1
|
Dhanasekaran S, Liang L, Chen Y, Chen J, Guo S, Zhang X, Zhao L, Zhang H. Alginate oligosaccharide induces resistance against Penicillium expansum in pears by priming defense responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109531. [PMID: 39862456 DOI: 10.1016/j.plaphy.2025.109531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/14/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
The research intended to explore the control ability of alginate oligosaccharide (AOS) on Penicillium expansum infection in pear fruit by priming response and its mechanism. The results showed that 100 mg L-1 AOS treatment could significantly reduce the incidence of postharvest blue mold and the lesion diameter in pear fruits and maintain their quality. The defense responses induced by AOS treatment alone were relatively mild in pear fruits. Still, AOS-treated pear fruits inoculated with P. expansum showed more intense disease resistance responses. These defense responses included enhanced activities of chitinase (CHI), β-1, 3-glucanase (GLU), peroxidase (POD), polyphenol oxidase (PPO), phenylalanine ammonia-lyase activity (PAL), along with the accumulation of total phenolic compounds, flavonoids and lignin. Additionally, the expression levels of defense-related genes, such as PbGLU, PbCHI, PbPAL, PbPOD and PbPPO, were significantly upregulated. However, AOS did not show a potential inhibitory effect on the in vitro growth of P. expansum. Our results indicated that AOS treatment in the postharvest pear fruit enhances disease resistance by priming its defense responses.
Collapse
Affiliation(s)
- Solairaj Dhanasekaran
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Lisha Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yaqi Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Jingwei Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Shuaiying Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Lina Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Jiang J, Hu Z, Wang Y, Jiang Z, Yan Q, Yang S. Directed Evolution of an Alginate Lyase from Flammeovirga sp. for Seaweed Fertilizer Production from the Brown Seaweed Laminaria japonica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1468-1477. [PMID: 39744925 DOI: 10.1021/acs.jafc.4c09016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
An alginate lyase (FsAly7) from Flammeovirga sp. was engineered by directed evolution to improve its optimum temperature and thermostability. The optimum temperature of the positive mutant mFsAly7 (FsAly7-Ser43Pro) was increased by 5 °C, and the thermal inactivation half-lives at 40 and 45 °C were 4.4 and 5.6 times higher than those of FsAly7, respectively. mFsAly7 was expressed in high levels in Pichia pastoris with the highest yield of 3125.5 U·mL-1. On the property-improved enzyme, a bioconversion strategy was developed to prepare the Laminaria japonica hydrolysate, and the highest AOS yield (29.5 mg·mL-1) was 1.5 times higher than that of FsAly7. Moreover, the application potential of the L. japonica hydrolysate as an organic fertilizer was evaluated. The addition of L. japonica hydrolysate improved the sprouting rate, fresh mass, seedling height, and stem diameter of the buckwheat sprouts. Therefore, mFsAly7 may be a good candidate for the production of seaweed fertilizers from L. japonica.
Collapse
Affiliation(s)
- Jun Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Zhiyi Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yue Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Qiaojuan Yan
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China
| |
Collapse
|
3
|
Wang H, Wen J, Ablimit N, Deng K, Wang W, Jiang W. Degradation of Natural Undaria pinnatifida into Unsaturated Guluronic Acid Oligosaccharides by a Single Alginate Lyase. Mar Drugs 2024; 22:453. [PMID: 39452861 PMCID: PMC11509462 DOI: 10.3390/md22100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Here, we report on a bifunctional alginate lyase (Vnalg7) expressed in Pichia pastoris, which can degrade natural Undaria pinnatifida into unsaturated guluronic acid di- and trisaccharide without pretreatment. The enzyme activity of Vnalg7 (3620.00 U/mL-culture) was 15.81-fold higher than that of the original alg (228.90 U/mL-culture), following engineering modification. The degradation rate reached 52.75%, and reducing sugar reached 30.30 mg/mL after combining Vnalg7 (200.00 U/mL-culture) and 14% (w/v) U. pinnatifida for 6 h. Analysis of the action mode indicated that Vnalg7 could degrade many substrates to produce a variety of unsaturated alginate oligosaccharides (AOSs), and the minimal substrate was tetrasaccharide. Site-directed mutagenesis showed that Glu238, Glu241, Glu312, Arg236, His307, Lys414, and Tyr418 are essential catalytic sites, while Glu334, Glu344, and Asp311 play auxiliary roles. Mechanism analysis revealed the enzymatic degradation pattern of Vnalg7, which mainly recognizes and attacks the third glycosidic linkage from the reducing end of oligosaccharide substrate. Our findings provide a novel alginate lyase tool and a sustainable and commercial production strategy for value-added biomolecules using seaweeds.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Jiang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, Beijing 100193, China; (H.W.); (J.W.); (N.A.); (K.D.); (W.W.)
| |
Collapse
|
4
|
Kong M, He J, Wang J, Gong M, Huo Q, Bai W, Song J, Song J, Han W, Lv G. Xylooligosaccharides Enhance Lettuce Root Morphogenesis and Growth Dynamics. PLANTS (BASEL, SWITZERLAND) 2024; 13:1699. [PMID: 38931130 PMCID: PMC11207311 DOI: 10.3390/plants13121699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Enhancing root development is pivotal for boosting crop yield and augmenting stress resilience. In this study, we explored the regulatory effects of xylooligosaccharides (XOSs) on lettuce root growth, comparing their impact with that of indole-3-butyric acid potassium salt (IBAP). Treatment with XOS led to a substantial increase in root dry weight (30.77%), total root length (29.40%), volume (21.58%), and surface area (25.44%) compared to the water-treated control. These enhancements were on par with those induced by IBAP. Comprehensive phytohormone profiling disclosed marked increases in indole-3-acetic acid (IAA), zeatin riboside (ZR), methyl jasmonate (JA-ME), and brassinosteroids (BRs) following XOS application. Through RNA sequencing, we identified 3807 differentially expressed genes (DEGs) in the roots of XOS-treated plants, which were significantly enriched in pathways associated with manganese ion homeostasis, microtubule motor activity, and carbohydrate metabolism. Intriguingly, approximately 62.7% of the DEGs responsive to XOS also responded to IBAP, underscoring common regulatory mechanisms. However, XOS uniquely influenced genes related to cutin, suberine, and wax biosynthesis, as well as plant hormone signal transduction, hinting at novel mechanisms of stress tolerance. Prominent up-regulation of genes encoding beta-glucosidase and beta-fructofuranosidase highlights enhanced carbohydrate metabolism as a key driver of XOS-induced root enhancement. Collectively, these results position XOS as a promising, sustainable option for agricultural biostimulation.
Collapse
Affiliation(s)
- Meng Kong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.K.); (J.H.); (J.W.); huoqiuyan (Q.H.); (W.B.); (J.S.)
| | - Jiuxing He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.K.); (J.H.); (J.W.); huoqiuyan (Q.H.); (W.B.); (J.S.)
| | - Juan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.K.); (J.H.); (J.W.); huoqiuyan (Q.H.); (W.B.); (J.S.)
| | - Min Gong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.K.); (J.H.); (J.W.); huoqiuyan (Q.H.); (W.B.); (J.S.)
| | - Qiuyan Huo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.K.); (J.H.); (J.W.); huoqiuyan (Q.H.); (W.B.); (J.S.)
| | - Wenbo Bai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.K.); (J.H.); (J.W.); huoqiuyan (Q.H.); (W.B.); (J.S.)
| | - Jiqing Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.K.); (J.H.); (J.W.); huoqiuyan (Q.H.); (W.B.); (J.S.)
| | - Jianbin Song
- Station of Dawenliu, Shandong Yellow River Delta Nature Reserve, Dongying 257509, China
| | - Wei Han
- Shandong Agri-tech Extension Center, Jinan 250013, China
| | - Guohua Lv
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (M.K.); (J.H.); (J.W.); huoqiuyan (Q.H.); (W.B.); (J.S.)
| |
Collapse
|
5
|
Liu S, Zheng Y, Zhao L, Gulam M, Ullah A, Xie G. CALMODULIN-LIKE16 and PIN-LIKES7a cooperatively regulate rice seedling primary root elongation under chilling. PLANT PHYSIOLOGY 2024; 195:1660-1680. [PMID: 38445796 DOI: 10.1093/plphys/kiae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 03/07/2024]
Abstract
Low-temperature sensitivity at the germination stage is a challenge for direct seeding of rice in Asian countries. How Ca2+ and auxin (IAA) signaling regulate primary root growth under chilling remains unexplored. Here, we showed that OsCML16 interacted specifically with OsPILS7a to improve primary root elongation of early rice seedlings under chilling. OsCML16, a subgroup 6c member of the OsCML family, interacted with multiple cytosolic loop regions of OsPILS7a in a Ca2+-dependent manner. OsPILS7a localized to the endoplasmic reticulum membranes and functioned as an auxin efflux carrier in a yeast growth assay. Transgenics showed that presence of OsCML16 enhanced primary root elongation under chilling, whereas the ospils7a knockout mutant lines showed the opposite phenotype. Moreover, under chilling conditions, OsCML16 and OsPILS7a-mediated Ca2+ and IAA signaling and regulated the transcription of IAA signaling-associated genes (OsIAA11, OsIAA23, and OsARF16) and cell division marker genes (OsRAN1, OsRAN2, and OsLTG1) in primary roots. These results show that OsCML16 and OsPILS7a cooperatively regulate primary root elongation of early rice seedlings under chilling. These findings enhance our understanding of the crosstalk between Ca2+ and IAA signaling and reveal insights into the mechanisms underlying cold-stress response during rice germination.
Collapse
Affiliation(s)
- Shuang Liu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuying Zheng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liyan Zhao
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mihray Gulam
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aman Ullah
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guosheng Xie
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Nguyen Van B, Hoang Dang S, Tran Bang D, Tran Xuan A, Hoang Phuong T, Tran Minh Q. Effects of radiation dose and dose rate on alginate and the use of radiation degraded alginate for peanut. Int J Biol Macromol 2024; 266:131038. [PMID: 38518931 DOI: 10.1016/j.ijbiomac.2024.131038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Aqueous solutions of alginate (4 %) with or without hydrogen peroxide (0-2 % H2O2) were irradiated under a gamma Co-60 source. The effect of dose rate on the radiation scission yield (Gs) of resulting irradiated alginate was determined. At the dose of 20 kGy, the G(s) value of irradiated alginate decreased with the increase dose rate, suggesting that the irradiation at a suitable dose rate could further improve the radiation chemical yield of degradation. For the alginate irradiated at the same dose rate, G(s) value increased with the increase of H2O2 concentration. Average molecular weight (Mw) and polydispersity index (PI) of irradiated alginate rapidly decreased with the increase in dose and further decreased by addition of H2O2. The oligoalginate with Mw ~ 9800 g/mol was obtained by radiation degradation of 4 % alginate solution containing 2 % H2O2 at dose of 20 kGy. Radiation scission of glycoside bonds and formation of carbonyl groups (C=O) were indicated in UV and FTIR spectra of irradiated alginate. Peanut seedlings were fertilized with alginate and oligoalginate solutions, and the results showed that all growth parameters of the treated plants were better than those of the control. Furthermore, the oligoalginate prepared by gamma irradiation can be applied as a plant growth promoter for agriculture production.
