1
|
Cilli SL, Goldberg MA, Cosmo C, Arulpragasam AR, Zand Vakili A, Berlow YA, Philip NS. Transcranial Magnetic Stimulation for Posttraumatic Stress Disorder and Generalized Anxiety Disorder. Curr Top Behav Neurosci 2024. [PMID: 39505816 DOI: 10.1007/7854_2024_540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Posttraumatic stress disorder (PTSD) and generalized anxiety disorder (GAD) are debilitating psychiatric disorders. While treatments are often effective, many patients do not adequately respond or experience significant side effects. Transcranial magnetic stimulation (TMS) is an emerging approach for treating PTSD and GAD. Several randomized clinical trials have demonstrated that TMS over the dorsolateral prefrontal cortex may be efficacious in reducing psychiatric symptoms; however, results are inconsistent regarding whether any parameter or treatment paradigm is superior. Other RCTs have targeted novel brain regions using newer TMS modalities. Combining TMS with psychotherapy may augment response in patients with PTSD, yet results are inconclusive. Little research has been done on TMS in combination with psychotherapy for GAD, indicating a need for further investigation. Future studies may assess TMS parameter optimization for enhancing effectiveness and improving therapeutic response duration. Identifying response biomarkers through functional magnetic resonance imaging and electroencephalography may offer a means to predict and monitor clinical response as precision methods to improve treatment response.
Collapse
Affiliation(s)
- Samantha L Cilli
- Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Miriam A Goldberg
- Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Camila Cosmo
- Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Amanda R Arulpragasam
- Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Amin Zand Vakili
- Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Yosef A Berlow
- Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Noah S Philip
- Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA.
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
2
|
Webster L, Boutry C, Thomson L, Abdelghani M, Barber S, Briley PM, Kurkar M, Lankappa S, McAllister-Williams RH, Di Paola AS, Morriss R. Acceptability, tolerability and safety of the BRIGhTMIND trial: Connectivity-guided intermittent theta-burst stimulation versus F3- repetitive transcranial magnetic stimulation for treatment-resistant depression. Compr Psychiatry 2024; 136:152544. [PMID: 39504645 DOI: 10.1016/j.comppsych.2024.152544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/18/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND The BRIGhTMIND study was a double-blind RCT comparing repetitive transcranial magnetic stimulation at a standard simulation site (the "F3" location given by the International 10-20 system, F3-rTMS) versus connectivity-guided intermittent theta burst stimulation (cgiTBS) for treatment-resistant depression. This present study reports the acceptability, safety, and tolerability of F3-rTMS versus cgiTBS. METHODS The present study used quantitative and qualitative methods. Two hundred fifty-four participants were included in the quantitative BRIGhTMIND acceptability and safety analysis (n = 126 F3-rTMS, n = 128 cgiTBS). Qualitative analysis included interviews for 15 participants (n = 7 F3-rTMS, n = 8 cgiTBS) and 582 written comments made by any participant randomised to the BRIGhTMIND trial regarding their experience of TMS and the study. Statistical analyses were used to explore differences between F3-rTMS and cgiTBS, as well as associations between acceptability, impression of change and safety. Qualitative data was analysed using an inductive thematic framework approach. OUTCOMES Acceptability, TMS benefits/negative effects and impression of improvement ratings did not differ across the two treatment protocols, with ratings maintained long-term (71.4 % rated TMS acceptable, 48.8 % indicated benefits of TMS outweighed negative effects and 52.2 % feeling somewhat or much better at 26 week follow-up n = 203). Impression of improvement was positively associated with acceptability and TMS benefits. Qualitative themes included participants' TMS experience, TMS response variability, and lay theories of effectiveness. Safety profiles were comparable between F3-rTMS and cgiTBS, with 74.5 % of participants (n = 190/254) experiencing at least one adverse event possibly, probably, or definitely related to TMS. The majority of adverse events were transient and mild, with a sizeable number requiring simple treatments or small adjustments to TMS intensity and coil positioning. The F3-rTMS group had a significantly greater proportion of participants that required small adjustments to TMS to tolerate treatment compared to the cgiTBS group. Serious adverse events were rare, with one serious event in each treatment arm possibly related to TMS (F3-rTMS- psychotic episode, cgiTBS-manic episode). CONCLUSION F3-rTMS and cgiTBS are comparably safe, tolerable and highly acceptable interventions for treatment-resistant depression. BRIGhTMIND systematically collected data from a large sample, providing evidence to meet the information needs of patients, clinicians and policy makers.
Collapse
Affiliation(s)
- Lucy Webster
- Nottingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Nottingham, United Kingdom; Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, United Kingdom
| | - Clement Boutry
- NIHR Applied Research Collaboration East Midlands, University of Nottingham, Nottingham, United Kingdom
| | - Louise Thomson
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | | | - Shaun Barber
- Leicester Clinical Trials Unit, University of Leicester, Leicester, UK
| | - Paul M Briley
- Nottingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Nottingham, United Kingdom; Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, United Kingdom; Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Micheal Kurkar
- Pennine Care TMS Service, Pennine Care NHS Foundation Trust, Oldham, UK
| | - Sudheer Lankappa
- Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, United Kingdom
| | - R Hamish McAllister-Williams
- Translational and Clinical Research Institute, Northern Centre for Mood Disorders, Newcastle University, Newcastle upon Tyne, UK; Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Richard Morriss
- Nottingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Nottingham, United Kingdom; Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, United Kingdom; Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
3
|
Siwiec M, Bobula B, Kielbinski M, Multan N, Hess G, Tokarski K. Activation of 5-HT 7 receptors in the mouse dentate gyrus does not affect theta-burst-induced plasticity at the perforant path synapse. Pharmacol Rep 2024:10.1007/s43440-024-00674-6. [PMID: 39487932 DOI: 10.1007/s43440-024-00674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND The study examined the effects of 5-HT7 receptor activation on GABAergic transmission within the dentate gyrus and plasticity at the glutamatergic perforant path input. METHODS Immunofluorescence imaging was performed using transverse hippocampal slices from transgenic mice expressing green fluorescent protein (GFP) under the Htr7 promoter. This was followed by whole-cell patch clamp electrophysiological recordings assessing the effects of pharmacologically activating 5-HT7 receptors on spontaneous inhibitory postsynaptic currents recorded from dentate granule cells and hilar mossy cells-two glutamatergic neuron types present in the dentate gyrus. Extracellular recordings of field excitatory postsynaptic potentials were then performed to assess whether 5-HT7 receptor activation influenced theta-burst stimulation-evoked plasticity of the perforant path synaptic input. RESULTS It was found that parvalbumin and somatostatin interneurons in the dentate gyrus expressed GFP, which suggests they express 5-HT7 receptors. However, activation of 5-HT7 receptors had no effect on GABAergic transmission targeting mossy cells or granule cells. There was also no effect of 5-HT7 receptor activation on perforant path plasticity either with intact or blocked GABAA receptor signaling. CONCLUSION The presence of 5-HT7 receptors in a subset of parvalbumin and somatostatin interneurons in the mouse dentate gyrus could mean that they are involved in the inhibitory control of dentate gyrus activity. However, this potential effect was not evident in slice recordings of inhibitory transmission targeting principal cells and did not affect perforant path plasticity. Further experiments are needed to fully elucidate the functional role of these receptors in the dentate gyrus.
Collapse
Affiliation(s)
- Marcin Siwiec
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| | - Bartosz Bobula
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Michal Kielbinski
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Nikola Multan
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Grzegorz Hess
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Krzysztof Tokarski
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| |
Collapse
|
4
|
Beanato E, Moon HJ, Windel F, Vassiliadis P, Wessel MJ, Popa T, Pauline M, Neufeld E, De Falco E, Gauthier B, Steiner M, Blanke O, Hummel FC. Noninvasive modulation of the hippocampal-entorhinal complex during spatial navigation in humans. SCIENCE ADVANCES 2024; 10:eado4103. [PMID: 39475597 PMCID: PMC11524170 DOI: 10.1126/sciadv.ado4103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024]
Abstract
Because of the depth of the hippocampal-entorhinal complex (HC-EC) in the brain, understanding of its role in spatial navigation via neuromodulation was limited in humans. Here, we aimed to better elucidate this relationship in healthy volunteers, using transcranial temporal interference electric stimulation (tTIS), a noninvasive technique allowing to selectively neuromodulate deep brain structures. We applied tTIS to the right HC-EC in either continuous or intermittent theta-burst stimulation patterns (cTBS or iTBS), compared to a control condition, during a virtual reality-based spatial navigation task and concomitant functional magnetic resonance imaging. iTBS improved spatial navigation performance, correlated with hippocampal activity modulation, and decreased grid cell-like activity in EC. Collectively, these data provide the evidence that human HC-EC activity can be directly and noninvasively modulated leading to changes of spatial navigation behavior. These findings suggest promising perspectives for patients suffering from cognitive impairment such as following traumatic brain injury or dementia.
Collapse
Affiliation(s)
- Elena Beanato
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
| | - Hyuk-June Moon
- Laboratory of Cognitive Neuroscience, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Fabienne Windel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
| | - Pierre Vassiliadis
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
| | - Maximillian J. Wessel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Traian Popa
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Menoud Pauline
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society (IT’IS), Zurich, Switzerland
- ZMT Zurich MedTech AG, Zurich, Switzerland
| | - Emanuela De Falco
- Laboratory of Cognitive Neuroscience, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Baptiste Gauthier
- Laboratory of Cognitive Neuroscience, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Melanie Steiner
- Foundation for Research on Information Technologies in Society (IT’IS), Zurich, Switzerland
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Friedhelm C. Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
- Department of Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
5
|
Herstel LJ, Wierenga CJ. Distinct Modulation of I h by Synaptic Potentiation in Excitatory and Inhibitory Neurons. eNeuro 2024; 11:ENEURO.0185-24.2024. [PMID: 39406481 DOI: 10.1523/eneuro.0185-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 11/15/2024] Open
Abstract
Selective modifications in the expression or function of dendritic ion channels regulate the propagation of synaptic inputs and determine the intrinsic excitability of a neuron. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels open upon membrane hyperpolarization and conduct a depolarizing inward current (I h). HCN channels are enriched in the dendrites of hippocampal pyramidal neurons where they regulate the integration of synaptic inputs. Synaptic plasticity can bidirectionally modify dendritic HCN channels in excitatory neurons depending on the strength of synaptic potentiation. In inhibitory neurons, however, the dendritic expression and modulation of HCN channels are largely unknown. In this study, we systematically compared the modulation of I h by synaptic potentiation in hippocampal CA1 pyramidal neurons and stratum radiatum (sRad) interneurons in mouse organotypic cultures. I h properties were similar in inhibitory and excitatory neurons and contributed to resting membrane potential and action potential firing. We found that in sRad interneurons, HCN channels were downregulated after synaptic plasticity, irrespective of the strength of synaptic potentiation. This suggests differential regulation of I h in excitatory and inhibitory neurons, possibly signifying their distinct role in network activity.
Collapse
Affiliation(s)
- Lotte J Herstel
- Biology Department, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 AJ, the Netherlands
| | - Corette J Wierenga
- Biology Department, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 AJ, the Netherlands
| |
Collapse
|
6
|
Li X, Xiang Q, Cen H, Zhai Z, Gao T, Lu C, Dong Y, Ye Y, Zhang C, Zhuo K, Wang Y, Liu D. Efficacy of Cortical-Hippocampal Target Intermittent Theta Burst Stimulation (iTBS) on Associative Memory of Schizophrenia: A Double-Blind, Randomized Sham-Controlled Trial. Neuropsychiatr Dis Treat 2024; 20:1941-1955. [PMID: 39411184 PMCID: PMC11473991 DOI: 10.2147/ndt.s468219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024] Open
Abstract
Objective The objective of our study was to evaluate whether intermittent theta burst stimulation(iTBS) applied to the regions with the strongest cortico-hippocampal connectivity within the lateral parietal cortical (LPC) or dorsolateral prefrontal cortical (DLPFC) areas in individuals with schizophrenia could enhance associative memory. Methods We randomized 96 participants with schizophrenia to receive either active iTBS applied to the right DLPFC, left LPC or sham iTBS for 20 days. Clinical and cognitive assessments were performed at baseline and at the end of treatment. The primary outcome was change in associative memory. The secondary outcome was change in other cognitive functions and psychiatric symptoms. Results In comparison to the sham group, iTBS targeting the right DLPFC or left LPC in schizophrenia did not yield significant improvements in auditory-auditory associative memory (F=1.27, p=0.294), auditory-visual associative memory (F=0.49, p=0.617), or visual-visual associative memory (F=1.094, p=0.347). Furthermore, after adjusting for variables such as education, disease duration, and negative symptoms, no significant changes were observed in any of these three memory domains. Conclusion Although our study suggests that iTBS applied to the cortical-hippocampal did not lead to a significant change in associative memory. However, further investigation combining hippocampal-targeted iTBS with functional magnetic resonance imaging (fMRI) is warranted to elucidate the regulatory effects of iTBS on hippocampal function. Trial Registration clinicaltrials.gov NCT03608462.
