1
|
Ci Y, Lv D, Yang X, Du H, Tang Y. High-performance cellulose/thermoplastic polyurethane composites enabled by interaction-modulated cellulose regeneration. Carbohydr Polym 2024; 346:122611. [PMID: 39245493 DOI: 10.1016/j.carbpol.2024.122611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/03/2024] [Accepted: 08/11/2024] [Indexed: 09/10/2024]
Abstract
Strong interfacial adhesion between cellulose and other polymers is critical to achieve the properties required for specific applications in composite materials. Here, we developed a method for the simultaneous homogeneous dissolution of cellulose and thermoplastic polyurethane (TPU) in 1,8-diazabicyclo (5.4.0) undec-7-ene levulinate/dimethyl sulfoxide ([DBUH]Lev/DMSO) solvent. This process is essential for preparing cellulose/TPU composite films and fibers through interaction-modulated cellulose regeneration. Both cellulose and TPU can be easily dissolved together in [DBUH]Lev/DMSO solvent under mild conditions. The resulting cellulose/TPU solutions exhibited strong temperature sensitivity, shear-thinning behavior and viscoelasticity, making them suitable for cast films and continuous spinning. More importantly, research findings, including density functional theory calculations and experimental characterization, confirmed the high compatibility and interaction modulability of cellulose and TPU in the composite films. The representative C90T10 sample (cellulose/TPU, 90/10) showed high transparency (90 % at 800 nm) and excellent mechanical properties (tensile strength: 176 MPa; elongation at break: 8.1 %). Additionally, the maximum tensile strength and elongation at the break of the composite fiber from C90T10 were 214 MPa and 48.1 %, respectively. This method may provide a feasible approach to design and produce homogeneous environmentally friendly composites of cellulose and other polymers at the molecular level.
Collapse
Affiliation(s)
- Yuhui Ci
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Dong Lv
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, PR China
| | - Xiangjian Yang
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Haishun Du
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Yanjun Tang
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
2
|
Yokesahachart C, Khanoonkon N, Yoksan R. Effect of thermoplastic starch/poly(lactic acid) weight fraction on phase morphology and performance of biodegradable blends and their jute fiber composites. Int J Biol Macromol 2024; 283:137705. [PMID: 39549797 DOI: 10.1016/j.ijbiomac.2024.137705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/25/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
The present work investigates the phase morphology and properties of biodegradable thermoplastic starch (TPS)-poly(lactic acid) (PLA) blends and their jute fiber (JF) biocomposites. The TPS/PLA blends and TPS/PLA/JF composites were fabricated using a twin-screw extruder and then injection molded into the test specimens, varying the TPS/PLA weight fractions (80/20, 60/40, 40/60, and 20/80) while keeping the JF content constant (10 wt%). At 80 wt% TPS, the TPS/PLA blend showed a co-continuous structure, whereas the remaining blends (20, 40, and 60 wt% TPS) exhibited a TPS droplets-PLA matrix structure. The TPS/PLA/JF composites displayed a PLA droplets-TPS matrix structure at 80 wt% TPS, a co-continuous structure at 60 wt% TPS, and a TPS droplets-PLA matrix structure at 20 and 40 wt% TPS. Increasing the proportion of PLA increased the melt flow ability, tensile strength, Young's modulus, storage modulus, thermal stability, and water contact angle of the blends and composites. The addition of jute fibers altered the phase morphology of the blends, enhanced their strength and stiffness, increased PLA nucleation, and improved the TPS-PLA phase compatibility. The blends and composites herein exhibit great potential in developing environmentally friendly injection-molded products, such as stationery, toys, gardening supplies, etc.
Collapse
Affiliation(s)
- Chanakorn Yokesahachart
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Nattaporn Khanoonkon
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand; Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University Institute for Advanced Studies (KUIAS), Kasetsart University, Bangkok 10900, Thailand
| | - Rangrong Yoksan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand; Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University Institute for Advanced Studies (KUIAS), Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
3
|
Oliver-Cuenca V, Salaris V, Muñoz-Gimena PF, Agüero Á, Peltzer MA, Montero VA, Arrieta MP, Sempere-Torregrosa J, Pavon C, Samper MD, Crespo GR, Kenny JM, López D, Peponi L. Bio-Based and Biodegradable Polymeric Materials for a Circular Economy. Polymers (Basel) 2024; 16:3015. [PMID: 39518225 PMCID: PMC11548373 DOI: 10.3390/polym16213015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Nowadays, plastic contamination worldwide is a concerning reality that can be addressed with appropriate society education as well as looking for innovative polymeric alternatives based on the reuse of waste and recycling with a circular economy point of view, thus taking into consideration that a future world without plastic is quite impossible to conceive. In this regard, in this review, we focus on sustainable polymeric materials, biodegradable and bio-based polymers, additives, and micro/nanoparticles to be used to obtain new environmentally friendly polymeric-based materials. Although biodegradable polymers possess poorer overall properties than traditional ones, they have gained a huge interest in many industrial sectors due to their inherent biodegradability in natural environments. Therefore, several strategies have been proposed to improve their properties and extend their industrial applications. Blending strategies, as well as the development of composites and nanocomposites, have shown promising perspectives for improving their performances, emphasizing biopolymeric blend formulations and bio-based micro and nanoparticles to produce fully sustainable polymeric-based materials. The Review also summarizes recent developments in polymeric blends, composites, and nanocomposite plasticization, with a particular focus on naturally derived plasticizers and their chemical modifications to increase their compatibility with the polymeric matrices. The current state of the art of the most important bio-based and biodegradable polymers is also reviewed, mainly focusing on their synthesis and processing methods scalable to the industrial sector, such as melt and solution blending approaches like melt-extrusion, injection molding, film forming as well as solution electrospinning, among others, without neglecting their degradation processes.
Collapse
Affiliation(s)
- Víctor Oliver-Cuenca
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Valentina Salaris
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Pedro Francisco Muñoz-Gimena
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Ángel Agüero
- Instituto Universitario de Tecnología de Materiales (IUTM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain;
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
| | - Mercedes A. Peltzer
- Laboratory of Obtention, Modification, Characterization, and Evaluation of Materials (LOMCEM), Department of Science and Technology, University of Quilmes, Bernal B1876BXD, Argentina;
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| | - Victoria Alcázar Montero
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
- Grupo de Investigación en Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Marina P. Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
- Grupo de Investigación en Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Jaume Sempere-Torregrosa
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Cristina Pavon
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Maria Dolores Samper
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Gema Rodríguez Crespo
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Jose M. Kenny
- STM Group, University of Perugia, Strada Pentima 4, 05100 Terni, Italy;
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| |
Collapse
|
4
|
Yeo JCC, Muiruri JK, Fei X, Wang T, Zhang X, Xiao Y, Thitsartarn W, Tanoto H, He C, Li Z. Innovative biomaterials for food packaging: Unlocking the potential of polyhydroxyalkanoate (PHA) biopolymers. BIOMATERIALS ADVANCES 2024; 163:213929. [PMID: 39024863 DOI: 10.1016/j.bioadv.2024.213929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024]
Abstract
Polyhydroxyalkanoate (PHA) biopolyesters show a good balance between sustainability and performance, making them a competitive alternative to conventional plastics for ecofriendly food packaging. With an emphasis on developments over the last decade (2014-2024), this review examines the revolutionary potential of PHAs as a sustainable food packaging material option. It also delves into the current state of commercial development, competitiveness, and the carbon footprint associated with PHA-based products. First, a critical examination of the challenges experienced by PHAs in terms of food packaging requirements is undertaken, followed by an assessment of contemporary strategies addressing permeability, mechanical properties, and processing considerations. The various PHA packaging end-of-life options, including a comprehensive overview of the environmental impact and potential solutions will also be discussed. Finally, conclusions and future perspectives are elucidated with a view of prospecting PHAs as future green materials, with a blend of performance and sustainability of food packaging solutions.
Collapse
Affiliation(s)
- Jayven Chee Chuan Yeo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Joseph Kinyanjui Muiruri
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE(2)), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Xunchang Fei
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Tong Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Xikui Zhang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yihang Xiao
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Warintorn Thitsartarn
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Hendrix Tanoto
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Chaobin He
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore; Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Republic of Singapore.
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE(2)), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore; Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Republic of Singapore.
| |
Collapse
|
5
|
Chen J, Yang Y, Fan W, Zhu Y, Yang R, Xu Y. How surface modification of cellulose nanocrystals affects the crystallization process of poly (β-hydroxybutyrate). Int J Biol Macromol 2024; 276:134119. [PMID: 39098456 DOI: 10.1016/j.ijbiomac.2024.134119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Hydroxyl groups on the surface of cellulose nanocrystals (CNC) are modified by chemical methods, CNC and the modified CNC are used as fillers to prepare PHB/cellulose nanocomposites. The absorption peak of carbonyl group of the modified CNC (CNC-CL and CNC-LA) appears in the FT-IR spectra, which proves that the modifications are successful. Thermal stability of CNC-CL and CNC-LA is better than that of pure CNC. Pure CNC is beneficial to the nucleation of PHB, while CNC-CL and CNC-LA inhibit the nucleation of PHB. The spherulite size of PHB and its nanocomposites increases linearly over time, and the maximum growth rate of PHB spherulite exists at 90 °C. Rheological analysis shows that viscous deformation plays the dominant role in PHB, PHBC and PHBC-CL samples, while the elastic deformation is dominant in PHBC-LA. According to the rheological data, the dispersion of CNC-CL and CNC-LA in PHB is better than that of CNC. This work demonstrates the impact of modified CNC on the crystallization and viscoelastic properties of PHB. Moreover, the interface enhancement effect of modified CNC on PHB/CNC nanomaterials is revealed from the crystallization and rheology perspectives.
Collapse
Affiliation(s)
- Jianxiang Chen
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China.
| | - Yang Yang
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Wangxi Fan
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Yunfeng Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Runmiao Yang
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Yuling Xu
- Department of Materials Science and Engineering, Nanjing Tech University, Jiangsu 211816, China
| |
Collapse
|
6
|
Palaniappan M. Sustainable microcrystalline cellulose extracted from biowaste Albezia lebeck L. leaves: Biomass exfoliation and physicochemical characterization. PHYSIOLOGIA PLANTARUM 2024; 176:e14447. [PMID: 39149796 DOI: 10.1111/ppl.14447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 08/17/2024]
Abstract
There is a focus on sustainability when manufacturing materials. Utilizing biobased materials and replacing fossil-based products is the main research focus. Bio-composite materials are applied to packaging, filler coatings, and pharmaceuticals. Here, we used the leaves of the agro-waste plant Albizia lebeck L. to extract cellulose. Chemical treatment causing strong acid hydrolysis successfully extracted the cellulose content from the leaves. The cellulose obtained was then strengthened with polylactic acid to make a biobased film for future applications. Fourier transform spectroscopy, scanning electron microscopy, thermal analysis, particle size analysis, visible UV and elemental analysis were all used to characterize the extracted cellulose. SEM and mechanical property analysis were used to check and describe the quality of the reinforced biofilm. The greatest cellulose yield from this raw material was 50.2%. The crystallinity index and crystallite size (CI 70.3% and CS 11.29 nm) were high in the extracted cellulose. The TG (DTG) curve analysis derivative revealed cellulose particle breakdown was initiated around 305.2°C and can endure temperatures up to 600°C. Biofilms reinforced with polylactic acid cellulose (1, 2, 3, and 5% by weight %) exhibited a smooth and parallel surface. As the filler concentration increased, minor agglomeration occurred. The tensile strength of pure polylactic acid (PLA) (34.72 MPa) was extended up to 38.91 MPa for 5% filler. Similarly, Young's modulus also increased to 5.24 MPa. However, the elongation break decreases with the increase of filler content, and the least value of decrease is 7.5 MPa. Concerning prospective implementations, it is expected that the biobased film and cellulose particles will prove to be more functional.
