences as a potential effect modifier in epidemiological studies.
Collapse
Affiliation(s)
- Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical School, Rochester, NY
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester Medical School, Rochester, NY
| | - G Varma
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA
| | - J S Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
42
|
Campus P, Canterini S, Orsini C, Fiorenza MT, Puglisi-Allegra S, Cabib S. Stress-Induced Reduction of Dorsal Striatal D2 Dopamine Receptors Prevents Retention of a Newly Acquired Adaptive Coping Strategy. Front Pharmacol 2017; 8:621. [PMID: 28955227 PMCID: PMC5601053 DOI: 10.3389/fphar.2017.00621] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 08/24/2017] [Indexed: 11/14/2022] Open
Abstract
The inability to learn an adaptive coping strategy in a novel stressful condition leads to dysfunctional stress coping, a marker of mental disturbances. This study tested the involvement of dorsal striatal dopamine receptors in the dysfunctional coping with the Forced Swim test fostered by a previous experience of reduced food availability. Adult male mice were submitted to a temporary (12 days) reduction of food availability [food-restricted (FR)] or continuously free-fed (FF). Different groups of FF and FR mice were used to evaluate: (1) dorsal striatal mRNA levels of the two isoforms of the dopamine D2 receptor (D2S, D2L). (2) Forced Swim-induced c-fos expression in the dorsal striatum; (3) acquisition and 24 h retention of passive coping with Forced Swim. Additional groups of FF mice were tested for 24 h retention of passive coping acquired during a first experience with Forced Swim immediately followed by intra-striatal infusion of vehicle or two doses of the dopamine D2/D3 receptors antagonist sulpiride or the D1/D5 receptors antagonist SCH23390. Previous restricted feeding selectively reduced mRNA levels of both D2 isoforms and abolished Forced Swim-induced c-fos expression in the left Dorsolateral Striatum and selectively prevented 24 h retention of the coping strategy acquired in a first experience of Forced Swim. Finally, temporary blockade of left Dorsolateral Striatum D2/D3 receptors immediately following the first Forced Swim experience selectively reproduced the behavioral effect of restricted feeding in FF mice. In conclusion, the present results demonstrate that mice previously exposed to a temporary reduction of food availability show low striatal D2 receptors, a known marker of addiction-associated aberrant neuroplasticity, as well as liability to relapse into maladaptive stress coping strategies. Moreover, they offer strong support to a causal relationship between reduction of D2 receptors in the left Dorsolateral Striatum and impaired consolidation of newly acquired adaptive coping.
Collapse
Affiliation(s)
- Paolo Campus
- Department of Psychology, Center 'Daniel Bovet', Sapienza Università di RomaRome, Italy.,Department of Psychiatry, University of Michigan, Ann ArborMI, United States
| | - Sonia Canterini
- Department of Psychology, Center 'Daniel Bovet', Sapienza Università di RomaRome, Italy
| | - Cristina Orsini
- Department of Psychology, Center 'Daniel Bovet', Sapienza Università di RomaRome, Italy.,Fondazione Santa Lucia (IRCCS)Rome, Italy
| | - Maria Teresa Fiorenza
- Department of Psychology, Center 'Daniel Bovet', Sapienza Università di RomaRome, Italy.,Fondazione Santa Lucia (IRCCS)Rome, Italy
| | - Stefano Puglisi-Allegra
- Department of Psychology, Center 'Daniel Bovet', Sapienza Università di RomaRome, Italy.,Fondazione Santa Lucia (IRCCS)Rome, Italy
| | - Simona Cabib
- Department of Psychology, Center 'Daniel Bovet', Sapienza Università di RomaRome, Italy.,Fondazione Santa Lucia (IRCCS)Rome, Italy
| |
Collapse
|
43
|
Debiec J, Sullivan RM. The neurobiology of safety and threat learning in infancy. Neurobiol Learn Mem 2017; 143:49-58. [PMID: 27826033 PMCID: PMC5418109 DOI: 10.1016/j.nlm.2016.10.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/20/2022]
Abstract
What an animal needs to learn to survive is altered dramatically as they change from dependence on the parent for protection to independence and reliance on self-defense. This transition occurs in most altricial animals, but our understanding of the behavioral neurobiology has mostly relied on the infant rat. The transformation from dependence to independence occurs over three weeks in pups and is accompanied by complex changes in responses to both natural and learned threats and the supporting neural circuitry. Overall, in early life, the threat system is quiescent and learning is biased towards acquiring attachment related behaviors to support attachment to the caregiver and proximity seeking. Caregiver-associated cues learned in infancy have the ability to provide a sense of safety throughout lifetime. This attachment/safety system is activated by learning involving presumably pleasurable stimuli (food, warmth) but also painful stimuli (tailpinch, moderate shock). At about the midway point to independence, pups begin to have access to the adult-like amygdala-dependent threat system and amygdala-dependent responses to natural dangers such as predator odors. However, pups have the ability to switch between the infant and adult-like system, which is controlled by maternal presence and modification of stress hormones. Specifically, if the pup is alone, it will learn fear but if with the mother it will learn attachment (10-15days of age). As pups begin to approach weaning, pups lose access to the attachment system and rely only on the amygdala-dependent threat system. However, pups learning system is complex and exhibits flexibility that enables the mother to override the control of the attachment circuit, since newborn pups may acquire threat responses from the mother expressing fear in their presence. Together, these data suggest that the development of pups' threat learning system is not only dependent upon maturation of the amygdala, but it is also exquisitely controlled by the environment. Most notably the mother can switch pup learning between attachment to threat learning in a moment's notice. This enables the mother to navigate pup's learning about the world and what is threatening and what is safe.