Collapse
Affiliation(s)
- Binh Nguyen Van
- Hanoi Irradiation Center, Minh Khai, Bac Tu Liem, Hanoi, Viet Nam
| | - Sang Hoang Dang
- Hanoi Irradiation Center, Minh Khai, Bac Tu Liem, Hanoi, Viet Nam
| | - Diep Tran Bang
- Hanoi Irradiation Center, Minh Khai, Bac Tu Liem, Hanoi, Viet Nam
| | - An Tran Xuan
- Hanoi Irradiation Center, Minh Khai, Bac Tu Liem, Hanoi, Viet Nam
| | | | - Quynh Tran Minh
- Hanoi Irradiation Center, Minh Khai, Bac Tu Liem, Hanoi, Viet Nam.
| |
Collapse
|
7
|
Rajib MMR, Sultana H, Gao J, Wang W, Yin H. Curd, seed yield and disease resistance of cauliflower are enhanced by oligosaccharides. PeerJ 2024; 12:e17150. [PMID: 38549777 PMCID: PMC10977091 DOI: 10.7717/peerj.17150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/03/2024] [Indexed: 04/02/2024] Open
Abstract
Background Oligosaccharides have been demonstrated as promoters for enhancing plant growth across several crops by elevating their secondary metabolites. However, the exploration of employing diverse oligosaccharides for qualitative trait improvements in cauliflower largely unknown. This study was intended to uncover the unexplored potential, evaluating the stimulatory effects of three oligosaccharides on cauliflower's curd and seed production. Methods Two experiments were initiated in the early (15 September) and mid-season (15 October). Four treatments were implemented, encompassing a control (water) alongside chitosan oligosaccharide (COS 50 mg.L-1) with a degree of polymerization (DP) 2-10, oligo galacturonic acid (OGA 50 mg.L-1) with DP 2-10 and alginate oligosaccharide (AOS 50 mg.L-1) with DP 2-7. Results Oligosaccharides accelerated plant height (4-17.6%), leaf number (17-43%), curd (5-14.55%), and seed yield (17.8-64.5%) in both early and mid-season compared to control. These enhancements were even more pronounced in the mid-season (7.6-17.6%, 21.37-43%, 7.27-14.55%, 25.89-64.5%) than in the early season. Additionally, three oligosaccharides demonstrated significant disease resistance against black rot in both seasons, outperforming the control. As a surprise, the early season experienced better growth parameters than the mid-season. However, performance patterns remained more or less consistent in both seasons under the same treatments. COS and OGA promoted plant biomass and curd yield by promoting Soil Plant Analysis Development (SPAD) value and phenol content. Meanwhile, AOS increased seed yield (56.8-64.5%) and elevated levels of chlorophyll, ascorbic acid, flavonoids, while decreasing levels of hydrogen per oxide (H2O2), malondialdehyde (MDA), half maximal inhibitory concentration (IC50), and disease index. The correlation matrix and principal component analysis (PCA) supported these relations and findings. Therefore, COS and OGA could be suggested for curd production and AOS for seed production in the early season, offering resistance to both biotic and abiotic stresses for cauliflower cultivation under field conditions.
Collapse
Affiliation(s)
- Md. Mijanur Rahman Rajib
- Natural Products and Glyco-Biotechnology Lab, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Hasina Sultana
- Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Jin Gao
- Natural Products and Glyco-Biotechnology Lab, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Wenxia Wang
- Natural Products and Glyco-Biotechnology Lab, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Heng Yin
- Natural Products and Glyco-Biotechnology Lab, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Jiang Y, Yue Y, Wang Z, Lu C, Yin Z, Li Y, Ding X. Plant Biostimulant as an Environmentally Friendly Alternative to Modern Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5107-5121. [PMID: 38428019 DOI: 10.1021/acs.jafc.3c09074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Ensuring the safety of crop production presents a significant challenge to humanity. Pesticides and fertilizers are commonly used to eliminate external interference and provide nutrients, enabling crops to sustain growth and defense. However, the addition of chemical substances does not meet the environmental standards required for agricultural production. Recently, natural sources such as biostimulants have been found to help plants with growth and defense. The development of biostimulants provides new solutions for agricultural product safety and has become a widely utilized tool in agricultural. The review summarizes the classification of biostimulants, including humic-based biostimulant, protein-based biostimulant, oligosaccharide-based biostimulant, metabolites-based biostimulants, inorganic substance, and microbial inoculant. This review attempts to summarize suitable alternative technology that can address the problems and analyze the current state of biostimulants, summarizes the research mechanisms, and anticipates future technological developments and market trends, which provides comprehensive information for researchers to develop biostimulants.
Collapse
Affiliation(s)
- Yanke Jiang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Yingzhe Yue
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Zhaoxu Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| |
Collapse
|
9
|
Cui Y, Yang M, Liu N, Wang S, Sun Y, Sun G, Mou H, Zhou D. Computer-Aided Rational Design Strategy to Improve the Thermal Stability of Alginate Lyase AlyMc. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3055-3065. [PMID: 38298105 DOI: 10.1021/acs.jafc.3c07215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Alginate lyase degrades alginate by the β-elimination mechanism to produce unsaturated alginate oligosaccharides (UAOS), which have better bioactivities than saturated AOS. Enhancing the thermal stability of alginate lyases is crucial for their industrial applications. In this study, a feasible and efficient rational design strategy was proposed by combining the computer-aided ΔΔG value calculation with the B-factor analysis. Two thermal stability-enhanced mutants, Q246V and K249V, were obtained by site-directed mutagenesis. Particularly, the t1/2, 50 °C for mutants Q246V and K249V was increased from 2.36 to 3.85 and 3.65 h, respectively. Remarkably, the specific activities of Q246V and K249V were enhanced to 2.41- and 2.96-fold that of alginate lyase AlyMc, respectively. Structural analysis and molecular dynamics simulations suggested that mutations enhanced the hydrogen bond networks and the overall rigidity of the molecular structure. Notably, mutant Q246V exhibited excellent thermal stability among the PL-7 alginate lyase family, especially considering the heightened enzymatic activity. Moreover, the rational design strategy used in this study can effectively improve the thermal stability of enzymes and has important significance in advancing applications of alginate lyase.
Collapse
Affiliation(s)
- Yongyan Cui
- College of Food Science, Ocean University of Shanghai, Shanghai 201306, China
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Min Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Nan Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Shanshan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Yong Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Guohui Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Deqing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| |
Collapse
|
10
|
Du YW, Liu L, Feng NJ, Zheng DF, Liu ML, Zhou H, Deng P, Wang YX, Zhao HM. Combined transcriptomic and metabolomic analysis of alginate oligosaccharides alleviating salt stress in rice seedlings. BMC PLANT BIOLOGY 2023; 23:455. [PMID: 37770835 PMCID: PMC10540332 DOI: 10.1186/s12870-023-04470-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Salt stress is one of the key factors limiting rice production. Alginate oligosaccharides (AOS) enhance plant stress resistance. However, the molecular mechanism underlying salt tolerance in rice induced by AOS remains unclear. FL478, which is a salt-tolerant indica recombinant inbred line and IR29, a salt-sensitive rice cultivar, were used to comprehensively analyze the effects of AOS sprayed on leaves in terms of transcriptomic and metabolite profiles of rice seedlings under salt stress. RESULTS In this experiment, exogenous application of AOS increased SOD, CAT and APX activities, as well as GSH and ASA levels to reduce the damage to leaf membrane, increased rice stem diameter, the number of root tips, aboveground and subterranean biomass, and improved rice salt tolerance. Comparative transcriptomic analyses showed that the regulation of AOS combined with salt treatment induced the differential expression of 305 and 1030 genes in FL478 and IR29. The expressed genes enriched in KEGG pathway analysis were associated with antioxidant levels, photosynthesis, cell wall synthesis, and signal transduction. The genes associated with light-trapping proteins and RLCK receptor cytoplasmic kinases, including CBA, LHCB, and Lhcp genes, were fregulated in response to salt stress. Treatment with AOS combined with salt induced the differential expression of 22 and 50 metabolites in FL478 and IR29. These metabolites were mainly related to the metabolism of amino and nucleotide sugars, tryptophan, histidine, and β -alanine. The abundance of metabolites associated with antioxidant activity, such as 6-hydroxymelatonin, wedelolactone and L-histidine increased significantly. Combined transcriptomic and metabolomic analyses revealed that dehydroascorbic acid in the glutathione and ascorbic acid cycles plays a vital role in salt tolerance mediated by AOS. CONCLUSION AOS activate signal transduction, regulate photosynthesis, cell wall formation, and multiple antioxidant pathways in response to salt stress. This study provides a molecular basis for the alleviation of salt stress-induced damage by AOS in rice.
Collapse
Affiliation(s)
- You-Wei Du
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Ling Liu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Nai-Jie Feng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China.
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| | - Dian-Feng Zheng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China.
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| | - Mei-Ling Liu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Hang Zhou
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Peng Deng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Ya-Xing Wang
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Hui-Min Zhao
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| |
Collapse
|
11
|
Sun XH, Chen XL, Wang XF, Zhang XR, Sun XM, Sun ML, Zhang XY, Zhang YZ, Zhang YQ, Xu F. Cost-effective production of alginate oligosaccharides from Laminaria japonica roots by Pseudoalteromonas agarivorans A3. Microb Cell Fact 2023; 22:179. [PMID: 37689719 PMCID: PMC10492272 DOI: 10.1186/s12934-023-02170-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/07/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Alginate oligosaccharides (AOs) are the degradation products of alginate, a natural polysaccharide abundant in brown algae. AOs generated by enzymatic hydrolysis have diverse bioactivities and show broad application potentials. AOs production via enzymolysis is now generally with sodium alginate as the raw material, which is chemically extracted from brown algae. In contrast, AOs production by direct degradation of brown algae is more advantageous on account of its cost reduction and is more eco-friendly. However, there have been only a few attempts reported in AOs production from direct degradation of brown algae. RESULTS In this study, an efficient Laminaria japonica-decomposing strain Pseudoalteromonas agarivorans A3 was screened. Based on the secretome and mass spectrum analyses, strain A3 showed the potential as a cell factory for AOs production by secreting alginate lyases to directly degrade L. japonica. By using the L. japonica roots, which are normally discarded in the food industry, as the raw material for both fermentation and enzymatic hydrolysis, AOs were produced by the fermentation broth supernatant of strain A3 after optimization of the alginate lyase production and hydrolysis parameters. The generated AOs mainly ranged from dimers to tetramers, among which trimers and tetramers were predominant. The degradation efficiency of the roots reached 54.58%, the AOs production was 33.11%, and the AOs purity was 85.03%. CONCLUSION An efficient, cost-effective and green process for AOs production directly from the underutilized L. japonica roots by using strain A3 was set up, which differed from the reported processes in terms of the substrate and strain used for fermentation and the AOs composition. This study provides a promising platform for scalable production of AOs, which may have application potentials in industry and agriculture.