Collapse
Affiliation(s)
- Xuan Li
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, People’s Republic of China
| | - Qiong Xiang
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, People’s Republic of China
| | - Haixin Cen
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, People’s Republic of China
| | - Zhaolin Zhai
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, People’s Republic of China
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Tianhao Gao
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, People’s Republic of China
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Chang Lu
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, People’s Republic of China
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yuke Dong
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, People’s Republic of China
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yujian Ye
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, People’s Republic of China
| | - Chenxi Zhang
- Department of Psychiatry, Feng Xian Mental Health Center, Shanghai, People’s Republic of China
| | - Kaiming Zhuo
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, People’s Republic of China
| | - Yan Wang
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, People’s Republic of China
| | - Dengtang Liu
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, People’s Republic of China
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Institute of Mental Health, Fudan University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
7
|
Mazurie Z, Branchereau P, Cattaert D, Henkous N, Savona-Baron C, Vouimba RM. Acute stress differently modulates interneurons excitability and synaptic plasticity in the primary motor cortex of wild-type and SOD1 G93A mouse model of ALS. J Physiol 2024; 602:4987-5015. [PMID: 39216080 DOI: 10.1113/jp285210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/12/2024] [Indexed: 09/04/2024] Open
Abstract
Primary motor cortex (M1) network stability depends on activity of inhibitory interneurons, for which susceptibility to stress was previously demonstrated in limbic regions. Hyperexcitability in M1 following changes in the excitatory/inhibitory balance is a key pathological hallmark of amyotrophic lateral sclerosis (ALS). Using electrophysiological approaches, we assessed the impact of acute restraint stress on inhibitory interneurons excitability and global synaptic plasticity in M1 of the SOD1G93A ALS mouse model at a late pre-symptomatic stage (10-12.5 weeks). Based on their firing type (continuous, discontinuous, with accommodation or not) and electrophysiological characteristics (resting potential, rheobase, firing frequency), interneurons from M1 slices were separated into four clusters, labelled from 1 to 4. Among them, only interneurons from the first cluster, presenting continuous firing with few accommodations, tended to show increased excitability in wild-type (WT) and decreased excitability in SOD1G93A animals following stress. In vivo analyses of evoked field potentials showed that stress suppressed the theta burst-induced plasticity of an excitatory component (N1) recorded in the superficial layers of M1 in WT, with no impact on an inhibitory complex (N2-P1) from the deeper layers. In SOD1G93A mice, stress did not affect N1 but suppressed the N2-P1 plasticity. These data suggest that stress can alter M1 network functioning in a different manner in WT and SOD1G93A mice, possibly through changes of inhibitory interneurons excitability and synaptic plasticity. This suggests that stress-induced activity changes in M1 may therefore influence ALS outcomes. KEY POINTS: Disruption of the excitatory/inhibitory balance in the primary motor cortex (M1) has been linked to cortical hyperexcitability development, a key pathological hallmark of amyotrophic lateral sclerosis (ALS). Psychological stress was reported to influence excitatory/inhibitory balance in limbic regions, but very little is known about its influence on the M1 functioning under physiological or pathological conditions. Our study revealed that acute stress influences the excitatory/inhibitory balance within the M1, through changes in interneurons excitability along with network plasticity. Such changes were different in pathological (SOD1G93A ALS mouse model) vs. physiological (wild-type) conditions. The results of our study help us to better understand how stress modulates the M1 and highlight the need to further characterize stress-induced motor cortex changes because it may be of importance when evaluating ALS outcomes.
Collapse
Affiliation(s)
- Zoé Mazurie
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS, UMR 5287, University of Bordeaux, Bordeaux, France
| | - Pascal Branchereau
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS, UMR 5287, University of Bordeaux, Bordeaux, France
| | - Daniel Cattaert
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS, UMR 5287, University of Bordeaux, Bordeaux, France
| | - Nadia Henkous
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS, UMR 5287, University of Bordeaux, Bordeaux, France
| | - Catherine Savona-Baron
- Present address: BoRdeaux Institute of onCology (BRIC), INSERM U1312, University of Bordeaux, Bordeaux, France
| | - Rose-Marie Vouimba
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS, UMR 5287, University of Bordeaux, Bordeaux, France
| |
Collapse
|
8
|
Higa GSV, Viana FJC, Francis-Oliveira J, Cruvinel E, Franchin TS, Marcourakis T, Ulrich H, De Pasquale R. Serotonergic neuromodulation of synaptic plasticity. Neuropharmacology 2024; 257:110036. [PMID: 38876308 DOI: 10.1016/j.neuropharm.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Synaptic plasticity constitutes a fundamental process in the reorganization of neural networks that underlie memory, cognition, emotional responses, and behavioral planning. At the core of this phenomenon lie Hebbian mechanisms, wherein frequent synaptic stimulation induces long-term potentiation (LTP), while less activation leads to long-term depression (LTD). The synaptic reorganization of neuronal networks is regulated by serotonin (5-HT), a neuromodulator capable of modify synaptic plasticity to appropriately respond to mental and behavioral states, such as alertness, attention, concentration, motivation, and mood. Lately, understanding the serotonergic Neuromodulation of synaptic plasticity has become imperative for unraveling its impact on cognitive, emotional, and behavioral functions. Through a comparative analysis across three main forebrain structures-the hippocampus, amygdala, and prefrontal cortex, this review discusses the actions of 5-HT on synaptic plasticity, offering insights into its role as a neuromodulator involved in emotional and cognitive functions. By distinguishing between plastic and metaplastic effects, we provide a comprehensive overview about the mechanisms of 5-HT neuromodulation of synaptic plasticity and associated functions across different brain regions.
Collapse
Affiliation(s)
- Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - José Francis-Oliveira
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Thainá Soares Franchin
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
9
|
Heit BS, Chu A, McRay A, Richmond JE, Heckman CJ, Larson J. Interference with glutamate antiporter system x c - enables post-hypoxic long-term potentiation in hippocampus. Exp Physiol 2024; 109:1572-1592. [PMID: 39153228 PMCID: PMC11363115 DOI: 10.1113/ep092045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 08/19/2024]
Abstract
Our group previously showed that genetic or pharmacological inhibition of the cystine/glutamate antiporter, system xc -, mitigates excitotoxicity after anoxia by increasing latency to anoxic depolarization, thus attenuating the ischaemic core. Hypoxia, however, which prevails in the ischaemic penumbra, is a condition where neurotransmission is altered, but excitotoxicity is not triggered. The present study employed mild hypoxia to further probe ischaemia-induced changes in neuronal responsiveness from wild-type and xCT KO (xCT-/-) mice. Synaptic transmission was monitored in hippocampal slices from both genotypes before, during and after a hypoxic episode. Although wild-type and xCT-/- slices showed equal suppression of synaptic transmission during hypoxia, mutant slices exhibited a persistent potentiation upon re-oxygenation, an effect we termed 'post-hypoxic long-term potentiation (LTP)'. Blocking synaptic suppression during hypoxia by antagonizing adenosine A1 receptors did not preclude post-hypoxic LTP. Further examination of the induction and expression mechanisms of this plasticity revealed that post-hypoxic LTP was driven by NMDA receptor activation, as well as increased calcium influx, with no change in paired-pulse facilitation. Hence, the observed phenomenon engaged similar mechanisms as classical LTP. This was a remarkable finding as theta-burst stimulation-induced LTP was equivalent between genotypes. Importantly, post-hypoxic LTP was generated in wild-type slices pretreated with system xc - inhibitor, S-4-carboxyphenylglycine, thereby confirming the antiporter's role in this phenomenon. Collectively, these data indicate that system xc - interference enables neuroplasticity in response to mild hypoxia, and, together with its regulation of cellular damage in the ischaemic core, suggest a role for the antiporter in post-ischaemic recovery of the penumbra.
Collapse
Affiliation(s)
- Bradley S. Heit
- Department of Neuroscience and Department of Biomedical EngineeringNorthwestern UniversityChicagoIllinoisUSA
- Department of PsychiatryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Alex Chu
- Department of PsychiatryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Alyssa McRay
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Janet E. Richmond
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Charles J. Heckman
- Department of Neuroscience and Department of Biomedical EngineeringNorthwestern UniversityChicagoIllinoisUSA
| | - John Larson
- Department of PsychiatryUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
10
|
Salimi M, Nazari M, Mishler J, Mishra J, Ramanathan DS. Intermittent Theta Burst Stimulation Drives Bi-Directional Changes in Excitability in Prefrontal Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608693. [PMID: 39229174 PMCID: PMC11370367 DOI: 10.1101/2024.08.19.608693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Theta burst stimulation (TBS), an FDA-cleared treatment for depression, is hypothesized to modulate excitability in the prefrontal cortex, though this has not definitively been shown in vivo. We performed calcium imaging on glutamatergic neurons in awake rodents to understand the effects of theta burst stimulation at a cellular level. Our findings provide the first direct evidence that TBS bidirectionally modulates glutamatergic activity when delivered in vivo and directly links calcium activity changes during stimulation with post-stimulation plasticity.
Collapse
|
11
|
Huang Y, Zelmann R, Hadar P, Dezha-Peralta J, Richardson RM, Williams ZM, Cash SS, Keller CJ, Paulk AC. Theta-burst direct electrical stimulation remodels human brain networks. Nat Commun 2024; 15:6982. [PMID: 39143083 PMCID: PMC11324911 DOI: 10.1038/s41467-024-51443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024] Open
Abstract
Theta-burst stimulation (TBS), a patterned brain stimulation technique that mimics rhythmic bursts of 3-8 Hz endogenous brain rhythms, has emerged as a promising therapeutic approach for treating a wide range of brain disorders, though the neural mechanism of TBS action remains poorly understood. We investigated the neural effects of TBS using intracranial EEG (iEEG) in 10 pre-surgical epilepsy participants undergoing intracranial monitoring. Here we show that individual bursts of direct electrical TBS at 29 frontal and temporal sites evoked strong neural responses spanning broad cortical regions. These responses exhibited dynamic local field potential voltage changes over the course of stimulation presentations, including either increasing or decreasing responses, suggestive of short-term plasticity. Stronger stimulation augmented the mean TBS response amplitude and spread with more recording sites demonstrating short-term plasticity. TBS responses were stimulation site-specific with stronger TBS responses observed in regions with strong baseline stimulation effective (cortico-cortical evoked potentials) and functional (low frequency phase locking) connectivity. Further, we could use these measures to predict stable and varying (e.g. short-term plasticity) TBS response locations. Future work may integrate pre-treatment connectivity alongside other biophysical factors to personalize stimulation parameters, thereby optimizing induction of neuroplasticity within disease-relevant brain networks.
Collapse
Affiliation(s)
- Yuhao Huang
- Department of Neurosurgery, Stanford University, Palo Alto, CA, USA
| | - Rina Zelmann
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Peter Hadar
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jaquelin Dezha-Peralta
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ziv M Williams
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Corey J Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Palo Alto, CA, USA.
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, USA.
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
12
|
Wolf D, Ayon-Olivas M, Sendtner M. BDNF-Regulated Modulation of Striatal Circuits and Implications for Parkinson's Disease and Dystonia. Biomedicines 2024; 12:1761. [PMID: 39200225 PMCID: PMC11351984 DOI: 10.3390/biomedicines12081761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Neurotrophins, particularly brain-derived neurotrophic factor (BDNF), act as key regulators of neuronal development, survival, and plasticity. BDNF is necessary for neuronal and functional maintenance in the striatum and the substantia nigra, both structures involved in the pathogenesis of Parkinson's Disease (PD). Depletion of BDNF leads to striatal degeneration and defects in the dendritic arborization of striatal neurons. Activation of tropomyosin receptor kinase B (TrkB) by BDNF is necessary for the induction of long-term potentiation (LTP), a form of synaptic plasticity, in the hippocampus and striatum. PD is characterized by the degeneration of nigrostriatal neurons and altered striatal plasticity has been implicated in the pathophysiology of PD motor symptoms, leading to imbalances in the basal ganglia motor pathways. Given its essential role in promoting neuronal survival and meditating synaptic plasticity in the motor system, BDNF might have an important impact on the pathophysiology of neurodegenerative diseases, such as PD. In this review, we focus on the role of BDNF in corticostriatal plasticity in movement disorders, including PD and dystonia. We discuss the mechanisms of how dopaminergic input modulates BDNF/TrkB signaling at corticostriatal synapses and the involvement of these mechanisms in neuronal function and synaptic plasticity. Evidence for alterations of BDNF and TrkB in PD patients and animal models are reviewed, and the potential of BDNF to act as a therapeutic agent is highlighted. Advancing our understanding of these mechanisms could pave the way toward innovative therapeutic strategies aiming at restoring neuroplasticity and enhancing motor function in these diseases.
Collapse
Affiliation(s)
| | | | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany (M.A.-O.)
| |
Collapse
|
13
|
Márquez LA, López Rubalcava C, Galván EJ. Postnatal hypofunction of N-methyl-D-aspartate receptors alters perforant path synaptic plasticity and filtering and impairs dentate gyrus-mediated spatial discrimination. Br J Pharmacol 2024; 181:2701-2724. [PMID: 38631821 DOI: 10.1111/bph.16375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND AND PURPOSE Transient hypofunction of the NMDA receptor represents a convergence point for the onset and further development of psychiatric disorders, including schizophrenia. Although the cumulative evidence indicates dysregulation of the hippocampal formation in schizophrenia, the integrity of the synaptic transmission and plasticity conveyed by the somatosensorial inputs to the dentate gyrus, the perforant pathway synapses, have barely been explored in this pathological condition. EXPERIMENTAL APPROACH We identified a series of synaptic alterations of the lateral and medial perforant paths in animals postnatally treated with the NMDA antagonist MK-801. This dysregulation suggests decreased cognitive performance, for which the dentate gyrus is critical. KEY RESULTS We identified alterations in the synaptic properties of the lateral and medial perforant paths to the dentate gyrus synapses in slices from MK-801-treated animals. Altered glutamate release and decreased synaptic strength precede an impairment in the induction and expression of long-term potentiation (LTP) and CB1 receptor-mediated long-term depression (LTD). Remarkably, by inhibiting the degradation of 2-arachidonoylglycerol (2-AG), an endogenous ligand of the CB1 receptor, we restored the LTD in animals treated with MK-801. Additionally, we showed for the first time, that spatial discrimination, a cognitive task that requires dentate gyrus integrity, is impaired in animals exposed to transient hypofunction of NMDA receptors. CONCLUSION AND IMPLICATIONS Dysregulation of glutamatergic transmission and synaptic plasticity from the entorhinal cortex to the dentate gyrus has been demonstrated, which may explain the cellular dysregulations underlying the altered cognitive processing in the dentate gyrus associated with schizophrenia.