Collapse
Affiliation(s)
- Murugesan Palaniappan
- Department of Mechanical Engineering, College of Engineering, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Anastasova I, Tsekova P, Ignatova M, Stoilova O. Imparting Photocatalytic and Antioxidant Properties to Electrospun Poly(L-lactide- co-D,L-lactide) Materials. Polymers (Basel) 2024; 16:1814. [PMID: 39000670 PMCID: PMC11244129 DOI: 10.3390/polym16131814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
The focus of the present study is on the fabrication of effective and eco-friendly hybrid electrospun materials based on poly(L-lactide-co-D,L-lactide) (PLDLLA), Fe3O4 and ZnO with an appropriate design for antioxidant and photocatalytic performance. The design of the fibrous materials was purposely tailored in one step by electrospinning and simultaneous electrospinning/electrospraying. Electrospinning of PLDLLA and its mixture with Fe3O4 resulted in the fabrication of materials with design type "in". Furthermore, the surface of the electrospun PLDLLA and Fe3O4-in-PLDLLA was decorated with ZnO particles by simultaneous electrospraying, thus materials with design type "on" were obtained. In this case, quaternized N,N,N-trimethyl chitosan iodide (QCOS) was used as a sticking agent of ZnO particles onto the fiber's surface. Different structures and morphologies of the electrospun materials were observed by SEM equipped with EDX and TEM. TGA and XRD analyses show that the presence of inorganic particles had an impact on the thermal properties and crystallinity of the electrospun materials. Furthermore, the material type "on" showed improved wettability with a water contact angle less than 90° compared to the material type "in" with an angle larger than 90°. In particular, the presence of Fe3O4 imparts complementary magnetic properties, while ZnO considerably increased the antioxidant activity of the fibrous materials. Materials with design type "on" displayed over 70% radical scavenging capacity in contrast to the material type "in" with less than 20% capacity within 30 min of contact. Moreover, the purposely tailored design type "on" materials provided excellent photocatalytic degradation of model organic pollutant methylene blue dye under UV light irradiation even after 5-fold use, and at the end of the fifth cycle these materials degraded more than 90% of the dye. These results reveal not only a strategy for the fabrication of electrospun hybrid bio-based materials with targeted design but also provide a promising, simple and effective way for mitigating water pollution.
Collapse
Affiliation(s)
- Ina Anastasova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St., bl. 103A, 1113 Sofia, Bulgaria
| | - Petya Tsekova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St., bl. 103A, 1113 Sofia, Bulgaria
| | - Milena Ignatova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St., bl. 103A, 1113 Sofia, Bulgaria
| | - Olya Stoilova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St., bl. 103A, 1113 Sofia, Bulgaria
| |
Collapse
|
8
|
Sunesh NP, Suyambulingam I, Divakaran D, Pulikkalparambil H, Sanjay MR, Siengchin S. Pedalium murex plant-based bioplasticizer reinforced polylactic acid films: A promising approach for biodegradable fruit packaging applications. Int J Biol Macromol 2024; 270:132392. [PMID: 38754681 DOI: 10.1016/j.ijbiomac.2024.132392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
The most likely materials for use in packaging are plastics. A lot of synthetic polymers are harming the environment. A plasticizer is required for all polymers to improve their characteristics and workability. The plasticizers come in liquid form and are also derived from fossil fuels, which are harmful to the environment. Producing functional and affordable biopolymer for packaging applications is a difficult task nowadays. The preparation of biofilm for packaging using biopolymer and bioplasticizer is the main aim of this work. The biopolymer poly L-lactic acid (PLA) is used, and the bio plasticizer is extracted from Pedalium murex plant. Chemical and mechanical methods are used to extract the plasticizer. Plasticization of polylactic acid biopolymer was done using the extracted plasticizer at additions of 1 %, 2 %, 3 %, 4 %, and 5 %. FT-IR spectroscopy, X-ray diffraction spectroscopy, and surface roughness values are used to characterise the prepared biofilms. Scanning electron spectroscopy pictures are utilised to evaluate the morphological orientation of the biofilms. Strawberries packed with biofilms are used to evaluate the barrier properties of biofilms using UV spectroscopy analysis. Thermal degradation behaviour is investigated using thermo gravimetric analysis. We examined the mechanical characteristics, such as tensile strength, elongation modulus, and elongation break percentage. The plasticizing effect of the plasticizer raises the elongation break percentage while decreasing the tensile strength and modulus. For 2 % plasticizer addition the elongation break increases and the tensile not much affected. To demonstrate biodegradability and microbial resistance, the soil degradation behaviour and antimicrobial activities were examined.
Collapse
Affiliation(s)
- Narayana Perumal Sunesh
- Department of Mechanical Engineering, Rohini College of Engineering and Technology, Palkulam, Kanyakumari, Tamil Nadu 629401, India
| | - Indran Suyambulingam
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand.
| | - Divya Divakaran
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand
| | | | - M R Sanjay
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand
| | - Suchart Siengchin
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand
| |
Collapse
|
9
|
Zhu Q, Sun E, Zhao Z, Wu T, Meng S, Ma Z, Shoaib M, Ur Rehman H, Cao X, Wang N. Biopolymer Materials in Triboelectric Nanogenerators: A Review. Polymers (Basel) 2024; 16:1304. [PMID: 38794497 PMCID: PMC11125245 DOI: 10.3390/polym16101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
In advancing the transition of the energy sector toward heightened sustainability and environmental friendliness, biopolymers have emerged as key elements in the construction of triboelectric nanogenerators (TENGs) due to their renewable sources and excellent biodegradability. The development of these TENG devices is of significant importance to the next generation of renewable and sustainable energy technologies based on carbon-neutral materials. This paper introduces the working principles, material sources, and wide-ranging applications of biopolymer-based triboelectric nanogenerators (BP-TENGs). It focuses on the various categories of biopolymers, ranging from natural sources to microbial and chemical synthesis, showcasing their significant potential in enhancing TENG performance and expanding their application scope, while emphasizing their notable advantages in biocompatibility and environmental sustainability. To gain deeper insights into future trends, we discuss the practical applications of BP-TENG in different fields, categorizing them into energy harvesting, healthcare, and environmental monitoring. Finally, the paper reveals the shortcomings, challenges, and possible solutions of BP-TENG, aiming to promote the advancement and application of biopolymer-based TENG technology. We hope this review will inspire the further development of BP-TENG towards more efficient energy conversion and broader applications.
Collapse
Affiliation(s)
- Qiliang Zhu
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Q.Z.); (E.S.); (Z.Z.); (S.M.); (Z.M.); (M.S.); (H.U.R.)
| | - Enqi Sun
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Q.Z.); (E.S.); (Z.Z.); (S.M.); (Z.M.); (M.S.); (H.U.R.)
| | - Zequan Zhao
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Q.Z.); (E.S.); (Z.Z.); (S.M.); (Z.M.); (M.S.); (H.U.R.)
| | - Tong Wu
- National Institute of Metrology, Beijing 100029, China;
| | - Shuchang Meng
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Q.Z.); (E.S.); (Z.Z.); (S.M.); (Z.M.); (M.S.); (H.U.R.)
| | - Zimeng Ma
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Q.Z.); (E.S.); (Z.Z.); (S.M.); (Z.M.); (M.S.); (H.U.R.)
| | - Muhammad Shoaib
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Q.Z.); (E.S.); (Z.Z.); (S.M.); (Z.M.); (M.S.); (H.U.R.)
| | - Hafeez Ur Rehman
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Q.Z.); (E.S.); (Z.Z.); (S.M.); (Z.M.); (M.S.); (H.U.R.)
| | - Xia Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ning Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Q.Z.); (E.S.); (Z.Z.); (S.M.); (Z.M.); (M.S.); (H.U.R.)
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
10
|
Alahmed A, Simsek S. Enhancing Mechanical Properties of Corn Bran Arabinoxylan Films for Sustainable Food Packaging. Foods 2024; 13:1314. [PMID: 38731684 PMCID: PMC11083293 DOI: 10.3390/foods13091314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 05/13/2024] Open
Abstract
Arabinoxylan (AX)-based films can improve the mechanical characteristics of biodegradable materials when utilized for food packaging. However, the mechanical properties of AX films for food packaging applications require thorough investigation to establish their viability. In this study, AX was extracted from corn bran coproducts of dry-milling (DCB), wet-milling (WCB), and dried distiller's grains with solubles (DDGS) using an acid-alkali method. Packaging materials were produced using these AX extracts, each combined with laccase and sorbitol, forming the basis for three different films. These films were then modified by immersing the surface in a lipase-acetate solution. We evaluated their mechanical characteristics, including thickness, tensile properties, tear resistance, and puncture resistance. The thickness and tensile properties of the modified AX films derived from DCB and DDGS showed significant improvements (p < 0.05) compared to the unmodified AX films. In contrast, the modified AX films from WCB showed no significant changes (p > 0.05) in thickness and tensile properties compared to the unmodified WCB AX films. A significant increase in tear resistance (p < 0.05) was observed in all modified AX films after immersion in the lipase-acetate mixture. While puncture resistance was enhanced in the modified AX films, the improvement was not statistically significant (p > 0.05) compared to the unmodified films. The presence of hydroxyl (OH) and carbonyl (CO) groups on the surfaces of AX films from DCB and DDGS, modified by the lipase-acetate solution, suggests excellent biodegradability properties. The modification process positively affected the AX films, rendering them more bendable, flexible, and resistant to deformation when stretched, compared to the unmodified AX films.