Collapse
Affiliation(s)
- Xiao-Hui Sun
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Xiao-Fei Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Xin-Ru Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Xiao-Meng Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Mei-Ling Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yu-Qiang Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China.
| | - Fei Xu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
12
|
Zhang X, Chen J, Shao X, Li H, Jiang Y, Zhang Y, Yang D. Structural and Physical Properties of Alginate Pretreated by High-Pressure Homogenization. Polymers (Basel) 2023; 15:3225. [PMID: 37571120 PMCID: PMC10421316 DOI: 10.3390/polym15153225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
To develop a high-efficient extraction method, we investigated the use of high-pressure homogenization (HPH) as a novel pretreatment technology for the extraction of sodium alginate (SA) from Laminaria japonica. After the single-factor experiment, the results demonstrated that under the conditions of 100 MPa HPH pressure, 4 cycles, pH 6.0, and 0.5% EDTA for 3.0 h, the optimized extraction yield of HPH reached 34%. To further clarify the effect on the structural properties of HPH-extracted SA, we conducted comprehensive analysis using SEM, FTIR, MRS, NMR, XRD, TGA, and a T-AOC assay. Our findings revealed that HPH pretreatment significantly disrupted the structure of L. japonica cells and reduced their crystallinity to 76.27%. Furthermore, the antioxidant activity of HPH-extracted SA reached 0.02942 mgVceq∙mg-1. Therefore, the HPH pretreatment method is a potential strategy for the extraction of alginate.
Collapse
Affiliation(s)
- Xiu Zhang
- College of Life Science and Technology, Guangxi University, Nanning 530004, China (X.S.)
| | - Jianrong Chen
- College of Life Science and Technology, Guangxi University, Nanning 530004, China (X.S.)
| | - Xuezhi Shao
- College of Life Science and Technology, Guangxi University, Nanning 530004, China (X.S.)
| | - Hongliang Li
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning 530007, China;
| | - Yongqiang Jiang
- Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Yunkai Zhang
- College of Life Science and Technology, Guangxi University, Nanning 530004, China (X.S.)
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning 530007, China;
- Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
- College of Food and Quality Engineering, Nanning University, Nanning 541699, China
| |
Collapse
|
13
|
He J, Kong M, Qian Y, Gong M, Lv G, Song J. Cellobiose elicits immunity in lettuce conferring resistance to Botrytis cinerea. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1022-1038. [PMID: 36385320 DOI: 10.1093/jxb/erac448] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Cellobiose is the primary product of cellulose hydrolysis and is expected to function as a type of pathogen/damage-associated molecular pattern in evoking plant innate immunity. In this study, cellobiose was demonstrated to be a positive regulator in the immune response of lettuce, but halted autoimmunity when lettuce was exposed to concentrations of cellobiose >60 mg l-1. When lettuce plants were infected by Botrytis cinerea, cellobiose endowed plants with enhanced pre-invasion resistance by activating high β-1,3-glucanase and antioxidative enzyme activities at the initial stage of pathogen infection. Cellobiose-activated core regulatory factors such as EDS1, PTI6, and WRKY70, as well as salicylic acid signaling, played an indispensable role in modulating plant growth-defense trade-offs. Transcriptomics data further suggested that the cellobiose-activated plant-pathogen pathways are involved in microbe/pathogen-associated molecular pattern-triggered immune responses. Genes encoding receptor-like kinases, transcription factors, and redox homeostasis, phytohormone signal transduction, and pathogenesis-related proteins were also up- or down-regulated by cellobiose. Taken together, the findings of this study demonstrated that cellobiose serves as an elicitor to directly activate disease-resistance-related cellular functions. In addition, multiple genes have been identified as potential modulators of the cellobiose-induced immune response, which could aid understanding of underlying molecular events.
Collapse
Affiliation(s)
- Jiuxing He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Meng Kong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuanchao Qian
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Gong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guohua Lv
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiqing Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
14
|
Li Z, Duan S, Lu B, Yang C, Ding H, Shen H. Spraying alginate oligosaccharide improves photosynthetic performance and sugar accumulation in citrus by regulating antioxidant system and related gene expression. FRONTIERS IN PLANT SCIENCE 2023; 13:1108848. [PMID: 36793994 PMCID: PMC9923110 DOI: 10.3389/fpls.2022.1108848] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/28/2022] [Indexed: 05/31/2023]
Abstract
Alginate oligosaccharides (AOS) are functional substances in seaweed extracts that regulate crop quality and stress tolerance. In this paper, the effects of AOS spray application on the antioxidant system, photosynthesis and fruit sugar accumulation in citrus was investigated through a two-year field experiment. The results showed that 8-10 spray cycles of 300-500 mg L-1 AOS (once per 15 days) increased soluble sugar and soluble solid contents by 7.74-15.79% and 9.98-15.35%, respectively, from citrus fruit expansion to harvesting. Compared with the control, the antioxidant enzyme activity and the expression of some related genes in citrus leaves started to increase significantly after the 1st AOS spray application, while the net photosynthetic rate of leaves increased obviously only after the 3rd AOS spray cycle, and the soluble sugar content of AOS-treated leaves increased by 8.43-12.96% at harvest. This suggests that AOS may enhance photosynthesis and sugar accumulation in leaves by antioxidant system regulation. Moreover, analysis of fruit sugar metabolism showed that during the 3rd to 8th AOS spray cycles, AOS treatment increased the activity of enzymes related to sucrose synthesis (SPS, SSs), upregulated the expression of sucrose metabolism (CitSPS1, CitSPS2, SUS) and transport (SUC3, SUC4) genes, and promoted the accumulation of sucrose, glucose and fructose in fruits. Notably, the concentration of soluble sugars in citrus fruits was significantly reduced at all treatments with 40% reduction in leaves of the same branch, but the loss of soluble sugars in AOS-treated fruits (18.18%) was higher than that in the control treatment (14.10%). It showed that there was a positive effect of AOS application on leaf assimilation product transport and fruit sugar accumulation. In summary, AOS application may improve fruit sugar accumulation and quality by regulating the leaf antioxidant system, increasing the photosynthetic rate and assimilate product accumulation, and promoting sugar transfer from leaves to fruits. This study shows the potential application of AOS in the production of citrus fruits for sugar enhancement.
Collapse
Affiliation(s)
- Zhiming Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Songpo Duan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Bosi Lu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Chunmei Yang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Hanqing Ding
- Guangdong Nongken Tropical Agriculture Research Institute Co., Guangzhou, China
| | - Hong Shen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| |
Collapse
|
15
|
Jumadi O, Annisi AD, Djawad YA, Bourgougnon N, Amaliah NA, Asmawati A, Manguntungi AB, Inubushi K. Brown algae (Sargassum sp) extract prepared by indigenous microbe fermentation enhanced tomato germination parameters. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Zhang C, Li M, Rauf A, Khalil AA, Shan Z, Chen C, Rengasamy KRR, Wan C. Process and applications of alginate oligosaccharides with emphasis on health beneficial perspectives. Crit Rev Food Sci Nutr 2023; 63:303-329. [PMID: 34254536 DOI: 10.1080/10408398.2021.1946008] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alginates are linear polymers comprising 40% of the dry weight of algae possess various applications in food and biomedical industries. Alginate oligosaccharides (AOS), a degradation product of alginate, is now gaining much attention for their beneficial role in food, pharmaceutical and agricultural industries. Hence this review was aimed to compile the information on alginate and AOS (prepared from seaweeds) during 1994-2020. As per our knowledge, this is the first review on the potential use of alginate oligosaccharides in different fields. The alginate derivatives are grouped according to their applications. They are involved in the isolation process and show antimicrobial, antioxidant, anti-inflammatory, antihypertension, anticancer, and immunostimulatory properties. AOS also have significant applications in prebiotics, nutritional supplements, plant growth development and others products.
Collapse
Affiliation(s)
- Chunhua Zhang
- College of Agriculture and Forestry, Pu'er University, Pu'er, Yunnan, China
| | - Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa (KP), Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Zhiguo Shan
- College of Agriculture and Forestry, Pu'er University, Pu'er, Yunnan, China
| | - Chuying Chen
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Kannan R R Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Polokwane, Sovenga, South Africa
| | - Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
17
|
Mansoor Z, Tchuenbou-Magaia F, Kowalczuk M, Adamus G, Manning G, Parati M, Radecka I, Khan H. Polymers Use as Mulch Films in Agriculture-A Review of History, Problems and Current Trends. Polymers (Basel) 2022; 14:polym14235062. [PMID: 36501456 PMCID: PMC9740682 DOI: 10.3390/polym14235062] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The application of mulch films for preserving soil moisture and preventing weed growth has been a part of agricultural practice for decades. Different materials have been used as mulch films, but polyethylene plastic has been considered most effective due to its excellent mechanical strength, low cost and ability to act as a barrier for sunlight and water. However, its use carries a risk of plastic pollution and health hazards, hence new laws have been passed to replace it completely with other materials over the next few years. Research to find out about new biodegradable polymers for this purpose has gained impetus in the past few years, driven by regulations and the United Nations Organization's Sustainable Development Goals. The primary requisite for these polymers is biodegradability under natural climatic conditions without the production of any toxic residual compounds. Therefore, biodegradable polymers developed from fossil fuels, microorganisms, animals and plants are viable options for using as mulching material. However, the solution is not as simple since each polymer has different mechanical properties and a compromise has to be made in terms of strength, cost and biodegradability of the polymer for its use as mulch film. This review discusses the history of mulching materials, the gradual evolution in the choice of materials, the process of biodegradation of mulch films, the regulations passed regarding material to be used, types of polymers that can be explored as potential mulch films and the future prospects in the area.
Collapse
Affiliation(s)
- Zinnia Mansoor
- School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
- Department of Biotechnology, Virtual University of Pakistan, Lahore 54000, Pakistan
| | - Fideline Tchuenbou-Magaia
- Division of Chemical Engineering, School of Engineering, Computing and Mathematical Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
| | - Grazyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
| | - Georgina Manning
- School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Mattia Parati
- School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Iza Radecka
- School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
- Correspondence: (I.R.); (H.K.)
| | - Habib Khan
- School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
- Correspondence: (I.R.); (H.K.)
| |
Collapse
|
18
|
Li F, Tang Y, Wei L, Yang M, Lu Z, Shi F, Zhan F, Li Y, Liao W, Lin L, Qin Z. Alginate oligosaccharide modulates immune response, fat metabolism, and the gut bacterial community in grass carp (Ctenopharyngodon idellus). FISH & SHELLFISH IMMUNOLOGY 2022; 130:103-113. [PMID: 36044935 DOI: 10.1016/j.fsi.2022.08.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Alginate oligosaccharide (AOS) is widely used in agriculture because of its many excellent biological properties. However, the possible beneficial effects of AOS and their underlying mechanisms are currently not well known in grass carp (Ctenopharyngodon idellus). Here, grass carp were fed diets supplemented with 5, 10, or 20 g/kg AOS for six weeks. HE and PAS staining showed that the diets of AOS significantly increased the number of goblet cells in the intestinal. According to transcriptome and quantitative real-time PCR (qRT-PCR) data, AOS-supplemented diets activated the expression of fat metabolism-related pathways and genes. The 16S rRNA sequencing results showed that supplementation with AOS affected the distribution and abundance of the gut bacterial assembly. qRT-PCR and activity assays revealed that the AOS diets significantly increased the antioxidant resistance in gut of grass carp, and down-regulated the expression of inflammatory and up-regulated anti-inflammatory cytokines. Finally, the Aeromonas hydrophila infection assay suggested that the mortality in the groups fed dietary AOS was slightly lower than that in the control. Therefore, supplementing the diet of grass carp with an appropriate amount of AOS can improve fat metabolism and immune responses and alter the intestinal bacterial community, which may help to fight bacterial infection.