Collapse
Affiliation(s)
- Luis A Márquez
- Departamento de Farmacobiología, CINVESTAV Unidad Sur, Ciudad de México, Mexico
| | | | - Emilio J Galván
- Departamento de Farmacobiología, CINVESTAV Unidad Sur, Ciudad de México, Mexico
- Centro de Investigaciones sobre el Envejecimiento, CIE-Cinvestav, Ciudad de México, Mexico
| |
Collapse
|
14
|
Kim DW, Moon HC, Lee BH, Park HY. Decoding Arc transcription: a live-cell study of stimulation patterns and transcriptional output. Learn Mem 2024; 31:a054024. [PMID: 39260877 PMCID: PMC11407692 DOI: 10.1101/lm.054024.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024]
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) plays a crucial role in synaptic plasticity, a process integral to learning and memory. Arc transcription is induced within a few minutes of stimulation, making it a useful marker for neuronal activity. However, the specific neuronal activity patterns that initiate Arc transcription have remained elusive due to the inability to observe mRNA transcription in live cells in real time. Using a genetically encoded RNA indicator (GERI) mouse model that expresses endogenous Arc mRNA tagged with multiple GFPs, we investigated Arc transcriptional activity in response to various electrical field stimulation patterns. The GERI mouse model was generated by crossing the Arc-PBS knock-in mouse, engineered with binding sites in the 3' untranslated region (UTR) of Arc mRNA, and the transgenic mouse expressing the cognate binding protein fused to GFP. In dissociated hippocampal neurons, we found that the pattern of stimulation significantly affects Arc transcription. Specifically, theta-burst stimulation consisting of high-frequency (100 Hz) bursts delivered at 10 Hz frequency induced the highest rate of Arc transcription. Concurrently, the amplitudes of nuclear calcium transients also reached their peak with 10 Hz burst stimulation, indicating a correlation between calcium concentration and transcription. However, our dual-color single-cell imaging revealed that there were no significant differences in calcium amplitudes between Arc-positive and Arc-negative neurons upon 10 Hz burst stimulation, suggesting the involvement of other factors in the induction of Arc transcription. Our live-cell RNA imaging provides a deeper insight into the complex regulation of transcription by activity patterns and calcium signaling pathways.
Collapse
Affiliation(s)
- Dong Wook Kim
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyungseok C Moon
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Hun Lee
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye Yoon Park
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
15
|
Weisend JE, Carlson AP, Shuttleworth CW. Spreading Depolarization Induces a Transient Potentiation of Excitatory Synaptic Transmission. Neuroscience 2024; 551:323-332. [PMID: 38821241 PMCID: PMC11246225 DOI: 10.1016/j.neuroscience.2024.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Spreading depolarization (SD) is a slowly propagating wave of prolonged activation followed by a period of synaptic suppression. Some prior reports have shown potentiation of synaptic transmission after recovery from synaptic suppression and noted similarities with the phenomenon of long-term potentiation (LTP). Since SD is increasingly recognized as participating in diverse neurological disorders, it is of interest to determine whether SD indeed leads to a generalized and sustained long-term strengthening of synaptic connections. We performed a characterization of SD-induced potentiation, and tested whether distinctive features of SD, including adenosine accumulation and swelling, contribute to reports of SD-induced plasticity. Field excitatory postsynaptic potentials (fEPSPs) were recorded in the hippocampal CA1 subregion of murine brain slices, and SD elicited using focal microinjection of KCl. A single SD was sufficient to induce a consistent potentiation of slope and amplitude of fEPSPs. Both AMPA- and NMDA-receptor mediated components were enhanced. Potentiation peaked ∼20 min after SD recovery and was sustained for ∼30 min. However, fEPSP amplitude and slope decayed over an extended 2-hour recording period and was estimated to reach baseline after ∼3 h. Potentiation was saturated after a single SD and adenosine A1 receptor activation did not mask additional potentiation. Induction of LTP with theta-burst stimulation was not altered by prior induction of SD and molecular mediators known to block LTP induction did not block SD-induced potentiation. Together, these results indicate an intermediate duration potentiation that is distinct from hippocampal LTP and may have implications for circuit function for 1-2 h following SD.
Collapse
Affiliation(s)
- Jordan E Weisend
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Andrew P Carlson
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| |
Collapse
|
16
|
Latif‐Hernandez A, Yang T, Butler RR, Losada PM, Minhas PS, White H, Tran KC, Liu H, Simmons DA, Langness V, Andreasson KI, Wyss‐Coray T, Longo FM. A TrkB and TrkC partial agonist restores deficits in synaptic function and promotes activity-dependent synaptic and microglial transcriptomic changes in a late-stage Alzheimer's mouse model. Alzheimers Dement 2024; 20:4434-4460. [PMID: 38779814 PMCID: PMC11247716 DOI: 10.1002/alz.13857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION Tropomyosin related kinase B (TrkB) and C (TrkC) receptor signaling promotes synaptic plasticity and interacts with pathways affected by amyloid beta (Aβ) toxicity. Upregulating TrkB/C signaling could reduce Alzheimer's disease (AD)-related degenerative signaling, memory loss, and synaptic dysfunction. METHODS PTX-BD10-2 (BD10-2), a small molecule TrkB/C receptor partial agonist, was orally administered to aged London/Swedish-APP mutant mice (APPL/S) and wild-type controls. Effects on memory and hippocampal long-term potentiation (LTP) were assessed using electrophysiology, behavioral studies, immunoblotting, immunofluorescence staining, and RNA sequencing. RESULTS In APPL/S mice, BD10-2 treatment improved memory and LTP deficits. This was accompanied by normalized phosphorylation of protein kinase B (Akt), calcium-calmodulin-dependent kinase II (CaMKII), and AMPA-type glutamate receptors containing the subunit GluA1; enhanced activity-dependent recruitment of synaptic proteins; and increased excitatory synapse number. BD10-2 also had potentially favorable effects on LTP-dependent complement pathway and synaptic gene transcription. DISCUSSION BD10-2 prevented APPL/S/Aβ-associated memory and LTP deficits, reduced abnormalities in synapse-related signaling and activity-dependent transcription of synaptic genes, and bolstered transcriptional changes associated with microglial immune response. HIGHLIGHTS Small molecule modulation of tropomyosin related kinase B (TrkB) and C (TrkC) restores long-term potentiation (LTP) and behavior in an Alzheimer's disease (AD) model. Modulation of TrkB and TrkC regulates synaptic activity-dependent transcription. TrkB and TrkC receptors are candidate targets for translational therapeutics. Electrophysiology combined with transcriptomics elucidates synaptic restoration. LTP identifies neuron and microglia AD-relevant human-mouse co-expression modules.
Collapse
Affiliation(s)
- Amira Latif‐Hernandez
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Tao Yang
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Robert R. Butler
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Patricia Moran Losada
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordCaliforniaUSA
| | - Paras S. Minhas
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Halle White
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Kevin C. Tran
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Harry Liu
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Danielle A. Simmons
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Vanessa Langness
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Katrin I. Andreasson
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordCaliforniaUSA
- Chan Zuckerberg BiohubSan FranciscoCaliforniaUSA
| | - Tony Wyss‐Coray
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordCaliforniaUSA
- The Phil and Penny Knight Initiative for Brain ResilienceStanford UniversityStanfordCaliforniaUSA
| | - Frank M. Longo
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
17
|
Hodkinson DJ, Drabek MM, Jung J, Lankappa ST, Auer DP. Theta Burst Stimulation of the Human Motor Cortex Modulates Secondary Hyperalgesia to Punctate Mechanical Stimuli. Neuromodulation 2024; 27:812-823. [PMID: 37952136 DOI: 10.1016/j.neurom.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023]
Abstract
OBJECTIVES Many chronic pain conditions show evidence of dysregulated synaptic plasticity, including the development and maintenance of central sensitization. This provides a strong rationale for neuromodulation therapies for the relief of chronic pain. However, variability in responses and low fidelity across studies remain an issue for both clinical trials and pain management, demonstrating insufficient mechanistic understanding of effective treatment protocols. MATERIALS AND METHODS In a randomized counterbalanced crossover designed study, we evaluated two forms of patterned repetitive transcranial magnetic stimulation, known as continuous theta burst stimulation (TBS) and intermittent TBS, during normal and central sensitization states. Secondary hyperalgesia (a form of use-dependent central sensitization) was induced using a well-established injury-free pain model and assessed by standardized quantitative sensory testing involving light touch and pinprick pain thresholds in addition to stimulus-response functions. RESULTS We found that continuous TBS of the human motor cortex has a facilitatory (pronociceptive) effect on the magnitude of perceived pain to secondary hyperalgesia, which may rely on induction and expression of neural plasticity through heterosynaptic long-term potentiation-like mechanisms. CONCLUSIONS By defining the underlying mechanisms of TBS-driven synaptic plasticity in the nociceptive system, we offer new insight into disease mechanisms and provide targets for promoting functional recovery and repair in chronic pain. For clinical applications, this knowledge is critical for development of more efficacious and mechanisms-based neuromodulation protocols, which are urgently needed to address the chronic pain and opioid epidemics.
Collapse
Affiliation(s)
- Duncan J Hodkinson
- Division of Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK; Sir Peter Mansfield Imaging Center, School of Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research, Nottingham Biomedical Research Center, Queens Medical Center, Nottingham, UK.
| | - Marianne M Drabek
- Division of Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK; Sir Peter Mansfield Imaging Center, School of Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research, Nottingham Biomedical Research Center, Queens Medical Center, Nottingham, UK
| | - JeYoung Jung
- School of Psychology, University of Nottingham, Nottingham, UK
| | - Sudheer T Lankappa
- Nottinghamshire Healthcare National Health Service Foundation Trust, Nottingham, UK
| | - Dorothee P Auer
- Division of Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK; Sir Peter Mansfield Imaging Center, School of Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research, Nottingham Biomedical Research Center, Queens Medical Center, Nottingham, UK
| |
Collapse
|
18
|
Lee CT, Bell M, Bonilla-Quintana M, Rangamani P. Biophysical Modeling of Synaptic Plasticity. Annu Rev Biophys 2024; 53:397-426. [PMID: 38382115 DOI: 10.1146/annurev-biophys-072123-124954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Dendritic spines are small, bulbous compartments that function as postsynaptic sites and undergo intense biochemical and biophysical activity. The role of the myriad signaling pathways that are implicated in synaptic plasticity is well studied. A recent abundance of quantitative experimental data has made the events associated with synaptic plasticity amenable to quantitative biophysical modeling. Spines are also fascinating biophysical computational units because spine geometry, signal transduction, and mechanics work in a complex feedback loop to tune synaptic plasticity. In this sense, ideas from modeling cell motility can inspire us to develop multiscale approaches for predictive modeling of synaptic plasticity. In this article, we review the key steps in postsynaptic plasticity with a specific focus on the impact of spine geometry on signaling, cytoskeleton rearrangement, and membrane mechanics. We summarize the main experimental observations and highlight how theory and computation can aid our understanding of these complex processes.
Collapse
Affiliation(s)
- Christopher T Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| | - Miriam Bell
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| | - Mayte Bonilla-Quintana
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| |
Collapse
|
19
|
Mudunuru AK, Reddy MS, Valipay K, A BS, M M, N C, K C, Gundugurti PR. The Clinical Efficacy of Accelerated Deep Repetitive Transcranial Magnetic Stimulation in Depression and Obsessive-Compulsive Disorder: Multi-centric Real-World Observational Data. Cureus 2024; 16:e60895. [PMID: 38836152 PMCID: PMC11148627 DOI: 10.7759/cureus.60895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2024] [Indexed: 06/06/2024] Open
Abstract
Background Of late, the interest in accelerated treatment protocols in repetitive transcranial magnetic stimulation (TMS) for the treatment of depression and obsessive-compulsive disorder (OCD) has been gaining momentum. Studies have already found that the patterned theta burst stimulation is non-inferior to the standard high-frequency stimulation in treating depression. The objective of the present study was to evaluate the clinical efficacy of a customized accelerated combination TMS naturalistic setting. Methods Retrospective analysis of pre and post-deep repetitive TMS responses in depression and OCD patients was performed. About 391 Depression and 239 OCD patients' data was analyzed. Customized treatment protocols consisted of twice daily high-frequency stimulations intervened by one theta burst stimulation. The outcome measures were a day six score in depression and a day 10 score in OCD, compared to day one baseline scores. Results The overall response rate in depression was 60.86%, estimated as a >50% reduction in the Hamilton Depression Rating Scale (HAM-D) 21 items score, and 62.76% in OCD, estimated as a >35% reduction in the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) score. The mean reduction of YBOCS and HAM-D was statistically significant at p<0.0001 (Mann-Whitney U test statistic=9442.5, z=12.66 for YBOCS and 16673.5, z=18.92 for HAM-D). Corresponding effect size estimations revealed Cohen's d value of 1.40 and 1.59, respectively. Conclusions The response rates achieved at day six and day 10 in depression and OCD, respectively, were comparable to previous studies employing standard treatment protocols. The accelerated protocol produced satisfactory short-term clinical outcomes that were effective in the early management of the illness without any serious adverse effects.