Collapse
Affiliation(s)
- Abdulrahman Alahmed
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
- Cereal Science Graduate Program, Peltier Complex, Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Senay Simsek
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
11
|
Senila L, Botiz I, Roman C, Simedru D, Dan M, Kacso I, Senila M, Todor-Boer O. Processing of Thin Films Based on Cellulose Nanocrystals and Biodegradable Polymers by Space-Confined Solvent Vapor Annealing and Morphological Characteristics. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1685. [PMID: 38612198 PMCID: PMC11012654 DOI: 10.3390/ma17071685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
L-poly(lactic acid), poly(3-hydroxybutyrate), and poly-hydroxybutyrate-co-hydroxyvalerate are biodegradable polymers that can be obtained from renewable biomass sources. The aim of this study was to develop three types of environmentally friendly film biocomposites of altered microstructure by combining each of the above-mentioned polymers with cellulose nanocrystal fillers and further processing the resulting materials via space-confined solvent vapor annealing. Cellulose was previously obtained from renewable biomass and further converted to cellulose nanocrystals by hydrolysis with the lactic acid. The solutions of biodegradable polymers were spin-coated onto solid substrates before and after the addition of cellulose nanocrystals. The obtained thin film composites were further processed via space-confined solvent vapor annealing to eventually favor their crystallization and, thus, to alter the final microstructure. Indeed, atomic force microscopy studies have revealed that the presence of cellulose nanocrystals within a biodegradable polymer matrix promoted the formation of large crystalline structures exhibiting fractal-, spherulitic- or needle-like morphologies.
Collapse
Affiliation(s)
- Lacrimioara Senila
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development of Optoelectronics Bucharest INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania; (L.S.); (C.R.); (D.S.)
| | - Ioan Botiz
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania;
- Department of Physics of Condensed Matter and Advanced Technologies, Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Cecilia Roman
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development of Optoelectronics Bucharest INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania; (L.S.); (C.R.); (D.S.)
| | - Dorina Simedru
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development of Optoelectronics Bucharest INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania; (L.S.); (C.R.); (D.S.)
| | - Monica Dan
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania; (M.D.); (I.K.)
| | - Irina Kacso
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania; (M.D.); (I.K.)
| | - Marin Senila
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development of Optoelectronics Bucharest INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania; (L.S.); (C.R.); (D.S.)
| | - Otto Todor-Boer
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development of Optoelectronics Bucharest INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania; (L.S.); (C.R.); (D.S.)
| |
Collapse
|
12
|
Azadani RN, Karbasi S, Poursamar A. Chitosan/MWCNTs nanocomposite coating on 3D printed scaffold of poly 3-hydroxybutyrate/magnetic mesoporous bioactive glass: A new approach for bone regeneration. Int J Biol Macromol 2024; 260:129407. [PMID: 38224805 DOI: 10.1016/j.ijbiomac.2024.129407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
The utilization of 3D printing has become increasingly common in the construction of composite scaffolds. In this study, magnetic mesoporous bioactive glass (MMBG) was incorporated into polyhydroxybutyrate (PHB) to construct extrusion-based 3D printed scaffold. After fabrication of the PHB/MMBG composite scaffolds, they were coated with chitosan (Cs) and chitosan/multi-walled carbon nanotubes (Cs/MWCNTs) solutions utilizing deep coating method. FTIR was conducted to confirm the presence of Cs and MWCNTs on the scaffolds' surface. The findings of mechanical analysis illustrated that presence of Cs/MWCNTs on the composite scaffolds increases compressive young modulus significantly, from 16.5 to 42.2 MPa. According to hydrophilicity evaluation, not only MMBG led to decrease the contact angle of pure PHB but also scaffolds surface modification utilization of Cs and MWCNTs, the contact angle decreased significantly from 82.34° to 54.15°. Furthermore, investigation of cell viability, cell metabolism and inflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10) and transforming growth factor-beta (TGF-β) proved that the scaffolds not only do not stimulate the immune system, but also polarize macrophage cells from M1 phase to M2 phase. The present study highlights the suitability of 3D printed scaffold PHB/MMBG with Cs/MWCNTs coating for bone tissue engineering.
Collapse
Affiliation(s)
- Reyhaneh Nasr Azadani
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Ali Poursamar
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Dong Y, Xie Y, Ma X, Yan L, Yu HY, Yang M, Abdalkarim SYH, Jia B. Multi-functional nanocellulose based nanocomposites for biodegradable food packaging: Hybridization, fabrication, key properties and application. Carbohydr Polym 2023; 321:121325. [PMID: 37739512 DOI: 10.1016/j.carbpol.2023.121325] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/05/2023] [Accepted: 08/21/2023] [Indexed: 09/24/2023]
Abstract
Nowadays, non-degradable plastic packaging materials have caused serious environmental pollution, posing a threat to human health and development. Renewable eco-friendly nanocellulose hybrid (NCs-hybrid) composites as an ideal alternative to petroleum-based plastic food packaging have been extensively reported in recent years. NCs-hybrids include metal, metal oxides, organic frameworks (MOFs), plants, and active compounds. However, no review systematically summarizes the preparation, processing, and multi-functional applications of NCs-hybrid composites. In this review, the design and hybridization of various NCs-hybrids, the processing of multi-scale nanocomposites, and their key properties in food packaging applications were systematically explored for the first time. Moreover, the synergistic effects of various NCs-hybrids on several properties of composites, including mechanical, thermal, UV shielding, waterproofing, barrier, antimicrobial, antioxidant, biodegradation and sensing were reviewed in detailed. Then, the problems and advances in research on renewable NCs-hybrid composites are suggested for biodegradable food packaging applications. Finally, a future packaging material is proposed by using NCs-hybrids as nanofillers and endowing them with various properties, which are denoted as "PACKAGE" and characterized by "Property, Application, Cellulose, Keen, Antipollution, Green, Easy."
Collapse
Affiliation(s)
- Yanjuan Dong
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Yao Xie
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Xue Ma
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Ling Yan
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Hou-Yong Yu
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China; Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada.
| | - Mingchen Yang
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Somia Yassin Hussain Abdalkarim
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China.
| | - Bowen Jia
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| |
Collapse
|
14
|
Yan YF, Liang XB, Feng YL, Shi LF, Chen RP, Guo JZ, Guan Y. Manipulation of crystallization nucleation and thermal degradation of PLA films by multi-morphologies CNC-ZnO nanoparticles. Carbohydr Polym 2023; 320:121251. [PMID: 37659828 DOI: 10.1016/j.carbpol.2023.121251] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 09/04/2023]
Abstract
Currently, the quest for more renewable and biodegradable materials is a scientific priority to address the problems of petroleum-based plastics are difficult to degrade. In this work, cellulose nanocrystals (CNC) have been used as a template and four morphologies of CNC-ZnO nanocomposites were prepared via a hydrothermal method, and CNC-ZnO/polylactic acid (PLA) composite films were obtained by solution casting. We find that CNC-ZnO nanocomposites as heterogeneous nucleating agents improved the crystallinity and the film with flower-like CNC-ZnO was improved by 2.4 %. Ea required for thermal degradation of the PLA films decreased to 66-81 % of that of neat PLA, calculated by the Kissinger method, the Friedman method, and the Flynn-Wall-Ozawa (FWO) method. The R2 model was the solid degradation mechanism of the PLA films, analyzed through the Coats-Redfern method and the Criado method. The H-bond content of the composite films was significantly reduced after thermal aging at 150 °C. We found that three-dimensional CNC-ZnO (ZnO-3) made more prominent contributions to the crystallization, thermal degradation, and thermal aging of PLA films than other dimensional. The thermal properties can be regulated by the dimension, size, and apparent morphology of CNC-ZnO nanoparticles.
Collapse
Affiliation(s)
- Ya-Fang Yan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiao-Bo Liang
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou 311300, China
| | - Yan-Long Feng
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou 311300, China
| | - Lin-Fang Shi
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou 311300, China
| | - Rui-Pin Chen
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jian-Zhong Guo
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou 311300, China.
| | - Ying Guan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
15
|
Trebuňová M, Petroušková P, Balogová AF, Ižaríková G, Horňak P, Bačenková D, Demeterová J, Živčák J. Evaluation of Biocompatibility of PLA/PHB/TPS Polymer Scaffolds with Different Additives of ATBC and OLA Plasticizers. J Funct Biomater 2023; 14:412. [PMID: 37623657 PMCID: PMC10455870 DOI: 10.3390/jfb14080412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/12/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
One of the blends that is usable for 3D printing while not being toxic to cell cultures is the lactic acid (PLA)/polyhydroxybutyrate (PHB)/thermoplastic starch (TPS) blend. The addition of plasticizers can change the rate of biodegradation and the biological behavior of the material. In order to evaluate the potential of the PLA/PHB/TPS material in combination with additives (plasticizers: acetyl tributyl citrate (ATBC) and oligomeric lactic acid (OLA)), for use in the field of biomedical tissue engineering, we performed a comprehensive in vitro characterization of selected mixture materials. Three types of materials were tested: I: PLA/PHB/TPS + 25% OLA, II: PLA/PHB/TPS + 30% ATBC, and III: PLA/PHB/TPS + 30% OLA. The assessment of the biocompatibility of the materials included cytotoxicity tests, such as monitoring the viability, proliferation and morphology of cells and their deposition on the surface of the materials. The cell line 7F2 osteoblasts (Mus musculus) was used in the experiments. Based on the test results, the significant influence of plasticizers on the material was confirmed, with their specific proportions in the mixtures. PLA/PHB/TPS + 25% OLA was evaluated as the optimal material for biocompatibility with 7F2 osteoblasts. The tested biomaterials have the potential for further investigation with a possible change in the proportion of plasticizers, which can have a fundamental impact on their biological properties.
Collapse
Affiliation(s)
- Marianna Trebuňová
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia; (A.F.B.); (G.I.); (D.B.); (J.D.); (J.Ž.)
| | - Patrícia Petroušková
- Centre for Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia;
| | - Alena Findrik Balogová
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia; (A.F.B.); (G.I.); (D.B.); (J.D.); (J.Ž.)
| | - Gabriela Ižaríková
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia; (A.F.B.); (G.I.); (D.B.); (J.D.); (J.Ž.)
| | - Peter Horňak
- Institute of Materials and Quality Engineering, Faculty of Materials, Metallurgy and Recycling, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia;
| | - Darina Bačenková
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia; (A.F.B.); (G.I.); (D.B.); (J.D.); (J.Ž.)
| | - Jana Demeterová
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia; (A.F.B.); (G.I.); (D.B.); (J.D.); (J.Ž.)
| | - Jozef Živčák
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia; (A.F.B.); (G.I.); (D.B.); (J.D.); (J.Ž.)