Collapse
Affiliation(s)
- Fenglin Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Ying Tang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Lixiang Wei
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Minxuan Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Zhijie Lu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Fei Shi
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Fanbin Zhan
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Yanan Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Wenchong Liao
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| |
Collapse
|
19
|
Huang H, Zheng Z, Zou X, Wang Z, Gao R, Zhu J, Hu Y, Bao S. Genome Analysis of a Novel Polysaccharide-Degrading Bacterium Paenibacillus algicola and Determination of Alginate Lyases. Mar Drugs 2022; 20:md20060388. [PMID: 35736191 PMCID: PMC9227215 DOI: 10.3390/md20060388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Carbohydrate-active enzymes (CAZymes) are an important characteristic of bacteria in marine systems. We herein describe the CAZymes of Paenibacillus algicola HB172198T, a novel type species isolated from brown algae in Qishui Bay, Hainan, China. The genome of strain HB172198T is a 4,475,055 bp circular chromosome with an average GC content of 51.2%. Analysis of the nucleotide sequences of the predicted genes shows that strain HB172198T encodes 191 CAZymes. Abundant putative enzymes involved in the degradation of polysaccharides were identified, such as alginate lyase, agarase, carrageenase, xanthanase, xylanase, amylases, cellulase, chitinase, fucosidase and glucanase. Four of the putative polysaccharide lyases from families 7, 15 and 38 were involved in alginate degradation. The alginate lyases of strain HB172198T exhibited the maximum activity 152 U/mL at 50 °C and pH 8.0, and were relatively stable at pH 7.0 and temperatures lower than 40 °C. The average degree of polymerization (DP) of the sodium alginate oligosaccharide (AOS) degraded by the partially purified alginate lyases remained around 14.2, and the thin layer chromatography (TCL) analysis indicated that it contained DP2-DP8 oligosaccharides. The complete genome sequence of P. algicola HB172198T will enrich our knowledge of the mechanism of polysaccharide lyase production and provide insights into its potential applications in the degradation of polysaccharides such as alginate.
Collapse
Affiliation(s)
- Huiqin Huang
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.H.); (Z.Z.); (X.Z.); (Z.W.); (R.G.); (J.Z.)
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, China
| | - Zhiguo Zheng
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.H.); (Z.Z.); (X.Z.); (Z.W.); (R.G.); (J.Z.)
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, China
| | - Xiaoxiao Zou
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.H.); (Z.Z.); (X.Z.); (Z.W.); (R.G.); (J.Z.)
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, China
| | - Zixu Wang
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.H.); (Z.Z.); (X.Z.); (Z.W.); (R.G.); (J.Z.)
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, China
| | - Rong Gao
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.H.); (Z.Z.); (X.Z.); (Z.W.); (R.G.); (J.Z.)
- College of Oceanography, Hebei Agricultural University, Qinhuangdao 066000, China
| | - Jun Zhu
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.H.); (Z.Z.); (X.Z.); (Z.W.); (R.G.); (J.Z.)
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, China
| | - Yonghua Hu
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.H.); (Z.Z.); (X.Z.); (Z.W.); (R.G.); (J.Z.)
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Correspondence: (Y.H.); (S.B.); Tel.: +86-898-66890671 (Y.H.); +86-898-66895379 (S.B.)
| | - Shixiang Bao
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.H.); (Z.Z.); (X.Z.); (Z.W.); (R.G.); (J.Z.)
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, China
- Correspondence: (Y.H.); (S.B.); Tel.: +86-898-66890671 (Y.H.); +86-898-66895379 (S.B.)
| |
Collapse
|
20
|
Abka-khajouei R, Tounsi L, Shahabi N, Patel AK, Abdelkafi S, Michaud P. Structures, Properties and Applications of Alginates. Mar Drugs 2022; 20:364. [PMID: 35736167 PMCID: PMC9225620 DOI: 10.3390/md20060364] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022] Open
Abstract
Alginate is a hydrocolloid from algae, specifically brown algae, which is a group that includes many of the seaweeds, like kelps and an extracellular polymer of some bacteria. Sodium alginate is one of the best-known members of the hydrogel group. The hydrogel is a water-swollen and cross-linked polymeric network produced by the simple reaction of one or more monomers. It has a linear (unbranched) structure based on d-mannuronic and l-guluronic acids. The placement of these monomers depending on the source of its production is alternating, sequential and random. The same arrangement of monomers can affect the physical and chemical properties of this polysaccharide. This polyuronide has a wide range of applications in various industries including the food industry, medicine, tissue engineering, wastewater treatment, the pharmaceutical industry and fuel. It is generally recognized as safe when used in accordance with good manufacturing or feeding practice. This review discusses its application in addition to its structural, physical, and chemical properties.
Collapse
Affiliation(s)
- Roya Abka-khajouei
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84154, Iran;
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France;
| | - Latifa Tounsi
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France;
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Département Génie Biologique, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia;
| | - Nasim Shahabi
- Department of Food Hygiene and Quality, College of Veterinary Medicine, Shahrekord 88186, Chahar Mahal Bakhtiari, Iran;
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan;
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Département Génie Biologique, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia;
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France;
| |
Collapse
|
21
|
Wang M, Chen L, Lou Z, Yuan X, Pan G, Ren X, Wang P. Cloning and Characterization of a Novel Alginate Lyase from Paenibacillus sp. LJ-23. Mar Drugs 2022; 20:md20010066. [PMID: 35049921 PMCID: PMC8780880 DOI: 10.3390/md20010066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/01/2023] Open
Abstract
As a low molecular weight alginate, alginate oligosaccharides (AOS) exhibit improved water solubility, better bioavailability, and comprehensive health benefits. In addition, their biocompatibility, biodegradability, non-toxicity, non-immunogenicity, and gelling capability make them an excellent biomaterial with a dual curative effect when applied in a drug delivery system. In this paper, a novel alginate lyase, Algpt, was cloned and characterized from a marine bacterium, Paenibacillus sp. LJ-23. The purified enzyme was composed of 387 amino acid residues, and had a molecular weight of 42.8 kDa. The optimal pH of Algpt was 7.0 and the optimal temperature was 45 °C. The analysis of the conserved domain and the prediction of the three-dimensional structure indicated that Algpt was a novel alginate lyase. The dominant degradation products of Algpt on alginate were AOS dimer to octamer, depending on the incubation time, which demonstrated that Algpt degraded alginate in an endolytic manner. In addition, Algpt was a salt-independent and thermo-tolerant alginate lyase. Its high stability and wide adaptability endow Algpt with great application potential for the efficient preparation of AOS with different sizes and AOS-based products.
Collapse
|
22
|
Liu L, Wang Z, Zheng Z, Li Z, Ji X, Cong H, Wang H. Secretory Expression of an Alkaline Alginate Lyase With Heat Recovery Property in Yarrowia lipolytica. Front Microbiol 2021; 12:710533. [PMID: 34434178 PMCID: PMC8381381 DOI: 10.3389/fmicb.2021.710533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/30/2021] [Indexed: 11/28/2022] Open
Abstract
Alginate lyase possesses wide application prospects for the degradation of brown algae and preparation of alginate oligosaccharides, and its degradation products display a variety of biological activities. Although many enzymes of this type have been reported, alginate lyases with unique properties are still relatively rare. In the present work, an alginate lyase abbreviated as Alyw203 has been cloned from Vibrio sp. W2 and expressed in food-grade Yarrowia lipolytica. The Alyw203 gene consists of an open reading frame (ORF) of 1,566 bp containing 521 amino acids, of which the first 17 amino acids are considered signal peptides, corresponding to secretory features. The peak activity of the current enzyme appears at 45°C with a molecular weight of approximately 57.0 kDa. Interestingly, Alyw203 exhibits unique heat recovery performance, returning above 90% of its initial activity in the subsequent incubation for 20 min at 10°C, which is conducive to the recovery of current enzymes at low-temperature conditions. Meanwhile, the highest activity is obtained under alkaline conditions of pH 10.0, showing outstanding pH stability. Additionally, as an alginate lyase independent of NaCl and resistant to metal ions, Alyw203 is highly active in various ionic environments. Moreover, the hydrolyzates of present enzymes are mainly concentrated in the oligosaccharides of DP1–DP2, displaying perfect product specificity. The alkali suitability, heat recovery performance, and high oligosaccharide yield of Alyw203 make it a potential candidate for industrial production of the monosaccharide and disaccharide.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Zhipeng Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Zhihong Zheng
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China
| | - Ze Li
- College of Advanced Agricultural Sciences, Linyi Vocational University of Science and Technology, Linyi, China
| | - Xiaofeng Ji
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Haihua Cong
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China
| | - Haiying Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| |
Collapse
|
23
|
Liu RQ, Li JC, Wang YS, Zhang FL, Li DD, Ma FX, Han AH, Yin XM, Chen XL. Amino-Oligosaccharide Promote the Growth of Wheat, Increased Antioxidant Enzymes Activity. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021040099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Chitosan-, alginate- carrageenan-derived oligosaccharides stimulate defense against biotic and abiotic stresses, and growth in plants: A historical perspective. Carbohydr Res 2021; 503:108298. [PMID: 33831669 DOI: 10.1016/j.carres.2021.108298] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 01/15/2023]
Abstract
During the last 20 years, the mechanisms involved in the stimulation of defense against pathogens, and growth triggered by chitosan-, alginate- and carrageenan-derived oligosaccharides have been studied in plants. Oligo-chitosan stimulate protection against pathogens by activation of salicylic acid (SA) or jasmonic acid/ethylene (JA/ET)-dependent pathways, protection against abiotic stress through abscisic acid (ABA)-dependent pathway, and growth by increasing photosynthesis, auxin and gibberellin content, C and N assimilation, and synthesis of secondary metabolites with antipathogenic and medicinal properties. Oligo-alginates stimulate protection against pathogens through SA-dependent pathway, abiotic stress via ABA-dependent pathway, and growth by increasing photosynthesis, auxin and gibberellins contents, C and N assimilation, and synthesis of secondary metabolites with antipathogenic and medicinal properties. Oligo-carrageenan increased protection against pathogens through JA/ET, SA- and Target of Rapamycin (TOR)-dependent pathways, and growth by activation of TOR-dependent pathway leading to an increase in expression of genes involved in photosynthesis, C, N, S assimilation, and enzymes that synthesize phenolic compounds and terpenes having antipathogenic activities. Thus, the latter oligosaccharides induce similar biological effects, but through different signaling pathways in plants.
Collapse
|
25
|
Expression and Characterization of a Cold-Adapted Alginate Lyase with Exo/Endo-Type Activity from a Novel Marine Bacterium Alteromonas portus HB161718 T. Mar Drugs 2021; 19:md19030155. [PMID: 33802659 PMCID: PMC8002439 DOI: 10.3390/md19030155] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022] Open
Abstract
The alginate lyases have unique advantages in the preparation of alginate oligosaccharides and processing of brown algae. Herein, a gene alg2951 encoding a PL7 family alginate lyase with exo/endo-type activity was cloned from a novel marine bacterium Alteromonas portus HB161718T and then expressed in Escherichia coli. The recombinant Alg2951 in the culture supernatant reached the activity of 63.6 U/mL, with a molecular weight of approximate 60 kDa. Alg2951 exhibited the maximum activity at 25 °C and pH 8.0, was relatively stable at temperatures lower than 30 °C, and showed a special preference to poly-guluronic acid (polyG) as well. Both NaCl and KCl had the most promotion effect on the enzyme activity of Alg2951 at 0.2 M, increasing by 21.6 and 19.1 times, respectively. The TCL (Thin Layer Chromatography) and ESI-MS (Electrospray Ionization Mass Spectrometry) analyses suggested that Alg2951 could catalyze the hydrolysis of sodium alginate to produce monosaccharides and trisaccharides. Furthermore, the enzymatic hydrolysates displayed good antioxidant activity by assays of the scavenging abilities towards radicals (hydroxyl and ABTS+) and the reducing power. Due to its cold-adapted and dual exo/endo-type properties, Alg2951 can be a potential enzymatic tool for industrial production.