Collapse
Affiliation(s)
- Aswin K Mudunuru
- Non-Invasive Brain Stimulation, Asha Neuromodulation Clinics, Hyderabad, IND
| | - M S Reddy
- Psychiatry, Asha Hospital, Hyderabad, IND
| | | | - Balaji S A
- Psychiatry, Asha Neuromodulation Clinic, Hyderabad, IND
| | - Madhiha M
- Psychiatry, Asha Neuromodulation Clinic, Bengaluru, IND
| | - Chandresh N
- Psychiatry, Asha Neuromodulation Clinic, Hyderabad, IND
| | | | | |
Collapse
|
20
|
Gil M, Caulino-Rocha A, Bento M, Rodrigues NC, Silva-Cruz A, Ribeiro JA, Cunha-Reis D. Postweaning Development Influences Endogenous VPAC 1 Modulation of LTP Induced by Theta-Burst Stimulation: A Link to Maturation of the Hippocampal GABAergic System. Biomolecules 2024; 14:379. [PMID: 38540797 PMCID: PMC10968312 DOI: 10.3390/biom14030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 11/11/2024] Open
Abstract
Long-term potentiation (LTP) induced by theta-burst stimulation (TBS) undergoes postweaning developmental changes partially linked to GABAergic circuit maturation. Endogenous vasoactive intestinal peptide (VIP) acting on its VPAC1 receptor strongly influences LTP induced by theta-burst stimulation (TBS), an effect dependent on GABAergic transmission. Although VPAC1 receptor levels are developmentally regulated during embryogenesis, their variation along postweaning development is unknown, as is the VPAC1 modulation of LTP or its relation to hippocampal GABAergic circuit maturation. As such, we investigated how VPAC1 modulation of LTP adjusts from weaning to adulthood along with GABAergic circuit maturation. As described, LTP induced by mild TBS (5 bursts, 4 pulses delivered at 100 Hz) was increasingly greater from weaning to adulthood. The influence of the VPAC1 receptor antagonist PG 97-269 (100 nM) on TBS-induced LTP was much larger in juvenile (3-week-old) than in young adult (6-7-week-old) or adult (12-week-old) rats. This effect was not associated with a developmental decrease in synaptic VPAC1 receptor levels. However, an increase in pre and post-synaptic GABAergic synaptic markers suggests an increase in the number of GABAergic synaptic contacts that is more prominent than the one observed in glutamatergic connections during this period. Conversely, endogenous VPAC2 receptor activation did not significantly influence TBS-induced LTP. VPAC2 receptor levels enhance pronouncedly during postweaning development, but not at synaptic sites. Given the involvement of VIP interneurons in several aspects of hippocampal-dependent learning, neurodevelopmental disorders, and epilepsy, this could provide important insights into the role of VIP modulation of hippocampal synaptic plasticity during normal and altered brain development potentially contributing to epileptogenesis.
Collapse
Affiliation(s)
- Marta Gil
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Ana Caulino-Rocha
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Marta Bento
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Nádia C. Rodrigues
- Unidade de Neurociências, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal (J.A.R.)
| | - Armando Silva-Cruz
- Unidade de Neurociências, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal (J.A.R.)
| | - Joaquim A. Ribeiro
- Unidade de Neurociências, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal (J.A.R.)
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Diana Cunha-Reis
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
- Unidade de Neurociências, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal (J.A.R.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
21
|
Savarimuthu A, Ponniah RJ. Receive, Retain and Retrieve: Psychological and Neurobiological Perspectives on Memory Retrieval. Integr Psychol Behav Sci 2024; 58:303-318. [PMID: 36738400 DOI: 10.1007/s12124-023-09752-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
Memory and learning are interdependent processes that involve encoding, storage, and retrieval. Especially memory retrieval is a fundamental cognitive ability to recall memory traces and update stored memory with new information. For effective memory retrieval and learning, the memory must be stabilized from short-term memory to long-term memory. Hence, it is necessary to understand the process of memory retention and retrieval that enhances the process of learning. Though previous cognitive neuroscience research has focused on memory acquisition and storage, the neurobiological mechanisms underlying memory retrieval and its role in learning are less understood. Therefore, this article offers the viewpoint that memory retrieval is essential for selecting, reactivating, stabilizing, and storing information in long-term memory. In arguing how memories are retrieved, consolidated, transmitted, and strengthened for the long term, the article will examine the psychological and neurobiological aspects of memory and learning with synaptic plasticity, long-term potentiation, genetic transcription, and theta oscillation in the brain.
Collapse
Affiliation(s)
- Anisha Savarimuthu
- Department of Humanities and Social Sciences, National Institute of Technology, Tiruchirappalli, India
| | - R Joseph Ponniah
- Department of Humanities and Social Sciences, National Institute of Technology, Tiruchirappalli, India.
| |
Collapse
|
22
|
Francis-Oliveira J, Higa GSV, Viana FJC, Cruvinel E, Carlos-Lima E, da Silva Borges F, Zampieri TT, Rebello FP, Ulrich H, De Pasquale R. TREK-1 inhibition promotes synaptic plasticity in the prelimbic cortex. Exp Neurol 2024; 373:114652. [PMID: 38103709 DOI: 10.1016/j.expneurol.2023.114652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Synaptic plasticity is one of the putative mechanisms involved in the maturation of the prefrontal cortex (PFC) during postnatal development. Early life stress (ELS) affects the shaping of cortical circuitries through impairment of synaptic plasticity supporting the onset of mood disorders. Growing evidence suggests that dysfunctional postnatal maturation of the prelimbic division (PL) of the PFC might be related to the emergence of depression. The potassium channel TREK-1 has attracted particular interest among many factors that modulate plasticity, concerning synaptic modifications that could underlie mood disorders. Studies have found that ablation of TREK-1 increases the resilience to depression, while rats exposed to ELS exhibit higher TREK-1 levels in the PL. TREK-1 is regulated by multiple intracellular transduction pathways including the ones activated by metabotropic receptors. In the hippocampal neurons, TREK-1 interacts with the serotonergic system, one of the main factors involved in the action of antidepressants. To investigate possible mechanisms related to the antidepressant role of TREK-1, we used brain slice electrophysiology to evaluate the effects of TREK-1 pharmacological blockade on synaptic plasticity at PL circuitry. We extended this investigation to animals subjected to ELS. Our findings suggest that in non-stressed animals, TREK-1 activity is required for the reduction of synaptic responses mediated by the 5HT1A receptor activation. Furthermore, we demonstrate that TREK-1 blockade promotes activity-dependent long-term depression (LTD) when acting in synergy with 5HT1A receptor stimulation. On the other hand, in ELS animals, TREK-1 blockade reduces synaptic transmission and facilitates LTD expression. These results indicate that TREK-1 inhibition stimulates synaptic plasticity in the PL and this effect is more pronounced in animals subjected to ELS during postnatal development.
Collapse
Affiliation(s)
- José Francis-Oliveira
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil; Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, SP 05508-900, Brazil; Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, SP 09210-580, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Estevão Carlos-Lima
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Fernando da Silva Borges
- Department of Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Thais Tessari Zampieri
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Fernanda Pereira Rebello
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, SP 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil.
| |
Collapse
|
23
|
Vardalakis N, Aussel A, Rougier NP, Wagner FB. A dynamical computational model of theta generation in hippocampal circuits to study theta-gamma oscillations during neurostimulation. eLife 2024; 12:RP87356. [PMID: 38354040 PMCID: PMC10942594 DOI: 10.7554/elife.87356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Neurostimulation of the hippocampal formation has shown promising results for modulating memory but the underlying mechanisms remain unclear. In particular, the effects on hippocampal theta-nested gamma oscillations and theta phase reset, which are both crucial for memory processes, are unknown. Moreover, these effects cannot be investigated using current computational models, which consider theta oscillations with a fixed amplitude and phase velocity. Here, we developed a novel computational model that includes the medial septum, represented as a set of abstract Kuramoto oscillators producing a dynamical theta rhythm with phase reset, and the hippocampal formation, composed of biophysically realistic neurons and able to generate theta-nested gamma oscillations under theta drive. We showed that, for theta inputs just below the threshold to induce self-sustained theta-nested gamma oscillations, a single stimulation pulse could switch the network behavior from non-oscillatory to a state producing sustained oscillations. Next, we demonstrated that, for a weaker theta input, pulse train stimulation at the theta frequency could transiently restore seemingly physiological oscillations. Importantly, the presence of phase reset influenced whether these two effects depended on the phase at which stimulation onset was delivered, which has practical implications for designing neurostimulation protocols that are triggered by the phase of ongoing theta oscillations. This novel model opens new avenues for studying the effects of neurostimulation on the hippocampal formation. Furthermore, our hybrid approach that combines different levels of abstraction could be extended in future work to other neural circuits that produce dynamical brain rhythms.
Collapse
Affiliation(s)
- Nikolaos Vardalakis
- University of Bordeaux, CNRS, IMNBordeauxFrance
- University of Bordeaux, INRIA, IMNBordeauxFrance
| | - Amélie Aussel
- University of Bordeaux, CNRS, IMNBordeauxFrance
- University of Bordeaux, INRIA, IMNBordeauxFrance
- University of Bordeaux, CNRS, Bordeaux INPTalenceFrance
| | - Nicolas P Rougier
- University of Bordeaux, CNRS, IMNBordeauxFrance
- University of Bordeaux, INRIA, IMNBordeauxFrance
- University of Bordeaux, CNRS, Bordeaux INPTalenceFrance
| | | |
Collapse
|
24
|
Zhao F, Li C, Zhuang Y, Yan Y, Gao Y, Behnisch T. Apoptosis signal-regulating kinase 1 ( Ask1) deficiency alleviates MPP +-induced impairment of evoked dopamine release in the mouse hippocampus. Front Cell Neurosci 2024; 18:1288991. [PMID: 38414754 PMCID: PMC10896914 DOI: 10.3389/fncel.2024.1288991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/19/2024] [Indexed: 02/29/2024] Open
Abstract
The dopaminergic system is susceptible to dysfunction in numerous neurological diseases, including Parkinson's disease (PD). In addition to motor symptoms, some PD patients may experience non-motor symptoms, including cognitive and memory deficits. A possible explanation for their manifestation is a disturbed pattern of dopamine release in brain regions involved in learning and memory, such as the hippocampus. Therefore, investigating neuropathological alterations in dopamine release prior to neurodegeneration is imperative. This study aimed to characterize evoked hippocampal dopamine release and assess the impact of the neurotoxin MPP+ using a genetically encoded dopamine sensor and gene expression analysis. Additionally, considering the potential neuroprotective attributes demonstrated by apoptosis signal-regulating kinase 1 (Ask1) in various animal-disease-like models, the study also aimed to determine whether Ask1 knockdown restores MPP+-altered dopamine release in acute hippocampal slices. We applied variations of low- and high-frequency stimulation to evoke dopamine release within different hippocampal regions and discovered that acute application of MPP+ reduced the amount of dopamine released and hindered the recovery of dopamine release after repeated stimulation. In addition, we observed that Ask1 deficiency attenuated the detrimental effects of MPP+ on the recovery of dopamine release after repeated stimulation. RNA sequencing analysis indicated that genes associated with the synaptic pathways are involved in response to MPP+ exposure. Notably, Ask1 deficiency was found to downregulate the expression of Slc5a7, a gene encoding a sodium-dependent high-affinity choline transporter that regulates acetylcholine levels. Respective follow-up experiments indicated that Slc5a7 plays a role in Ask1 deficiency-mediated protection against MPP+ neurotoxicity. In addition, increasing acetylcholine levels using an acetylcholinesterase inhibitor could exacerbate the toxicity of MPP+. In conclusion, our data imply that the modulation of the dopamine-acetylcholine balance may be a crucial mechanism of action underlying the neuroprotective effects of Ask1 deficiency in PD.
Collapse
Affiliation(s)
- Fang Zhao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Chuhan Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yinghan Zhuang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yan Yan
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Thomas Behnisch
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Morriss R, Briley PM, Webster L, Abdelghani M, Barber S, Bates P, Brookes C, Hall B, Ingram L, Kurkar M, Lankappa S, Liddle PF, McAllister-Williams RH, O'Neil-Kerr A, Pszczolkowski S, Suazo Di Paola A, Walters Y, Auer DP. Connectivity-guided intermittent theta burst versus repetitive transcranial magnetic stimulation for treatment-resistant depression: a randomized controlled trial. Nat Med 2024; 30:403-413. [PMID: 38228914 PMCID: PMC10878976 DOI: 10.1038/s41591-023-02764-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024]
Abstract
Disruption in reciprocal connectivity between the right anterior insula and the left dorsolateral prefrontal cortex is associated with depression and may be a target for neuromodulation. In a five-center, parallel, double-blind, randomized controlled trial we personalized resting-state functional magnetic resonance imaging neuronavigated connectivity-guided intermittent theta burst stimulation (cgiTBS) at a site based on effective connectivity from the right anterior insula to the left dorsolateral prefrontal cortex. We tested its efficacy in reducing the primary outcome depression symptoms measured by the GRID Hamilton Depression Rating Scale 17-item over 8, 16 and 26 weeks, compared with structural magnetic resonance imaging (MRI) neuronavigated repetitive transcranial magnetic stimulation (rTMS) delivered at the standard stimulation site (F3) in patients with 'treatment-resistant depression'. Participants were randomly assigned to 20 sessions over 4-6 weeks of either cgiTBS (n = 128) or rTMS (n = 127) with resting-state functional MRI at baseline and 16 weeks. Persistent decreases in depressive symptoms were seen over 26 weeks, with no differences between arms on the primary outcome GRID Hamilton Depression Rating Scale 17-item score (intention-to-treat adjusted mean, -0.31, 95% confidence interval (CI) -1.87, 1.24, P = 0.689). Two serious adverse events were possibly related to TMS (mania and psychosis). MRI-neuronavigated cgiTBS and rTMS were equally effective in patients with treatment-resistant depression over 26 weeks (trial registration no. ISRCTN19674644).