| |
Collapse
|
16
|
Kumar R, Sadeghi K, Jang J, Seo J. Mechanical, chemical, and bio-recycling of biodegradable plastics: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163446. [PMID: 37075991 DOI: 10.1016/j.scitotenv.2023.163446] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
The extensive use of petroleum-based non-biodegradable plastics for various applications has led to global concerns regarding the severe environmental issues associated with them. However, biodegradable plastics are emerging as green alternatives to petroleum-based non-biodegradable plastics. Biodegradable plastics, which include bio-based and petroleum-based biodegradable polymers, exhibit advantageous properties such as renewability, biocompatibility, and non-toxicity. Furthermore, certain biodegradable plastics are compatible with existing recycling streams intended for conventional plastics and are biodegradable in controlled and/or predicted environments. Recycling biodegradable plastics before their end-of-life (EOL) degradation further enhances their sustainability and reduces their carbon footprint. Since the production of biodegradable plastic is increasing and these materials will coexist with conventional plastics for many years to come, it is essential to identify the optimal recycling options for each of the most prevalent biodegradable plastics. The substitution of virgin biodegradable plastics by their recyclates leads to higher savings in the primary energy demand and reduces global warming impact. This review covers the current state of the mechanical, chemical, and bio-recycling of post-industrial and post-consumer waste of biodegradable plastics and their related composites. The effects of recycling on the chemical structure and thermomechanical properties of biodegradable plastics are also reported. Additionally, the improvement of biodegradable plastics by blending them with other polymers and nanoparticles is comprehensively discussed. Finally, the status of bioplastic usage, life cycle assessment, EOL management, bioplastic market, and the challenges associated with the recyclability of biodegradable plastics are addressed. This review gives comprehensive insights into the recycling processes that may be employed for the recycling of biodegradable plastics.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Packaging, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, South Korea
| | - Kambiz Sadeghi
- Department of Packaging, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, South Korea
| | - Jaeyoung Jang
- Department of Packaging, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, South Korea
| | - Jongchul Seo
- Department of Packaging, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, South Korea.
| |
Collapse
|
17
|
Injorhor P, Trongsatitkul T, Wittayakun J, Ruksakulpiwat C, Ruksakulpiwat Y. Biodegradable Polylactic Acid-Polyhydroxyalkanoate-Based Nanocomposites with Bio-Hydroxyapatite: Preparation and Characterization. Polymers (Basel) 2023; 15:polym15051261. [PMID: 36904502 PMCID: PMC10007227 DOI: 10.3390/polym15051261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Biodegradable polymers play a significant role in medical applications, especially internal devices because they can be broken down and absorbed into the body without producing harmful degradation products. In this study, biodegradable polylactic acid (PLA)-polyhydroxyalkanoate (PHA)-based nanocomposites with various PHA and nano-hydroxyapatite (nHAp) contents were prepared using solution casting method. Mechanical properties, microstructure, thermal stability, thermal properties, and in vitro degradation of the PLA-PHA-based composites were investigated. PLA-20PHA/5nHAp was shown to give the desired properties so it was selected to investigate electrospinnability at different applied high voltages. PLA-20PHA/5nHAp composite shows the highest improvement of tensile strength at 36.6 ± 0.7 MPa, while PLA-20PHA/10nHAp composite shows the highest thermal stability and in vitro degradation at 7.55% of weight loss after 56 days of immersion in PBS solution. The addition of PHA in PLA-PHA-based nanocomposites improved elongation at break, compared to the composite without PHA. PLA-20PHA/5nHAp solution was successfully fabricated into fibers by electrospinning. All obtained fibers showed smooth and continuous fibers without beads with diameters of 3.7 ± 0.9, 3.5 ± 1.2, and 2.1 ± 0.7 µm at applied high voltages of 15, 20, and 25 kV, respectively.
Collapse
Affiliation(s)
- Preeyaporn Injorhor
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
| | - Tatiya Trongsatitkul
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
| | - Jatuporn Wittayakun
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chaiwat Ruksakulpiwat
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
- Correspondence: (C.R.); (Y.R.); Tel.: +66-44-22-4430 (C.R.); +66-44-22-3033 (Y.R.)
| | - Yupaporn Ruksakulpiwat
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
- Correspondence: (C.R.); (Y.R.); Tel.: +66-44-22-4430 (C.R.); +66-44-22-3033 (Y.R.)
| |
Collapse
|
18
|
Kinyanjui Muiruri J, Chee Chuan Yeo J, Yun Debbie Soo X, Wang S, Liu H, Kong J, Cao J, Hoon Tan B, Suwardi A, Li Z, Xu J, Jun Loh X, Zhu Q. Recent Advances of Sustainable Short-chain length Polyhydroxyalkanoates (Scl-PHAs) – Plant Biomass Composites. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
19
|
Tassinari G, Bassani A, Spigno G, Soregaroli C, Drabik D. Do biodegradable food packaging films from agro-food waste pay off? A cost-benefit analysis in the context of Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159101. [PMID: 36181818 DOI: 10.1016/j.scitotenv.2022.159101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/12/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Bio-based polymers are increasingly attracting attention as a solution to reducing the consumption of non-renewable resources and curbing the accumulation of fossil-based plastic waste. In this study, we analyze the economics of a new packaging film based on a polylactic acid-polyhydroxybutyrate blend (PLA-PHB), with PHB obtained from agro-industrial residues (potato peels). We model various sizes of biorefineries using the new biotechnology in Europe. For a four-year payback period, which is generally accepted in the industry, the calculated minimum product selling price ranges from 9.7 euros per kilogram to 37.2 euros per kilogram, depending, among other factors, on the production capacity of the biorefinery. We have incorporated the uncertainty over the model parameters in a Monte Carlo simulation and investigated the relative impact of individual factors on the minimum product selling price. Overall, the results indicate that the bio-based feedstock availability is the most influential factor on the profitability of the new biotechnology.
Collapse
Affiliation(s)
- Gianmaria Tassinari
- Agricultural Economics and Rural Policy Group, Wageningen University, Wageningen, the Netherlands; Department of Agricultural and Food Economics, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| | - Andrea Bassani
- DiSTAS, Department for sustainable food process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giorgia Spigno
- DiSTAS, Department for sustainable food process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Claudio Soregaroli
- Department of Agricultural and Food Economics, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Dušan Drabik
- Agricultural Economics and Rural Policy Group, Wageningen University, Wageningen, the Netherlands; Department of Trade and Accounting, Czech University of Life Sciences in Prague, Czech Republic
| |
Collapse
|
20
|
Agüero Á, Corral Perianes E, Abarca de las Muelas SS, Lascano D, de la Fuente García-Soto MDM, Peltzer MA, Balart R, Arrieta MP. Plasticized Mechanical Recycled PLA Films Reinforced with Microbial Cellulose Particles Obtained from Kombucha Fermented in Yerba Mate Waste. Polymers (Basel) 2023; 15:285. [PMID: 36679165 PMCID: PMC9864610 DOI: 10.3390/polym15020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
In this study, yerba mate waste (YMW) was used to produce a kombucha beverage, and the obtained microbial cellulose produced as a byproduct (KMW) was used to reinforce a mechanically recycled poly(lactic acid) (r-PLA) matrix. Microbial cellulosic particles were also produced in pristine yerba mate for comparison (KMN). To simulate the revalorization of the industrial PLA products rejected during the production line, PLA was subjected to three extrusion cycles, and the resultant pellets (r3-PLA) were then plasticized with 15 wt.% of acetyl tributyl citrate ester (ATBC) to obtain optically transparent and flexible films by the solvent casting method. The plasticized r3-PLA-ATBC matrix was then loaded with KMW and KMN in 1 and 3 wt.%. The use of plasticizer allowed a good dispersion of microbial cellulose particles into the r3-PLA matrix, allowing us to obtain flexible and transparent films which showed good structural and mechanical performance. Additionally, the obtained films showed antioxidant properties, as was proven by release analyses conducted in direct contact with a fatty food simulant. The results suggest the potential interest of these recycled and biobased materials, which are obtained from the revalorization of food waste, for their industrial application in food packaging and agricultural films.
Collapse
Affiliation(s)
- Ángel Agüero
- Instituto de Tecnología de Materiales (ITM), Universidad Politécnica de Valencia (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Esther Corral Perianes
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Sara Soledad Abarca de las Muelas
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Diego Lascano
- Instituto de Tecnología de Materiales (ITM), Universidad Politécnica de Valencia (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| | - María del Mar de la Fuente García-Soto
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Grupo de Investigación: Tecnologías Ambientales y Recursos Industriales (TARIndustrial), 20006 Madrid, Spain
| | - Mercedes Ana Peltzer
- Grupo de Investigación: Tecnologías Ambientales y Recursos Industriales (TARIndustrial), 20006 Madrid, Spain
- Laboratory of Obtention, Modification, Characterization, and Evaluation of Materials (LOMCEM), Department of Science and Technology, University of Quilmes, Bernal B1876BXD, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| | - Rafael Balart
- Instituto de Tecnología de Materiales (ITM), Universidad Politécnica de Valencia (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| | - Marina Patricia Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Grupo de Investigación: Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| |
Collapse
|
21
|
Cicogna F, Passaglia E, Benedettini M, Oberhauser W, Ishak R, Signori F, Coiai S. Rosmarinic and Glycyrrhetinic Acid-Modified Layered Double Hydroxides as Functional Additives for Poly(Lactic Acid)/Poly(Butylene Succinate) Blends. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010347. [PMID: 36615541 PMCID: PMC9822188 DOI: 10.3390/molecules28010347] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Immobilizing natural antioxidant and biologically active molecules in layered double hydroxides (LDHs) is an excellent method to retain and release these substances in a controlled manner, as well as protect them from thermal and photochemical degradation. Herein, we describe the preparation of host-guest systems based on LDHs and rosmarinic and glycyrrhetinic acids, two molecules obtained from the extraction of herbs and licorice root, respectively, with antioxidant, antimicrobial, and anti-inflammatory properties. Intercalation between the lamellae of the mono-deprotonated anions of rosmarinic and glycyrrhetinic acid (RA and GA), alone or in the presence of an alkyl surfactant, allows for readily dispersible systems in biobased polymer matrices such as poly(lactic acid) (PLA), poly(butylene succinate) (PBS), and a 60/40 wt./wt. PLA/PBS blend. The composites based on the PLA/PBS blend showed better interphase compatibility than the neat blend, correlated with increased adhesion at the interface and a decreased dispersed phase size. In addition, we proved that the active species migrate slowly from thin films of the composite materials in a hydroalcoholic solvent, confirming the optimization of the release process. Finally, both host-guest systems and polymeric composites showed antioxidant capacity and, in the case of the PLA composite containing LDH-RA, excellent inhibitory capacity against E. coli and S. aureus.