Collapse
|
26
|
Xing Y, Wang N, Zhang T, Zhang Q, Du D, Chen X, Lu X, Zhang Y, Zhu M, Liu M, Sang X, Li Y, Ling Y, He G. SHORT-ROOT 1 is critical to cell division and tracheary element development in rice roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1179-1191. [PMID: 33231904 DOI: 10.1111/tpj.15095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
The exocyst is a key factor in vesicle transport and is involved in cell secretion, cell growth, cell division and other cytological processes in eukaryotes. EXO70 is the key exocyst subunit. We obtained a gene, SHORT-ROOT 1 (SR1), through map-based cloning and genetic complementation. SR1 is a conserved protein with an EXO70 domain in plants. SR1 mutation affected the whole root-development process: producing shorter radicles, adventitious roots and lateral roots, and demonstrating abnormal xylem development, resulting in dwarfing and reduced water potential and moisture content. SR1 was largely expressed in the roots, but only in developing root meristems and tracheary elements. The shortness of the sr1 mutant roots was caused by the presence of fewer meristem cells. The in situ histone H4 expression patterns confirmed that cell proliferation during root development was impaired. Tracheary element dysplasia was caused by marked decreases in the inner diameters of and distances between the perforations of adjacent tracheary elements. The membrane transport of sr1 mutants was blocked, affecting cell division in the root apical region and the development of root tracheary elements. The study of SR1 will deepen our understanding of the function of EXO70 genes in Oryza sativa (rice) and guide future studies on the molecular mechanisms involved in plant root development.
Collapse
Affiliation(s)
- Yadi Xing
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Agricultural College, Zhengzhou University, Zhengzhou, 450001, China
| | - Nan Wang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Tianquan Zhang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Qiuli Zhang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Dan Du
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Xinlong Chen
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Xin Lu
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yingying Zhang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Maodi Zhu
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Mingming Liu
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Xianchun Sang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yunfeng Li
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yinghua Ling
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Guanghua He
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
27
|
Yang Y, Xu T, Wang H, Feng D. Genome-wide identification and expression analysis of the TaYUCCA gene family in wheat. Mol Biol Rep 2021; 48:1269-1279. [PMID: 33547532 DOI: 10.1007/s11033-021-06197-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/28/2021] [Indexed: 11/29/2022]
Abstract
Auxin is an important endogenous hormone in plants. The YUCCA gene encodes a flavin monooxygenase, which is an important rate-limiting enzyme in the auxin synthesis pathway and involved in the regulation of plant growth and development. In the study, we identified 63 wheat TaYUCCA genes; among them, some genes appeared in clusters. By constructing phylogenetic trees, we found that the TaYUCCA genes could be divided into six groups. In the WheatExp database, there were 22 differential expressed TaYUCCA genes, among which the TaYUCCA10 gene was abundantly expressed in the endosperm and medium milk stage, the TaYUCCA2 gene was abundantly expressed in the roots of three leaves and meiosis and transfer cells at 20 days post anthesis and the others 16 TaYUCCA genes had different expression level at different developmental stages in wheat, and there were 15 TaYUCCA genes induced by drought and heat stress, among which the TaYUCCA2-D, TaYUCCA3-B, and TaYUCCA9-D might be upregulated induced by drought stress, TaYUCCA10.1 might be upregulated induced drought and heat stress, TaYUCCA6-A was upregulated induced both drought and heat stress and the others 9 TaYUCCA genes were downregulated induced by drought and heat stress. Transcriptome and qRT-PCR analysis showed that TaYUCCA7-A was upregulated significantly after induced by powdery mildew. The comprehensive annotation and expression profiling of the TaYUCCA genes in this study enhanced our understanding of TaYUCCA family gene expression in wheat growth and development and laid the foundation for the further study of TaYUCCA gene mechanism.
Collapse
Affiliation(s)
- Yanlin Yang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Tian Xu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Honggang Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Deshun Feng
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
28
|
Kabir M, Haruki N, Rajagopalan U, Umehara M, Kadono H. Nanometer accuracy statistical interferometric technique in monitoring the short-term effects of exogenous plant hormones, auxin and gibberellic acid, on rice plants. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:261-271. [PMID: 33088189 PMCID: PMC7557655 DOI: 10.5511/plantbiotechnology.20.0225c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/25/2020] [Indexed: 06/08/2023]
Abstract
Statistical interferometric technique (SIT) is a highly sensitive, high speed non-contact, and non-destructive optical technique developed by our group capable of measuring instantaeoues sub-nanometer displacements. SIT applied to plant leaf elongation revealed nanometric intrinsic fluctuaitons (NIF) that are robust and sensitive to variations in the environment making NIF as a measure of healthiness of the plants. In this study, exogenous plant hormones, auxin (2,4-dichlorophenoxyacetic acid-2,4-D), and gibberellic acid (GA3), along with an auxin transport inhibitor 2,3,5-triiodobenzoic acid-TIBA, that affect plant growth were used to investigate their effects on NIF. Rice (Oriza sativa) seedlings were used, and their roots were exposed to 1, 2, and 4 µM 2,4-D, and the auxin transport inhibitor, TIBA, of 10, and 20 µM for 22 h and GA3 solution of different concentrations of 10, 40, and 100 µM for 5 h. Results showed significant increment in NIF for 1 µM and reduction for 4 µM 2,4-D while applicaiton of both 10, and 20 µM TIBA led to reduction in NIF. On the other hand, significant increment in NIF for 40 µM, and a significant reduction at a higher concentration of 100 µM for 5 hours of GA3 were also observed in comparison to those of control. Our results indicate that NIF as revealed by SIT could show both the positive and negative effects depending on the concentration of exogenous hormones, and transport inhibitors. Results suggest that SIT could be a valuable tool being sensitive enough to speedily assess the effects of plant growth hormones.
Collapse
Affiliation(s)
- Mahjabin Kabir
- Graduate School of Science and Engineering, Saitama University, 255 Shimo Okubo, Sakura-ku, Saitama 338-8570, Japan
- Department of Farm Power and Machinery, Faculty of Agricultural Engineering and Technology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Naruke Haruki
- Graduate School of Science and Engineering, Saitama University, 255 Shimo Okubo, Sakura-ku, Saitama 338-8570, Japan
| | | | - Mikihisa Umehara
- Department of Applied Biosciences, Faculty of Life Sciences, Toyo University, , 1-1-1 Izumino, Itakura-machi, Ora-gun, Gumma 374-0193, Japan
| | - Hirofumi Kadono
- Graduate School of Science and Engineering, Saitama University, 255 Shimo Okubo, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
29
|
Oligosaccharide is a promising natural preservative for improving postharvest preservation of fruit: A review. Food Chem 2020; 341:128178. [PMID: 33022576 DOI: 10.1016/j.foodchem.2020.128178] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 12/27/2022]
Abstract
Lack of proper postharvest management of fruits causes huge economic loss, increase poverty, hunger and malnutrition. To reduce postharvest losses, globally different postharvest technologies and synthetic chemical treatments were widely used, but some of them are reported to enhance the risk for human health and environment. Recently, oligosaccharides have attractedmuch attention because of their numerous health benefits, and potential applications in agriculture. Many previous reports demonstrated that oligosaccharides treatment improves the postharvest preservation of fruits and extend the shelf life. Oligosaccharides postharvest treatments maintained higher non enzymatic antioxidant activity, increased antioxidant activity, regulate hormone biosynthesis and delayed cell wall degradation. In this review, we systematically summarize and discuss the recent research findings concerning the preservation effects of different oligosaccharides, and their mechanism underlying delaying ripening and senescence of fruits during postharvest storage. Moreover, we provide future research direction for the utilization of oligosaccharides to improve postharvest preservation of fruits.
Collapse
|
30
|
Sun C, Zhou J, Duan G, Yu X. Hydrolyzing Laminaria japonica with a combination of microbial alginate lyase and cellulase. BIORESOURCE TECHNOLOGY 2020; 311:123548. [PMID: 32454421 DOI: 10.1016/j.biortech.2020.123548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
A novel seaweed-hydrolyzing strain designated as Pseudoalteromonas sp. Alg6B was isolated from the surface of brown seaweed (Laminaria japonica). The activity of crude alginate lyase produced by Alg6B was 54.5 U/ml and the main products of hydrolyzing alginate were disaccharide and tetrasaccharide. The hydrolysis rate of seaweed reached up to 97% after combining 3% (v/v) Alg6B and 0.2% (w/v) solid cellulase. In kelp hydrolysate, the contents of nutrients are much more than raw seaweed. Alg6B grows quickly and has the ability of producing alginate oligosaccharides with low molecular weight (MW) (≤2 kDa). Furthermore, this study demonstrates that a combination of microbial alginate lyase and cellulase could almost hydrolyze seaweed completely. This research indicated that Alg6B could provide a feasible pathway to produce alginate oligosaccharides (AOS), and the synergistic effect of alginate lyase and cellulase on seaweed bioconversion can potentially pave the way to the sustainable production of seaweed fertilizer.
Collapse
Affiliation(s)
- Chixiang Sun
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi 214122, China
| | - Jianli Zhou
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi 214122, China; School of Food and Drug Manufacturing Engineering, Guizhou Institute of Technology, 1 Caiguan Road, Guiyang 550003, China
| | - Guoliang Duan
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi 214122, China
| | - Xiaobin Yu
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi 214122, China.
| |
Collapse
|
31
|
Zhang C, Wang W, Zhao X, Wang H, Yin H. Preparation of alginate oligosaccharides and their biological activities in plants: A review. Carbohydr Res 2020; 494:108056. [PMID: 32559511 DOI: 10.1016/j.carres.2020.108056] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/31/2020] [Accepted: 05/31/2020] [Indexed: 12/11/2022]
Abstract
Alginate oligosaccharide (AOS) is the degradation product of alginates extracted from brown algae. As a multifunctional oligomer, it has attracted widespread attention in plant research. Different methods of preparation generate AOS possessing diverse structural properties, and result in differences in AOS activity. In this review, the methods of preparation and characterization of AOS are briefly summarized, followed by a systematic introduction to the activity and mechanisms of AOS in plants. AOS can act as a growth promoter at different growth stages of plants. AOS also enhances resistance to pathogens, drought, salt, heavy metals and other stressors by triggering plant immunity, exerting bioactivity just like a pathogen-associated molecular pattern. In addition, AOS can regulate ABA biosynthesis and metabolite to preserve fruit quality and enhance shelf life. This review provides a comprehensive summary of the biological activity of AOS in plants, which will support research and the application of AOS treatments for plants in the future.