Collapse
Affiliation(s)
- Richard Morriss
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK.
| | - Paul M Briley
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Lucy Webster
- Institute of Mental Health, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, UK
| | - Mohamed Abdelghani
- Clinical Neuromodulation Service, Camden and Islington NHS Foundation Trust, London, UK
| | - Shaun Barber
- Leicester Clinical Trials Unit, University of Leicester, Leicester, UK
| | - Peter Bates
- Institute of Mental Health, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, UK
| | - Cassandra Brookes
- Leicester Clinical Trials Unit, University of Leicester, Leicester, UK
| | - Beth Hall
- Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Luke Ingram
- Leicester Clinical Trials Unit, University of Leicester, Leicester, UK
| | - Micheal Kurkar
- Pennine Care TMS Service, Pennine Care NHS Foundation Trust, Oldham, UK
| | - Sudheer Lankappa
- Institute of Mental Health, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, UK
| | - Peter F Liddle
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - R Hamish McAllister-Williams
- Northern Centre for Mood Disorders, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Alexander O'Neil-Kerr
- Centre for Neuromodulation, Northamptonshire Healthcare NHS Foundation Trust, Northampton, UK
| | - Stefan Pszczolkowski
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| | | | - Yvette Walters
- Leicester Clinical Trials Unit, University of Leicester, Leicester, UK
| | - Dorothee P Auer
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
26
|
Su J, Huang F, Tian Y, Tian R, Qianqian G, Bello ST, Zeng D, Jendrichovsky P, Lau CG, Xiong W, Yu D, Tortorella M, Chen X, He J. Entorhinohippocampal cholecystokinin modulates spatial learning by facilitating neuroplasticity of hippocampal CA3-CA1 synapses. Cell Rep 2023; 42:113467. [PMID: 37979171 DOI: 10.1016/j.celrep.2023.113467] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/01/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023] Open
Abstract
The hippocampus is broadly impacted by neuromodulations. However, how neuropeptides shape the function of the hippocampus and the related spatial learning and memory remains unclear. Here, we discover the crucial role of cholecystokinin (CCK) in heterosynaptic neuromodulation from the medial entorhinal cortex (MEC) to the hippocampus. Systematic knockout of the CCK gene impairs CA3-CA1 LTP and space-related performance. The MEC provides most of the CCK-positive neurons projecting to the hippocampal region, which potentiates CA3-CA1 long-term plasticity heterosynaptically in a frequency- and NMDA receptor (NMDAR)-dependent manner. Selective inhibition of MEC CCKergic neurons or downregulation of their CCK mRNA levels also impairs CA3-CA1 LTP formation and animals' performance in the water maze. This excitatory extrahippocampal projection releases CCK upon high-frequency excitation and is active during animal exploration. Our results reveal the critical role of entorhinal CCKergic projections in bridging intra- and extrahippocampal circuitry at electrophysiological and behavioral levels.
Collapse
Affiliation(s)
- Junfeng Su
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Fengwen Huang
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China.
| | - Yu Tian
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Ran Tian
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Gao Qianqian
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Stephen Temitayo Bello
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China
| | - Dingxaun Zeng
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Peter Jendrichovsky
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China
| | - C Geoffrey Lau
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China
| | - Wenjun Xiong
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China; City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China
| | - Daiguan Yu
- Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Micky Tortorella
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China; Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Xi Chen
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China; City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China.
| | - Jufang He
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China; Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, P.R. China; City University of Hong Kong Shenzhen Research Institute, Shenzhen, P.R. China.
| |
Collapse
|
27
|
Bilel S, Zamberletti E, Caffino L, Tirri M, Mottarlini F, Arfè R, Barbieri M, Beggiato S, Boccuto F, Bernardi T, Casati S, Brini AT, Parolaro D, Rubino T, Ferraro L, Fumagalli F, Marti M. Cognitive dysfunction and impaired neuroplasticity following repeated exposure to the synthetic cannabinoid JWH-018 in male mice. Br J Pharmacol 2023; 180:2777-2801. [PMID: 37311647 DOI: 10.1111/bph.16164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Psychotic disorders have been reported in long-term users of synthetic cannabinoids. This study aims at investigating the long-lasting effects of repeated JWH-018 exposure. EXPERIMENTAL APPROACH Male CD-1 mice were injected with vehicle, JWH-018 (6 mg·kg-1 ), the CB1 -antagonist NESS-0327 (1 mg·kg-1 ) or co-administration of NESS-0327 and JWH-018, every day for 7 days. After 15 or 16 days washout, we investigated the effects of JWH-018 on motor function, memory, social dominance and prepulse inhibition (PPI). We also evaluated glutamate levels in dialysates from dorsal striatum, striatal dopamine content and striatal/hippocampal neuroplasticity focusing on the NMDA receptor complex and the neurotrophin BDNF. These measurements were accompanied by in vitro electrophysiological evaluations in hippocampal preparations. Finally, we investigated the density of CB1 receptors and levels of the endocannabinoid anandamide (AEA) and 2-arachidonoylglycerol (2-AG) and their main synthetic and degrading enzymes in the striatum and hippocampus. KEY RESULTS The repeated treatment with JWH-018 induced psychomotor agitation while reducing social dominance, recognition memory and PPI in mice. JWH-018 disrupted hippocampal LTP and decreased BDNF expression, reduced the synaptic levels of NMDA receptor subunits and decreased the expression of PSD95. Repeated exposure to JWH-018, reduced hippocampal CB1 receptor density and induced a long-term alteration in AEA and 2-AG levels and their degrading enzymes, FAAH and MAGL, in the striatum. CONCLUSION AND IMPLICATIONS Our findings suggest that repeated administration of a high dose of JWH-018 leads to the manifestation of psychotic-like symptoms accompanied by alterations in neuroplasticity and change in the endocannabinoid system.
Collapse
Affiliation(s)
- Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Erica Zamberletti
- Department of Biotechnology and Life Sciences (DBSV) and Neuroscience Center, University of Insubria, Busto Arsizio, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Raffaella Arfè
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Mario Barbieri
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Sarah Beggiato
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy
| | - Federica Boccuto
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Tatiana Bernardi
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Sara Casati
- Department of Biomedical Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Anna T Brini
- Department of Biomedical Surgical and Dental Sciences, University of Milan, Milan, Italy
- IRCCS Galeazzi Orthopedic Institute, Milan, Italy
| | - Daniela Parolaro
- Department of Biotechnology and Life Sciences (DBSV) and Neuroscience Center, University of Insubria, Busto Arsizio, Italy
- Zardi-Gori Foundation, Milan, Italy
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences (DBSV) and Neuroscience Center, University of Insubria, Busto Arsizio, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy
- Laboratory for the Technology of Advanced Therapies (LTTA Centre), University of Ferrara, Ferrara, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, Ferrara, Italy
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Rome, Italy
| |
Collapse
|
28
|
Anil S, Lu H, Rotter S, Vlachos A. Repetitive transcranial magnetic stimulation (rTMS) triggers dose-dependent homeostatic rewiring in recurrent neuronal networks. PLoS Comput Biol 2023; 19:e1011027. [PMID: 37956202 PMCID: PMC10681319 DOI: 10.1371/journal.pcbi.1011027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 11/27/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique used to induce neuronal plasticity in healthy individuals and patients. Designing effective and reproducible rTMS protocols poses a major challenge in the field as the underlying biomechanisms of long-term effects remain elusive. Current clinical protocol designs are often based on studies reporting rTMS-induced long-term potentiation or depression of synaptic transmission. Herein, we employed computational modeling to explore the effects of rTMS on long-term structural plasticity and changes in network connectivity. We simulated a recurrent neuronal network with homeostatic structural plasticity among excitatory neurons, and demonstrated that this mechanism was sensitive to specific parameters of the stimulation protocol (i.e., frequency, intensity, and duration of stimulation). Particularly, the feedback-inhibition initiated by network stimulation influenced the net stimulation outcome and hindered the rTMS-induced structural reorganization, highlighting the role of inhibitory networks. These findings suggest a novel mechanism for the lasting effects of rTMS, i.e., rTMS-induced homeostatic structural plasticity, and highlight the importance of network inhibition in careful protocol design, standardization, and optimization of stimulation.
Collapse
Affiliation(s)
- Swathi Anil
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Han Lu
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Stefan Rotter
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
29
|
Wessel MJ, Beanato E, Popa T, Windel F, Vassiliadis P, Menoud P, Beliaeva V, Violante IR, Abderrahmane H, Dzialecka P, Park CH, Maceira-Elvira P, Morishita T, Cassara AM, Steiner M, Grossman N, Neufeld E, Hummel FC. Noninvasive theta-burst stimulation of the human striatum enhances striatal activity and motor skill learning. Nat Neurosci 2023; 26:2005-2016. [PMID: 37857774 PMCID: PMC10620076 DOI: 10.1038/s41593-023-01457-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 09/07/2023] [Indexed: 10/21/2023]
Abstract
The stimulation of deep brain structures has thus far only been possible with invasive methods. Transcranial electrical temporal interference stimulation (tTIS) is a novel, noninvasive technology that might overcome this limitation. The initial proof-of-concept was obtained through modeling, physics experiments and rodent models. Here we show successful noninvasive neuromodulation of the striatum via tTIS in humans using computational modeling, functional magnetic resonance imaging studies and behavioral evaluations. Theta-burst patterned striatal tTIS increased activity in the striatum and associated motor network. Furthermore, striatal tTIS enhanced motor performance, especially in healthy older participants as they have lower natural learning skills than younger subjects. These findings place tTIS as an exciting new method to target deep brain structures in humans noninvasively, thus enhancing our understanding of their functional role. Moreover, our results lay the groundwork for innovative, noninvasive treatment strategies for brain disorders in which deep striatal structures play key pathophysiological roles.
Collapse
Affiliation(s)
- Maximilian J Wessel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Elena Beanato
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Traian Popa
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Fabienne Windel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Pierre Vassiliadis
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Pauline Menoud
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Valeriia Beliaeva
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| | - Ines R Violante
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | | | - Patrycja Dzialecka
- Department of Brain Sciences, Imperial College London, London, UK
- United Kingdom Dementia Research Institute, Imperial College London, London, UK
| | - Chang-Hyun Park
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Pablo Maceira-Elvira
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Takuya Morishita
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Antonino M Cassara
- Foundation for Research on Information Technologies in Society, Zurich, Switzerland
| | - Melanie Steiner
- Foundation for Research on Information Technologies in Society, Zurich, Switzerland
| | - Nir Grossman
- Department of Brain Sciences, Imperial College London, London, UK
- United Kingdom Dementia Research Institute, Imperial College London, London, UK
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society, Zurich, Switzerland
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland.
- Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland.
| |
Collapse
|
30
|
Watson M, Chaves AR, Gebara A, Desforges M, Broomfield A, Landry N, Lemoyne A, Shim S, Drodge J, Cuda J, Kiaee N, Nasr Y, Carleton C, Daskalakis ZJ, Taylor R, Tuominen L, Brender R, Antochi R, McMurray L, Tremblay S. A naturalistic study comparing the efficacy of unilateral and bilateral sequential theta burst stimulation in treating major depression - the U-B-D study protocol. BMC Psychiatry 2023; 23:739. [PMID: 37817124 PMCID: PMC10566125 DOI: 10.1186/s12888-023-05243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/01/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a prevalent mental health condition affecting millions worldwide, leading to disability and reduced quality of life. MDD poses a global health priority due to its early onset and association with other disabling conditions. Available treatments for MDD exhibit varying effectiveness, and a substantial portion of individuals remain resistant to treatment. Repetitive transcranial magnetic stimulation (rTMS), applied to the left and/or right dorsolateral prefrontal cortex (DLPFC), is an alternative treatment strategy for those experiencing treatment-resistant MDD. The objective of this study is to investigate whether this newer form of rTMS, namely theta burst stimulation (TBS), when performed unilaterally or bilaterally, is efficacious in treatment-resistant MDD. METHODS In this naturalistic, randomized double-blinded non-inferiority trial, participants with a major depressive episode will be randomized to receive either unilateral (i.e., continuous TBS [cTBS] to the right and sham TBS to the left DLPFC) or bilateral sequential TBS (i.e., cTBS to the right and intermittent TBS [iTBS] to the left DLPFC) delivered 5 days a week for 4-6 weeks. Responders will move onto a 6-month flexible maintenance phase where TBS treatment will be delivered at a decreasing frequency depending on degree of symptom mitigation. Several clinical assessments and neuroimaging and neurophysiological biomarkers will be collected to investigate treatment response and potential associated biomarkers. A non-inferiority analysis will investigate whether bilateral sequential TBS is non-inferior to unilateral TBS and regression analyses will investigate biomarkers of treatment response. We expect to recruit a maximal of 256 participants. This trial is approved by the Research Ethics Board of The Royal's Institute of Mental Health Research (REB# 2,019,071) and will follow the Declaration of Helsinki. Findings will be published in peer-reviewed journals. DISCUSSION Comprehensive assessment of symptoms and neurophysiological biomarkers will contribute to understanding the differential efficacy of the tested treatment protocols, identifying biomarkers for treatment response, and shedding light into underlying mechanisms of TBS. Our findings will inform future clinical trials and aid in personalizing treatment selection and scheduling for individuals with MDD. TRIAL REGISTRATION The trial is registered on https://clinicaltrials.gov/ct2/home (#NCT04142996).
Collapse
Affiliation(s)
- Molly Watson
- University of Ottawa Institute of Mental Health Research at The Royal, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Arthur R Chaves
- University of Ottawa Institute of Mental Health Research at The Royal, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
- Faculty of Health Sciences, University of Ottawa, 125 University, Ottawa, ON, K1N6N5, Canada
| | - Abir Gebara
- School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Manon Desforges
- University of Ottawa Institute of Mental Health Research at The Royal, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
- Département de Psychoéducation Et Psychologie, Université du Québec en Outaouais, 283 Alexandre-Taché Boul, Gatineau, QC, J8X 3X7, Canada
| | - Antoinette Broomfield
- University of Ottawa Institute of Mental Health Research at The Royal, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
| | - Noémie Landry
- University of Ottawa Institute of Mental Health Research at The Royal, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
- Département de Psychoéducation Et Psychologie, Université du Québec en Outaouais, 283 Alexandre-Taché Boul, Gatineau, QC, J8X 3X7, Canada
| | - Alexandra Lemoyne
- University of Ottawa Institute of Mental Health Research at The Royal, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
- Département de Psychoéducation Et Psychologie, Université du Québec en Outaouais, 283 Alexandre-Taché Boul, Gatineau, QC, J8X 3X7, Canada
| | - Stacey Shim
- University of Ottawa Institute of Mental Health Research at The Royal, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
| | - Jessica Drodge
- University of Ottawa Institute of Mental Health Research at The Royal, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
| | - Jennifer Cuda
- University of Ottawa Institute of Mental Health Research at The Royal, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
| | - Nasim Kiaee
- University of Ottawa Institute of Mental Health Research at The Royal, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Youssef Nasr
- University of Ottawa Institute of Mental Health Research at The Royal, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
| | - Christophe Carleton
- University of Ottawa Institute of Mental Health Research at The Royal, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
- Département de Psychoéducation Et Psychologie, Université du Québec en Outaouais, 283 Alexandre-Taché Boul, Gatineau, QC, J8X 3X7, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, University California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Reggie Taylor
- University of Ottawa Institute of Mental Health Research at The Royal, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
- Department of Physics, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Lauri Tuominen
- University of Ottawa Institute of Mental Health Research at The Royal, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
- Department of Psychiatry, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Ram Brender
- Department of Psychiatry, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Royal Ottawa Mental Health Centre, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
| | - Ruxandra Antochi
- Department of Psychiatry, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Royal Ottawa Mental Health Centre, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
| | - Lisa McMurray
- Department of Psychiatry, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Royal Ottawa Mental Health Centre, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada
| | - Sara Tremblay
- University of Ottawa Institute of Mental Health Research at The Royal, 1145 Carling Ave, Ottawa, ON, K1Z 7K4, Canada.