Collapse
Affiliation(s)
- Francesca Cicogna
- National Research Council-Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM), SS Pisa, Via Moruzzi 1, 56124 Pisa, PI, Italy
- Correspondence: (F.C.); (S.C.); Tel.: +39-050-315-3393 (F.C.); +39-050-315-2556 (S.C.)
| | - Elisa Passaglia
- National Research Council-Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM), SS Pisa, Via Moruzzi 1, 56124 Pisa, PI, Italy
| | - Matilde Benedettini
- National Research Council-Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM), SS Pisa, Via Moruzzi 1, 56124 Pisa, PI, Italy
| | - Werner Oberhauser
- National Research Council-Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM), Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy
| | - Randa Ishak
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 1, 56122 Pisa, PI, Italy
| | - Francesca Signori
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 1, 56122 Pisa, PI, Italy
| | - Serena Coiai
- National Research Council-Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM), SS Pisa, Via Moruzzi 1, 56124 Pisa, PI, Italy
- Correspondence: (F.C.); (S.C.); Tel.: +39-050-315-3393 (F.C.); +39-050-315-2556 (S.C.)
| |
Collapse
|
22
|
Patel MK, Zaccone M, De Brauwer L, Nair R, Monti M, Martinez-Nogues V, Frache A, Oksman K. Improvement of Poly(lactic acid)-Poly(hydroxy butyrate) Blend Properties for Use in Food Packaging: Processing, Structure Relationships. Polymers (Basel) 2022; 14:5104. [PMID: 36501498 PMCID: PMC9736990 DOI: 10.3390/polym14235104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022] Open
Abstract
Poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB)-based nanocomposite films were prepared with bio-based additives (CNCs and ChNCs) and oligomer lactic acid (OLA) compatibilizer using extrusion and then blown to films at pilot scale. The aim was to identify suitable material formulations and nanocomposite production processes for film production at a larger scale targeting food packaging applications. The film-blowing process for both the PLA-PHB blend and CNC-nanocomposite was unstable and led to non-homogeneous films with wrinkles and creases, while the blowing of the ChNC-nanocomposite was stable and resulted in a smooth and homogeneous film. The optical microscopy of the blown nanocomposite films indicated well-dispersed chitin nanocrystals while the cellulose crystals were agglomerated to micrometer-size particles. The addition of the ChNCs also resulted in the improved mechanical performance of the PLA-PHB blend due to well-dispersed crystals in the nanoscale as well as the interaction between biopolymers and the chitin nanocrystals. The strength increased from 27 MPa to 37 MPa compared to the PLA-PHB blend and showed almost 36 times higher elongation at break resulting in 10 times tougher material. Finally, the nanocomposite film with ChNCs showed improved oxygen barrier performance as well as faster degradation, indicating its potential exploitation for packaging applications.
Collapse
Affiliation(s)
- Mitul Kumar Patel
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Marta Zaccone
- Proplast, Via Roberto di Ferro 86, 15122 Alessandria, Italy
| | - Laurens De Brauwer
- Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Gent, Belgium
| | - Rakesh Nair
- Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Gent, Belgium
| | - Marco Monti
- Proplast, Via Roberto di Ferro 86, 15122 Alessandria, Italy
| | | | - Alberto Frache
- Department of Applied Science and Technology and Local INSTM Unit, Politecnico di Torino, Viale Teresa Michel 5, 15121 Alessandria, Italy
| | - Kristiina Oksman
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-97187 Luleå, Sweden
- Mechanical & Industrial Engineering (MIE), University of Toronto, Toronto, ON M5S 3G8, Canada
- Wallenberg Wood Science Center (WWSC), Luleå University of Technology, SE-97187 Luleå, Sweden
| |
Collapse
|
23
|
Influence of surface-modified cellulose nanocrystal on the rheological, thermal and mechanical properties of PLA nanocomposites. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04556-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Maurizzi E, Bigi F, Quartieri A, De Leo R, Volpelli LA, Pulvirenti A. The Green Era of Food Packaging: General Considerations and New Trends. Polymers (Basel) 2022; 14:polym14204257. [PMID: 36297835 PMCID: PMC9610407 DOI: 10.3390/polym14204257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, academic research and industries have gained awareness about the economic, environmental, and social impacts of conventional plastic packaging and its disposal. This consciousness has oriented efforts towards more sustainable materials such as biopolymers, paving the way for the “green era” of food packaging. This review provides a schematic overview about polymers and blends of them, which are emerging as promising alternatives to conventional plastics. Focus was dedicated to biopolymers from renewable sources and their applications to produce sustainable, active packaging with antimicrobial and antioxidant properties. In particular, the incorporation of plant extracts, food-waste derivatives, and nano-sized materials to produce bio-based active packaging with enhanced technical performances was investigated. According to recent studies, bio-based active packaging enriched with natural-based compounds has the potential to replace petroleum-derived materials. Based on molecular composition, the natural compounds can diversely interact with the native structure of the packaging materials, modulating their barriers, optical and mechanical performances, and conferring them antioxidant and antimicrobial properties. Overall, the recent academic findings could lead to a breakthrough in the field of food packaging, opening the gates to a new generation of packaging solutions which will be sustainable, customised, and green.
Collapse
Affiliation(s)
- Enrico Maurizzi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence:
| | - Francesco Bigi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Andrea Quartieri
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Riccardo De Leo
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Luisa Antonella Volpelli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Interdepartmental Research Centre for the Improvement of Agro-Food Biological Resources (BIOGEST-SITEIA), University of Modena and Reggio Emilia, 42124 Reggio Emilia, Italy
| | - Andrea Pulvirenti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Interdepartmental Research Centre for the Improvement of Agro-Food Biological Resources (BIOGEST-SITEIA), University of Modena and Reggio Emilia, 42124 Reggio Emilia, Italy
| |
Collapse
|
25
|
Li Z, Zhu G, Lin N. Dispersibility Characterization of Cellulose Nanocrystals in Polymeric-Based Composites. Biomacromolecules 2022; 23:4439-4468. [PMID: 36195577 DOI: 10.1021/acs.biomac.2c00987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cellulose nanocrystals (CNCs) are hydrophilic nanoparticles extracted from biomass with properties and functions different from cellulose and are being developed for property-oriented applications such as high stiffness, abundant active groups, and biocompatibility. It has broad application prospects in the field of composite materials, while the dispersibility of the CNC in polymers is the key to its application performance. Many reviews have discussed in-depth the modification strategies to improve the dispersibility of the CNC and summarized all characterization for the CNC, but there are no reviews on the in-depth exploration of dispersion characterization. This review is a comprehensive summary of the characterization of CNC dispersion in the matrix in terms of direct observation, indirect evaluation, and quantified evaluation, summarizing how and why different characterization tools reveal dispersibility. In addition, "decision tree" flowcharts are presented to provide the reader with a reference for selecting the appropriate characterization method for a specific composite.
Collapse
Affiliation(s)
- Zikang Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Luoshi Road #122, Wuhan430070, P. R. China
| | - Ge Zhu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Luoshi Road #122, Wuhan430070, P. R. China
| | - Ning Lin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Luoshi Road #122, Wuhan430070, P. R. China
| |
Collapse
|
26
|
Patel M, Hansson F, Pitkänen O, Geng S, Oksman K. Biopolymer Blends of Poly(lactic acid) and Poly(hydroxybutyrate) and Their Functionalization with Glycerol Triacetate and Chitin Nanocrystals for Food Packaging Applications. ACS APPLIED POLYMER MATERIALS 2022; 4:6592-6601. [PMID: 36119407 PMCID: PMC9469702 DOI: 10.1021/acsapm.2c00967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/08/2022] [Indexed: 06/02/2023]
Abstract
Polylactic acid (PLA) is a biopolymer that has potential for use in food packaging applications; however, its low crystallinity and poor gas barrier properties limit its use. This study aimed to increase the understanding of the structure property relation of biopolymer blends and their nanocomposites. The crystallinity of the final materials and their effect on barrier properties was studied. Two strategies were performed: first, different concentrations of poly(hydroxybutyrate) (PHB; 10, 25, and 50 wt %) were compounded with PLA to facilitate the PHB spherulite development, and then, for further increase of the overall crystallinity, glycerol triacetate (GTA) functionalized chitin nanocrystals (ChNCs) were added. The PLA:PHB blend with 25 wt % PHB showed the formation of many very small PHB spherulites with the highest PHB crystallinity among the examined compositions and was selected as the matrix for the ChNC nanocomposites. Then, ChNCs with different concentrations (0.5, 1, and 2 wt %) were added to the 75:25 PLA:PHB blend using the liquid-assisted extrusion process in the presence of GTA. The addition of the ChNCs resulted in an improvement in the crystallization rate and degree of PHB crystallinity as well as mechanical properties. The nanocomposite with the highest crystallinity resulted in greatly decreased oxygen (O) and carbon dioxide (CO2) permeability and increased the overall mechanical properties compared to the blend with GTA. This study shows that the addition ChNCs in PLA:PHB can be a possible way to reach suitable gas barrier properties for food packaging films.
Collapse
Affiliation(s)
- Mitul
Kumar Patel
- Division
of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-97 187 Luleå, Sweden
| | - Freja Hansson
- Division
of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-97 187 Luleå, Sweden
| | - Olli Pitkänen
- Microelectronics
Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, 90570 Oulu, Finland
| | - Shiyu Geng
- Division
of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-97 187 Luleå, Sweden
| | - Kristiina Oksman
- Division
of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-97 187 Luleå, Sweden
- Mechanical
& Industrial Engineering (MIE), University
of Toronto, Toronto, Ontario M5S 3G8, Canada
- Wallenberg
Wood Science Center (WWSC); Luleå
University of Technology, SE 97187 Luleå, Sweden
| |
Collapse
|
27
|
Innovative solutions and challenges to increase the use of Poly(3-hydroxybutyrate) in food packaging and disposables. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Iglesias-Montes ML, Soccio M, Siracusa V, Gazzano M, Lotti N, Cyras VP, Manfredi LB. Chitin Nanocomposite Based on Plasticized Poly(lactic acid)/Poly(3-hydroxybutyrate) (PLA/PHB) Blends as Fully Biodegradable Packaging Materials. Polymers (Basel) 2022; 14:polym14153177. [PMID: 35956691 PMCID: PMC9370966 DOI: 10.3390/polym14153177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Fully bio-based poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) blends plasticized with tributyrin (TB), and their nanocomposite based on chitin nanoparticles (ChNPs) was developed using melt mixing followed by a compression molding process. The combination of PHB and ChNPs had an impact on the crystallinity of the plasticized PLA matrix, thus improving its oxygen and carbon dioxide barrier properties as well as displaying a UV light-blocking effect. The addition of 2 wt% of ChNP induced an improvement on the initial thermal degradation temperature and the overall migration behavior of blends, which had been compromised by the presence of TB. All processed materials were fully disintegrated under composting conditions, suggesting their potential application as fully biodegradable packaging materials.
Collapse
Affiliation(s)
- Magdalena L. Iglesias-Montes
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, Facultad de Ingeniería, Universidad Nacional de Mar del Plata—Consejo de Investigaciones Científicas y Técnicas, Mar del Plata 7600, Argentina; (M.L.I.-M.); (V.P.C.)
| | - Michelina Soccio
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40131 Bologna, Italy;
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, 40126 Bologna, Italy
- Correspondence: (M.S.); (L.B.M.); Tel.: +39-0512090360 (M.S.); +54-2236260600 (L.B.M.)
| | - Valentina Siracusa
- Chemical Science Department, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Massimo Gazzano
- Institute of Organic Synthesis and Photoreactivity, National Research Council, 40129 Bologna, Italy;
| | - Nadia Lotti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40131 Bologna, Italy;
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, 40126 Bologna, Italy
- Interdepartmental Center for Agro-Food Research, CIRI-AGRO, University of Bologna, 40126 Bologna, Italy
| | - Viviana P. Cyras
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, Facultad de Ingeniería, Universidad Nacional de Mar del Plata—Consejo de Investigaciones Científicas y Técnicas, Mar del Plata 7600, Argentina; (M.L.I.-M.); (V.P.C.)
| | - Liliana B. Manfredi
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, Facultad de Ingeniería, Universidad Nacional de Mar del Plata—Consejo de Investigaciones Científicas y Técnicas, Mar del Plata 7600, Argentina; (M.L.I.-M.); (V.P.C.)