Collapse
Affiliation(s)
- Jacek Debiec
- Molecular & Behavioral Neuroscience Institute and Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States.
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Child and Adolescent Psychiatry, New York University Langone Medical Center, United States.
| |
Collapse
|
44
|
Schibli K, Wong K, Hedayati N, D'Angiulli A. Attending, learning, and socioeconomic disadvantage: developmental cognitive and social neuroscience of resilience and vulnerability. Ann N Y Acad Sci 2017; 1396:19-38. [PMID: 28548461 DOI: 10.1111/nyas.13369] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/19/2017] [Accepted: 04/06/2017] [Indexed: 12/28/2022]
Abstract
We review current findings associating socioeconomic status (SES), development of neurocognitive functions, and neurobiological pathways. A sizeable interdisciplinary literature was organized through a bifurcated developmental trajectory (BiDeT) framework, an account of the external and internal variables associated with low SES that may lead to difficulties with attention and learning, along with buffers that may protect against negative outcomes. A consistent neurocognitive finding is that low-SES children attend to information nonselectively, and engage in late filtering out of task-irrelevant information. Attentional preferences influence the development of latent inhibition (LI), an aspect of learning that involves reassigning meaningful associations to previously learned but irrelevant stimuli. LI reflects learning processes clarifying the relationship between neurobiological mechanisms related to attention and socioeconomic disadvantage during child development. Notably, changes in both selective attention and typical LI development may occur via the mesocorticolimbic dopamine (MsCL-DA) system. Chaotic environments, social isolation, and deprivation associated with low SES trigger stress responses implicating imbalances in the MsCL-DA and consolidating anxiety traits. BiDeT describes plausible interactions between socioemotional traits and low-SES environments that modify selective attention and LI, predisposing individuals to vulnerability in cognitive development and academic achievement. However, positive role models, parental style, and self-regulation training are proposed as potential promoters of resilience.
Collapse
Affiliation(s)
- Kylie Schibli
- The Neuroscience of Imagination, Cognition and Emotion Research (NICER) Lab, Carleton University, Ottawa, Ontario, Canada
| | - Kyle Wong
- The Neuroscience of Imagination, Cognition and Emotion Research (NICER) Lab, Carleton University, Ottawa, Ontario, Canada
| | - Nina Hedayati
- The Neuroscience of Imagination, Cognition and Emotion Research (NICER) Lab, Carleton University, Ottawa, Ontario, Canada
| | - Amedeo D'Angiulli
- The Neuroscience of Imagination, Cognition and Emotion Research (NICER) Lab, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
45
|
Frisch J, Aguilar-Raab C, Eckstein M, Ditzen B. Einfluss von Paarinteraktion auf die Gesundheit. PSYCHOTHERAPEUT 2017. [DOI: 10.1007/s00278-016-0153-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
46
|
Chen C, Nakagawa S, An Y, Ito K, Kitaichi Y, Kusumi I. The exercise-glucocorticoid paradox: How exercise is beneficial to cognition, mood, and the brain while increasing glucocorticoid levels. Front Neuroendocrinol 2017; 44:83-102. [PMID: 27956050 DOI: 10.1016/j.yfrne.2016.12.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/26/2016] [Accepted: 12/01/2016] [Indexed: 11/26/2022]
Abstract
Exercise is known to have beneficial effects on cognition, mood, and the brain. However, exercise also activates the hypothalamic-pituitary-adrenal axis and increases levels of the glucocorticoid cortisol (CORT). CORT, also known as the "stress hormone," is considered a mediator between chronic stress and depression and to link various cognitive deficits. Here, we review the evidence that shows that while both chronic stress and exercise elevate basal CORT levels leading to increased secretion of CORT, the former is detrimental to cognition/memory, mood/stress coping, and brain plasticity, while the latter is beneficial. We propose three preliminary answers to the exercise-CORT paradox. Importantly, the elevated CORT, through glucocorticoid receptors, functions to elevate dopamine in the medial prefrontal cortex under chronic exercise but not chronic stress, and the medial prefrontal dopamine is essential for active coping. Future inquiries may provide further insights to promote our understanding of this paradox.