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
- Département de Psychoéducation Et Psychologie, Université du Québec en Outaouais, 283 Alexandre-Taché Boul, Gatineau, QC, J8X 3X7, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
31
|
Zhang XL, Hollander CM, Khan MY, D'silva M, Ma H, Yang X, Bai R, Keeter CK, Galkina EV, Nadler JL, Stanton PK. Myeloid cell deficiency of the inflammatory transcription factor Stat4 protects long-term synaptic plasticity from the effects of a high-fat, high-cholesterol diet. Commun Biol 2023; 6:967. [PMID: 37783748 PMCID: PMC10545833 DOI: 10.1038/s42003-023-05304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/30/2023] [Indexed: 10/04/2023] Open
Abstract
Neuroinflammation is associated with neurodegenerative diseases, including Alzheimer's and Parkinson's. The cytokine interleukin-12 activates signal transducer and activator of transcription 4 (Stat4), and consumption of a high-fat, high-cholesterol diet (HFD-C) and Stat4 activity are associated with inflammation, atherosclerosis, and a diabetic metabolic phenotype. In studies of in vitro hippocampal slices from control Stat4fl/flLdlr-/- mice fed a HFD-C diabetogenic diet, we show that Schaffer collateral-CA1 synapses exhibited larger reductions in activity-dependent, long-term potentiation (LTP) of synaptic transmission, compared to mice fed a standard diet. Glucose tolerance and insulin sensitivity shifts produced by HFD-C diet were reduced in Stat4ΔLysMLdlr-/- mice compared to Stat4fl/flLdlr-/- controls. Stat4ΔLysMLdlr-/- mice, which lack Stat4 under control of the LysMCre promoter, were resistant to HFD-C induced impairments in LTP. In contrast, Schaffer collateral-CA1 synapses in Stat4ΔLysMLdlr-/- mice fed the HFD-C diet showed larger LTP than control Stat4fl/flLdlr-/- mice. Expression of a number of neuroinflammatory and synaptic plasticity genes was reduced by HFD-C diet in control mice, and less affected by HFD-C diet in Stat4ΔLysMLdlr-/- mice. These data suggest that suppression of Stat4 activation may protect against effects of Western diet on cognition, type 2 diabetes, and reduce risk of Alzheimer's disease and other neurodegenerative disorders associated with neuroinflammation.
Collapse
Affiliation(s)
- Xiao-Lei Zhang
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Callie M Hollander
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Mohammad Yasir Khan
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Melinee D'silva
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Haoqin Ma
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Xinyuan Yang
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Robin Bai
- Department of Microbiology & Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| | - Coles K Keeter
- Department of Microbiology & Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| | - Elena V Galkina
- Department of Microbiology & Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| | - Jerry L Nadler
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
- ACOS-Research VA Northern California Health Care System, Sacramento, CA, 95655, USA
| | - Patric K Stanton
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA.
| |
Collapse
|
32
|
Neuparth-Sottomayor M, Pina CC, Morais TP, Farinha-Ferreira M, Abreu DS, Solano F, Mouro F, Good M, Sebastião AM, Di Giovanni G, Crunelli V, Vaz SH. Cognitive comorbidities of experimental absence seizures are independent of anxiety. Neurobiol Dis 2023; 186:106275. [PMID: 37648038 DOI: 10.1016/j.nbd.2023.106275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/15/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023] Open
Abstract
Typical absence seizures (ASs) are brief periods of lack of consciousness, associated with 2.5-4 Hz spike-wave discharges (SWDs) in the EEG, which are highly prevalent in children and teenagers. The majority of probands in these young epileptic cohorts show neuropsychological comorbidities, including cognitive, memory and mood impairments, even after the seizures are pharmacologically controlled. Similar cognition and memory deficits have been reported in different, but not all, genetic animal models of ASs. However, since these impairments are subtle and highly task-specific their presence may be confounded by an anxiety-like phenotype and no study has tested anxiety and memory in the same animals. Moreover, the majority of studies used non-epileptic inbred animals as the only control strain and this may have contributed to a misinterpretation of these behavioural results. To overcome these issues, here we used a battery of behavioural tests to compare anxiety and memory in the same animals from the well-established inbred model of Genetic Absence Epilepsy Rats from Strasbourg (GAERS), their inbred strain of Non-Epileptic Control (NEC) strain (that lack ASs) and normal outbred Wistar rats. We found that GAERS do not exhibit increased anxiety-like behavior and neophobia compared to both NEC and Wistar rats. In contrast, GAERS show decreased spontaneous alternation, spatial working memory and cross-modal object recognition compared to both NEC and Wistar rats. Furthermore, GAERS preferentially used egocentric strategies to perform spatial memory tasks. In summary, these results provide solid evidence of memory deficits in GAERS rats that do not depend on an anxiety or neophobic phenotype. Moreover, the presence of differences between NEC and Wistar rats stresses the need of using both outbred and inbred control rats in behavioural studies involving genetic models of ASs.
Collapse
Affiliation(s)
- Mariana Neuparth-Sottomayor
- Instituto de Medicina Molecular João Lobo Antunes, University of Lisbon, Lisbon, Portugal; Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Carolina C Pina
- Instituto de Medicina Molecular João Lobo Antunes, University of Lisbon, Lisbon, Portugal; Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Tatiana P Morais
- School of Psychology, Cardiff University, Cardiff, United Kingdom; Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, United Kingdom
| | - Miguel Farinha-Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, University of Lisbon, Lisbon, Portugal; Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Daniela Sofia Abreu
- Instituto de Medicina Molecular João Lobo Antunes, University of Lisbon, Lisbon, Portugal; Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Filipa Solano
- Instituto de Medicina Molecular João Lobo Antunes, University of Lisbon, Lisbon, Portugal; Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Francisco Mouro
- Instituto de Medicina Molecular João Lobo Antunes, University of Lisbon, Lisbon, Portugal; Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Mark Good
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Ana Maria Sebastião
- Instituto de Medicina Molecular João Lobo Antunes, University of Lisbon, Lisbon, Portugal; Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Giuseppe Di Giovanni
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, United Kingdom; Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Vincenzo Crunelli
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, United Kingdom
| | - Sandra H Vaz
- Instituto de Medicina Molecular João Lobo Antunes, University of Lisbon, Lisbon, Portugal; Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
33
|
Latif-Hernandez A, Yang T, Raymond-Butler R, Losada PM, Minhas P, White H, Tran KC, Liu H, Simmons DA, Langness V, Andreasson K, Wyss-Coray T, Longo FM. A TrkB and TrkC partial agonist restores deficits in synaptic function and promotes activity-dependent synaptic and microglial transcriptomic changes in a late-stage Alzheimer's mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558138. [PMID: 37781573 PMCID: PMC10541128 DOI: 10.1101/2023.09.18.558138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Introduction TrkB and TrkC receptor signaling promotes synaptic plasticity and interacts with pathways affected by amyloid-β (Aβ)-toxicity. Upregulating TrkB/C signaling could reduce Alzheimer's disease (AD)-related degenerative signaling, memory loss, and synaptic dysfunction. Methods PTX-BD10-2 (BD10-2), a small molecule TrkB/C receptor partial agonist, was orally administered to aged London/Swedish-APP mutant mice (APP L/S ) and wild-type controls (WT). Effects on memory and hippocampal long-term potentiation (LTP) were assessed using electrophysiology, behavioral studies, immunoblotting, immunofluorescence staining, and RNA-sequencing. Results Memory and LTP deficits in APP L/S mice were attenuated by treatment with BD10-2. BD10-2 prevented aberrant AKT, CaMKII, and GLUA1 phosphorylation, and enhanced activity-dependent recruitment of synaptic proteins. BD10-2 also had potentially favorable effects on LTP-dependent complement pathway and synaptic gene transcription. Conclusions BD10-2 prevented APP L/S /Aβ-associated memory and LTP deficits, reduced abnormalities in synapse-related signaling and activity-dependent transcription of synaptic genes, and bolstered transcriptional changes associated with microglial immune response.
Collapse
|
34
|
Thakkar B, Peterson CL, Acevedo EO. Prolonged continuous theta burst stimulation increases motor corticospinal excitability and intracortical inhibition in patients with neuropathic pain: An exploratory, single-blinded, randomized controlled trial. Neurophysiol Clin 2023; 53:102894. [PMID: 37659135 PMCID: PMC10592401 DOI: 10.1016/j.neucli.2023.102894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 09/04/2023] Open
Abstract
OBJECTIVES A new paradigm for Transcranial Magnetic Stimulation (TMS), referred to as prolonged continuous theta burst stimulation (pcTBS), has recently received attention in the literature because of its advantages over high frequency repetitive TMS (HF-rTMS). Clinical advantages include less time per intervention session and the effects appear to be more robust and reproducible than HF-rTMS to modulate cortical excitability. HF-rTMS targeted at the primary motor cortex (M1) has demonstrated analgesic effects in patients with neuropathic pain but their mechanisms of action are unclear and pcTBS has been studied in healthy subjects only. This study examined the neural mechanisms that have been proposed to play a role in explaining the effects of pcTBS targeted at the M1 and DLPFC brain regions in neuropathic pain (NP) patients with Type 2 diabetes. METHODS Forty-two patients with painful diabetic neuropathy were randomized to receive a single session of pcTBS targeted at the left M1 or left DLPFC. pcTBS stimulation consisted of 1,200 pulses delivered in 1 min and 44 s with a 35-45 min gap between sham and active pcTBS stimulation. Both the activity of the descending pain system which was examined using conditioned pain modulation and the activity of the ascending pain system which was assessed using temporal summation of pain were recorded using a handheld pressure algometer by measuring pressure pain thresholds. The amplitude of the motor evoked potential (MEP) was used to measure motor corticospinal excitability and GABA activity was assessed using short (SICI) and long intracortical inhibition (LICI). All these measurements were performed at baseline and post-pcTBS stimulation. RESULTS Following a single session of pcTBS targeted at M1 and DLPFC, there was no change in BPI-DN scores and on the activity of the descending (measured using conditioned pain modulation) and ascending pain systems (measured using temporal summation of pain) compared to baseline but there was a significant improvement of >13% in perception of acute pain intensity, increased motor corticospinal excitability (measured using MEP amplitude) and intracortical inhibition (measured using SICI and LICI). CONCLUSION In patients with NP, a single session of pcTBS targeted at the M1 and DLPFC modulated the neurophysiological mechanisms related to motor corticospinal excitability and neurochemical mechanisms linked to GABA activity, but it did not modulate the activity of the ascending and descending endogenous modulatory systems. In addition, although BPI-DN scores did not change, there was a 13% improvement in self-reported perception of acute pain intensity.
Collapse
Affiliation(s)
- Bhushan Thakkar
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, VA, United States.
| | - Carrie L Peterson
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Edmund O Acevedo
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
35
|
Aoki Y, Yokoi T, Morikawa S, Kuga N, Ikegaya Y, Sasaki T. Effects of theta phase precessing optogenetic intervention on hippocampal neuronal reactivation and spatial maps. iScience 2023; 26:107233. [PMID: 37534136 PMCID: PMC10392074 DOI: 10.1016/j.isci.2023.107233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/04/2023] [Accepted: 06/23/2023] [Indexed: 08/04/2023] Open
Abstract
As animals explore environments, hippocampal place cells sequentially fire at progressively earlier phases of theta oscillations in hippocampal local field potentials. In this study, we evaluated the network-level significance of theta phase-entrained neuronal activity in organizing place cell spike patterns. A closed-loop system was developed in which optogenetic stimulation with a temporal pattern replicating theta phase precession is delivered to hippocampal CA1 neurons when rats traversed a particular region on a linear track. Place cells that had place fields during phase precessing stimulation, but not random phase stimulation, showed stronger reactivation during hippocampal sharp-wave ripples in a subsequent rest period. After the rest period, place cells with place fields that emerged during phase precessing stimulation showed more stable place fields. These results imply that neuronal reactivation and stability of spatial maps are mediated by theta phase precession in the hippocampus.