- Correspondence: (M.S.); (L.B.M.); Tel.: +39-0512090360 (M.S.); +54-2236260600 (L.B.M.)
| |
Collapse
|
29
|
Ren J, Li Y, Lin Q, Li Z, Zhang G. Development of biomaterials based on plasticized polylactic acid and tea polyphenols for active-packaging application. Int J Biol Macromol 2022; 217:814-823. [PMID: 35907448 DOI: 10.1016/j.ijbiomac.2022.07.154] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/22/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
Abstract
Bioactive-packaging films based on polylactic acid (PLA), acetyl tributyl citrate (ATBC), and tea polyphenol (TP) were prepared by melt blending. Results of mechanical-property test revealed that adding ATBC and TP can significantly improve mechanical properties of PLA. The shift of CO to lower wavelengths in FTIR and the morphology of the films in SEM indicated physical or chemical interactions in the PLA/ATBC/TP films. The antioxidant, and antibacterial activities of the PLA/ATBC films increased dramatically (P<0.05) with increased TP amount. The antioxidant activity of the films with 1 % TP was equivalent to that of 300 mg/L l-ascorbic acid, whereas PLA/ATBC/TP films with 0.5 % and 1 % TP concentration were effective in inhibiting Staphylococcus aureus and Escherichia coli within almost 5 h (P<0.05). The PLA films changed from transparent to opaque and from yellow to red after combining with ATBC or TP, respectively. The overall migration of the films in 3 % acetic acid and 10 % ethanol did not exceed the overall migration limit. All these findings indicated potential of the PLA/ATBC/TP films in active-packaging application.
Collapse
Affiliation(s)
- Jizhou Ren
- Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yana Li
- Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Qinbao Lin
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, Jinan University, Zhuhai 519070, China
| | - Zenghui Li
- Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Guoquan Zhang
- Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
30
|
Critical Review on Polylactic Acid: Properties, Structure, Processing, Biocomposites, and Nanocomposites. MATERIALS 2022; 15:ma15124312. [PMID: 35744371 PMCID: PMC9228835 DOI: 10.3390/ma15124312] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/20/2022]
Abstract
Composite materials are emerging as a vital entity for the sustainable development of both humans and the environment. Polylactic acid (PLA) has been recognized as a potential polymer candidate with attractive characteristics for applications in both the engineering and medical sectors. Hence, the present article throws lights on the essential physical and mechanical properties of PLA that can be beneficial for the development of composites, biocomposites, films, porous gels, and so on. The article discusses various processes that can be utilized in the fabrication of PLA-based composites. In a later section, we have a detailed discourse on the various composites and nanocomposites-based PLA along with the properties’ comparisons, discussing our investigation on the effects of various fibers, fillers, and nanofillers on the mechanical, thermal, and wear properties of PLA. Lastly, the various applications in which PLA is used extensively are discussed in detail.
Collapse
|
31
|
Popa MS, Frone AN, Panaitescu DM. Polyhydroxybutyrate blends: A solution for biodegradable packaging? Int J Biol Macromol 2022; 207:263-277. [PMID: 35257732 DOI: 10.1016/j.ijbiomac.2022.02.185] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 11/05/2022]
Abstract
Poly (3-hydroxybutyrate) (PHB) is a valuable bio-based and biodegradable polymer that may substitute common polymers in packaging and biomedical applications provided that the production cost is reduced and some properties improved. Blending PHB with other biodegradable polymers is the most simple and accessible route to reduce costs and to improve properties. This review provides a comprehensive overview on the preparation, properties and application of the PHB blends with other biodegradable polyesters such as medium-chain-length polyhydroxyalkanoates, poly(ε-caprolactone), poly(lactic acid), poly(butylene succinate), poly(propylene carbonate) and poly (butylene adipate-co-terephthalate) or polysaccharides and their derivatives. A special attention has been paid to the miscibility of PHB with these polymers and the compatibilizing methods used to improve the dispersion and interface. The changes in the PHB morphology, thermal, mechanical and barrier properties induced by the second polymer have been critically analyzed in view of industrial application. The biodegradability and recyclability strategies of the PHB blends were summarized along with the processing techniques adapted to the intended application. This review provides the tools for a better understanding of the relation between the micro/nanostructure of PHB blends and their properties for the further development of PHB blends as solutions for biodegradable packaging.
Collapse
Affiliation(s)
- Marius Stelian Popa
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, Bucharest 060021, Romania
| | - Adriana Nicoleta Frone
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, Bucharest 060021, Romania
| | - Denis Mihaela Panaitescu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, Bucharest 060021, Romania.
| |
Collapse
|
32
|
Plavec R, Horváth V, Hlaváčiková S, Omaníková L, Repiská M, Medlenová E, Feranc J, Kruželák J, Přikryl R, Figalla S, Kontárová S, Baco A, Danišová L, Vanovčanová Z, Alexy P. Influence of Multiple Thermomechanical Processing of 3D Filaments Based on Polylactic Acid and Polyhydroxybutyrate on Their Rheological and Utility Properties. Polymers (Basel) 2022; 14:polym14101947. [PMID: 35631830 PMCID: PMC9143941 DOI: 10.3390/polym14101947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
This study focused on material recycling of a biodegradable blend based on PLA and PHB for multiple applications of biodegradable polymeric material under real conditions. In this study, we investigated the effect of multiple processing of a biodegradable polymer blend under the trade name NONOILEN®, which was processed under laboratory as well as industrial conditions. In this article, we report on testing the effect of blending and multiple processing on thermomechanical stability, molecular characteristics, as well as thermophysical and mechanical properties of experimental- and industrial-type tested material suitable for FDM 3D technology. The results showed that the studied material degraded during blending and subsequently during multiple processing. Even after partial degradation, which was demonstrated by a decrease in average molecular weight and a decrease in complex viscosity in the process of multiple reprocessing, there was no significant change in the material’s thermophysical properties, either in laboratory or industrial conditions. There was also no negative impact on the strength characteristics of multiple processed samples. The results of this work show that a biodegradable polymer blend based on PLA and PHB is a suitable candidate for material recycling even in industrial processing conditions. In addition, the results suggest that the biodegradable polymeric material NONOILEN® 3D 3056-2 is suitable for multiple uses in FDM technology.
Collapse
Affiliation(s)
- Roderik Plavec
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (V.H.); (S.H.); (L.O.); (M.R.); (E.M.); (J.F.); (J.K.); (A.B.); (L.D.); (Z.V.); (P.A.)
- Correspondence:
| | - Vojtech Horváth
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (V.H.); (S.H.); (L.O.); (M.R.); (E.M.); (J.F.); (J.K.); (A.B.); (L.D.); (Z.V.); (P.A.)
| | - Slávka Hlaváčiková
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (V.H.); (S.H.); (L.O.); (M.R.); (E.M.); (J.F.); (J.K.); (A.B.); (L.D.); (Z.V.); (P.A.)
| | - Leona Omaníková
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (V.H.); (S.H.); (L.O.); (M.R.); (E.M.); (J.F.); (J.K.); (A.B.); (L.D.); (Z.V.); (P.A.)
| | - Martina Repiská
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (V.H.); (S.H.); (L.O.); (M.R.); (E.M.); (J.F.); (J.K.); (A.B.); (L.D.); (Z.V.); (P.A.)
| | - Elena Medlenová
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (V.H.); (S.H.); (L.O.); (M.R.); (E.M.); (J.F.); (J.K.); (A.B.); (L.D.); (Z.V.); (P.A.)
| | - Jozef Feranc
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (V.H.); (S.H.); (L.O.); (M.R.); (E.M.); (J.F.); (J.K.); (A.B.); (L.D.); (Z.V.); (P.A.)
| | - Ján Kruželák
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (V.H.); (S.H.); (L.O.); (M.R.); (E.M.); (J.F.); (J.K.); (A.B.); (L.D.); (Z.V.); (P.A.)
| | - Radek Přikryl
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (R.P.); (S.F.); (S.K.)
| | - Silvestr Figalla
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (R.P.); (S.F.); (S.K.)
| | - Soňa Kontárová
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (R.P.); (S.F.); (S.K.)
| | - Andrej Baco
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (V.H.); (S.H.); (L.O.); (M.R.); (E.M.); (J.F.); (J.K.); (A.B.); (L.D.); (Z.V.); (P.A.)
| | - Lucia Danišová
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (V.H.); (S.H.); (L.O.); (M.R.); (E.M.); (J.F.); (J.K.); (A.B.); (L.D.); (Z.V.); (P.A.)
| | - Zuzana Vanovčanová
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (V.H.); (S.H.); (L.O.); (M.R.); (E.M.); (J.F.); (J.K.); (A.B.); (L.D.); (Z.V.); (P.A.)
| | - Pavol Alexy
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (V.H.); (S.H.); (L.O.); (M.R.); (E.M.); (J.F.); (J.K.); (A.B.); (L.D.); (Z.V.); (P.A.)
| |
Collapse
|
33
|
Poly(lactic acid)/Poly(3-hydroxybutyrate) Biocomposites with Differently Treated Cellulose Fibers. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082390. [PMID: 35458593 PMCID: PMC9032581 DOI: 10.3390/molecules27082390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 01/03/2023]
Abstract
The growing concern about environmental pollution has generated an increased demand for biobased and biodegradable materials intended particularly for the packaging sector. Thus, this study focuses on the effect of two different cellulosic reinforcements and plasticized poly(3-hydroxybutyrate) (PHB) on the properties of poly(lactic acid) (PLA). The cellulose fibers containing lignin (CFw) were isolated from wood waste by mechanical treatment, while the ones without lignin (CF) were obtained from pure cellulose by acid hydrolysis. The biocomposites were prepared by means of a melt compounding-masterbatch technique for the better dispersion of additives. The effect of the presence or absence of lignin and of the size of the cellulosic fibers on the properties of PLA and PLA/PHB was emphasized by using in situ X-ray diffraction, polarized optical microscopy, atomic force microscopy, and mechanical and thermal analyses. An improvement of the mechanical properties of PLA and PLA/PHB was achieved in the presence of CF fibers due to their smaller size, while CFw fibers promoted an increased thermal stability of PLA/PHB, owing to the presence of lignin. The overall thermal and mechanical results show the great potential of using cheap cellulose fibers from wood waste to obtain PLA/PHB-based materials for packaging applications as an alternative to using fossil based materials. In addition, in situ X-ray diffraction analysis over a large temperature range has proven to be a useful technique to better understand changes in the crystal structure of complex biomaterials.