Collapse
Affiliation(s)
- Chunguang Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China; Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wenxia Wang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaoming Zhao
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Hongying Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
32
|
Zhou HX, Xu SS, Yin XJ, Wang FL, Li Y. Characterization of a New Bifunctional and Cold-Adapted Polysaccharide Lyase (PL) Family 7 Alginate Lyase from Flavobacterium sp. Mar Drugs 2020; 18:E388. [PMID: 32722647 PMCID: PMC7460543 DOI: 10.3390/md18080388] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Alginate oligosaccharides produced by enzymatic degradation show versatile physiological functions and biological activities. In this study, a new alginate lyase encoding gene alyS02 from Flavobacterium sp. S02 was recombinantly expressed at a high level in Yarrowia lipolytica, with the highest extracellular activity in the supernatant reaching 36.8 ± 2.1 U/mL. AlyS02 was classified in the polysaccharide lyase (PL) family 7. The optimal reaction temperature and pH of this enzyme were 30 °C and 7.6, respectively, indicating that AlyS02 is a cold-adapted enzyme. Interestingly, AlyS02 contained more than 90% enzyme activity at 25 °C, higher than other cold-adapted enzymes. Moreover, AlyS02 is a bifunctional alginate lyase that degrades both polyG and polyM, producing di- and trisaccharides from alginate. These findings suggest that AlyS02 would be a potent tool for the industrial applications.
Collapse
Affiliation(s)
- Hai-Xiang Zhou
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China;
| | - Shan-Shan Xu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China;
| | - Xue-Jing Yin
- Qingdao Mental Health Center, Qingdao University, Qingdao 266034, China;
| | - Feng-Long Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China;
| | - Yang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
33
|
Liu J, Kennedy JF, Zhang X, Heng Y, Chen W, Chen Z, Wu X, Wu X. Preparation of alginate oligosaccharide and its effects on decay control and quality maintenance of harvested kiwifruit. Carbohydr Polym 2020; 242:116462. [PMID: 32564825 DOI: 10.1016/j.carbpol.2020.116462] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/12/2020] [Accepted: 05/14/2020] [Indexed: 12/21/2022]
Abstract
Alginate oligosaccharide (AOS) is a biological carbohydrate formed from the degradation of sodium alginate. AOS used in this study was enzymatically prepared and had varying degrees of polymerization (2-8). AOS applied to harvested kiwifruit stored at 25 °C inhibited gray mold, blue mold, and black rot. AOS inhibited pectin solubilization, gene expression of pectin methylesterase and polygalacturonase, and the corresponding enzyme activity of their encoded proteins in kiwifruit. In contrast, AOS induced antioxidant gene expression and enzyme activity, including catalase and superoxide dismutase. The level of total phenols and flavonoids in kiwifruit was also elevated. AOS treatment also had a beneficial effect on fruit quality. Collectively, the results indicate that postharvest treatment with AOS inhibits postharvest decay and prolongs fruit quality by suppressing cell wall degradation and eliciting antioxidants in harvested kiwifruit. AOS has the potential to be used to preserve and extend the postharvest quality of kiwifruit.
Collapse
Affiliation(s)
- Jia Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China
| | - John F Kennedy
- Chembiotech Laboratories, Kyrewood House Tenbury Wells, Worcestershire, WR15 8SG, UK
| | - Xiaofang Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Yin Heng
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Wei Chen
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Zhuo Chen
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xian Wu
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China.
| | - Xuehong Wu
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
34
|
Effect of Seaweed Extract on Productivity and Quality Attributes of Four Onion Cultivars. HORTICULTURAE 2020. [DOI: 10.3390/horticulturae6020028] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The excessive use of chemicals and inorganic fertilizers by farmers to increase crop yield is detrimental to the environment and human health. Application of biostimulants such as seaweed extract (SWE) in agriculture could be an effective and eco-friendly alternative to inorganic fertilizers. Biostimulants are natural organic degradable substances. Their application serves as a source of nutrition for crops, possibly improving growth and productivity when applied in combination with the fertilizers. The current study was conducted to evaluate the vegetative growth, reproductive behavior and quality attributes of four onion cultivars, ‘Lambada’, ‘Red Bone’, ‘Nasarpuri’, and ‘Phulkara’, in response to different concentrations of commercial SWE. Four levels of SWE extract were used, 0% (control), 0.5%, 1%, 2%, and 3%, which were applied as a foliar spray to each cultivar. The application of 0.5% SWE caused a significant increase in total soluble solids, mineral content (N, P, and K), bulb weight and yield. Application at 3% SWE increased ascorbic acid as compared to control. The cultivars responded in different ways regarding bulb dry weight and bulb and neck diameter. Among all cultivars, ‘Lambada’ showed the maximum bulb dry matter, ‘Phulkara’ showed enhanced neck diameter whereas ‘Red Bone’ showed maximum leaf length. It is concluded that 0.5% SWE increased the yield, nutrient contents, and total soluble solids (TSS) of the four onion cultivars whereas 3% SWE, the highest concentration, increased ascorbic acid in different onion cultivars.
Collapse
|
35
|
Wang ZP, Cao M, Li B, Ji XF, Zhang XY, Zhang YQ, Wang HY. Cloning, Secretory Expression and Characterization of a Unique pH-Stable and Cold-Adapted Alginate Lyase. Mar Drugs 2020; 18:E189. [PMID: 32244721 PMCID: PMC7230187 DOI: 10.3390/md18040189] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Cold-adapted alginate lyases have unique advantages for alginate oligosaccharide (AOS) preparation and brown seaweed processing. Robust and cold-adapted alginate lyases are urgently needed for industrial applications. In this study, a cold-adapted alginate lyase-producing strain Vibrio sp. W2 was screened. Then, the gene ALYW201 was cloned from Vibrio sp. W2 and expressed in a food-grade host, Yarrowia lipolytica. The secreted Alyw201 showed the activity of 64.2 U/mL, with a molecular weight of approximate 38.0 kDa, and a specific activity of 876.4 U/mg. Alyw201 performed the highest activity at 30 °C, and more than 80% activity at 25-40 °C. Furthermore, more than 70% of the activity was obtained in a broad pH range of 5.0-10.0. Alyw201 was also NaCl-independent and salt-tolerant. The degraded product was that of the oligosaccharides of DP (Degree of polymerization) 2-6. Due to its robustness and its unique pH-stable property, Alyw201 can be an efficient tool for industrial production.
Collapse
Affiliation(s)
- Zhi-Peng Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Z.-P.W.)
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China; (M.C.); (B.L.); (X.-Y.Z.); (Y.-Q.Z.)
| | - Min Cao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China; (M.C.); (B.L.); (X.-Y.Z.); (Y.-Q.Z.)
| | - Bing Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China; (M.C.); (B.L.); (X.-Y.Z.); (Y.-Q.Z.)
| | - Xiao-Feng Ji
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Z.-P.W.)
- Laboratory of Enzyme Engineering, Yellow Sea Fisheries Research Institute, Qingdao 266071, China
| | - Xin-Yue Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China; (M.C.); (B.L.); (X.-Y.Z.); (Y.-Q.Z.)
| | - Yue-Qi Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China; (M.C.); (B.L.); (X.-Y.Z.); (Y.-Q.Z.)
| | - Hai-Ying Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Z.-P.W.)
- Laboratory of Enzyme Engineering, Yellow Sea Fisheries Research Institute, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
36
|
Purification and Characterization of a Novel Endolytic Alginate Lyase from Microbulbifer sp. SH-1 and Its Agricultural Application. Mar Drugs 2020; 18:md18040184. [PMID: 32244418 PMCID: PMC7230735 DOI: 10.3390/md18040184] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 01/09/2023] Open
Abstract
Alginate, an important acidic polysaccharide in marine multicellular algae, has attracted attention as a promising biomass resource for the production of medical and agricultural chemicals. Alginate lyase is critical for saccharification and utilization of alginate. Discovering appropriate and efficient enzymes for depolymerizing alginate into fermentable fractions plays a vital role in alginate commercial exploitation. Herein, a unique alginate lyase, AlgSH7, belonging to polysaccharide lyase 7 family is purified and characterized from an alginate-utilizing bacterium Microbulbifer sp. SH-1. The purified AlgSH7 shows a specific activity of 12,908.26 U/mg, and its molecular weight is approximately 66.4 kDa. The optimal temperature and pH of AlgSH7 are 40 °C and pH 9.0, respectively. The enzyme exhibits stability at temperatures below 30 °C and within an extensive pH range of 5.0-9.0. Metal ions including Na+, K+, Al3+, and Fe3+ considerably enhance the activity of the enzyme. AlgSH7 displays a preference for poly-mannuronic acid (polyM) and a very low activity towards poly-guluronic acid (polyG). TLC and ESI-MS analysis indicated that the enzymatic hydrolysates mainly include disaccharides, trisaccharides, and tetrasaccharides. Noteworthy, the alginate oligosaccharides (AOS) prepared by AlgSH7 have an eliciting activity against chilling stress in Chinese flowering cabbage (Brassica parachinensis L.). These results suggest that AlgSH7 has a great potential to design an effective process for the production of alginate oligomers for agricultural applications.
Collapse
|
37
|
Xing M, Cao Q, Wang Y, Xiao H, Zhao J, Zhang Q, Ji A, Song S. Advances in Research on the Bioactivity of Alginate Oligosaccharides. Mar Drugs 2020; 18:E144. [PMID: 32121067 PMCID: PMC7142810 DOI: 10.3390/md18030144] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Alginate is a natural polysaccharide present in various marine brown seaweeds. Alginate oligosaccharide (AOS) is a degradation product of alginate, which has received increasing attention due to its low molecular weight and promising biological activity. The wide-ranging biological activity of AOS is closely related to the diversity of their structures. AOS with a specific structure and distinct applications can be obtained by different methods of alginate degradation. This review focuses on recent advances in the biological activity of alginate and its derivatives, including their anti-tumor, anti-oxidative, immunoregulatory, anti-inflammatory, neuroprotective, antibacterial, hypolipidemic, antihypertensive, and hypoglycemic properties, as well as the ability to suppress obesity and promote cell proliferation and regulate plant growth. We hope that this review will provide theoretical basis and inspiration for the high-value research developments and utilization of AOS-related products.
Collapse
Affiliation(s)
- Maochen Xing
- Marine College, Shandong University, Weihai 264209, China; (M.X.); (Q.C.); (Y.W.); (H.X.); (J.Z.); (Q.Z.); (A.J.)
| | - Qi Cao
- Marine College, Shandong University, Weihai 264209, China; (M.X.); (Q.C.); (Y.W.); (H.X.); (J.Z.); (Q.Z.); (A.J.)
| | - Yu Wang
- Marine College, Shandong University, Weihai 264209, China; (M.X.); (Q.C.); (Y.W.); (H.X.); (J.Z.); (Q.Z.); (A.J.)
| | - Han Xiao
- Marine College, Shandong University, Weihai 264209, China; (M.X.); (Q.C.); (Y.W.); (H.X.); (J.Z.); (Q.Z.); (A.J.)
| | - Jiarui Zhao
- Marine College, Shandong University, Weihai 264209, China; (M.X.); (Q.C.); (Y.W.); (H.X.); (J.Z.); (Q.Z.); (A.J.)
| | - Qing Zhang
- Marine College, Shandong University, Weihai 264209, China; (M.X.); (Q.C.); (Y.W.); (H.X.); (J.Z.); (Q.Z.); (A.J.)
| | - Aiguo Ji
- Marine College, Shandong University, Weihai 264209, China; (M.X.); (Q.C.); (Y.W.); (H.X.); (J.Z.); (Q.Z.); (A.J.)