Collapse
Affiliation(s)
- Yuki Aoki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taiki Yokoi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Shota Morikawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
| | - Nahoko Kuga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
- Center for Information and Neural Networks, 1-4 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Takuya Sasaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| |
Collapse
|
36
|
Leung A, Rangamani P. Computational modeling of AMPK and mTOR crosstalk in glutamatergic synapse calcium signaling. NPJ Syst Biol Appl 2023; 9:34. [PMID: 37460570 DOI: 10.1038/s41540-023-00295-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023] Open
Abstract
Neuronal energy consumption is vital for information processing and memory formation in synapses. The brain consists of just 2% of the human body's mass, but consumes almost 20% of the body's energy budget. Most of this energy is attributed to active transport in ion signaling, with calcium being the canonical second messenger of synaptic transmission. Here, we develop a computational model of synaptic signaling resulting in the activation of two protein kinases critical in metabolic regulation and cell fate, AMP-Activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) and investigate the effect of glutamate stimulus frequency on their dynamics. Our model predicts that frequencies of glutamate stimulus over 10 Hz perturb AMPK and mTOR oscillations at higher magnitudes by up to 36% and change the area under curve (AUC) by 5%. This dynamic difference in AMPK and mTOR activation trajectories potentially differentiates high frequency stimulus bursts from basal neuronal signaling leading to a downstream change in synaptic plasticity. Further, we also investigate the crosstalk between insulin receptor and calcium signaling on AMPK and mTOR activation and predict that the pathways demonstrate multistability dependent on strength of insulin signaling and metabolic consumption rate. Our predictions have implications for improving our understanding of neuronal metabolism, synaptic pruning, and synaptic plasticity.
Collapse
Affiliation(s)
- A Leung
- Chemical Engineering Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - P Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
37
|
Abstract
As resident immune cells of the brain, microglia serve pivotal roles in regulating neuronal function under both physiological and pathological conditions, including aging and the most prevalent neurodegenerative disease, Alzheimer's disease (AD). Instructed by neurons, microglia regulate synaptic function and guard brain homeostasis throughout life. Dysregulation of microglial function, however, can lead to dire consequences, including aggravated cognitive decline during aging and exacerbated neuropathology in diseases. The triggering receptor expressed on myeloid cells 2 (TREM2) is a key regulator of microglial function. Loss-of-function variants of TREM2 are associated with an increased risk of AD. TREM2 orchestrates the switch of microglial transcriptome programming that modulates microglial chemotaxis, phagocytosis, and inflammatory responses, as well as microglial regulation of synaptic function in health and disease. Intriguingly, the outcome of microglial/TREM2 function is influenced by age and the context of neuropathology. This review summarizes the rapidly growing research on TREM2 under physiological conditions and in AD, particularly highlighting the impact of TREM2 on neuronal function.
Collapse
Affiliation(s)
- Wenhui Qu
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455
| | - Ling Li
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
38
|
Jami SA, Wilkinson BJ, Guglietta R, Hartel N, Babiec WE, Graham NA, Coba MP, O'Dell TJ. Functional and phosphoproteomic analysis of β-adrenergic receptor signaling at excitatory synapses in the CA1 region of the ventral hippocampus. Sci Rep 2023; 13:7493. [PMID: 37161045 PMCID: PMC10170123 DOI: 10.1038/s41598-023-34401-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/28/2023] [Indexed: 05/11/2023] Open
Abstract
Activation of β-adrenergic receptors (β-ARs) not only enhances learning and memory but also facilitates the induction of long-term potentiation (LTP), a form of synaptic plasticity involved in memory formation. To identify the mechanisms underlying β-AR-dependent forms of LTP we examined the effects of the β-AR agonist isoproterenol on LTP induction at excitatory synapses onto CA1 pyramidal cells in the ventral hippocampus. LTP induction at these synapses is inhibited by activation of SK-type K+ channels, suggesting that β-AR activation might facilitate LTP induction by inhibiting SK channels. However, although the SK channel blocker apamin enhanced LTP induction, it did not fully mimic the effects of isoproterenol. We therefore searched for potential alternative mechanisms using liquid chromatography-tandem mass spectrometry to determine how β-AR activation regulates phosphorylation of postsynaptic density (PSD) proteins. Strikingly, β-AR activation regulated hundreds of phosphorylation sites in PSD proteins that have diverse roles in dendritic spine structure and function. Moreover, within the core scaffold machinery of the PSD, β-AR activation increased phosphorylation at several sites previously shown to be phosphorylated after LTP induction. Together, our results suggest that β-AR activation recruits a diverse set of signaling pathways that likely act in a concerted fashion to regulate LTP induction.
Collapse
Affiliation(s)
- Shekib A Jami
- Molecular, Cellular, and Integrative Physiology Interdepartmental PhD Program, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Ryan Guglietta
- Interdepartmental PhD Program for Neuroscience, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicolas Hartel
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Walter E Babiec
- Undergraduate Interdepartmental Program for Neuroscience, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicholas A Graham
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Marcelo P Coba
- Zilkha Neurogenetic Institute, Los Angeles, CA, USA
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Thomas J O'Dell
- Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
39
|
Carvalho-Rosa JD, Rodrigues NC, Silva-Cruz A, Vaz SH, Cunha-Reis D. Epileptiform activity influences theta-burst induced LTP in the adult hippocampus: a role for synaptic lipid raft disruption in early metaplasticity? Front Cell Neurosci 2023; 17:1117697. [PMID: 37228704 PMCID: PMC10203237 DOI: 10.3389/fncel.2023.1117697] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/13/2023] [Indexed: 05/27/2023] Open
Abstract
Non-epileptic seizures are identified as a common epileptogenic trigger. Early metaplasticity following seizures may contribute to epileptogenesis by abnormally altering synaptic strength and homeostatic plasticity. We now studied how in vitro epileptiform activity (EA) triggers early changes in CA1 long-term potentiation (LTP) induced by theta-burst stimulation (TBS) in rat hippocampal slices and the involvement of lipid rafts in these early metaplasticity events. Two forms of EA were induced: (1) interictal-like EA evoked by Mg2+ withdrawal and K+ elevation to 6 mM in the superfusion medium or (2) ictal-like EA induced by bicuculline (10 μM). Both EA patterns induced and LTP-like effect on CA1 synaptic transmission prior to LTP induction. LTP induced 30 min post EA was impaired, an effect more pronounced after ictal-like EA. LTP recovered to control levels 60 min post interictal-like EA but was still impaired 60 min after ictal-like EA. The synaptic molecular events underlying this altered LTP were investigated 30 min post EA in synaptosomes isolated from these slices. EA enhanced AMPA GluA1 Ser831 phosphorylation but decreased Ser845 phosphorylation and the GluA1/GluA2 ratio. Flotillin-1 and caveolin-1 were markedly decreased concomitantly with a marked increase in gephyrin levels and a less prominent increase in PSD-95. Altogether, EA differentially influences hippocampal CA1 LTP thorough regulation of GluA1/GluA2 levels and AMPA GluA1 phosphorylation suggesting that altered LTP post-seizures is a relevant target for antiepileptogenic therapies. In addition, this metaplasticity is also associated with marked alterations in classic and synaptic lipid raft markers, suggesting these may also constitute promising targets in epileptogenesis prevention.
Collapse
Affiliation(s)
- José D. Carvalho-Rosa
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- BioISI–Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Nádia C. Rodrigues
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Armando Silva-Cruz
- BioISI–Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Sandra H. Vaz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | |
Collapse
|
40
|
Chen L, Klooster DCW, Tik M, Thomas EHX, Downar J, Fitzgerald PB, Williams NR, Baeken C. Accelerated Repetitive Transcranial Magnetic Stimulation to Treat Major Depression: The Past, Present, and Future. Harv Rev Psychiatry 2023; 31:142-161. [PMID: 37171474 PMCID: PMC10188211 DOI: 10.1097/hrp.0000000000000364] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is an effective and evidence-based therapy for treatment-resistant major depressive disorder. A conventional course of rTMS applies 20-30 daily sessions over 4-6 weeks. The schedule of rTMS delivery can be accelerated by applying multiple stimulation sessions per day, which reduces the duration of a treatment course with a predefined number of sessions. Accelerated rTMS reduces time demands, improves clinical efficiency, and potentially induces faster onset of antidepressant effects. However, considerable heterogeneity exists across study designs. Stimulation protocols vary in parameters such as the stimulation target, frequency, intensity, number of pulses applied per session or over a course of treatment, and duration of intersession intervals. In this article, clinician-researchers and neuroscientists who have extensive research experience in accelerated rTMS synthesize a consensus based on two decades of investigation and development, from early studies ("Past") to contemporaneous theta burst stimulation, a time-efficient form of rTMS gaining acceptance in clinical settings ("Present"). We propose descriptive nomenclature for accelerated rTMS, recommend avenues to optimize therapeutic and efficiency potential, and suggest using neuroimaging and electrophysiological biomarkers to individualize treatment protocols ("Future"). Overall, empirical studies show that accelerated rTMS protocols are well tolerated and not associated with serious adverse effects. Importantly, the antidepressant efficacy of accelerated rTMS appears comparable to conventional, once daily rTMS protocols. Whether accelerated rTMS induces antidepressant effects more quickly remains uncertain. On present evidence, treatment protocols incorporating high pulse dose and multiple treatments per day show promise and improved efficacy.
Collapse
Affiliation(s)
- Leo Chen
- From the Monash Alfred Psychiatry Research Centre, Department of Psychiatry, Central Clinical School, Monash University, Melbourne, Australia (Drs. Chen, Thomas); Ghent Experimental Psychiatry (GHEP) Lab, Department of Head and Skin (UZGent), Ghent University, Ghent, Belgium (Drs. Klooster, Baeken); Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford University, Stanford, CA (Drs. Tik, Williams); Institute of Medical Science and Department of Psychiatry, University of Toronto, Canada (Dr. Downar); School of Medicine and Psychology, he Australian National University, Canberra, Australia (Dr. Fitzgerald)
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Gall CM, Le AA, Lynch G. Sex differences in synaptic plasticity underlying learning. J Neurosci Res 2023; 101:764-782. [PMID: 33847004 PMCID: PMC10337639 DOI: 10.1002/jnr.24844] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 11/09/2022]
Abstract
Although sex differences in learning behaviors are well documented, sexual dimorphism in the synaptic processes of encoding is only recently appreciated. Studies in male rodents have built upon the discovery of long-term potentiation (LTP), and acceptance of this activity-dependent increase in synaptic strength as a mechanism of encoding, to identify synaptic receptors and signaling activities that coordinate the activity-dependent remodeling of the subsynaptic actin cytoskeleton that is critical for enduring potentiation and memory. These molecular substrates together with other features of LTP, as characterized in males, have provided an explanation for a range of memory phenomena including multiple stages of consolidation, the efficacy of spaced training, and the location of engrams at the level of individual synapses. In the present report, we summarize these findings and describe more recent results from our laboratories showing that in females the same actin regulatory mechanisms are required for hippocampal LTP and memory but, in females only, the engagement of both modulatory receptors such as TrkB and synaptic signaling intermediaries including Src and ERK1/2 requires neuron-derived estrogen and signaling through membrane-associated estrogen receptor α (ERα). Moreover, in association with the additional ERα involvement, females exhibit a higher threshold for hippocampal LTP and spatial learning. We propose that the distinct LTP threshold in females contributes to as yet unappreciated sex differences in information processing and features of learning and memory.
Collapse
Affiliation(s)
- Christine M. Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Aliza A. Le
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| |
Collapse
|
42
|
Hoffman C, Cheng J, Ji D, Dabaghian Y. Pattern dynamics and stochasticity of the brain rhythms. Proc Natl Acad Sci U S A 2023; 120:e2218245120. [PMID: 36976768 PMCID: PMC10083604 DOI: 10.1073/pnas.2218245120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/07/2023] [Indexed: 03/29/2023] Open
Abstract
Our current understanding of brain rhythms is based on quantifying their instantaneous or time-averaged characteristics. What remains unexplored is the actual structure of the waves-their shapes and patterns over finite timescales. Here, we study brain wave patterning in different physiological contexts using two independent approaches: The first is based on quantifying stochasticity relative to the underlying mean behavior, and the second assesses "orderliness" of the waves' features. The corresponding measures capture the waves' characteristics and abnormal behaviors, such as atypical periodicity or excessive clustering, and demonstrate coupling between the patterns' dynamics and the animal's location, speed, and acceleration. Specifically, we studied patterns of θ, γ, and ripple waves recorded in mice hippocampi and observed speed-modulated changes of the wave's cadence, an antiphase relationship between orderliness and acceleration, as well as spatial selectiveness of patterns. Taken together, our results offer a complementary-mesoscale-perspective on brain wave structure, dynamics, and functionality.
Collapse
Affiliation(s)
- Clarissa Hoffman
- Department of Neurology, McGovern Medical School, The University of Texas, Houston, TX77030
| | - Jingheng Cheng
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
| | - Daoyun Ji
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX77030
| | - Yuri Dabaghian
- Department of Neurology, McGovern Medical School, The University of Texas, Houston, TX77030
| |
Collapse
|
43
|
Anil S, Lu H, Rotter S, Vlachos A. Repetitive transcranial magnetic stimulation (rTMS) triggers dose-dependent homeostatic rewiring in recurrent neuronal networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533396. [PMID: 36993387 PMCID: PMC10055183 DOI: 10.1101/2023.03.20.533396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique used to induce neuronal plasticity in healthy individuals and patients. Designing effective and reproducible rTMS protocols poses a major challenge in the field as the underlying biomechanisms remain elusive. Current clinical protocol designs are often based on studies reporting rTMS-induced long-term potentiation or depression of synaptic transmission. Herein, we employed computational modeling to explore the effects of rTMS on long-term structural plasticity and changes in network connectivity. We simulated a recurrent neuronal network with homeostatic structural plasticity between excitatory neurons, and demonstrated that this mechanism was sensitive to specific parameters of the stimulation protocol (i.e., frequency, intensity, and duration of stimulation). The feedback-inhibition initiated by network stimulation influenced the net stimulation outcome and hindered the rTMS-induced homeostatic structural plasticity, highlighting the role of inhibitory networks. These findings suggest a novel mechanism for the lasting effects of rTMS, i.e., rTMS-induced homeostatic structural plasticity, and highlight the importance of network inhibition in careful protocol design, standardization, and optimization of stimulation.