Collapse
|
34
|
Tyagi P, Agate S, Velev OD, Lucia L, Pal L. A Critical Review of the Performance and Soil Biodegradability Profiles of Biobased Natural and Chemically Synthesized Polymers in Industrial Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2071-2095. [PMID: 35077140 DOI: 10.1021/acs.est.1c04710] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This review explores biobased polymers for industrial applications, their end fate, and most importantly, origin and key aspects enabling soil biodegradation. The physicochemical properties of biobased synthetic and natural polymers and the primary factors governing degradation are explored. Current and future biobased systems and factors allowing for equivalent comparisons of degradation and possible sources for engineering improved biodegradation are reviewed. Factors impacting ultraviolet (UV) stability of biopolymers have been described including methods to enhance photoresistance and impact on biodegradation. It discusses end-fate of biopolymers in soil and impact of residues on soil health. A limited number of studies examine side effects (e.g., microbial toxicity) from soil biodegradation of composites and biopolymers. Currently available standards for biodegradation and composting have been described with limitations and scope for improvements. Finally, design considerations and implications for sustainable polymers used, under consideration, and to be considered within the context of a rational biodegradable strategy are elaborated.
Collapse
Affiliation(s)
- Preeti Tyagi
- Department of Forest Biomaterials, North Carolina State University, 431 Dan Allen Dr., Raleigh, North Carolina 27695, United States
- Global Breakthrough Packaging Group, Mars Wrigley, Chicago, Illinois 60642, United States
| | - Sachin Agate
- Department of Forest Biomaterials, North Carolina State University, 431 Dan Allen Dr., Raleigh, North Carolina 27695, United States
| | - Orlin D Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695, United States
| | - Lucian Lucia
- Department of Forest Biomaterials, North Carolina State University, 431 Dan Allen Dr., Raleigh, North Carolina 27695, United States
| | - Lokendra Pal
- Department of Forest Biomaterials, North Carolina State University, 431 Dan Allen Dr., Raleigh, North Carolina 27695, United States
| |
Collapse
|
35
|
Stoica D, Alexe P, Ivan AS, Stanciu S, Tatu DM, Stoica M. Bioplastics from Biomass. Biopolymers 2022. [DOI: 10.1007/978-3-030-98392-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Naser AZ, Deiab I, Defersha F, Yang S. Expanding Poly(lactic acid) (PLA) and Polyhydroxyalkanoates (PHAs) Applications: A Review on Modifications and Effects. Polymers (Basel) 2021; 13:4271. [PMID: 34883773 PMCID: PMC8659978 DOI: 10.3390/polym13234271] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/01/2023] Open
Abstract
The high price of petroleum, overconsumption of plastic products, recent climate change regulations, the lack of landfill spaces in addition to the ever-growing population are considered the driving forces for introducing sustainable biodegradable solutions for greener environment. Due to the harmful impact of petroleum waste plastics on human health, environment and ecosystems, societies have been moving towards the adoption of biodegradable natural based polymers whose conversion and consumption are environmentally friendly. Therefore, biodegradable biobased polymers such as poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs) have gained a significant amount of attention in recent years. Nonetheless, some of the vital limitations to the broader use of these biopolymers are that they are less flexible and have less impact resistance when compared to petroleum-based plastics (e.g., polypropylene (PP), high-density polyethylene (HDPE) and polystyrene (PS)). Recent advances have shown that with appropriate modification methods-plasticizers and fillers, polymer blends and nanocomposites, such limitations of both polymers can be overcome. This work is meant to widen the applicability of both polymers by reviewing the available materials on these methods and their impacts with a focus on the mechanical properties. This literature investigation leads to the conclusion that both PLA and PHAs show strong candidacy in expanding their utilizations to potentially substitute petroleum-based plastics in various applications, including but not limited to, food, active packaging, surgical implants, dental, drug delivery, biomedical as well as antistatic and flame retardants applications.
Collapse
Affiliation(s)
| | | | | | - Sheng Yang
- School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.Z.N.); (I.D.); (F.D.)
| |
Collapse
|
37
|
Cellulose bionanocomposites for sustainable planet and people: A global snapshot of preparation, properties, and applications. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
38
|
Liu H, Zhang B, Zhou L, Li J, Zhang J, Chen X, Xu S, He H. Synergistic effects of cellulose nanocrystals‐organic montmorillonite as hybrid nanofillers for enhancing mechanical, crystallization, and heat‐resistant properties of three‐dimensional printed poly(lactic acid) nanocomposites. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hao Liu
- Xinyu Key Laboratory of Materials Technology and Application for Intelligent Manufacturing, School of Mechanical and Electrical Engineering Xinyu University Xinyu China
- School of Materials Science and Engineering South China University of Technology Guangzhou China
| | - Bao Zhang
- Xinyu Key Laboratory of Materials Technology and Application for Intelligent Manufacturing, School of Mechanical and Electrical Engineering Xinyu University Xinyu China
| | - Laihong Zhou
- Xinyu Key Laboratory of Materials Technology and Application for Intelligent Manufacturing, School of Mechanical and Electrical Engineering Xinyu University Xinyu China
| | - Jinbo Li
- Xinyu Key Laboratory of Materials Technology and Application for Intelligent Manufacturing, School of Mechanical and Electrical Engineering Xinyu University Xinyu China
| | - Jiacheng Zhang
- Xinyu Key Laboratory of Materials Technology and Application for Intelligent Manufacturing, School of Mechanical and Electrical Engineering Xinyu University Xinyu China
| | - Xiao Chen
- Xinyu Key Laboratory of Materials Technology and Application for Intelligent Manufacturing, School of Mechanical and Electrical Engineering Xinyu University Xinyu China
| | - Shunjian Xu
- Xinyu Key Laboratory of Materials Technology and Application for Intelligent Manufacturing, School of Mechanical and Electrical Engineering Xinyu University Xinyu China
| | - Hui He
- School of Materials Science and Engineering South China University of Technology Guangzhou China
| |
Collapse
|
39
|
A novel approach of adhesive property of cellulose nanofibers obtained from the discarded wooden part of Kozo plant. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02151-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Obtaining Active Polylactide (PLA) and Polyhydroxybutyrate (PHB) Blends Based Bionanocomposites Modified with Graphene Oxide and Supercritical Carbon Dioxide (scCO 2)-Assisted Cinnamaldehyde: Effect on Thermal-Mechanical, Disintegration and Mass Transport Properties. Polymers (Basel) 2021; 13:polym13223968. [PMID: 34833267 PMCID: PMC8621613 DOI: 10.3390/polym13223968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 11/17/2022] Open
Abstract
Bionanocomposites based on Polylactide (PLA) and Polyhydroxybutyrate (PHB) blends were successfully obtained through a combined extrusion and impregnation process using supercritical CO2 (scCO2). Graphene oxide (GO) and cinnamaldehyde (Ci) were incorporated into the blends as nano-reinforcement and an active compound, respectively, separately, and simultaneously. From the results, cinnamaldehyde quantification values varied between 5.7% and 6.1% (w/w). When GO and Ci were incorporated, elongation percentage increased up to 16%, and, therefore, the mechanical properties were improved, with respect to neat PLA. The results indicated that the Ci diffusion through the blends and bionanocomposites was influenced by the nano-reinforcing incorporation. The disintegration capacity of the developed materials decreased with the incorporation of GO and PHB, up to 14 and 23 days of testing, respectively, without compromising the biodegradability characteristics of the final material.
Collapse
|
41
|
Wei L, Deng N, Wang X, Zhao H, Yan J, Yang Q, Kang W, Cheng B. Flexible ordered MnS@CNC/carbon nanofibers membrane based on microfluidic spinning technique as interlayer for stable lithium-metal battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Hou X, Lu X, He C. Strong Interface via Weak Interactions: Ultratough and Malleable Polylactic acid/Polyhydroxybutyrate Biocomposites. Macromol Rapid Commun 2021; 43:e2100619. [PMID: 34662467 DOI: 10.1002/marc.202100619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/10/2021] [Indexed: 11/09/2022]
Abstract
Bio-based and biodegradable polymer composites, most notably poly(l-lactic acid) (PLLA) and poly(3-hydroxybutyrate) (PHB), represent a promising solution to replace conventional petroleum-based plastics. However, the brittleness and low miscibility of PLLA and PHB remain two major obstacles to practical applications. In this work, first PLLA/PHB blends are reported by melt mixing with a rigid component, poly(methyl methacrylate) (PMMA). Driven by favorable entropy, PMMA forms an interfacial nanolayer, which transforms the morphology of resultant blends. The ternary blends show 55-fold increase in elongation, 50-fold in toughness, and metal-like malleability (≈180° bending and twisting), while retaining its high stiffness (3.4 GPa) and strength (≈50 MPa). The mechanical improvement arises from numerous craze fibrils and shear deformation of the matrix, induced by the incorporated PMMA. Furthermore, this generic strategy can be applied to design other mechanically robust biocomposites for advanced green devices.
Collapse
Affiliation(s)
- Xunan Hou
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Xuehong Lu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore
| | - Chaobin He
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore.,Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis, 138634, Singapore
| |
Collapse
|
43
|
Gao C, Wang S, Liu B, Yao S, Dai Y, Zhou L, Qin C, Fatehi P. Sustainable Chitosan-Dialdehyde Cellulose Nanocrystal Film. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5851. [PMID: 34640253 PMCID: PMC8510260 DOI: 10.3390/ma14195851] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 01/20/2023]
Abstract
In this study, we incorporated 2,3-dialdehyde nanocrystalline cellulose (DANC) into chitosan as a reinforcing agent and manufactured biodegradable films with enhanced gas barrier properties. DANC generated via periodate oxidation of cellulose nanocrystal (CNC) was blended at various concentrations with chitosan, and bionanocomposite films were prepared via casting and characterized systematically. The results showed that DANC developed Schiff based bond with chitosan that improved its properties significantly. The addition of DANC dramatically improved the gas barrier performance of the composite film, with water vapor permeability (WVP) value decreasing from 62.94 g·mm·m-2·atm-1·day-1 to 27.97 g·mm·m-2·atm-1·day-1 and oxygen permeability (OP) value decreasing from 0.14 cm3·mm·m-2·day-1·atm-1 to 0.026 cm3·mm·m-2·day-1·atm-1. Meanwhile, the maximum decomposition temperature (Tdmax) of the film increased from 286 °C to 354 °C, and the tensile strength of the film was increased from 23.60 MPa to 41.12 MPa when incorporating 25 wt.% of DANC. In addition, the chitosan/DANC (75/25, wt/wt) films exhibited superior thermal stability, gas barrier, and mechanical strength compared to the chitosan/CNC (75/25, wt/wt) film. These results confirm that the DANC and chitosan induced films with improved gas barrier, mechanical, and thermal properties for possible use in film packaging.