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Shuliang Song
- Marine College, Shandong University, Weihai 264209, China; (M.X.); (Q.C.); (Y.W.); (H.X.); (J.Z.); (Q.Z.); (A.J.)
| |
Collapse
|
38
|
Zhang C, Howlader P, Liu T, Sun X, Jia X, Zhao X, Shen P, Qin Y, Wang W, Yin H. Alginate Oligosaccharide (AOS) induced resistance to Pst DC3000 via salicylic acid-mediated signaling pathway in Arabidopsis thaliana. Carbohydr Polym 2019; 225:115221. [PMID: 31521273 DOI: 10.1016/j.carbpol.2019.115221] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/07/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022]
Abstract
Alginate Oligosaccharide (AOS) is a natural biological carbohydrate extracted from seaweed. In our study, Arabidopsis thaliana was used to evaluate the AOS-induced resistance to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Resistance was vitally enhanced at 25 mg/L in wild type (WT), showing the decreased disease index and bacteria colonies, burst of ROS and NO, high transcription expression of resistance genes PR1 and increased content of salicylic acid (SA). In SA deficient mutant (sid2), AOS-induced disease resistance dropped obviously compared to WT. The disease index was significantly higher than WT and the expression of recA and avrPtoB are two and four times lower than WT, implying that AOS induces disease resistance injecting Pst DC3000 after three days treatment by arousing the SA pathway. Our results provide a reference for the profound research and application of AOS in agriculture.
Collapse
Affiliation(s)
- Chunguang Zhang
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Prianka Howlader
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongmei Liu
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Xue Sun
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaochen Jia
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoming Zhao
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Peili Shen
- Ministry of Agriculture Key Laboratory of Seaweed Fertilizers, Qingdao Brightmoon Seaweed Group Co Ltd., Qingdao, China
| | - Yimin Qin
- Ministry of Agriculture Key Laboratory of Seaweed Fertilizers, Qingdao Brightmoon Seaweed Group Co Ltd., Qingdao, China
| | - Wenxia Wang
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Heng Yin
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
39
|
Łangowski Ł, Goñi O, Quille P, Stephenson P, Carmody N, Feeney E, Barton D, Østergaard L, O'Connell S. A plant biostimulant from the seaweed Ascophyllum nodosum (Sealicit) reduces podshatter and yield loss in oilseed rape through modulation of IND expression. Sci Rep 2019; 9:16644. [PMID: 31719578 PMCID: PMC6851122 DOI: 10.1038/s41598-019-52958-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/25/2019] [Indexed: 01/17/2023] Open
Abstract
The yield of podded crops such as oilseed rape (OSR) is limited by evolutionary adaptations of the plants for more efficient and successful seed dispersal for survival. These plants have evolved dehiscent dry fruits that shatter along a specifically developed junction at carpel margins. A number of strategies such as pod sealants, GMOs and hybrids have been developed to mitigate the impact of pod shatter on crop yield with limited success. Plant biostimulants have been shown to influence plant development. A challenge in plant biostimulant research is elucidating the mechanisms of action. Here we have focused on understanding the effect of an Ascophyllum nodosum based biostimulant (Sealicit) on fruit development and seed dispersal trait in Arabidopsis and OSR at genetic and physiological level. The results indicate that Sealicit is affecting the expression of the major regulator of pod shattering, INDEHISCENT, as well as disrupting the auxin minimum. Both factors influence the formation of the dehiscence zone and consequently reduce pod shattering. Unravelling the mode of action of this unique biostimulant provides data to support its effectiveness in reducing pod shatter and highlights its potential for growers to increase seed yield in a number of OSR varieties.
Collapse
Affiliation(s)
| | - Oscar Goñi
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Institute of Technology Tralee, Clash, Tralee, Co., Kerry, Ireland
| | - Patrick Quille
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Institute of Technology Tralee, Clash, Tralee, Co., Kerry, Ireland
| | - Pauline Stephenson
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney, NR4 7UH Norfolk, Norwich, United Kingdom
| | | | - Ewan Feeney
- Brandon Bioscience, Centrepoint, Tralee, Co., Kerry, Ireland
| | - David Barton
- Brandon Bioscience, Centrepoint, Tralee, Co., Kerry, Ireland
| | - Lars Østergaard
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney, NR4 7UH Norfolk, Norwich, United Kingdom
| | - Shane O'Connell
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Institute of Technology Tralee, Clash, Tralee, Co., Kerry, Ireland.
| |
Collapse
|
40
|
Wang Y, Chen X, Bi X, Ren Y, Han Q, Zhou Y, Han Y, Yao R, Li S. Characterization of an Alkaline Alginate Lyase with pH-Stable and Thermo-Tolerance Property. Mar Drugs 2019; 17:md17050308. [PMID: 31137685 PMCID: PMC6562718 DOI: 10.3390/md17050308] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 01/05/2023] Open
Abstract
Alginate oligosaccharides (AOS) show versatile bioactivities. Although various alginate lyases have been characterized, enzymes with special characteristics are still rare. In this study, a polysaccharide lyase family 7 (PL7) alginate lyase-encoding gene, aly08, was cloned from the marine bacterium Vibrio sp. SY01 and expressed in Escherichia coli. The purified alginate lyase Aly08, with a molecular weight of 35 kDa, showed a specific activity of 841 U/mg at its optimal pH (pH 8.35) and temperature (45 °C). Aly08 showed good pH-stability, as it remained more than 80% of its initial activity in a wide pH range (4.0–10.0). Aly08 was also a thermo-tolerant enzyme that recovered 70.8% of its initial activity following heat shock treatment for 5 min. This study also demonstrated that Aly08 is a polyG-preferred enzyme. Furthermore, Aly08 degraded alginates into disaccharides and trisaccharides in an endo-manner. Its thermo-tolerance and pH-stable properties make Aly08 a good candidate for further applications.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Pharmacology, College of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Xuehong Chen
- Department of Pharmacology, College of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Xiaolin Bi
- Department of Rehabilitation Medicine, Qingdao University, Qingdao 266071, China.
| | - Yining Ren
- Department of Pharmacology, College of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Qi Han
- Department of Pharmacology, College of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Yu Zhou
- Department of Pharmacology, College of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Yantao Han
- Department of Pharmacology, College of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Ruyong Yao
- Central Laboratory of Medicine, Qingdao University, Qingdao 266071, China.
| | - Shangyong Li
- Department of Pharmacology, College of Basic Medicine, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
41
|
Tran VC, Cho SY, Kwon J, Kim D. Alginate oligosaccharide (AOS) improves immuno-metabolic systems by inhibiting STOML2 overexpression in high-fat-diet-induced obese zebrafish. Food Funct 2019; 10:4636-4648. [DOI: 10.1039/c9fo00982e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AOS improves immuno-metabolism systems in high-fat-died-induced obese zebrafish by regulating STOML2.
Collapse
Affiliation(s)
- Van Cuong Tran
- Department of Food Science and Technology
- Chonnam National University
- Gwangju
- Republic of Korea
- Department of Food Science and Post-harvest Technology
| | - Se-Young Cho
- Biological Disaster Analysis Group
- Korea Basic Science Institute
- Daejeon
- Republic of Korea
| | - Joseph Kwon
- Biological Disaster Analysis Group
- Korea Basic Science Institute
- Daejeon
- Republic of Korea
| | - Duwoon Kim
- Department of Food Science and Technology
- Chonnam National University
- Gwangju
- Republic of Korea
- Foodborne Virus Research Center
| |
Collapse
|
42
|
Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.). Int J Biol Macromol 2018; 126:91-100. [PMID: 30557637 DOI: 10.1016/j.ijbiomac.2018.12.118] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 02/07/2023]
Abstract
To investigate the effect and mechanism of chitosan nanoparticles (CSNPs) on the germination and seedling growth of wheat (Triticum aestivum L.), we conducted systematic research on the impact of different concentrations (1-100 μg/mL) of CSNPs and chitosan (CS). The result of energy-dispersive spectroscopy (EDS) and confocal laser scanning microscopy (CLSM) showed that adsorption of CSNPs on the surface of wheat seeds was higher than that of CS. CSNPs had growth promoting effect at a lower concentration (5 μg/mL) compared with CS (50 μg/mL). In addition, the application of 5 μg/mL CSNPs induced the auxin-related gene expression, accelerated indole-3-acetic acid (IAA) biosynthesis and transport, and reduced IAA oxidase activity resulting in the increase of IAA concentration in wheat shoots and roots. The results suggest that CSNPs have positive effect on seed germination and seedling growth of wheat at a lower concentration than CS due to higher adsorption on the surface of wheat seeds.
Collapse
|
43
|
Effects of Calcium Alginate Submicroparticles on Seed Germination and Seedling Growth of Wheat ( Triticum aestivum L.). Polymers (Basel) 2018; 10:polym10101154. [PMID: 30961078 PMCID: PMC6403849 DOI: 10.3390/polym10101154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 11/26/2022] Open
Abstract
Calcium alginate (CaAlg) submicroparticles have a potential application in agricultural delivery systems. This study investigated the effects of CaAlg submicroparticles on seed germination and seedling growth of wheat. CaAlg submicroparticles with a Z-average diameter of around 250.4 nm and a measured zeta potential value of about −25.4 mV were prepared and characterized by dynamic light scattering (DLS), scanning electron microscopy (SEM) and energy dispersive X-ray spectrometer (EDS). After this, the effects of the concentration of CaAlg submicroparticles (10–500 μg/mL) on germination percentage, seedling length, the number of adventitious roots, chlorophyll content and soluble protein content were evaluated. The results demonstrated a significant increase in the level of germination percentage (9.0%), seedling index (50.3%), adventitious roots (27.5%), seedling length (17.0%), chlorophyll (8.7%) and soluble protein contents (4.5%) at a concentration of 100 μg/mL. However, an inhibitory effect was observed at a concentration of 500 μg/mL. The SEM examination showed that CaAlg submicroparticles could be successfully adsorbed onto the surface of the wheat seed. Further studies proved that CaAlg submicroparticles at a concentration of 100 μg/mL promoted the expression of indole-3-acetic acid (IAA)-related genes (YUCCA9, AUX1, ARF and UGT) in wheat, which resulted in an increase of 69% and 21% in IAA concentration in wheat roots and shoots, respectively.
Collapse
|
44
|
Different glyceollin synthesis-related metabolic content and gene expressions in soybean callus suspension cultures and cotyledon tissues induced by alginate oligosaccharides. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Alcaraz LD, Peimbert M, Barajas HR, Dorantes-Acosta AE, Bowman JL, Arteaga-Vázquez MA. Marchantia liverworts as a proxy to plants' basal microbiomes. Sci Rep 2018; 8:12712. [PMID: 30140076 DOI: 10.1101/103861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/13/2018] [Indexed: 05/26/2023] Open
Abstract
Microbiomes influence plant establishment, development, nutrient acquisition, pathogen defense, and health. Plant microbiomes are shaped by interactions between the microbes and a selection process of host plants that distinguishes between pathogens, commensals, symbionts and transient bacteria. In this work, we explore the microbiomes through massive sequencing of the 16S rRNA genes of microbiomes two Marchantia species of liverworts. We compared microbiomes from M. polymorpha and M. paleacea plants collected in the wild relative to their soils substrates and from plants grown in vitro that were established from gemmae obtained from the same populations of wild plants. Our experimental setup allowed identification of microbes found in both native and in vitro Marchantia species. The main OTUs (97% identity) in Marchantia microbiomes were assigned to the following genera: Methylobacterium, Rhizobium, Paenibacillus, Lysobacter, Pirellula, Steroidobacter, and Bryobacter. The assigned genera correspond to bacteria capable of plant-growth promotion, complex exudate degradation, nitrogen fixation, methylotrophs, and disease-suppressive bacteria, all hosted in the relatively simple anatomy of the plant. Based on their long evolutionary history Marchantia is a promising model to study not only long-term relationships between plants and their microbes but also the transgenerational contribution of microbiomes to plant development and their response to environmental changes.