Collapse
Affiliation(s)
- Swathi Anil
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Han Lu
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Stefan Rotter
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
44
|
Joksimovic SM, Ghodsi SM, Heinsbroek JA, Orfila JE, Busquet N, Tesic V, Valdez R, Fine-Raquet B, Jevtovic-Todorovic V, Raol YH, Herson PS, Todorovic SM. Ca V3.1 T-type calcium channels are important for spatial memory processing in the dorsal subiculum. Neuropharmacology 2023; 226:109400. [PMID: 36586474 PMCID: PMC9898223 DOI: 10.1016/j.neuropharm.2022.109400] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
The dorsal subiculum (dSub) is one of the key structures responsible for the formation of hippocampal memory traces but the contribution of individual ionic currents to its cognitive function is not well studied. Although we recently reported that low-voltage-activated T-type calcium channels (T-channels) are crucial for the burst firing pattern regulation in the dSub pyramidal neurons, their potential role in learning and memory remains unclear. Here we used in vivo local field potential recordings and miniscope calcium imaging in freely behaving mice coupled with pharmacological and genetic tools to address this gap in knowledge. We show that the CaV3.1 isoform of T-channels is critically involved in controlling neuronal activity in the dSub in vivo. Altering neuronal excitability by inhibiting T-channel activity markedly affects calcium dynamics, synaptic plasticity, neuronal oscillations and phase-amplitude coupling in the dSub, thereby disrupting spatial learning. These results provide an important causative link between the CaV3.1 channels, burst firing of dSub neurons and memory formation, thus further supporting the notion that changes in neuronal excitability regulate memory processing. We posit that subicular CaV3.1 T-channels could be a promising novel drug target for cognitive disorders.
Collapse
Affiliation(s)
- Srdjan M Joksimovic
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; Division of Neurology and CHOP Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Seyed Mohammadreza Ghodsi
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Jasper A Heinsbroek
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; Neuroscience Graduate Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - James E Orfila
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Nicolas Busquet
- Department of Neurology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Vesna Tesic
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Robert Valdez
- Department of Pediatrics, Division of Neurology, Translational Epilepsy Research Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Brier Fine-Raquet
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Yogendra H Raol
- Department of Pediatrics, Division of Neurology, Translational Epilepsy Research Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; National Institute of Neurological Disorders and Stroke, National Institutes of Health, Rockville, MD, USA
| | - Paco S Herson
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Slobodan M Todorovic
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; Neuroscience Graduate Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
45
|
Roux CM, Lecouflet P, Billard JM, Esneault E, Leger M, Schumann-Bard P, Freret T. Genetic Background Influence on Hippocampal Synaptic Plasticity: Frequency-Dependent Variations between an Inbred and an Outbred Mice Strain. Int J Mol Sci 2023; 24:ijms24054304. [PMID: 36901735 PMCID: PMC10001449 DOI: 10.3390/ijms24054304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
For almost half a century, acute hippocampal slice preparations have been widely used to investigate anti-amnesic (or promnesic) properties of drug candidates on long-term potentiation (LTP)-a cellular substrate that supports some forms of learning and memory. The large variety of transgenic mice models now available makes the choice of the genetic background when designing experiments crucially important. Furthermore, different behavioral phenotypes were reported between inbred and outbred strains. Notably, some differences in memory performance were emphasized. Despite this, investigations, unfortunately, did not explore electrophysiological properties. In this study, two stimulation paradigms were used to compare LTP in the hippocampal CA1 area of both inbred (C57BL/6) and outbred (NMRI) mice. High-frequency stimulation (HFS) revealed no strain difference, whereas theta-burst stimulation (TBS) resulted in significantly reduced LTP magnitude in NMRI mice. Additionally, we demonstrated that this reduced LTP magnitude (exhibited by NMRI mice) was due to lower responsiveness to theta-frequency during conditioning stimuli. In this paper, we discuss the anatomo-functional correlates that may explain such hippocampal synaptic plasticity divergence, although straightforward evidence is still lacking. Overall, our results support the prime importance of considering the animal model related to the intended electrophysiological experiments and the scientific issues to be addressed.
Collapse
Affiliation(s)
- Candice M. Roux
- Department of Health, UNICAEN, INSERM, COMETE, CYCERON, Normandie University, 14000 Caen, France
- PORSOLT, 53940 Le Genest Saint-Isle, France
| | - Pierre Lecouflet
- Department of Health, UNICAEN, INSERM, COMETE, CYCERON, Normandie University, 14000 Caen, France
| | - Jean-Marie Billard
- Department of Health, UNICAEN, INSERM, COMETE, CYCERON, Normandie University, 14000 Caen, France
| | | | - Marianne Leger
- Department of Health, UNICAEN, INSERM, COMETE, CYCERON, Normandie University, 14000 Caen, France
| | - Pascale Schumann-Bard
- Department of Health, UNICAEN, INSERM, COMETE, CYCERON, Normandie University, 14000 Caen, France
| | - Thomas Freret
- Department of Health, UNICAEN, INSERM, COMETE, CYCERON, Normandie University, 14000 Caen, France
- Correspondence: ; Tel.: +33-2-31-56-68-77
| |
Collapse
|
46
|
Arzuaga AL, Edmison DD, Mroczek J, Larson J, Ragozzino ME. Prenatal stress and fluoxetine exposure in mice differentially affect repetitive behaviors and synaptic plasticity in adult male and female offspring. Behav Brain Res 2023; 436:114114. [DOI: 10.1016/j.bbr.2022.114114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/17/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
|
47
|
Zhang TR, Askari B, Kesici A, Guilherme E, Vila-Rodriguez F, Snyder JS. Intermittent theta burst transcranial magnetic stimulation induces hippocampal mossy fibre plasticity in male but not female mice. Eur J Neurosci 2023; 57:310-323. [PMID: 36484786 DOI: 10.1111/ejn.15891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/12/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
Transcranial magnetic stimulation (TMS) induces electric fields that depolarise or hyperpolarise neurons. Intermittent theta burst stimulation (iTBS), a patterned form of TMS that is delivered at the theta frequency (~5 Hz), induces neuroplasticity in the hippocampus, a brain region that is implicated in memory and learning. One form of plasticity that is unique to the hippocampus is adult neurogenesis; however, little is known about whether TMS or iTBS in particular affects newborn neurons. Here, we therefore applied repeated sessions of iTBS to male and female mice and measured the extent of adult neurogenesis and the morphological features of immature neurons. We found that repeated sessions of iTBS did not significantly increase the amount of neurogenesis or affect the gross dendritic morphology of new neurons, and there were no sex differences in neurogenesis rates or aspects of afferent morphology. In contrast, efferent properties of newborn neurons varied as a function of sex and stimulation. Chronic iTBS increased the size of mossy fibre terminals, which synapse onto Cornu Ammonis 3 (CA3) pyramidal neurons, but only in males. iTBS also increased the number of terminal-associated filopodia, putative synapses onto inhibitory interneurons but only in male mice. This efferent plasticity could result from a general trophic effect, or it could reflect accelerated maturation of immature neurons. Given the important role of mossy fibre synapses in hippocampal learning, our results identify a neurobiological effect of iTBS that might be associated with sex-specific changes in cognition.
Collapse
Affiliation(s)
- Tian Rui Zhang
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Baran Askari
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aydan Kesici
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Evelyn Guilherme
- Department of Physiotherapy, Federal University of Sao Carlos, Sao Carlo, Brazil
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason S Snyder
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
48
|
Ng E, Wong EHY, Lipsman N, Nestor SM, Giacobbe P. Adverse childhood experiences and repetitive transcranial magnetic stimulation outcomes for depression. J Affect Disord 2023; 320:716-724. [PMID: 36206889 DOI: 10.1016/j.jad.2022.09.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND History of adverse childhood experiences (ACEs) is associated with poorer treatment outcomes in depression. How ACEs affect outcomes from repetitive transcranial magnetic stimulation (rTMS) is not well-defined. The primary aim was to investigate whether ACEs affect depression outcomes in patients receiving high frequency rTMS, either deep TMS (dTMS) or intermittent theta burst stimulation (iTBS), to the left dorsolateral prefrontal cortex. METHODS The Hamilton Depression Rating Scale (HAMD-17) was collected at baseline and every 2 weeks for 4-6 weeks. Outcomes included improvement in HAMD-17 and remission. The ACE-10 questionnaire was used to quantify categories of ACEs. Data from 99 patients with MDD receiving an acute rTMS course were analyzed. RESULTS Patients had a mean of 2.4 ACEs (SD 2.5). No significant differences in outcomes were found between dTMS or iTBS so these data were pooled. Using a continuous ACE variable showed no significant impact on outcomes. Using a categorical ACE variable (0, 1, 2, 3, 4 or more) did not reveal significant effects of ACEs on outcomes. Higher ACE was associated with steeper decrease in HAMD-17 only from baseline to week 2 but not at other times. LIMITATIONS This was an open-label study. The well-validated ACE questionnaire does not measure severity or frequency of adversities. CONCLUSIONS Patients with depression receiving rTMS reported on average 2.4 ACEs. ACE scores may lead to a steeper early decline in HAMD-17 but did not otherwise impact depression outcomes. Presence of high levels of ACEs should not preclude consideration of rTMS for depression.
Collapse
Affiliation(s)
- Enoch Ng
- University of Toronto, Department of Psychiatry, 250 College Street, Toronto, Ontario M5T 1R8, Canada
| | - Emily H Y Wong
- University of Toronto, Department of Psychiatry, 250 College Street, Toronto, Ontario M5T 1R8, Canada
| | - Nir Lipsman
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada; Harquail Centre for Neuromodulation, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada; University of Toronto, Department of Surgery, 149 College Street, Toronto, Ontario M5T 1P5, Canada
| | - Sean M Nestor
- University of Toronto, Department of Psychiatry, 250 College Street, Toronto, Ontario M5T 1R8, Canada; Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada; Harquail Centre for Neuromodulation, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | - Peter Giacobbe
- University of Toronto, Department of Psychiatry, 250 College Street, Toronto, Ontario M5T 1R8, Canada; Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada; Harquail Centre for Neuromodulation, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada.
| |
Collapse
|
49
|
Han X, Matsuda N, Ishibashi Y, Odawara A, Takahashi S, Tooi N, Kinoshita K, Suzuki I. A functional neuron maturation device provides convenient application on microelectrode array for neural network measurement. Biomater Res 2022; 26:84. [PMID: 36539898 PMCID: PMC9768978 DOI: 10.1186/s40824-022-00324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Microelectrode array (MEA) systems are valuable for in vitro assessment of neurotoxicity and drug efficiency. However, several difficulties such as protracted functional maturation and high experimental costs hinder the use of MEA analysis requiring human induced pluripotent stem cells (hiPSCs). Neural network functional parameters are also needed for in vitro to in vivo extrapolation. METHODS In the present study, we produced a cost effective nanofiber culture platform, the SCAD device, for long-term culture of hiPSC-derived neurons and primary peripheral neurons. The notable advantage of SCAD device is convenient application on multiple MEA systems for neuron functional analysis. RESULTS We showed that the SCAD device could promote functional maturation of cultured hiPSC-derived neurons, and neurons responded appropriately to convulsant agents. Furthermore, we successfully analyzed parameters for in vitro to in vivo extrapolation, i.e., low-frequency components and synaptic propagation velocity of the signal, potentially reflecting neural network functions from neurons cultured on SCAD device. Finally, we measured the axonal conduction velocity of peripheral neurons. CONCLUSIONS Neurons cultured on SCAD devices might constitute a reliable in vitro platform to investigate neuron functions, drug efficacy and toxicity, and neuropathological mechanisms by MEA.
Collapse
Affiliation(s)
- Xiaobo Han
- grid.444756.00000 0001 2165 0596Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-Ku, Sendai, Miyagi 982-8577 Japan
| | - Naoki Matsuda
- grid.444756.00000 0001 2165 0596Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-Ku, Sendai, Miyagi 982-8577 Japan
| | - Yuto Ishibashi
- grid.444756.00000 0001 2165 0596Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-Ku, Sendai, Miyagi 982-8577 Japan
| | - Aoi Odawara
- grid.444756.00000 0001 2165 0596Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-Ku, Sendai, Miyagi 982-8577 Japan
| | - Sayuri Takahashi
- grid.444756.00000 0001 2165 0596Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-Ku, Sendai, Miyagi 982-8577 Japan
| | - Norie Tooi
- Stem Cell & Device Laboratory, Inc. (SCAD), OFFICE-ONE Shijo Karasuma 11F, 480, Niwatoriboko-Cho, Shimogyo-Ku, Kyoto, 600-8491 Japan
| | - Koshi Kinoshita
- Stem Cell & Device Laboratory, Inc. (SCAD), OFFICE-ONE Shijo Karasuma 11F, 480, Niwatoriboko-Cho, Shimogyo-Ku, Kyoto, 600-8491 Japan
| | - Ikuro Suzuki
- grid.444756.00000 0001 2165 0596Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-Ku, Sendai, Miyagi 982-8577 Japan
| |
Collapse
|
50
|
Berger A, Posner MI. Beyond Infant's Looking: The Neural Basis for Infant Prediction Errors. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2022; 18:664-674. [PMID: 36269781 DOI: 10.1177/17456916221112918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Contemporary conceptualizations on infant cognitive development focus on predictive processes; the basic idea is that the brain continuously creates predictions about what is expected and that the divergence between predicted and actual perceived data yields a prediction error. This prediction error updates the model from which the predictions are generated and therefore is a basic mechanism for learning and adaptation to the dynamics of the ever-changing environment. In this article, we review the types of available empirical evidence supporting the idea that predictive processes can be found in infancy, especially emphasizing the contribution of electrophysiology as a potential method for testing the similarity of the brain mechanisms for processing prediction errors in infants to those of adults. In infants, as with older children, adolescents, and adults, predictions involve synchronization bursts of middle-central theta reflecting brain activity in the anterior cingulate cortex. We discuss how early in development such brain mechanisms develop and open questions that still remain to be empirically investigated.
Collapse
Affiliation(s)
- Andrea Berger
- Department of Psychology, Ben-Gurion University of the Negev.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev
| | | |
Collapse
|