Collapse
Affiliation(s)
- Chong Chen
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Shin Nakagawa
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| | - Yan An
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Koki Ito
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Yuji Kitaichi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| |
Collapse
|
47
|
Shaker OG, Eltahlawi SMR, Tawfic SO, Eltawdy AM, Bedair NIE. Corticotropin-releasing hormone (CRH) and CRH receptor 1 gene expression in vitiligo. Clin Exp Dermatol 2016; 41:734-40. [DOI: 10.1111/ced.12907] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2015] [Indexed: 01/20/2023]
Affiliation(s)
- O. G. Shaker
- Department of Biochemistry Medical Biochemistry and Molecular Biology; Faculty of Medicine; Cairo University; Cairo Egypt
| | - S. M. R. Eltahlawi
- Department of Dermatology; Faculty of Medicine; Cairo University; Cairo Egypt
| | - S. O. Tawfic
- Department of Dermatology; Faculty of Medicine; Cairo University; Cairo Egypt
| | - A. M. Eltawdy
- Department of Dermatology; Faculty of Medicine; Cairo University; Cairo Egypt
| | - N. I. E. Bedair
- Department of Dermatology; Students’ Hospital; Cairo University; Cairo Egypt
| |
Collapse
|
48
|
The role of medial prefrontal corticosterone and dopamine in the antidepressant-like effect of exercise. Psychoneuroendocrinology 2016; 69:1-9. [PMID: 27003115 DOI: 10.1016/j.psyneuen.2016.03.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 03/12/2016] [Accepted: 03/12/2016] [Indexed: 12/25/2022]
Abstract
Despite the well-documented beneficial effect of exercise on stress coping and depression treatment, its underlying neurobiological mechanism remains unclear. This is further complicated by a 'side effect' of exercise: it increases basal glucocorticoid (CORT), the stress hormone, which has been shown to be a mediator linking stress to depressive disorders. Here we show that three weeks of voluntary wheel running reduced rats' immobility in the forced swim test (FST), an antidepressant-like effect. Monitoring extracellular fluids in the medial prefrontal cortex PFC (mPFC) using microdialysis we found that, wheel running was associated with higher baseline CORT, but lower FST-responsive CORT. Further, wheel running resulted in a higher dopamine (DA) both at baseline and following FST. Interestingly, the antidepressant-like effect of wheel running was completely abolished by intra-mPFC pre-microinjection of a D2R (haloperidol) but not D1R (SCH23390) antagonist, at a dose that does not affect normal rats' performance in the FST. It suggests that exercise exerts antidepressant-like effect through upregulated DA and in a D2R dependent way in the mPFC. Importantly, the antidepressant-like effect of wheel running was also abolished by intra-mPFC pre-microinjection of a GR antagonist (RU486). Finally, intra-mPFC pre-microinjection of RU486 also downregulated the originally elevated basal and FST-responsive DA in the mPFC of exercise rats. These results suggest a causal pathway linking CORT, GR, DA, and D2R, to the antidepressant-like effect of exercise. In conclusion, exercise achieves antidepressant-like effect through the CORT-GR-DA-D2R pathway and that the increased basal CORT by exercise itself may be beneficial rather than detrimental.
Collapse
|
49
|
Opendak M, Sullivan RM. Unique neurobiology during the sensitive period for attachment produces distinctive infant trauma processing. Eur J Psychotraumatol 2016; 7:31276. [PMID: 27837581 PMCID: PMC5106868 DOI: 10.3402/ejpt.v7.31276] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/28/2016] [Accepted: 07/31/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Trauma has neurobehavioral effects when experienced at any stage of development, but trauma experienced in early life has unique neurobehavioral outcomes related to later life psychiatric sequelae. Recent evidence has further highlighted the context of infant trauma as a critical variable in determining its immediate and enduring consequences. Trauma experienced from an attachment figure, such as occurs in cases of caregiver child maltreatment, is particularly detrimental. METHODS Using data primarily from rodent models, we review the literature on the interaction between trauma and attachment in early life, which highlights the role of the caregiver's presence in engagement of attachment brain circuitry and suppressing threat processing by the amygdala. We then consider how trauma with and without the caregiver produces long-term changes in emotionality and behavior, and suggest that these experiences initiate distinct pathways to pathology. RESULTS Together these data suggest that infant trauma processing and its enduring effects are impacted by both the immaturity of brain areas for processing trauma and the unique functioning of the early-life brain, which is biased toward processing information within the attachment circuitry. CONCLUSION An understanding of developmental differences in trauma processing as well as the critical role of the caregiver in further altering early life brain processing of trauma is important for developing age-relevant treatment and interventions.
Collapse
Affiliation(s)
- Maya Opendak
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.,Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA;
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.,Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
50
|
Huang ACW, Wang S, Wu JJS, Wang CC. Footshock facilitates methamphetamine-induced conditioned suppression through HPA axis, not dopamine. Physiol Behav 2015; 141:78-84. [DOI: 10.1016/j.physbeh.2015.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/09/2015] [Accepted: 01/11/2015] [Indexed: 12/01/2022]
|