Collapse
Affiliation(s)
- Luis D Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, UNAM, 04510, Coyoacán, Mexico City, Mexico.
| | - Mariana Peimbert
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, 05348, Mexico City, Mexico
| | - Hugo R Barajas
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, UNAM, 04510, Coyoacán, Mexico City, Mexico
| | - Ana E Dorantes-Acosta
- University of Veracruz, Institute for Biotechnology and Applied Ecology (INBIOTECA), Avenida de las Culturas Veracruzanas 101, Colonia Emiliano Zapata, 91090, Xalapa, Veracruz, Mexico
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - Mario A Arteaga-Vázquez
- University of Veracruz, Institute for Biotechnology and Applied Ecology (INBIOTECA), Avenida de las Culturas Veracruzanas 101, Colonia Emiliano Zapata, 91090, Xalapa, Veracruz, Mexico.
| |
Collapse
|
46
|
Alcaraz LD, Peimbert M, Barajas HR, Dorantes-Acosta AE, Bowman JL, Arteaga-Vázquez MA. Marchantia liverworts as a proxy to plants' basal microbiomes. Sci Rep 2018; 8:12712. [PMID: 30140076 PMCID: PMC6107579 DOI: 10.1038/s41598-018-31168-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/13/2018] [Indexed: 02/01/2023] Open
Abstract
Microbiomes influence plant establishment, development, nutrient acquisition, pathogen defense, and health. Plant microbiomes are shaped by interactions between the microbes and a selection process of host plants that distinguishes between pathogens, commensals, symbionts and transient bacteria. In this work, we explore the microbiomes through massive sequencing of the 16S rRNA genes of microbiomes two Marchantia species of liverworts. We compared microbiomes from M. polymorpha and M. paleacea plants collected in the wild relative to their soils substrates and from plants grown in vitro that were established from gemmae obtained from the same populations of wild plants. Our experimental setup allowed identification of microbes found in both native and in vitro Marchantia species. The main OTUs (97% identity) in Marchantia microbiomes were assigned to the following genera: Methylobacterium, Rhizobium, Paenibacillus, Lysobacter, Pirellula, Steroidobacter, and Bryobacter. The assigned genera correspond to bacteria capable of plant-growth promotion, complex exudate degradation, nitrogen fixation, methylotrophs, and disease-suppressive bacteria, all hosted in the relatively simple anatomy of the plant. Based on their long evolutionary history Marchantia is a promising model to study not only long-term relationships between plants and their microbes but also the transgenerational contribution of microbiomes to plant development and their response to environmental changes.
Collapse
Affiliation(s)
- Luis D Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, UNAM, 04510, Coyoacán, Mexico City, Mexico.
| | - Mariana Peimbert
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, 05348, Mexico City, Mexico
| | - Hugo R Barajas
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, UNAM, 04510, Coyoacán, Mexico City, Mexico
| | - Ana E Dorantes-Acosta
- University of Veracruz, Institute for Biotechnology and Applied Ecology (INBIOTECA), Avenida de las Culturas Veracruzanas 101, Colonia Emiliano Zapata, 91090, Xalapa, Veracruz, Mexico
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - Mario A Arteaga-Vázquez
- University of Veracruz, Institute for Biotechnology and Applied Ecology (INBIOTECA), Avenida de las Culturas Veracruzanas 101, Colonia Emiliano Zapata, 91090, Xalapa, Veracruz, Mexico.
| |
Collapse
|
47
|
Salachna P, Grzeszczuk M, Meller E, Soból M. Oligo-Alginate with Low Molecular Mass Improves Growth and Physiological Activity of Eucomis autumnalis under Salinity Stress. Molecules 2018; 23:E812. [PMID: 29614824 PMCID: PMC6017372 DOI: 10.3390/molecules23040812] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 03/29/2018] [Accepted: 03/31/2018] [Indexed: 12/02/2022] Open
Abstract
Biopolymers have become increasingly popular as biostimulators of plant growth. One of them, oligo-alginate, is a molecule that regulates plant biological processes and may be used in horticultural practice as a plant growth regulator. Biostimulators are mainly used to improve plant tolerance to abiotic stresses, including salinity. The aim of the study was to assess the effects of salinity and oligo-alginate of various molecular masses on the growth and physiological activity of Eucomis autumnalis. The species is an ornamental and medicinal plant that has been used for a long time in the traditional medicine of South Africa. The bulbs of E. autumnalis were coated using depolymerized sodium alginate of molecular mass 32,000; 42,000, and 64,000 g mol-1. All of these oligo-alginates fractions stimulated plant growth, and the effect was the strongest for the fraction of 32,000 g mol-1. This fraction was then selected for the second stage of the study, when plants were exposed to salt stress evoked by the presence of 100 mM NaCl. We found that the oligo-alginate coating mitigated the negative effects of salinity. Plants treated with the oligomer and watered with NaCl showed smaller reduction in the weight of the above-ground parts and bulbs, pigment content and antioxidant activity as compared with those not treated with the oligo-alginate. The study demonstrated for the first time that low molecular mass oligo-alginate may be used as plant biostimulator that limits negative effects of salinity in E. autumnalis.
Collapse
Affiliation(s)
- Piotr Salachna
- Department of Horticulture, West Pomeranian University of Technology, 3 Papieża Pawła VI Str., 71-459 Szczecin, Poland.
| | - Monika Grzeszczuk
- Department of Horticulture, West Pomeranian University of Technology, 3 Papieża Pawła VI Str., 71-459 Szczecin, Poland.
| | - Edward Meller
- Department of Soil Science, Grassland Management and Environmental Chemistry, West Pomeranian University of Technology, Słowackiego 17 Str., 71-434 Szczecin, Poland.
| | - Marcin Soból
- Center of Bioimmobilisation and Innovative Packaging Materials, West Pomeranian University of Technology, 35 Janickiego Str., 71-270 Szczecin, Poland.
| |
Collapse
|
48
|
Kollárová K, Kamenická V, Vatehová Z, Lišková D. Impact of galactoglucomannan oligosaccharides and Cd stress on maize root growth parameters, morphology, and structure. JOURNAL OF PLANT PHYSIOLOGY 2018; 222:59-66. [PMID: 29407550 DOI: 10.1016/j.jplph.2017.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 05/13/2023]
Abstract
Biologically active oligosaccharides, including galactoglucomannan oligosaccharides (GGMOs), affect plant growth and development. The impact of GGMOs is dependent on their concentration, and the plant species and plant parts affected. The aim of this article is to ascertain the effects of GGMOs, GGMOs + Cd2+, on growth parameters, morphology, and the structure of maize (Zea mays L.) roots. We undertook this research because, in monocots, the effect of these oligosaccharides is so far unknown. In our study, GGMOs stimulated primary root elongation, induction and elongation of lateral roots, and biomass production. Their effect was dependent on the concentration used. Simultaneously, GGMOs moderated the negative effect of Cd2+ on root elongation growth. Besides, GGMOs affected the primary root structure, proven in the earlier development of xylem and Casparian bands, but not of suberin lamellae (compared to the control). The presence of Cd2+ shifted the apoplasmic barriers closer to the root apex in comparison to samples treated with GGMOs + Cd2+. GGMOs do not inhibit Cd uptake into the root directly, but they moderate its effect, and therefore their influence at the structural and metabolic level seems possible. Their positive impact on plant vitality, even in contaminated conditions, strongly indicates their potential application in remediation technologies.
Collapse
Affiliation(s)
- Karin Kollárová
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia.
| | - Viktória Kamenická
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B-2, 842 15, Bratislava, Slovakia
| | - Zuzana Vatehová
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Desana Lišková
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| |
Collapse
|
49
|
Qiu Y, Sha Y, Zhang Y, Xu Z, Li S, Lei P, Xu Z, Feng X, Xu H. Development of Jerusalem artichoke resource for efficient one-step fermentation of poly-(γ-glutamic acid) using a novel strain Bacillus amyloliquefaciens NX-2S. BIORESOURCE TECHNOLOGY 2017; 239:197-203. [PMID: 28521229 DOI: 10.1016/j.biortech.2017.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
This study aimed to develop non-food fermentation for the cost-effective production of poly-(γ-glutamic acid) (γ-PGA) using a novel strain of Bacillus amyloliquefaciens NX-2S. The new isolate assimilated inulin more efficiently than other carbohydrates from Jerusalem artichoke, without hydrolytic treatment. To investigate the effect of inulin on γ-PGA production, the transcript levels of γ-PGA synthetase genes (pgsB, pgsC, pgsA), regulatory genes (comA, degQ, degS), and the glutamic acid biosynthesis gene (glnA) were analyzed; inulin addition upregulated these key genes. Without exogenous glutamate, strain NX-2S could produce 6.85±0.22g/L of γ-PGA during fermentation. Exogenous glutamate greatly enhances the γ-PGA yield (39.4±0.38g/L) and productivity (0.43±0.05g/L/h) in batch fermentation. Our study revealed a potential method of non-food fermentation to produce high-value products.
Collapse
Affiliation(s)
- Yibin Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yuanyuan Sha
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yatao Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zongqi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiaohai Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
50
|
Wang M, Chen L, Liu Z, Zhang Z, Qin S, Yan P. Isolation of a novel alginate lyase-producing Bacillus litoralis strain and its potential to ferment Sargassum horneri for biofertilizer. Microbiologyopen 2016; 5:1038-1049. [PMID: 27440453 PMCID: PMC5221473 DOI: 10.1002/mbo3.387] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/23/2016] [Accepted: 05/28/2016] [Indexed: 11/06/2022] Open
Abstract
Algae have long been used to augment plant productivity through their beneficial effects. Alginate oligosaccharide is believed to be one of the important components to enhance growth and crop yield. In this study, we isolated and characterized a Bacillus litoralis strain, named Bacillus M3, from decayed kelps. We further demonstrated that the M3 strain could secrete alginate lyase to degrade alginate. The crude enzyme exhibited the highest activity (33.74 U/mg) at pH 7.0 and 50°C. The M3 strain was also able to ferment the brown alga Sargassum horneri. Fermentation results revealed that a fermentation period of 8-12 hr was the best harvest time with the highest level of alginate oligosaccharides. Plant growth assay showed that the seaweed fermentation extract had an obvious promotion effect on root and seedling growth of Lycopersicon eseulentum L. Our results suggest that fermentation extract of Sargassum horneri by the novel strain of Bacillus litoralis M3 has significant development potential for biofertilizer production and agriculture application.
Collapse
Affiliation(s)
- Mingpeng Wang
- School of Municipal and Environmental EngineeringHarbin Institute of TechnologyHarbinChina
| | - Lei Chen
- Yantai Institute of Costal Zone Research Chinese Academy of SciencesYantaiChina
| | - Zhengyi Liu
- Yantai Institute of Costal Zone Research Chinese Academy of SciencesYantaiChina
| | - Zhaojie Zhang
- Department of Zoology and PhysiologyUniversity of WyomingLaramieWyomingUSA
| | - Song Qin
- Yantai Institute of Costal Zone Research Chinese Academy of SciencesYantaiChina
| | - Peisheng Yan
- School of Municipal and Environmental EngineeringHarbin Institute of TechnologyHarbinChina
- School of Marine Science and TechnologyHarbin Institute of TechnologyWeihaiChina
| |
Collapse
|