Collapse
Affiliation(s)
- Cong Gao
- Department of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; (C.G.); (S.W.); (B.L.); (S.Y.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
- Chemical Engineering Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
| | - Shuo Wang
- Department of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; (C.G.); (S.W.); (B.L.); (S.Y.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| | - Baojie Liu
- Department of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; (C.G.); (S.W.); (B.L.); (S.Y.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| | - Shuangquan Yao
- Department of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; (C.G.); (S.W.); (B.L.); (S.Y.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| | - Yi Dai
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China;
| | - Long Zhou
- Chemical Engineering Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
| | - Chengrong Qin
- Department of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; (C.G.); (S.W.); (B.L.); (S.Y.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| | - Pedram Fatehi
- Chemical Engineering Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
| |
Collapse
|
44
|
Tyagi P, Salem KS, Hubbe MA, Pal L. Advances in barrier coatings and film technologies for achieving sustainable packaging of food products – A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Attia AAM, Abas KM, Ahmed Nada AA, Shouman MAH, Šišková AO, Mosnáček J. Fabrication, Modification, and Characterization of Lignin-Based Electrospun Fibers Derived from Distinctive Biomass Sources. Polymers (Basel) 2021; 13:2277. [PMID: 34301035 PMCID: PMC8309332 DOI: 10.3390/polym13142277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
From the environmental point of view, there is high demand for the preparation of polymeric materials for various applications from renewable and/or waste sources. New lignin-based spun fibers were produced, characterized, and probed for use in methylene blue (MB) dye removal in this study. The lignin was extracted from palm fronds (PF) and banana bunch (BB) feedstock using catalytic organosolv treatment. Different polymer concentrations of either a plasticized blend of renewable polymers such as polylactic acid/polyhydroxybutyrate blend (PLA-PHB-ATBC) or polyethylene terephthalate (PET) as a potential waste material were used as matrices to generate lignin-based fibers by the electrospinning technique. The samples with the best fiber morphologies were further modified after iodine handling to ameliorate and expedite the thermostabilization process. To investigate the adsorption of MB dye from aqueous solution, two approaches of fiber modification were utilized. First, electrospun fibers were carbonized at 500 °C with aim of generating lignin-based carbon fibers with a smooth appearance. The second method used an in situ oxidative chemical polymerization of m-toluidine monomer to modify electrospun fibers, which were then nominated by hybrid composites. SEM, TGA, FT-IR, BET, elemental analysis, and tensile measurements were employed to evaluate the composition, morphology, and characteristics of manufactured fibers. The hybrid composite formed from an OBBL/PET fiber mat has been shown to be a promising adsorbent material with a capacity of 9 mg/g for MB dye removal.
Collapse
Affiliation(s)
- Amina Abdel Meguid Attia
- Laboratory of Surface Chemistry and Catalysis, National Research Center, 33 El-Bohouth St., Giza 12622, Egypt; (K.M.A.); (M.A.H.S.)
| | - Khadiga Mohamed Abas
- Laboratory of Surface Chemistry and Catalysis, National Research Center, 33 El-Bohouth St., Giza 12622, Egypt; (K.M.A.); (M.A.H.S.)
| | - Ahmed Ali Ahmed Nada
- Pretreatment and Finishing of Cellulose Based Textiles Department, National Research Center, Giza 12622, Egypt;
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Dubravska Cesta 9, 845 11 Bratislava, Slovakia
| | - Mona Abdel Hamid Shouman
- Laboratory of Surface Chemistry and Catalysis, National Research Center, 33 El-Bohouth St., Giza 12622, Egypt; (K.M.A.); (M.A.H.S.)
| | - Alena Opálková Šišková
- Polymer Institute, Slovak Academy of Sciences, Dubravska Cesta 9, 845 41 Bratislava, Slovakia;
| | - Jaroslav Mosnáček
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Dubravska Cesta 9, 845 11 Bratislava, Slovakia
- Polymer Institute, Slovak Academy of Sciences, Dubravska Cesta 9, 845 41 Bratislava, Slovakia;
| |
Collapse
|
46
|
Pavon C, Aldas M, López-Martínez J, Hernández-Fernández J, Arrieta MP. Films Based on Thermoplastic Starch Blended with Pine Resin Derivatives for Food Packaging. Foods 2021; 10:1171. [PMID: 34071084 PMCID: PMC8224774 DOI: 10.3390/foods10061171] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Completely biobased and biodegradable thermoplastic starch (TPS) based materials with a tunable performance were prepared for food packaging applications. Five blends were prepared by blending TPS with 10 wt%. of different pine resins derivatives: gum rosin (GR), disproportionated gum rosin (RD), maleic anhydride-modified gum rosin (CM), pentaerythritol ester of gum rosin (LF), and glycerol ester of gum rosin (UG). The materials were characterized in terms of thermo-mechanical behavior, surface wettability, color performance, water absorption, X-ray diffraction pattern, and disintegration under composting conditions. It was determined that pine resin derivatives increase the hydrophobicity of TPS and also increase the elastic component of TPS which stiffen the TPS structure. The water uptake study revealed that GR and LF were able to decrease the water absorption of TPS, while the rest of the resins kept the water uptake ability. X-ray diffraction analyses revealed that GR, CM, and RD restrain the aging of TPS after 24 months of aging. Finally, all TPS-resin blends were disintegrated under composting conditions during the thermophilic incubation period (90 days). Because of the TPS-resin blend's performance, the prepared materials are suitable for biodegradable rigid food packaging applications.
Collapse
Affiliation(s)
- Cristina Pavon
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), 03801 Alcoy, Spain; (M.A.); (J.L.-M.)
| | - Miguel Aldas
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), 03801 Alcoy, Spain; (M.A.); (J.L.-M.)
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional, Quito 170517, Ecuador
| | - Juan López-Martínez
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), 03801 Alcoy, Spain; (M.A.); (J.L.-M.)
| | - Joaquín Hernández-Fernández
- Research Group in Polymer Science, Engineering and Sustainability, Esenttia, Mamonal Industrial Zona, km. 8, Cartagena 130013, Colombia;
- Department of Natural and Exact Sciences, Universidad de la Costa, Calle 58 # 55–66, Barranquilla 080002, Colombia
| | - Marina Patricia Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain;
- Grupo de Investigación: Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| |
Collapse
|
47
|
Raturi G, Shree S, Sharma A, Panesar PS, Goswami S. Recent approaches for enhanced production of microbial polyhydroxybutyrate: Preparation of biocomposites and applications. Int J Biol Macromol 2021; 182:1650-1669. [PMID: 33992649 DOI: 10.1016/j.ijbiomac.2021.05.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022]
Abstract
In modern decades, an increase in environmental awareness has attracted the keen interest of researchers to investigate eco-sustainable, recyclable materials to minimize reliance on petroleum-based polymeric compounds. Poly (3-hydroxybutyrate) is amorphous, linear, and biodegradable bacterial polyesters that belong to the polyhydroxyalkanoates family with enormous applications in many fields. The present review provides comprehensive information on polyhydroxybutyrate production from different biomass feedstock. Various studies on PHB production by genetically engineered bacterial cells and optimization of parameters have been discussed. Recent technological innovation in processing polyhydroxybutyrate-based biocomposite through the different process has also been examined. Besides this, the potential applications of the derived competent biocomposites in the other fields have been depicted.
Collapse
Affiliation(s)
- Gaurav Raturi
- Department of Agri-Biotechnology, National Agri-food Biotechnology Institute, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Shweta Shree
- Department of Biotechnology, Texas A&M University, USA
| | - Amita Sharma
- Department of Chemical Engineering, Centre of Innovative and Applied Bioprocessing, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Parmjit S Panesar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India
| | - Saswata Goswami
- Department of Chemical Engineering, Centre of Innovative and Applied Bioprocessing, Knowledge City, Sector-81, Mohali, Punjab 140306, India.
| |
Collapse
|
48
|
|
49
|
Hou X, Chen S, Koh JJ, Kong J, Zhang YW, Yeo JCC, Chen H, He C. Entropy-Driven Ultratough Blends from Brittle Polymers. ACS Macro Lett 2021; 10:406-411. [PMID: 35549235 DOI: 10.1021/acsmacrolett.0c00844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polymer blends with synergetic performance play an integral part in modern society. The discovery of compatible polymer systems often relies on strong chemical interactions. By contrast, the role of entropy in polymers is often neglected. In this work, we show that entropy effect could control the phase structure and mechanical behaviors of polymer blends. For weakly interacting polymer pairs, the seemingly small mixing entropy favors the formation of nanoscale cocontinuous structures. The abundant nanointerfaces could initiate large plastic deformations by crazing or shear, thus, transforming brittle polymers (elongation < 9%) into superductile materials (elongation ∼ 146%). The resultant polymer blends display high transparency, strength (∼70 MPa), and toughness (∼60 MJ/m3) beyond most engineering plastics. The principle of entropy-driven blends may also be applied in other polymer systems, offering a strategy to develop mechanically robust bulk polymeric materials for emerging applications such as biomedicine and electronics.
Collapse
Affiliation(s)
- Xunan Hou
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Shuai Chen
- Institute of High Performance Computing, Agency for Science, Technology, and Research (A*STAR), 1 Fusionopolis Way, Connexis, Singapore 138632, Singapore
| | - J. Justin Koh
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 117575, Singapore
- Singapore Institute of Manufacturing Technology, A*STAR, 73 Nanyang Drive, Singapore 637662, Singapore
| | - Junhua Kong
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Yong-Wei Zhang
- Institute of High Performance Computing, Agency for Science, Technology, and Research (A*STAR), 1 Fusionopolis Way, Connexis, Singapore 138632, Singapore
| | - Jayven C. C. Yeo
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 117575, Singapore
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Haiming Chen
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Chaobin He
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 117575, Singapore
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| |
Collapse
|
50
|
Pan Z, Ju Q, Zhao D, Shen Y, Wang T. Enhanced oxygen barrier properties of poly(lactic acid) via oxygen scavenging strategy combining with uniaxial stretching. Int J Biol Macromol 2021; 181:521-527. [PMID: 33794239 DOI: 10.1016/j.ijbiomac.2021.03.161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/14/2021] [Accepted: 03/25/2021] [Indexed: 11/28/2022]
Abstract
Poly(lactic acid) (PLA) films with significantly enhanced mechanical and oxygen barrier properties were obtained via oxygen scavenging strategy combining with uniaxial stretching. In this study, PLA was melt blended with 3 phr of hydroxy-terminated polybutadiene (HTPB) and different contents of acetyl(tributyl citrate) (ATBC) and cobalt neodecanoate. It was then followed by compression molding and uniaxial stretching. After uniaxial stretching, the crystallinity of all films was significantly improved, which contributed to the enhancement in the oxygen barrier performance of composite materials. The morphological analysis carried out using scanning electron microscopy (SEM) revealed that ATBC could obviously promote the dispersion of HTPB in PLA. Overall, the blend films showed a decrease in the oxygen permeability coefficient as compared with the neat PLA film, which reached a similar level to oriented PET film. The optical and mechanical properties of the blend films with ATBC also improved considerably. This work provides a method to prepare high-crystalline polymers with superior gas-barrier properties having great potential for use in high-barrier applications, such as polymers for oxygen-sensitive food packaging.
Collapse
Affiliation(s)
- Zeyuan Pan
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qing Ju
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Dong Zhao
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 211816, China
| | - Yucai Shen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China; Suqian Advanced Materials Institute of Nanjing Tech University, Suqian 223800, China.
| | - Tingwei Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China; Suqian Advanced Materials Institute of Nanjing Tech University, Suqian 223800, China
| |
Collapse
|